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Abstract  

 

Beta cell functionality is often characterised by indices describing different phases of insulin 

secretion. The typical biphasic insulin secretion pattern observed with a square wave glucose 

stimulation has laid the foundation for most modelling work regarding quantification of beta cell 

function. Within the context of control theory, the beta cell functionality is usually modelled as 

versions of a classic Proportional-Integral-Differential (PID) controller, and the different phases of 

insulin secretion are described in relation to the different control component, with the first phase of 

insulin secretion being related to the differential control component, and the second (late) phase to 

the integral control component. This is, of course, a phenomenological description.  

 We propose a model of the glucose sensing mechanisms in the beta cell describing the time-

dependent physiological processes underlying the different insulin secretion phases. The model 

results show that glucokinase is the key regulatory step in the glucose sensing mechanisms. We 

argue that it is not glucose per se, but some signal(s) downstream of the glycolytic pathway that 

controls the activity of glucokinase, and hence the final insulin secretion pattern. We show that the 

first phase of insulin secretion is related to the rate of change of glucose in a non-linear saturable 

fashion, and that the second phase is due to translocation of glucokinase from an inactive to an 

active state. Hence, the glucose sensing mechanisms in the beta cell can, in some sense, be regarded 

as working as a classic PID controller, with intrinsic non-linearities in the sensing machinery.  

 A meal tolerance test (MTT) is the best test for assessing beta cell indices as well as indices 

for insulin action in a physioloigcal relevant setting. In that context we have analysed MTT data 

from a large population of healthy subjects and from subjects with type 2 diabetes displaying a wide 

range of fasting plasma glucose (FPG) concentrations. Due to the heterogeneity in the FPG values 

of the subjects with diabetes, we stratified them according to their FPG and divided the subjects into 

five groups. Interestingly, when correcting for the FPG, the mean plasma glucose concentration 

profiles from each of the five groups are strikingly similar, despite quite large differences in the 

corresponding mean plasma insulin profiles. From the graphs of the means of the differentiated 

individual glucose profiles within the respective groups of subjects with diabetes, this similarity of 

the glucose profiles is even more evident. Same results are obtained when analysing the data from 

the database, where the subjects with type 2 diabetes have been followed throughout years, and 

where different standard treatments are also present.  
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The graph of the mean healthy glucose profile shows a clear distinction from the corresponding 

graphs from subjects with type 2 diabetes. Of special interest is the observation that for the healthy 

persons the plasma insulin is still high even though plasma glucose has returned to fasting values, 

hence secretion of insulin continues despite glucose has returned to fasting values, and the increased 

insulin does not lead to hypoglycaemia. Hence in healthy subjects it appears that the glucose uptake 

is controlled in such a way as to follow the rate of glucose appearance from the meal. Similar 

conclusions cannot be drawn from the meal profiles of the subjects with type 2 diabetes. The 

glucose profiles for the subjects with type 2 diabetes seem similar despite different insulin profiles, 

and it appears that insulin merely follows the glucose profile without controlling it. However 

glucose undershoot is observed, probably due to elevated insulin concentration at the end of the 

meal test. 

 The analysis of the MTT data provides a new tool to distinguish the healthy after-meal 

responses from responses of people with diabetes. Furthermore our analysis indicates that a 

mechanism that works more or less independent of insulin is activated in healthy persons after a 

meal and that this mechanism apparently is damaged and/or diminished in persons with type 2 

diabetes. 

 We argue, by referring to literature, that this mechanism is a result of the brain participating 

in the overall control of glucose concentration and fluxes of glucose equivalents. Hence, neural 

effects seem to be an important component that needs to be added to models that are set up to 

describe beta cell functionality as well as glucose uptake in a physiological relevant setting. 
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Dansk resumé (Danish summary) 

 

De insulin producerende betacellers funktion karakteriseres ofte ved hjælp af indices, som beskriver 

forskellige faser af insulinsekretionen. Det typiske bifasiske insulinsekretions mønster, der kan 

observeres efter en firkant glukose-stimulering, har dannet grundlaget for det meste af 

modelarbejdet som netop omhandler kvantificering af betacelle funktionaliteten. Med udgangspunkt 

i teknisk kontrolteori bliver betacellen ofte modelleret som versioner af en Proportionel-Integral-

Differentiel (PID) kontrolenhed, og de forskellige sekretionsfaser bliver beskrevet i forhold til de 

forskellige kontrolkomponenter, hvor den første sekretionsfase er relateret til den differentielle 

kontrolkomponent, og den anden (sene) fase til den integrale kontrolkomponent. 

 Vi foreslår en model af glukose-registreringen i betacellen som beskriver de tidsafhængige 

fysiologiske mekanismer som ligger til grund for de forskellige sekretionsfaser. Modelresultaterne 

viser at glukokinase er den vigtigste regulatoriske faktor i glukose-registrerings mekanismerne. Vi 

argumenterer for, at det ikke er glukose, men nogle signal(er) i den glykolytiske proces som 

kontrollerer aktiviteten af glukokinase, og dermed det endelige insulin sekretionsmønster. Vi viser 

at den første fase af insulinsekretion er relateret til den tidsafledede af glukose på en mætbar ikke-

lineær måde, samt at den anden fase skyldes translokation af glukokinase fra en inaktiv til en aktiv 

tilstand. Glukose-registerings mekanismerne kan følgeligt i en vis forstand opfattes som en klassisk 

PID kontrol-enhed, med iboende u-lineariteter i registreringsapparatet. 

 En måltids tolerance test (MTT) er den bedste test til at vurdere såvel indices for betacelle 

funktionaliteten som indices for insulin virkning i fysiologisk relevante omgivelser. Derfor har vi 

analyseret MTT data fra en stor population af raske samt fra personer med type 2 diabetes med et 

stort interval af forskellige faste plasma glukose (FPG) værdier. På grund af den store forskel i FPG 

værdierne for personerne med type 2 diabetes, stratificerede vi i forhold til deres FPG værdier og 

inddelte dem i fem grupper. Middel plasma glukose koncentrationsprofilerne for de fem grupper 

korrigeret for deres FPG værdier, er bemærkelsesværdig ens, på trods af ganske store forskelle i de 

tilsvarende middel plasma insulinprofiler. Denne lighed af glukoseprofilerne ses endnu mere 

tydeligt af kurverne for middelværdierne af de individuelle differentierede glukoseprofiler. Samme 

resultater opnås ved analysen af data fra databasen hvor personer med type 2 diabetes er blevet fulgt 

gennem flere år, og hvor forskellig standard behandlinger også er inkluderet.  

 Kurven for den raske middel glukoseprofil er markant forskellig fra de tilsvarende kurver fra 

personer med type 2 diabetes. Særlig interessant for de raske data er, at plasma insulin er stadig høj. 
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Det betyder at secerneringen af insulin fortsætter selvom plasma glukose er vendt tilbage til 

fasteværdien, samt at den forøgede insulin ikke forårsager hypoglykemi. I raske personer ser det 

derfor ud til, at glukoseoptaget er reguleret på en sådan måde, så optaget følger glukose 

absorptionshastigheden. Tilsvarende konklusioner kan ikke drages af profilerne fra personerne med 

type 2 diabetes. Glukoseprofilerne for personerne med type 2 diabetes er tilsyneladende ens på trods 

af forskellige insulinprofiler, og det ser ud til at insulin blot følger glukoseprofilen uden at 

kontrollere den. Dog ses glukose værdier under fasteværdien (”undershoot”), der formentligt 

skyldes forøget insulinproduktion i slutningen af måltids testen. 

 Analysen af MTT resultaterne giver et nyt værktøj til at skelne mellem det raske og type 2 

diabetes måltids svar. Endvidere indikerer analysen at nogle mekanismer, som fungerer mere eller 

mindre uafhængigt af insulin, aktiveres hos raske efter et måltid, samt at disse mekanismer 

tilsyneladende er ødelagt og/eller formindsket hos personer med type 2 diabetes. 

 På grundlag af oplysninger i litteraturen argumenterer vi for, at disse mekanismer skyldes, at 

hjernen deltager i den overordnede kontrol af glukose-koncentration og bevægelser. Følgelig ser det 

ud til, at neural indvirkning er en vigtig komponent, som mangler i de modeller, der beskriver 

betacelle funktionaliteten og glukoseoptaget i relevante fysiologiske omgivelser. 
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Symbols and abbreviations 

 

 

AIR  Acute insulin release 

AUC  Area under curve 

CC  Signal from controller to effector 

CI  Desired value (or trace) of controlled variable, see CO 

CV  Coefficient of variation 

CO  Controlled variable 

DI  Disposition index 

DNL  De novo lipogenesis 

ECF  Extracellular fluid 

EE  Energy expenditure 

EGC  Euglycemic glucose clamp 

FA  Fatty acids 

FPG  Fasting plasma glucose 

FPI  Fasting plasma insulin. Used interchangeably with Ib 

FSIGT  Frequently sampled intravenous glucose tolerance test 

Gb  Basal glucose. Used interchangeably with FPG 

G6P  Glucose-6-phosphate 

GEZI  Glucose effectiveness at zero Insulin 

GIP  Glucose-dependent insulinotropic polypeptide   

GIR  Glucose infusion rate 

GK  Glucokinase 

GLP-1  Glucagon-like peptide-1 

GNG  Gluconeogenesis 

GGIT  Graded glucose infusion test 

HbA1c  Glycosylated haemoglobin  

HGC  Hyperglycemic glucose clamp 

HGO  Hepatic glucose output (including any renal contribution) 

Ib  Basal insulin. Used interchangeably with FPI 

IDVG  Initial distribution volume of glucose 
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IDVS  Initial distribution volume of sucrose 

IV  Intravenous 

IVGTT Intravenous glucose tolerance test 

HOMA Homeostatic model assessment 

MPC  Model predictive control 

MTT  Meal tolerance test 

OMM  Oral minimal model 

OGTT  Oral glucose tolerance test 

PID  Proportional, integral, derivative 

Ra  Rate of appearance  

Rd  Rate of disappearance 

RRP  Readily-releasable pool 

SG  Glucose effectiveness at steady state basal insulin 

SI  Insulin sensitivity at steady state 

SR  Secretion rate 

T2DM  Type 2 Diabetes Mellitus  

TG  Triacyl glycerol 

WRES  Weighted residuals 
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Chapter 1  

 

Introduction  

 

Insulin is an essential hormone with many vital functions, especially for uptake and utilisation of 

glucose by the different insulin sensitive cells, primarily muscle and adipose tissue cells, throughout 

the body. The beta cells situated in the pancreas normally secrete insulin upon stimulation by 

glucose providing a negative feedback regulation to ensure well-controlled glucose levels. Glucose 

is the most prominent signalling nutrient for insulin release, and the relation between changes in 

glucose concentration and the resulting changes in insulin release is denoted beta cell function or 

functionality. Investigation of the beta cell functionality has been ongoing for decades. Still today, 

research continues, in order to understand the physiology and the pathophysiology of beta cell 

functionality in especially type 2 diabetes. During the years a tremendous amount of data has been 

gathered in-vitro as well as in-vivo in many different species and under many different 

circumstances. The task at hand is thus to convey the information in the data into an understanding 

of the biological processes governing the pathogenic state.  

 Mathematical modelling with focus on the right description of the biological mechanisms 

offers a way to understand the impact of treatments and can be used to pinpoint potential new 

targets for treatment. The main challenge is to balance the description of the involved mechanisms 

in the right way. The human body is an extraordinary complex system to describe, and the 

complexity may become even more expressed in multifactorial pathogenic states such as diabetes. 

Hence to include all involved mechanisms is an impossible task. Even more important in 

connection with drug development is that the models need to be validated, a task that may become 

difficult with large models. On the other hand, the models must capture the important features of the 

system under investigation. Hence biological modelling, or biosimulation, becomes a delicate 

matter of neither including too little or too much to describe the system under investigation.  

 

1.1 Biosimulation as an integral part in systems biology 

Biosimulation has grown out of the need for a combination of skills within different different fields 

of natural sciences, in order to understand the many facets of complex diseases, through in-silico 

experiments. As such biosimulation is a vital part of systems biology, which is a reasonable new 

field. Systems biology integrates classic fields like physics, chemistry, biology and mathematics in 
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the quest for understanding the complexity of biological function (Alberghina and Westerhoff 

2005). The many “-omics” like genomics, proteomics, metabolomics, etc. used in biology today 

have provided a wealth of biological information, where perhaps the most prominent result from 

genomics being the unravelling of the human genome. Even though extremely valuable for 

collecting biological information for data analysis, these omics do not provide approaches for a 

quantitave and predictive assessment of the biology, which is important for a full understanding of 

biological processes. 

 One examples of the valuable use of systems biology, or biosimulation in drug development 

of multifactorial diseases include virtual heart simulations to discover potential drug targets in order 

to avoid cardiac arrythmia (Noble 2008). Such simulations require extensive modelling effort, and 

biological understanding of all the diffrerent currents of ions partaking in the development of the 

action potential and potential depolarisation/repolarisation problems associated with the arrythmic 

state. Other examples includes detailed kinetic models known as silicon cell models, especially of 

the glycolysis in yeast (Bruggeman et al. 2008), or the modelling of chronotherapy for the 

optimisation of the temporal delivery of anticancer drugs (Altinok et al. 2008). 

  

1.2 Thesis objective and outline  

The aim of this thesis is to develop a new way to test beta cell function in people with diabetes as 

well as healthy. The new way will consist of combination of results from the traditional methods 

with biosimulation models. This task is highly inter-disciplinary and thus well-suited for systems 

biology and biosimulation. Only very little chemistry is used throughout the thesis, thus the results 

generated and presented will largely be reflected by the combination of physics and mathematics 

applied to biology. By this approach the hope is to provide insight into new mechanisms and 

potential new treatment targets. To achieve the goal of combining the traditional methods with the 

biosimulation models a clear understanding of both approaches it needed. With this in mind the 

thesis has been divided in the following chapters. 

 

Chapter 2 Current tests of beta cell functionality  

The most common current tests for assessment of beta cell functionality and insulin action are 

discussed and compared with one another. Pitfalls are highlighted, that may occur when one tries to 

evaluate the results of a test in a context where the test is not applicable, e.g. when results from un-

physiological clamp tests are extrapolated to explain physiological mechanisms. It is stressed that 
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each test must be evaluated in its own context and that the oral tests, especially the meal tolerance 

tests, are most suitable for evaluating beta cell functionality and insulin action. State of the art 

mathematical models of beta cell function during meals are discussed. 

 

Chapter 3 Minimal model analysis of Owens MTT data  

An analysis of MTT data with the oral glucose and C-peptide minimal models with the largest 

number of subjects with type 2 diabetes presently reported in literature is presented.  

The estimates for each of the indices of insulin action and beta cell functionality all displayed a 

large interval both within the group of subjects with diabetes, and within a healthy group. Despite 

this, a clear distinction between the two groups was evident from the disposition indices plot. 

MTT data from a small subset of subjects with type 2 diabetes that were followed at year 0, 1, and 

5, to record disease progression and treatment effect, was also analysed with the minimal models. 

Values for indices of insulin action and beta cell functionality all increased from year 0 to year 1, 

demonstrating treatment effect. From year 1 to year 5, the value of the indices decreased, 

demonstrating decline in treatment effect and/or progression of disease. However no clear pattern 

and no clear difference between the years were found from the disposition indices plot. 

 

Chapter 4 The phase plot 

The plot between the plasma glucose and insulin concentration after a meal, i.e. the phase plot is 

introduced as a simple way to characterise beta cell function. Clear differences in the characteristic 

measures are found both between healthy and subjects with type 2 diabetes and within the group of 

subjects with diabetes with different fasting plasma glucose values. These differences are analysed 

with a simple model introduces to describe the insulin responses. 

 

The oral glucose minimal model is applied to analyse the effect of variability of the model 

parameters on the characteristics of the phase plot. The model parameters are found to elicit both 

common and different effects on the characteristics of the phase plot, with a possible complex 

outcome as a result.  
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Chapter 5 The meal response 

The meal-related responses, i.e. the responses corrected for fasting values, of glucose and insulin 

after a meal tolerance test for a large dataset of healthy subjects and subjects with type 2 diabetes 

are analysed. 

For the healthy subjects, the analysis shows that the disappearance rate of glucose seems to be 

regulated in such a way as to follow the appearance rate. The analysis also shows that the meal-

responses from the subjects with type 2 diabetes are quite similar regardless of insulin levels, 

treatment and/or disease progression, but differ fundamentally from the healthy responses. On the 

other hand fasting plasma glucose, FPG may be affected by treatment, and the variability and 

regulation of FPG are analysed and discussed.  

 

Chapter 6 Glucose sensing and control 

The common view of regarding the glucose-insulin control system as an isolated system to control 

plasma glucose concentration is shown to be incomplete in several ways. Firstly, the glucose 

sensing mechanisms in the beta cell is shown to possess important intrinsic non-linear properties 

and the beta cell works in a complex network with other glucose sensors. Secondly, the handling of 

metabolites inside and between the different organs is shown to be critical for glucose control. Both 

insulin and signals from the brain are important components in the control system.    
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Chapter 2 

 

Current tests of beta cell functionality  

 

The most common current tests for assessment of beta cell functionality and insulin action are 

discussed and compared with one another. Pitfalls are highlighted, that may occur, when one 

tries to evaluate the results of a test in a context where the test is not applicable, e.g. when results 

from un-physiological clamp tests are extrapolated to explain physiological mechanisms. It is 

stressed that each test must be evaluated in its own context and that the oral tests, especially the 

meal tolerance tests, are most suitable for evaluating beta cell functionality and insulin action. 

State of the art mathematical models of beta cell function during meals are discussed. 

 

2.1 Methods for assessing insulin sensitivity and beta cell function  

 

Different methods exist for the assessment of insulin sensitivity and/or beta cell function. Table 2.1 

provides an overview of the most commonly used experimental tests (protocols), and their 

usefulness. A common feature of nearly all the tests summarised in Table 2.1 is that one can obtain 

a multitude of empirically derived indices describing either insulin sensitivity or beta cell function 

from them (Cobelli et al. 2007; Mari et al. 2002a; Muniyappa et al. 2008). However one should be 

cautious about directly relating the results obtained from the different methods with one another. In 

fact, as will be discussed, the different methods should be viewed each in their own context. 

 

 

 

Table 2.1:  The different experimental tests (protocols) and their characteristics. IVGTT, 
intravenous glucose tolerance test; OGTT, oral glucose tolerance test. Adapted from Cobelli et al. 
2007. 
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2.1.1 Homeostatic model assessment, HOMA 
  
The homeostatic model assessment, HOMA is a method used to assess beta cell function and 

insulin sensitivity, based on fasting plasma concentration values of glucose, insulin and/or C-

peptide (Matthews et al. 1985; Wallace et al. 2004). The method consists of non-linear equations 

evaluated at basal state to give indices of beta cell function and insulin sensitivity and hinges on the 

premise of a negative feedback between hepatic glucose output and beta cell insulin secretion 

(Matthews et al. 1985; Turner et al. 1979).  

 The solutions of the model based version (Levy et al. 1998) are shown in Fig. 2.1(a). Fig. 

2.1(b) shows the graph between fasting plasma glucose, FPG and fasting plasma insulin, FPI in 84 

healthy and 356 newly-diagnosed subjects with type 2 diabetes from the large database provided by 

Dr. David Owens, cf. chapter 3. There seems to be no (simple) correlation between FPG and FPI, as 

the data more or less cover the whole HOMA diagram in Fig. 2.1(a). Hence, either the subjects do 

elicit all the different combinations of insulin sensitivity and beta cell function predicted by the 

HOMA model, or there exists some other mechanisms regulating FPG and/or FPI not handled by 

the model. 
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Fig. 2.1: (a) The HOMA diagram, showing the solutions to the HOMA model. %S and %B 
describe insulin sensitivity and beta cell function, respectively, relative to healthy subjects. Adapted 
from Wallace et al. 2004. (b) The relation between fasting plasma glucose and fasting plasma 
insulin in 84 healthy (green dots) and 356 newly-diagnosed subjects with type 2 diabetes (red dots). 
Data from Dr. David Owens. 
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2.1.2 Glucose clamps  

The idea behind a glucose clamp test is to keep glucose at a constant level by IV infusion of glucose 

with a glucose infusion rate, GIR. In practise this is a cumbersome and complex task. A typical test 

period extends over two hours, where a considerable number of blood samples are taken (DeFronzo 

et al. 1979; Elahi 1996; Hansen 2004). If the course of the hepatic glucose output, HGO under the 

clamp is wanted, tracers need to be added to separate the exogenous and endogenous glucose 

fluxes, thus increasing the complexity of the method. 

 

Hyperglycemic glucose clamp, HGC 

With the hyperglycemic glucose clamp method, basal glucose concentration is acutely raised by a 

priming infusion of glucose to a hyperglycemic level. The steady-state glucose level is then 

maintained by GIR. The test gives a typical biphasic pattern in the insulin response, with an early or 

first phase occurring within the first 5-10 min, and a consecutive linearly rising late or second phase 

(Elahi 1996). Typically the average incremental insulin concentration obtained in the first 5-10 min 

after the glucose infusion, is used as a model-independent index, AIR (Acute Insulin Release) for 

the first phase insulin secretion. Different model-independent measures for the second phase can 

also be calculated. 

 

Hyperinsulinemic-euglycemic clamp  

In this test, insulin is acutely raised above basal value and maintained there throughout the test 

period. Glucose is maintained at constant levels by GIR. This test is denoted the gold standard for 

measuring insulin sensitivity, where the ratio between GIR and the steady state insulin level is taken 

as a measure of the insulin sensitivity (DeFronzo et al. 1979; Elahi 1996).  

 

Fluxes during a glucose clamp 

Assuming that a steady state glucose level is obtained, which as noted above is not an easy task, the 

glucose infusion rate, GIR is described by (Hallgreen et al. 2008) 

 HGOJGIR upt −=          (2.1) 

where Jupt is the sum of the saturable peripheral tissue (muscle and adipose tissue) uptake, JPT 

(ignoring a possible efflux of interstitial glucose) and the (usually constant) uptake by the brain, 

Jbrain = 1.14 mg kg-1 min-1, and HGO is the hepatic glucose output (including renal contribution) 

(Hallgreen et al. 2008). 
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The glucose uptake by the peripheral tissues, JPT is saturable and can be described by the Michëlis-

Menten relation (Hallgreen et al. 2008) 

 
GK

G
VJ

M
GLUTPT +

=           (2.2) 

where VGLUT  is the maximal transport capacity of both the insulin-independent glucose transporter 

GLUT1 and the insulin-dependent glucose transporter GLUT4, G is glucose concentration, and KM 

is a Michaëlis-Menten constant assumed equal for both GLUT1 and GLUT4 with KM = 5 mM 

(Hallgreen et al. 2008). 

 Assuming VGLUT1 to be constant, VGLUT1 = 0.78 mg kg-1min-1 (Hallgreen et al. 2008),  

the effect of insulin, I on glucose uptake can be described by  

 
22
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GLUT4
IK

IV
V

+
=          (2.3) 

with Vmax = 20 mg kg-1 min-1 and KI = 180 pM (Hallgreen et al. 2008) 

 

The effect of insulin on HGO is assumed hyperbolic (Groop et al. 1989; Hallgreen et al. 2008; 

Hansen 2004) and described by 

 
IK

KHGO
HGO

HGO

HGOmax

+
=         (2.4) 

with HGOmax = 4.7 mg kg-1min-1 being the HGO at zero insulin, and KHGO = 30 pM (Hallgreen et 

al. 2008; Hansen 2004). 

  

Fig. 2.2 shows the relation between the fluxes determining GIR, as given by Eqs. (2.1)-(2.4) and 

different values of insulin, assuming the basal state G = 5 mM and I = 40 pM (Hallgreen et al. 

2008). In the beginning, with small to moderate insulin, GIR and insulin increases almost linearly, 

whereas the relation saturates for large insulin. As the insulin sensitivity is determined by the ratio 

between GIR and the prevailing insulin, it is seen that different values are obtained for different 

insulin levels. The contribution from HGO vanishes for large insulin. However in subjects with type 

2 diabetes the inhibiting effect of insulin on HGO is impaired (Groop et al. 1989). Hence HGO will 

probably not be entirely inhibited in those subjects, and the HGO contribution will complicate the 

interpretation of the results even more. 
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Fig. 2.2: Relation between the total glucose uptake Jupt, HGO and GIR as described by Eq. (2.1), for 
different values of insulin. Adapted from (Hallgreen et al. 2008). 
 

 

2.1.3 Graded Glucose Infusion Test, GGIT 

A typical setup for the GGIT is consecutive 40 min glucose infusions steps of increasing size, such 

that the glucose level rises gradually. Glucose and C-peptide concentrations are measured, and 

insulin secretion rate is calculated by deconvolution of the C-peptide data (Polonsky et al. 1986). 

The mean glucose and mean insulin secretion rate at each end are plotted against one another to 

obtain a dose-response relation between glucose and insulin secretion by the beta cells (Byrne et al. 

1995). An up&down GGIT has been analysed with the C-peptide minimal model (Toffolo et al. 

2001). The GGIT yields a more physiological glucose stimulation profile than the other IV tests. 

However, its level of complexity makes it less attractive as a routine test. 

 

2.1.4 Intravenous glucose tolerance test, IVGTT 

IVGTT is the most common test for assessment of first phase insulin secretion.  

The typical procedure is that after an overnight fast (8-12 h) a bolus of glucose is injected 

intravenously over 1 min, with a standard dose around 0.3 mg/kg body weight. Sampling is done 

frequently in the beginning (regular-FSIGT) of glucose, insulin and often also C-peptide 

concentrations. The regular-FSIGT also comes in an insulin-modified version (Insulin-modified-

FSIGT), were at time t = 20 min a non-primed infusion of insulin begins and lasts for 5 min, infused 

in the same vein as glucose was injected. Infusion for 5 min is used instead of a bolus, because a 

bolus will give very high levels of the hormone, resulting in saturation of the insulin receptors. 
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Modelling analysis could therefore underestimate the insulin effect. Furthermore, the slower 

infusion compared to a bolus gives a better distribution of the hormone. 

The IVGTT elicit a brisk stimulation on the beta cells for measuring intrinsic beta cell response to a 

fast increase in glucose concentration. However, an IVGTT can often only be used to asses one 

phase of insulin secretion and cannot stand alone as a single test of beta cell function. Furthermore 

the stimulation pattern is un-physiological and, hence, does not resemble normal physiological 

stimulation of the beta cells. 

 

IVGTT and glucose kinetics 

IVGTT is also used to assess glucose kinetics and effects of insulin upon the kinetics. The most 

widely used method for assessing glucose kinetics is the description of the IVGTT interpreted with 

the glucose minimal model (Bergman et al. 1979). One major problem with the IVGTT is its 

transient nature (Hallgreen et al. 2008). The mean transit time for the systemic blood circulation is 

around 1 min, but blood returning from e.g. the legs has a mean transit time in the order of 10-15 

min. The spread in mean transit times result in an initial distribution phase corresponding to an 

apparent glucose dependent initial glucose uptake. Hence the initial glucose uptake may be 

overestimated. 

 Another problem with the IVGTT is the desire to describe the glucose kinetics by 

exponential decline, i.e. using linear modelling of glucose uptake. The glucose dynamics after an 

IVGTT can in a simplified manner (Hallgreen et al. 2008) be described by 

 )
GK

G

GK

G
(V

dt

dG
V

MbM

b
GLUTG +

−
+

=       (2.5) 

where VG is the glucose distribution volume and Gb is the basal (pre-test) glucose concentration.  

 

Fig. 2.3 shows the dynamics of glucose after a typical IVGTT described by Eq. (2.5). The glucose 

decline is more linear than exponential, especially at the beginning, hence describing the decline as 

exponential is wrong and may lead to wrong estimates of glucose uptake (Hallgreen et al. 2008) 
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Fig. 2.3: The dynamics of glucose after a typical IVGTT with peak glucose at 15 mM. Adapted 
from (Hallgreen et al. 2008) 
 

 

The attempt to describe the glucose decline after an IVGTT by exponentials leads to another major 

problem. In the paper by Ferrannini et al. (Ferrannini et al. 1985), the authors proposed a three 

compartment model describing the glucose kinetics, based on the observation that three 

exponentials could describe (fit) the data well. They were able to show that a two-compartment 

description would suffice, described by a fast and slow pool. However, a closer look at the initial 

distribution volume of glucose, IDVG reveals some problematic issues concerning the 

compartmentalization according to rate constants. IDVG is calculated by giving an intravenous, IV 

bolus infusion of 5 g glucose and measure the arterial blood glucose for 3 to 10 min after (Hahn 

2005; Hirota et al. 1999), as illustrated in Fig. 2.4(a).  

 Sucrose is used to measure extracellular fluid, ECF volume, as it is poorly metabolised 

(Ishihara and Giesecke 2007). The initial distribution volume of sucrose, IDVS is the same as for 

glucose as seen in Fig. 2.4(b), hence IDVG is a measure of ECF volume, and correlates with the 

cardiac output as seen in Fig 2.4(c). Thus IDVG is dependent on the blood flow. A high perfusion 

will resemble a large IDVG and a low perfusion will resemble a small IDVG. The result is that the 

fast kinetics of glucose is highly dependent on the blood flow, hence large discrepancies are to be 

expected under different experimental conditions. 
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Fig. 2.4: (a) Illustration of the calculation of the initial distribution volume of glucose, IDVG after a 
5 g IV bolus infusion of glucose. (b) The initial distribution volume of sucrose, IDVS correlates 
strongly with IDVG. (c) IDVG correlates with the cardiac output. Adapted from (Ishihara and 
Giesecke 2007). 
 

 

2.1.5 Oral glucose tolerance test, OGTT and meal tolerance test, MTT 

In a standard oral test the subjects receive glucose orally (≈75g) after an overnight fast either as 

pure glucose, OGTT or within a meal, MTT. (Ahren and Pacini 2004; Ferrannini and Mari 2004; 

Mari et al. 2002a). Measurement of plasma glucose, insulin and possibly C-peptide is then typically 

recorded for 2-3 hours in OGTT and 4-5 hours in MTT, after the glucose administration. Different 

empirically derived indices can be obtained, typically ratios between insulin and glucose levels or 

area under the curve, AUC ratios. Probably the most widely used empirically derived measure is the 

insulinogenic index that gives the ratio between the increments at 15 or 30 min for insulin and 

glucose. The empirically derived indices are simple to calculate, but it is difficult to relate them to 

specific measures of beta cell function. 
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The appearance of glucose in the intestine elicit a complex interplay between hormonal and neural 

effects, with the most prominent case being the incretin effect (Holst et al. 2008), i.e. the 

enhancement in insulin response due to oral glucose administration as compared with IV glucose 

insulin response, cf. Fig. 2.5. As different amount of glucose ingested lead to similar glucose 

excursions, another way to describe the incretin effect is that it keeps glucose excursions at certain 

low levels regardless of the ingested amount of glucose (Holst et al. 2008). 

 The most important incretin hormones are glucagon-like peptide-1, GLP-1 and glucose-

dependent insulinotropic polypeptide, GIP. As illustrated in Fig. 2.6, these hormones can exert a 

multiplicity of actions on different organs. Besides the described incretin effect on the insulin 

secretion, GLP-1 has been shown to strongly decrease glucagon secretion, inhibit gastric emptying, 

appetite and food intake. All these actions are designed to lower the glucose excursions. On the 

contrary, besides the incretin effect, GIP has been shown to increase glucagon release. Hence even 

though the enhancement of insulin release seems to be the most important role of the incretin 

hormones, they both trigger other complex mechanisms that differ in their actions. Furthermore 

some of their actions (primarily GLP-1) may be mediated by the nervous system (Holst et al. 2008). 

 

    

Fig. 2.5: Illustration of the incretin effect. (a) Plasma glucose and (b) plasma insulin concentrations 
in healthy subjects receiving an oral glucose test (filled dots) and IV glucose infusion to mimic oral 
glucose excursion (circles). The incretin effect is the difference between the two insulin responses 
Adapted from (Campioni et al. 2007). 
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Fig. 2.6: Illustration of the multiplicity of actions exerted on different organs by the incretin 
hormones, GLP-1 and GIP. Details can be found in Holst et al. 2008. 
 

 

2.1.6 Comparison of the tests 

The intravenous glucose tolerance tests, i.e. the IVGTT, HGC, and GGIT are all non-physiological 

and cumbersome to perform. All three tests can with the application of mathematical models be 

used to assess both insulin action and beta cell functionality, cf. Table 2.1. However as pointed out 

above, the outcomes of an IVGTT and HGC must be interpreted with caution. Furthermore, even 

though the GGIT elicit a more physiological glucose stimulation pattern than the other IV tests, it 

still does not evaluate the physiological responses triggered by oral administration of glucose. The 

oral tests, i.e. the OGTT and MTT, triggers the complex pathways of the entero-insular axis, and 

hence results in a true physiological response, however the OGTT lacks the actions of amino acids 

and fatty acids, as compared with the MTT with all nutrients included. Compared with the IV tests, 

the oral tests are much easier to perform, however the complexity of the actions of the different 

hormonal and neural pathways triggered by the oral routes makes modelling work a vital, though 

difficult, component for the interpretation of the outcome of these tests. The basal state is the easiest 
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test for assessing measures of insulin action and beta cell functionality. However the basal state is 

only one single point in the highly dynamical glucose-insulin system, and cannot stand alone as a 

measure of insulin action and/or beta cell functionality. 

 

2.2 Mathematical tests 

 

From the different methods described in the previous sections used to stimulate the beta cell with 

different pattern of glucose levels, several different empirically-derived indices representing beta 

cell functionality can be calculated, where perhaps the most widely used are the AIR index of first 

phase insulin release derived mostly from the IVGTT and the HGC, and the insulinogenic index 

derived from the oral tests. Although these indices are easy to calculate their use is limited and the 

obtained values must be interpreted cautiously. Much more specific and clear information about the 

functionality of the beta cell can be gained when the protocols are interpreted with the help of a 

mathematical model that relates the glucose change to indices that can describe the pattern in 

insulin secretion, i.e. beta cell function. 

 

2.2.1 Insulin secretion vs. beta cell function 

Although the terms insulin secretion and beta cell function often is used interchangeably, insulin 

secretion will here refer to absolute insulin secretion, whereas beta cell function refers to the ability 

of the beta cells to respond to stimuli. The assessment of insulin secretion (absolute) is most often 

performed by the use of the “raw” insulin or C-peptide concentration values (Hovorka and Jones 

1994; Mari 2006). Use of insulin concentration to assess true insulin secretion is limited by the fact 

that insulin undergoes a high (>50%) and concentration dependent hepatic extraction (Caumo et al. 

2007; Hovorka and Jones 1994; Meier et al. 2005; Toffolo et al. 2006). However under dynamic 

situations, the insulin concentration may be a reasonable estimate of the secretion rate, due to the 

fast elimination (half-time 5-10 min) of insulin in plasma (Luzi et al. 2007). In spite of this, insulin 

concentration reflects post-hepatic insulin appearance, and is therefore not a true measure of insulin 

secretion. C-peptide is secreted in equimolar amounts as insulin, and in contrast with insulin, not 

cleared by the liver to any significant extend (Hovorka and Jones 1994; Luzi et al. 2007). Thus C-

peptide offers a way to assess pre-hepatic, and thus actual, insulin secretion. However the 

elimination of C-peptide in plasma is slow (half-time around 30 min), thus fast changes in secretion 

pattern is more pronounced in the insulin data, than in the C-peptide data. Furthermore in order to 
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determine insulin secretion from C-peptide data a model of the C-peptide kinetics is needed, and a 

two-compartment model has been found to be appropriate (Eaton et al. 1980). The deconvolution 

method proposed by (Eaton et al. 1980) to assess the insulin secretion rate where later validated by 

(Polonsky et al. 1986), and has become the gold standard method for the assessment of the insulin 

secretion rate (Kjems et al. 2000). To avoid the need of a bolus injection of C-peptide for each 

subject, in order to calculate the kinetics parameters, the population based approach proposed by 

(Van-Cauter et al. 1992) can be used, as the error it introduces is no larger than the intra-individual 

variation of the kinetic parameters. A recent study has however shown that large insulin 

concentration values induced by exogenous insulin administration increases the clearance of C-

peptide (Bouche et al. 2010). Thus it may be that methods based on C-peptide data to assess the 

insulin secretion give rise to (modest) underestimation of the secretion rate during dynamic 

assessments.    

 

2.2.2 Mathematical modelling of the beta cell function 

Some of the earliest work done on mathematical modelling of beta cell function dates back to the 

work of Grodsky (Grodsky 1972) and the work of Cerasi et al. (Cerasi et al. 1974). Both groups 

formulated models based on the biphasic nature of the beta cell, i.e. that the beta cells respond to an 

abruptly and elevated glucose by a fast initial release (first phase), lasting 5-10 min followed by a 

slowly rising second phase.  

 The group of Grodsky originally formulated a two-pool model, and postulated that the first 

phase release was due to emptying of insulin granules from a labile pool, whereas the second phase 

slowly rise was due to a glucose sensitive refill (provision) of insulin from an insulin precursor pool 

to the labile pool. In order to explain the increasing first phase secretion when glucose was applied 

as staircase stimulation, Grodsky hypothesised that the insulin in the labile pool was contained in 

different granules eliciting different glucose threshold values, hence when glucose is progressively 

increased more insulin containing granules will become active and release insulin. This threshold 

hypothesis or package-storage hypothesis was found able to explain the glucose rate dependency of 

the first phase insulin release (Licko 1973). 

 The work of Cerasi et al. is based on entirely different assumptions. They noted that 

consecutive glucose stimulation with a short time interval in between could inhibit the secretion 

pattern. Hence Cerasi et al. proposed that glucose elicit three time-dependent effects upon the beta 

cells; An immediate effect characterising the first phase; an inhibiting effect responsible for the 
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decline in secretion pattern upon consecutive stimulation with short time interval in between, and a 

potentiating effect responsible for the development of the second phase (Nesher and Cerasi 2002). 

Whereas the model by Grodsky et al. is based on the assumptions of insulin being confined within 

different compartments, the model by Cerasi et al. is based on the assumptions that glucose 

generates different time-dependent signals in the beta cells modulating the secretion pattern. Both 

theories are despite, or because of, their entirely different grounds, the cornerstones of the current 

mathematical modelling of beta cell function. The threshold hypothesis by Grodsky is widely 

applied in the concept of the minimal modelling of the beta cell function, now referred to as the C-

peptide minimal model, and this model has been applied to both IV glucose tests (Toffolo et al. 

1995; Toffolo et al. 1999; Toffolo et al. 2001) as well as oral tests (Breda et al. 2001; Breda et al. 

2002; Steil et al. 2004). Recently a model has been proposed that combines the present knowledge 

regarding the subcellular events occurring in the beta cells upon glucose stimulation with the 

threshold hypothesis applied to the single beta cells (Pedersen et al. 2008). The ideas of Cerasi et al. 

have been applied in the work of Mari et al. (2002a, 2002b) where they especially have found the 

concept of the potentiation effect relevant with the description of beta cell function throughout 24 h 

living.  

 Fig. 2.7(a) shows the structure of the C-peptide minimal model and Fig. 2.7(b) shows the 

structure of the model proposed by Mari et al. The most important difference between these two 

strategies lies in the description of the dose-response relation between glucose and insulin release. 

The C-peptide minimal model introduces a delay between glucose and resulting release, whereas 

the dose-response relation between glucose and release is modulated by a time-varying potentiation 

factor, generated by various signals. In relation with meals, these potentiation factor signals have 

been proposed to be related with the actions of incretin hormones. 
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Fig. 2.7: (a) Structure of the C-peptide minimal model. (b) Structure of the model proposed by Mari 
et al. 2002. Adapted from Ferrannini and Mari (2004). 
 

Other models to describe beta cell functionality during a meal have been proposed. They differ 

essentially only in the way the different components given in Fig. 2.7(a) are combined. The model 

by Hovorka et al. (1998) to assess beta cell function after a MTT is the simplest representation of 

the structure given in Fig. 2.7(a). The model includes a dose-response relation between C-peptide 

secretion and glucose, presented as a linear function of glucose. The model assumes no delay 

between glucose stimulation and secretion, and no glucose derivate component either. The model 

by Cretti et al. (Cretti et al. 2001) to describe beta cell function after OGTT using C-peptide data 

employs a delay between glucose stimulation and a linear function of glucose, with no glucose 

derivative component.  

 Hence current mathematical models to assess beta cell functionality are largely based on 

either the C-peptide minimal model concept, or the concept of potentiation as applied by Mari et al. 

 

2.2.3 Intracellular mechanisms behind biphasic insulin secretion 

Current knowledge of the intracellular mechanisms responsible for the biphasic nature of insulin 

secretion seen when a hyperglycemic stimulus is applied to the pancreatic islets are in favour of two 

non-exclusive views. One being that the insulin granules are contained within functionally distinct 

pools, where the first phase is explained by the emptying of granules from a readily releaseble pool, 

RRP, and where the second phase is explained by a glucose dependent mobilization of granules 

from a reserve pool, with consecutive events of docking to cell membrane, priming and release 
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(Rorsman and Renstrøm 2003). These ideas dates back to the ones put forward by (Grodsky 1972), 

however with more detailed knowledge of the individual molecules partaking in the exocytotic 

events. The other view concentrates on the intracellular pathways of signal generation for insulin 

secretion, cf. Fig. 2.8 (Henquin 2009). Two pathways are considered to be activated upon glucose 

stimuation. The well-studied and well-recognised triggering pathway, involving accelerated glucose 

metabolism, ATP generation (with a resulting decrease in ADP), closure of ATP-sensitive K+ 

channels, depolarisation, opening of voltage-sensitive Ca2+ channels, with a resulting increase in 

cytosolic Ca2+ concentration, [Ca2+]c. 

  

 

Fig. 2.8: Schematic representation of the triggering and metabolic amplifying pathways that triggers 
insulin secretion upon stimulation with glucose. Also illustrated is the neurohormonal amplifying 
pathways. Dotted line indicates a decreased flow. +, stimulation; -, inhibition. Adapted from 
(Henquin 2009).  
 

 

The other pathway, the metabolic amplifying pathway is far less understood. For this pathway to be 

active, glucose needs to be metabolised, and cytosolic Ca2+ concentration needs to be increased. 

Hence normally this leaves a hierarchical regulation where the triggering pathway preceeds the 

amplifying pathway. The messenger(s) responsible for the metabolic amplifying effect of glucose 

have not been discovered, but ATP could possibly also serve as a messenger for this pathway 

(Henquin 2009). The triggering pathway is important for both phases of insulin secretion, and the 

amplifying pathway takes part in the second phase of insulin secretion. Interestingly the author 
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proposed that the amplifying pathway also influences the first phase, and estimated the contribution 

to be around 50%. That the amplifying pathway is rapid and augments both the first and second 

phase was given further support in two recent studies (Mourad et al. 2010). In these studies the 

authors also put forward the hypothesis that the amplifying pathway corresponds to acceleration of 

the priming process, giving release competence to the granules.  

 An explanation to the non-sense to glucose and especially the loss of first phase insulin 

secretion in subjects with type 2 diabetes from the view of the triggering and amplifying pathways 

is not straightforward. However as glucose metabolism in the beta cell is diminshed in type 2 

diabetets, as seen by reduced glucose transporter capacity as well as glucokinase activity (Del et al. 

2005), the signals generated by the triggering and amplifying pathways are dimished. In 

combination with a decrease in RRP (Rorsman and Renstrøm 2003), this would result in diminshed 

first phase and a blunted second phase. 

 Non-glucose stimuli such as arginine are able to elicit a first phase response, even though 

glucose-stimulated insulin secretion is absent or severly impaired, but the effect is potentiated by 

glucose (Ishiyama et al. 2006). Arginine is very slowly metabolished by the beta cell, and its 

products do not elicit insulin secretion (Ishiyama et al. 2006). However Arginine is a cation, i.e. it is 

positive charged, hence when it enters the beta cell it depolarises the cell. Thus it depolarises the 

membrane, and enhances insulin secretion in-dependent of ATP generation. Increasing glucose 

concentration will trigger the amplifying pathway, and eventually maybe also the triggering 

pathway. Hence the glucose potentiation may thus provides two compotents for enhancement of the 

arginine-induced insulin secretion, the potentiation of the secretion due to the generation of 

amplifying signals, and the potentiation due to the increase of cytosolic Ca2+ via the triggering 

pathway. 
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In this chapter the most commonly used protocols and tests for the assessment of beta cell 

function and insulin action have been described and some problematic issues concerning these 

have been highlighted. More specifically it has been shown that: 

• The basal state cannot be used to evaluate a connection between beta cell function and 

insulin action. The basal state only reflects one single point in the highly dynamical 

glucose-insulin interaction pathway, it may however give a rough impression of the 

state  

• The IV glucose tests can be standardised, however they are cumbersome and un-

physiological. The hyperinsulinemic-euglycemic glucose clamp is the gold standard for 

assessing insulin action. However due to the inhibition of the hepatic glucose 

production by insulin and due to the saturability of glucose uptake, no well-defined 

measure of insulin action can be obtained, not even for the gold standard method. 

• The fast kinetics during an IVGTT results in overestimation of the initial glucose 

uptake due to the spread in mean transit time for blood return and/or due to the (wrong) 

assumption of linear kinetics of glucose uptake. Furthermore the fast kinetics is highly 

dependent on the blood flow which makes the assessment of the initial glucose uptake 

even more problematic and highly variable from time to time. 

• The physiological OGTT and MTT trigger a complex interwoven network of hormones 

and neural pathways that elicit effects on both the beta cell functionality and the insulin 

action. This makes mathematical modelling vital for the interpretation of these tests. 

• State-of-the-art mathematical models to quantify beta cell functionality during oral tests 

have their roots in the description of the biphasic insulin release pattern during square-

wave glucose stimulation by classic control theory 

• The models can essentially be split up in two directions: The “storage-limited” or the 

“signal-limited” approaches.   

• The models differ primarily on the description of the dose-response relation between 

glucose changes and corresponding changes in insulin release taking into account that 

the relation between glucose and insulin release is not static. 
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Chapter 3  

 

Minimal models analysis of Owens MTT data 

 

An analysis of MTT data with the oral glucose and C-peptide minimal models with the largest 

number of subjects with type 2 diabetes presently reported in literature is presented.  

The estimates for each of the indices of insulin action and beta cell functionality all constituted a 

large interval both within the group of subjects with type 2 diabetes, and within a healthy group. 

Despite this a clear distinction between the two groups was evident from the disposition indices 

plot. 

 

MTT data from a small subset of subjects with type 2 diabetes that were followed at year 0, 1, and 

5, to record disease progression and treatment effect, was also analysed with the minimal models. 

Values for indices of insulin action and beta cell functionality all increased from year 0 to year 1, 

demonstrating treatment effect. From year 1 to year 5, the value of the indices decreased, 

demonstrating decline in treatment effect and/or progression of disease. However no clear 

pattern and no clear difference between the years were found from the disposition indices plot.  

 

 

3.1 Presentation of Owens MTT data 

 

The Owens MTT data refers to a large database of data from subjects with type 2 diabetes who were 

subjected to a standard meal tolerance test, MTT. The database was constructed by Dr. David 

Owens and colleagues, in collaboration with Novo Nordisk A/S. Around 400 subjects were 

followed from diagnosis start (year 0), and a subset of those through visits at year 1, 2, 5, 10, 15 and 

20. At each visit, MTT data, like plasma glucose, insulin and C-peptide concentrations, and data 

like sex, age, weight, height, HbA1C were collected and recorded in the database. Standard 

treatments according to need were given after diagnosis at the first visit (year 0), hence subjects at 

year 0 were all without treatment. Unfortunately, no record of the specific treatment is present in the 

database. MTT data from around 80 healthy volunteers were also recorded.  
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3.2 Subset of data analysed 

 

In collaboration with C. Cobelli and C. Dalla Man I have analysed subjects with type 2 diabetes 

subjects at first visit (year 0), and healthy subjects from the Owens database. Insulin sensitivity was 

assessed by the recently proposed oral glucose minimal model (Dalla Man et al. 2002). To assess 

measures of beta cell function the same subjects were analysed with the oral C-peptide minimal 

model (Breda et al. 2001; Breda et al. 2002; Toffolo et al. 2001). 

 Only subjects that had measurements at all sampling times, i.e. at 0, 10, 20, 30, 40, 50, 60, 

75, 90, 120, 150, 180, 210, and 240 min were included in this analysis.  

 This restriction was used to ease the estimation process while at the same time obtaining a 

reliable estimate of the parameter describing the dynamic secretion phase in the C-peptide minimal 

model. According to Breda et al. (2001) and Dalla Man et al. (2005a) reliable estimates require 

samples at 10 and 20 min. 

 The number of subjects left then was 206 for the subjects with type 2 diabetes. Of these 

subjects, 18 subjects had very small or odd insulin and/or C-peptide plasma concentrations and 

therefore were disregarded. In 19 subjects the estimation procedure gave extremely bad fit and/or 

estimation of parameters, primarily with the C-peptide minimal model (not shown). These were also 

disregarded in the following analysis. Hence 169 subjects with type 2 diabetes were left.   

 For the healthy subjects, 41 subjects were left when only including those with measurements 

at all sampling times, and excluding extreme outliers. Most of the subjects that were disregarded 

were due to extremely bad fit to the C-peptide concentration as assessed by the C-peptide minimal 

model (not shown). 

 

Fig. 3.1 shows the plasma concentration of glucose, insulin, and C-peptide of the 169 subjects with 

type 2 diabetes and Fig. 3.2 shows the corresponding plasma concentrations for the 41 healthy 

subjects. A small subset of subjects with type 2 diabetes who underwent MTT’s at the years 0, 1, 

and 5 were also analysed. 
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Fig. 3.1: Plasma concentrations of (a) Glucose, (b) Insulin, and (c) C-peptide after MTT of 169 subjects with 
type 2 diabetes. Mean ± SD (full black line). Individual concentrations are drawn with grey lines. 
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Fig. 3.2: Plasma concentrations of (a) Glucose, (b) Insulin, and (c) C-peptide after MTT of 41 healthy 
subjects. Mean ± SD (full black line). Individual concentrations are drawn with grey lines. 
 

 

3.3 The oral glucose minimal model 

 

The oral glucose minimal model was developed by C. Dalla Man et al in 2002 (Dalla Man et al. 

2002) in order to obtain measures of the insulin sensitivity from oral routes of glucose 

administration. The structure of the oral model is similar to the original glucose minimal model 

(Bergman et al. 1979) that was developed to describe the glucose kinetics after an intravenous 

glucose tolerance test, IVGTT in dogs and later applied to humans (Bergman et al. 1981). This 

model was selected amongst six other models as being the best representation of the glucose 

kinetics data, according to statistical criteria and the principle of parsimony (Occam´s Razor), i.e. 

the model should unambiguously explain the observed behaviour in the data with the simplest 

structure (Bergman 2005; Bergman et al. 1979). 
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Fig. 3.3 shows the structure of the glucose minimal model where the oral version includes a 

description of the absorption of glucose from the gastrointestinal tract. The intravenous glucose 

input is represented with a dashed arrow. Plasma insulin above the basal value I-Ib is the input to the 

model and plasma glucose is the output. The variation over time of plasma glucose is determined by 

the balance between the glucose administration rate, the net hepatic glucose output, JHGO and the 

peripheral tissue glucose uptake, JPT, where  

 )GI'k(kHGOJ 650HGO +−=         (3.1) 

 )GI'k(kJ 41PT +=          (3.2) 

where HGO0 is the net hepatic glucose output at zero glucose, k1 and k5 are rate constants 

describing glucose effect on JHGO and JPT, respectively. k4 and k6 are rate constants describing 

the effects of insulin on JHGO and JPT, respectively. The effect of insulin on glucose is in both cases 

assumed to occur from a remote compartment, I’.  

 

Hence in the original formulation, the minimal model equations to describe the glucose kinetics 

after an oral administration can be written 

 

[ ]G)I'k(k)k(kHGO
V

R
      

I´)Gk(k-I´)Gk(kHGOJJ
V

R

dt

dG

64510
a

41650PTHGO
a

+++−+=

++−=−+=
   (3.3) 

 I'k)I(Ik
dt

dI'
3b2 −−=          (3.4) 

where Ra is the glucose rate of appearance from the gastrointestinal tract, V is the glucose 

distribution volume, k2 is the rate constant for transfer of plasma insulin into the remote 

compartment and k3
 the rate constant determining the half-life of insulin in the remote compartment. 
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Fig. 3.3: The structure of the oral model is identical to the original model (IV) except that the oral 
model includes a description of the rate of appearance of glucose, Ra from the gastrointestinal tract. 
Plasma glucose is represented by one compartment, where the liver adds glucose determined by the 
net hepatic glucose balance, that is regulated by glucose and by a delayed action of insulin, 
represented by the remote insulin, I’(t). Adapted from Cobelli et al. 2007. 
 

 

Assuming the steady state values Gb and Ib, Eqs (3.3) and (3.4) can with some re-parameterisation 

be written 

 XG;SG)(GS
V

R

dt

dG
IbG

a −−+=  G(0) = Gb     (3.5)

 X);)I((Ip
dt

dX
b2 −−=   X(0) = 0                               (3.6)                        

where SG is the glucose effectiveness at steady state basal insulin, SI is the steady state insulin 

sensitivity, and p2 is the rate constant determining remote insulin action. suffix “b” denotes basal 

(time t = 0 min) values. 

 

Rate of appearance of glucose, Ra 

To estimate the insulin sensitivity, SI from a meal tolerance test, it is necessary to know the glucose 

rate of appearance. However, measuring Ra is a complex task involving the need for glucose tracers. 

This has previously been an obstacle for using oral glucose tests to measure insulin sensitivity. The 

oral glucose minimal model was developed to overcome the difficulty of measuring the absorption 

rate of glucose (Dalla Man et al. 2002). In the paper the idea was to implement a parametric 

representation of Ra and then reconstruct Ra from the estimated parameters. Three different models 
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(or parametric presentation) were tested; a piecewise-linear, a spline, and a dynamic representation.  

The piecewise-linear was found to be the most optimal.  

 In this analysis of the Owens MTT data I specified Ra as a piecewise-linear function with 7 

break points (k0, k1 ... k6) at 0, 20, 30, 60, 90, 180, and 240 min, i.e. 

 
⎪
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otherwise                                        0,
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a    (3.7) 

with Ra(0) = k0 = 0. 

Hence six parameters need to be estimated to reconstruct the Ra.  

 

I choose the piecewise-linear representation of Ra in order to follow the estimation strategies put 

forward by Dalla Man et al (Dalla Man et al. 2002; Dalla Man et al. 2004), and also because the 

time course of the estimated Ra seems to be reasonable as compared with the time course 

reconstructed by a tracer method (Dalla Man et al. 2004). On the other hand, a two-exponential 

description of Ra could be a better choice, as only three parameters would needed to be estimated, 

i.e. two rate constants and an amplitude (Hansen 2004). 

 

3.3.1 Model identification and parameter estimation procedure 

With the chosen specification of Ra the total number of parameters to be estimated is 10 and these 

are; k1, k2 … k6, V, SG, SI, and p2. To achieve a robust model identification, a strategy similar to the 

one used in (Dalla Man et al. 2002; Dalla Man et al. 2004) was applied. This strategy involves 

several steps. 

 Firstly, to make the model a priori identifiable, the value of the parameter V was fixed and 

set equal to the median value of a population of subjects (Dalla Man et al. 2004).  

In (Dalla Man et al. 2004) SG was fixed to the median value of the population. However with this 

approach it turned out that the estimation of the insulin sensitivity index SI and the parameter 

describing insulin action, p2 was unreliable for the subjects with type 2 diabetes (C. Dalla Man, 

personal communication). On the other hand SG is usually well estimated (C. Dalla Man, personal 

communication). Based on these experiences, in order to improve model identification, the 

following relation linking SI to SG was applied  

 bIG IS
V

GEZI
S ⋅+=                      (3.8)  
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where GEZI is the glucose effectiveness evaluated in steady state at zero insulin (Kahn et al. 1990). 

Eq. (3.8) can be realised by applying the definition of glucose effectiveness 

(Bergman et al. 1979) to the model given by Eqs. (3.5) and (3.6) at zero insulin evaluated at steady 

state. The GEZI parameter was fixed at 0.025 dl/kg/min. 

 As the rate parameter p2 governing the remote insulin action is often difficult to estimate 

with precision, prior knowledge was added (maximum a posteriori Bayesian estimation) as in (Dalla 

Man et al. 2002) to increase the estimation robustness. More specifically, as the distribution of p2 

was found not to be normal-distributed, whereas the square root of p2 was, it was assumed that √p2 

was normal distributed with mean 0.1 min-½ and coefficient of variation, CV = 10% (Dalla Man et 

al. 2004). 

 Finally, to increase the estimation accuracy (numerical identifiable), the following relation 

was applied  

 
BW

Df
dtRa

240

0

⋅=⋅∫          (3.9) 

where f (assumed known) is the fraction of glucose actually absorbed (bioavailability), D is the 

ingested glucose dose, and BW is the body weight. 

Eq. (3.9) assumes that all glucose is absorbed by the end of the 4-hour meal test period and the 

relation reduces the number of parameters to be estimated by one. 

 Applying the above described assumptions the parameters to be estimated is p2, SI and five 

of the break points specifying Ra, hence the number of parameters to be estimated is reduced by 

four. The model parameters that need to be fixed are given in Table 3.1.  

 

Parameter Value Meaning Ref 

V (dl/kg) 1.45 Glucose distribution volume Dalla Man et al 287 (2004) 

GEZI (dl/kg/min) 0.025   Glucose effectiveness at 

zero insulin 

Dalla Man (Personal 

communication)  

f (Unit less) 0.9 Bioavailability of ingested 

glucose 

Dalla Man et al 287 (2004) 

D (mg) 75000 Amount of glucose in meal  

 
Table 3.1: Fixed model parameters used for both the subjects with type 2 diabetes and the healthy 
subjects in glucose OMM. 
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The steps taken in order to achieve a robust model identification serve some comments.  

Firstly the linkage between the glucose effectiveness, SG and the insulin sensitivity, SI via the 

glucose effectiveness at zero insulin, GEZI as given in Eq. (3.8) needs some attention.  

The glucose minimal model has been found inappropriate to describe the glucose dynamics during 

an IVGTT with an overestimation of the glucose effectiveness, SG and an corresponding imprecise 

and inaccurate underestimation of the insulin sensitivity, SI in subjects with diabetes (Quon et al. 

1994; Saad et al. 1994). This has been ascribed to the necessity of a two-compartment glucose 

kinetic model to describe the IVGTT (Caumo et al. 1996). However as described in the previous 

chapter, the fast kinetics during an IVGTT is dependent on the blood flow, which makes the 

assessment of the effect of glucose and insulin on the glucose disappearance during an IVGTT even 

more problematic.  

 Even though a one-compartment model may be appropriate to describe the slow glucose 

dynamics after a meal, the difficulties of estimating SI with precision in the subjects with type 2 

diabetes resemble the problems encountered with the IVGTT. The glucose effect on the glucose 

disappearance is described by the sum of the glucose effectiveness at basal insulin, SG and the effect 

of the dynamic insulin, i.e. the product of the insulin sensitivity, SI and the insulin action, X 

(Bergman et al. 1979). Linking SG and SI by the relation given in Eq. (3.8) with the GEZI parameter 

fixed means that SG and SI is not estimated independently; an overestimation of SG will result in an 

overestimation in SI and correspondingly with an underestimation. Also, insulin-independent effects 

are not estimated, as these are described by the GEZI parameter that has been fixed.  

Furthermore as mentioned in the previous chapter and as will be discussed in chapter 5, the glucose 

uptake is a saturable process. Hence the glucose uptake and thereby the glucose effectiveness 

depends on the insulin concentration as well as on the glucose concentration.  

Thus the description of constant measures of the effect of glucose, SG and insulin, SI
 on the glucose 

disappearance as given in the glucose minimal model is only valid in a limited range of glucose and 

insulin concentration values, as the glucose dependent part of the glucose uptake saturates relatively 

fast for increasing glucose concentration, cf. chapter 5. Therefore, the difficulties of estimating SI in 

subjects with type 2 diabetes properly, seems partly to be due to a wrong description and hence 

overestimation of the glucose effectiveness.  

 The difficulty of estimating p2 with precision is also linked with the problem of the 

overestimation of the glucose effectiveness and the compensatory bias between SG and SI⋅X when 

fitting the glucose concentration curve. As mentioned above, the glucose effectiveness of the 
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glucose disappearance is given by the sum of these two factors and hence fitting the glucose curve 

is primarily a task of estimating the values of these two factors. If SG is overestimated it means that 

SI⋅X must be underestimated. With no further restriction on either of the factors SI and X it means 

that any value of SI and X can be obtained, as long as the product gives a reasonable value that 

compensates for the estimation of SG, e.g. one can obtain an extremely high estimate of SI due to a 

compensatory reduction in the effect of X through an extremely low estimated value of p2. In fact, 

the relation given by Eq. (3.8) means that an overestimation of SG gives an overestimation of SI, 

with the result of a compensating small effect of X and hence a small estimated value of p2. In 

subjects with type 2 diabetes with a small insulin effect, this would result in a very low value of p2 

and hence an imprecise estimation.  

 The problem of estimating p2 with precision is handled by assuming a known (prior) 

distribution of the values with a known mean and standard deviation. In the present estimation 

procedure only normal distributions can be handled. The distribution of p2 has been found to be 

skewed (non-normal), whereas the square root of p2 has been found to be (approximately) normal 

distributed (Dalla Man et al. 2004), hence the distribution of the square root of p2 was used as the a 

priori information. However it must be stressed that the square root of p2 is only approximately 

normal distributed, as the square root of a skewed distribution will never give a normal distribution. 

 The relation given by Eq. (3.9) to reduce the number of parameters to be estimated, from the 

rate of glucose appearance, by one, assumes that all glucose is absorbed by the end of the 4-hour 

test period. However as can be seen from Fig. 3.4 this is seemingly not the case, as the estimated Ra 

is different from zero at the end of the test period. On the other hand, integrating Ra to infinity by 

specifying Ra as a monoexponential decay from time 240 and onwards as in (Dalla Man et al. 

2002), does not alter the values of the estimated parameters significantly (not shown), hence the 

relation given by Eq. (3.9) seems to be a reasonable approximation. 

 With these considerations in mind the following results of the model have to be interpreted 

with caution. Even though the model may give a reasonable fit to the glucose concentration data, 

the estimated parameter values may be misleading, in part due to doubtful assumptions, e.g. fixation 

of parameters, in part due to wrong description of the glucose dependency of the glucose uptake, 

and in part due to the compensating bias in the estimated parameters.  

 The parameter estimation procedure was done by applying non-linear least squares method.  
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Measurement error on the glucose data was assumed normal distributed with zero mean and known 

standard deviation, SD (CV = 10 %) (Dalla Man et al. 2004). The insulin data was assumed to be 

known without errors. 

 

3.3.2 Results from the analysis with the oral glucose minimal model 

 

Rate of appearance, Ra 

The estimated rate of glucose appearance, Ra for the subjects with type 2 diabetes and healthy 

subjects are shown in Fig. 3.4(a) and Fig. 3.4(b), respectively. 

 

Fig. 3.4: Estimated glucose rate of appearance, Ra for (a) subjects with type 2 diabetes (N = 169), 
and (b) healthy subjects (N = 41). Mean ± SD (full black line). Individual estimates are drawn with 
grey lines. 
 

 

The mean profile of the estimated Ra for both the subjects with type 2 diabetes and the healthy 

subjects elicit a bump that has also been found previously with this parameterisation of Ra in both 

MTT (Dalla Man et al. 2002; Dalla Man et al. 2004) and OGTT (Dalla Man et al. 2005a). No 

physiological explanation to this has been achieved (Dalla Man et al. 2002; Dalla Man et al. 2004), 

however the estimated profile of Ra by the model has previously been validated against the gold 

standard (tracer method), to determine Ra, and the prediction was found to be reliable both with 

MTT (Dalla Man et al. 2004) and OGTT (Dalla Man et al. 2005a). 

 

Goodness of fit 

The model provided a good fit of the glucose data for both the subjects with type 2 diabetes as well 

as the healthy subjects. The average weighted residuals did not show any systematic deviation from 
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zero and was at all instances of time within the range [-1, +1] for the subjects with type 2 diabetes, 

and only slightly escaped the range [-1, +1] at times below 30 min, for the healthy subjects, cf. Fig. 

3.5. 

 

Fig. 3.5: Mean ± SD weighted residuals, wres for (a) subjects with type 2 diabetes (N = 169), and (b) healthy 
subjects (N = 41). Fit obtained with glucose OMM. 
 

 

Insulin sensitivity 

The distribution of the insulin sensitivity index, SI is shown in Fig. 3.6. From this figure it seems 

that SI is not normal distributed. 

 

 

Fig. 3.6: Distribution of SI for (a) subjects with type 2 diabetes (N = 169), and (b) healthy subjects 
(N = 41), estimated from glucose OMM. 
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For the subjects with type 2 diabetes, SI was estimated (Mean ± SE) at SI = 5.7 ± 0.3 ⋅ 10-4 per 

µU/ml, with precision expressed as coefficient of variation of the estimate, CV = 10.6 ± 0.6 %, cf. 

Table 3.2. Reported literature values of SI estimated by the glucose OMM in subjects with type 2 

diabetes receiving MTT, range from 2-6⋅10-4 dl/kg per µU/ml (Bock et al. 2006; Bock et al. 2007). 

In comparison the mean estimated SI in the same units (SI⋅V) yields 8.3⋅10-4 dl/kg per µU/ml with V 

= 1.45 dl/kg (cf. Table 3.1 and 3.2). As SI is not normal distributed, it may be more reasonable to 

compare with the median estimate. The median estimate of SI for the subjects with type 2 diabetes 

in the same units as reported in the literature yields SI,median  = 6.4⋅10-4 dl/kg per µU/ml. Hence the 

value of the median of the estimated SI for the subjects with type 2 diabetes is reasonable compared 

with reported literature values. 

 For the healthy subjects, SI was estimated (Mean ± SE) at SI = 22.5 ± 2.3 ⋅ 10-4 per µU/ml, 

with precision expressed as coefficient of variation of the estimate, CV = 5.3 ± 0.6 %, cf. Table 3.2. 

Reported literature values of SI estimated by the glucose OMM in healthy receiving MTT, range 

from 11-17⋅10-4 dl/kg per µU/ml (Basu et al. 2003; Bock et al. 2006; Bock et al. 2007; Caumo et al. 

2000; Dalla Man et al. 2002; Dalla Man et al. 2005a; Dalla Man et al. 2004). In comparison the 

mean estimated SI in the same units (SI⋅V) yields 32.6⋅10-4 dl/kg per µU/ml with V = 1.45 dl/kg (cf. 

Table 3.1 and 3.2).  

Hence the mean of the estimated SI is a factor 2-3 larger than reported values in the literature. The 

median estimate of SI for the healthy subjects in the same units as reported in the literature yields 

SI,median  = 26.1⋅10-4 dl/kg per µU/ml. Hence even when the literature values are compared with the 

median of the estimated SI, the estimate of the healthy SI exceed the literature values with a factor 

1.5 – 2.4. At present no good explanation to this discrepancy has been found. 
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SI 

(104 min-1 per µU/ml) 

Mean ± SE 

(Median) 

Range CV (%) 

Mean ± SE 

CV (%) 

Range 

Type 2 diabetes 

 

5.72 ± 0.34 

(4.4) 

0.93 - 22.93 10.62 ± 0.59 1.59 - 105.34 

Healthy 

 

22.46 ± 2.33 

(18) 

1.91 - 68.07 5.27 ± 0.62 0.00 - 16.02 

 
Table 3.2: Insulin sensitivity index SI estimates and precisions in subjects with type 2 diabetes and 
healthy, obtained from glucose OMM. 
 

 

Remote insulin action 

As previously described, a priori knowledge was added to increase the “robustness” of the estimate 

of p2. As p2 was found not to be normal distributed, but  √p2 was, √p2 was restricted to have a 

known mean with known standard deviation. The estimate and precision of √p2 is given in Table 

3.3. The mean p2 for the subjects with type 2 diabetes was estimated at p2 = 0.0098 min-1, and for 

the healthy subjects p2 = 0.01 min-1.  

 

√p2 

(min-½) 

Mean ± SE 

 

Range CV (%) 

Mean ± SE 

CV (%) 

Range 

Type 2 diabetes 0.099 ± 0.001 0.036 - 0.166 9.70 ± 0.17 0.34 - 16.21 

Healthy 0.101 ± 0.003 0.057 - 0.129 5.99 ± 0.57 0.041 - 12.02 

 
Table 3.3: Estimates and precisions of √p2 in subjects with type 2 diabetes and healthy, obtained 
from glucose OMM. 
 

 

3.4 The oral C-peptide minimal model  

 

The oral C-peptide minimal model, C-peptide OMM proposed in (Breda et al. 2001; Breda et al. 

2002; Toffolo et al. 2001) was used to estimate beta cell function indices. The model is based on the 

kinetics of C-peptide, where the two-compartment model proposed in (Eaton et al. 1980) is used to 
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represent C-peptide kinetics. Hence the beta cell function indices estimated from this model 

represents pre-hepatic insulin secretion pattern. 

The model proposed to describe the C-peptide kinetics is described shortly below. 

 

C-peptide kinetics 

C-peptide kinetics is described by the two-compartment model, proposed by Eaton et al. (Eaton et 

al. 1980) with the following equations:      

 (t))Ck(k(t)CkSR(t)(t)C 121012121 +−+=& ; C1(0) = C1b    (3.10) 

 (t)Ck(t)Ck(t)C 2121212 −=& ;  C2(0) = k21/k12⋅C1b    (3.11) 

where C1 and C2 are the C-peptide concentrations in compartment 1 (accessible) and 2 (peripheral), 

respectively, k01, k12, k21 are C-peptide kinetics rate constants, and SR is the C-peptide secretion 

rate, cf. Fig. 3.7. Suffix “b” denotes basal (time t = 0 min) values. 

 

Fig. 3.7: The two-compartment model of C-peptide kinetics proposed by (Eaton et al. 1980).  
C1 and C2 are the concentration of C-peptide in compartment 1 (accessible) and compartment 2 
(peripheral), respectively. k01, k21, k12 are rate parameters. SR is the C-peptide secretion rate 
normalised to the C-peptide distribution volume of compartment 1. Adapted from (Toffolo et al. 
2001). 
 

 

Secretion 

The secretion model is based on the idea of the “package storage hypothesis” (Grodsky 1972; Licko 

1973).  

SR is assumed to be composed of the sum of two components, i.e. 

 SR = SRD + SRS         (3.12) 

where SRS, denoted static component, describes the effect of glucose, G to enhance secretion, and 

SRD, denoted dynamic component, describes the effect of the rate of change of glucose, dG/dt to 

enhance secretion. 
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Static secretion  

The static component SRS is assumed equal to the provision of new insulin in the beta cell, Y, i.e 

 SRS(t) = Y(t)          (3.13) 

where Y is assumed to depend on glucose, G according to: 

Y)α(Y
dt

dY −= ∞          (3.14) 

α describes the rate constant by which Y tends towards the steady state provision Y∞  assumed 

linearly related to G through the parameter β according to 

 Y∞ = β(G-h) + SRB         (3.15) 

h is the threshold value by which, if G is above this value, new insulin is provisioned. SRB denotes 

basal secretion.  

Hence, SRS is not linearly related to glucose concentration, but tends, with the rate constant α, 

towards the steady state provision Y∞, that is linearly related to G by Eq. (3.15). In the estimation 

procedure, Y∞ is restricted to non-negative values, i.e. if Y∞ < 0, Y∞ is set equal to zero. 

 

The static beta cell function index, or sensitivity, ΦS describes the ratio between the static secretion, 

above basal, and the glucose, above the threshold h, at steady state, i.e.  

 ΦS = β           (3.16) 

The static sensitivity ΦS provides a measure of the effect of glucose on secretion. 

 

Dynamic secretion 

The dynamic secretion component SRD is assumed proportional to the rate of increase of glucose 

according to 

 SRD(t) = KD⋅dG/dt         (3.17) 

where KD is a proportionality parameter. 

 

The dynamic secretion is assumed only to contribute to the secretion, if the rate of change of 

glucose is positive, hence if dG/dt < 0 then SRD(t) = 0. SRD is interpreted as describing secretion of 

insulin that is already stored in a readily-releasable pool (RRP) in the beta cell.  

 

The dynamic beta cell function index, or sensitivity, ΦD describes the ratio between the dynamic 

secretion and the rate of glucose increase, i.e. according to Eq. (3.17) 
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 ΦD = KD          (3.18) 

ΦD is a measure of the effect of an increasing rate of glucose on secretion. 

 

Basal secretion  

The basal secretion component, SRB is found from the combination of Eqs. (3.10) and (3.11) 

evaluated in the basal steady state, i.e. 

 SRB = k01C1b          (3.19) 

 

The basal beta cell function index, or sensitivity, ΦB describes the ratio between the basal secretion 

and basal glucose Gb, i.e.  

 ΦB = k01C1b/Gb         (3.20) 

ΦB is not estimated from the model, but calculated based on the data and the C-peptide kinetic 

parameter. 

 

Total beta cell function  

Also a total, or global, beta cell function index, or sensitivity, ΦTotal can be defined. ΦTotal is defined 

as the ratio between average increase of secretion above basal and average glucose above basal, i.e. 

 

dth)(G(t)

)dtSR(SR(t)

Φ

0

0

B

Total

∫

∫
∞

∞

−

−
=         (3.21) 

Assuming that the system returns to the basal steady state for t -> ∞, ΦTotal can be calculated as 

 

dth)(G(t)

)G(GΦ
ΦΦ

0
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∫
∞

−

−
+=        (3.22) 

where Gmax is the maximal value of G obtained throughout the test period.  

 

By using Eqs. (3.10) and (3.11), a model independent expression of ΦTotal can be obtained (Breda et 

al. 2001),  
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=          (3.23) 

Hence ΦTotal gives a measure of the ratio between the area under the curve, AUC of the C-peptide 

concentration in the accessible compartment and the AUC of glucose concentration above the 

threshold value. 

 

3.4.1 Model identification and parameter estimation 

The C-peptide kinetics rate constant was calculated based on the population based approach 

proposed by Van Cauter et al. (Van-Cauter et al. 1992). This approach determines the C-peptide 

kinetics rate constants based on population standard parameters, and seems not to introduce major 

errors, as the difference between the estimates of secretion rate based on standard parameters and 

that based on individually determined kinetic parameters, is similar to the difference of replicate 

studies in the same subject (Van-Cauter et al. 1992). However the approach is not to be used in 

subjects with kidney failure, as the kidney is the major site for C-peptide clearance (Van-Cauter et 

al. 1992).  

 Previous experience shows that the threshold value h is always estimated at values close to 

the basal glucose value Gb (Breda et al. 2001), hence in the estimation procedure, h is set equal to 

Gb as in (Dalla Man et al. 2005a). The other model parameters (α, ΦS, ΦD) were estimated by a 

non-linear least squares method, similar to the method described in (Breda et al. 2001; Breda et al. 

2002; Toffolo et al. 2001) and implemented in MATLAB. 

 To increase the precision of estimate of α, maximum a posteriori Bayesian estimation was 

used, where α was assumed normal distributed with known mean and CV (Breda et al. 2001). 

The glucose data was linearly interpolated, and the time derivative assumed known without error. 

Errors in C-peptide data were assumed normal distributed with zero mean and known CV as in 

(Toffolo et al. 2006). 

 

3.4.2 Results from the analysis with the oral C-peptide minimal model 

In the C-peptide OMM glucose is used as the input, and the C-peptide data are the ones to be fitted. 

The data used for the subjects with type 2 diabetes and healthy subjects are presented in Fig. 3.1 and 

Fig. 3.2, respectively.  
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For the subjects with type 2 diabetes, the model provided a reasonable fit as evident from the 

weighted residuals shown in Fig. 3.8(a). No systematic deviation from zero was present for the 

mean weighted residuals, and only occasionally escaped the range [-1; 1].  

The fit for the healthy subjects were less good, as evident from Fig. 3.8(b). However the mean 

weighted residuals varied in an acceptable range, with no systematic deviation from zero. 

 

 

Fig. 3.8: Mean ± SD weighted residual, wres for (a) subjects with type 2 diabetes (N = 169), and (b) 
healthy subjects (N = 41). Fit obtained with C-peptide OMM. 
 

 

Parameter estimates 

For the subjects with type 2 diabetes the α parameter was assumed to be normally distributed with 

mean 0.09 min-1 and CV = 50%. 

For the healthy subjects it was found that changing the restriction on the α parameter to have the 

mean 0.04 min-1 and CV = 112.5 % gave a better fit. 

Fig 3.9(a) shows the distribution of α for the subjects with type 2 diabetes, and Fig. 3.9(b) shows 

the corresponding distribution for the healthy subjects. It is seen for both populations that the 

distribution of α is not a normal distribution. The mean estimated parameter value for the median 

values of α for the subjects with type 2 diabetes and healthy subjects were 0.030 min-1 and 0.027 

min-1, respectively (cf. Table 3.4 and 3.5). The value found for the subjects with type 2 diabetes is 

larger than the corresponding value for healthy subjects, in contrast with literature findings (Breda 

et al. 2002). 
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Fig. 3.9: Distribution of α for (a) subjects with type 2 diabetes (N = 169), and (b) healthy subjects 
(N = 41), estimated from the C-peptide OMM. 
 

 

The estimated model parameter values and precisions for the subjects with type 2 diabetes are 

shown in Table 3.3 and the corresponding parameters for the healthy are given in Table 3.4. 

Large range of variability of the estimated parameters was found for both the subjects with type 2 

diabetes and healthy subjects, where the largest range of variability of the parameter estimates was 

found for the subjects with type 2 diabetes for all three parameters estimated. The highest precision 

of the parameter estimates, as evaluated by the mean and range of CV, was found for the healthy 

subjects, except for the estimate of α, cf. Table 3.3 and 3.4. 

 

 

 

Mean ± SE 

(Median) 
Range 

CV (%) 

Mean ± SE 

CV (%) 

Range 

KD (pM per mg/dl) 16.9 ± 0.8 1.39 - 56.97 11 ± 1 0.11 - 96.5 

α (min-1) 
0.045 ± 0.003 

(0.03) 
0.0027 - 0.24 10.6 ± 0.7 0.001 - 73.5 

β (pM min-1
 per mg/dl) 1.8 ± 0.1 0.30 - 7.15 4.2 ± 0.4 0.29 - 59.9 

 
Table 3.3: Estimated parameters and precisions for the C-peptide OMM in subjects with type 2 
diabetes. 
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Mean ± SE Range 

CV (%) 

Mean ± SE 

CV (%) 

Range 

KD (pM per mg/dl) 44 ± 4 10 - 141 6.1 ± 1.3 0.0002 - 35.5 

α (min-1) 
0.050 ± 0.007 

(0.027) 
0.01 - 0.24 17 ± 6 0.0100 - 173 

β (pM min-1
 per mg/dl) 5.4 ± 0.4 1.8 - 12.5 2.6 ± 0.1 0.7 - 4.6 

 
Table 3.4: Estimated parameters and precisions for the C-peptide OMM in healthy subjects. 
 

 

Fig. 3.10 shows the distribution of the three beta cell indices for the subjects with type 2 diabetes 

and healthy subjects. The basal beta cell function index seems to be normal distributed for both 

groups, whereas the dynamic and static indices have a skewed distribution for the subjects with type 

2 diabetes. The dynamic beta cell index for the healthy seems to be normal distributed, whereas the 

static, as with the group of subjects with diabetes seems to have a skewed distribution. However no 

strict investigation of the distribution pattern has been performed, hence no safe conclusions can be 

drawn. Furthermore, the 41 healthy subjects may be a too low value, to represent the “true” 

distribution. 
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Fig. 3.10: Distribution of the three independent beta cell function indices for the subjects with type 
2 diabetes (left column, (a)-(c)) (N = 169), and the healthy subjects (right column, (d)-(f)), 
estimated from the C-peptide OMM. 
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The one study found in literature reporting beta cell measures for the dynamic and static secretion 

after a similar MTT for 8 subjects with diabetes (Bock et al. 2006) yields mean estimates, ΦD ≈ 

417⋅10-9 and ΦS ≈ 30⋅10-9 min-1 (values read off from a graph).  

Compared with the values given in Table 3.5, the estimated ΦD = 304⋅10-9 is somewhat lower than 

reported in the literature. However, as the estimated values for ΦD cover a wide range of values, it is 

difficult to compare the values, as the number of subjects analysed here is much larger than the 

number of subjects in the literature study (169 vs. 8). Secondly as the distributions of ΦD and ΦS 

seemingly are skewed, more appropriately would be to compare median estimates. These are 

however not given in the literature study. 

 Despite the above mentioned, the estimated mean value of ΦS = 32 ± 1.9 is in agreement 

with the value from literature. However the median value of ΦS is somewhat lower, cf. Table 3.5. 

Studies report of beta cell function indices estimates for healthy subjects undergoing standard MTT 

(Basu et al. 2003; Bock et al. 2006; Dalla Man et al. 2005b) yields ranges ΦD = 400-580⋅10-9 and 

ΦS = 35-40⋅10-9
 min-1. The mean estimate ΦD = 828⋅10-9 given in Table 3.5 is much larger than the 

values reported in literature. The mean estimated ΦS = 121⋅10-9min-1
 is also much larger than the 

reported values. Even the median values are outside the range of reported parameter values. 

Presently no good explanation to the discrepancy between the estimated parameter values and the 

values found in the literature exists. 

 

 Type 2 Healthy 

 Mean ± SE 

(Median) 

Range Mean ± SE 

(Median) 

Range 

ΦB (109 min-1) 
6.1 ± 0.2 

(5.8) 
1.3 - 14.7 

8.8 ± 0.5 

(9.0) 
2.8 - 20.2 

ΦD (109) 
304 ± 15 

(261) 
25 - 1026 

828 ± 59 

(752) 
171 - 1802 

ΦS (109 min-1) 
32 ± 1.9 

(24) 
5 - 129 

121 ± 16 

(92) 
31 - 528 

ΦTotal (109 min-1) 39 ± 3 6 - 311 123 ± 16 -88 - 445 

 

Table 3.5: Calculated beta cell indices of the C-peptide OMM in subjects with type 2 diabetes and 
healthy subjects. 
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3.5 Disposition index 

The observation that the beta cell seem to be able to regulate its insulin secretion in relation to a 

corresponding change in insulin action, has lead to the concept of the disposition index, DI. 

DI measures the ability of the beta cell to respond to a change in insulin action, and can in this 

context be regarded as a measure of beta cell function.   

In obesity with resulting insulin resistance, a compensating rise in insulin secretion has been 

observed hence in obese people, even in the presence of insulin resistance, glucose tolerance is kept 

normal or near-normal, due to the compensating rise in insulin. 

The original idea of a disposition index comes from IVGTT, where the first-phase beta cell index, 

Φ1 and the second-phase beta cell index, Φ2 were plotted against the insulin sensitivity index, SI. 

The resulting plot elicited a hyperbolic relation between the measures of beta cell function and the 

insulin sensitivity, ie. 

 DIbeta = SI⋅Φbeta         (3.24) 

where the beta suffix denotes different measures of beta cell function. 

 

Fig. 3.11 shows the three different disposition index plots corresponding to the dynamic, static, and 

total index. It can be seen that on average, for each disposition index measure, the healthy subjects 

beta cell compensate better for a change in insulin action, than the subjects with type 2 diabetes.  
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Fig. 3.11: Disposition index plot of healthy (red) and subjects with type 2 diabetes (black) for (a) 
dynamic, (b) static, and (c) total disposition index. 
 
 
 

3.6 Analysis of disease progression 

 

Data from 17 subjects with type 2 diabetes from the Owens database, that were followed at the 

years 0, 1, and 5 were also analysed with the glucose and C-peptide minimal models, i.e. the 

subjects are a subset of the 169 subjects already analysed. Fig 3.12 shows the plasma glucose, 

insulin, and C-peptide responses after a standard MTT of these 17 subjects.   
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Fig. 3.12: Plasma concentrations of (a) Glucose, (b) Insulin, and (c) C-peptide after MTT of 17 
subjects with type 2 diabetes followed at year 0 (black), year 1(red), and year 5 (green). Mean ± SD. 
 

 

The procedure for estimation of the parameters of both the glucose as well as the C-peptide OMM 

was done exactly as described in the previous sections. Hence only the final parameter estimates are 

reported.  

 Table 3.6, 3.7, and 3.8 shows the most important estimated parameter values, for the year 0, 

1, and 5 subjects analysed with the glucose and C-peptide OMM. 

 As previously described most of the parameters seem to be non-normal distributed, and 

hence the median estimate may be a better measure to use. Furthermore, estimated values from 

potential outliers are suppressed in the median measure. Hence the between year comparison of the 

parameter estimates will primarily be inspection by use of the median values.   

  Evaluated by the median, all the beta cell function indices increases from year 0 to year 1, 

and then decreases from year 1 to year 5, cf. Table 3.8.  

From Table 3.6 is seen that p2 more or less obtain the same value at all years. α decreases by 25 % 

from year 0 to year 1, and then increases by 19 % from year 1 to year 5, as evaluated by the median 

measures. As α is a measure of the response time (delay) for the beta cell to react on decreasing 

glucose values (Breda et al. 2002), it means that from year 0 to year 1, an increase in the response 

time is obtained, whereas from year 1 to year 5, the response time is decreased. Hence from year 0 

to year 1, an improvement in the beta cell functionality, as measured by the response time, has been 

obtained. However this improvement is lessened from year 1 to year 5. 
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p2 (min-1) 

Mean 

(Median) 

α (min-1) 

Mean 

(Median) 

Year 0 
0.0099 

(0.01) 

0.049 

(0.028) 

Year 1 
0.012 

(0.0099) 

0.026 

(0.021) 

Year 5 
0.010 

(0.0099) 

0.031 

(0.023) 

 
Table 3.6: Mean parameter estimates from the 17 subjects with type 2 diabetes followed at year 0, 
year 1, and year 5, of p2, obtained from glucose OMM, and of α, obtained from C-peptide OMM. 
 

 

The insulin sensitivity is decreased by 3 % from year 0 to year 1, and decreases by 31 % from year 

1 to year 5, as evaluated by the median. Evaluated by the mean values it is seen that the insulin 

sensitivity increases slightly (5 %) from year 0 to year 1, and then decreases from year 1 to year 5. 

Hence, the insulin sensitivity is unaffected, or slightly increased, from year 0 to year 1, and then it 

decreases from year 1 to year 5, cf. Table 3.7. 

 As mentioned in section 3.1, the specific treatment is not recorded. Hence it cannot be assess 

whether the changes in the beta cell function indices and/or insulin sensitivity indices between the 

different years are reflections of disease progression, treatment effect, or combinations. Future 

studies need to clarify this. 
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SI (104 min-1 per µU/ml) 

Parameter 

Mean ± SE 

(Median) 

Parameter 

Range 

CV (%) 

Mean ± SE 

CV (%) 

Range 

Year 0 
7.4 ± 0.9 

(6.4) 
2.2 - 15.3 15 ± 6 7 - 105 

Year 1 
7.8 ± 1.2 

(6.2) 
1.9 - 19.7 8.8 ± 0.6 3.1 - 11.8 

Year 5 
6.2 ± 1.1 

(4.3) 
1.3 - 16.3 10.2 ± 1.3 4.3 - 31.0 

 

Table 3.7: Insulin sensitivity index SI estimates and precisions in 17 subjects with type 2 diabetes 
followed at year 0, year 1, and year 5, obtained from glucose OMM. 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

60 

 

 

ΦB (109 min-1) 
Mean ± SE 
(Median) 

Range 

Year 0 
5.0 ± 0.7 

(5.0) 
1.8 - 12.2 

Year 1 
7.0 ± 0.7 

(6.8) 
2.0 - 14.7 

Year 5 
6.5 ± 0.9 

(4.8) 
2.8 - 15.5 

 

ΦD (109) 
Mean ± SE 
(Median) 

Range 

Year 0 
230 ± 44 

(179) 
25 - 723 

Year 1 
320 ± 29 

(327) 
155 - 628 

Year 5 
375 ± 81 

(231) 
119 - 1260 

 

ΦS (109 min-1) 
Mean ± SE 
(Median) 

Range 

Year 0 
28 ± 6 
(20) 

6 - 96 

Year 1 
42 ± 5 
(37) 

8 - 80 

Year 5 
32 ± 7 
(20) 

12 - 123 

 

ΦTotal (109 min-1) 
Mean ± SE 
(Median) 

Range 

Year 0 
34 ± 9 
(20) 

7 - 155 

Year 1 
47 ± 6 
(41) 

10 - 100 

Year 5 
36 ± 8 
(23) 

14 - 145 

 

Table 3.8: Calculated beta cell indices of the C-peptide OMM in 17 type 2 followed at year 0, 1 
and 5. 
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Disposition index plot of disease progression and treatment effect 

Fig 3.13 shows the disposition index plot for the three beta cell function indices; dynamic, static 

and total. Disregarding outliers, no clear pattern seems to be present in any of the three graphs, i.e. 

no clear hyperbolic relation between the specific beta cell function index and insulin sensitivity is 

seen. However as only 17 subjects are present for each year, the number of subjects may be to 

inferior to obtain a clear relation. 

 

 

Fig. 3.13: Disposition index plot of 17 subjects with type 2 diabetes for (a) dynamic, (b) static, and 
(c) total disposition index followed at year 0 (black), year 1 (red), and year 5 (green). 
 

 

Is the calculation of the disposition indices reliable? 

To evaluate the reliability of the disposition index with the present indices for the beta cell function 

and insulin sensitivity requires comparison against a gold standard for determining the disposition 

indices during meals. To my knowledge such methods do not exist. However the euglycemic-

hyperinsulinemic clamp is considered the gold standard for determining insulin sensitivity, even 
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though this method is problematic (see e.g. section 2.1.2). Despite this, the oral minimal model-

derived index for insulin sensitivity has been found to correlate well with the insulin sensitivity 

measure from an euglycemic-hyperinsulinemic clamp (Dalla Man et al. 2005b; Steil et al. 2004), 

even though the values obtained differs. 

 To my knowledge there exist no gold standards for determining the different beta cell 

function indices during meals. Perhaps the most common used (model-independent) index for 

assessing the first phase insulin secretion (during an IVGTT or clamp), AIR reflects the insulin 

released during the first 5-10 min. However being based on the insulin concentration, the index also 

incorporates the hepatic insulin extraction, and therefore does not represent an independent measure 

of beta cell function (Cobelli et al. 2007). Furthermore it is difficult to extrapolate the information 

gained from the intravenous glucose tests, about the beta cell function, to the indices obtained with 

the oral minimal model describing C-peptide, as they elicit entirely different stimulation profiles on 

the beta cell. Thus at present time it is very difficult to say if the disposition indices calculated are 

reliable, as no gold standard exists, especially for the determination of beta cell function during oral 

tests. 

 Presently what can be done, in order to evaluate the reliability of the calculated disposition 

indices for the subjects presented in the thesis is to compare with the values obtained in literature, 

where the same models have been applied, as the one used in the thesis. Table 3.6 show the mean 

and standard deviation of the calculated disposition indices for the healthy as well as the subjects 

with type 2 diabetes. For both the healthy as well as the subjects with type 2 diabetes, there is a 

large dispersion in all three measures of disposition. As both the insulin sensitivity indices as well 

as the beta cell function indices demonstrated large dispersion for both the healthy as well as the 

subjects with type 2, the large dispersion in the disposition indices where expected. In Bock et al 

(Bock et al. 2006), the dynamic disposition index DIdynamic were calculated at ~ 12,000 and ~ 1667 

(10-14 dl/kg⋅min-1 per pM) for healthy and subjects with impaired fasting glucose/diabetes, 

respectively. The static disposition index DIstatic were calculated at ~ 625 and ~ 125 (10-14 dl/kg⋅min-

2 per pM) for healthy and subjects with impaired fasting glucose/diabetes, respectively. The total 

disposition index DItotal
 were calculated at ~ 800 and ~ 150 (10-14 dl/kg⋅min-2 per pM) for healthy 

and subjects with impaired fasting glucose/diabetes, respectively. As evident from Table 3.6 there 

are markedly differences between the calculated indices in this thesis as compared with the values 

found in Bock et al  2006.  
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The large discrepancies found between the disposition indices from the thesis and Bock et al (Bock 

et al. 2006)are due to the discrepancies in both the estimated insulin sensitivity index as well as the 

beta cell function indices. The numbers of subjects analysed in the thesis compared with Bock et al 

(Bock et al. 2006), differ considerably for the subjects with type 2 diabetes (169 vs. 8). One 

explanation to the large discrepancies between the indices could then be because of the non-normal 

distribution found for most of the indices. However as the number of healthy subjects (41 in thesis 

vs. 32 in Bock et al) differ only slightly, this explanation is hardly valid, for the healthy subjects at 

least. Thus presently it may be speculated that some bug has occurred in the estimation procedure. 

With that said, a clear distinction between the healthy and the subjects with type 2 diabetes is 

demonstrated. 

 Table 3.7 shows the development of the disposition indices along the years. Even though a 

large dispersion persists, a trend towards a larger value for all the disposition indices at year 1 is 

present. Thus effect of treatment may be visible at year 1. At year 5, the presumed effect of 

treatment is completely abolished. However a slight increase in the dynamic disposition index is 

seen, as compared with year 0. This increase is solely due to a higher dynamic beta cell index at 

year 5 as compared with year 0.    

 

 Healthy 

(Mean ± SD) 

Type 2 

(Mean ± SD) 

Dynamic disposition index 

(1014 dl/kg⋅min-1 per pM) 

39936 ± 25466 3989 ± 3879 

Static disposition index       

(1014 dl/kg⋅min-2 per pM) 

6194 ± 5926 483 ± 711 

Total disposition index       

(1014 dl/kg⋅min-2 per pM) 

6352 ± 7501 620 ± 1133 

 
Table 3.6: Dynamic, static, and total disposition indices for the healthy subjects and the subjects 
with type 2 diabetes. Values are presented as mean ± standard deviation, SD. 
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Dynamic disposition index 

(1014 dl/kg⋅min-1 per pM) 

Static disposition index 

(1014 dl/kg⋅min-2 per pM) 

 

Total disposition index 

(1014 dl/kg⋅min-2 per pM) 

Year 0 3959 ± 3684 581 ± 833 741 ± 1336 

Year 1 5663 ± 3054 786 ± 593 898 ± 749 

Year 5 4195 ± 2640 438 ± 373 485 ± 405 

 

Table 3.7: Dynamic, static, and total disposition indices for the subjects with type 2 diabetes at year 
0, 1, and 5. Values are presented as mean ± standard deviation, SD. 
 

 

Summary on the analysis of the Owens MTT data with the minimal models 

169 newly diagnosed subjects with type 2 diabetes and 41 healthy subjects were analysed with the 

oral glucose and C-peptide minimal models to obtain measures of insulin sensitivity as well as beta 

cell functionality. The number of subjects with type 2 diabetes is presently the largest number of 

subjects ever analysed with the minimal models.  

The main findings from the oral glucose minimal model, glucose OMM, analysis are: 

• Good fit to data was found for both the group of subjects with diabetes as well as the 

healthy group 

• SI (10-4 min-1 per µU/ml) was found to be non-normal distributed with a large range of 

variability for both groups; 1-20 (subjects with diabetes) and 2-45 (healthy), excluding 

outliers  

• Median estimate of SI for the group of subjects with diabetes was found reasonable 

compared with literature findings 

• Median estimate of SI for the healthy group was found to be a factor 1.5-2.4 larger than 

reported literature values 

The main findings from the oral C-peptide minimal model, C-peptide OMM, analysis are: 

• Good fit to data was found for the group of subjects with diabetes and acceptable fit for the 

healthy group 

• The dynamic beta cell function index was lower than values reported in the one study 

found for the group of subjects with diabetes, whereas the static index obtained values that 

was comparable to the literature study 
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• The dynamic index of the healthy group was estimated at a factor 1.4-2 larger than the 

range reported in the literature, and the static was estimated at a factor 3-3.5 larger than the 

range of reported values 

A large range of variability were found for all parameter estimates of both groups, however a clear 

distinction between the healthy and group of subjects with diabetes was evident from the disposition 

index plot, implying that the healthy beta cell compensates better for a change in insulin action, than 

the beta cell in subjects with type 2 diabetes. 

 

Disease progression and effect of treatment 

17 subjects that underwent MTT at year 0, 1, and 5, to follow disease progression and treatment 

efficacy, was also analysed with the minimal models. Main findings are: 

• Indices of insulin action and beta cell functionality all showed improvements at year 1 

compared with year 0 

• Decline in the effect of treatment and/or the result of disease progression from year 1 to 

year 5 was evident in all indices of insulin action and beta cell functionality   
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In the first part of this chapter an analysis of MTT data from a large database of newly-

diagnosed subjects with type 2 diabetes and healthy subjects was  performed with the widely used 

state-of-the-art mathematical models to describe glucose kinetics and beta cell functionality 

known as the glucose and C-peptide oral minimal model, respectively. The analysis showed that: 

• The oral glucose and C-peptide minimal models provided good fit to data for both the 

healthy and the subjects with diabetes 

• Large spreads of values for the estimated parameters of the models were found for both 

the healthy and the subjects with diabetes 

• A clear distinction between the healthy group and the group of subjects with type 2 

diabetes was however evident from the disposition index plot, implying that the healthy 

beta cell compensates better for a change in insulin action, than the beta cell of subjects 

with type 2 diabetes 

 

The second part of the chapter included an analysis of subjects with type 2 diabetes that were 

followed at the years 0, 1, and 5. The results showed that: 

• Treatment between year 0 and year 1 was evident in all the estimated parameters 

• Treatment decline and/or disease progression was demonstrated in parameter values 

from year 1 to year 5 

 

The values of the estimated parameters and especially the parameters estimated from the glucose 

minimal model may however be questionable. The assumptions that were needed to achieve 

robust parameter estimation can be explained by an oversimplified description of the glucose 

uptake by the assumption of linear kinetics that lead to wrong estimates of both the glucose 

effectiveness and the effect and sensitivity of insulin. 
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Chapter 4   

 

The phase plot 

 

The plot of plasma glucose versus insulin concentration after a meal, i.e. the phase plot is 

introduced as a simple way to characterise beta cell function. Clear differences in the 

characteristic measures are found both between healthy and subjects with type 2 diabetes and 

within the groups of subjects with diabetes with different fasting plasma glucose values. These 

differences are analysed with a simple model introduces to describe the insulin responses. 

The oral glucose minimal model is applied to analyse the effect of variability of the model 

parameters on the characteristics of the phase plot. The model parameters are found to elicit both 

common and different effects on the characteristics of the phase plot, with a possible complex 

outcome as a result.  

 

To examine the differences in the insulin responses of newly-diagnosed subjects with type 2 

diabetes subjects and healthy subjects after a meal we analysed MTT glucose and insulin response 

data from the Owens database. Fig. 4.1 shows the MTT responses from 417 newly-diagnosed 

subjects with type 2 diabetes and 85 healthy subjects, and includes (but extends) the data analysed 

in chapter 3. 
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Fig. 4.1: (a) Mean plasma glucose and (b) mean plasma insulin after a MTT in 417 newly-
diagnosed subjects with type 2 diabetes (open circle) and in 85 healthy subjects (full circle). Error 
bars represents standard deviation, SD. 
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Clear differences between the subjects with type 2 diabetes and the healthy subjects in both the 

glucose and insulin data are visible. Maximal mean glucose values are reached faster in the healthy 

subjects (tmax=40 min) compared with the subjects with type 2 diabetes (tmax=60 min). In the healthy 

subjects mean glucose returns to the basal (t=0 min) value, within 90 min, where it stays throughout 

the 4-hour test period. In contrast the mean glucose in the subjects with type 2 diabetes subjects 

declines slowly and almost linearly throughout the rest of the test period. Maximal insulin value in 

the healthy subjects is reached at tmax=50 min in contrast with the corresponding value for the 

subjects with type 2 diabetes, t max=75 min. The healthy insulin profile returns back to its basal 

value by the end of the test period.  

 In contrast, the insulin profile from the subjects with diabetes is still above its basal value by 

the end of the test period. There is a large spread of the glucose responses in the subjects with type 

2 diabetes compared with the healthy subjects, as seen by a large standard deviation, SD of the 

subjects with type 2 diabetes compared with the healthy subjects, cf. Fig. 4.1(a). In contrast, a large 

variation in the insulin responses is visible in both the subjects with type 2 diabetes and in the 

healthy subjects, cf. Fig. 4.1(b).  

 As shown in chapter 2 (cf. Fig. 2.1), and for easy reference, shown again in Fig. 4.2, there is 

a large spread in the fasting plasma glucose values, FPG for the subjects with type 2 diabetes, 

ranging from 5-21 mM, whereas the healthy FPG is kept within 4-7 mM. 
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Fig. 4.2: Fasting plasma insulin, FPI against fasting plasma glucose, FPG for 85 healthy subjects 
(open circle) and 417 newly-diagnosed subjects with type 2 diabetes (full circle). 
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To examine the effect of different FPG values on the insulin meal responses, we stratified the 

subjects with type 2 diabetes in five groups (Grp.1-5) according to their FPG values, as given in 

Table 4.1. 

Subjects 

stratification 

FPG 

(mM) 

Number 

Grp. 0 (healthy) < 7 85 

Grp. 1 < 7 45 

Grp. 2 [7,9[ 118 

Grp. 3 [9,11[ 84 

Grp. 4 [11,13[ 68 

Grp. 5 ≥ 13 102 

 

Table 4.1: Stratification of the 417 newly-diagnosed subjects with type 2 diabetes according to 
their fasting plasma glucose values. 
 

 

4.1 Phase plot characteristics 

 

The mean phase plots, i.e. the plots between the mean plasma glucose and the mean plasma insulin 

for the five groupings of T2D (Grp. 1-5) and the healthy group (Grp. 0) as given in Table 4.1 are 

shown in Fig. 4.3. Clear differences between the phase plots can be seen. We have previously found 

that the phase plot can be characterised by at least three parameters; slope, offset and delay 

(Korsgaard and Jönsson 2005). 
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Fig. 4.3: Phase plot between the mean plasma glucose and mean plasma insulin for healthy (Grp. 0) 
and five groupings (Grp. 1-5), according to FPG, of subjects with type 2 diabetes as given in Table 
4.1. Three parameters that characterise the phase plot can be defined; Slope, offset, and delay. The 
slope decreases for increasing FPG. The offset correlates with FPG. The delay decreases for 
increasing FPG values. The grey circle shows the cephalic insulin release. 
 

 

Slope 

The slope represents the beta cell glucose sensitivity, i.e. the change in insulin release for a given 

change in glucose. The phase plots in Fig. 4.3 clearly show that the relation between glucose and 

insulin responses for increasing glucose concentration is not the same as the relation when glucose 

decreases, for the healthy group (Grp. 0) as well as for the groups of subjects with type 2 diabetes 

(Grp. 1-4). The phase plots elicit a (hysteresis) loop. Hence, as the relation between glucose and the 

resulting insulin release is highly dynamical, no single well-defined measure for the slope can be 

given. The slope is a qualitative measure that characterises the relation between glucose and insulin. 

Fig. 4.3 shows a clear decline in the slope for the mean phase plot with increasing fasting plasma 

values, where the loop more or less collapses for large FPG values.   

 

Offset 

The offset is defined as the glucose value at which insulin starts to increase, i.e. it is a measure of 

the starting point for glucose sensitivity in the beta cell. Fig. 4.3 shows that the offset is correlated 

with the FPG.  
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Delay  

As described above, the phase plot between glucose and insulin elicit an open curve. The delay, or 

lag, is a measure of the “openness” of the phase plot. Fig. 4.3 shows that the phase plots close for 

increasing FPG to collapse for large FPG values.  

  

Cephalic insulin release 

The phase plots in Fig. 4.3 show that, particularly for healthy subjects, insulin starts to increase 

before any noticeable increase in glucose. This may be explained by the cephalic insulin, i.e. the 

neurally mediated secretion of insulin occurring before nutrient absorption. Ahrén and Holst (Ahrén 

and Holst 2001) found evidence to show that the cephalic insulin release, lasting around 10 min (in 

accordance with the data in Fig. 4.3), is largely mediated by autonomic activation, and that incretins 

(GLP-1, GIP) are not involved. Furthermore they found that the cephalic phase is required for a 

normal glucose tolerance. 

 

4.2 Analysis of the phase plot with the insulin model 

 

To analyse the phase plots and their characteristics as shown in Fig. 4.3, in greater details, we 

applied a modified version of the model which we previously had developed for a mathematical 

analysis of the phase plot (Korsgaard and Jönsson 2005). The idea behind the model development 

was to extract as much possible information out from the phase plots in a simplified, yet 

informative, manner to characterise the beta cell function. 

 

In the model the glucose concentration, G is the input and the insulin concentration, I the output of 

the model. The relation between glucose and insulin is described as 

 bIY(t)βX(t)αI(t) +⋅+⋅=         (4.1) 

where X(t) and Y(t) are assumed to depend on glucose. α and β (pM/mM) describes the effect of X 

and Y on the insulin, respectively, and Ib describes basal insulin. 

A detailed description and analysis of the relation between X, Y and glucose can be found in 

(Korsgaard and Jönsson 2005). 

Briefly, X describes an immediate effect of glucose, G on insulin given by 

 
⎪⎩

⎪
⎨
⎧ >−

=
otherwise                 0,

GG(t)for     ,GG(t)
X(t)

bb
       (4.2) 
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where Gb is the basal glucose concentration value (t=0 min). It is assumed that the immediate effect 

of glucose only is present for glucose concentration values above the basal value. 

 

Y is assumed to depend on glucose according to 

 ( )Y(t)X(t)
τ
1

dt

dY(t) −⋅=         (4.3) 

where X(t) is given by Eq. (4.2). 

In this formulation, X(t) can be described as the steady state relation, by which Y(t) tends towards 

with the time constant τ.   

 The parameters α and β represents the immediate and the delayed effects of glucose on 

insulin, respectively. These parameters are to be interpreted as representing indices for the secretion 

of insulin by the beta cells, hence characterising beta cell function. Some remarks are here in order: 

 Firstly, Eq. (4.1) describes the relation between the glucose level and the resulting insulin 

level. Hence it is not the secretion rate of insulin as in (Korsgaard and Jönsson 2005) that is 

assessed by the model. However, the elimination of insulin in the body is fast, with half-life for 

elimination in the order of 5-10 min (Luzi et al. 2007). Assuming one-compartment first-order 

insulin elimination, which appear to be a reasonable assumption for normal physiological insulin 

values (Hansen 2004; Nucci and Cobelli 2000) we have 

 kISR
dt

dI −=           (4.4) 

where SR is the insulin secretion rate and k is the insulin elimination rate. 

  

Due to the small elimination half-life (large k), it is seen from Eq. (4.4) that the insulin level and the 

secretion rate differ only by the proportionality constant k. Hence it seems reasonable to assess 

insulin secretion rate by the insulin levels. The argument hinges on the fast elimination of insulin. 

 Secondly, because insulin undergoes first-pass hepatic extraction, the indices found by this 

method are a measure of the post-hepatic insulin appearance, and not a true measure of the insulin 

secretion rate. Methods based on C-peptide kinetics more correctly measures beta cell functions, as 

C-peptide is not extracted by the liver to any significant extend. However, as discussed in chapter 2, 

these methods have other drawbacks. 
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4.2.1 Model selection 

In the development of the insulin model described by Eqs. (4.1) - (4.3) different combinations of the 

X and Y components described by Eqs. (4.2) and (4.3), together with a component describing the 

positive rate of change of glucose, were tested. Details of the model selection can be found in 

Appendix A. Briefly, when considering only one component at a time it was found that the delayed 

effect component was a much better description of the data, than the immediate component alone. 

Evaluating all other combinations, it was found that the combination of the immediate and delayed 

component was the best choice. Including all three components gave only a slightly better 

description. 

A first order insulin kinetics elimination model as in Eq. (4.4) was also tested, assuming a fixed 

insulin half-life. It was found that the data was best described by the “direct” relation given in Eq. 

(4.1).      

 

4.2.2 Effect of fasting plasma glucose, FPG on beta cell function indices 

In order to find the most important variables that could explain the variability of the model 

parameters between the subjects, we carried out a covariate analysis as detailed in Appendix A. 

Briefly, it was found that FPG was the best variable to explain both the variability of α and β, with 

the correlation shown in Fig. 4.4.  

 We found that the immediate effect index α decreased by 16% and the delayed effect index 

β decreased with 25% when FPG increased by 1 mM, hence the mechanism responsible for the 

delayed effect seems to be more affected by changes in FPG than the immediate. This seems to be 

in contrast with the finding that the decrease of the first phase of insulin release is one of the earliest 

marker for the development of diabetes. However caution should be made to relate the immediate 

effect of insulin with the first phase of insulin release as assessed by IVGTT. 

Furthermore we found that waist circumference was the most important variable to explain 

variation in the basal insulin, Ib.  
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Fig. 4.4: (a) Correlation between the fasting plasma glucose, FPG and the estimates of α for all 
subjects. (b) Correlation between FPG and β for all subjects. 
 

 

4.3 Analysis of the phase plot with the oral glucose minimal model  

 

As earlier described, the glucose minimal model is one of the most widely used models to describe 

the plasma glucose dynamics after a perturbation. The model was applied in chapter 3 to analyse the 

differences within and between the meal response data for healthy and subjects with type 2 diabetes 

from the Owens database.   

 In this section the scope is to apply the oral glucose minimal model, glucose OMM to 

analyse the phase plot by investigating the effect of variation of the model parameters on the 

characteristics of the phase plot.  

 For this purpose, data and parameter estimates are taken from already published results 

(Dalla Man et al. 2004). Briefly, the data consists of 88 healthy subjects that had undergone a MTT. 

The mean curves of the measured plasma glucose and insulin concentrations are redrawn in Fig. 

4.5, together with the glucose rate of appearance, and the phase plot between glucose and insulin. 

 Comparing the Dalla Man data in Fig. 4.5 with the Owens healthy data, cf. Fig. 4.1, glucose 

is seen to reach maximum value at similar time point, t=40 min. The maximum value of glucose is 

however larger in Dalla Man than in the Owens data (8.9 vs. 7.7 mM). Glucose reaches basal value 

within 180 min in the Dalla Man data, as compared with 90 min in the Owens data. Maximum 

insulin value is reached faster in the Dalla Man data as compared with Owens data (30 vs. 50 min), 

but similar maximum values are obtained (440 vs. 446 pM). Insulin returns to basal value at t=420 

min in the Dalla Man data, as compared with t=240 min in Owens data.  
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Fig. 4.5: Measured plasma concentration profiles of (a) glucose, (b) insulin, (c) glucose rate of 
appearance, (d) The phase plot between glucose and insulin during a MTT in healthy subjects 
(Mean, n=88). Redrawn from (Dalla Man et al. 2004). 
 

 

The difference in the glucose and insulin responses between these two data sets seems unlikely to 

be explained by the amount of glucose given (77 vs. 75 g. in Dalla Man and Owens, respectively) 

an the subjects had similar body weights. 

 The difference may be attributed to the meal compositions. In Dalla Man the energy content 

of the meal was distributed as 45% carbohydrates, 40% fat, and 15% proteins. Whereas in the 

Owens data, the meal energy content was distributed as 58% carbohydrates, 22% fat and 20% 

proteins, cf. Appendix A. The largest difference in the meal energy content distributions is in the fat 

energy contribution, with an almost doubling in the energy contribution from fat in the Dalla Man 

data as compared with the Owens data. However one would expect that the larger fat contribution in 

the Dalla Man meal would lower the plasma glucose and insulin concentration excursions as 
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compared with the Owens data, as fat is known to lower the meal absorption rate (Hansen 2004). 

However, we do see slower dynamics in the glucose and insulin responses, after maxima are 

reached, as would be expected from a meal with larger fat content (Hansen 2004). 

 On the other hand, the glucose rate of appearance, Ra as given in Fig. 4.5(c) seems to elicit 

faster dynamics than would be expected with high fat content (Hansen 2004). 

 Fig.4.5(d) shows that the fast drop in the insulin concentration while glucose is still 

elevated, results, in the beginning, in a clock-wise direction of the glucose-insulin path in the phase 

plot, where after, however, the glucose decreases at still elevated insulin, as in the phase plot of the 

healthy Owens data.      

 As also noted in the Owens data, there is a fast increase in the insulin level, before any 

noticeable increase in glucose, which is most probably due to cephalic insulin secretion, as 

discussed earlier.  

 

The equations of the oral glucose minimal model were given in Eqs. (3.5)-(3.6), and are for clarity 

given again below: 

 bIbG

a
GG(0)   XG,SG)(GS

V

R
G =−−+=&       (4.5) 

 0X(0)                    X),)I((IpX b2 =−−=&       (4.6) 

with the same notation as before.  

 

As previously mentioned, the glucose OMM estimates the parameters SI, p2 and the parameters 

describing the rate of appearance, αi (i=1...8). The fixed and estimated model parameters from 

(Dalla Man et al. 2004) are given in Table 3.5. 

All parameters were estimated with precision (Dalla Man et al. 2004). From table 3.5 it is seen, 

however, that all parameters elicit large spread in the between subjects estimates, as evaluated by 

the standard deviation.  
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Parameter Mean value Standard error 

(SE) 

Standard 

deviation (SD) 

f (unitless), fixed 0.9   

V (dl/kg), fixed 1.45 - - 

SG (min-1), fixed 0.025 - - 

p2 (min-1), restricted 0.011 0.0005 0.005 

SI (104dl⋅kg-1⋅min-1⋅µU-1⋅ml) 11.68 0.73 6.8 

α1 (mg⋅kg-1⋅min-1) 5.36 0.33 3.1 

α2 (mg⋅kg-1⋅min-1) 7.78 0.24 2.3 

α3 (mg⋅kg-1⋅min-1) 6.00 0.28 2.6 

α4 (mg⋅kg-1⋅min-1) 5.05 0.22 2.1 

α5 (mg⋅kg-1⋅min-1) 4.77 0.28 2.6 

α6 (mg⋅kg-1⋅min-1) 3.52 0.19 1.78 

α7 (mg⋅kg-1⋅min-1) 2.09 0.09 0.84 

α8 (mg⋅kg-1⋅min-1) 0.34 0.05 0.47 

 
Table 3.5: Fixed and estimated model parameter values (mean and SE) from the glucose OMM in 
healthy (N=88) subjects. SD is calculated as SD = SE⋅√n. Adapted from Dalla Man et al. (2004). 
 

 

4.3.1 Simulation results 

Fig. 4.6 shows the result of a simulation of the glucose OMM model with the parameters given in 

Table 3.5. The simulated glucose differs from the measured because only mean estimates of the 

parameters are available and, as evident from Table 3.5, the estimated parameters have a large 

spread. Dalla Man et al. (2004) investigated the deviation on the estimate of SI introduced as a 

consequence of fixing the parameters f, V and SG, and restricting the estimate of p2,.  

 The authors found that f, SG and p2 contribute to explaining the deviation of SI estimate 

compared with reference SI estimate. The fixing of V did not contribute to the deviation. On 

average the authors found the estimate of Ra to be in good agreement with the reference tracer 

estimate of Ra.  
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Fig. 4.6: Simulated (full line) and measured (dashed line) plasma glucose concentration. 
 

 

As mentioned, the scope of this section is to investigate the effects of variation of the different 

model parameters on the characteristics of the phase plot. This will be achieved by changing the 

different parameters one by one, and analyse the resulting effects on the simulated curves.   

 In the following, unless otherwise stated, all parameters will be set to the values given in 

Table 3.5, except of course the parameters that are varied. 

 

Effect of p2 on the phase plot 

Fig. 4.7 shows the effect of three different values of p2, taken as the mean estimated values of p2 

and the values of p2 ± 2⋅SD. The step 2⋅SD has been taken the majority of estimated values lie in the 

interval with endpoints 2⋅SD away from the mean estimated value. For decreasing values of p2 the 

phase plot turns down, i.e. the upstroke slope decreases, and the phase plot opens up. This is due to 

the increasing delay between changes in insulin and insulin action, X. It is also evident that for 

decreasing values of p2 glucose at the end declines faster, which is caused by the longer lasting 

effect of X.  

 Fig. 4.8 shows the effect of p2 in the extreme cases where p2 = 0 min-1, i.e. X = 0 pM, and p2 

>> 1, i.e. X = I-Ib. For the case p2 = 0 min-1, insulin has no effect on the glucose concentration, and 

the phase plot elicit a large open loop. The decreasing glucose is only due to the glucose 

effectiveness SG. In a situation with a vanishing glucose absorption rate, glucose would decrease 

exponentially fast, with a time constant given by SG, towards its basal value. In the situation where 

p2 >> 1 min.1, i.e. X = I-Ib, the effect of insulin on the glucose uptake is immediate, hence glucose is 

quickly lowered in the beginning when insulin is still high. When insulin starts to decrease, glucose 
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begins to increase due the absorption of glucose that still takes place. For large time glucose 

approximates the glucose profile obtained when p2 = 0 min-1, as insulin approximates its basal 

value, i.e. X approximates 0 pM. For the situation with X = I – Ib, the glucose minimal model 

simplifies to a previous thoroughly analysed model (Korsgaard and Jönsson 2005). 

 

 

 

Fig. 4.7: Effect of variation of p2 on (a) plasma glucose, (b) remote insulin, X, and on (c) the phase 
plot. The variation of p2 (min-1) is taken as mean ± 2SD, i.e. p2 has value 0.011 – 2SD (red), 0.011 
(green), 0.011 + 2SD (blue). Dashed line show measured plasma glucose and plasma insulin, 
respectively, where the plasma insulin is given as the difference from the fasting value. 
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Fig. 4.8: Effect of variation of p2 on (a) plasma glucose, (b) remote insulin, X, and on (c) the phase 
plot, in the extreme cases p2 = 0 min-1, i.e. X=0 pM (red) and p2 >> 1 min-1, i.e. X = I – Ib (blue), 
and in the mean case p2 = 0.011 min-1 (green).  
 

 

Summary on the effect of p2 on the phase plot 

• Decreasing p2 values decreases the upstroke slope and increases the loop size 

• Increasing p2 decreases the time for insulin effect, resulting in decreasing glucose value 

followed by increasing glucose value, before glucose decreases again, i.e. the phase plot 

elicit a s-shape at the end  

 

 

Effect of SI on the phase plot 

Fig. 4.9 shows the effect of different values of SI. As previously noted, SI has a large spread in the 

estimated values, cf. Table 3.5.  



   

81 

 

 

For large values of SI the upstroke slope increases, but a large undershoot in the glucose profile 

develops. For decreasing SI the upstroke slope decreases. For smaller values than the mean 

estimated (blue), the loop starts to open up. For large SI values, the glucose-insulin path followed in 

the phase plot turns from clockwise to counter clockwise, due to the faster drop in glucose than 

insulin.  

 

 

 

Fig. 4.9: Effect of different values of SI (10-4dl⋅kg-1⋅min-1⋅µU-1⋅ml) on (a) plasma glucose and (c) the 
phase plot. SI = 0 (red), SI = 11.68 - 1⋅SD (green), SI = 11.68 (blue), SI = 11.68 + 2⋅SD (cyan), SI = 
11.68 + 4⋅SD (magenta), SI = 100 (black). Dashed line shows (a) measured plasma glucose and (b) 
measured plasma insulin. 
 

 

Summary on the effect of SI on the phase plot 

• Increasing values of SI increases the upstroke slope 

• For large SI, a large undershoot in glucose is evident 

• The path followed in the phase plot turns its rotation for increasing SI 
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Effect of SG on the phase plot 

Fig. 4.10 shows the effect of different values of SG. For increasing SG the upstroke slope increases, 

and the loop collapses. For the case SG = 0 min-1, glucose increases at the end due to the absorption 

that is still present and due to the small effect of insulin. The extreme case where SG = 1 min-1 is 

shown to illustrate the important fact that increasing SG will never result in glucose undershoot, in 

contrast with increasing SI.  

 The model is constructed in such a way that glucose, when absorption and effect of insulin 

is vanishing, will approach the basal value exponentially fast with a time constant given by SG, 

hence the larger SG the faster will glucose approach its basal value. Increasing SG will lower an 

undershoot in glucose, as seen in Fig. 4.11, where a undershoot of glucose is simulated with a large 

value of SI, cf. Fig. 4.9 (cyan curve). 

 

 

 

Fig. 4.10: Effect of different values of SG (min-1) on (a) plasma glucose and (c) the phase plot. SG = 
0 (red), SG = 0.01 (green), SG = 0.025 (blue), SG = 0.05 (cyan), SG = 0.1 (magenta), SG = 1 (black). 
Dashed line shows (a) measured plasma glucose and (b) measured plasma insulin. 
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Fig. 4.11: SG (min-1) reduces a glucose undershoot, simulated with SI = 11.68 + 2⋅SD (10-4dl⋅kg-

1⋅min-1⋅µU-1⋅ml). SG = 0.025 (red), SG = 0.05 (green), SG = 0.1 (blue). (a) Plasma glucose, (b) 
Remote insulin, X, and (c) phase plot.  
 

 

Summary on the effect of SG on the phase plot 

• Increasing values of SG increases the upstroke slope and narrows the loop  

• Increasing values of SG lowers a glucose undershoot 

• The path followed in the phase plot turns its rotation for increasing SI 

 

Effect of absorption rate 

The absorption process is an extremely complex process, where the gastric emptying rate depends 

on many things (Hansen 2004). Even though the mean estimated absorption rate was found to be in 

good agreement with the rate obtained by the tracer method (Dalla Man et al. 2004), it is evident 

from Table 3.5 that the parameters determining the rate of appearance {αi} obtain large dispersion. 
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To simulate the effect of different glucose appearance rate, the apperance rate Ra is modelled by a 

two-exponential function (Hansen 2004; Korsgaard and Jönsson 2005) 

 )e(1e
k

)k(kk
mR tktk

2

211
0a

21 −− −+=       (4.7) 

where it has been assumed that the absorption starts at t = 0 min. m0 (mg/kg) is the amount of 

glucose entering plasma, k1 can be interpreted as the transfer rate from stomach to intestine, and k2 

the transfer rate from intestine to plasma (Korsgaard and Jönsson 2005). As the meal contains 1 g 

glucose / kg body weight and the bioavailability, f is fixed at f= 0.9 (Dalla Man et al. 2004), m0 is 

calculated to be m0 = 900 mg/kg. 

 This representation of the mechanisms behind glucose absorption is extremely simplified, 

but it is used to demonstrate the impact on the glucose concentrations for different absorption 

profiles. To simplify even further k1 is set equal to k2.  

 Fig. 4.12 shows that fast absorption rates gives large glucose excursion and large glucose 

undershoot as also previously shown in (Korsgaard and Jönsson 2005). Decreasing absorption rates 

increases the upstroke slope in the phase plot, while glucose tends to overshoot due to the slow 

absorption process. 

 

Summary on the effect of glucose rate of appearance on the phase plot 

• Increasing glucose absorption rates results in large glucose excursions, both hyperglycemic 

and hypoglycemic values 

• Decreasing glucose absorption rates results in increasing upstroke slopes in the phase plot, 

and a tendency for glucose overshoot is observed for very small absorption rates 
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Fig. 4.12: (a) Effect of different absorption profiles modelled by Eq. (4.7) on (b) plasma glucose 
and (d) the phase plot. The rate constants k1 and k2 is set equal to one another, with k1= 0.04 min-1 
(red), k1 = 0.02 min-1 (green), k1 = 0.01 min-1 (blue), k1 = 0.005min-1 (cyan). Full black line denotes 
(a) the estimated Ra, (b) simulated glucose with estimated Ra, (c) remote insulin , X, and (d) the 
simulated phase plot with the estimated Ra. Dashed black line denotes (b) measured plasma glucose 
concentration and (c) measured plasma insulin concentration.  
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In the first part of this chapter the phase plot was used as a simple method to gain information 

about the beta cell functionality in healthy and in subjects with type 2 diabetes after a MTT. We 

used a model that we had previously developed that took glucose concentration as input and 

insulin concentration as output in order to describe the phase plot. The model was based on the 

assumptions of an immediate and a delayed effect of glucose on the insulin response. From this 

model we found that: 

• Fasting plasma glucose was the variable that best explained the variations of both the 

parameter describing the immediate as well as the delayed effect of glucose on insulin, 

i.e. fasting plasma glucose explained the variations in the slope of the phase plots 

• The parameter describing the delayed effect of glucose on insulin response was more 

decreased than the immediate, indicating that mechanism(s) responsible for the delayed 

effect are more sensible to changes in fasting plasma glucose than the mechanism(s) 

responsible for the immediate effect  

• Waist circumference was found to be the variable that best explained variations in the 

basal insulin level, adding more to the evidence of no (simple) relation between the 

fasting plasma glucose and fasting plasma insulin 

 

The second part of the chapter investigated the variability of the phase plot described by the 

glucose oral minimal model, where insulin was used as input and glucose as output. The phase 

plot was investigated by changing model parameters one by one and analysing the outcome of the 

simulation. The simulations showed that: 

• Early deterioration of glucose meal response when insulin response is normal or near 

normal may be prevented by increasing insulin action (p2 ) and/or sensitivity. An 

isolated increase in insulin action may however lead to (transiently) elevated glucose 

levels as the time for effect of insulin is correspondingly lowered. An isolated increase 

in insulin sensitivity may on the other hand lead to undesirable glucose undershoot.  

• A better strategy could be to increase the effect of glucose, as this would decrease a 

glucose overshoot, but would not lead to glucose undershoot. Another choice could be 

to lower the glucose absorption rate. However a too low absorption rate would 

(transiently) lead to elevated glucose. A combination of an increasing effect of glucose 

and a decreasing glucose absorption rate could be a good choice  
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Chapter 5  

 

The meal response 

 

The meal-related responses, i.e. the responses corrected for fasting values, of glucose and insulin 

after a meal tolerance test for a large dataset of healthy subjects and subjects with type 2 diabetes 

are analysed. 

The analysis show that for the healthy subjects the disappearance rate of glucose seems to be 

regulated in such a way as to follow the appearance rate. The analysis also show that the meal-

responses from the subjects with type 2 diabetes are quite similar regardless of insulin levels, 

treatment and/or disease progression, but differ fundamentally from the healthy responses. On 

the other hand fasting plasma glucose, FPG may be affected by treatment, and the variability and 

regulation of FPG are analysed and discussed.  

 

5.1 Owens MTT data 

 

Fig. 5.1 shows the mean plasma glucose and plasma insulin profiles after a standard meal tolerance 

test, MTT of 356 newly diagnosed subjects with type 2 diabetes and 85 healthy subjects from the 

Owens database, cf. Chapter 3. The subjects with type 2 diabetes are divided in five groups 

according to their fasting plasma glucose, FPG values, where the stratification according to FPG is 

similar to the one performed in Chapter 4, cf. Table 4.1.  

 For all the subjects with type 2 diabetes it can be seen that both the plasma glucose profiles 

and the insulin profiles peak later than the healthy profile. The subjects with type 2 diabetes have a 

later return to their FPG values than the healthy subjects. 
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Fig. 5.1: (a) Plasma glucose responses in 85 healthy and 356 newly-diagnosed subjects with type 2 
diabetes grouped according to their fasting plasma glucose, FPG after a MTT. (b) The 
corresponding insulin responses. The legends in (a) show the colour coding used for the groups, and 
the number of subjects in each group. The stratification according to FPG as shown in Table 4.1 is 
used, however the number of subjects in each group differ.  
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Fig. 5.2: (a) The plasma glucose responses from Fig. 5.1 subtracted by the basal (fasting) glucose at 
t=0 min. (b) The corresponding insulin responses subtracted with the respective basal value.   
 

 

Fig. 5.2 shows the same profiles and groupings as in Fig. 5.1, but now the profiles have been 

corrected for their respective fasting values. The profiles for increasing glucose are similar for the 

first approximately 30 min for all the subjects, healthy as well as the subjects with type 2 diabetes. 

As described in Chapter 3 the mean maximal glucose value for the healthy is reached faster (tmax = 

40 min) than the subjects with type 2 diabetes (tmax=50-75 min), and the basal state is reached 

within 90 min. Strikingly, the glucose downstrokes for the subjects with type 2 diabetes are almost 

parallel. The large differences present in the subjects insulin profiles are not much apparent in the 
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glucose profiles where the overall glucose response shape seems to be similar for the subjects with 

type 2 diabetes. The major effect of insulin on the glucose profile seems to be on the glucose peak 

value and peak time, with smaller glucose peak values and peak times for larger insulin levels. The 

large insulin levels at t=180 min for the T2DM groups with FPG < 9 mM leads to glucose 

undershoot. The healthy subject glucose profile is fundamentally different from the profile in the 

subjects with type 2 diabetes with a fast return to pre-meal glucose values.  

 

5.1.1 Subjects followed through years 

Figs. (5.3)-(5.6) show data of subjects with type 2 diabetes from the Owens database that have been 

followed through the years 1, 2, 5, and 10. Even with different subjects and numbers and with 

different treatments included, the overall conclusion is the same as with the data from the newly-

diagnosed subjects, cf. Fig. 5.2. The effect of insulin is primarily on the time to reach the maximum 

glucose concentration and on the respective maximum value. The glucose downstrokes are almost  

parallel and decline in a slowly linear fashion. For some subjects, a large glucose undershoot is 

present. Furthermore, for all years a clear difference between the subjects with type 2 diabetes and 

the healthy is evident. 
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Fig. 5.3: (a) Plasma glucose and (b) plasma insulin for the subjects with type 2 diabetes at year 1 
visit. The corresponding plasma profiles of (c) glucose and (d) insulin where the fasting values (t=0 
min) have been subtracted. (e) The differentiated glucose profiles. 
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Fig. 5.4: (a) Plasma glucose and (b) plasma insulin for the subjects with type 2 diabetes at year 2 
visit. The corresponding plasma profiles of (c) glucose and (d) insulin where the fasting values (t=0 
min) have been subtracted. (e) The differentiated glucose profiles. 
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Fig. 5.5: (a) Plasma glucose and (b) plasma insulin for the subjects with type 2 diabetes at year 5 
visit. The corresponding plasma profiles of (c) glucose and (d) insulin where the fasting values (t=0 
min) have been subtracted. (e) The differentiated glucose profiles. 
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Fig. 5.6: (a) Plasma glucose and (b) plasma insulin for the subjects with type 2 diabetes at year 10 
visit. The corresponding plasma profiles of (c) glucose and (d) insulin where the fasting values (t=0 
min) have been subtracted. (e) The differentiated glucose profiles. 
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Fig. 5.7 shows the mean of the differentiated glucose profiles of the groupings for all the years and 

the corresponding insulin profiles, together with the healthy profiles. It is evident that the changes 

in glucose are similar for the subjects with type 2 diabetes, despite different insulin levels, and also 

despite different treatment throughout the years. The consistent difference between the healthy 

profile and the profile from the subjects with type 2 diabetes is also clear. Furthermore, the subjects 

with type 2 diabetes seem well-treated as the mean HbA1c goes from 8.7 at year 0 to 6.5, 6.8, and 

7.0 at year 1, 5, and 10, respectively. Also notice the relatively large amount of subjects at each year 

from 356 at year 0, to 180, 144, 51, and 39 at year 1, 2, 5, and 10, respectively. Hence the 

conclusions are based on a large data material. 
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Fig. 5.7: (a) The time courses of the means of the differentiated glucose profiles for the subjects 
with type 2 diabetes at first visit (year 0), and follow up visits at year 1, 2, 5, and 10. (b) 
Corresponding time courses of mean plasma insulin profiles. 
 

 

5.1.2 Same subjects followed through years 

In the previous section the glucose and insulin profiles for the different years were analysed without 

taking into account if the same subjects were presented at all the years. Hence one could argue that 

the findings are not consistent, as both the number of subjects and the specific subject vary from 

year to year.  

 To address this issue, I inspected the database, and found that the same 44 subjects were 

followed at the year 0, 1, and 5. I disregarded the year 2 subjects in this analysis as it was expected 

to give similar results as with the year 1 subjects, due to the similar insulin profiles, cf. Fig. 5.7(b), 

and due to the relatively small time lapse between the visits. Unfortunately only very few subjects 

were left if I included the subjects at year 10. Hence these were dropped in this analysis. 
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To examine the insulin dependency of the glucose profiles for the remaining subjects, i.e. the 44 

subjects followed at year 0, 1, and 5, respectively, the subjects were grouped according to the mean 

AUC values of the year 1 insulin profiles above fasting value. Hence if a subject had a value of 

AUC of insulin (above fasting value) for the year 1 insulin profile that was above the mean the 

AUC of year 1 insulin profiles (above fasting values), the subject was arranged in group 1. 

Correspondingly if the value of the AUC of the year 1 insulin profile (above fasting values) was 

below (or at) the value of the mean of the year 1 insulin AUC, the subject was arranged in group 2. 

 I choose to stratify according to the mean AUC value of the year 1 profile as year 1 is 

special in the sense that this is the first visit at which the subjects received treatments before the 

visit, also this was the smallest time lapse for progression of the disease. Hence it was expected that 

any effect of insulin on the glucose profiles was most prominent with this choice of stratification. 

Stratification according to mean insulin AUC of year 0 or 5 was however also performed, with 

similar results as the chosen stratification procedure (results not shown).  

 Fig. 5.8 shows the results of the 44 subjects arranged in two groups according to the mean 

AUC of insulin above fasting values at year 1 together with the healthy data. Again the overall 

conclusions are the same. The effect of insulin is primarily on the glucose peak time and value, 

whereas the glucose downstrokes declines linearly and almost in parallel. Some effect of insulin on 

the glucose profile are however visible at the highest insulin levels where it is most prominent for 

the subjects at year 1 in grp. 2, where also a considerable glucose undershoot develops at the end of 

the test. However the overall similarities between the groups of subjects with type 2 diabetes are 

clear from Fig. 5.8(c), where the differentiated glucose profiles are almost overlapping. Again the 

differences between the healthy and the subjects with type 2 diabetes are undeniable. 
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Fig 5.8: The subjects with type 2 diabetes are grouped according to the mean of the Area Under the 
Curve, AUC insulin time courses above fasting value. (a) Time course of mean plasma glucose 
concentration above fasting values. (b) Time course of mean plasma insulin concentration above 
fasting. (c) Time course of the mean of the differentiated individual plasma glucose concentration 
time courses.   
 

 

5.1.3 Fundamental difference between healthy and subjects with type 2 diabetes 

As pointed out several times now there is a clear difference between the glucose profiles of the  

healthy subjects and the subjects with diabetes as shown in Fig. 5.9. Here the differentiated mean 

plasma glucose responses are shown for all the subjects with type 2 diabetes and the healthy 

subjects. The figure shows the net glucose fluxes and the curves correspond to the difference 

between the glucose appearance, Ra and the glucose disappearance, Rd. The initial upstroke flux is 

similar for the subjects with type 2 diabetes and the healthy subjects , but it lasts longer for the 

subjects with type 2 diabetes. For the healthy the downstroke is brief and vanishes as the fasting 

value is reached. For the subjects with type 2 diabetes the downstroke lasts longer and continues 

even after the fasting has been reached.  
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Fig. 5.9: The mean of the differentiated individual glucose profiles for the healthy (black line), and 
the subjects with type 2 diabetes (grey line). Left y-axis shows the difference between the 
appearance, Ra and disappearance, Rd of glucose.  
 

 

The positive rate of change of glucose (dG/dt > 0) is commonly used as an indicator for the first 

phase insulin secretion, where in the oral case it is denoted the dynamic phase, cf. chapter 3. As 

evident from Fig. 5.9 the dynamic phase is longer for the subjects with type 2 diabetes, lasting 

approximately 60 min, whereas for the healthy subjects the dynamic phase is finished within 

approximately 40 min. Hence the assessment of the dynamic phase insulin secretion is based on 

different glucose stimulation pattern, which makes the interpretation of the dynamic phase index 

difficult.  

 Fig. 5.10 shows the increase of plasma glucose and plasma insulin above the fasting values 

for the healthy subjects. Glucose is normalised within two hours but insulin is still increased, 

implying that insulin is still released. The increased insulin release for decreasing glucose as 

compared with the insulin release for increasing glucose was described in Chapter 4 by the delayed 

component in the relation between insulin and glucose, cf. Eqs. (4.1), (4.3). For the C-peptide 

minimal model this was described by the static secretion component.  

 An even more interesting observation that can be extracted from the figure is that the 

increased insulin does not lead to hypoglycaemia.  

Normally the increased insulin after a meal inhibits the hepatic glucose output and increases glucose 

uptake, hence it would be expected that the still elevated insulin when glucose has returned to FPG 

would lead to hypoglycaemia, as a result of an apparent net increased glucose uptake. However this 
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is seemingly not the case and the figure suggests that the effect of insulin, i.e. the net disappearance 

of glucose is controlled in such a way as to follow the rate of appearance of glucose.  
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Fig. 5.10: The increase of mean plasma glucose concentration above fasting value after a meal for 
healthy subjects (black line, left y-axis), and the corresponding increase of mean plasma insulin 
above fasting value (grey line, right y-axis). The dashed black line illustrates the time course of the 
appearance rate of glucose from the meal. The effect of insulin seems to be controlled in such a way 
as to follow the rate of appearance of glucose. 
 

 

The situation is quite different for the subjects with type 2 diabetes as shown in Fig. 5.11. After the 

peak glucose value has been reached, the glucose profile from the subjects with type 2 diabetes, in 

contrast with the healthy subjects, continue to decline slowly and in an almost linear fashion 

throughout the rest of the 4-hour test period.  

The elevated insulin level seems to have minor impact on the glucose profile, however the elevated 

insulin at the end of the test period seems to provoke glucose undershoot. 
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Fig. 5.11: The increase of mean plasma glucose concentration above fasting value after a meal for 
subjects with type 2 diabetes (black line, left y-axis), and the corresponding increase of mean 
plasma insulin above fasting value (grey line, right y-axis).    
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As mentioned earlier the post-prandial glucose profile is determined by the balance between the net 

glucose appearance, i.e. the sum of the rate of absorption of glucose from the meal and the net 

heapatic (and kidney) glucose output, and the net glucose uptake rate, primarily by muscle and 

adipose tissue. The meal-derived glucose, i.e. the rate of absorption has been found to be similar for 

healthy and in subjects with impaired fasting plasma glucose and/or impaired glucose tolerance 

(Bock et al. 2006). In subjects with type I diabetes, insulin given 20 min prior to a mixed meal 

yielded no significant difference in the meal-derived glucose rate of appearance, as compared with 

basal insulin administration (Pennant et al. 2008). Hence these studies indicate that meal-derived 

glucose rate of appearance is similar for healthy and subjects with diabetes. The debate is then on 

the balance between (and regulation of) the hepatic glucose output and the peripheral tissue uptake. 

 Traditionally the main regulating substance of the post-prandial glucose flux is considered to 

be insulin, or more precisely the insulin/glucagon ratio. More recently also the effect of glucose, i.e. 

glucose effectiveness, has been suggested to play a major role in the regulation of both hepatic 

glucose production as well as peripheral tissue glucose uptake (Nielsen 2008). 

 Interpreting the findings regarding the Owens meal response data in light of this would then 

imply that the glucose profiles from the subjects with type 2 diabetes are lowered more or less 

solely due to the glucose effectiveness, as insulin does not seem to have a major effect on the 

glucose profiles, i.e. they appear to be completely insulin resistant. The term glucose effectiveness 

does however prompt some issues. 

First of all, glucose uptake by the tissue depends both on the glucose concentration as well as on the 

insulin concentration (Yki-Järvinen et al. 1987) as shown in Fig. 5.12. The glucose uptake at fixed 

insulin levels is saturable due to the transport by special glucose transporters, cf. Fig 5.12(a), and 

the insulin-mediated glucose uptake at fixed glucose levels can be described by a hill function, cf. 

Fig. 5.12(b). Hence from the figure it is clear that no constant measure for the glucose effectiveness 

can be defined as it depends on the prevailing glucose as well as the insulin level.   

 Secondly as shown in the next section the effect of glucose on the hepatic glucose output 

differ from the glucose effect on the peripheral tissue uptake. 
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Fig 5.12: Whole body glucose uptake versus (a) plasma glucose at different insulin levels, and (b) 
insulin concentration at different plasma glucose levels. Adapted from Yki-Järvinen et al. (1987). 
 

 

If the subjects are severely insulin resistant, the glucose effectiveness would be the dominating 

glucose lowering effect. One explanation to the similarities between the meal responses of the 

subjects with type 2 diabetes could then be that due to the intrinsic saturability of the glucose 

uptake, cf. Fig 5.12(a), the effect of glucose to increase its own uptake would be similar and almost 

constant for the subjects, and hence the glucose responses would be similar.  

 The glucose dependent glucose uptake can be described by a Michaëlis-Menten relation 

with a half-saturable constant KM = 5 mM (Hallgreen et al. 2008). The glucose concentrations for 

the subjects with type 2 diabetes vary over a wide range, with FPG going from below 7 mM to 

above 15 mM. At 7 mM the glucose transport is 58% saturated, and at 15 mM glucose transport is 

75% saturated. Hence unless the glucose transporters are severely damaged in the subjects it would 

be expected that the uptake of glucose is different in the subjects, and hence a clear difference 

would be visible in the glucose responses. 

 Glucose has to pass the capillary wall to enter the interstitial space, where it can be taken up 

by the cells. The passage across the capillary wall introduces some delay between changes in 

plasma concentration and the resulting uptake, hence in reality the relation between plasma glucose 

concentration and uptake is more flat than a Michäelis-Menten relation with KM=5 mM would 

yield. However unless the passage across the capillary wall, which is generally assumed to be by 

mere diffusion (Zierler 1999), is severely damaged, it would still be expected that the glucose 

uptake differ between the subjects.   

 Neither the glucose rate of appearance nor the glucose uptake (or disappearance) rate has 

been determined in the subjects, hence it cannot be determined how the balance between these two 
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fluxes nor their regulation influences the meal responses. Some authors find normal meal regulation 

of hepatic glucose production but impaired glucose uptake in subjects with pre-diabetes and 

diabetes (Bock et al. 2006) as compared with control, while others find impaired after-meal 

regulation of hepatic glucose production to be most important for the glucose meal response (Gerich 

1991). 

 Whatever flux may be most important, the curves of the differentiated after meal glucose 

profile show that the net effect of the fluxes are more or less similar for the subjects with type 2 

diabetes at any degree of impaired fasting plasma glucose, at any insulin level, at any treatment, and 

at any diabetes progression state, cf. Fig. 5.7. 

 The balance between the effect of insulin and the effect of glucose on the meal responses 

cannot clearly be determined from the present data. The effect of glucose is much debated (Nielsen 

2008). Investigators report unchanged (Alzaid et al. 1994; Nielsen 2008) or even increased 

(Henriksen et al. 1994) glucose effectiveness in subjects with pre-diabetes or diabetes. Most of the 

results are based on minimal model assessment of both the insulin and the glucose effect, hence 

these results are model-dependent, and the ability of the minimal model to correctly assess the 

effect of glucose as well as insulin is questionable, cf. chapter 3. The minimal model independent 

methods to estimate glucose effectiveness are often based on infusion of somatostatin to inhibit the 

insulin secretion such that insulin can be infused to match the healthy insulin profile. However, 

somatostatin elicits a multitude of actions (Lahlou et al. 2004) and treatment with a somatostatin 

analog has been shown to decrease glucose effectiveness (Kahn et al. 1990). Hence also these 

model-independent methods with somatostatin infusion seem to contain questionable steps, and the 

results should be handled cautiously.  

Hence the question to what extend the glucose effectiveness play a role seems still to contain a 

somewhat blurred answer.   

 No matter what, the regulation of after-meal glucose in subjects with type 2 diabetes is 

clearly impaired as compared with the healthy regulation, cf. Fig. 5.9, and insulin seems just to 

follow the glucose and not controlling it, to any significant extend. However glucose undershoot do 

seem to develop at the end of the meal test period for some of the subjects with type 2 diabetes with 

the highest insulin levels, cf. Fig. 5.2.  

 Strikingly the healthy glucose disappearance seems to be regulated in such a way as to 

follow the appearance, cf. Fig. 5.10. This seems to be a totally new aspect in the regulation of meal 
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glucose responses, and it will be further discussed in chapter 7. Certainly in the subjects with type 2 

diabetes this regulation seems to be highly impaired. 

 The subjects with type 2 diabetes at the different years are all well-treated. As the meal-

responses are quite similar the main effect of treatment seems to be on the fasting plasma glucose, 

FPG. The next section will focus on the variability and regulation of FPG. 

 

5.2 Fasting plasma glucose 

 

Even though, as noted in the previous section, the meal-related glucose responses for the subjects 

with type 2 diabetes seem quite similar, the fasting plasma glucose values vary greatly and spread in 

the range from 5-21 mM, cf. Fig. 4.2. Hence this section will concentrate on the variability and 

regulation of the fasting plasma glucose, where the fasting plasma glucose is the concentration of 

glucose in the (arterial) plasma when the body is in the fasting state. The fasting state is the state 

where there is no intestinal absorption of glucose. Hence the fasting plasma glucose concentration is 

determined by the balance between the hepatic glucose output and the disappearance of glucose by 

uptake.  

 In the fasting state, the liver breakdowns the glycogen that has been stored during fed state 

via glycogenolysis and releases free glucose. Furthermore, the liver makes new glucose via 

precursors, with the main contributors being lactate, glycerol, and amino acids, primarily alanine, 

by the process of gluconeogenesis, GNG. In the fasting state the skeletal muscle tissue primarily 

oxidise fatty acids, FA, and glucose is spared or turned into lactate that goes to the liver for rebuild 

of glucose. The adipocytes breakdown fat, TG via lipolysis and releases FA and glycerol. The FA 

goes to the skeletal muscle for oxidation and the glycerol goes to the liver for rebuild of glucose by 

GNG.   

Normally these processes work in concert to maintain a relatively constant fasting plasma glucose 

concentration where the insulin/glucagon ratio plays a prominent role by directing the different 

fluxes in the right direction by regulating the activities of the involved enzymes. In subjects with 

type 2 diabetes the high diversity in the fasting plasma glucose values may be caused by an 

imbalance between these processes. 
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5.2.1 Variability of FPG  

Fig. 5.13(a) shows the scatter plot between HbA1c and FPG for the newly-diagnosed subjects with 

type 2 diabetes from the Owens database, cf. Chapter 3. From this plot, for a given HbA1c value a 

“mean” FPG value can be determined, cf. the red line in the figure. 

 Fig. 5.13(b) shows the distribution of the difference between the individual FPG values and 

the estimated “mean” value from Fig. 5.13(a) for a given value of HbA1c. The distribution is seen 

to resemble a normal distribution with a mean at 0 mM and a standard deviation of 2 mM. Hence as 

already noticed, there is a large spread in the FPG values. Similar distributions as the one shown in 

Fig. 5.13 is found for the subjects at year 1, 5, and 10 (results now shown), hence FPG have large 

variability for all the years. 
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Fig. 5.13: (a) The scatter plot between HbA1c and fasting plasma glucose, FPG values for newly-
diagnosed subjects with type 2 diabetes from the Owens database, cf. Chapter 3. From the plot a 
“mean” value of FPG can be determined for a given HbA1c, i.e. the red line (b) The distribution of 
the difference between individual FPG and the “mean” determined from (a). The distribution 
resemble a normal distribution, full drawn curve, with a standard deviation, SD = 2 mM. 
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Fig. 5.14: For the subjects at the second visit (year 1), the distribution of the difference between the 
individual FPG value and the “mean”  FPG value is split in two, according to if the subjects with 
type 2 diabetes had a positive difference (dark grey) or a negative difference (light grey) at the first 
visit (year 0) when they where newly-diagnosed. The two distributions are similar to the 
distribution found at first visit for all subjects (black and Fig. 5.13(b)). Hence the variation in FPG 
is completely random.  
 

 

Fig. 5.14 shows the distributions of the differences between the individual FPG value and the 

“mean” as determined according to Fig. 5.13(a) for the subjects at year 1, where the subjects are 

grouped according to whether they had a positive or a negative value of the difference at the year 0.   

Both distributions, the positive as well as the negative are similar to the one found for all subjects at 

year 0. Hence the variations of the FPG over time are large and seem to be completely random. 

 Fig 5.15 shows the changes in fasting plasma insulin concentration, FPI from year 1 to year 

5 against the changes in fasting plasma glucose concentration, FPG from year 1 to year 5 for the 

subjects with type 2 diabetes from the Owens database. The main tendency is that the large changes 

in FPG is not seen in the changes in FPI as it only changes moderately, both for increased as well as 

decreased FPG values.  

 Hence not only is the “relation” between FPG and FPI complex, cf. Fig. 4.2, but also the 

changes over time of FPG for both decreased as well as increased values seems unrelated and not 

caused by changes in FPI levels. In note we found the waist circumference to be an explaining 

variable for the variability in fasting plasma insulin, cf. Chapter 4.  

 Furthermore Radziuk and Pye (Radziuk and Pye 2006) found that the 24-h fasting plasma 

glucose concentration in subjects with type 2 diabetes elicited a particular diurnal rhythm driven by 

the hepatic glucose output via changes in gluconeogenesis. Fasting plasma glucose values rose from 
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a minimum value of around 6 mM to a peak value of around 8 mM. No similar pattern was found in 

the insulin profile that decreased slightly throughout the 24-h period. In contrast, the healthy fasting 

plasma glucose profile remained essentially constant throughout the period while decreasing 

slightly towards the end. Insulin levels decreased slightly throughout the period.  

 Thus the fasting plasma glucose for subjects with type 2 diabetes does not only elicit a large 

variation from year to year, but also on a daily-basis a large variation can be observed depending on 

the time of the day, while independent on the prevailing insulin level.    
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Fig. 5.15:  Changes in fasting plasma insulin, FPI from year 1 to year 5 plotted against the 
corresponding changes in fasting plasma glucose, FPG for subjects with type 2 diabetes from the 
Owens database. The small dot indicates values at year 1, and the big dot indicates values at year 5. 
The main tendency for both decreasing (red) and increasing (green) glucose values from year 1 to 
year 5, is that large changes in the FPG occurs while FPI only changes moderately (almost 
constant). Hence changes in FPG seem independent of changes in FPI. 
 

 

5.2.2 Relation between FPG and HGO 

Investigators report of a positive correlation between FPG and HGO as shown in Fig. 5.16. 

On the other hand in hyperglyceamic clamp studies with constant insulin, HGO has been found to 

be inhibited by the glucose level in subjects with diabetes to a similar degree as in healthy control 

subjects, cf. Fig. 5.17. 
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Fig. 5.16: Positive correlation between hepatic glucose output and fasting plasma glucose. Adapted 
from (Gerich 1991).  
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Fig. 5.17: Relation between hepatic glucose output, HGO and glucose clamp levels in a 
hyperglycaemic clamp study with constant insulin. HGO is seen to be inhibited similarly in healthy 
as well as in subjects with diabetes. Adapted from (Del Prato et al. 1997). 
 

 

Thus contradicting results exists regarding the relation between FPG and HGO. The different results 

may arise from the fact that it is very difficult to estimate HGO, and the different methods applied 

have different accuracy (Basu et al. 2008).The circumstances under which the methods are applied 

will also give different results. 

 Furthermore as the fasting plasma glucose also depends on the disappearance rate of glucose 

by cellular uptake and in cases of high glucose values (> 10 mM) also by renal excretion the 

situation is more complex. Fig. 5.18 shows the major glucose fluxes during the fasting state.   

 



   

107 

 

 

 

Fig. 5.18: Glucose fluxes in the fasting state. Fasting plasma glucose is determined by the balance 
between the hepatic glucose output, HGO and the cellular uptake by muscle and adipose tisseu, 
JGLUT, the brain glucose uptake, JBrain, and in cases of high glucose values (>10mM) also renal 
excretion, JRen 
 

 

The equation governing the fluxes given in Fig. 5.19 can be written (Hallgreen et al. 2008) 

 uptG JHGO
dt

dG
V −=          (5.1) 

where VG is plasma glucose distribution volume, G is plasma glucose, and Jupt is the sum of cellular 

glucose uptake and renal excretion, given by 

  Ren
M

GLUTbrainupt J
GK

G
VJJ +

+
+=        (5.2) 

where Jbrain = 80 mg/min is the normally constant brain uptake, VGLUT is the sum of the maximal 

activities of the saturable glucose transporters GLUT1 and GLUT4, with KM = 5 mM being the 

half-saturation value, and JRen is the renal excretion rate shown in Fig. 5.19. 
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Fig. 5.19: Renal glucose extraction rate. Adapted from (Hallgreen et al. 2008).   
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From Eqs. (5.1) and (5.2) we have in the fasting state 

 Ren
M

GLUTbrain J
GK

G
VJHGO +

+
+=        (5.3) 

 

The fasting HGO (overnight fast) is in the order of 140 mg/min. Of this the brain takes 80 mg/min. 

The remainder, 60 mg/min, is the glucose dependent uptake. With KGLUT=5 mM and a fasting 

glucose of 5 mM, the fasting value of VGLUT = VGLUT1 + VGLUT4 becomes 120 mg/min.  
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Fig. 5.20: Relation between plasma glucose concentration and hepatic glucose concentration in the 
fasting state as determined by Eq. (5.3) for different values of VGLUT corresponding to different 
values of insulin. Even for moderate changes in HGO an increase is VGLUT is necessary for keeping 
low levels of glucose. The renal extraction sets in for glucose concentration values above 10 mM 
(dashed line), and hence a much weaker dependency on HGO is seen for large glucose values.  
 

 

The relation between G and HGO in the fasting state as determined by Eq. (5.3) is shown in Fig. 

5.20 for different values of VGLUT, corresponding to different fasting insulin concentrations. It is 

seen that even moderate increases in HGO requires an increase in VGLUT to keep G low. The renal 

extraction work as a safety valve that keeps the glucose within reasonable limits, so above a G of 

10-15 mM there is a much weaker dependency on HGO. 

 Hence the exact relation between fasting plasma glucose and hepatic glucose output depends 

on the glucose transport activities as well as on the renal extraction that both may vary 

considerably. As we shall see in the next chapter the overall control of fasting plasma glucose 

concentration gets even more complicated. 
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The glucose and insulin responses for a large number of subjects with type 2 diabetes and 

healthy subjects have been re-assessed in a new and simple way. The novelty of the method was 

based on the evaluation of the meal-related responses, i.e. the responses corrected by the fasting 

values, and the differentiated after-meal glucose profile. This representation of the response data 

revealed completely new facets of the glucose dynamics for both the healthy as well as the 

subjects with type 2 diabetes. The findings were: 

• The mean meal-related glucose responses for newly-diagnosed untreated subjects with 

type 2 diabetes were strikingly independent of the prevailing insulin levels as well as on 

the fasting plasma glucose values, however insulin was shown to affect the glucose peak 

and peak-time value and glucose undershoot developed for large insulin levels at the end 

of the test period  

• Subjects with type 2 diabetes followed at years 1, 2, 5, and 10 after diagnoses and well-

treated according to need showed similar results as with the newly-diagnosed subjects 

with type 2 diabetes with a slowly, almost linear, declining glucose response   

• The meal-related glucose responses for subjects with type 2 diabetes thus seem to be 

strikingly unaffected by the prevailing insulin level, the fasting plasma glucose, and the 

treatment and/or disease progression. Insulin levels in subjects with type 2 diabetes seem 

just to follow the glucose profile, but not controlling it to any significant extend 

• The similarities of the meal-responses for the subjects with type 2 diabetes were even 

more prominent when evaluated by the differentiated glucose profile that represents the 

meal-related glucose fluxes  

• Healthy glucose was quickly lowered within 90 min and stayed at fasting value 

throughout the rest of the 4-hour test period. This was fundamentally different from the 

subjects with type 2 diabetes with a slowly linear declining glucose throughout the test 

period.  

• Strikingly in the healthy subjects insulin was still released when glucose was at fasting 

value. This lead to the novel conclusion that the apparent glucose uptake for healthy 

subjects is regulated in such a way as to follow the glucose rate of appearance as the 

glucose stayed at the fasting value even when insulin continued to be elevated. 
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Chapter 6  

 

Glucose sensing and control 

 

The common view of regarding the glucose-insulin control system as an isolated system to 

control plasma glucose concentration is shown to be much more complex. Firstly the glucose 

sensing mechanisms in the beta cell is shown to possess important intrinsic non-linear properties 

and the beta cell works in a complex network with other glucose sensors. Secondly, the handling 

of metabolites inside and between the different organs is shown to be critical for glucose control. 

Insulin and the nervous system are important components in the control system.    

 

 

When the plasma glucose concentration increases, e.g. after a meal, the consecutive increased 

plasma insulin concentration lowers the glucose concentration primarily by inhibiting hepatic 

glucose output and stimulating glucose uptake in muscle and adipose tissue cells. In that respect, the 

glucose-insulin control system is often viewed as an isolated system to keep plasma glucose 

concentration within narrow limits, where the system is described by a closed-loop, or feedback 

loop, in terms of classic control theory, cf. Fig. 6.1. In this context, the controlled variable CO 

would be plasma glucose concentration, and the desired value CI, the fasting plasma glucose value. 

The controller signal CC would represents plasma insulin (or secretion), and CS the converted 

sensor signal to be processed by the controller. Hence one would regard the beta cell as representing 

the controller and sensing part, whereas the glucose uptake would be represented by the effector 

subsystem.  

Controller
CC COCI

CS

Effector

Sensor

 

Fig. 6.1:  Schematic structure of the three main parts of a classic control system; The controller, the 
effector and the sensor. CI is the desired value (or trace) of the controlled variable CO. CC is the 
signal from the controller to the effector, and CS is the signal from the sensor to the controller. 
Adapted from (Hallgreen et al. 2008). 
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The control system is classified according to how the controller handles the difference between the 

desired value, CI and the controlling variable CO, where CI and CO are characterised in same the 

modalities (Hallgreen et al. 2008). The most common application is to describe the beta cell as a 

Proportional-Integral-Differential, PID controller. The PID description of the sensing and 

controlling mechanisms in the beta cell has gained interests in the task of developing a closed-loop 

insulin delivery system to be used e.g. in subjects with type 1 diabetes or in subjects with developed 

type 2 diabetes for the automatic delivery of insulin based on PID control strategies (Panteleon et 

al. 2006). 

 A drawback of the PID control system is that it needs an error, i.e. difference between the 

actual CO and the desired CI value, to work. For the error to be small the gain, i.e. the ratio between 

the controller output and input, has to be large. However large system gain may lead to undesirable 

instabilities, oscillations etc. (Hallgreen et al. 2008). 

 A way to improve the control is by the use of feed-forward control, often denoted model 

predictive control, MPC. The idea behind the MPC strategy is to construct a control signal, CCFF 

that reflects the expected time-course of CC that is needed to keep CO close to CI (Hallgreen et al. 

2008).  

 The human biological system elicits many examples of both PID as well as MPC control 

strategies, where the MPC strategy often is conveyed by neural signals (Hallgreen et al. 2008; 

Peters et al. 2002). However, in contrast with classic control theory, biological systems have 

intrinsic non-linearities, that most often are crucial for the proper function. More over biological 

systems are interwoven, with many seemingly redundant signalling and controlling pathways, with 

the result that it is very difficult to intervene if something goes wrong. On the other hand the 

complexity and redundancy makes the biological system robust (Hallgreen et al. 2008; Peters et al. 

2002).  

 With that in mind the chapter will focus on how glucose is sensed and handled in the human 

body, and to what extend classic control theory can be used to describe the complexity of the 

glucose-insulin control theory. Firstly, the glucose sensing will be described, and then secondly the 

glucose handling or uptake.  
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6.1 Time-dependent mechanisms in the beta cell glucose sensing  

 

The beta cell is able to sense glucose and secrete insulin. Hence in a structural context the beta cell 

is viewed as presenting both the sensing and controlling subsystems as given in Fig. 6.1. The classic 

view of presenting the beta cell as a PID controller has its roots in the biphasic release pattern 

elicited by the beta cell, when stimulated by a square-wave glucose pulse (Steil et al. 2006). 

 In order to describe the different secretion phases elicited by the beta cell based on a more 

mechanistic basis, in contrast with classic control theory, we developed a new model to describe the 

time-dependent glucose-sensing mechanisms in the beta cell (Hallgreen et al. 2008; Korsgaard and 

Colding-Jorgensen 2006). 

 

6.1.1 Glucokinase, GK: The key enzyme in the glucose sensing mechanisms in the beta cell 

GK is essential in all glucose sensing cells and due to its co-localisation with the glucose transporter 

GLUT2 and its affinity for glucose in the physiological range it has laid the foundation of the 

glucose sensor concept (Korsgaard and Colding-Jorgensen 2006; Sweet and Matschinsky 1995). 

The transport across the cell membrane in the beta cell is done by GLUT2, with a KM in the order 

10-20 mM (Johnson et al. 1990; Thorens 1996), hence the intracellular glucose concentration 

mirrors the glucose in the physiological range. Furthermore, GK has a low affinity for glucose with 

half saturation at 8 mM (Meglasson and Matschinsky 1986), a value which is 50-100 times higher 

than other hexokinases, making GK maximal sensitive for the normal physiological range of 

glucose concentration.  

 These characteristics make GK the key regulatory step in the glucose sensing of the beta 

cell. Further evidence for the important role of GK in the glucose sensing mechanism has been 

found from studies showing that GK translocate from an inactive (bound) state to an active state 

upon glucose stimulation, with a relatively fast time constant in the order of 20-60 min (Miwa et al. 

2004; Rizzo et al. 2002). The result is a varying (dynamic) amount of active GK in the cell. To give 

a clear presentation of the effects of the different mechanisms behind insulin release, the model is 

presented in steps. First the model without the GK translocation is presented. 
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6.1.2 The model without GK translocation 

The structure of the model is shown in Fig. 6.2. Glucose is transported across the cell membrane by 

the glucose transporter GLUT2. Except its own phosphorylation, glucose does not appear to play a 

role inside the cell, hence it is quickly phosphorylated to glucose-6-phosphate, G6P by GK. 

The signalling pathway from glucose enters the cell to final secretion of insulin is complex, but the 

main triggering pathway is well studied. In short, the increased ATP/ADP due to glucose 

metabolism closes ATP sensitive potassium-channels that results in membrane depolarisation which 

closes the voltage-dependent sodium channels. The resulting increase of intracellular sodium then 

triggers the release of insulin. It is assumed that a signal substance, S in combination with the 

increased ATP/ADP ratio trigger insulin release, R according to 

 
⎪⎩

⎪
⎨
⎧ >+⋅

=
otherwise                         ,R

SSfor      ,R)S-(SQ
R

0

o00
      (6.1) 

where Q is a proportionality factor, R0 is basal insulin release and S0 the threshold value of S for 

glucose dependent insulin release.  

 

Hence with this formulation of insulin release, the signal substance S determines the connection 

between glucose and insulin release. 

 

G6P GG

GK

GP

 S ATP/ADP
EEJin
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+

_

 

Fig. 6.2: Model structure. Glucose, G is transported across the cell membrane by GLUT2, hence the 
extracellular glucose concentration mirrors the intracellular glucose concentration. G is 
phosphorylated by glucokinase, GK to glucose-6-phosphate, G6P and fed into the glycolytic 
pathway. The glycolytic intermediate S is assumed to trigger insulin release in combination with the 
increased ATP/ADP ratio. The net flow of glucose Jin must match the energy expenditure, EE, 
assumed to be achieved by inhibition of GK by S. 
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6.1.3  Flux conservation 

The beta cell has little or no glucose-6-phosphatase and lactate dehydrogenase (Giroix et al. 1987; 

Matschinsky 1996; Perales et al. 1991; Sekine et al. 1994), hence removal of excess G6P by 

conversion to glucose or lactate is not possible or in any case very limited. Furthermore the beta cell 

has little or no glycogen and fat storage (Newgard and Matschinsky 2001), hence removal of excess 

G6P by these routes is not possible either. The result is that all the inflowing glucose, Jin must be 

oxidised to match the energy expenditure, EE. 

The glucose influx, Jin is given by the product of the amount of glucokinase, GK and the 

phoshorylation rate of a single GK enzyme, v 

 vGKJin =             (6.2) 

with the phosphorylation rate, v of the single GK enzyme described by the hill equation (Cornish-

Bowden and Cárdenas 2004) 

 (G)fv
GK

Gv
v Hillmaxhh

hill

h
max =

+
=         (6.3) 

where vmax is the maximal phosphorylation rate, h = 1.7 is the hill coefficient, and Khill = 8 mM is 

the concentration for half saturation (Magnuson and Matschinsky 2004). 

Thus the inflow of glucose depends on the amount of GK and the glucose concentration, but as the 

energy expenditure, EE generally is independent of G, this call for a regulation. Here we assume 

that the inflow of glucose is inhibited by the substrate S, or some substrate proportional to S, but 

other assumptions can be made, yielding however similar result (Korsgaard and Colding-Jorgensen 

2006). Assuming a first order inhibition of Jin by S, the equation describing the development of S is 

given by (Korsgaard and Colding-Jorgensen 2006) 

 EE
S1

J

dt

dS
K in

I −
+

=          (6.4) 

where KI is a constant determining the degree of inhibition of the inflow by S, and where S is 

written in units of KI. 

 

Eq. (6.4) implies that Jin must be larger than EE for S to be non-zero and positive in steady state.  

This means that if Jin is too small EE will go down. However in reality other nutrients as fatty acids 

and amino acids can also contribute to EE (Newgard and Matschinsky 2001). To account only for 

the contribution of glucose oxidation to EE, we modify Eq. (6.4) 
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Sa

SE

S1

J

dt

dS
K 0in

I +
−

+
=          (6.5) 

with a being a constant, and E0 denoting the resting energy expenditure. 

We assume that E0 is constant even though this might not be true when insulin is released 

(Fridlyand et al. 2003; Kennedy et al. 2002). 

 

From Eq. (6.5) we find that the steady state relation between S and G is given by 

 
0

0in
2

0in0in

2E

E4aJ)E(JEJ
S

+−+−
=       (6.6) 

with Jin determined by Eqs. (6.2) and (6.3). 

 

Fig. 6.3 shows the steady state relation between the normalised S and glucose, G given by Eqs. 

(6.2), (6.3) and (6.6), for different values of the parameter kS described by 

 
0

Tmax
S E

GKv
k =          (6.7) 

with GKT denoting the actual total amount of GK. 

 

kS is the ratio between the maximal glucose influx and the resting energy expenditure, where we 

assume that kS is relatively small, i.e. kS = 2 -10 (Korsgaard and Colding-Jorgensen 2006). 

 

As evident from Fig. 6.3, decreasing the amount of GK or increasing E0, as with lower kS values, 

shift the steady state relation between S and G to the right, and hence lower the release of insulin. 
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Fig. 6.3: Steady state relation between S and G described by Eq. (6.6) with a = 0.2 and varying kS 
described by Eq. (6.7). Decreasing amount of GK shifts the curve to the right. The fHill curve 
described in Eq. (6.3) is plotted for comparison. 
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6.1.4 First phase 

The first phase is modelled by assuming a simple first order delay on the inhibition by S of the 

glucose influx, i.e. Eq. (6.5) turns into 

 
Sa

SE

S1

J

dt

dS
K 0in

I +
−

+
= ∗         (6.8) 

with  

 )S(S
τ
1

dt

dS *
*

−=          (6.9) 

Hence S* is delayed compared to S with the time constant τ.  

 

Eq. (6.9) is applied based on the assumption that cellular diffusion takes some time. Hence, for fast 

changes in glucose concentration with the resulting fast changes in S, the inhibition effect will be 

delayed compared to S, due to the diffusion time. 

 

Using Eqs. (6.2), (6.3), and (6.7), Eq. (6.8) can be written 

 )
Sa

S

S1

(G)fkα(
dt

dS HillS

+
−

+
= ∗         (6.10) 

with α = E0/KI being a rate constant. 

 

Fig. 6.4 shows the effect of various values of α on the size of the first phase, when G is briskly 

increased from 5 mM to 15 mM at time t = 10 min. For decreasing values of α the first phase 

decreases accordingly. One of the earliest signs of type 2 diabetes is seemingly a decreased, or even 

absent first phase (Caumo and Luzi 2004). The model reproduces this reduced first phase with 

decreased α values. Increasing KI values decreases α, and as KI determines the inhibition effect of S 

on GK, with larger KI values giving less inhibition, the decreased α value, and hence diminished 

first phase, could be part of a compensatory mechanism, whereby KI is increased, hence less 

inhibition on GK, to counteract the lower amount of GK seen in type 2 diabetes (Matschinsky et al. 

1993).  

 Fig. 6.5 shows the effect on the first phase for different rates of change of glucose 

concentration. The first phase is almost proportional with the rate of change of glucose dG/dt. 
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Fig. 6.4: Shape of the first phase as described by Eqs. (6.9) and (6.10) for various values of the rate 
constant α and with the parameters a=0.2 and τ = 1 min. Glucose is briskly increased from 5 mM to 
15 mM at time t = 10 min. Decreasing α values decreases the first phase as a result of a 
compensatory mechanism for the lower amount of GK seen in type 2 diabetes. 
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Fig. 6.5: Effect of different rates of changes of glucose, dG/dt on the shape of the first phase. A 
time t = 10 min, glucose is changed linearly from 5 mM to 15 mM within 1, 2, 5, and 10 min. For 
larger dG/dt a first phase develops almost proportional with dG/dt. 
 

 

The proportionality of the first phase with the rate of change of glucose dG/dt can also be described 

mathematically. Assuming for simplicity that the glucose oxidation is a constant, Gox (Hallgreen et 

al. 2008), Eq. (6.10) modifies to 

 )G
S1

(G)fk
α(

dt

dS HillS
ox−

+
= ∗         (6.11) 

where Gox is written in units of Eo. 

 

According to Eq. (6.11) the steady state value for S* is given by  

 1(G)fRS Hillox
* −=          (6.12) 

with Rox = kS/Gox being the ratio between the maximal possible GK phosphorylation rate (in units of 

E0) and the actual glucose oxidation rate (in units of E0) (Hallgreen et al. 2008). 
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By differentiation with time in Eq. (6.12) we can eliminate S* with Eq. (6.9), and hence we get 

 1)
dt

dG
(G)τf(G)(fRS '

HillHillox −+=        (6.13) 

Eq. (6.13) shows that it seems reasonable to assume that S, and hence insulin release, responds in 

proportionality with the rate of change of glucose for fast changes in G as also suggested by 

Grodsky and Licko (Grodsky 1972; Licko 1973). 

 

6.1.5 The model including translocation of GK 

The model without the description of GK translocation has shown to be able to explain the insulin 

release pattern due to fast changes in glucose concentration, i.e. first phase, which occurs within 5-

10 min, as a result of a delayed inhibition of GK, due to cellular diffusion. As described earlier, 

recent research has shown that GK translocate from an inactive state to an active state, upon glucose 

stimulation, with a time constant in the order of 20-60 min (Miwa et al. 2004; Rizzo et al. 2002). 

Hence the GK translocation is a somewhat slower regulation, than the regulation responsible for the 

first phase. 

 The structure of the model including the translocation of GK is shown in Fig. 6.6. As 

previously glucose is transported across the cell membrane by the glucose transporter GLUT2. 

Glucose is quickly phosphorylated to glucose-6-phosphate, G6P by GK. Now GK is assumed to be 

present in an inactive, GKB and an active, GKA state. Upon stimulation by glucose, GK is assumed 

to be translocated from GKB to GKA. The translocation is assumed to be regulated not by glucose, 

but by a substance S, assumed to be a glycolytic intermediate (G6P or other). 
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Fig. 6.6: Model structure with GK translocation. GK is assumed to translocate from an inactive 
state, GKB to an active state, GKA and the translocation is controlled by S. For further details see 
caption in Fig. 6.2. 
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For simplicity we have assumed that the translocation of GK can be described by a chemical 

reaction, with the rate constant k2 and kact as evident from Fig. 6.6. The total amount of GK, GKT is 

now divided into the inactive amount, GKB and the active amount GKA, i.e. 

 GKT = GKA + GKB         (6.14) 

The activation (translocation) of GK by S is described by the rate constant kact 

 kact = k1 + k3S          (6.15) 

 

The equation describing the translocation is given by 

 A2actactA2Aact
A )Xk(kkXk)X(1k

dt

dX
+−=−−=      (6.16) 

where XA is the active fraction, i.e. 

 
T

A
A GK

GK
X =           (6.17) 

From Eq. (6.16) we find the steady state relation 

 
2act

act
A kk

k
X

+
=          (6.18) 

Now the inflow of glucose, Jin depends on the active amount of GK, hence 

 Jin = vmaxGKTfHill(G)XA        (6.19) 

 

Fig. 6.7 shows the relation between S and G described by Eqs. (6.6), (6.18) and (6.19) at steady 

state translocation. The main effect of translocation is to introduce a glucose threshold value for S 

and hence insulin release, cf. Fig. 6.3. 
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Fig. 6.7: Relation between the normalised S and G at steady state translocation, described by Eqs. 
(6.6), (6.18) and (6.19), for various values of kS.The translocation property introduces a glucose 
threshold value for S and consequently insulin release.  
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Fig. 6.8: At time t = 10 min, glucose is changed briskly from 5 mM to 15 mM and maintained at 
that elevated value. The variation with time of S is described by Eqs. (6.9), (6.16) and (6.20). The 
typical biphasic pattern is evident, with the first phase explained by delayed inhibition of GK, and 
the slowly rising second phase explained by the translocation (activation) of GK. For increasing k3 
the translocation, i.e. second phase, saturates. The parameters are k1 = 0.006 min-1, k2 = 0.03 min-1, 
a = 0.2, α = 10 min-1, τ = 1 min and kS = 7. 
 

 

 

 

 



   

121 

 

 

With Eq. (6.19), Eq. (6.10) transforms into 

 )
Sa

S

S1

(G)fXk
α(

dt

dS HillAS

+
−

+
= ∗        (6.20) 

 

Fig 6.8 shows the variation with time of S when G is changed briskly at t = 10 min. A typical 

biphasic pattern is evident. The first phase is explained by the delayed inhibition of GK, and the 

slowly rising second phase is explained by the translocation, or activation, of GK by S. The second 

phase rises more or less linearly as also noted in (Elahi 1996). However the translocation, i.e. 

second phase, is saturable as seen for large values of k3 which determines the effect of S on 

translocation. 

 

6.1.6 Glucose memory 

It has been shown several times that the beta cells display a memory effect towards glucose, i.e. the 

present insulin release depends on the pre-history of glucose stimulation. The mechanism by which 

this is achieved is unknown (Caumo and Luzi 2004; Grill et al. 1978; Nesher and Cerasi 2002). An 

explanation to the glucose memory could be increased GKT, but such an increase appears to take 

days (Liang et al. 1992). An other option could be S itself, but many investigators point toward 

mechanisms depending on Ca2+ and/or insulin action via the beta cells insulin receptors (Aspinwall 

et al. 1999; Borge et al. 2002; Magnuson and Matschinsky 2004).      

We assume that the insulin release is stimulated by its own release and described by the following 

equations   
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dQ −= ∆∞          (6.22) 
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with 0∆ RRR −= , and where β, Q0, A, KR are constants. 

 

Q∞(R∆) is the steady state amplification factor. For low insulin release, i.e. R∆ small, Q∞(R∆) 

approaches the value Q0, and for large insulin release Q∞(R∆) approaches the value Q0(1+A). Often 
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very large differences are seen (Grill et al. 1978; Nesher and Cerasi 2002), so in the simulations we 

have assumed A = 10.   

Fig. 6.9 shows the steady state relation between insulin release, R and glucose for different values 

of kS. The curves are sigmoidal, i.e. S-shaped, which is typical for autocatalytic processes. The total 

amount of GK is seen to control both the threshold value for insulin release, as well as the glucose 

sensitivity, i.e. the slope, with larger threshold values and lower glucose sensitivity for decreasing 

total amount of GK, i.e. decreasing kS.  
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Fig. 6.9: Relation between insulin release, R and glucose at steady state for different values of kS. 
Insulin release exerts an autocatalytic effect described by Eqs. (6.22) and (6.23). The parameters are 
KR = 1, Q0 = 0.1, and β = 0.003 min-1. 
 

 

The glucose memory effect is clearly visible when the beta cells undergo consecutive square wave 

glucose stimulation (Caumo and Luzi 2004; Grill et al. 1978; Nesher and Cerasi 2002). Fig 6.10 

shows the insulin release pattern when two consecutive square waves, or pulses are applied. Both 

the first phase and the second phase are augmented at the second glucose pulse, in accordance with 

findings from other investigators (Caumo and Luzi 2004; Grill et al. 1978; Nesher and Cerasi 

2002). 
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Fig. 6.10: The glucose memory effect elicited by two equal 30 min glucose pulses given 30 min 
apart. Both first and second phase are augmented at the second pulse. Other parameters are k1 = 
0.006 min-1, k2 = 0.03 min-1, k3 = 0.03 min-1, kS = 7, a = 0.2, Q0 = 1, A = 10, KR = 1, R0 = 0.05, α = 
10 min-1, β = 0.003 min-1, and τ = 1.43 min. 
 

 

Summary 

The model provides a novel mechanism-based explanation to the biphasic insulin release; The first 

phase is explained by a delayed inhibition of GK by the signal substance S. The delay is introduced 

due to the assumption that S has to diffuse through the intra-cellular environment before exerting its 

inhibitory effect on GK. The value of 1 min for the delay time constant τ needed to simulate a first 

phase in the order of 5 min, a time lapse that is generally found, is in agreement with findings 

demonstrating a delay on the order of 1 min from start of glucose increase to start of insulin release 

(Rorsman and Renstrøm 2003).The simulations showed that a decreased first phase, as observed in 

type 2 diabetes, is partly due to compensatory mechanisms in order to minimize the effect of 

diminished amount of total GK. Insulin in the readily releasable pool, RRP (Korsgaard and 

Colding-Jorgensen 2006) contribute to the first phase release, hence the diminished, or lack of, first 

phase insulin release in type 2 diabetes can be due to damaged signalling or defects in the 

exocytotic processes, or both. The model confirms the rate dependency of glucose changes of the 

first phase (cf. Fig. 6.5), giving the grounds for using dG/dt as an indicator for the first phase. 

However, as demonstrated by Eq. (6.13), the relation between dG/dt and first phase insulin release 

is more complex than merely being proportional. 

 The second phase is explained by the translocation of GK from an inactive to an active state 

upon stimulation by glucose. However it is not glucose, but some substance S downstream of the 

glycolysis that controls the translocation. This result in an autocatalytic process (positive feedback) 

giving a sigmoidal relation between glucose and S, hence insulin release, where the threshold value 
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and slope (glucose sensitivity) is determined by the amount of GK. Grodsky et al. describe the 

second phase insulin release as caused by mobilization, or provision, of insulin from a stabile pool 

to the labile, readily releasable, pool. In contrast, we have described the second phase as the result 

of the translocation property of GK.  

 The glucose memory effect adds yet another time-dependent effect upon the beta cell. We 

have described this as caused by another autocatalytic effect, whereby insulin release is augmented 

by its own release. The mechanisms responsible for the memory effect are not understood, and 

insulin has been found to both inhibit and enhance its own release (Korsgaard and Colding-

Jorgensen 2006). However the model results with the assumption that the memory effect is caused 

by an autocatalytic process of insulin release resemble literature findings (Caumo and Luzi 2004; 

Grill et al. 1978; Nesher and Cerasi 2002), cf. Fig. 6.10. 

During the exocytotic process, when the insulin granules are enclosed in the cell membrane, it is not 

clear what happens to the granule-bound GK. If GK is released to the cytoplasm and hence 

activated, it could contribute to the memory effect (Korsgaard and Colding-Jorgensen 2006). 

 As mentioned earlier, in terms of classic control theory the beta cell is often considered to 

work as a PID controller. With the GK translocation property, Eq. (6.13) modifies to 

 1)
dt

dG
(G)τf(G)(fXRS '

HillHillAox −+=       (6.24) 

The first term in the parenthesis of Eq. (6.24) correspond to the proportional, and the second term to 

the derivative control component. XA, i.e. the translocation property, correspond to an integral 

control component. Hence it is seen from Eq. (6.24) that some parallels can be drawn between the 

characteristics of a classic PID controller and the actions of the beta cell. However the beta cell has 

intrinsic non-linear characteristics and work under saturable signals (Korsgaard and Colding-

Jorgensen 2006). The result of these described time-dependent control mechanisms is that as long 

as glucose is elevated, insulin will continue to be released. The manner in which this is achieved 

can vary from person to person, and as long as glucose is normalised within a reasonable time 

frame, the control is characterised as being normal. This explains the wide range of values for the 

parameters describing beta cell function found even for healthy persons, cf. chapter 3. 
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6.2 Multiplicity of glucose sensors 

 

The beta cells are not the only glucose sensitive cells in the body. It now appears that there are 

many glucose sensors, and that they are interwoven in a complex network (Herman and Kahn 2006; 

Matschinsky et al. 2006; Peters et al. 2002; Schuit et al. 2001; Thorens 2004a)designed to respond 

and cope with the different glucose loads a human body experience day after day, year after year. 

Glucose sensors are present in the intestine, the brain, the pancreas (alpha-cells, beta cells), the 

hepatic region, and perhaps other places (Herman and Kahn 2006; Matschinsky et al. 2006; Peters 

et al. 2002; Schuit et al. 2001; Thorens 2004a). The sensors each have their own regulatory function 

and respond to different glucose concentrations. As previously described, GK seems to be 

characteristic for many of the glucose sensors, and the sensing mechanisms resemble the sensing 

mechanisms found in the beta cells. Hence the beta cell model described in the previous section 

seems to apply as a general model of glucose sensing model in the body. 

 

6.3 Glucose control 

 

The glucose control or handling is depicted in Fig. 6.1 by the effector subsystem. Most common is 

to view the glucose uptake into the cell as the main effector to lower the plasma glucose 

concentration. In reality however, the picture is more complicated. When glucose enters the body, 

as for instance after an intake of a meal, it is taken up and/or shuffled between the different organs 

in the body, as shown in Fig 6.11. 

G

Intake

Brain

Liver

Adipose tissue

Muscle  

Fig 6.11: The most important organs in the body that use and/or reshuffle plasma glucose, G. 
Adapted from Hallgreen et al. 2008. 
 

 

Once glucose is transported across the membrane, in either of the cells in the different organs, it is 

phosphorylated to glucose-6-phosphate, G6P, which cannot escape the cell; hence glucose is 
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trapped inside the cell as G6P. The liver and the kidney are the only major organs capable of 

releasing glucose again, by de-phosphorylation of G6P back to glucose. The other organs need to 

handle G6P by other means. Hence, the handling of G6P is of immense importance for the glucose 

control. 

  

Fig 6.12 shows the most important pathways by which the cells in the organs can handle G6P. The 

handling of G6P is complex and different from one cell type to the other. The pathways are 

described in (Hallgreen et al. 2008). Shortly, G6P can be handled and removed by: 

1. Oxidation: Present in all cells. 

2. Glycogen storage: Primarily in muscle and liver cells. 

3. Conversion into fat and stored: Normally in adipocytes 

4. Conversion into lactate: Almost all cells. 

5. Conversion into fatty acids: Primarily adipocytes and liver cells. 

6. Conversion into glucose: Liver and kidney cells. 

 

G6P

Glucose

Oxidation

Lactate

Fat

Glycogen

1 3,5

24

6

 

Fig. 6.12: The most important pathways by which glucose-6-phosphate, G6P can be handled by the 
cell types in the different organs. The dashed line indicates that only the liver (and kidney) cells are 
able to release free glucose from G6P. For details see text and (Hallgreen et al. 2008). 
 

 

The different options outlined serve to redirect the metabolic fluxes between storage, release and 

oxidation. Options 4 and 5 are particularly important, as they seem to be the only ways the cells can 

adjust the net influx of glucose to their need (Hallgreen et al. 2008).  

Fig 6.13 shows the main routes of glucose fluxes in the most important organs in the handling of 

glucose, i.e. liver, muscle, and adipocyte. After a meal, glucose is predominantly stored in the 
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muscle cells as glycogen, whereas fat is predominantly stored as triacylglycerols, TG in the adipose 

tissue cells (Hallgreen et al. 2008).  

 The details of the handling of glucose for each of the different cells have been described in 

(Hallgreen et al. 2008). In the following section, the control of glucose and its metabolites in the 

muscle cells will be discussed in details. 
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Fig. 6.13: The main routes of glucose fluxes in the most important cells for handling of glucose (a) 
Liver cell, (b) muscle cell, and (c) adipocyte. Adapted from (Hallgreen et al. 2008). 
 

 

6.3.1 Glucose transport and phosphorylation in muscle tissue cells 

The transport of glucose across the muscle cell membrane is as mentioned earlier via the 

transporters, GLUT1 and GLUT4. GLUT1 is denoted the insulin-independent glucose transporter. 

Its activity is fairly constant at the cell membrane, and fasting glucose uptake is predominantly via 

this transporter. GLUT4 is the insulin-dependent glucose transporter, where in the fasting state most 

of the transporters are sequestered in intracellular stores. Upon insulin stimulation, GLUT4 

translocates to the membrane and hence increases glucose uptake.  

 Both transporters are saturable and can simplified be described by a Michäelis-Menten 

relation with the same half-saturation value KM = 5 mM (Frayn 2003). Hence we have  

 
GK

G
V

GK

G
)V(VJ

M
GLUT

M
GLUT4GLUT1influx +

⋅=
+

⋅+=     (6.25) 

where Jinflux is the glucose influx, VGLUT1 and VGLUT4 are the maximal transport capacity of GLUT1 

and GLUT4, respectively, where VGLUT4 depends on insulin, and VGLUT is the sum of VGLUT1 and 

VGLUT4. 
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The glucose transporters are generally assumed to be symmetric (Klip and Marette 2001), hence 

intracellular glucose concentration, Gi can be transported out of the cell by the efflux, Jefflux 

described by 

 
iM

i
GLUTefflux GK

G
VJ

+
⋅=         (6.26) 

Hence the net uptake, Jnet is given by the difference between the influx and efflux 
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To be further processed by the muscle cell, the intracellular glucose, Gi needs to be activated, i.e. 

phosporylated to G6P. In the muscle cell this is achieved by hexokinase. The activity of hexokinase 

is regulated by both Gi and G6P via a mixed inhibition (Toews 1966), hence the flux through 

hexokinase, Jhex can be described by 
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J

+++
=        (6.28) 

where the constants Khex=0.188 mM, KG6P=0.068 mM, and K*
G6P=0.022 mM are estimated from 

(Toews 1966).  

 

As seen from Eq. (6.28) the flux through the hexokinase is dependent on the removal of G6P. 

Muscle cell lack glucose-6-phosphatase, hence once phosphorylated, glucose is trapped inside the 

cell as G6P. As a result the glucose uptake becomes critically dependent on the removal of G6P, as 

seen in the following. 

 

To simplify, we assume that the removal rate or flux of G6P, JG6P is proportional to the 

concentration of G6P according to 

 G6PRJ G6PG6P ⋅=          (6.29) 

with RG6P being a constant determining the G6P removal capacity. 

 

To investigate the effect of the balance between the maximal net uptake, the maximal 

phosphorylation, and the maximal removal on the net uptake, we evaluated the fluxes given by Eqs. 

(6.27)-(6.29) in the steady state, i.e. 

 Jnet = Jhex = JG6P         (6.30)    
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To simplify the system given by Eq. (6.30), we introduced the ratio, A describing the maximal 

glucose uptake in relation to the maximal phosphorylation rate, and the ratio, B describing the 

removal capacity in relation to the maximal phosphorylation rate, i.e. 

 
hex

G6P

hex

GLUT
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B      and       

V

V
A ==        (6.31)  

 

Fig 6.14(a) shows the increase of Gi as a consequence of increasing A values, for instance by 

increasing the insulin levels. Fig. 6.14(b) shows the relation between the normalised net uptake  

and the A parameter. Net uptake decreases for increasing values of A as a consequence of the 

increased Gi, cf. Eq. (6.27). The decreased uptake can be diminished by an increase in the B 

parameter, for instance by increasing the removal capacity of G6P. 
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Fig. 6.14: (a) Relation between the intracellular glucose, Gi and the parameter A for different values 
of the parameter B (b) Relation between the normalised net glucose uptake Jnet and the parameter A 
for different values of the parameter B assuming constant plasma glucose value, G = 5 mM. 
Relations are determined by the Eqs. (6.27)-(6.31). High Gi values are able to decrease net uptake 
as according to Eq. (6.27), depending on the capacity to remove G6P.  
 
 
Fig. 6.15(a) shows that the concentration of G6P saturates for increasing values of A, with the result 

that the net uptake becomes independent of changes in A. Hence an isolated change in the glucose 

transporter activity, e.g. by increasing insulin levels to increase the amount of GLUT4 on the cell 

membrane will have no effect on the glucose uptake. G6P has to be removed, before glucose uptake 

can continue, as shown in Fig. 6.15(b). Thus the handling of G6P is a critical determining factor for 

the glucose uptake. 
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Fig. 6.15: (a) Relation between the glucose-6-phosphate, G6P and the parameter A for different 
values of the parameter B (b) Relation between the net glucose uptake Jnet and the parameter A for 
different values of the parameter. Relations are determined by the Eqs. (6.27)-(6.31). High values of 
A, for instance as a consequence of high insulin levels, are able to saturate the concentration of G6P 
(a) As a consequence the net uptake becomes independent of the changes in A (b). The saturation 
can be diminished by increasing the removal capacity of G6P. 
 

 

As shown in Fig. 6.13(b) the produced G6P can be removed by different processes. In the fed state 

the main G6P remover is glycogen synthesis as in the liver, and normally insulin stimulates the 

glycogen synthase strongly (Berg et al. 2006). In the fasting state, muscle cells only take up little 

glucose that mainly goes to oxidation. The energy need is met by oxidation of fatty acids, FA. The 

maximum glycogen storage in the whole-body has been estimated at some 1000 g for an untrained 

person (Acheson et al. 1988) with the storage predominantly being in muscle and liver cells. Hence 

the glycogen storage is limited and the storage rate declines exponentially (Hallgreen et al. 2008) 

 Hence a massive load of glucose can only be removed via the glycogen synthesis pathway 

for some time. Many authors report that during hyperinsulinaemic clamps, the glucose infusion rate 

and hence the glucose uptake does not decline substantially with time (Hallgreen et al. 2008) and 

plasma glucose does not appear to increase during glucose loads (Hallgreen et al. 2008). Hence the 

removal of G6P seems to continue for large glucose loads at least in healthy persons. In subjects 

with type 2 diabetes it may be possible that an insufficient removal of G6P and hence high 

intracellular glucose leads to decreased glucose uptake. As the resting muscle has low energy 

expenditure, the oxidation pathway does not contribute to the removal of G6P to any significantly 

extend. Two options are then left, cf. Fig. 6.13(b). G6P can be converted to lactate, and leave the 

cell, or G6P can be converted into fat.  
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Lactate formation seems to be the first choice. During high glucose uptake, lactate plasma 

concentration typically rises with a factor 2-3. As most cells can take up lactate for oxidation or 

storage as glycogen, this option seems to be a way surplus glucose can be reshuffled between the 

different organs. However in a whole-body perspective, this cannot continue when the glycogen 

stores are filled.  

 The only other option left then is the formation of fat via de novo lipogenesis, DNL, i.e. the 

formation of TG from glucose. It has been found that during overfeeding around 5 mg/kg/min of 

glucose could be converted to fat in the whole-body (Acheson et al. 1988). Hence a substantial 

amount of glucose can be converted into fat during overfeeding. 

 Normally DNL is considered to take place predominantly in the adipose tissue, and only to a 

minor extend in liver and muscle cells. However, DNL make take place in the muscle cells, at least 

temporarily, in cases of overfeeding (Hallgreen et al. 2008).  

 It is not known what happens with the produced FA in the muscle tissues; some may be 

oxidised, some, at least temporarily may be stored as fat and then later oxidised, and some may be 

transported to the adipose tissue for storage. Interestingly the produced FA in the muscle cell may 

inhibit GLUT4 activity leading to a kind of insulin resistance (Boden 2001; Dresner et al. 1999). 

 

6.3.2 Integration of metabolism 

The major organs participating in the control of plasma glucose concentration all have their 

particular metabolic profile for shuffling the glucose and metabolite fluxes between oxidation, 

storage, and release, cf. Fig 6.13. 

 In the fasting state glucose is normally kept at a relatively constant level, due to several 

things. Firstly in the liver glycogen is broken down via glycogenolysis to glucose and released into 

the blood. Secondly the adipocytes release glycerol and FA. Thirdly the muscle tissue mainly 

oxidises FA instead of glucose. Furthermore the glycerol released by the adipocytes goes to the 

liver for rebuild of glucose. All these processes are initiated by the decrease in the insulin levels. 

In the fed state, the muscle tissues shift the energy dependency to glucose and are the primary tissue 

for glucose uptake. Surplus of glucose may be exported as lactate, and rebuild as glucose in the 

liver, or reshuffled between oxidation, release or storage in other organs. In massive overfeeding 

glucose may temporarily be converted into FA in muscle cells and stored or oxidised, or transported 

to adipocytes for storage. 
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Fig. 6.16: The balance between glucose oxidation, glycogen storage, and de novo lipogenesis, DNL 
in healthy subjects undergoing massive glucose overfeeding. Adapted from (Acheson et al. 1988). 

 

 

The contribution of glycogen storage, glucose oxidation, or DNL seems to be balanced in a graded 

manner as demonstrated in Fig. 6.16. In the muscle cells the lactate production that is needed to 

remove surplus glucose when the glycogen stores are filled, would lead to much higher plasma 

lactate concentration values than normally reported (Hallgreen et al. 2008), hence in these situations 

at least temporarily DNL must occur. The signal(s) for shifting between glycogen storage and DNL 

is not known, but it may be G6P that increases when the glycogen stores fills up. 

 Often subjects with type 2 diabetes have an increased fasting HGO that is primarily caused 

by increased GNG via increased lactate fluxes. The increased lactate fluxes must be a consequence 

of a decreased glucose oxidation, mainly due to increased levels of FA and hence an increased FA 

oxidation. Hence the glucose is not oxidised, but exported again as lactate that goes to the liver for 

rebuild of glucose via GNG, and the recycling continues. To lower fasting plasma glucose it would 

not be feasible to inhibit the GNG from lactate. This would just increase lactate levels in the liver 

and give lactoacidosis.  Furthermore an increase in glucose uptake would just create more lactate. 

Instead the FA concentration should be lowered to increase glucose oxidation.  

 The idea is that the activity of the hormone sensitive lipase, HSL that stimulates lipolysis 

but normally is inhibited in a strongly insulin-dependent way, is increased, as a consequence of 

insulin resistance at the adipocytes. As a result more FA is released and oxidised and glucose 

oxidation is decreased.  

 However as a typical person with type 2 diabetes is obese, the lipolysis cannot go on 

forever. As previously mentioned a substantial amount of glucose can be converted into fat during 
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overfeeding, primarily in the adipocytes. The fat can then be stored or oxidised. In all cases the 

variable FPG in subjects with type 2 diabetes may be caused by a mismatch between fat and 

glucose oxidation.  

 

 

 

 

In this chapter the glucose-insulin control system has been discussed and it has been assessed to 

what extend classic control theory can be used to describe the system. The first part of the 

chapter concerned a model of the glucose sensing in the beta cell based on the regulation of the 

enzyme glucokinase, GK. The model results showed that: 

• GK is the key enzyme controlling glucose sensing activities in the beta cell 

• First phase insulin release can partly be explained by a delayed inhibition of GK, by 

signalling substance(s) downstream of the glycolytic pathway. 

• Diminished first phase release observed in subjects with type 2 diabetes can in part be 

explained by mechanisms in order to compensate for small amount of GK 

• Translocation of GK from an inactive to an active state is an autocatalytic process that 

controls the offset of insulin release and explain the second phase of insulin release 

• Damaged translocation of GK and/or diminished amount of GK may be  responsible for 

the increased offset of insulin release and diminished slope observed in subjects with 

type 2 diabetes 

• Glucose memory in the beta cell may in part be explained by autocatalytic enhancement 

of insulin release 

• The beta cell has some characteristics of a classic PID controller. However the sensing 

mechanisms are highly non-linear and saturable that makes the classic PID controller 

description limited 

• The glucose sensing in the body is achieved by a complex interwoven network of 

different sensors in different parts of the body 

 

The second part of the chapter concerned the glucose handling and control. Each organ has its 

unique metabolic profile for handling glucose that makes the task of describing the handling of 

glucose much more complex than just describing the uptake of glucose into the cells.  
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 More specifically it was shown that: 

• The fate of G6P is critical for the handling and control of glucose 

• Particularly in the muscle cells, it was shown that insufficient removal of G6P resulted 

in glucose uptake that did not depend on the GLUT4 activity, i.e. increased insulin 

would not increase glucose uptake 

•  During massive overfeeding when glycogen stores are saturated, glucose may be 

converted to fat in the muscle cell that may lead to insulin resistance at the muscle cell   

• Normally there is a tight balance between glucose oxidation, glycogen storage and de 

novo lipogenesis during overfeeding 

 

Hence the handling of glucose by the body is determined by a complex shuffling of glucose and 

metabolites between the need for oxidation, storage and release of glucose and conversions to 

and from other nutrients within and between the organs, where the traffic are regulated by 

insulin as well as the nervous system. In light of this, an effect of e.g. insulin on glucose uptake 

is hard to quantify, as the resulting effect depends on the dynamical balance between oxidation, 

storage and release. 
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Chapter 7  

 

Discussion and conclusion 

 

There is no doubt that an understanding of the way the beta cells work is a tremendous task, but 

likevise a very important one. The preceding chapters have described and discussed the different 

components that are needed to establish a test of beta cell functionality. From the different protocols 

designed to receive data and the mathematical models linking data with indices used to quantify 

beta cell functionality and insulin action in chapter 2, 3 and 4, to the mechanism-based description 

of the processes behind beta cell functionality and effects of insulin within the glucose-insulin 

control system in chapter 6. Chapter 5 provided a novel way to look at meal response data that 

pointed at strikingly new results for the responses of both the healthy and the subjects with type 2 

diabetes.  

 

7.1 Discussion 

 

Mathematical modelling  

Mathematical models with different levels of complexity are used intensively in order to gain a 

coherent picture of beta cell functionality (Bertuzzi et al. 2007; Giugliano et al. 2000; Korsgaard 

and Colding-Jorgensen 2006; Pedersen et al. 2010). The level of complexity of the model is 

generally a result of the question being asked. Minimal models, as implied by the name, are based 

on the concept that the dynamics of the biological system should be described by a minimum 

number of identifiable parameters. Hence these parameters should describe the main characteristics 

of the system. In contrast, maximal models are comprehensive descriptions which consolidate large 

amount of biological knowledge. Maximal models are generally not identifiable, and therefore not 

designed to quantify specific processes, but serve to simulate the behaviour of the system, and test 

new hypothesis.  

 The minimal model approach has its strengths in its simplicity and ability to give 

quantitative measures of specific processes. The simplicity can however also be a weakness of this 

approach. Biological systems are complex and most definitely not identifiable. To force the criteria 

of identifiability on the description of biological systems restricts the domain of validity of the 

model. 
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The strength of the maximal model approach is the implementation of biological knowledge. By 

this approach, as much knowledge as possible about the biology is intended to be taken into 

account, and thus a more correct description than that gained with the minimal model approach is to 

be expected. Yet again, the strength of this approach may become its weakness. To include more 

and more biological knowledge in a mathematical model is not only an immense laborious task, but 

more importantly the model becomes more and more difficult to validate. Furthermore the 

circumstances under which the model is going to be used should be kept in mind. 

 

Assessment of beta cell functionality 

No gold standard exists for the assessment or testing of the beta cell functionality. The 

deconvolution method proposed by Eaton-Polonsky (Eaton et al. 1980; Polonsky et al. 1986) has 

been termed the gold standard. However as previously discussed this method determines absolute 

insulin secretion, and not the ability to respond to stimuli, i.e. beta cell function. Furthermore it is 

cumbersome and may underestimate the actual secretion, as pointed out in chapter 2 

 By no doubt, the most reliable test to use for the assessment of beta cell functionality could 

be the MTT, and secondary the OGTT. These tolerance tests resemble daily life most appropriate, 

with the MTT as preference due to the influence of also proteins and fatty acids. Furthermore they 

are relatively convenient, however they require some blood samples, but this is not different from 

any other test. With that said I wrote “could be” in regards with reliability of these tests. This is due 

to the vital importance of the right mathematical model to be used. As previously described, even 

after decades of intense research regarding the biphasic nature of insulin secretion, there are still 

many missing pieces to the puzzle; we are not there yet, but we are approaching.  

 Hence for now, maybe the most reliable test to assess at least the first phase insulin secretion 

appears to be the IVGTT or the glucose clamp. However the first phase insulin secretion bot be 

evaluated in light of the insulin action, due to the adaptive nature of the beta cell function to the 

insulin sensitivity via the disposition index. 

 

The disposition index 

The disposition index was first introduced by (Bergman et al. 1981) as an index to quantify the 

ability of the beta cell to adapt to the prevailing insulin sensitivity. Numerous studies have since 

then confirmed this ability (Cobelli et al. 2007). Strikingly, even though the disposition index has 

been denoted “the hyperbolic law” (Stumvoll et al. 2005), the mechanism(s) responsible for this 
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adaptation has yet to be clearly established. (Stumvoll et al. 2003) provided evidence to show that 

glucose itself is the signal responsible for the compensating increased insulin release, as measured 

by AIR, in case of developed insulin resistance. Despite constant disposition index, the authors 

found changes in fasting plasma glucose and 2-hour postprandial glucose value. Hence even when 

the beta cell was able to compensate for changes in insulin sensitivity, glycemia was changed. The 

logic they put forward for this view was that when insulin resistance develops (for whatever 

reason), glucose increases with a resulting increase in insulin release. (Bergman 2005) induced 

insulin resistance and hyperinsulinemia in dogs by a high fat diet. He found no changes in glucose, 

GLP-1, cortisol or growth hormone pattern, but found a significant increase in FFA overnight, and 

hypothesized that this nocturnal increase of FFA was the signal responsible for the compensating 

increase in insulin release. In section 6.3.1 we argued that the produced FFA in muscle cells during 

overfeeding could induce insulin resistance. Hence FFA may also provide as a link for the 

adaptation of beta cell function to the insulin action. 

 Recently (Maiztegui et al. 2009) performed a study with rats, where insulin resistance where 

induced by a fructose rich diet. The investigators found normal fasting plasma glucose values, but 

impaired glucose tolerance and increased insulin release. The compensating increase in insulin 

release where explained to be due to the found increase in GK activity and protein levels. This 

reasoning is in line with the model we presented in section 6.1 regarding the beta cell functionality, 

where the translocation of GK from an inactive state to an active state was found to be an important 

mechanism in the glucose sensing mechanism of the beta cell. Thus recent evidence gives further 

supports for the importance of GK translocation in insulin release.  

 Another recent interesting study (Bouche et al. 2010) investigated the effect of insulin on its 

own secretion in healthy humans during clamps. The investigators found that pre-exposure to 

exogenous insulin (4-h) were able to enhance the glucose stimulated insulin release, as the 

clearance of insulin did not change. Hence presumably, the ability of insulin to enhance its own 

release could explain the compensating link between decreased insulin action and resulting 

increased insulin release. This study is also interesting as it highlights the importance of insulin 

signalling in the beta cell. In the model we proposed in section 6.1 we also took into account that 

insulin (or rather release) was able to enhance its own release. This mechanism was able to explain 

the glucose memory (or potentiation) phenomenon. However the study by (Anderwald et al. 2011) 

showed that insulin enhances its own secretion only in insulin sensitive subjects. In insulin-resistant 

and subjects with type 2 diabetes, insulin appeared to be suppress its own secretion. 
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Assessment of insulin sensitivity 

The findings in chapter 6 that the fate of G6P is a critical regulator for the handling and uptake of 

glucose have important consequences. Firstly, as shown, an insufficiently removal of G6P can result 

in a kind of insulin resistance. Secondly in glucose clamp studies which are widely used for the 

assessment of the glucose-insulin control system and the action of new insulin types, the level of the 

GIR value is important. The clamp is typically performed after an overnight fast (Hallgreen et al. 

2008).  

 With small to moderate insulin levels the GIR mainly goes to glucose oxidation and to 

replace decreased hepatic glucose production. Lipolysis is most sensitive to insulin with a half-

maximal suppression value, EC50 of around 60 pM, with the inhibiting effect of insulin on the 

hepatic glucose production being secondary with an EC50 value around 150 pM. Thus at low 

insulin values and hence low GIR values, the clamp mainly evaluates the insulin action on the 

lipolysis and secondarily the action on the hepatic glucose production. A large insulin value may 

require a GIR of 10 mg/kg/min or more, a value that corresponds to massive overfeeding (Hallgreen 

et al. 2008). As was shown in Fig. 6.21, the glucose uptake during massive overfeeding is 

determined by a dynamic balance between oxidation, storage as glycogen and conversion into fat. 

Thus the clamp assesses the glucose removal and the specific action of insulin is determined by the 

relative contribution of the glucose removal pathways. Hence focus must also be directed to what 

goes on in the cell and not just the description of the uptake of glucose. 

 Despite these limitations, the hyperinsulinemic-euglycemic clamp still offers the best direct 

way of assessing insulin action (Muniyappa et al. 2008). However it is time-consuming, thus if 

precise and reliable value are not that important other surrogate indices may be used (Muniyappa et 

al. 2008). The minimal model of glucose kinetics could also be used, however as also shown in 

chapter 3, the model may once in a while produce spurious result (Muniyappa et al. 2008). 

 

Glucose-sensing in the beta cell 

In technical applications the beta cell has often been considered working as a PID. The oral C-

peptide minimal model has been compared to the characteristics of a PID controller in connection 

with the use of a model for a closed-loop design (Steil et al. 2003). In contrast with a PID 

controller, the C-peptide minimal model only make use of the positive rate of change of the glucose 

concentration to characterise the dynamic beta cell secretion phase, and introduces a delay between 

glucose stimulation and resulting insulin secretion described by the static secretion component. 
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Despite equal performances during a glucose clamp (Steil et al. 2003), the C-peptide minimal 

model proved unstable in closed-loop conditions where the action of insulin was modelled through 

the glucose minimal model (Steil et al. 2003). It has been shown that both the dynamic as well as 

the delayed action of glucose on the secretion are necessary components to describe C-peptide data 

in healthy as well as impaired glucose tolerant subjects undergoing OGTT (Breda et al. 2002). 

Other studies have shown that in some subjects the secretion is more appropriately described by a 

proportional secretion component with no delay, although a delay was evident in most subjects 

(Steil et al. 2004). Interestingly in a recent study (Pedersen et al. 2010), the authors provided further 

evidence for the importance of the three main control components in the C-peptide oral minimal 

model, i.e. derivative control, proportional control, and delay. The authors showed that a previous 

publiced model (Pedersen et al. 2008), which incorporate present knowledge of intracellular events, 

could in a straight forward manner explain these technical control elements, thus providing a link 

between a minimal model and a maximal model capable of describing the biological events in the 

exocytosis.    

 In chapter 4 we found that the insulin concentration response after a MTT in healthy and in 

subjects with type 2 diabetes was most appropriately described by a combination of proportional 

and delayed effects of glucose. We omitted a rate of change of glucose (dynamic) component as the 

estimation of this component did not converge.  

 In chapter 6 we showed that the biphasic nature of the beta cell secretion can be explained 

by the regulation of the glucose sensor enzyme, glucokinase, and that the beta cell has 

characteristics of a PID controller, but with non-linear and saturable components. We stated the 

importance of the translocation of GK from an inactive to an active state for the glucose sensing. 

Such importance was again established in a recent study (Maiztegui et al. 2009). The recent 

advance in the knowledge of the intracellular events in the glucose sensing of the beta cell where 

discussed in section 2.2.3, where the importance of the metabolic amplifying pathway was 

discussed, especially in connection with glucose potentiation. We modelled the glucose potentiation 

(or memory) as a result of an autocatalytic effect of insulin secretion; however the signal substance 

S we introduced could as easily be a messenger in the proposed amplifying pathway. The non-sense 

to glucose is an important marker for type 2 diabetes. In our model this could be obtained by a 

reduced amount of total GK and/or an impaired translocation capability. Both dearangement have 

been observed in literature. Interestingly GK has been found to be bound to the insulin granules, cf. 

chapter 6. Upon insulin release it is not clear what happens to the now unbound GK. One possibility 
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is that it could partake in a potentiation effect. Furthermore it will be interesting in future studies to 

integrate the property of GK translocation with the amplifying pathway, and a description of the 

granules in the distinct pools.  

 

Physiological mechanisms governing the meal response 

The finding that the glucose meal responses for the subjects with type 2 diabetes were quite similar 

despite different levels of insulin, different levels of fasting plasma glucose values, different disease 

stages and different treatments is novel and remarkable. The analysis of the healthy glucose meal 

response led to the novel conclusion that for the healthy subjects, the apparent glucose rate of 

appearance seems to be controlled in such a way as to follow the glucose uptake. Furthermore the 

analysis showed a fundamental and consistent difference between the responses of healthy and the 

subjects with type 2 diabetes. These findings contradict the current knowledge of insulin as being 

the single most important player in the control of glucose and triggers several questions: If other 

mechanism(s) than the well-studied insulin-dependent mechanisms play a role during a meal, then 

what are these mechanisms and how are they conveyed? Can they explain the difference observed 

in the meal responses between the healthy and subjects with type 2 diabetes? How should this be 

taken into account when evaluation beta cell functionality? 

 A step towards answering the first of these questions may be taken by investigating the 

actions of a glucose sensor situated in the hepatoportal vein (Thorens 2004b). This hepatoportal 

glucose sensor, HPS is activated by a positive glucose gradient between the portal vein and the 

arterial blood, exactly the situation encountered during meal absorption. The activity of the sensor 

depends on GLP-1 and GLUT2 and probably also glucokinase. Furthermore, the action is inhibited 

by somatostatin. Thus the sensing mechanisms of the hepatoportal glucose sensor resemble that of 

the beta cell. The effect of the sensor is a nerve signal that goes to the central nervous system, CNS. 

The sensor has been shown to elicit a nerve-mediated increase of the first phase insulin secretion 

activities. Moreover HPS has been shown to trigger a nerve-mediated insulin-independent glucose 

uptake that act via GLUT4, similar to the action of exercise (Burcelin et al. 2003). In fact the 

system has been observed to be so strong as to induce hypoglycemia without increase in the insulin 

concentration (Burcelin et al. 2000). 

 The fact that the activity of HPS depends on GLP-1 may explain the reason for the 

production of GLP-1 in the intestine. It has been calculated that only 10-15% of the produced GLP-

1 in the intestine reaches the systemic circulation (Holst 2007). As the half-life of GLP-1 in plasma 
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is < 2 min (Holst 2007; Holst et al. 2008) the amount reaching the pancreatic beta cell may be even 

less. Thus it may be speculated that the action of GLP-1 is primarily to trigger HPS that act via the 

nervous system, and thus the action of GLP-1 may primarily be nerve-mediated.  

 It has been found difficult to relate the index of dynamic phase secretion of insulin during 

meal tests with the corresponding first phase secretion indices found with either IVGTT or HGC 

studies (Steil et al. 2004) taken as the AUC of insulin during the first 10 min. This may primarily be 

explained by the cephalic phase insulin secretion acting during the first 10 min before any 

noticeable increase in the plasma glucose concentration (Ahrén and Holst 2001). However the 

activation of HPS via GLP-1 may also to some extent contribute to the difference between the oral 

index and the intravenous indices. 

 The activation of HPS when only a positive gradient between the portal vein and arterial 

blood is present means that HPS measures the glucose absorption rate (Hallgreen et al. 2008). The 

translocation of GLUT4 by the activation of HPS is interesting. It provides a mechanism by which 

glucose is lowered independently of the action of insulin. The principle of the action of HPS in the 

overall glucose control after a meal can be seen from the equation describing the glucose dynamics 

after a meal (Hallgreen et al. 2008) 

 
GK

G
)V(VJHGOJ

dt

dG
V

GLUT
GLUT4GLUT1brainabsG +

+−−+=     (7.1) 

where VG is the glucose distribution volume, G is plasma glucose concentration, Jabs is the glucose 

absorption rate, HGO is hepatic (and kidney) glucose output, Jbrain is the brain glucose uptake, 

VGLUT1 and VGLUT4 is the maximal insulin-independent and maximal insulin dependent glucose 

uptake, respectively, and KGLUT is the Michaëlis-Menten constant for the glucose transporters. 

 Assuming that the main role of the glucose control system is to maintain the glucose 

concentration at a constant level, we get from Eq. (7.1) 
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where G is assumed constant and variations in HGO are neglected. a is a constant and b is the value 

of VGLUT4 before the meal (Hallgreen et al. 2008).  

 Eq. (7.2) show that under these assumptions the control system must, to ensure controlled 

levels of glucose, work in a way such that GLUT4 is translocated in proportion with the rate of 

absorption of glucose. However, the insulin system works with considerable delays from the 

increase of glucose to increase of glucose uptake (Hallgreen et al. 2008). 
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The HPS can in this context be regarded as a feed-forward control signal, where the anticipated 

glucose change is measured via the rate of glucose appearance, and a nerve-mediated signal is send 

out to accelerate the control of glucose.  

 Hence it seems that at least two glucose-controlling systems are active during a meal. The 

classic insulin-dependent pathway and the control system activated by the glucose absorption rate 

and with actions conveyed by HPS. In this view the classic insulin-dependent control system seems 

more directed to the control of the fasting state, whereas the control system working via HPS seems 

more directed to the control of meal-related fluxes. Interestingly a recent study (Faerch et al. 

2009)evaluating the natural history of insulin sensitivity and insulin secretion in the progrssion from 

normal glucose tolerance to impaired fasting glucose and impaired glucose tolerance found 

evidence to show that isolated impaired fasting glucose and isolated impaired glucose tolerance 

appear from different underlying mechanisms, much in line with the above statement  

 With that hypothesis it seems plausible to suggest that the action of the HPS is responsible 

for the observation that in the healthy subjects, the glucose uptake is regulated in such a way as to 

follow the rate of glucose appearance.  

 The observation in the subjects with type 2 diabetes that the glucose meal-response seems 

independent of the prevailing insulin level put further evidence to the proposed hypothesis. The 

fundamental difference between the glucose meal-responses of the healthy subjects and the subjects 

type 2 diabetes could be explained by an impaired HPS control system within the subjects with 

diabetes. The differences observed in the glucose peak values and times of the glucose meal 

responses for the subjects with type 2 diabetes could then be explained by the different insulin 

levels acting via the insulin-dependent fasting control system. 

 

7.2 Conclusion 

This thesis has shown different findings that urge the need for a new way to think of a test of beta 

cell function, but also highlight the importance of even more modelling efforts. The most important 

results being those found for the glucose meal-responses of the healthy subjects and the subjects 

with type 2 diabetes that led to the hypothesis of a major role played by insulin-independent 

mechanisms in the control of after-meal glucose concentrations. This really challenges the current 

way and usefulness of testing beta cell function. The findings highlight the importance of a more 

holistic approach to the understanding of the functionality of the beta cell in healthy subjects and in 
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subjects with diabetes, and its role in the overall control of glucose, where neither of the elements 

described throughout this thesis can be left out.  
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ABSTRACT 

Purpose: To describe postprandial insulin profiles in subjects with type 2 diabetes (T2DM) using 

population-based mixed effects modelling, including covariate analysis.  

Methods: 417 subjects with newly diagnosed T2DM and 85 non-diabetic control subjects 

underwent mixed meal tolerance tests. The postprandial glucose and insulin concentrations were 

used to characterize the glucose-insulin relationship and relate it to their demographic and baseline 

characteristics using a population mixed effects modelling approach.  

Results: Several empirical models were tested. The resulting final model incorporated an 

instantaneous and a delayed stimulation by glucose on insulin. Effects of covariates on the model 

parameters were analysed. Only two covariates were retained in the model: Fasting plasma glucose 

was a covariate on the insulin response (both instantaneous and delayed effects) and waist 

circumference was a covariate on the insulin baseline. All other covariates failed to explain more 

than 10% of the remaining variation. The delayed effect of glucose on insulin response decreases 

faster than the rapid effect of glucose on insulin response in subjects with T2DM compared with 

controls. This difference in the two parameters is a novel finding from the population model 

analysis.  

Conclusion: We have proposed a new model to assess postprandial insulin responses using a mixed 

effects modelling approach.  

 

Keywords: Mathematical model, type 2 diabetes, MTT, population approach, NONMEM. 

 

AUC: Area under the curve; FPG: Fasting plasma glucose; FPI: Fasting plasma insulin; HOMA: 

Homeostatic model assessment; MTT: Meal tolerance test; T2DM: Type 2 diabetes mellitus; WST: 

Waist circumference. 
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INTRODUCTION 

 

The pathogenesis of type 2 diabetes mellitus (T2DM) is not yet fully understood. Both insulin 

resistance and inadequate insulin secretion are important determinants in the development of 

T2DM. The main culprit of hyperglycaemia in subjects with T2DM is the decline in the beta cells 

ability to secrete sufficient and timely insulin to match the peripheral insulin resistance.  

     The purpose of this study was to quantitatively describe the subject’s ability to secrete insulin 

after a mixed meal and to relate postprandial insulin to demographics and baseline characteristics in 

a population of non-diabetic control subjects and subjects with newly diagnosed T2DM. For this 

purpose, we used a population-based mixed effects modelling approach. The use of mixed effects 

modelling has been shown to be very useful in pharmacokinetic and 

pharmacokinetic/pharmacodynamic studies, especially in regards to demonstrating the importance 

of covariates on model parameters. Here, the same approach is used with data on postprandial 

insulin concentrations in subjects with T2DM in order to identify covariates of importance for the 

postprandial insulin response. We analysed postprandial glucose and insulin responses from 502 

subjects who had undergone mixed meal tolerance tests (MTT’s). Demographics and baseline 

characteristics such as age, sex, BMI, waist circumference (WST), fasting plasma glucose (FPG), 

HbA1c, lipids, etc. were tested as covariates on the estimated model parameters. 

 

RESEARCH DESIGN & METHODS  

 

Subjects 

The study was carried out at a single centre.  Subjects without T2DM and subjects with newly 

diagnosed, treatment naïve T2DM according to WHO criteria (WHO 1999) participated in the 
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study. The study was approved by the Bro Taf Local Research Ethics Committee and undertaken 

after the patients had given written informed consent and was conducted in accordance with the 

Declaration of Helsinki. The demographic and baseline details are shown in table 1. 

 

Experimental design 

The MTT was commenced at 08.00h after a 10h overnight fast. An intravenous cannula was 

inserted into an antecubital fossa vein in the patient’s forearm and a slow running saline infusion 

started to maintain patency of the vein. Fasting samples were taken at –30 min and at 0 min. 

Following the 0 min sample a standard 500kcal mixed meal (58% carbohydrate, 22% fat and 20% 

protein; 75g glucose) was given to the patient and consumed within 10 minutes. Post-meal samples 

were collected over the 4 hour test period from the commencement of the meal, every 10 min 

during the first hour, every 15 min during the next half hour and then half hourly for the remainder 

of the test. 

 

Following blood sampling, the samples were separated as soon as possible. Blood was centrifuged 

(2000g, 5 min) in a refrigerated centrifuge at 4°C and the plasma aliquoted and frozen at –20°C 

immediately, remaining frozen until assay.  All specimens were processed in a single laboratory at 

the Diabetes Research Unit at Llandough Hospital.  

 

Analytical methods 

Samples were taken into fluoride-oxalate for assay of plasma glucose (YSI 2300; YSI, Aldershot, 

Hants, U.K.) and lithium heparin for assay of insulin by a two-site sandwich immunoassay (MLT 

Research, Cardiff, UK). The assay was specific for human insulin with no cross-reactivity with 

intact proinsulin.  
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Data analysis 

As a first step, we examined the data using a descriptive and statistical-based (non-compartmental) 

analysis of the glucose and insulin data (see “Patients and Data” in Results section). Thereafter we 

developed a model-based analysis of insulin concentrations using the mixed effects modelling 

approach in the NONMEM software (Version V). 

 

For the non-compartmental analysis S-PLUS was used. Subject characteristics and baseline blood 

parameters were expressed as fasting values. For each subject, insulin plasma concentrations were 

also expressed as area under the curve (AUC) following the meal (0 to 240 min), calculated by the 

trapezoidal rule. The incremental AUC for both insulin and glucose was calculated by the 

difference between AUC and basal AUC (with basal AUC being the theoretical AUC due to fasting 

value over 240 min). HOMA indexes (%B and IR) were calculated based on the Homeostatic model 

assessment (HOMA model) (Levy et al. 1998; Matthews et al. 1985).   

 Fasting plasma glucose (FPG) and insulin concentrations (FPI) together with incremental 

insulin were correlated against demographic data (such as lipids, BMI, etc.). Furthermore, we 

divided the subjects into six groups of FPG (1 group for the controls, and 5 groups for the subjects 

with T2DM) and analysed for trends between their insulin response and their demographic 

characteristics. The FPG cut-off points/groups were: Group 0: Controls, all with FPG < 7 mM (85), 

Group 1: FPG < 7 mM (45), Group 2: FPG: [7-9[ mM (118), Group 3: [9-11[ mM (84), Group 4: 

[11-13[ mM (68), Group 5: ≥ 13 mM (102). The number of subjects in each group is presented in 

brackets.    

 Additionally, we divided the six FPG groups into 3 groups (tertiles) of waist circumference 

(WST) to examine for effects of obesity. The WST tertiles were: <95 cm, [95-105[ cm and >105 

cm. For group 0 (controls):  66 subjects were in the first WST tertile, 10 subjects in the second and 
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4 subjects in the last tertile. Group 1 had 6, 21, and 18 subjects in tertiles 1, 2, and 3, respectively. 

Group 2 had 23, 44, and 45 subjects in tertiles 1, 2, and 3, respectively. Group 3 had 10, 32, and 39 

subjects in tertiles 1, 2, and 3, respectively. Group 4 had 14, 28, and 24 subjects in tertiles 1, 2, and 

3, respectively. Group 5 had 36, 32, and 26 subjects in tertiles 1, 2, and 3, respectively. 

 

Model development in NONMEM  

A number of different insulin models were tested on the data set, using the maximum likelihood 

approximation given by the first-order conditional estimation (FOCE) method in the NONMEM 

software (Version V) (Beal and Sheiner 1998). Structural models were evaluated using visual fit to 

data, objective function values, and residual variation, as further described in the discussion. 

 The model parameters were assumed to be log-normal distributed. Intersubject variability 

terms were initially included on all parameters, but the importance of this variability on parameters 

was evaluated during model selection. In order to allow for maximal model flexibility different error 

models with additive and/or proportional random residuals were also tested.  

     The structural model evaluation included both elements describing insulin disposition (1), and 

effects of glucose on insulin appearance (2), which were evaluated using goodness-of-fit plots, 

objective function values, and residual variation.  

1. Insulin disposition was modelled by a first order disposition model with a fixed half life 

of insulin (6 min) or a direct model of insulin (i.e. where insulin disposition is included 

in the secretion model). .  

2. For the dynamic model of the effects of glucose on insulin concentrations, the following 

structural components were evaluated: 1) glucose above baseline, 2) delayed glucose 

above baseline, and 3) the positive part of the rate of change in glucose. Combinations of 

these effects were also evaluated. 
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RESULTS 

 

Patients and data 

The population of subjects with T2DM had an approximately 50% increased average FPI compared 

to the non-diabetic control group, whereas FPG was around double and with a wider range (5-21 

mM) compared to the control group (4-7 mM). The average time–concentration profiles of glucose 

and insulin are shown in figure 1 (A-B). There were considerable differences between the groups 

and large intersubject variations. Average maximal insulin response was reached more quickly in 

the control group (tmax=50 min) compared to the group with T2DM (tmax=75 min). The average 

maximal insulin concentration was higher in the control subjects than the diabetic subjects (446 vs 

388 pM), but this did not reach statistical significance (P=0.098).  

     Due to the heterogeneity in FPG in the studied population, we divided the subjects into six 

groups of FPG. Figure 2 illustrates the glucose-insulin phase plot (average concentrations) for each 

FPG group. The groups 0-2 (i.e. FPG below 9 mM) demonstrated the steepest slopes of the glucose-

insulin curves indicating higher beta cell glucose responsiveness than the other groups (figure 2).  

 In order to show if the average fasting and average postprandial insulin response varied with 

FPG and WST (Unpaired t-test, P<0.05; Welch correction if variances were significantly different) 

we divided the six FPG groups in tertiles of WST, cf. figure 3. In all six FPG groups average FPI 

was higher in subjects with WST > 105 cm compared to subjects with WST ≤ 105 cm (although 

groups with N<10 were not significantly different, cf. methods section). In subjects with FPG above 

13 mM (Grp. 5) average FPI was borderline statistically insignificant (P=0.07) (cf. figure 3A). 

Average FPI was not significantly different between those subjects with WST < 95 cm and those 

with WST between 95 and 105 cm (except for the control group Grp. 0, P=0.01). Regarding the 

average postprandial insulin response (figure 3B), groups 0 and 2 showed increasing average 
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incremental insulin with increasing WST (although group 0 was not significant). For Grp. 2 and 3-5 

(FPG ≥ 9 mM), WST did not correlate with the average insulin response after MTT. Grp. 1-2 had 

similar average incremental responses for WST ≥ 95 cm.  

 

Structural model selection  

Regarding insulin disposition, we found that the first order elimination model was associated with 

convergence problems and had a higher objective function value than a direct model of insulin 

(OBJ=-7668.605 vs OBJ= -7788.605.). The latter indicate insulin secretion to be very fast, 

potentially even faster than the rise in glucose, which could be related to cephalic insulin secretion. 

Hence, it was chosen to use a model where insulin disposition is integrated with the insulin 

appearance model so that insulin concentrations are modelled directly.  

 

     For the model of effects of glucose on insulin concentrations, we found that the delayed effect of 

glucose was superior a model of direct effects of glucose (OBJ = -5386.849 vs OBJ = 1161.395). A 

significant improvement to a model containing only delayed effects of glucose could be obtained, 

either by including direct effects of glucose, or by including also the rate of change in glucose. 

Although these models were visually similar, the direct effects of glucose provided the lowest 

objective function value (OBJ = -7788.605 vs OBJ = -6659.414), the lowest variance of the 

individual residuals (CV = 5.48% vs CV = 6.69%), and the parameter estimates appeared more 

robust to small changes in the model. Hence the combination of delayed and direct effects of 

glucose on insulin was chosen, and only modest improvements could be obtained by including all 3 

model components (OBJ = -7862.538 vs OBJ = -7788.605). We speculate that the derivative 

component could be more important in healthy volunteers where the first phase secretion is more 

pronounced, and possibly also more important for the OGTT. In support of this, it should be noted 
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that Steil et al. (2004) also had problems relating the derivative component in the MTT to first 

phase secretion in the hyperglycemic clamp. 

 

The structural model 

The final selected structural model assumes the following parts and mechanisms:  

1) Glucose above basal has a rapid (“immediate”) stimulatory effect on insulin. This effect 

is represented by a linear function BG)t(G)t(X −= . G(t) is the plasma glucose 

concentration in mM, GB is the measured fasting plasma glucose concentration (FPG) in 

mM. If the plasma glucose concentration, G(t), is below the fasting value, GB, the function 

X(t) is assumed to be zero. 

2) The beta cell has a “glucose memory”. The memory mechanism is represented by the 

function ∫
∞−

−
τ

−
⋅⋅

τ
=

t
st
dsesXtY

)(
1

)(
1

)( , where s denotes all previous times until time t. The 

Y(t) function ensures that all previous glucose concentrations until time t are taken into 

account, and the exponentially decaying function in Y(t) ensures that glucose values closest 

to the present time t, contribute more to the insulin, than glucose values further back in time. 

The τ parameter determines how fast the delayed effect decays. A large value of τ will give 

a fast decay and thus a small contribution to insulin and vice versa - a small value of τ will 

result in a slow decay and thus a larger contribution to the insulin. τ is therefore a measure 

of the “glucose memory” in the beta cell.  

3) A basal insulin concentration (the parameter I0) estimated for each individual subject. 

 

The model of insulin dynamics can therefore be described by the following three equations: 

  
⎩
⎨
⎧ >−

=
otherwise                 ,0

G)t(Gfor     ,G)t(G
)t(X BB      (1) 
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tdY −⋅=
τ

      (2) 

  0I)t(Y)t(X)t(I +⋅β+⋅α=       (3) 

Where I(t) is the plasma insulin concentration in pM. The parameter α (pM insulin/mM 

glucose) determines the magnitude of the immediate response of insulin to glucose concentrations 

above basal  and the parameter β (pM insulin/mM glucose) determines the magnitude of the delayed 

glucose effects on insulin.  

 The differential equation describing the time dependency of the function Y(t) in Eq. (2) can 

be obtained by differentiation of the integral expression of Y(t) given in part 2). 

 

Inter- and intra-subject variation 

The structural model was fitted as a population model, i.e. including both inter- and intra-subject 

variation. Intersubject variation was included on parameters α, β and I0. τ was included as a fixed 

effect, since intersubject variation did not improve the fit and the individual estimates of τ proved 

not to be robust to small changes in the model. Intersubject variation on parameters α, β and I0, was 

implemented using a proportional model: θ·exp(η), where θ is the typical value of the parameter 

and η is a normal distributed random variable that varies between subjects. The individual 

parameters (θ·exp(η)) give rise to a set of individual insulin predictions, whereas the typical 

parameters (θ) give rise to a set of population predictions. A full covariance matrix was used to 

incorporate the correlation between the individual parameters. Intrasubject variation was modelled 

by log-transforming the data – corresponding to the proportional model: I(t)predicted = I(t)observed · 

exp(ε), where ε is normal distributed. 
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Covariate selection and analysis 

Individual parameter estimates obtained from the initial model without covariates were used to 

explore the relationship between the chosen covariates (cf. table 1) and model parameters. Based on 

graphical tools and calculated correlation coefficients, continuous covariates (e.g., BMI or age) 

were included either by a linear: θind = θ1+θ2·(cov-cov0), or a log-linear: θind = θ1·exp(θ2·(cov-cov0)) 

model, where θ is the typical value of the parameter given a set of covariates, cov is the value of the 

covariate, cov0 is the average value of the covariate in the entire population, θ1 represents the typical 

value of the parameter when cov = cov0 and θ2 represents the effect of the covariate on the 

parameter. Categorical covariates (such as sex, smoking, and family disease history) were included 

in the model using indicator variables, as shown in the following equation: θind = θ1+θ2·ind, where 

ind is an indicator variable with ind = 1 when the covariate is present, otherwise ind = 0. 

 Given the large number of individuals, many covariate effects were found to be statistically 

significant. The relationship between the parameters and each of the covariates (cf. table 1) were 

explored graphically and pair wise checked for correlation. To sort out covariates that, although 

significant, explained only a small part of the intersubject variation, a value of 10% for R2 was used 

as a selection criterion. The correlations between covariates and parameter estimates are shown in 

table 2.  

     Lipids (LDL, HDL, triacylglycerol, and total cholesterol), smoking, age, family history, urea, 

and creatinine accounted for less than 5% of the variance in the parameters and were thus 

considered to be insignificant covariates on the model parameters (cf. Table 2). Only FPG, HbA1c, 

and type (healthy/patients) accounted for more than 10% of the variance on α and β. These 

covariates were incorporated into a full model. Covariates that were not significant or did not 

contribute to explain the variance were excluded by a backwards elimination procedure from the 

full model. However, when the effects of FPG were included also, HbA1c and type did not explain 
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more than 5% of the remaining variability. FPG was selected over HbA1c, because of a slightly 

higher correlation and a better objective function value. Similarly, WST and BMI were significant 

covariates that –when included alone - each accounted for more than 10% of the variability in I0. 

WST proved to be a slightly superior explanatory factor, and BMI did not explain more than 5% of 

the variance in the final model with WST included.  

 Thus, in the final model only three covariates were left: FPG on α and β, and WST on I0. 

The final model including covariates was able to capture the individually predicted insulin 

concentrations versus the experimentally measured insulin values (R=0.971) (figure 4A). The 

experimentally measured insulin values were correlated to the population predicted insulin 

concentrations with R=0.618 (figure 4B). In the model without covariates the correlations were 

R=0.971 and R=0.246, respectively, thus, inclusion of covariates improved the population 

predictions considerably. The correlation between the estimated insulin baseline (I0) and the 

experimentally determined FPI concentration was R=0.953. 

 In the final model with covariates only FPG was left as a covariate on the two glucose-

stimulated insulin responses α and β (figure 5A-B). The population averages of α and β were 24.4 

and 35.1 pM insulin/mM glucose respectively. From the covariate parameter estimates we found 

that α decreased with 16% when plasma glucose increased with 1 mM, so that the expected α- value 

dropped from 56.5 to 47.3 pM insulin/mM glucose if FPG increased from 5 to 6 mM. Similarly, 

β decreased with 25% from 139 to 104 pM insulin/mM glucose. The population estimate for τ was 

49 min. The population average of the estimated basal insulin (I0) was 53.6 pM. WST was an 

indicator for the individual I0 (figure 5C). If WST increased by 10 cm I0 increased by 6.6%. The 

geometric mean parameter values of the non-diabetic control subjects and the subjects with type 2 

diabetes are listed in table 3. 
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Comparison between model parameters and HOMA  

The model parameters and HOMA indices were compared (details not shown). HOMA%B 

correlated with both α and β (Using an Emax model: R=0.770 and R=0.771, respectively). HOMA 

IR did not correlate with α or β. HOMA%B correlated hyperbolically with FPG (R=0.773 using a 

hyperbolic function). We found a strong hyperbolic correlation between basal insulin concentrations 

(both the estimated I0 and the experimentally measured FPI) and HOMA IR (R=0.925 and R=0.947, 

respectively).  

 

 

DISCUSSION 

 

To the best of our knowledge, this is the first time that population-based covariate analysis has been 

used for assessment of MTT profiles in subjects with T2DM and controls. Our results show that 

despite large intersubject variation, insulin concentrations could be described by the current model 

structure – explaining most of the variation in insulin responses following MTT. We find that those 

subjects with the lowest FPG values have the steepest slopes – this is also evident from the 

descriptive analysis shown in figure 2. Ferrannini et al. have reported a similar relationship between 

insulin secretion rate and plasma glucose in subjects with normal glucose tolerance, IGT and T2DM 

(Ferrannini et al. 2005). However, a novel finding from the present analysis is that the delayed 

effect (estimated by the parameter β) of glucose on insulin response decreases faster than the rapid 

effect (estimated by the parameter α) of glucose on insulin response in subjects with T2DM. 

(Godsland et al. 2004) found loss of beta cell function, as assessed via an IVGTT, with increasing 

FPG in non-diabetic subjects - in their study the decline began at FPG concentrations of around 5-

5.4 mM for first phase secretion and around 6 mM for late phase secretion. Our study results 
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corroborate this finding; however, we did not assess the beta cell function via an IVGTT but an 

MTT.  

 The delayed effect of glucose on insulin has similarities with results previously shown 

experimentally (Cerasi 1975b; Cerasi 1975a; Grill et al. 1978; Nesher and Cerasi 2002; Nesher and 

Cerasi 1987; Zawalich and Zawalich 1996)- where the secretory responsiveness of the beta cell can 

be markedly increased by prior short term exposure to a stimulatory glucose concentration. In our 

study the time needed to obtain a markedly insulin appearance is identified as the parameter τ which 

was estimated to almost 50 min. Thus, the beta cell will respond with an enhanced insulin secretion 

after about an hour of glucose stimulation.  

 The model results compare well with the phase plots relating postprandial plasma glucose to 

insulin concentrations (figure 2). Thus, the sum of the model parameters α+β represent the slope of 

the curve of the phase plot, whereas β represents the magnitude of the hysteresis: The larger the 

loop the higher the β, such that subjects with high FPG have small loops (e.g. low hysteresis). 

 Interestingly, the delayed effect (β) decreases more with increasing FPG (25% per mM 

Glucose) than the rapid effect (α) (16% per mM Glucose), indicating that the development of 

diabetes is associated with decreased “memory” response. This is in agreement with figure 2, in 

which the delay causing a hysteresis loop decreases for patients with higher FPG. It is interesting to 

find out whether effective anti-diabetic treatment will restore the memory response to normal 

concentrations, or whether it is a non-reversible event. In the future, this could be explored by 

examining the subjects after effective glycemic treatment. 

 From the data analysis it is seen that fasting insulin increased the greater the WST. For 

subjects with FPG above 9 mM incremental insulin responses did not differ between WST tertiles. 

Furthermore, the influence of WST on incremental insulin in subjects with FPG below 9 mM was 

not as clear (cf. figure 3B). This indicates that obesity does not influence postprandial insulin 
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responses equally in our population of subjects with T2DM but that this effect is correlated with the 

degree of fasting hyperglycemia. Thus, obesity affects the fasting and the postprandial insulin 

responses differently.  

   

 In the population based model WST was demonstrated to be a covariate on basal insulin 

(figure 5C). This is both in accordance with our statistical analysis (cf. figure 3A) and with findings 

from other groups (see for instance (Lemieux et al. 2000; Pouliot et al. 1994)). We did not find 

WST to be a covariate on α and β, which is also in agreement with the data analysis shown in figure 

3B.  

 A number of methods have been established for assessing beta cell responsiveness based on 

either C-peptide or insulin kinetics. These include: A) the minimal model of insulin kinetics during 

IVGTT (Toffolo et al. 1980), B) the model of C-peptide secretion during IVGTT (Toffolo et al. 

1995), C) the combined model of insulin and C-peptide secretion during IVGTT (Watanabe et al. 

1989), D) the model of C-peptide kinetics during MTT (Hovorka et al. 1998), E) the Homeostasis 

Model Assessment (HOMA) (Levy et al. 1998; Matthews et al. 1985), F) the continuous infusion of 

glucose method (Hosker et al. 1985), G) the models advocating simultaneous treatment of insulin 

and glucose (De and Arino 2000), H) the model for insulin secretion during IVGTT and OGTT 

(Overgaard et al. 2006), and I) the models of C-peptide kinetics during OGTT and MTT (Breda et 

al. 2001; Mari et al. 2002b; Mari et al. 2002a; Steil et al. 2004). Of these models, D) and I) have 

been developed for estimation of beta cell responsiveness following MTT, but they differ from ours 

as they use C-peptide data. Our model differs from the other models, A)-F), as it incorporates both a 

rapid and a delayed effect of glucose on the insulin concentrations. The models G)-I) also 

distinguish between different glucose effects, for example by including the derivative of glucose.     
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 Since C-peptide is co-secreted with insulin in equimolar amounts and since insulin (unlike 

C-peptide) is subject to a large and variable first pass hepatic extraction, insulin secretion and 

glucose responsiveness of the beta cell is most often assessed using C-peptide data. Use of C-

peptide data has the advantage that it is a more direct measure of insulin secretion, as it is 

unaffected by a potentially variable hepatic extraction across the studied population. Typically C-

peptide secretion is estimated via deconvolution (Ferrannini and Cobelli 1987b) under the 

assumption of a linear kinetic model of C-peptide with a set of typical parameters. However, it 

should be acknowledged that the obtained glucose responsiveness may be less than optimal, due to 

intersubject variability in the C-peptide kinetic model and parameters (Ferrannini and Cobelli 

1987a; Ferrannini and Cobelli 1987b).  

 One advantage of analyzing insulin concentrations as described here is that the kinetics of 

insulin is fast (half-life around 5 min) (Luzi et al. 2007) compared to the slower C-peptide kinetics 

(half-life around 35 min), so that small changes in insulin secretion leads to more pronounced 

changes in insulin concentration than in C-peptide concentration. However, a consequence of 

analyzing insulin concentrations alone is that elimination and secretion cannot be separated, so we 

cannot determine to what extent our model predicts beta cell responsiveness and/or peripheral 

insulin elimination. Since our model results show good agreement with previously published 

results, we believe that the model characterizes beta cell glucose responsiveness. Both methods 

have their advantages, but the largest difference lies in the outcome: C-peptide models more 

precisely reflect the state of the beta cells, whereas insulin models more precisely describe the 

important factor for peripheral glucose disposition. 

 The presented model has some structural similarity with that of a simple one-compartment 

system of insulin kinetics. However, the time constant τ = 49 min is 5-10 times larger in magnitude 
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than the half life of insulin elimination (5-10 min). However, it should be noted that the parameter τ 

is not a measure of insulin elimination, but a measure of the “glucose memory” in the beta cell.  

 This study cannot elucidate the mechanisms behind this correlation between basal insulin 

and WST, but it may be speculated if this is somehow linked to non-esterified fatty acids (NEFA) 

metabolism. Increased NEFA (coming from visceral fat) may increase hepatic glucose production 

and insulin secretion (“the portal theory” (Bergman et al. 2006)).  

 The HOMA model allows for estimation of both beta cell responsiveness (HOMA%B) and 

insulin resistance (HOMA IR) from the fasted state. HOMA%B was correlated with both α and 

β, and HOMA IR was correlated with I0 and to FPI. The correlation between FPI and HOMA IR 

has been found by several other groups, including Matthews et al. (1985).  

 Incretins, e.g. GLP-1 and GIP, are nutrient dependent gut hormones that enhance insulin 

secretion. We have not measured these, and thus we cannot discriminate between effects of meal 

nutrients and incretins on the insulin response and thus also on the estimated parameter value. 

Furthermore, it is possible that meal size, composition or timing could also affect the values of α 

and β. This is something that would need further investigation by analysis of data from such studies. 

 

In summary, we have been able to describe postprandial insulin profiles in 417 subjects with T2DM 

and 85 controls using population-based mixed effects modelling. Only FPG was a significant 

covariate on the glucose-dependence of the insulin response. WST was the only covariate on 

baseline insulin. This confirms that the beta cell glucose responsiveness is increasingly impaired in 

T2DM and correlated with FPG. Furthermore, waist circumference influenced the fasting and 

postprandial insulin concentrations differently. This result is to our knowledge new, and should be 

investigated further. The model also shows the importance of time-dependent effects in the 

development of the disease, as the delayed insulin response is strongly impaired in T2DM and 
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decreases faster than the rapid insulin response. All the subjects in the patient group had T2DM, 

were newly diagnosed and treatment naïve. It will be of interest to extend the analysis of these 

subjects following treatment in order to identify any subgroups which may appear with regard to 

disease progression.   
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 Table 1. Subject demographics and baseline characteristics. Data are averages± SE.  

 Non-diabetic  

subjects 

Type 2 diabetic  

subjects 

P-value 

N 85 417 - 

Age (years) 51.3 ± 1.1 54.5 ± 0.5 0.0053 

Sex – m/f (n) 46/39 108/309 <0.0001 

BMI (kg/m2) 26.0 ± 0.5  30.7 ± 0.3 <0.0001 

Waist circumference (cm) 85.0± 1.4 (N=80) 102.8 ± 0.6 (N=398) <0.0001 

Waist-to-hip ratio 0.84 ± 0.01 (N=79) 0.94 ± 0.00 (N=384) <0.0001 

HbA1c (%) 4.7 ± 0.1 (N=84) 8.2 ± 0.1 <0.0001 

FPG (mM) 5.2 ± 0.1 10.7 ± 0.2 <0.0001 

FPI (pM) 50 ± 3. 74 ± 3   0.0001 

Family history - no/yes 45/17 (N=62) 178/233 (N=411) 0.0467 

Smoking: no/yes/ex (n) 49/21/1 (N=71) 149/104/140 (N=393) <0.0001 

Total cholesterol (mM) 5.5 ± 0.1 (N=83) 5.6 ± 0.1 0.4406 

Triacylglycerol (mM) 1.5 ± 0.1 (N=83) 2.8 ± 0.1 <0.0001 

HDL (mM) 1.37 ± 0.04 (N=81) 1.09 ± 0.02 (N=411) <0.0001 

LDL (mM) 3.4 ± 0.1 (N=81)  3.3 ± 0.1 (N=390) 0.5356 

SBP (mmHg) 119 ± 2 (N=81) 135 ± 1 <0.0001 

DBP (mmHg) 77 ± 1 (N=81) 83 ± 1 0.0009 

Urea (mM) 4.9 ± 0.1 (N=82) 5.3 ± 0.1 (N=416) 0.0152 

Creatinine (µM) 89 ± 1 (N=82) 81 ± 1 (N=415) <0.0001 
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Table 2. Correlations values (R2-values in %) between model parameters (log-transformed α, β and 

I0) and demographic parameters (covariates) 

 

 α β I0 

Type (healthy/patients) 22.0 16.1 3.77 

Age 0.60 0.001 0.31 

Sex  0.81 0.88 0.0007 

BMI  2.94 0.74 29.0 

Waist circumference  0.16 0.09 27.2 

Waist-to-hip ratio 1.00 1.50 7.04 

HbA1c  45.0 54.5 2.40 

FPG  50.4 58.9 4.02 

Family history 1.25 1.46 0.25 

Smoking 2.71 1.89 0.72 

Total cholesterol 3.55 3.62 0.28 

Triacylglycerol 1.44 2.13 2.83 

HDL 1.54 2.25 3.84 

LDL 1.65 1.86 0.83 

SBP 0.17 0.73 1.38 

DBP 0.37 0.03 0.76 

Urea  1.36 0.15 0.30 

Creatinine  4.03 5.95 0.10 
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Table 3. Geometric mean parameter values for the non-diabetic controls and subjects with type 2 

diabetes mellitus (T2DM).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Controls subjects Subjects with T2DM 

α (pM Insulin / mM Glucose) 73.6 19.9 

β (pM Insulin / mM Glucose) 139.8 27.1 

I0 (pM) 42.9 63.3 
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Figure legends. 

 

Figure 1: Average plasma glucose (A) and average plasma insulin (B) during meal tolerance test 

(75 g CHO, 500 kcal) in 417 subjects with T2DM (open circles) and in 85 control subjects (full 

circles). Error bars represents standard deviations. 

 

Figure 2: Phase-plots between the average plasma glucose and average plasma insulin during meal 

tolerance test in subjects grouped by FPG. The following groups were applied: Grp. 0: Controls, all 

with FPG < 7 mM (85), Grp. 1: FPG < 7 mM (45), Grp. 2: FPG: [7-9[ mM (118), Grp. 3: [9-11[ 

mM (84), Grp. 4: [11-13[ mM (68), Grp. 5: ≥ 13 mM (102). Number of subjects in each group is 

presented in brackets.  

 

Figure 3: (A) Average fasting plasma insulin (FPI) and (B) average incremental insulin (AUC0-240 

min) categorized by waist circumference (WST) and FPG for all subjects. WST is categorised by 

tertiles: <95 cm (open bars), 95-105 cm (black bars), >105 cm (hatched bars). The number of 

subjects in each group is listed in table 3.  

 

Figure 4: (A) The actual (measured) insulin concentrations (DV) versus the individually predicted 

insulin concentrations (IPRED). (B) The actual (measured) insulin concentrations (DV) versus the 

population predicted insulin concentrations (PRED). 

 

Figure 5: The correlation between the fasting glucose values and the individual parameter estimate 

for α – the rapid glucose stimulated insulin response (A) – and the estimate for β – the delayed 

glucose stimulated insulin response (B). The correlation between waist circumference and the 

individual parameter estimate for I0 (C). Subjects with T2DM are shown as filled circles and non-

diabetic control subjects are shown as open circles.  
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Figure 1.  
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Figure 2. 
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Figure 3. 
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Figure 4.  
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Figure 5. 
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