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Abstract

Background: Traditionally average values of the whole population are considered when analysing microbial cell
cultivations. However, a typical microbial population in a bioreactor is heterogeneous in most phenotypes
measurable at a single-cell level. There are indications that such heterogeneity may be unfavourable on the one
hand (reduces yields and productivities), but also beneficial on the other hand (facilitates quick adaptation to new
conditions - i.e. increases the robustness of the fermentation process). Understanding and control of microbial
population heterogeneity is thus of major importance for improving microbial cell factory processes.

Results: In this work, a dual reporter system was developed and applied to map growth and cell fitness
heterogeneities within budding yeast populations during aerobic cultivation in well-mixed bioreactors. The reporter
strain, which was based on the expression of green fluorescent protein (GFP) under the control of the ribosomal
protein RPL22a promoter, made it possible to distinguish cell growth phases by the level of fluorescence intensity.
Furthermore, by exploiting the strong correlation of intracellular GFP level and cell membrane integrity it was
possible to distinguish subpopulations with high and low cell membrane robustness and hence ability to withstand
freeze-thaw stress. A strong inverse correlation between growth and cell membrane robustness was observed,
which further supports the hypothesis that cellular resources are limited and need to be distributed as a trade-off
between two functions: growth and robustness. In addition, the trade-off was shown to vary within the population,
and the occurrence of two distinct subpopulations shifting between these two antagonistic modes of cell
operation could be distinguished.

Conclusions: The reporter strain enabled mapping of population heterogeneities in growth and cell membrane
robustness towards freeze-thaw stress at different phases of cell cultivation. The described reporter system is a
valuable tool for understanding the effect of environmental conditions on population heterogeneity of microbial
cells and thereby to understand cell responses during industrial process-like conditions. It may be applied to
identify more robust subpopulations, and for developing novel strategies for strain improvement and process
design for more effective bioprocessing.

Keywords: Population heterogeneity, Cell fitness, Cell membrane robustness, Flow cytometry, Budding yeast,
Reporter strain, Cell factory optimisation
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Background

Traditionally, a microbial population has been consid-
ered homogeneous in optimisation studies of fermenta-
tion processes. Bioprocess measurements are typically
obtained as an “average” of the whole cell population,
thereby neglecting the effects and phenomena at the in-
dividual cell level. However, research has shown that a
typical microbial population in a bioreactor is heteroge-
neous in most phenotypes measurable at a single-cell
level [1-3]. There are indications that such heterogeneity
may be unfavourable on the one hand (reduces yields and
productivities), but also beneficial on the other hand (facil-
itates quick adaptation to new conditions - i.e. increases
the robustness of the fermentation process) [4,5]. There-
fore, understanding and control of microbial population
heterogeneity is of major importance for improving bio-
logical production processes, and this has led to an
increased interest from industry for methods to monitor
population heterogeneity [6,7].

Phenotypic heterogeneity occurs even if the micro-
environment surrounding the cells is constant, and it is
driven by factors such as differences in cell cycle and
cell ageing. Furthermore, stochastic gene transcription,
translation and post-translational modifications have an
impact [2]. In industrial scale fermentation processes,
phenotypic heterogeneity is further amplified as a result of
deficient mixing, which leads to zones with diverse envir-
onmental conditions [8]. The microbial cells, thus, experi-
ence sudden changes in the environmental conditions as
they circulate from one zone to the other. These
changes may pose different types of stress (e.g. oxida-
tive, temperature, pH) on the cells and affect their
metabolism and fitness [4,8,9]. The heterogeneous envir-
onment in large-scale fermenters may lead to repeated
cycles of production/re-assimilation of overflow metabo-
lites and repeated induction/relaxation of stress responses
resulting in reduced biomass yield and productivity [4,10].

Stress tolerance has previously been shown to differ
depending on the physiological state of the cell, ie.
which growth phase the cells were in prior to exposure
to the stress factor. For example, yeast cells in respira-
tory ethanol growth phase have been found to be more
tolerant to freeze-thaw stress than cells in respiro-
fermentative glucose growth phase during aerobic batch
cultivation [11]. This may be due to differences in cell
membrane robustness, which is a key phenotypic trait
that determines how well the cell can cope with physical
stresses (such as heat, mechanical, osmotic or freezing)
[12]. Many cellular stress responses are unique for the
specific stress, however, there is also a global induction
of cell responses leading to cross-tolerance towards non-
related stresses; a phenomenon known as the environ-
mental stress response (ESR) [13]. In a recent study by
Zakrezewska et al. [14], tolerance to different stresses
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has been shown to be inversely correlated to cell growth
rate, i.e. cells growing at a slow rate display a higher resist-
ance to a number of stresses (e.g. heat, acid, oxidative)
irrespectively of the cause for the reduced growth rate.
The inverse correlation to growth rate was speculated to
be related to the fact that the pool of cellular resources
(energy, material) is limited and needs to be distributed as
a trade-off between the two cellular functions growth and
survival. In a population, the individuals differ in physio-
logical state and are therefore equipped differently to cope
with subsequent exposure to harsh conditions [15] that
may occur in large-scale fermentation processes or in suc-
ceeding bioprocessing operations.

The aim of the present work was to map physiological
state and cell robustness distributions within a microbial
population, using budding yeast Saccharomyces cerevisiae
as model organism. S. cerevisiae has an outstanding im-
portance in industrial bioprocesses. It has been used in
baking and alcoholic brewing for centuries, but is also
used in a wide range of newer biotechnology production
applications, such as production of heterologous proteins
(e.g. insulin and different vaccines) and commodity chemi-
cals. Most of the pharmaceutical proteins produced by mi-
crobial eukaryotic cells so far approved by the FDA or
EMEA are almost exclusively based on production by S.
cerevisiae [16].

To be able to shed light into whether population het-
erogeneity could be a consequence of the trade-off in
cell economy for growth and robustness, a dual reporter
system was developed that allowed for studying the
prevalence of subpopulations which are differently pre-
pared for changes in environmental conditions. The dual
reporter system was based on:

(A) the expression of green fluorescent protein (GFP)
[17,18] under control of the ribosomal protein
promoter RPL22A, thereby making cellular GFP
level proportional to growth;

(B) loss of GFP signal in cells with permeabilised
plasma membranes after exposure to physical stress.

The dual nature of the reporter strain was validated by
staining with propidium iodide (PI), which clearly demon-
strated that cells with permeabilised plasma membrane
lost GFP signal and were PI positive, while cells with
remained level of GFP were PI negative.

As a case study, the relationship between physiological
heterogeneity of a microbial population and the prerequisite
of the population to tolerate subsequent freeze-thaw stress
(as a model of physical stress) was characterised on a single
cell level. It was found that subpopulations with different
level of cell membrane robustness and tolerance towards
physical stress co-existed in a population, and that the dis-
tribution was changing dynamically between different
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phases of cultivation. The results have implications for bio-
logical processing where intact cell membranes are desir-
able, for example in pharmaceutical protein production. In
addition, the presented methodology more generally pro-
vides an additional dimension in optimisation of microbial
cell factories.

Results and discussion

Population dynamics during batch cultivation

In order to capture the dynamic growth responses in a
population during the different growth phases of batch
cultivation, a reporter strain based on the expression of
GFP under the control of the promoter for the riboso-
mal protein gene RPL22a was used. The RPL22a pro-
moter was chosen based on that ribosomal protein gene
transcription has previously been found to be linearly
correlated to growth rate, as determined by transcrip-
tome analysis of cells grown in continuous cultivation
mode under different limiting conditions [19-21]. Fur-
thermore, ribosomal protein synthesis is believed to be
regulated at the transcription level [22], which makes
promoters for ribosomal proteins the ideal choice for
construction of growth reporter strains.

To investigate the behaviour of the growth reporter
strain during different growth phases, batch cultivations
in well-controlled stirred tank reactors were performed
and the physiology was monitored both on the whole
population by standard methods and on a single-cell
level by flow cytometry (see Materials and Methods).
The reporter strain exhibited expected growth behaviour
in defined mineral media, i.e. four distinct growth phases
were observed. Growth first occurred on glucose, which
was exhausted after 19 hours (Figure 1). Cells then
underwent a diauxic shift and growth occurred on etha-
nol until stationary phase was reached approximately
after 35-40 hours. The growth rate and biomass yield of
the reporter strain did not differ from the control strain
that did not express GFP, hence demonstrating that ex-
pression of GFP was not a burden to the cell (data not
shown).

The mean GFP level defined as mean cellular fluores-
cence intensity measured by flow cytometry was initially
quite stable around ca. 215 channel number units during
growth on glucose (Figure 1). As the cells entered dia-
uxic shift, the fluorescence decreased with approximately
30 channel number units in 2 hours. The turn-over of
intracellular GFP is a result of the sum of gene tran-
scription, gene translation as well as mRNA transcript
degradation and protein degradation. Thus, the relatively
rapid decrease in GFP level upon glucose depletion
which coincides with a momentarily detainment of cell
proliferation rate during the diauxic shift, demonstrated
that the RPL22a promoter activity and GFP synthesis
were rapidly down-regulated during this growth phase.
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The half-life of the GFP version used in the present
study has previously been reported to be approximately
7 hours [23], which is coherent with the fluorescence de-
crease observed upon glucose depletion (approximately
15% decrease in 2 hours, Figure 1). Besides protein deg-
radation, the decrease in GFP level may also to some ex-
tent be ascribed to dilution by cell division [24]. After
the diauxic shift, the mean fluorescence continued to
decrease, although at a lower rate than upon glucose de-
pletion, which indicates that the RPL22a promoter activ-
ity and GFP synthesis were re-initiated to some extent
during exponential growth on ethanol until the carbon
source was depleted and stationary phase was reached.
The mean fluorescence in stationary phase (ca. 70 chan-
nel number units) remained ca 10 times higher for the
reporter strain compared to the auto fluorescence of the
control strain.

The differences in GFP level at different growth phases
confirmed that the growth reporter could be used to dis-
tinguish cells in different propagation modes, i.e. distin-
guish cells growing on glucose from cells growing on
ethanol or in stationary phase. However, whether the
lowered GFP level during growth on ethanol is a result
of the lower growth rate and that the regulation of the
RPL22a promoter is a part of the ‘universal’ growth rate
response (GRR) as defined by Slavov and Botstein (2011)
[25], or if the regulation of RPL22a is specific for the
carbon source or other extrinsic factors is not clear. In
the study performed by Slavov and Botstein (2011),
RPL22a was found not to be a part of the ‘universal’
GRR, ie. the transcription of RPL22a was strongly up-
regulated at higher growth rates on glucose and slightly
down-regulated at higher growth rates on ethanol [26].
It is therefore likely that the decreased level of GFP after
the diauxic shift (Figure 1) is not strictly due to the
lower growth rate per se, but also a response to the
change in carbon source and the change from respiro-
fermentative to respiratory metabolism. Another support
for the interpretation that the regulation of the RPL22a
promoter is not exclusively related to the growth rate is
the observation that the GFP level decreased steadily
during growth on ethanol despite the fact that the
growth rate did not decrease until late exponential
phase. On the other hand, the gradual decrease in GFP
level during ethanol growth may additionally be due to
dilution by cell division [24]. Albeit that other aspects
might have influence on the regulation of the RPL22a
promoter in addition to the growth rate, the reporter
strain can be used to distinguish cells at different growth
conditions (e.g. growth on glucose, growth on ethanol,
no growth) which may be useful during optimisation of
large-scale bioprocess conditions. Effects due to different
stirring and feeding can be evaluated by following the re-
sponse by the reporter system thereby used to guide
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Figure 1 Mean fluorescence, biomass formation, substrate utilisation and product formation during aerobic batch cultivation of the S.
cerevisiae reporter strain in defined mineral media. Symbols: Mean GFP fluorescence (snowflakes); ODgoo (0pen diamonds); Glucose (open
circles); Acetate (open triangle pointing upwards); Ethanol (open squares); Glycerol (open triangles pointing downwards). The vertical line marks the
time point glucose depletion was observed.

process development. The reporter system may enable
identification of cell growth physiology at single-cell
level from different zones of a large-scale reactor, for ex-
ample if cells are being trapped in ethanol (or alterna-
tively glucose) rich zones for longer time periods.

To enumerate whether cell to cell variations in RPL22a
promoter activity could be ascribed to more than differ-
ences in cell size, a percentile analysis similar to the method
previously reported by Sumner et al. [27] was performed.
For such an analysis, the events measured in the flow cyto-
metry for each sample were first categorised in 10%-percen-
tiles based on the forward scatter (FSC) signal; then for
each percentile the mean FSC and GFP level were calcu-
lated and plotted against each other (Figure 2; see Add-
itional file 1: Figure S1-2 for further information on how
the percentile analysis was made). In Figure 2, the different
coloured lines correspond to the sample time points, and
each marker indicates the mean FSC and GFP for cells
belonging to a given FSC percentile interval (e.g. the mean
FSC and GFP of the cells presenting a FSC between the
10™ and 20™ percentile, for each time point, is indicated
with an open circle). From the percentile analysis, a clear
correlation between GFP level and FSC was observed for all
time points, with larger cells in general having a higher
GFP level (Figure 2). However, cell size was not the only de-
terminant of GFP level as there was a discrepancy from the
linearity, especially at higher FSC percentiles. The difference
in GFP level that cannot be explained by cell size alone may
be an artefact from the flow cytometry analysis (particularly

at the 90-100% percentile), meaning that the deviation may
simply be explained by the presence of cell aggregates,
which are read as a single event thereby giving a false read-
ing of the GFP level. On the other hand, it may also well in-
dicate non-stochasticity and the presence of subpopulations
with different regulation of RPL22a promoter activity. In re-
lation to this, it could be speculated that larger cells with
higher fluorescence propagate at a higher rate, at least dur-
ing glucose assimilation, which would be in agreement with
earlier observations that RPL22a transcription in glucose-
limited chemostats correlated to growth rate [19,25]. More-
over, differences in cell cycle phase may contribute to the
non-linear GEP level-cell size correlation (in general high
ESC percentiles may contain a higher fraction of budding
cells, which are larger than non-budding cells). In this
work the budding index (BI), i.e. the fraction of bud-
ding cells in the population, was not measured, how-
ever it has been reported in the literature that for
cultures in exponential growth on glucose the BI is
approximately 70-80% [28,29]. This implies that bud-
ding cells would most likely be present also in the
FSC percentile intervals as low as 20-30 or 30-40%
and that influence by cell cycle therefore is not likely
to have a large influence on the correlation discrepan-
cies. The results reported here are however not con-
clusive, and additional analysis is needed to clearly
state whether two cells of approximately the same
FSC would present different GFP level due to the fact
that one is budding and the other is not.
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Another circumstance highlighted from the percentile
analysis was that the slope of the GFP level-cell size cor-
relation differed depending on growth phase, with a
lower slope during ethanol assimilation than before the
diauxic shift (Figure 2). At the same time, a trend to-
wards smaller cells throughout the cultivation could be
observed. The decreased GFP level-cell size slope illus-
trates a decrease in growth heterogeneity, which may be
a consequence of the fact that the whole population
relocates resources to get prepared for survival rather
than propagation. In general, the GEP level decreased to
a relatively higher extent in larger cells than smaller
cells, which may be interpreted as the larger cells under-
went a larger physiological change (both growth and cell
size decreased) as a response to the shift in environmen-
tal conditions.

Cell to cell variation in cell membrane robustness

As a case study for determining heterogeneities in cell
membrane robustness and cellular capacity to withstand
physical stress, the population was exposed to freeze-
thaw stress and the degree of cell membrane permeabil-
isation was quantified by flow cytometry after cell
staining with propidium iodide (PI). It has previously
been shown that there is a connection between tolerance
to freeze-thaw stress and other physical stresses (H,O,
oxidative stress; calcofluor white as cell wall-challenging
reagent) [30]. Therefore, cells displaying high tolerance
to freeze-thaw stress are also likely to withstand other

seemingly unrelated types of specific stresses since the
response to most stress factors relies at least partly on
the ESR [13]. Thus, mapping of subpopulations with ele-
vated capacity to freeze-thaw stress is of high relevance
for reaching more robust bioprocesses where multiple
factors pose pressure on cell membrane integrity.

Prior to the freeze-thaw stress, over 95% of the cells
were PI negative demonstrating an undamaged cell
membrane phenotype (Figure 3). However, after freeze-
thaw stress a significant amount of cells had permeabi-
lised cell membranes and were thus stained with PI. The
degree of cell membrane permeabilisation varied within
the population and could be divided in two categories:
PI negative (PI fluorescence intensity <=10), and PI posi-
tive (PI fluorescence intensity >10). Cell membrane ro-
bustness was clearly linked to the specific growth phase
the cells were in prior to applying freeze-thaw stress; in
general cells growing on glucose were more sensitive
than cells growing on ethanol, and cells in stationary
phase. The fraction of PI negative cells increased from
below 20% during the exponential glucose growth phase
to around 80% in stationary phase and a corresponding
decrease of the PI positive subpopulation in the same
time interval was seen. This is in accordance with a pre-
viously published study made on the whole population
level, where viability after freeze-thaw stress was measured
on cells in different growth phases [11]. Furthermore, it is
in line with the hypothesis that there is an inverse correl-
ation between growth and robustness as has been
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previously suggested [25]. The trade-off between growth
and robustness can be further substantiated by the inverse
correlation between the RPL22a promoter activity prior to
stress and freeze-thaw stress tolerance (Figure 4). How-
ever, the rapid increase in cell membrane robustness after
the diauxic shift may also be a consequence of the ESR,
which previously has been shown to be activated during
diauxia and increase tolerance to multiple stresses [13].
Level of cell membrane robustness was also found to
be correlated to cellular GFP level after exposure to
freeze-thaw stress. Permeabilised cells significantly lost
GFP fluorescence, while the PI negative subpopulation
with intact cell membrane kept similar fluorescence in-
tensity to untreated cells (Figure 5). The loss in GFP
fluorescence in cells with permeabilised cell membrane
may be due to leakage of intracellular GFP [31] and it
may additionally be due to a decrease in intracellular pH
which quenches the fluorescence signal [32]. Regardless
of the specific cause, the measurable loss of GFP signal
means that PI staining becomes redundant and that cell
membrane robustness can be estimated by GFP level
alone. In fact, this demonstrates that the reporter strain
can be used as a dual reporter system for mapping het-
erogeneities in both growth (GFP level prior to stress
exposure) and cell membrane robustness (distribution of
subpopulations with high/low GFP level after stress
exposure). The redundancy of PI was clear for the ex-
perimental set-up used in this study, and it may be use-
ful for other investigations of cell membrane robustness

on a single cell level; however, further experiments are
needed to confirm that the dual nature of the reporter
system also is applicable for other cases of physical
stress.

Changes in cell membrane robustness by glucose
perturbation

To study how heterogeneity in cell membrane robustness
of the population is influenced by a dynamic environment
often seen in larger scale cultivations, an experiment mim-
icking glucose gradients was performed. Cells were grown
in continuous mode with D=0.2 h'! (which is below the
dilution rate where overflow metabolism occurs [33,34])
and subjected to a glucose pulse. Cells were harvested at
different time points during the pulse and subsequently
exposed to freeze-thaw stress. As demonstrated above, the
GEFP signal could directly be used as a measure of cell
membrane robustness and no additional staining was ap-
plied for these experiments. During steady state, the mean
fluorescence was constant and the cells displayed two sep-
arate subpopulations with varying degree of cell mem-
brane robustness (ca 80-85% of subpopulation P1, high
mean fluorescence, intact cell membrane; ca 15-20% of
subpopulation P2, low mean fluorescence, permeabilised
cell membrane) (Figures 6, 7). The degree of cells with
permeabilised cell membrane was thus significantly lower
than for a population during batch growth on glucose,
which is consistent with the inverse relationship between
growth rate and cell robustness. Furthermore, the steady
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as it allows for changing the growth rate while keeping
other conditions constant and this knowledge can then be
applied in development and design of a fed-batch process.

At time point zero, a pulse of 10 mL highly concen-
trated glucose solution was added and the glucose con-
centration inside the bioreactor instantly increased from
ca 0 g/L to 0.8 g/L. Directly after the pulse, glucose was
consumed and ethanol, acetate and glycerol were pro-
duced at different rates, as has been observed previously
[35]. After glucose depletion, ethanol and acetate con-
sumption occurred. During the pulse, the cells rapidly
experienced a variation from a low to a high glucose
concentration, which is similar to what a cell may ex-
perience in fed-batch cultivations as the cell is trans-
ported from the bottom of a bioreactor — a low glucose
environment — to the top, which normally is close to the
feeding point and hence has a high glucose concentra-
tion [36]. Approximately 15 minutes after glucose was
added, a drop in the P1 subpopulation (intact cell mem-
branes) and an increase in the P2 subpopulation (per-
meabilised cell membranes) fractions were observed
(Figures 6, 7). The P2 subpopulation increased to 63% of
the entire population 45 min after the glucose pulse was
added. This demonstrates that a sudden change in glu-
cose concentration has a profound effect on cell fitness
distribution, since an increased number of cells with
lower fluorescence and consequently lower cell mem-
brane robustness emerged. The shift from steady state
growth with D=0.2 h™" to batch mode and hence higher
growth rate led to that a substantial part of cellular
resources were redistributed to promote an increased
growth rate, and consequently, the population became
more sensitive to freeze-thaw stress. A difference in
subpopulation distribution at steady states before and
after the pulse was observed (68% P1 before com-
pared to 59% P1 after the pulse), despite similar bio-
mass and carbon dioxide profiles. The mechanism
underlying the difference in subpopulation distribu-
tion at the different steady states before and after the
pulse is not clear, however, it is probable that steady
state after the pulse had not yet been reached on all
levels despite constant biomass concentration, as has
been observed previously [33].

Conclusions

A dual reporter system in budding yeast was constructed
and used to measure population heterogeneities in
growth and cell membrane integrity after physical stress,
using freeze-thaw stress as a model. A clear inverse cor-
relation between growth and cell membrane robustness
was observed and the two antagonistic phenotypes
co-existed in the population, demonstrating that the
population was prepared for different types of variations
in environmental conditions.
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Cells in stationary phase displayed the highest cell mem-
brane robustness and tolerance to freeze-thaw stress. For
cells that were actively proliferating, the percentage of the
subpopulation with low cell membrane robustness was
lower in continuous cultivation mode as compared to a
population growing in batch mode. However, the low
membrane robustness phenotype could be easily induced
for cells growing under glucose limiting conditions by a
sudden increase of glucose at a low concentration. Distri-
bution of the two subpopulations with high and low mem-
brane robustness was modulated quickly as a response to
the low-level fluctuation in glucose concentration. This
suggests that spatial heterogeneities of glucose concentra-
tion in a fermentation tank may be detrimental for cell
membrane robustness and physical stress tolerance. Fur-
thermore this demonstrates the importance of rapid
methods for monitoring effects of small sudden changes
on microbial cultures at a single-cell level

To the best of our knowledge this is the first time that
the existence of subpopulations with different tolerance
towards physical stress and a reporter system to analyse
distributions of cell membrane robustness in budding
yeast have been reported. The developed system is useful
for optimisation studies for more efficient production in
microbial cell factories or for optimising physical state of
a population at point of harvest, thus increasing resist-
ance to adverse conditions during downstream proces-
sing where intact cells are desired, for example for the
production of baker’s yeast. Furthermore, a high fraction
of cells with robust membrane phenotype may be im-
portant in secretory production of recombinant proteins
where release of contaminating intracellular proteins is
highly unwanted [37]. Contrary, in production processes
having a cell-lysis step to liberate the product a high per-
centage of a less robust subpopulation may be preferred.

Methods

Strains

Escherichia coli strain MC1000 [araD139 A(ara-leu)7679
galll galK lac 174 rpsL thi-1] [38] was used for subcloning
before yeast transformation. Plasmids and S. cerevisiae
strains are summarised in Table 1. All strains were stored
in 15% glycerol stocks in liquid media at -80°C. S. cerevi-
siae strains were plated on YNB-agar plates (6.7 g/L yeast
nitrogen base (Difco, USA), 20 g/L glucose and 20 g/L
agar) and incubated for 2 days at 30°C before use.

Molecular biology techniques

PCR was performed using Phusion® DNA polymerase
from Finnzymes (Espoo, Finland) and all other enzymes
for cloning were purchased from Fermentas International
Inc (Canada) and used following the recommendations of
the manufacturer. Purification of DNA fragments from
agarose gels was performed using the DNA Extraction Kit
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Table 1 S. cerevisiae strains and plasmids used in this study
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Strains Relevant genotype Ref.
CENPK 113-5D Mata SUC2 MAL2-8 ura3-52 [39]
FE440 CEN.PK 113-5D with ura3-52:: URA3-Pgp( 22a-YEGFP-Teyc chromosomal integration This study
FE522 CEN.PK 113-5D with ura3-52:URA3 chromosomal integration This study
Plasmids

pBR322 [4041]
pFe131 PBR322 with CEN1-ARS4-URA3 This study
pFe134 pFe131 with Pre22a-YEGFP-Tevey This study

from Fermentas International Inc (Canada). Plasmid
DNA was isolated from E. coli by using ZyppyTM
Plasmid Miniprep Kit, Zymo Research (California, USA).
Chromosomal DNA from S. cerevisiae was purified using
YeaStarTM Genomic DNA Kit from Zymo Research
(California, USA). Sequencing of DNA constructs was done
by Macrogen (Seoul, Korea). Cells of E. coli were trans-
formed by electroporation using a Bio-Rad Micropulser™
and the recommended procedure of the manufacturer. S.
cerevisiae cells were made competent, frozen in sorbitol
buffer and transformed by electroporation according to the
protocol of Suga et al. [42]. Southern blotting was done
with the digoxigenin method by Roche (Indianapolis, IN,
USA) using a digoxigenin labeled yEGFP PCR probe and
hybridization at 65°C.

Construction of reporter strains

A 2200 bp EcoRI-Pael fragment of CEN4-ARS1 was
obtained by PCR with pCM188 as template [43] and a
1143 bp URAS3 fragment flanked by Pael and BamHI/Sall
was obtained with pEMBLyex4 as template [44]. pBR322
[41] was cut with EcoRI and Sall and the larger 4085 bp
fragment was purified. The CEN4-ARS1 and URA3 frag-
ments were cut with Pael, ligated in vitro and cloned in
the purified EcoRI-Sall fragment of pBR322 resulting in
plasmid pFel31. Then the RPL22A promoter was ampli-
fied as a 444 bp BamHI-HindIll fragment with CEN.PK
113-5D chromosomal DNA as template, a 730 bp yEGFP3
fragment flanked by HindIlI in the 5 end and Xhol-Xbal
sites divided by two stop codons in the 3’ end was ampli-
fied with pYGFP3 [17] as template and the CYC1 termin-
ator was amplified as a 268 bp Xbal-Sall fragment
with pCM188 as template. The RPL22A promoter
fragment was cut with HindlIll, the yEGFP3 fragment
was cut with HindIll and Xbal, the CYC1 terminator
fragment was cut with Xbal and the three fragments
were ligated in vitro and the combined 1442 bp frag-
ment was purified from an agarose gel. This fragment
was then cloned with BamHI-Sall in pFel31 resulting
in pFel34. For chromosomal integrations a 2585 bp
URA3-RPL22A-yEGFP3-TCYC1 fragment was ampli-
fied with primers FP212 and FP169 with pFel34 as

template and transformed to CEN.PK 113-5D result-
ing in strain FE440, whereas the control strain FE522
was obtained by transforming CEN.PK 113-5D with a
1143 bp URA3 fragment obtained by PCR with pri-
mers FP212 and FP213 and with pFel31l as template.
Primers for chromosomal integrations are shown in
Table 2. Correct chromosomal integration was verified
by sequencing and Southern blotting.

Batch cultivations

Batch cultivations were performed in duplicate using
Sartorius 1 L bioreactors (Sartorius Stedim Biotech,
Germany) with a working volume of 1.0 L. The pH and
DOT electrode (Mettler Toledo, OH, USA) were cali-
brated according to standard procedures provided by the
manufacturer. Inocula of S. cerevisiae strains were pre-
pared by transferring colonies from fresh YNB-plates into
500 mL Erlenmeyer flasks containing 100 mL defined
mineral media [45] supplemented with 10 g/L glucose and
incubating in a shake incubator set to 150 rpm and 30°C.
Precultures were grown until reaching mid exponential
phase (approximately 10 hours) and then used directly for
inoculation (starting ODgponm = 0.001) of the bioreactor
containing defined mineral media [45] supplemented with
5 g/L glucose. Cultivation conditions were set to the

Table 2 Primers used for S. cerevisiae chromosomal
integrations

Primer  Sequence 5'-3'

TATAAAGGCCATGAAGCTTTTTCTTTCCAATTT
TTTTTTTTTCGTCATTA

TAGAAATCATTACGACCGAGATTCCCGGGTAA
TTGGCCGCAAATTAAAGC

GATTCGGTAATCTCCGAGCAGAAGGAAGAACGA
AGGAAGGAGCAC

CAGCTATGACCATGATTACG

TTTTTCGTCATTATAGAAATCATTACGACCGAG
ATTCCCGGGTAA

TTTTTGATCGGGTAATAACTG

The underlined sequence is complementary to the PCR template; the
remaining part of the sequence is complementary to the ura3-52
chromosomal site in CEN.PK113-5D.

FP169, r

FP212, f

FP213,r
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following; aeration 1 v/v/min; temperature 30°C; stirring
600 rpm and pH 5.0 (pH was controlled by automatic
addition of 2 M KOH). Samples for ODggnm, high per-
formance liquid chromatography (HPLC) and flow cyto-
metry analysis were withdrawn approximately every 1
hour. Samples for ODggy were analysed directly while
samples for HPLC were kept at —20°C. Samples for flow
cytometry were centrifuged for 1 minute at 3000g
and 4°C, and resuspended in saline solution. Cells
were then kept in saline solution on ice for maximum
45 minutes until they were stained with PI (10 pg/mL)
[46]. In brief, cell samples were stained by the addition of
PI stock solution and subsequently incubated in darkness
for 20 min at room temperature and analysed by flow
cytometry. As positive control for cells with permeabilised
plasma membranes was ethanol (70%) treated cells (100%
of cells were PI positive; PI >100 ch. nr.).

Glucose gradient simulation

Continuous cultivations were performed using a Sartorius
2 L bioreactor (Sartorius Stedim Biotech, Germany) with a
working volume of 1.5 L. Cultivation parameters were set
as described above. After an initial batch phase, the con-
tinuous operation mode was started when glucose was
nearly depleted and the carbon dioxide production started
to peak. The dilution rate (D) was set to 0.2 h!, which
was below the dilution rate where overflow metabolism
occurs [33]. Steady state was observed after feeding ca 5
reactor volumes, and biomass and carbon dioxide were
constant for at least 20 hours. When steady state was
reached, 10 mL of concentrated glucose was swiftly added
to the bioreactor by using a sterile syringe, which resulted
in an increase in glucose concentration from ca 0 g/L to
0.8 g/L. Samples were taken before, during and after glu-
cose addition and analysed by HPLC. Cell samples were
exposed to freeze-thaw stress as described below and ana-
lysed by flow cytometry.

Freeze-thaw stress experiments

Samples were withdrawn from the bioreactor using a
sterile syringe and then instantly mixed with an equal
volume of 30% glycerol solution, resulting in a cell sus-
pension with 15% glycerol. Cell suspensions were sub-
jected to freezing by placement in a freezer set to —80°C.
After complete freezing for at least 4 hours, cell samples
were taken out of the freezer and placed in a water bath
with controlled temperature at 37°C until samples were
entirely thawed. After thawing, cells were centrifuged for
1 minute at 3000 ¢ and 4°C, and resuspended in saline so-
lution, and kept on ice for maximum 45 min until analysis.
Cells were stained with PI (10 pg/mL) as described above
and analysed by flow cytometry.
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Analyses

Growth was monitored by measuring ODggon, With a
Shimadzu UV mini 1240 spectrophotometer (Shimidzu,
Kyoto, Japan). The concentrations of glucose, acetate,
ethanol, glycerol, pyruvate and succinate were determined
by HPLC (Agilent 1100, Agilent Technologies, CA, USA)
with a 300 mm x 7.8 mm Aminex HPX-87 H ion exchange
column (Bio-Rad, Hercules, CA, USA), refractive index de-
tector (RID Agilent 1200, Agilent Technologies, CA, USA)
and UV detector (Agilent 1100, Agilent Technologies, CA,
USA) set to 210 nm. The mobile phase was 5 mM H,SO,
(aq.), temperature 60°C and flow rate 0.6 mL/min. The
composition of the outgoing gas from batch cultivations
was monitored by a 1311 Fast response Triple-gas monitor
(Innova Air tech technologies, Ballerup, Denmark).

A BD FACSAria III (Becton-Dickinson, NJ, USA) flow
cytometer was used for single-cell analysis. Excitation
wavelength for the laser used was 488 nm. Fluorescence
emission levels were measured using a band pass filter at
530/30 nm (FITC) and 616/23 (PI). Light scattering and
fluorescence levels were standardized using 2.5 um fluor-
escent polystyrene beads. 10,000 events were recorded
with a rate of approximately 1,000 events per second. Pro-
cessing and analysis of flow cytometry raw data was
performed by using MatLab ® R2009b (The MathWorks,
Inc., Natick, MA, USA). The measurement files, exported
as fcs files by the flow cytomer FACSAria III, were
imported into MatLab®, using a “fcs data reader” routine
(by L.Balkay, University of Debrecen, Hungary), available
on MatLab® File Exchange website. The classification of
cells into a high and a low fluorescence subpopulation was
based on fitting a gaussian mixture of two components to
the GFP fluorescence histograms (using a nonlinear least
square curve fitting algorithm available in MatLab®
R2009b). The relative weight of the two gaussian distribu-
tions in the mixture were used as prior probabilities in the
definition of the classification rule that minimizes the
expected cost of misclassification [47].
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