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Abstract

Beta cell functionality is often characterised by indices describing different phases of insulin
secretion. The typical biphasic insulin secretion pattern observed with a square wave glucose
stimulation has laid the foundation for most modelling work regarding quantification of beta cell
function. Within the context of control theory, the beta cell functionality is usually modelled as
versions of a classic Proportional-Integral-Differential (PID) controller, and the different phases of
insulin secretion are described in relation to the different control component, with the first phase of
insulin secretion being related to the differential control component, and the second (late) phase to
the integral control component. Thisis, of course, a phenomenological description.

We propose amodel of the glucose sensing mechanisms in the beta cell describing the time-
dependent physiological processes underlying the different insulin secretion phases. The model
results show that glucokinase is the key regulatory step in the glucose sensing mechanisms. We
arguethat it is not glucose per se, but some signal(s) downstream of the glycolytic pathway that
controls the activity of glucokinase, and hence the final insulin secretion pattern. We show that the
first phase of insulin secretion is related to the rate of change of glucose in a non-linear saturable
fashion, and that the second phase is due to translocation of glucokinase from an inactive to an
active state. Hence, the glucose sensing mechanisms in the beta cell can, in some sense, be regarded
asworking as aclassic PID controller, with intrinsic non-linearities in the sensing machinery.

A meal tolerance test (MTT) isthe best test for assessing beta cell indices as well as indices
for insulin action in a physioloigcal relevant setting. In that context we have analysed MTT data
from a large population of healthy subjects and from subjects with type 2 diabetes displaying awide
range of fasting plasma glucose (FPG) concentrations. Due to the heterogeneity in the FPG values
of the subjects with diabetes, we stratified them according to their FPG and divided the subjects into
five groups. Interestingly, when correcting for the FPG, the mean plasma glucose concentration
profiles from each of the five groups are strikingly similar, despite quite large differences in the
corresponding mean plasma insulin profiles. From the graphs of the means of the differentiated
individual glucose profiles within the respective groups of subjects with diabetes, this similarity of
the glucose profiles is even more evident. Same results are obtained when analysing the data from
the database, where the subjects with type 2 diabetes have been followed throughout years, and

where different standard treatments are also present.



The graph of the mean healthy glucose profile shows a clear distinction from the corresponding
graphs from subjects with type 2 diabetes. Of special interest is the observation that for the healthy
persons the plasmainsulin is still high even though plasma glucose has returned to fasting values,
hence secretion of insulin continues despite glucose has returned to fasting values, and the increased
insulin does not lead to hypoglycaemia. Hence in healthy subjects it appears that the glucose uptake
is controlled in such away asto follow the rate of glucose appearance from the meal. Similar
conclusions cannot be drawn from the meal profiles of the subjects with type 2 diabetes. The
glucose profiles for the subjects with type 2 diabetes seem similar despite different insulin profiles,
and it appears that insulin merely follows the glucose profile without controlling it. However
glucose undershoot is observed, probably due to elevated insulin concentration at the end of the
meal test.

The analysis of the MTT data provides a new tool to distinguish the healthy after-meal
responses from responses of people with diabetes. Furthermore our analysis indicates that a
mechanism that works more or less independent of insulin is activated in healthy persons after a
meal and that this mechanism apparently is damaged and/or diminished in persons with type 2
diabetes.

We argue, by referring to literature, that this mechanism is a result of the brain participating
in the overall control of glucose concentration and fluxes of glucose equivalents. Hence, neural
effects seem to be an important component that needs to be added to models that are set up to

describe beta cell functionality as well as glucose uptake in a physiological relevant setting.



Dansk resumeé (Danish summary)

De insulin producerende betacellers funktion karakteriseres ofte ved hjadp af indices, som beskriver
forskellige faser af insulinsekretionen. Det typiske bifasiske insulinsekretions menster, der kan
observeres efter en firkant glukose-stimulering, har dannet grundlaget for det meste af
modelarbejdet som netop omhandler kvantificering af betacelle funktionaliteten. Med udgangspunkt
i teknisk kontrolteori bliver betacellen ofte modelleret som versioner af en Proportionel-Integral-
Differentiel (PID) kontrolenhed, og de forskellige sekretionsfaser bliver beskrevet i forhold til de
forskellige kontrolkomponenter, hvor den farste sekretionsfase er relateret til den differentielle
kontrolkomponent, og den anden (sene) fase til den integrale kontrolkomponent.

Vi foresldr en model af glukose-registreringen i betacellen som beskriver de tidsafhaangige
fysiologiske mekanismer som ligger til grund for de forskellige sekretionsfaser. Modelresultaterne
viser at glukokinase er den vigtigste regulatoriske faktor i glukose-registrerings mekanismerne. Vi
argumenterer for, at det ikke er glukose, men nogle signal(er) i den glykolytiske proces som
kontrollerer aktiviteten af glukokinase, og dermed det endelige insulin sekretionsmanster. Vi viser
at den farste fase af insulinsekretion er relateret til den tidsafledede af glukose pa en magtbar ikke-
linesa méde, samt at den anden fase skyldes translokation af glukokinase fra en inaktiv til en aktiv
tilstand. Glukose-registerings mekanismerne kan falgeligt i en vis forstand opfattes som en klassisk
PID kontrol-enhed, med iboende u-lineariteter i registreringsapparatet.

En maltids tolerance test (MTT) er den bedste test til at vurdere savel indices for betacelle
funktionaliteten som indices for insulin virkning i fysiologisk relevante omgivelser. Derfor har vi
analyseret MTT data fra en stor population af raske samt fra personer med type 2 diabetes med et
stort interval af forskellige faste plasma glukose (FPG) vaadier. Pagrund af den store forskel i FPG
vaadierne for personerne med type 2 diabetes, stratificerede vi i forhold til deres FPG vaadier og
inddelte dem i fem grupper. Middel plasma glukose koncentrationsprofilerne for de fem grupper
korrigeret for deres FPG vaadier, er bemaakelsesvaadig ens, pa trods af ganske store forskelle i de
tilsvarende middel plasma insulinprofiler. Denne lighed af glukoseprofilerne ses endnu mere
tydeligt af kurverne for middelvaardierne af de individuelle differentierede glukoseprofiler. Samme
resultater opnas ved analysen af data fra databasen hvor personer med type 2 diabetes er blevet fulgt
gennem flere &r, og hvor forskellig standard behandlinger ogsa er inkluderet.

Kurven for den raske middel glukoseprofil er markant forskellig fra de tilsvarende kurver fra

personer med type 2 diabetes. Saglig interessant for de raske data er, at plasma insulin er stadig hgj.



Det betyder at secerneringen af insulin fortsadter selvom plasma glukose er vendt tilbage til
fasteveadien, samt at den foregede insulin ikke forarsager hypoglykemi. | raske personer ser det
derfor ud til, at glukoseoptaget er reguleret pa en sddan made, si optaget felger glukose
absorptionshastigheden. Tilsvarende konklusioner kan ikke drages af profilerne fra personerne med
type 2 diabetes. Glukoseprofilerne for personerne med type 2 diabetes er tilsyneladende ens patrods
af forskellige insulinprofiler, og det ser ud til at insulin blot felger glukoseprofilen uden at
kontrollere den. Dog ses glukose vaadier under fastevaardien ("undershoot”), der formentligt
skyldes forgget insulinproduktion i slutningen af maltids testen.

Analysen af MTT resultaterne giver et nyt vaaktgj til at skelne mellem det raske og type 2
diabetes maltids svar. Endvidere indikerer analysen at nogle mekanismer, som fungerer mere eller
mindre uafhaangigt af insulin, aktiveres hos raske efter et maltid, samt at disse mekanismer
tilsyneladende er adelagt og/eller formindsket hos personer med type 2 diabetes.

Pa grundlag af oplysninger i litteraturen argumenterer vi for, at disse mekanismer skyldes, at
hjernen deltager i den overordnede kontrol af glukose-koncentration og bevasgelser. Falgelig ser det
ud til, at neural indvirkning er en vigtig komponent, som mangler i de modeller, der beskriver

betacelle funktionaliteten og glukoseoptaget i relevante fysiologiske omgivelser.



Symbols and abbreviations

AIR Acute insulin release

AUC Area under curve

CC Signal from controller to effector

Cl Desired value (or trace) of controlled variable, see CO
CcVv Coefficient of variation

CO Controlled variable

DI Disposition index

DNL De novo lipogenesis

ECF Extracellular fluid

EE Energy expenditure

EGC Euglycemic glucose clamp

FA Fatty acids

FPG Fasting plasma glucose

FPI Fasting plasma insulin. Used interchangeably with I,
FSIGT Frequently sampled intravenous glucose tolerance test
Go Basal glucose. Used interchangeably with FPG

G6P Glucose-6-phosphate

GEZI Glucose effectiveness at zero Insulin

GIP Glucose-dependent insulinotropic polypeptide

GIR Glucose infusion rate

GK Glucokinase

GLP-1 Glucagon-like peptide-1

GNG Gluconeogenesis

GGIT Graded glucose infusion test

HbAlc Glycosylated haemoglobin

HGC Hyperglycemic glucose clamp

HGO Hepatic glucose output (including any renal contribution)
Ip Basal insulin. Used interchangeably with FPI

IDVG Initial distribution volume of glucose



IDVS Initial distribution volume of sucrose

v Intravenous

IVGTT Intravenous glucose tolerance test
HOMA Homeostatic model assessment
MPC Model predictive control

MTT Meal tolerance test

OMM Oral minimal model

OGTT Oral glucose tolerance test

PID Proportional, integral, derivative
Ra Rate of appearance

R4 Rate of disappearance

RRP Readily-releasable pool

S Glucose effectiveness at steady state basal insulin
S Insulin sensitivity at steady state
SR Secretion rate

T2DM Type 2 Diabetes Mellitus

TG Triacyl glycerol

WRES Weighted residuals
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Chapter 1

I ntroduction

Insulin is an essential hormone with many vital functions, especially for uptake and utilisation of
glucose by the different insulin sensitive cells, primarily muscle and adipose tissue cells, throughout
the body. The beta cells situated in the pancreas normally secrete insulin upon stimulation by
glucose providing a negative feedback regulation to ensure well-controlled glucose levels. Glucose
is the most prominent signalling nutrient for insulin release, and the relation between changes in
glucose concentration and the resulting changes in insulin release is denoted beta cell function or
functionality. Investigation of the beta cell functionality has been ongoing for decades. Still today,
research continues, in order to understand the physiology and the pathophysiology of beta cell
functionality in especially type 2 diabetes. During the years a tremendous amount of data has been
gathered in-vitro as well as in-vivo in many different species and under many different
circumstances. Thetask at hand isthusto convey the information in the data into an understanding
of the biological processes governing the pathogenic state.

Mathematical modelling with focus on the right description of the biological mechanisms
offers away to understand the impact of treatments and can be used to pinpoint potential new
targets for treatment. The main challenge isto balance the description of the involved mechanisms
in the right way. The human body is an extraordinary complex system to describe, and the
complexity may become even more expressed in multifactorial pathogenic states such as diabetes.
Hence to include all involved mechanisms is an impossible task. Even more important in
connection with drug development is that the models need to be validated, atask that may become
difficult with large models. On the other hand, the models must capture the important features of the
system under investigation. Hence biological modelling, or biosimulation, becomes a delicate

matter of neither including too little or too much to describe the system under investigation.

1.1  Biosmulation asan integral part in systems biology

Biosimulation has grown out of the need for a combination of skills within different different fields
of natural sciences, in order to understand the many facets of complex diseases, through in-silico
experiments. As such biosimulation isavital part of systems biology, which is a reasonable new

field. Systems biology integrates classic fields like physics, chemistry, biology and mathematics in
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the quest for understanding the complexity of biological function (Alberghina and Westerhoff
2005). The many “-omics’ like genomics, proteomics, metabolomics, etc. used in biology today
have provided a wealth of biological information, where perhaps the most prominent result from
genomics being the unravelling of the human genome. Even though extremely valuable for
collecting biological information for data analysis, these omics do not provide approaches for a
guantitave and predictive assessment of the biology, which is important for a full understanding of
biological processes.

One examples of the valuable use of systems biology, or biosimulation in drug development
of multifactorial diseases include virtual heart simulations to discover potential drug targetsin order
to avoid cardiac arrythmia (Noble 2008). Such simulations require extensive modelling effort, and
biological understanding of all the diffrerent currents of ions partaking in the development of the
action potential and potential depolarisation/repolarisation problems associated with the arrythmic
state. Other examples includes detailed kinetic models known as silicon cell models, especially of
the glycolysis in yeast (Bruggeman et al. 2008), or the modelling of chronotherapy for the
optimisation of the temporal delivery of anticancer drugs (Altinok et al. 2008).

1.2  Thesisaobjective and outline

The aim of thisthesisisto develop a new way to test beta cell function in people with diabetes as
well as healthy. The new way will consist of combination of results from the traditional methods
with biosimulation models. Thistask is highly inter-disciplinary and thus well-suited for systems
biology and biosimulation. Only very little chemistry is used throughout the thesis, thus the results
generated and presented will largely be reflected by the combination of physics and mathematics
applied to biology. By this approach the hope is to provide insight into new mechanisms and
potential new treatment targets. To achieve the goal of combining the traditional methods with the
biosimulation models a clear understanding of both approaches it needed. With thisin mind the
thesis has been divided in the following chapters.

Chapter 2 Current tests of beta cell functionality

The most common current tests for assessment of beta cell functionality and insulin action are
discussed and compared with one another. Pitfalls are highlighted, that may occur when one tries to
evaluate the results of atest in a context where the test is not applicable, e.g. when results from un-

physiological clamp tests are extrapolated to explain physiological mechanisms. It is stressed that
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each test must be evaluated in its own context and that the oral tests, especially the meal tolerance
tedts, are most suitable for evaluating beta cell functionality and insulin action. State of the art

mathematical models of beta cell function during meals are discussed.

Chapter 3 Minimal model analysis of OwensMTT data

An analysisof MTT data with the oral glucose and C-peptide minimal models with the largest
number of subjects with type 2 diabetes presently reported in literature is presented.

The estimates for each of the indices of insulin action and beta cell functionality all displayed a
large interval both within the group of subjects with diabetes, and within a healthy group. Despite
this, a clear distinction between the two groups was evident from the disposition indices plot.

MTT data from a small subset of subjects with type 2 diabetes that were followed at year O, 1, and
5, to record disease progression and treatment effect, was also analysed with the minimal models.
Values for indices of insulin action and beta cell functionality all increased from year O to year 1,
demonstrating treatment effect. From year 1 to year 5, the value of the indices decreased,
demonstrating decline in treatment effect and/or progression of disease. However no clear pattern

and no clear difference between the years were found from the disposition indices plot.

Chapter 4  The phaseplot

The plot between the plasma glucose and insulin concentration after ameal, i.e. the phase plot is
introduced as a smple way to characterise beta cell function. Clear differences in the characteristic
measures are found both between healthy and subjects with type 2 diabetes and within the group of
subjects with diabetes with different fasting plasma glucose values. These differences are analysed

with a simple model introduces to describe the insulin responses.

The oral glucose minimal model is applied to analyse the effect of variability of the model
parameters on the characteristics of the phase plot. The model parameters are found to elicit both
common and different effects on the characteristics of the phase plot, with a possible complex

outcome as aresult.
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Chapter 5 The meal response

The meal-related responses, i.e. the responses corrected for fasting values, of glucose and insulin
after a meal tolerance test for a large dataset of healthy subjects and subjects with type 2 diabetes
are analysed.

For the healthy subjects, the analysis shows that the disappearance rate of glucose seems to be
regulated in such a way as to follow the appearance rate. The analysis also shows that the meal-
responses from the subjects with type 2 diabetes are quite similar regardless of insulin levels,
treatment and/or disease progression, but differ fundamentally from the healthy responses. On the
other hand fasting plasma glucose, FPG may be affected by treatment, and the variability and
regulation of FPG are analysed and discussed.

Chapter 6  Glucose sensing and control

The common view of regarding the glucose-insulin control system as an isolated system to control
plasma glucose concentration is shown to be incomplete in several ways. Firstly, the glucose
sensing mechanisms in the beta cell is shown to possess important intrinsic non-linear properties
and the beta cell worksin a complex network with other glucose sensors. Secondly, the handling of
metabolites inside and between the different organs is shown to be critical for glucose control. Both

insulin and signals from the brain are important components in the control system.
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Chapter 2

Current tests of beta cell functionality

The most common current tests for assessment of beta cell functionality and insulin action are
discussed and compared with one another. Pitfalls are highlighted, that may occur, when one
tries to evaluate the results of a test in a context where the test is not applicable, e.g. when results
from un-physiological clamp tests are extrapolated to explain physiological mechanisms. It is
stressed that each test must be evaluated in its own context and that the oral tests, especially the
meal tolerance tests, are most suitable for evaluating beta cell functionality and insulin action.
State of the art mathematical models of beta cell function during meals are discussed.

2.1 Methodsfor assessing insulin sensitivity and beta cell function

Different methods exist for the assessment of insulin sensitivity and/or beta cell function. Table 2.1
provides an overview of the most commonly used experimental tests (protocols), and their
usefulness. A common feature of nearly all the tests summarised in Table 2.1 is that one can obtain
a multitude of empirically derived indices describing either insulin sensitivity or beta cell function
from them (Cobelli et al. 2007; Mari et al. 2002a; Muniyappa et al. 2008). However one should be
cautious about directly relating the results obtained from the different methods with one another. In

fact, as will be discussed, the different methods should be viewed each in their own context.

Is It Can It Assess Hepatic
Protocol Is It Physiological? Simple? Can It Assess 3-Cell Function? Can It Assess Insulin Sensitivity? Insulin Extraction?

Basal state Yes Yes  Yes, but limited Yes, but limited No
Intravenous perturbation

Hyperglycemic clamp No No  Yes, but limited without a model Yes, but requires a model Yes, but requires a model

Euglycemic clamp No No No Yes No

IVGTT No No  Yes, but limited without a model Yes, but limited without a model ~Yes, but requires a model

Graded infusion No No  Yes, but limited without a model Yes, but requires a model Yes, but requires a model
Oral perturbation

OGTT Yes, butno nutrients ~ Yes  Yes, but limited without a model ~ Yes, but requires a model Yes, but requires a model

Meal Yes Yes  Yes, but limited without a model Yes, but requires a model Yes, but requires a model

Table 2.1: The different experimental tests (protocols) and their characteristics. IVGTT,
intravenous glucose tolerance test; OGTT, oral glucose tolerance test. Adapted from Cobelli et al.
2007.
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2.1.1 Homeostatic model assessment, HOM A

The homeostatic model assessment, HOMA is a method used to assess beta cell function and
insulin sensitivity, based on fasting plasma concentration values of glucose, insulin and/or C-
peptide (Matthews et al. 1985; Wallace et al. 2004). The method consists of non-linear equations
evaluated at basal state to give indices of beta cell function and insulin sensitivity and hinges on the
premise of a negative feedback between hepatic glucose output and beta cell insulin secretion
(Matthews et al. 1985; Turner et al. 1979).

The solutions of the model based version (Levy et al. 1998) are shown in Fig. 2.1(a). Fig.
2.1(b) shows the graph between fasting plasma glucose, FPG and fasting plasma insulin, FPI in 84
healthy and 356 newly-diagnosed subjects with type 2 diabetes from the large database provided by
Dr. David Owens, cf. chapter 3. There seemsto be no (smple) correlation between FPG and FPI, as
the data more or less cover the whole HOMA diagram in Fig. 2.1(a). Hence, either the subjects do
elicit all the different combinations of insulin sensitivity and beta cell function predicted by the
HOMA model, or there exists some other mechanisms regulating FPG and/or FPI not handled by
the model.
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Fig. 2.1: (a8) The HOMA diagram, showing the solutions to the HOMA model. %S and %B
describe insulin sensitivity and beta cell function, respectively, relative to healthy subjects. Adapted
from Wallace et al. 2004. (b) The relation between fasting plasma glucose and fasting plasma
insulin in 84 healthy (green dots) and 356 newly-diagnosed subjects with type 2 diabetes (red dots).
Data from Dr. David Owens.
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2.1.2 Glucose clamps

The idea behind a glucose clamp test isto keep glucose a a constant level by 1V infusion of glucose
with aglucose infusion rate, GIR. In practise this is a cumbersome and complex task. A typical test
period extends over two hours, where a considerable number of blood samples are taken (DeFronzo
et al. 1979; Elahi 1996; Hansen 2004). If the course of the hepatic glucose output, HGO under the
clamp is wanted, tracers need to be added to separate the exogenous and endogenous glucose

fluxes, thus increasing the complexity of the method.

Hyperglycemic glucose clamp, HGC

With the hyperglycemic glucose clamp method, basal glucose concentration is acutely raised by a
priming infusion of glucose to a hyperglycemic level. The steady-state glucose level isthen
maintained by GIR. The test gives atypical biphasic pattern in the insulin response, with an early or
first phase occurring within the first 5-10 min, and a consecutive linearly rising late or second phase
(Elahi 1996). Typically the average incremental insulin concentration obtained in the first 5-10 min
after the glucose infusion, is used as a model-independent index, AIR (Acute Insulin Release) for
the first phase insulin secretion. Different model-independent measures for the second phase can
also be calculated.

Hyperinsulinemic-euglycemic clamp

Inthistest, insulin is acutely raised above basal value and maintained there throughout the test
period. Glucose is maintained at constant levels by GIR. Thistest is denoted the gold standard for
measuring insulin sensitivity, where the ratio between GIR and the steady state insulin level is taken

as a measure of the insulin sensitivity (DeFronzo et al. 1979; Elahi 1996).

Fluxes during a glucose clamp
Assuming that a steady state glucose level is obtained, which as noted above is not an easy task, the
glucose infusion rate, GIR is described by (Hallgreen et al. 2008)

GIR=J, —HGO (2.0

where Jy is the sum of the saturable peripheral tissue (muscle and adipose tissue) uptake, Jer
(ignoring a possible efflux of interstitial glucose) and the (usually constant) uptake by the brain,
Jorsin = 1.14 mg kg min*, and HGO is the hepatic glucose output (including renal contribution)
(Hallgreen et al. 2008).
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The glucose uptake by the peripheral tissues, Jer is saturable and can be described by the Michélis-
Menten relation (Hallgreen et al. 2008)

G

‘JPT = VGLUT m

(2.2)

where VLyt isthe maximal transport capacity of both the insulin-independent glucose transporter
GLUT1 and the insulin-dependent glucose transporter GLUT4, G is glucose concentration, and Ky
isaMichaélis-Menten constant assumed equal for both GLUT1 and GLUT4 withKy =5 mM
(Hallgreen et al. 2008).

Assuming Vg ur1 to be constant, Ve ur: = 0.78 mg kg min™ (Hallgreen et al. 2008),
the effect of insulin, I on glucose uptake can be described by

V.., 1°
Vowurs = K2 +12 (2.3
|

with Vmax = 20 mg kg™ min™ and K, = 180 pM (Hallgreen et al. 2008)

The effect of insulin on HGO is assumed hyperbolic (Groop et al. 1989; Hallgreen et al. 2008;
Hansen 2004) and described by

HGO, 1 K 1o
Ko +1

HGO = (2.4)

with HGOpex = 4.7 mg kg min™ being the HGO at zero insulin, and Keo = 30 pM (Hallgreen et
al. 2008; Hansen 2004).

Fig. 2.2 showsthe relation between the fluxes determining GIR, as given by Egs. (2.1)-(2.4) and
different values of insulin, assuming the basal state G =5 mM and | =40 pM (Hallgreen et al.
2008). In the beginning, with small to moderate insulin, GIR and insulin increases almost linearly,
whereas the relation saturates for large insulin. As the insulin sensitivity is determined by the ratio
between GIR and the prevailing insulin, it is seen that different values are obtained for different
insulin levels. The contribution from HGO vanishes for large insulin. However in subjects with type
2 diabetes the inhibiting effect of insulin on HGO isimpaired (Groop et al. 1989). Hence HGO will
probably not be entirely inhibited in those subjects, and the HGO contribution will complicate the

interpretation of the results even more.
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Fig. 2.2: Relation between the total glucose uptake J,r, HGO and GIR as described by Eg. (2.1), for
different values of insulin. Adapted from (Hallgreen et al. 2008).

2.1.3 Graded Glucose Infusion Test, GGIT

A typical setup for the GGIT is consecutive 40 min glucose infusions steps of increasing size, such
that the glucose level rises gradually. Glucose and C-peptide concentrations are measured, and
insulin secretion rate is calculated by deconvolution of the C-peptide data (Polonsky et al. 1986).
The mean glucose and mean insulin secretion rate at each end are plotted against one another to
obtain a dose-response relation between glucose and insulin secretion by the beta cells (Byrne et al.
1995). An up&down GGIT has been analysed with the C-peptide minimal model (Toffolo et al.
2001). The GGIT yields a more physiological glucose stimulation profile than the other IV tests.

However, its level of complexity makes it less attractive as aroutine test.

2.1.4 Intravenousglucosetolerancetest, IVGTT

IVGTT isthe most common test for assessment of first phase insulin secretion.

Thetypical procedure isthat after an overnight fast (8-12 h) a bolus of glucose is injected
intravenously over 1 min, with a standard dose around 0.3 mg/kg body weight. Sampling is done
frequently in the beginning (regular-FSIGT) of glucose, insulin and often also C-peptide
concentrations. The regular-FSIGT also comes in an insulin-modified version (Insulin-modified-
FSIGT), were a timet = 20 min a non-primed infusion of insulin begins and lasts for 5 min, infused
in the same vein as glucose was injected. Infusion for 5 min is used instead of a bolus, because a

bolus will give very high levels of the hormone, resulting in saturation of the insulin receptors.
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Modelling analysis could therefore underestimate the insulin effect. Furthermore, the slower
infusion compared to a bolus gives a better distribution of the hormone.

The IVGTT €dlicit abrisk stimulation on the beta cells for measuring intrinsic beta cell response to a
fast increase in glucose concentration. However, an IVGTT can often only be used to asses one
phase of insulin secretion and cannot stand alone as a single test of beta cell function. Furthermore
the stimulation pattern is un-physiological and, hence, does not resemble normal physiological

stimulation of the beta cells.

IVGTT and glucose kinetics
IVGTT isalso used to assess glucose kinetics and effects of insulin upon the kinetics. The most
widely used method for assessing glucose kinetics is the description of the IVGTT interpreted with
the glucose minimal model (Bergman et al. 1979). One major problem with the IVGTT isits
transient nature (Hallgreen et al. 2008). The mean transit time for the systemic blood circulation is
around 1 min, but blood returning from e.g. the legs has a mean transit time in the order of 10-15
min. The spread in mean transit times result in an initial distribution phase corresponding to an
apparent glucose dependent initial glucose uptake. Hence the initial glucose uptake may be
overestimated.

Another problem with the IVGTT is the desire to describe the glucose kinetics by
exponential decline, i.e. using linear modelling of glucose uptake. The glucose dynamics after an
IVGTT caninasimplified manner (Hallgreen et al. 2008) be described by

G
v Sy ©

b _ 25
dt GLUT(|<M+Gb KM+G) (2:5)

where Vg is the glucose distribution volume and G, is the basal (pre-test) glucose concentration.
Fig. 2.3 showsthe dynamics of glucose after atypical IVGTT described by Eq. (2.5). The glucose

decline is more linear than exponential, especially at the beginning, hence describing the decline as

exponential iswrong and may lead to wrong estimates of glucose uptake (Hallgreen et al. 2008)
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Fig. 2.3: The dynamics of glucose after atypical IVGTT with peak glucose at 15 mM. Adapted
from (Hallgreen et al. 2008)

The attempt to describe the glucose decline after an IVGTT by exponentials leads to another major
problem. In the paper by Ferrannini et al. (Ferrannini et al. 1985), the authors proposed athree
compartment model describing the glucose kinetics, based on the observation that three
exponentials could describe (fit) the datawell. They were able to show that a two-compartment
description would suffice, described by a fast and dow pool. However, a closer ook at the initial
distribution volume of glucose, IDV G reveals some problematic issues concerning the
compartmentalization according to rate constants. IDV G is calculated by giving an intravenous, 1V
bolus infusion of 5 g glucose and measure the arterial blood glucose for 3to 10 min after (Hahn
2005; Hirota et al. 1999), asillustrated in Fig. 2.4(a).

Sucrose is used to measure extracellular fluid, ECF volume, asit is poorly metabolised
(Ishihara and Giesecke 2007). The initial distribution volume of sucrose, IDV Sisthe same as for
glucose as seen in Fig. 2.4(b), hence IDV G is a measure of ECF volume, and correlates with the
cardiac output as seen in Fig 2.4(c). Thus IDVG is dependent on the blood flow. A high perfusion
will resemble alarge IDVG and alow perfusion will resemble asmall IDVG. The result isthat the
fast kinetics of glucose is highly dependent on the blood flow, hence large discrepancies are to be

expected under different experimental conditions.

21



a1
]

(a) 7 () S

] IDVG = 7L 7
~ 4./
2 \\\ —~ o //.
E SSeo £ 1501 . o5
[} 3‘ 's..\ = ./‘
o .- S oy
0 Rt W ~ o8
g 0 *.. g '. 2°
5 B 100 y 4
< 1 .;’: ®

// °
/7 e ®
0 T T v T v T T T T 1 50¥ T T T 1
0 2 4 6 8 10 50 100 150 200 250
Time (min) IDVG (ml/kg)

T
Cardiac output (L/min)

Fig. 2.4: (a) lllustration of the calculation of the initial distribution volume of glucose, IDVG &fter a
5 g IV bolus infusion of glucose. (b) The initial distribution volume of sucrose, IDV'S correlates
strongly with IDVG. (c) IDVG correlates with the cardiac output. Adapted from (Ishihara and
Giesecke 2007).

2.1.5 Oral glucosetolerancetest, OGTT and meal tolerancetest, MTT

In astandard oral test the subjects receive glucose orally (=75g) after an overnight fast either as
pure glucose, OGTT or withinameal, MTT. (Ahren and Pacini 2004; Ferrannini and Mari 2004;
Mari et al. 2002a). Measurement of plasma glucose, insulin and possibly C-peptide is then typically
recorded for 2-3 hoursin OGTT and 4-5 hoursin MTT, after the glucose administration. Different
empirically derived indices can be obtained, typically ratios between insulin and glucose levels or
area under the curve, AUC ratios. Probably the most widely used empirically derived measure is the
insulinogenic index that givesthe ratio between the increments at 15 or 30 min for insulin and
glucose. The empirically derived indices are simple to calculate, but it is difficult to relate them to

specific measures of beta cell function.
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The appearance of glucose in the intestine elicit a complex interplay between hormonal and neural
effects, with the most prominent case being the incretin effect (Holst et al. 2008), i.e. the
enhancement in insulin response due to oral glucose administration as compared with IV glucose
insulin response, cf. Fig. 2.5. As different amount of glucose ingested lead to similar glucose
excursions, another way to describe the incretin effect is that it keeps glucose excursions at certain
low levels regardless of the ingested amount of glucose (Holst et al. 2008).

The most important incretin hormones are glucagon-like peptide-1, GLP-1 and glucose-
dependent insulinotropic polypeptide, GIP. Asillustrated in Fig. 2.6, these hormones can exert a
multiplicity of actions on different organs. Besides the described incretin effect on the insulin
secretion, GLP-1 has been shown to strongly decrease glucagon secretion, inhibit gastric emptying,
appetite and food intake. All these actions are designed to lower the glucose excursions. On the
contrary, besides the incretin effect, GIP has been shown to increase glucagon release. Hence even
though the enhancement of insulin release seems to be the most important role of the incretin
hormones, they both trigger other complex mechanisms that differ in their actions. Furthermore

some of their actions (primarily GLP-1) may be mediated by the nervous system (Holst et al. 2008).
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Fig. 2.5: lllustration of the incretin effect. (a) Plasma glucose and (b) plasma insulin concentrations
in healthy subjects receiving an oral glucose test (filled dots) and 1V glucose infusion to mimic oral
glucose excursion (circles). The incretin effect is the difference between the two insulin responses
Adapted from (Campioni et al. 2007).
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Fig. 2.6: lllustration of the multiplicity of actions exerted on different organs by the incretin
hormones, GLP-1 and GIP. Details can be found in Holst et al. 2008.

2.1.6 Comparison of thetests

The intravenous glucose tolerance tests, i.e. the IVGTT, HGC, and GGIT are al non-physiological
and cumbersome to perform. All three tests can with the application of mathematical models be
used to assess both insulin action and beta cell functionality, cf. Table 2.1. However as pointed out
above, the outcomes of an IVGTT and HGC must be interpreted with caution. Furthermore, even
though the GGIT €licit a more physiological glucose stimulation pattern than the other IV tedts, it
still does not evaluate the physiological responses triggered by oral administration of glucose. The
oral tests, i.e. the OGTT and MTT, triggers the complex pathways of the entero-insular axis, and
hence results in a true physiological response, however the OGTT lacks the actions of amino acids
and fatty acids, as compared with the MTT with all nutrients included. Compared with the IV tedts,
the oral tests are much easier to perform, however the complexity of the actions of the different
hormonal and neural pathways triggered by the ora routes makes modelling work avital, though
difficult, component for the interpretation of the outcome of these tests. The basal stateis the easiest
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test for assessing measures of insulin action and beta cell functionality. However the basal stateis
only one single point in the highly dynamical glucose-insulin system, and cannot stand alone as a

measure of insulin action and/or beta cell functionality.

2.2 M athematical tests

From the different methods described in the previous sections used to stimulate the beta cell with
different pattern of glucose levels, several different empirically-derived indices representing beta
cell functionality can be calculated, where perhaps the most widely used are the AIR index of first
phase insulin release derived mostly fromthe IVGTT and the HGC, and the insulinogenic index
derived from the oral tests. Although these indices are easy to calculate their use is limited and the
obtained values must be interpreted cautiously. Much more specific and clear information about the
functionality of the beta cell can be gained when the protocols are interpreted with the help of a
mathematical model that relates the glucose change to indices that can describe the patternin

insulin secretion, i.e. beta cell function.

2.2.1 Insulin secretion vs. beta cell function

Although the terms insulin secretion and beta cell function often is used interchangeably, insulin
secretion will here refer to absolute insulin secretion, whereas beta cell function refers to the ability
of the beta cells to respond to stimuli. The assessment of insulin secretion (absolute) is most often
performed by the use of the “raw” insulin or C-peptide concentration values (Hovorka and Jones
1994; Mari 2006). Use of insulin concentration to assess true insulin secretion is limited by the fact
that insulin undergoes a high (>50%) and concentration dependent hepatic extraction (Caumo et al.
2007; Hovorka and Jones 1994; Meier et al. 2005; Toffolo et al. 2006). However under dynamic
situations, the insulin concentration may be a reasonable estimate of the secretion rate, dueto the
fast elimination (half-time 5-10 min) of insulin in plasma (Luzi et al. 2007). In spite of this, insulin
concentration reflects post-hepatic insulin appearance, and is therefore not a true measure of insulin
secretion. C-peptide is secreted in equimolar amounts as insulin, and in contrast with insulin, not
cleared by the liver to any significant extend (Hovorka and Jones 1994; Luzi et al. 2007). Thus C-
peptide offers away to assess pre-hepatic, and thus actual, insulin secretion. However the
elimination of C-peptide in plasma is slow (half-time around 30 min), thus fast changes in secretion

pattern is more pronounced in the insulin data, than in the C-peptide data. Furthermore in order to
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determine insulin secretion from C-peptide data a model of the C-peptide kinetics is needed, and a
two-compartment model has been found to be appropriate (Eaton et al. 1980). The deconvolution
method proposed by (Eaton et al. 1980) to assess the insulin secretion rate where later validated by
(Polonsky et al. 1986), and has become the gold standard method for the assessment of the insulin
secretion rate (Kjems et al. 2000). To avoid the need of a bolus injection of C-peptide for each
subject, in order to calculate the kinetics parameters, the population based approach proposed by
(Van-Cauter et al. 1992) can be used, asthe error it introduces is no larger than the intra-individual
variation of the kinetic parameters. A recent study has however shown that large insulin
concentration values induced by exogenous insulin administration increases the clearance of C-
peptide (Bouche et al. 2010). Thus it may be that methods based on C-peptide data to assessthe
insulin secretion give rise to (modest) underestimation of the secretion rate during dynamic

assessments.

2.2.2 Mathematical modelling of the beta cell function

Some of the earliest work done on mathematical modelling of beta cell function dates back to the
work of Grodsky (Grodsky 1972) and the work of Cerasi et al. (Cerasi et al. 1974). Both groups
formulated models based on the biphasic nature of the beta cell, i.e. that the beta cells respond to an
abruptly and elevated glucose by afast initial release (first phase), lasting 5-10 min followed by a
slowly rising second phase.

The group of Grodsky originally formulated a two-pool model, and postulated that the first
phase release was due to emptying of insulin granules from a labile pool, whereas the second phase
slowly rise was due to a glucose sensitive refill (provision) of insulin from an insulin precursor pool
to the labile pool. In order to explain the increasing first phase secretion when glucose was applied
as staircase stimulation, Grodsky hypothesised that the insulin in the labile pool was contained in
different granules eliciting different glucose threshold values, hence when glucose is progressively
increased more insulin containing granules will become active and release insulin. This threshold
hypothesis or package-storage hypothesis was found able to explain the glucose rate dependency of
the first phase insulin release (Licko 1973).

The work of Cerasi et al. is based on entirely different assumptions. They noted that
consecutive glucose stimulation with a short time interval in between could inhibit the secretion
pattern. Hence Cerasi et al. proposed that glucose elicit three time-dependent effects upon the beta

cells; An immediate effect characterising the first phase; an inhibiting effect responsible for the
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decline in secretion pattern upon consecutive stimulation with short time interval in between, and a
potentiating effect responsible for the development of the second phase (Nesher and Cerasi 2002).
Whereas the model by Grodsky et al. is based on the assumptions of insulin being confined within
different compartments, the model by Cerasi et al. is based on the assumptions that glucose
generates different time-dependent signals in the beta cells modulating the secretion pattern. Both
theories are despite, or because of, their entirely different grounds, the cornerstones of the current
mathematical modelling of beta cell function. The threshold hypothesis by Grodsky iswidely
applied in the concept of the minimal modelling of the beta cell function, now referred to asthe C-
peptide minimal model, and this model has been applied to both IV glucose tests (Toffolo et al.
1995; Toffolo et al. 1999; Toffolo et al. 2001) aswell as oral tests (Breda et al. 2001; Breda et al.
2002; Stell et al. 2004). Recently a model has been proposed that combines the present knowledge
regarding the subcellular events occurring in the beta cells upon glucose stimulation with the
threshold hypothesis applied to the single beta cells (Pedersen et al. 2008). The ideas of Cerasi et al.
have been applied in the work of Mari et al. (2002a, 2002b) where they especially have found the
concept of the potentiation effect relevant with the description of beta cell function throughout 24 h
living.

Fig. 2.7(a) shows the structure of the C-peptide minimal model and Fig. 2.7(b) shows the
structure of the model proposed by Mari et al. The most important difference between these two
strategies lies in the description of the dose-response relation between glucose and insulin release.
The C-peptide minimal model introduces a delay between glucose and resulting release, whereas
the dose-response relation between glucose and release is modulated by a time-varying potentiation
factor, generated by various signals. In relation with meals, these potentiation factor signals have

been proposed to be related with the actions of incretin hormones.
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Fig. 2.7: (a) Structure of the C-peptide minimal model. (b) Structure of the model proposed by Mari
et al. 2002. Adapted from Ferrannini and Mari (2004).

Other models to describe beta cell functionality during a meal have been proposed. They differ
essentially only in the way the different components given in Fig. 2.7(a) are combined. The model
by Hovorka et al. (1998) to assess beta cell function after aMTT isthe simplest representation of
the structure given in Fig. 2.7(a). The model includes a dose-response relation between C-peptide
secretion and glucose, presented as a linear function of glucose. The model assumes no delay
between glucose stimulation and secretion, and no glucose derivate component either. The model
by Cretti et a. (Cretti et al. 2001) to describe beta cell function after OGTT using C-peptide data
employs a delay between glucose stimulation and a linear function of glucose, with no glucose
derivative component.

Hence current mathematical models to assess beta cell functionality are largely based on

either the C-peptide minimal model concept, or the concept of potentiation as applied by Mari et al.

2.2.3 Intracellular mechanisms behind biphasic insulin secretion

Current knowledge of the intracellular mechanisms responsible for the biphasic nature of insulin
secretion seen when a hyperglycemic stimulus is applied to the pancrestic islets are in favour of two
non-exclusive views. One being that the insulin granules are contained within functionally distinct
pools, where the first phase is explained by the emptying of granules from areadily releaseble pool,
RRP, and where the second phase is explained by a glucose dependent mobilization of granules

from areserve pool, with consecutive events of docking to cell membrane, priming and release
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(Rorsman and Renstrem 2003). These ideas dates back to the ones put forward by (Grodsky 1972),
however with more detailed knowledge of the individual molecules partaking in the exocytotic
events. The other view concentrates on the intracellular pathways of signal generation for insulin
secretion, cf. Fig. 2.8 (Henquin 2009). Two pathways are considered to be activated upon glucose
stimuation. The well-studied and well-recognised triggering pathway, involving accelerated glucose
metabolism, ATP generation (with a resulting decrease in ADP), closure of ATP-sensitive K*
channels, depolarisation, opening of voltage-sensitive Ca?* channels, with aresulting increase in

cytosolic Ca?* concentration, [Ca®']c.
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Fig. 2.8: Schematic representation of the triggering and metabolic amplifying pathways that triggers
insulin secretion upon stimulation with glucose. Also illustrated is the neurohormonal amplifying
pathways. Dotted line indicates a decreased flow. +, stimulation; -, inhibition. Adapted from
(Henquin 2009).

The other pathway, the metabolic amplifying pathway is far less understood. For this pathway to be
active, glucose needs to be metabolised, and cytosolic Ca?* concentration needs to be increased.
Hence normally this leaves a hierarchical regulation where the triggering pathway preceeds the
amplifying pathway. The messenger(s) responsible for the metabolic amplifying effect of glucose
have not been discovered, but ATP could possibly also serve as a messenger for this pathway
(Henquin 2009). The triggering pathway is important for both phases of insulin secretion, and the
amplifying pathway takes part in the second phase of insulin secretion. Interestingly the author
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proposed that the amplifying pathway also influences the first phase, and estimated the contribution
to be around 50%. That the amplifying pathway is rapid and augments both the first and second
phase was given further support in two recent studies (Mourad et al. 2010). In these studies the
authors also put forward the hypothesis that the amplifying pathway corresponds to acceleration of
the priming process, giving release competence to the granules.

An explanation to the non-sense to glucose and especially the loss of first phase insulin
secretion in subjects with type 2 diabetes from the view of the triggering and amplifying pathways
is not straightforward. However as glucose metabolism in the beta cell is diminshed in type 2
diabetets, as seen by reduced glucose transporter capacity as well as glucokinase activity (Del et al.
2005), the signals generated by the triggering and amplifying pathways are dimished. In
combination with a decrease in RRP (Rorsman and Renstrgm 2003), this would result in diminshed
first phase and a blunted second phase.

Non-glucose stimuli such as arginine are able to elicit afirst phase response, even though
glucose-stimulated insulin secretion is absent or severly impaired, but the effect is potentiated by
glucose (Ishiyamaet al. 2006). Arginine is very slowly metabolished by the beta cell, and its
products do not elicit insulin secretion (Ishiyama et al. 2006). However Arginineisacation, i.e. it is
positive charged, hence when it enters the beta cell it depolarises the cell. Thus it depolarises the
membrane, and enhances insulin secretion in-dependent of ATP generation. Increasing glucose
concentration will trigger the amplifying pathway, and eventually maybe also the triggering
pathway. Hence the glucose potentiation may thus provides two compotents for enhancement of the
arginine-induced insulin secretion, the potentiation of the secretion due to the generation of
amplifying signals, and the potentiation due to the increase of cytosolic Ca?* via the triggering

pathway.
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In this chapter the most commonly used protocols and tests for the assessment of beta cell
function and insulin action have been described and some problematic issues concerning these
have been highlighted. More specifically it has been shown that:

e Thebasal state cannot be used to evaluate a connection between beta cell function and
insulin action. The basal state only reflects one single point in the highly dynamical
glucose-insulin interaction pathway, it may however give a rough impression of the
state

e ThelV glucose tests can be standardised, however they are cumbersome and un-
physiological. The hyperinsulinemic-euglycemic glucose clamp is the gold standard for
assessing insulin action. However due to the inhibition of the hepatic glucose
production by insulin and due to the saturability of glucose uptake, no well-defined
measure of insulin action can be obtained, not even for the gold standard method.

e Thefast kineticsduring an IVGTT resultsin overestimation of theinitial glucose
uptake due to the spread in mean transit time for blood return and/or due to the (wrong)
assumption of linear kinetics of glucose uptake. Furthermore the fast kineticsis highly
dependent on the blood flow which makes the assessment of the initial glucose uptake
even more problematic and highly variable from time to time.

e Thephysiological OGTT and MTT trigger a complex interwoven network of hormones
and neural pathways that elicit effects on both the beta cell functionality and the insulin
action. This makes mathematical modelling vital for the interpretation of these tests.

» State-of-the-art mathematical models to quantify beta cell functionality during oral tests
have their rootsin the description of the biphasic insulin release pattern during square-
wave glucose stimulation by classic control theory

o Themodels can essentially be split up in two directions: The “ storage-limited” or the
“signal-limited” approaches.

o Themodesdiffer primarily on the description of the dose-response relation between
glucose changes and corresponding changesin insulin release taking into account that

the relation between glucose and insulin release is not static.
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Chapter 3

Minimal models analysis of Owens M TT data

An analysis of MTT data with the oral glucose and C-peptide minimal models with the largest
number of subjectswith type 2 diabetes presently reported in literature is presented.

The estimates for each of the indices of insulin action and beta cell functionality all congtituted a
large interval both within the group of subjects with type 2 diabetes, and within a healthy group.
Despite thisa clear distinction between the two groups was evident from the disposition indices

plot.

MTT data from a small subset of subjects with type 2 diabetes that were followed at year O, 1, and
5, to record disease progression and treatment effect, was also analysed with the minimal models.
Valuesfor indices of insulin action and beta cell functionality all increased from year 0to year 1,
demonstrating treatment effect. From year 1 to year 5, the value of the indices decreased,
demonstrating declinein treatment effect and/or progression of disease. However no clear

pattern and no clear difference between the years were found from the disposition indices plot.

31 Presentation of OwensM TT data

The Owens MTT datarefersto alarge database of data from subjects with type 2 diabetes who were
subjected to a standard meal tolerance test, MTT. The database was constructed by Dr. David
Owens and colleagues, in collaboration with Novo Nordisk A/S. Around 400 subjects were
followed from diagnosis start (year 0), and a subset of those through visits at year 1, 2, 5, 10, 15 and
20. At each visit, MTT data, like plasma glucose, insulin and C-peptide concentrations, and data
like sex, age, weight, height, HbA1C were collected and recorded in the database. Standard
treatments according to need were given after diagnosis at the first visit (year 0), hence subjects at
year 0 were all without treatment. Unfortunately, no record of the specific treatment is present in the
database. MTT data from around 80 healthy volunteers were also recorded.
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3.2  Subset of dataanalysed

In collaboration with C. Cobelli and C. DallaMan | have analysed subjects with type 2 diabetes
subjects at first visit (year 0), and healthy subjects from the Owens database. Insulin sensitivity was
assessed by the recently proposed oral glucose minimal model (DallaMan et al. 2002). To assess
measures of beta cell function the same subjects were analysed with the oral C-peptide minimal
model (Breda et al. 2001; Breda et al. 2002; Toffolo et al. 2001).

Only subjects that had measurements at all sampling times, i.e. a 0, 10, 20, 30, 40, 50, 60,
75, 90, 120, 150, 180, 210, and 240 min were included in this analysis.

This restriction was used to ease the estimation process while at the same time obtaining a
reliable estimate of the parameter describing the dynamic secretion phase in the C-peptide minimal
model. According to Breda et al. (2001) and DallaMan et al. (2005a) reliable estimates require
samples at 10 and 20 min.

The number of subjects left then was 206 for the subjects with type 2 diabetes. Of these
subjects, 18 subjects had very small or odd insulin and/or C-peptide plasma concentrations and
therefore were disregarded. In 19 subjects the estimation procedure gave extremely bad fit and/or
estimation of parameters, primarily with the C-peptide minimal model (not shown). These were also
disregarded in the following analysis. Hence 169 subjects with type 2 diabetes were left.

For the healthy subjects, 41 subjects were left when only including those with measurements
at all sampling times, and excluding extreme outliers. Mogt of the subjects that were disregarded
were due to extremely bad fit to the C-peptide concentration as assessed by the C-peptide minimal

model (not shown).

Fig. 3.1 showsthe plasma concentration of glucose, insulin, and C-peptide of the 169 subjects with
type 2 diabetes and Fig. 3.2 shows the corresponding plasma concentrations for the 41 healthy
subjects. A small subset of subjects with type 2 diabetes who underwent MTT’ s at the years 0, 1,
and 5 were also analysed.
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Fig. 3.1: Plasma concentrations of (a) Glucose, (b) Insulin, and (c) C-peptide after MTT of 169 subjects with
type 2 diabetes. Mean + SD (full black line). Individual concentrations are drawn with grey lines.
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Fig. 3.2: Plasma concentrations of (a) Glucose, (b) Insulin, and (c) C-peptide after MTT of 41 healthy
subjects. Mean + SD (full black ling). Individual concentrations are drawn with grey lines.

3.3  Theoral glucose minimal model

The oral glucose minimal model was developed by C. DallaMan et al in 2002 (DalaMan et al.
2002) in order to obtain measures of the insulin sensitivity from oral routes of glucose
administration. The structure of the oral model is similar to the original glucose minimal model
(Bergman et al. 1979) that was developed to describe the glucose kinetics after an intravenous
glucose tolerance test, IVGTT in dogs and later applied to humans (Bergman et al. 1981). This
model was selected amongst six other models as being the best representation of the glucose
Kinetics data, according to statistical criteria and the principle of parsimony (Occam’s Razor), i.e.
the model should unambiguously explain the observed behaviour in the data with the simplest
structure (Bergman 2005; Bergman et al. 1979).
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Fig. 3.3 showsthe structure of the glucose minimal model where the oral version includes a
description of the absorption of glucose from the gastrointestinal tract. The intravenous glucose
input is represented with a dashed arrow. Plasma insulin above the basal value I-1,is the input to the
model and plasma glucose is the output. The variation over time of plasma glucose is determined by
the balance between the glucose administration rate, the net hepatic glucose output, Jyco and the
peripheral tissue glucose uptake, Jer, where

Jueo = HGO, — (k5 + kI1)G (3.

Jor = (k, +k,1NG (3.2
where HGOy is the net hepatic glucose output at zero glucose, k; and ks are rate constants
describing glucose effect on Jyco and Jer, respectively. ky and kg are rate constants describing
the effects of insulin on Jyco and Jer, respectively. The effect of insulin on glucose is in both cases

assumed to occur from a remote compartment, 1.

Hence in the original formulation, the minimal model equations to describe the glucose kinetics

after an oral administration can be written

%?:%um ~Jpr = HGO, — (ky + ky1)G- (K, +k,1)G
(3.3)
= Ff; +HGO, —[(k, + ko) + (k, + k)I'|G
dr .
ka1 =Kyl (3.4)

where R, is the glucose rate of appearance from the gastrointestinal tract, V is the glucose
distribution volume, k» isthe rate constant for transfer of plasma insulin into the remote

compartment and ks the rate constant determining the half-life of insulin in the remote compartment.
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Fig. 3.3: The structure of the oral model is identical to the original model (1V) except that the oral
model includes a description of the rate of appearance of glucose, R, from the gastrointestinal tract.
Plasma glucose is represented by one compartment, where the liver adds glucose determined by the
net hepatic glucose balance, that is regulated by glucose and by a delayed action of insulin,
represented by the remote insulin, I’ (t). Adapted from Cobelli et al. 2007.

Assuming the steady state values Gy, and 1y, Egs (3.3) and (3.4) can with some re-parameterisation
be written

&G _R

+ =y TS, -0)-SXG  GO)=G (35
dd_>t<:p2((|—|b)—x); X(0)=0 (36)

where S is the glucose effectiveness at seady state basal insulin, S is the steady state insulin
sensitivity, and p, is the rate constant determining remote insulin action. suffix “b” denotes basal

(timet =0 min) values.

Rate of appearance of glucose, Ra

To estimate the insulin sensitivity, S; from a meal tolerance test, it is necessary to know the glucose
rate of appearance. However, measuring R, is a complex task involving the need for glucose tracers.
This has previously been an obstacle for using ora glucose teststo measure insulin sensitivity. The
oral glucose minimal model was developed to overcome the difficulty of measuring the absorption
rate of glucose (DallaMan et al. 2002). In the paper the idea was to implement a parametric

representation of R, and then reconstruct R, from the estimated parameters. Three different models
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(or parametric presentation) were tested; a piecewise-linear, a spline, and a dynamic representation.
The piecewise-linear was found to be the most optimal.
In this analysis of the Owens MTT datal specified R, as a piecewise-linear function with 7
break points (ko, ki ... ke) a 0, 20, 30, 60, 90, 180, and 240 min, i.e.
k,_, + Ki—Kiy (t—-t_), t,<t<t i=1.6
R, ()= L=t (3.7)

0, otherwise

with Ry(0) = ko= 0.
Hence six parameters need to be estimated to reconstruct the Ra.

| choose the piecewise-linear representation of R, in order to follow the estimation strategies put
forward by DallaMan et al (DallaMan et al. 2002; Dalla Man et al. 2004), and also because the
time course of the estimated R, seems to be reasonable as compared with the time course
reconstructed by atracer method (Dalla Man et al. 2004). On the other hand, a two-exponential
description of R, could be a better choice, as only three parameters would needed to be estimated,

i.e. two rate constants and an amplitude (Hansen 2004).

3.3.1 Mode identification and parameter estimation procedure
With the chosen specification of R, the total number of parametersto be estimated is 10 and these
are; ky, ko ... Ke, V, Sg, S, and p,. To achieve arobust model identification, a strategy similar to the
one used in (DallaMan et al. 2002; Dalla Man et al. 2004) was applied. This strategy involves
several steps.

Firstly, to make the model a priori identifiable, the value of the parameter V was fixed and
set equal to the median value of a population of subjects (Dalla Man et al. 2004).
In (DallaMan et al. 2004) S was fixed to the median value of the population. However with this
approach it turned out that the estimation of the insulin sensitivity index S, and the parameter
describing insulin action, p, was unreliable for the subjects with type 2 diabetes (C. DallaMan,
personal communication). On the other hand S is usually well estimated (C. Dalla Man, personal
communication). Based on these experiences, in order to improve model identification, the
following relation linking S to Sg was applied

36:9%§+s.u 38)
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where GEZI is the glucose effectiveness evaluated in steady state a zero insulin (Kahn et al. 1990).
Eq. (3.8) can be realised by applying the definition of glucose effectiveness

(Bergman et al. 1979) to the model given by Egs. (3.5) and (3.6) at zero insulin evaluated at steady
state. The GEZI parameter was fixed at 0.025 dI/kg/min.

Asthe rate parameter p, governing the remote insulin action is often difficult to estimate
with precision, prior knowledge was added (maximum a posteriori Bayesian estimation) asin (Dalla
Man et al. 2002) to increase the estimation robustness. More specifically, as the distribution of p;
was found not to be normal-distributed, whereas the square root of p, was, it was assumed that Vp.
was normal distributed with mean 0.1 min™ and coefficient of variation, CV = 10% (DallaMan et
al. 2004).

Finally, to increase the estimation accuracy (numerical identifiable), the following relation
was applied

TRa- dt = ];3_V[\; (3.9
where f (assumed known) is the fraction of glucose actually absorbed (bioavailability), D isthe
ingested glucose dose, and BW is the body weight.

Eq. (3.9) assumesthat all glucose is absorbed by the end of the 4-hour meal test period and the
relation reduces the number of parameters to be estimated by one.

Applying the above described assumptions the parameters to be estimated is p,, S and five
of the break points specifying R,, hence the number of parameters to be estimated is reduced by
four. The model parameters that need to be fixed are given in Table 3.1.

Parameter Value Meaning Ref
V (di/kg) 1.45 Glucose distribution volume | DallaMan et al 287 (2004)
GEZI (dI/kg/min) | 0.025 Glucose effectiveness at DallaMan (Personal
zero insulin communication)
f (Unit less) 0.9 Bioavailability of ingested | DallaMan et al 287 (2004)
glucose
D (mg) 75000 Amount of glucose in meal

Table 3.1: Fixed model parameters used for both the subjects with type 2 diabetes and the healthy
subjects in glucose OMM.
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The steps taken in order to achieve arobust model identification serve some comments.

Firstly the linkage between the glucose effectiveness, Sg and the insulin sensitivity, S viathe
glucose effectiveness at zero insulin, GEZI as given in Eqg. (3.8) needs some attention.

The glucose minimal model has been found inappropriate to describe the glucose dynamics during
an IVGTT with an overestimation of the glucose effectiveness, Sg and an corresponding imprecise
and inaccurate underestimation of the insulin sensitivity, S in subjects with diabetes (Quon et al.
1994; Saad et al. 1994). This has been ascribed to the necessity of a two-compartment glucose
kinetic model to describe the IVGTT (Caumo et al. 1996). However as described in the previous
chapter, the fast kinetics during an IVGTT is dependent on the blood flow, which makes the
assessment of the effect of glucose and insulin on the glucose disappearance during an IVGTT even
more problematic.

Even though a one-compartment model may be appropriate to describe the slow glucose
dynamics after a meal, the difficulties of estimating S with precision in the subjects with type 2
diabetes resemble the problems encountered with the IVGTT. The glucose effect on the glucose
disappearance is described by the sum of the glucose effectiveness at basal insulin, Sg and the effect
of the dynamic insulin, i.e. the product of the insulin sensitivity, Sy and the insulin action, X
(Bergman et al. 1979). Linking Sg and S, by the relation given in Eq. (3.8) with the GEZI parameter
fixed meansthat Sg and S is not estimated independently; an overestimation of Sg will result in an
overestimation in §; and correspondingly with an underestimation. Also, insulin-independent effects
are not estimated, as these are described by the GEZI parameter that has been fixed.

Furthermore as mentioned in the previous chapter and as will be discussed in chapter 5, the glucose
uptake is a saturable process. Hence the glucose uptake and thereby the glucose effectiveness
depends on the insulin concentration as well as on the glucose concentration.

Thus the description of constant measures of the effect of glucose, Sg and insulin, S; on the glucose
disappearance as given in the glucose minimal model is only valid in a limited range of glucose and
insulin concentration values, as the glucose dependent part of the glucose uptake saturates relatively
fast for increasing glucose concentration, cf. chapter 5. Therefore, the difficulties of estimating S, in
subjects with type 2 diabetes properly, seems partly to be due to awrong description and hence
overestimation of the glucose effectiveness.

The difficulty of estimating p, with precision is also linked with the problem of the
overestimation of the glucose effectiveness and the compensatory bias between Sg and S-X when

fitting the glucose concentration curve. As mentioned above, the glucose effectiveness of the
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glucose disappearance is given by the sum of these two factors and hence fitting the glucose curve
isprimarily atask of estimating the values of these two factors. If S is overestimated it means that
Si-X must be underestimated. With no further restriction on either of the factors S, and X it means
that any value of S and X can be obtained, as long as the product gives a reasonable value that
compensates for the estimation of Sg, €.g. one can obtain an extremely high estimate of S, dueto a
compensatory reduction in the effect of X through an extremely low estimated value of p,. In fact,
the relation given by Eq. (3.8) means that an overestimation of Sg gives an overestimation of S,
with the result of a compensating small effect of X and hence a small estimated value of p,. In
subjects with type 2 diabetes with a small insulin effect, thiswould result in avery low value of p,
and hence an imprecise estimation.

The problem of estimating p, with precision is handled by assuming a known (prior)
distribution of the values with a known mean and standard deviation. In the present estimation
procedure only normal distributions can be handled. The distribution of p, has been found to be
skewed (non-normal), whereas the square root of p, has been found to be (approximately) normal
distributed (Dalla Man et al. 2004), hence the distribution of the square root of p, was used asthe a
priori information. However it must be stressed that the square root of p, is only approximately
normal distributed, as the square root of a skewed distribution will never give anormal distribution.

Therelation given by Eq. (3.9) to reduce the number of parametersto be estimated, from the
rate of glucose appearance, by one, assumes that all glucose is absorbed by the end of the 4-hour
test period. However as can be seen from Fig. 3.4 thisis seemingly not the case, as the estimated R,
is different from zero a the end of the test period. On the other hand, integrating Ra to infinity by
specifying R, as a monoexponential decay from time 240 and onwards asin (DallaMan et al.
2002), does not alter the values of the estimated parameters significantly (not shown), hence the
relation given by Eq. (3.9) seems to be a reasonable approximation.

With these considerations in mind the following results of the model have to be interpreted
with caution. Even though the model may give a reasonable fit to the glucose concentration data,
the estimated parameter values may be misleading, in part due to doubtful assumptions, e.g. fixation
of parameters, in part due to wrong description of the glucose dependency of the glucose uptake,
and in part due to the compensating bias in the estimated parameters.

The parameter estimation procedure was done by applying non-linear least squares method.
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Measurement error on the glucose data was assumed normal distributed with zero mean and known
standard deviation, SD (CV =10 %) (DallaMan et al. 2004). The insulin data was assumed to be

known without errors.

3.3.2 Reaultsfrom the analysiswith the oral glucose minimal model

Rate of appearance, R,
The estimated rate of glucose appearance, R, for the subjects with type 2 diabetes and healthy

subjects are shown in Fig. 3.4(a) and Fig. 3.4(b), respectively.
121 @) 12¢

10p 10}

Ra (mg/kg/min)
Ra {mg/kg/min)
[=2]

- 7 : D -‘- I ) I I I I ) I
210 240 0 30 60 90 120 150 180 210 240
Time {min)

0 30 60 90 120 150 180
Time {min)

Fig. 3.4: Estimated glucose rate of appearance, R, for () subjects with type 2 diabetes (N = 169),
and (b) healthy subjects (N = 41). Mean = SD (full black lin€). Individual estimates are drawn with

grey lines.

The mean profile of the estimated R, for both the subjects with type 2 diabetes and the healthy
subjects elicit a bump that has also been found previously with this parameterisation of R, in both
MTT (DalaMan et al. 2002; DallaMan et al. 2004) and OGTT (DallaMan et al. 20053). No
physiological explanation to this has been achieved (DallaMan et al. 2002; Dalla Man et al. 2004),
however the estimated profile of R, by the model has previously been validated against the gold
standard (tracer method), to determine R, and the prediction was found to be reliable both with
MTT (DalaMan et al. 2004) and OGTT (DallaMan et al. 2005a).

Goodness of fit
The model provided a good fit of the glucose data for both the subjects with type 2 diabetes as well

as the healthy subjects. The average weighted residuals did not show any systematic deviation from
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zero and was at al instances of time within the range [-1, +1] for the subjects with type 2 diabetes,

and only slightly escaped the range [-1, +1] at times below 30 min, for the healthy subjects, cf. Fig.
3.5.
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Fig. 3.5: Mean £ SD weighted residuals, wres for (a) subjects with type 2 diabetes (N = 169), and (b) healthy
subjects (N = 41). Fit obtained with glucose OMM.

Insulin sensitivity
The digtribution of the insulin sensitivity index, S is shown in Fig. 3.6. From this figure it seems
that S is not normal distributed.
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Fig. 3.6: Distribution of S, for (a) subjects with type 2 diabetes (N = 169), and (b) healthy subjects
(N =41), estimated from glucose OMM.



For the subjects with type 2 diabetes, S was estimated (Mean + SE) & S§=5.7+ 0.3 10 per
uU/ml, with precision expressed as coefficient of variation of the estimate, CV = 10.6 £+ 0.6 %, cf.
Table 3.2. Reported literature values of S estimated by the glucose OMM in subjects with type 2
diabetes receiving MTT, range from 2-6-10"* di/kg per pU/ml (Bock et al. 2006; Bock et al. 2007).
In comparison the mean estimated S, in the same units (S-V) yields 8.3-10* dl/kg per pU/ml with V
= 1.45dl/kg (cf. Table 3.1 and 3.2). As S is not normal distributed, it may be more reasonable to
compare with the median estimate. The median estimate of S for the subjects with type 2 diabetes
in the same units as reported in the literature yields S medgian = 6.4-10™ dl/kg per nU/ml. Hence the
value of the median of the estimated S for the subjects with type 2 diabetes is reasonable compared
with reported literature values.

For the healthy subjects, S was estimated (Mean + SE) a S = 22.5+ 2.3 10" per uU/ml,
with precision expressed as coefficient of variation of the estimate, CV = 5.3+ 0.6 %, cf. Table 3.2.
Reported literature values of S, estimated by the glucose OMM in healthy receiving MTT, range
from 11-17-10 dl/kg per uU/ml (Basu et al. 2003; Bock et al. 2006; Bock et al. 2007; Caumo et al.
2000; DallaMan et al. 2002; DallaMan et al. 2005a; Dalla Man et al. 2004). In comparison the
mean estimated S in the same units (S-V) yields 32.6-10* dl/kg per uU/ml with V = 1.45 dl/kg (cf.
Table 3.1 and 3.2).
Hence the mean of the estimated S is a factor 2-3 larger than reported values in the literature. The
median estimate of S, for the healthy subjects in the same units as reported in the literature yields
Simedian = 26.1-10™ dl/kg per wU/ml. Hence even when the literature values are compared with the
median of the estimated S, the estimate of the healthy S, exceed the literature values with a factor

1.5-2.4. At present no good explanation to this discrepancy has been found.



S Mean + SE Range CV (%) CV (%)
(10* min™ per pU/ml) (Median) Mean + SE Range
Type 2 diabetes 572+034 0.93-22.93 10.62 + 0.59 1.59-105.34
(4.4)
Healthy 22.46 + 2.33 1.91 - 68.07 5.27 + 0.62 0.00- 16.02
(18)

Table 3.2: Insulin sensitivity index S estimates and precisions in subjects with type 2 diabetes and
healthy, obtained from glucose OMM.

Remoteinsulin action

As previously described, a priori knowledge was added to increase the “robustness’ of the estimate
of p2. As p2 was found not to be normal distributed, but \p, was, \p, was restricted to have a
known mean with known standard deviation. The estimate and precision of Vp; is given in Table
3.3. The mean p; for the subjects with type 2 diabetes was estimated at p, = 0.0098 min™, and for
the healthy subjects p, = 0.01 min™.

\p2 Mean + SE Range CV (%) CV (%)

(min™) Mean + SE Range
Type 2 diabetes | 0.099 + 0.001 0.036 - 0.166 9.70+0.17 0.34-16.21
Healthy 0.101 + 0.003 0.057 - 0.129 599+ 057 | 0.041-12.02

Table 3.3: Estimates and precisions of Vp2 in subjects with type 2 diabetes and healthy, obtained
from glucose OMM.

34  Theoral C-peptide minimal model
The ora C-peptide minimal model, C-peptide OMM proposed in (Breda et al. 2001; Breda et al.

2002; Toffolo et al. 2001) was used to estimate beta cell function indices. The model is based on the
kinetics of C-peptide, where the two-compartment model proposed in (Eaton et al. 1980) is used to
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represent C-peptide kinetics. Hence the beta cell function indices estimated from this model
represents pre-hepatic insulin secretion pattern.

The model proposed to describe the C-peptide Kinetics is described shortly below.

C-peptidekinetics
C-peptide kinetics is described by the two-compartment model, proposed by Eaton et al. (Eaton et
al. 1980) with the following equations:

C,(8) = SR + Ky, C, (1) = (Kgy + K5 )Cy(t); Ca(0) = Cip (3.10)
C,(t) =k,,C,(t)—k,C,(1); C2(0) = ka1/k12-Cap (3.11)
where C; and C; are the C-peptide concentrations in compartment 1 (accessible) and 2 (peripheral),

respectively, ko1, k12, ko1 are C-peptide kinetics rate constants, and SR is the C-peptide secretion
rate, cf. Fig. 3.7. Suffix “b” denotes basal (timet = 0 min) values.

Fig. 3.7: The two-compartment model of C-peptide kinetics proposed by (Eaton et al. 1980).

C; and C; are the concentration of C-peptide in compartment 1 (accessible) and compartment 2
(peripheral), respectively. koi, ko1, K12 are rate parameters. SR is the C-peptide secretion rate
normalised to the C-peptide distribution volume of compartment 1. Adapted from (Toffolo et al.
2001).

Secretion
The secretion model is based on the idea of the “package storage hypothesis’ (Grodsky 1972; Licko
1973).
SR is assumed to be composed of the sum of two components, i.e.

SR =SRp + SRs (3.12
where SRs, denoted static component, describes the effect of glucose, G to enhance secretion, and
SRp, denoted dynamic component, describes the effect of the rate of change of glucose, dG/dt to

enhance secretion.
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Static secretion

The static component SRs is assumed equal to the provision of new insulin in the betacell, Y, i.e

SRs(t) = Y (t) (3.13)
where Y is assumed to depend on glucose, G according to:

dy

= Y =Y 3.14

pm a(Y, —Y) (3.14)

o describes the rate constant by which Y tends towards the steady state provision Y.. assumed
linearly related to G through the parameter 3 according to

Y.. = B(G-h) + SRs (3.15)
h is the threshold value by which, if G is above this value, new insulin is provisioned. SRg denotes
basal secretion.
Hence, SRs is not linearly related to glucose concentration, but tends, with the rate constant o,
towards the steady state provision Y., that is linearly related to G by Eq. (3.15). In the estimation
procedure, Y .. isrestricted to non-negative values, i.e. if Y.. <0, Y.. is set equal to zero.

The static beta cell function index, or sensitivity, ®s describes the ratio between the static secretion,
above basal, and the glucose, above the threshold h, at steady state, i.e.
Ds= (3.16)

The static sensitivity ®s provides a measure of the effect of glucose on secretion.

Dynamic secretion
The dynamic secretion component SRy is assumed proportional to the rate of increase of glucose
according to

SRp(t) = Kp-dG/dt (3.17)

where Kp is a proportionality parameter.
The dynamic secretion is assumed only to contribute to the secretion, if the rate of change of

glucose is positive, hence if dG/dt < 0 then SRp(t) = 0. SRp is interpreted as describing secretion of
insulin that is already stored in areadily-releasable pool (RRP) in the beta cell.

The dynamic beta cell function index, or sensitivity, ®p describes the ratio between the dynamic

secretion and the rate of glucose increase, i.e. according to Eq. (3.17)
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dp =Kp (318)

@ isameasure of the effect of an increasing rate of glucose on secretion.

Basal secretion
The basal secretion component, SRg is found from the combination of Egs. (3.10) and (3.11)
evaluated in the basal steady state, i.e.

SRs = ko1Cip (3.19)

The basal beta cell function index, or sensitivity, ®g describes the ratio between the basal secretion
and basal glucose Gy, i.e.

®g = ko1C1/Gpy (3.20)
@5 is not estimated from the model, but calculated based on the data and the C-peptide kinetic
parameter.

Total beta cell function
Also atotal, or global, beta cell function index, or sensitivity, @14y can be defined. ®rq is defined

asthe ratio between average increase of secretion above basal and average glucose above basdl, i.e.

T(SR(t) ~SR,)dt

(3.21)

© Totd —

T(G(t) — hydt

Assuming that the system returns to the basal steady state for t -> o, ®rq5 Can be calculated as
CDD (Gmax — Gb)

j (G(t) - h)dt

Proa = Ps + (3.22)

where Gnax IS the maximal value of G obtained throughout the test period.

By using Egs. (3.10) and (3.11), amodel independent expression of &4y can be obtained (Breda et
al. 2001),



kojc1 (t)dt
0 (3.23)

© Totd —

oo

j (G(t) - h)dt

Hence ®+4a gives ameasure of the ratio between the area under the curve, AUC of the C-peptide
concentration in the accessible compartment and the AUC of glucose concentration above the
threshold value.

3.4.1 Model identification and parameter estimation

The C-peptide kinetics rate constant was calculated based on the population based approach
proposed by Van Cauter et al. (Van-Cauter et al. 1992). This approach determines the C-peptide
Kinetics rate constants based on population standard parameters, and seems not to introduce major
errors, asthe difference between the estimates of secretion rate based on standard parameters and
that based on individually determined kinetic parameters, is similar to the difference of replicate
studies in the same subject (Van-Cauter et al. 1992). However the approach is not to be used in
subjects with kidney failure, as the kidney is the major site for C-peptide clearance (Van-Cauter et
al. 1992).

Previous experience shows that the threshold value h is always estimated at values close to
the basal glucose value G, (Breda et al. 2001), hence in the estimation procedure, h is set equal to
Gp asin (DallaMan et al. 2005a). The other model parameters (o, ®s, @p) were estimated by a
non-linear least squares method, similar to the method described in (Breda et al. 2001; Breda et al.
2002; Toffolo et al. 2001) and implemented in MATLAB.

To increase the precision of estimate of o, maximum a posteriori Bayesian estimation was
used, where o was assumed normal distributed with known mean and CV (Breda et al. 2001).
The glucose data was linearly interpolated, and the time derivative assumed known without error.
Errorsin C-peptide data were assumed normal distributed with zero mean and known CV asin
(Toffolo et al. 2006).

3.4.2 Resultsfrom the analysiswith the oral C-peptide minimal model

In the C-peptide OMM glucose is used as the input, and the C-peptide data are the ones to be fitted.
The data used for the subjects with type 2 diabetes and healthy subjects are presented in Fig. 3.1 and
Fig. 3.2, respectively.
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For the subjects with type 2 diabetes, the model provided areasonable fit as evident from the
weighted residuals shown in Fig. 3.8(a). No systematic deviation from zero was present for the
mean weighted residuals, and only occasionally escaped the range [-1; 1].

The fit for the healthy subjects were less good, as evident from Fig. 3.8(b). However the mean

weighted residuals varied in an acceptable range, with no systematic deviation from zero.
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Fig. 3.8: Mean + SD weighted residual, wres for (a) subjects with type 2 diabetes (N = 169), and (b)

healthy subjects (N = 41). Fit obtained with C-peptide OMM.
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Parameter estimates

For the subjects with type 2 diabetes the a parameter was assumed to be normally distributed with
mean 0.09 min™ and CV = 50%.

For the healthy subjects it was found that changing the restriction on the o parameter to have the
mean 0.04 min™ and CV = 112.5 % gave a better fit.

Fig 3.9(a) showsthe distribution of o for the subjects with type 2 diabetes, and Fig. 3.9(b) shows
the corresponding distribution for the healthy subjects. It is seen for both populations that the
distribution of o is not a normal distribution. The mean estimated parameter value for the median
values of o for the subjects with type 2 diabetes and healthy subjects were 0.030 min™ and 0.027
min™, respectively (cf. Table 3.4 and 3.5). The value found for the subjects with type 2 diabetes is
larger than the corresponding value for healthy subjects, in contrast with literature findings (Breda
et al. 2002).
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Fig. 3.9: Distribution of o for (&) subjects with type 2 diabetes (N = 169), and (b) healthy subjects
(N =41), estimated from the C-peptide OMM.

The estimated model parameter values and precisions for the subjects with type 2 diabetes are
shown in Table 3.3 and the corresponding parameters for the healthy are given in Table 3.4.

Large range of variability of the estimated parameters was found for both the subjects with type 2
diabetes and healthy subjects, where the largest range of variability of the parameter estimates was
found for the subjects with type 2 diabetes for all three parameters estimated. The highest precision
of the parameter estimates, as evaluated by the mean and range of CV, was found for the healthy
subjects, except for the estimate of o, cf. Table 3.3 and 3.4.

Mean + SE CV (%) CV (%)
) Range

(Median) Mean + SE Range

Kb (pM per mg/dl) 16.9+0.8 1.39 - 56.97 11+1 0.11- 96.5
. 0.045 + 0.003
o (min™) 0.0027-0.24 | 106+0.7 | 0.001-735
(0.03)

B (pM min™ per mg/dl) 1.8+0.1 0.30-7.15 4.2+0.4 0.29 - 59.9

Table 3.3: Estimated parameters and precisions for the C-peptide OMM in subjects with type 2
diabetes.
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CV (%) CV (%)
Mean + SE Range
Mean + SE Range
Ko (pM per mg/dl) 44+ 4 10 - 141 6.1+1.3 0.0002 - 35.5
. 0.050 = 0.007
a (min™) 0.01-0.24 176 0.0100- 173
(0.027)

B (pPM min™ per mg/dl) 5.4+ 0.4 1.8-125 2.6+0.1 0.7-4.6

Table 3.4: Eimated parameters and precisions for the C-peptide OMM in healthy subjects.

Fig. 3.10 shows the distribution of the three beta cell indices for the subjects with type 2 diabetes
and healthy subjects. The basal beta cell function index seems to be normal distributed for both
groups, whereas the dynamic and static indices have a skewed distribution for the subjects with type
2 diabetes. The dynamic beta cell index for the healthy seems to be normal distributed, whereas the
static, as with the group of subjects with diabetes seems to have a skewed distribution. However no
strict investigation of the distribution pattern has been performed, hence no safe conclusions can be
drawn. Furthermore, the 41 healthy subjects may be a too low value, to represent the “true’
distribution.
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The one study found in literature reporting beta cell measures for the dynamic and static secretion
after a similar MTT for 8 subjects with diabetes (Bock et al. 2006) yields mean estimates, ®p =
417-10° and ®s =~ 30-10° min™* (values read off from a graph).
Compared with the values given in Table 3.5, the estimated @, = 304-10° is somewhat lower than
reported in the literature. However, asthe estimated values for ®, cover awide range of values, it is
difficult to compare the values, as the number of subjects analysed here is much larger than the
number of subjects in the literature study (169 vs. 8). Secondly as the distributions of ®p and ®s
seemingly are skewed, more appropriately would be to compare median estimates. These are
however not given in the literature study.

Despite the above mentioned, the estimated mean value of ®s = 32 + 1.9 is in agreement
with the value from literature. However the median value of ®s is somewhat lower, cf. Table 3.5.
Studies report of beta cell function indices estimates for healthy subjects undergoing standard MTT
(Basu et al. 2003; Bock et al. 2006; Dalla Man et al. 2005b) yields ranges ®p = 400-580-10° and
®s = 35-40-10° min™. The mean estimate ®p = 82810° given in Table 3.5 is much larger than the
values reported in literature. The mean estimated ®s = 121.10°min™ is also much larger than the
reported values. Even the median values are outside the range of reported parameter values.
Presently no good explanation to the discrepancy between the estimated parameter values and the

values found in the literature exists.

Type 2 Healthy
Mean + SE Range Mean + SE Range
(Median) (Median)
o . 4 6.1+0.2 8.8+05
®g (10° min™) 1.3-14.7 2.8-20.2
(5.8) (9.0)
. 304 + 15 828 + 59
®p (10°) 25 - 1026 171 - 1802
(261) (752)
o 1 32+19 121+ 16
®s (10° min™) 5-129 31-528
(24) (92)
Oroa (10°min™) | 39+3 6- 311 123+ 16 -88 - 445

Table 3.5: Calculated beta cell indices of the C-peptide OMM in subjects with type 2 diabetes and
healthy subjects.



3.5 Dispostion index
The observation that the beta cell seem to be able to regulate its insulin secretion in relation to a
corresponding change in insulin action, has lead to the concept of the disposition index, DI.
DI measures the ability of the beta cell to respond to a change in insulin action, and can in this
context be regarded as a measure of beta cell function.
In obesity with resulting insulin resistance, a compensating rise in insulin secretion has been
observed hence in obese people, even in the presence of insulin resistance, glucose tolerance is kept
normal or near-normal, due to the compensating rise in insulin.
The original idea of a disposition index comes from IVGTT, where the first-phase beta cell index,
@, and the second-phase beta cell index, @, were plotted against the insulin sensitivity index, S,.
The resulting plot elicited a hyperbolic relation between the measures of beta cell function and the
insulin sensitivity, ie.

Dlpeta = S Ppeta (3.24)

where the beta suffix denotes different measures of beta cell function.

Fig. 3.11 showsthe three different disposition index plots corresponding to the dynamic, static, and
total index. It can be seen that on average, for each disposition index measure, the healthy subjects

beta cell compensate better for a change in insulin action, than the subjects with type 2 diabetes.
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Fig. 3.11: Disposition index plot of healthy (red) and subjects with type 2 diabetes (black) for (a)
dynamic, (b) static, and (c) total disposition index.

3.6  Analysisof disease progression

Data from 17 subjects with type 2 diabetes from the Owens database, that were followed at the
years 0, 1, and 5 were also analysed with the glucose and C-peptide minimal models, i.e. the
subjects are a subset of the 169 subjects already analysed. Fig 3.12 shows the plasma glucose,
insulin, and C-peptide responses after a sandard MTT of these 17 subjects.
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Fig. 3.12: Plasma concentrations of (a) Glucose, (b) Insulin, and (c) C-peptide after MTT of 17
subjects with type 2 diabetes followed at year O (black), year 1(red), and year 5 (green). Mean + SD.

The procedure for estimation of the parameters of both the glucose as well as the C-peptide OMM
was done exactly as described in the previous sections. Hence only the final parameter estimates are
reported.

Table 3.6, 3.7, and 3.8 shows the most important estimated parameter values, for the year O,
1, and 5 subjects analysed with the glucose and C-peptide OMM.

As previously described most of the parameters seem to be non-normal distributed, and
hence the median estimate may be a better measure to use. Furthermore, estimated values from
potential outliers are suppressed in the median measure. Hence the between year comparison of the
parameter estimates will primarily be inspection by use of the median values.

Evaluated by the median, all the beta cell function indices increases from year 0 to year 1,
and then decreases from year 1 to year 5, cf. Table 3.8.
From Table 3.6 is seen that p, more or less obtain the same value at all years. o decreases by 25 %
from year 0 to year 1, and then increases by 19 % from year 1 to year 5, as evaluated by the median
measures. As o is a measure of the response time (delay) for the beta cell to react on decreasing
glucose values (Breda et al. 2002), it means that from year O to year 1, an increase in the response
time is obtained, whereas from year 1 to year 5, the response time is decreased. Hence from year O
to year 1, an improvement in the beta cell functionality, as measured by the response time, has been

obtained. However this improvement is lessened from year 1 to year 5.
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p2 (min™) o (min™)
Mean Mean
(Median) (Median)
0.0099 0.049
Year O
(0.02) (0.028)
0.012 0.026
Year 1
(0.0099) (0.021)
0.010 0.031
Year 5
(0.0099) (0.023)

Table 3.6: Mean parameter estimates from the 17 subjects with type 2 diabetes followed at year O,
year 1, and year 5, of p,, obtained from glucose OMM, and of o, obtained from C-peptide OMM.

The insulin sensitivity is decreased by 3 % from year 0 to year 1, and decreases by 31 % from year
1to year 5, as evaluated by the median. Evaluated by the mean values it is seen that the insulin
sensitivity increases slightly (5 %) from year O to year 1, and then decreases from year 1 to year 5.
Hence, the insulin sensitivity is unaffected, or dlightly increased, from year O to year 1, and then it
decreases from year 1 to year 5, cf. Table 3.7.

As mentioned in section 3.1, the specific treatment is not recorded. Hence it cannot be assess
whether the changes in the beta cell function indices and/or insulin sensitivity indices between the
different years are reflections of disease progression, treatment effect, or combinations. Future
studies need to clarify this.
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Parameter

R Parameter CV (%) CV (%)
S (10" min™~ per yU/ml) | Mean + SE
) Range Mean + SE Range
(Median)
7.4+0.9
Year O 2.2-153 15+6 7-105
(6.9
78+12
Year 1 19-19.7 8.8+06 31-118
(6.2
6.2+11
Year 5 1.3-16.3 102+13 4.3-310
(4.3

Table 3.7: Insulin sensitivity index S estimates and precisions in 17 subjects with type 2 diabetes
followed at year 0, year 1, and year 5, obtained from glucose OMM.
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Mean = SE

¢] - -1
®g (10" min™) (Median) Range
Year 0 5'(()510?'7 18-122
Year 1 7'(()618?'7 20-147
Year 5 6'5(3418?'9 28-155
Mean + SE
®p (10°) (Median) Range
230+ 44
Year 0 76, 25-723
Year 1 32(2217)29 155 - 628
Year 5 37(231151 119 - 1260
9 . 1 Mean + SE
®s (10°min™) (Median) Range
28+ 6
Year 0 %) 6-96
Year 1 4(23%5 8- 80
Year 5 3(223)7 12-123
9 . 1 Mean + SE
Droa (10°mMin™) (Median) Range
3419
Year 0 %) 7-155
Year 1 4(74%6 10 - 100
Year 5 3(623)8 14- 145

Table 3.8: Calculated beta cell indices of the C-peptide OMM in 17 type 2 followed at year O, 1

and 5.
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Disposition index plot of disease progression and treatment effect

Fig 3.13 shows the disposition index plot for the three beta cell function indices; dynamic, static

and total. Disregarding outliers, no clear pattern seems to be present in any of the three graphs, i.e.

no clear hyperbolic relation between the specific beta cell function index and insulin sensitivity is

seen. However as only 17 subjects are present for each year, the number of subjects may be to

inferior to obtain a clear relation.
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Fig. 3.13: Disposition index plot of 17 subjects with type 2 diabetes for (a) dynamic, (b) static, and
(c) total disposition index followed at year O (black), year 1 (red), and year 5 (green).

Isthe calculation of the disposition indicesreliable?

To evaluate the reliability of the disposition index with the present indices for the beta cell function
and insulin sensitivity requires comparison against a gold standard for determining the disposition
indices during meals. To my knowledge such methods do not exist. However the euglycemic-

hyperinsulinemic clamp is considered the gold standard for determining insulin sensitivity, even
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though this method is problematic (see e.g. section 2.1.2). Despite this, the oral minimal model-
derived index for insulin sensitivity has been found to correlate well with the insulin sensitivity
measure from an euglycemic-hyperinsulinemic clamp (DallaMan et al. 2005b; Steil et al. 2004),
even though the values obtained differs.

To my knowledge there exist no gold standards for determining the different beta cell
function indices during meals. Perhaps the most common used (model-independent) index for
assessing the first phase insulin secretion (during an IVGTT or clamp), AIR reflects the insulin
released during the first 5-10 min. However being based on the insulin concentration, the index also
incorporates the hepatic insulin extraction, and therefore does not represent an independent measure
of beta cell function (Cobelli et al. 2007). Furthermore it is difficult to extrapolate the information
gained from the intravenous glucose tests, about the beta cell function, to the indices obtained with
the oral minimal model describing C-peptide, as they elicit entirely different stimulation profiles on
the beta cell. Thus at present time it is very difficult to say if the disposition indices calculated are
reliable, as no gold standard exists, especially for the determination of beta cell function during oral
teds.

Presently what can be done, in order to evaluate the reliability of the calculated disposition
indices for the subjects presented in the thesis is to compare with the values obtained in literature,
where the same models have been applied, as the one used in the thesis. Table 3.6 show the mean
and standard deviation of the calculated disposition indices for the healthy as well as the subjects
with type 2 diabetes. For both the healthy as well as the subjects with type 2 diabetes, thereisa
large dispersion in all three measures of disposition. As both the insulin sensitivity indices as well
as the beta cell function indices demonstrated large dispersion for both the healthy as well asthe
subjects with type 2, the large dispersion in the disposition indices where expected. In Bock et al
(Bock et al. 2006), the dynamic disposition index Dl gynamic Were calculated at ~ 12,000 and ~ 1667
(10™ dl/kg-min™ per pM) for healthy and subjects with impaired fasting glucose/diabetes,
respectively. The static disposition index Dlgaic Were calculated at ~ 625 and ~ 125 (10 dl/kg-min
2 per pM) for healthy and subjects with impaired fasting glucose/diabetes, respectively. The total
disposition index Dl Were calculated at ~ 800 and ~ 150 (10™* dl/kg-min per pM) for healthy
and subjects with impaired fasting glucose/diabetes, respectively. As evident from Table 3.6 there
are markedly differences between the calculated indices in this thesis as compared with the values
found in Bock et a 2006.
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The large discrepancies found between the disposition indices from the thesis and Bock et al (Bock
et al. 2006)are dueto the discrepancies in both the estimated insulin sensitivity index as well asthe
beta cell function indices. The numbers of subjects analysed in the thesis compared with Bock et al
(Bock et al. 2006), differ considerably for the subjects with type 2 diabetes (169 vs. 8). One
explanation to the large discrepancies between the indices could then be because of the non-normal
distribution found for most of the indices. However as the number of healthy subjects (41 in thesis
vs. 32 in Bock et al) differ only slightly, this explanation is hardly valid, for the healthy subjects at
least. Thus presently it may be speculated that some bug has occurred in the estimation procedure.
With that said, a clear distinction between the healthy and the subjects with type 2 diabetes is
demonstrated.

Table 3.7 shows the development of the disposition indices along the years. Even though a
large dispersion persists, atrend towards a larger value for all the disposition indices at year 1 is
present. Thus effect of treatment may be visible at year 1. At year 5, the presumed effect of
treatment is completely abolished. However a slight increase in the dynamic disposition index is
seen, as compared with year 0. This increase is solely due to a higher dynamic beta cell index at

year 5 as compared with year 0.

Healthy Type 2
(Mean + SD) (Mean + SD)
Dynamic disposition index 39936 + 25466 3989 + 3879
(10™ dli/kg-min™ per pM)
Static disposition index 6194 + 5926 483+ 711
(10 di/kg-min per pM)
Total disposition index 6352 + 7501 620 + 1133
(10 di/kg-min per pM)

Table 3.6: Dynamic, static, and total disposition indices for the healthy subjects and the subjects
with type 2 diabetes. Vaues are presented as mean + standard deviation, SD.
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Dynamic disposition index

Static disposition index

Total disposition index

(10 di/kg-min™ per pM) | (10* di/kg-min™ per pM) | (10* dl/kg-min per pM)
Year 0 3959 + 3684 581 + 833 741 + 1336
Year 1 5663 + 3054 786 + 593 898 + 749
Year 5 4195 + 2640 438 + 373 485 + 405

Table 3.7: Dynamic, static, and total disposition indices for the subjects with type 2 diabetes at year

0, 1, and 5. Values are presented as mean + standard deviation, SD.

Summary on the analysis of the OwensM TT data with the minimal models

169 newly diagnosed subjects with type 2 diabetes and 41 healthy subjects were analysed with the
oral glucose and C-peptide minimal models to obtain measures of insulin sensitivity as well as beta

cell functionality. The number of subjects with type 2 diabetes is presently the largest number of

subjects ever analysed with the minimal models.

The main findings from the oral glucose minimal model, glucose OMM, analysis are:

Good fit to data was found for both the group of subjects with diabetes as well as the

healthy group

S (10 min™ per pU/ml) was found to be non-normal distributed with a large range of
variability for both groups; 1-20 (subjects with diabetes) and 2-45 (healthy), excluding

outliers

Median estimate of S, for the group of subjects with diabetes was found reasonable

compared with literature findings

Median estimate of S, for the healthy group was found to be a factor 1.5-2.4 larger than

reported literature values

The main findings from the oral C-peptide minimal model, C-peptide OMM, analysis are:

e Good fit to data was found for the group of subjects with diabetes and acceptable fit for the

e The dynamic beta cell function index was lower than values reported in the one study

healthy group

found for the group of subjects with diabetes, whereas the static index obtained values that

was comparable to the literature sudy




e The dynamic index of the healthy group was estimated at afactor 1.4-2 larger than the
range reported in the literature, and the static was estimated at a factor 3-3.5 larger than the
range of reported values

A large range of variability were found for all parameter estimates of both groups, however a clear
distinction between the healthy and group of subjects with diabetes was evident from the disposition
index plot, implying that the healthy beta cell compensates better for a change in insulin action, than
the beta cell in subjects with type 2 diabetes.

Disease progression and effect of treatment
17 subjects that underwent MTT at year 0, 1, and 5, to follow disease progression and treatment
efficacy, was also analysed with the minimal models. Main findings are:
« Indices of insulin action and beta cell functionality all showed improvements at year 1
compared with year 0
o Decline in the effect of treatment and/or the result of disease progression from year 1 to

year 5 was evident in all indices of insulin action and beta cell functionality
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In thefirst part of thischapter an analysisof MTT data from a large database of newly-
diagnosed subjects with type 2 diabetes and healthy subjects was performed with the widely used
state-of-the-art mathematical models to describe glucose kinetics and beta cell functionality
known as the glucose and C-peptide oral minimal model, respectively. The analysis showed that:
e Theoral glucose and C-peptide minimal models provided good fit to data for both the
healthy and the subjects with diabetes
o Large spreads of valuesfor the estimated parameters of the models were found for both
the healthy and the subjects with diabetes
e A clear digtinction between the healthy group and the group of subjects with type 2
diabetes was however evident from the disposition index plot, implying that the healthy
beta cell compensates better for a changein insulin action, than the beta cell of subjects

with type 2 diabetes

The second part of the chapter included an analysis of subjects with type 2 diabetes that were
followed at the years O, 1, and 5. The results showed that:

o Treatment between year 0 and year 1 was evident in all the estimated parameters

» Treatment decline and/or disease progression was demonstrated in parameter values

from year 1toyear 5

The values of the estimated parameters and especially the parameters estimated from the glucose
minimal model may however be questionable. The assumptions that were needed to achieve
robust parameter estimation can be explained by an oversimplified description of the glucose
uptake by the assumption of linear kineticsthat lead to wrong estimates of both the glucose

effectiveness and the effect and sensitivity of insulin.
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Chapter 4

The phase plot

The plot of plasma glucose versusinsulin concentration after a meal, i.e. the phase plot is
introduced as a smple way to characterise beta cell function. Clear differencesin the
characteristic measures are found both between healthy and subjects with type 2 diabetes and
within the groups of subjects with diabetes with different fasting plasma glucose values. These
differences are analysed with a simple model introduces to describe the insulin responses.

The oral glucose minimal model is applied to analyse the effect of variability of the model
parameters on the characteristics of the phase plot. The model parameters are found to elicit both
common and different effects on the characteristics of the phase plot, with a possible complex

outcome as a result.

To examine the differences in the insulin responses of newly-diagnosed subjects with type 2
diabetes subjects and healthy subjects after ameal we analysed MTT glucose and insulin response
data from the Owens database. Fig. 4.1 showsthe MTT responses from 417 newly-diagnosed
subjects with type 2 diabetes and 85 healthy subjects, and includes (but extends) the data analysed

in chapter 3.
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Fig. 4.1: (a) Mean plasma glucose and (b) mean plasmainsulin after aMTT in 417 newly-
diagnosed subjects with type 2 diabetes (open circle) and in 85 healthy subjects (full circle). Error
bars represents standard deviation, SD.
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Clear differences between the subjects with type 2 diabetes and the healthy subjects in both the
glucose and insulin data are visible. Maximal mean glucose values are reached faster in the healthy
subjects (tmax=40 min) compared with the subjects with type 2 diabetes (tmax=60 min). In the healthy
subjects mean glucose returns to the basal (t=0 min) value, within 90 min, where it stays throughout
the 4-hour test period. In contrast the mean glucose in the subjects with type 2 diabetes subjects
declines slowly and almost linearly throughout the rest of the test period. Maximal insulin value in
the healthy subjects is reached at t=50 min in contrast with the corresponding value for the
subjects with type 2 diabetes, t max=75 min. The healthy insulin profile returns back to its basal
value by the end of the test period.

In contragt, the insulin profile from the subjects with diabetes is still above its basal value by
the end of the test period. There is alarge spread of the glucose responses in the subjects with type
2 diabetes compared with the healthy subjects, as seen by a large standard deviation, SD of the
subjects with type 2 diabetes compared with the healthy subjects, cf. Fig. 4.1(a). In contradt, alarge
variation in the insulin responses is visible in both the subjects with type 2 diabetes and in the
healthy subjects, cf. Fig. 4.1(b).

As shown in chapter 2 (cf. Fig. 2.1), and for easy reference, shown again in Fig. 4.2, thereis
alarge spread in the fasting plasma glucose values, FPG for the subjects with type 2 diabetes,
ranging from 5-21 mM, whereas the healthy FPG is kept within 4-7 mM.
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Fig. 4.2: Fasting plasma insulin, FPI against fasting plasma glucose, FPG for 85 healthy subjects
(open circle) and 417 newly-diagnosed subjects with type 2 diabetes (full circle).
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To examine the effect of different FPG values on the insulin meal responses, we stratified the
subjects with type 2 diabetes in five groups (Grp.1-5) according to their FPG values, as given in
Table 4.1.

Subjects FPG | Number
stratification (mM)

Grp. 0 (healthy) <7 85
Grp. 1 <7 45
Grp. 2 [7,9] 118
Grp. 3 [9,11] 84
Grp. 4 [11,13[ | 68
Grp. 5 > 13 102

Table 4.1: Stratification of the 417 newly-diagnosed subjects with type 2 diabetes according to
their fasting plasma glucose values.

4.1  Phaseplot characteristics

The mean phase plots, i.e. the plots between the mean plasma glucose and the mean plasma insulin
for the five groupings of T2D (Grp. 1-5) and the healthy group (Grp. 0) asgivenin Table 4.1 are
shown in Fig. 4.3. Clear differences between the phase plots can be seen. We have previously found
that the phase plot can be characterised by at least three parameters; slope, offset and delay
(Korsgaard and Jonsson 2005).
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Fig. 4.3: Phase plot between the mean plasma glucose and mean plasma insulin for healthy (Grp. 0)
and five groupings (Grp. 1-5), according to FPG, of subjects with type 2 diabetes as given in Table
4.1. Three parametersthat characterise the phase plot can be defined; Slope, offset, and delay. The
slope decreases for increasing FPG. The offset correlates with FPG. The delay decreases for
increasing FPG values. The grey circle shows the cephalic insulin release.

Slope

The slope represents the beta cell glucose sensitivity, i.e. the change in insulin release for agiven
change in glucose. The phase plotsin Fig. 4.3 clearly show that the relation between glucose and
insulin responses for increasing glucose concentration is not the same as the relation when glucose
decreases, for the healthy group (Grp. 0) aswell as for the groups of subjects with type 2 diabetes
(Grp. 1-4). The phase plots elicit a (hysteresis) loop. Hence, as the relation between glucose and the
resulting insulin release is highly dynamical, no single well-defined measure for the slope can be
given. The slope is a qualitative measure that characterises the relation between glucose and insulin.
Fig. 4.3 shows a clear decline in the slope for the mean phase plot with increasing fasting plasma

values, where the loop more or less collapses for large FPG values.

Offset

The offset is defined as the glucose value at which insulin startsto increase, i.e. it is a measure of
the starting point for glucose sensitivity in the beta cell. Fig. 4.3 shows that the offset is correlated
with the FPG.
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Delay
As described above, the phase plot between glucose and insulin elicit an open curve. The delay, or
lag, is a measure of the “openness’ of the phase plot. Fig. 4.3 shows that the phase plots close for

increasing FPG to collapse for large FPG values.

Cephalicinsulin release

The phase plotsin Fig. 4.3 show that, particularly for healthy subjects, insulin startsto increase
before any noticeable increase in glucose. This may be explained by the cephalic insulin, i.e. the
neurally mediated secretion of insulin occurring before nutrient absorption. Ahrén and Holst (Ahrén
and Holst 2001) found evidence to show that the cephalic insulin release, lasting around 10 min (in
accordance with the datain Fig. 4.3), is largely mediated by autonomic activation, and that incretins
(GLP-1, GIP) are not involved. Furthermore they found that the cephalic phase is required for a

normal glucose tolerance.
4.2  Analysisof the phase plot with the insulin model

To analyse the phase plots and their characteristics as shown in Fig. 4.3, in greater details, we
applied a modified version of the model which we previously had developed for a mathematical
analysis of the phase plot (Korsgaard and Jonsson 2005). The idea behind the model development
was to extract as much possible information out from the phase plotsin asimplified, yet

informative, manner to characterise the beta cell function.

In the model the glucose concentration, G is the input and the insulin concentration, | the output of
the model. The relation between glucose and insulin is described as

() =a-X{E)+B-Y(H)+1, 4.1
where X(t) and Y (t) are assumed to depend on glucose. oo and B (pM/mM) describes the effect of X
and Y on the insulin, respectively, and I, describes basal insulin.
A detailed description and analysis of the relation between X, Y and glucose can be found in
(Korsgaard and Jonsson 2005).

Briefly, X describes an immediate effect of glucose, G on insulin given by
G(t)-G,, for G(t)>G,
X(t)=

0, otherwise

(4.2)
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where Gy, isthe basal glucose concentration value (t=0 min). It is assumed that the immediate effect

of glucose only is present for glucose concentration values above the basal value.

Y isassumed to depend on glucose according to
dy(t) l(

dt T
where X(t) isgiven by Eq. (4.2).

X()-Y(t) (4.3)

In this formulation, X(t) can be described as the steady state relation, by which Y (t) tends towards
with the time constant .

The parameters o. and B represents the immediate and the delayed effects of glucose on
insulin, respectively. These parameters are to be interpreted as representing indices for the secretion
of insulin by the beta cells, hence characterising beta cell function. Some remarks are here in order:

Firstly, Eq. (4.1) describes the relation between the glucose level and the resulting insulin
level. Hence it is not the secretion rate of insulin asin (Korsgaard and Jonsson 2005) that is
assessed by the model. However, the elimination of insulin in the body is fast, with half-life for
elimination in the order of 5-10 min (Luzi et al. 2007). Assuming one-compartment first-order
insulin elimination, which appear to be a reasonable assumption for normal physiological insulin
values (Hansen 2004; Nucci and Cobelli 2000) we have

d _sr-ki (4.4)
dt

where SR is the insulin secretion rate and k is the insulin elimination rate.

Due to the small elimination half-life (large k), it is seen from Eq. (4.4) that the insulin level and the
secretion rate differ only by the proportionality constant k. Hence it seems reasonable to assess
insulin secretion rate by the insulin levels. The argument hinges on the fast elimination of insulin.

Secondly, because insulin undergoes first-pass hepatic extraction, the indices found by this
method are a measure of the post-hepatic insulin appearance, and not atrue measure of the insulin
secretion rate. Methods based on C-peptide kinetics more correctly measures beta cell functions, as
C-peptide is not extracted by the liver to any significant extend. However, as discussed in chapter 2,
these methods have other drawbacks.
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4.2.1 Model selection

In the development of the insulin model described by Egs. (4.1) - (4.3) different combinations of the
X and Y components described by Egs. (4.2) and (4.3), together with a component describing the
positive rate of change of glucose, were tested. Details of the model selection can be found in
Appendix A. Briefly, when considering only one component at atime it was found that the delayed
effect component was a much better description of the data, than the immediate component alone.
Evaluating all other combinations, it was found that the combination of the immediate and delayed
component was the best choice. Including all three components gave only a slightly better
description.

A first order insulin kinetics elimination model asin Eq. (4.4) was also tested, assuming a fixed
insulin half-life. It was found that the data was best described by the “direct” relation given in Eq.
(4.2).

4.2.2 Effect of fasting plasma glucose, FPG on beta cell function indices
In order to find the most important variables that could explain the variability of the model
parameters between the subjects, we carried out acovariate analysis as detailed in Appendix A.
Briefly, it was found that FPG was the best variable to explain both the variability of o and 3, with
the correlation shown in Fig. 4.4.

We found that the immediate effect index o decreased by 16% and the delayed effect index
BB decreased with 25% when FPG increased by 1 mM, hence the mechanism responsible for the
delayed effect seems to be more affected by changes in FPG than the immediate. This seemsto be
in contrast with the finding that the decrease of the first phase of insulin release is one of the earliest
marker for the development of diabetes. However caution should be made to relate the immediate
effect of insulin with the first phase of insulin release as assessed by IVGTT.
Furthermore we found that waist circumference was the most important variable to explain

variation in the basal insulin, 1.
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Fig. 4.4: (a) Correlation between the fasting plasma glucose, FPG and the estimates of o for all
subjects. (b) Correlation between FPG and B3 for al subjects.

4.3  Analysisof the phase plot with the oral glucose minimal model

As earlier described, the glucose minimal model is one of the most widely used models to describe
the plasma glucose dynamics after a perturbation. The model was applied in chapter 3 to analyse the
differences within and between the meal response data for healthy and subjects with type 2 diabetes
from the Owens database.

In this section the scope isto apply the oral glucose minimal model, glucose OMM to
analyse the phase plot by investigating the effect of variation of the model parameters on the
characteristics of the phase plot.

For this purpose, data and parameter estimates are taken from already published results
(DallaMan et al. 2004). Briefly, the data consists of 88 healthy subjects that had undergoneaMTT.
The mean curves of the measured plasma glucose and insulin concentrations are redrawn in Fig.
4.5, together with the glucose rate of appearance, and the phase plot between glucose and insulin.

Comparing the DallaMan data in Fig. 4.5 with the Owens healthy data, cf. Fig. 4.1, glucose
is seen to reach maximum value at similar time point, t=40 min. The maximum value of glucose is
however larger in DallaMan than in the Owens data (8.9 vs. 7.7 mM). Glucose reaches basal value
within 180 min in the Dalla Man data, as compared with 90 min in the Owens data. Maximum
insulin value is reached faster in the Dalla Man data as compared with Owens data (30 vs. 50 min),
but similar maximum values are obtained (440 vs. 446 pM). Insulin returns to basal value at t=420
min in the Dalla Man data, as compared with t=240 min in Owens data.
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Fig. 4.5: Measured plasma concentration profiles of (a) glucose, (b) insulin, (¢) glucose rate of
appearance, (d) The phase plot between glucose and insulin during aMTT in healthy subjects
(Mean, n=88). Redrawn from (DallaMan et al. 2004).

The difference in the glucose and insulin responses between these two data sets seems unlikely to
be explained by the amount of glucose given (77 vs. 75 g. in Dalla Man and Owens, respectively)
an the subjects had similar body weights.

The difference may be attributed to the meal compositions. In Dalla Man the energy content
of the meal was distributed as 45% carbohydrates, 40% fat, and 15% proteins. Whereas in the
Owens data, the meal energy content was distributed as 58% carbohydrates, 22% fat and 20%
proteins, cf. Appendix A. The largest difference in the meal energy content distributions is in the fat
energy contribution, with an almost doubling in the energy contribution from fat in the DallaMan
data as compared with the Owens data. However one would expect that the larger fat contribution in

the Dalla Man meal would lower the plasma glucose and insulin concentration excursions as
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compared with the Owens data, as fat is known to lower the meal absorption rate (Hansen 2004).
However, we do see slower dynamics in the glucose and insulin responses, after maxima are
reached, as would be expected from a meal with larger fat content (Hansen 2004).

On the other hand, the glucose rate of appearance, R, as given in Fig. 4.5(c) seemsto €licit
faster dynamics than would be expected with high fat content (Hansen 2004).

Fig.4.5(d) shows that the fast drop in the insulin concentration while glucose is still
elevated, results, in the beginning, in a clock-wise direction of the glucose-insulin path in the phase
plot, where after, however, the glucose decreases at still elevated insulin, as in the phase plot of the
healthy Owens data.

As also noted in the Owens data, there is afast increase in the insulin level, before any
noticeable increase in glucose, which is most probably due to cephalic insulin secretion, as

discussed earlier.

The equations of the oral glucose minimal model were given in Egs. (3.5)-(3.6), and are for clarity

given again below:

G= %+SG(Gb ~-G)-SXG, G(0)=G, (4.5)
X =p,((1-1,)=X), X(0)=0 (4.6)

with the same notation as before.

As previously mentioned, the glucose OMM estimates the parameters S, p, and the parameters
describing the rate of appearance, o; (i=1...8). The fixed and estimated model parameters from
(DallaMan et al. 2004) are given in Table 3.5.

All parameters were estimated with precision (DallaMan et al. 2004). From table 3.5 it is seen,
however, that all parameters elicit large spread in the between subjects estimates, as evaluated by
the standard deviation.
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Parameter Meanvalue Standard error Standard

(SE) deviation (SD)
f (unitless), fixed 0.9
V (dli/kg), fixed 1.45 - -
Se (min™), fixed 0.025 - -
p2 (min™), restricted 0.011 0.0005 0.005
S (10%dl-kgtmintuutml)  11.68 0.73 6.8
oz (mg-kg™-min™) 5.36 0.33 3.1
o2 (mg-kg™-min™) 7.78 0.24 2.3
o (mg-kg™-min™) 6.00 0.28 2.6
os (Mg-kg™-min™) 5.05 0.22 2.1
o (mg-kg™-min™) 477 0.28 2.6
o (Mg-kg™-min™) 3.52 0.19 1.78
a7 (mg-kg™-min™) 2.09 0.09 0.84
o (mg-kg™-min™) 0.34 0.05 0.47

Table 3.5: Fixed and estimated model parameter values (mean and SE) from the glucose OMM in
healthy (N=88) subjects. SD is calculated as SD = SE-Vn. Adapted from Dalla Man et al. (2004).

4.3.1 Simulation results

Fig. 4.6 showsthe result of a simulation of the glucose OMM model with the parameters given in
Table 3.5. The ssimulated glucose differs from the measured because only mean estimates of the
parameters are available and, as evident from Table 3.5, the estimated parameters have a large
spread. DallaMan et al. (2004) investigated the deviation on the estimate of S, introduced as a
consequence of fixing the parametersf, V and Sg, and restricting the estimate of p,,.

The authors found that f, Sg and p, contribute to explaining the deviation of S, estimate
compared with reference S estimate. The fixing of V did not contribute to the deviation. On
average the authors found the estimate of R, to be in good agreement with the reference tracer
estimate of R,.
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Fig. 4.6: Simulated (full line) and measured (dashed line) plasma glucose concentration.

As mentioned, the scope of this section isto investigate the effects of variation of the different
model parameters on the characteristics of the phase plot. Thiswill be achieved by changing the
different parameters one by one, and analyse the resulting effects on the simulated curves.

In the following, unless otherwise stated, all parameters will be set to the values given in

Table 3.5, except of course the parametersthat are varied.

Effect of p, on the phase plot

Fig. 4.7 showsthe effect of three different values of p,, taken as the mean estimated values of p,

and the values of p, £ 2-SD. The step 2-SD has been taken the majority of estimated values lie in the
interval with endpoints 2-SD away from the mean estimated value. For decreasing values of p, the
phase plot turns down, i.e. the upstroke slope decreases, and the phase plot opens up. Thisisdueto
the increasing delay between changes in insulin and insulin action, X. It is also evident that for
decreasing values of p, glucose at the end declines faster, which is caused by the longer lasting
effect of X.

Fig. 4.8 shows the effect of p, in the extreme cases where p, = 0 min'?, i.e. X = 0 pM, and p,
>> 1, i.e. X = I-lp. For the case p, = 0 min™, insulin has no effect on the glucose concentration, and
the phase plot €elicit a large open loop. The decreasing glucose is only due to the glucose
effectiveness Sg. In a situation with a vanishing glucose absorption rate, glucose would decrease
exponentially fast, with atime constant given by Sg, towards its basal value. In the situation where
p2 >> 1 mint, i.e. X = I-Iy, the effect of insulin on the glucose uptake isimmediate, hence glucose is

quickly lowered in the beginning when insulin is still high. When insulin startsto decrease, glucose

78



begins to increase due the absorption of glucose that ill takes place. For large time glucose
approximates the glucose profile obtained when p, = 0 min™, as insulin approximates its basal
value, i.e. X approximates O pM. For the situation with X = | — Iy, the glucose minimal model

simplifies to a previous thoroughly analysed model (Korsgaard and Jonsson 2005).
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Fig. 4.7: Effect of variation of p, on (a) plasma glucose, (b) remote insulin, X, and on (c) the phase
plot. The variation of p, (min™) is taken as mean + 2SD, i.e. p, has value 0.011 — 2SD (red), 0.011
(green), 0.011 + 2SD (blue). Dashed line show measured plasma glucose and plasma insulin,
respectively, where the plasma insulin is given as the difference from the fasting value.
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p2 on (a) plasma glucose, (b) remote insulin, X, and on (c) the phase

plot, in the extreme cases p, = 0 min™, i.e. X=0 pM (red) and p, >> 1 min™, i.e. X = | — I, (blue),
and in the mean case p, = 0.011 min™* (green).

Summary on the effect of p, on the phase plot

o Decreasing p, values decreases the upstroke slope and increases the loop size

e Increasing p, decreases the time for insulin effect, resulting in decreasing glucose value

followed by increasing glucose value, before glucose decreases again, i.e. the phase plot

elicit a s-shape at the end

Effect of S on the phase plot

Fig. 4.9 showsthe effect of different values of S. As previously noted, S has a large spread in the

estimated values, cf. Table 3.5.

80



For large values of S the upstroke slope increases, but a large undershoot in the glucose profile

develops. For decreasing S, the upstroke slope decreases. For smaller values than the mean

estimated (blue), the loop startsto open up. For large S, values, the glucose-insulin path followed in

the phase plot turns from clockwise to counter clockwise, dueto the faster drop in glucose than

insulin.
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Fig. 4.9: Effect of different values of S (10™dl-kg™-min™-pU™ml) on (a) plasma glucose and (c) the
phase plot. S =0 (red), S = 11.68 - 1-SD (green), S = 11.68 (blue), S =11.68 + 2-SD (cyan), S =
11.68 + 4-SD (magenta), S = 100 (black). Dashed line shows (a) measured plasma glucose and (b)
measured plasma insulin.

Summary on the effect of S on the phase plot

e Increasing values of S increases the upstroke slope

o Forlarge S, alarge undershoot in glucose is evident

o The path followed in the phase plot turns its rotation for increasing S
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Effect of Sgon the phase plot

Fig. 4.10 shows the effect of different values of Ss. For increasing S the upstroke slope increases,

and the loop collapses. For the case Sg = 0 min™, glucose increases at the end due to the absorption

that is still present and due to the small effect of insulin. The extreme case where S = 1 min™ is

shown to illustrate the important fact that increasing S will never result in glucose undershoot, in

contragt with increasing S.

The model is constructed in such away that glucose, when absorption and effect of insulin

is vanishing, will approach the basal value exponentially fast with atime constant given by Sg,

hence the larger S the faster will glucose approach its basal value. Increasing Sg will lower an

undershoot in glucose, as seen in Fig. 4.11, where a undershoot of glucose is simulated with alarge

value of S, cf. Fig. 4.9 (cyan curve).
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Summary on the effect of Sg on the phase plot
e Increasing values of S increases the upstroke slope and narrows the loop

e Increasing values of Sg lowers a glucose undershoot
o The path followed in the phase plot turns its rotation for increasing S

Effect of absorption rate

The absorption process is an extremely complex process, where the gastric emptying rate depends
on many things (Hansen 2004). Even though the mean estimated absorption rate was found to be in
good agreement with the rate obtained by the tracer method (DallaMan et al. 2004), it is evident

from Table 3.5 that the parameters determining the rate of appearance { i} obtain large dispersion.
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To simulate the effect of different glucose appearance rate, the apperance rate Ra is modelled by a
two-exponential function (Hansen 2004; Korsgaard and Jonsson 2005)

R, =m, %:kz)e-kﬂ (1-e™) (4.7)
where it has been assumed that the absorption starts at t = 0 min. my (mg/kg) is the amount of
glucose entering plasma, k; can be interpreted as the transfer rate from stomach to intestine, and k»
the transfer rate from intestine to plasma (Korsgaard and Jonsson 2005). As the meal contains1 g
glucose / kg body weight and the bioavailability, f is fixed at f= 0.9 (DallaMan et al. 2004), myis
calculated to be mp = 900 mg/kg.

This representation of the mechanisms behind glucose absorption is extremely simplified,
but it is used to demonstrate the impact on the glucose concentrations for different absorption
profiles. To smplify even further k; is set equal to ko.

Fig. 4.12 shows that fast absorption rates gives large glucose excursion and large glucose
undershoot as also previously shown in (Korsgaard and Jonsson 2005). Decreasing absorption rates
increases the upstroke slope in the phase plot, while glucose tends to overshoot due to the slow

absorption process.

Summary on the effect of glucose rate of appearance on the phase plot
 Increasing glucose absorption rates results in large glucose excursions, both hyperglycemic
and hypoglycemic values
» Decreasing glucose absorption rates results in increasing upstroke slopes in the phase plot,

and a tendency for glucose overshoot is observed for very small absorption rates
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In thefirst part of thischapter the phase plot was used as a smple method to gain information
about the beta cell functionality in healthy and in subjects with type 2 diabetes after aMTT. We
used a model that we had previously developed that took glucose concentration asinput and
insulin concentration as output in order to describe the phase plot. The model was based on the
assumptions of an immediate and a delayed effect of glucose on theinsulin response. From this
model we found that:
o Fadting plasma glucose was the variable that best explained the variations of both the
parameter describing the immediate as well as the delayed effect of glucose on insulin,
i.e. fasting plasma glucose explained the variations in the sope of the phase plots
o The parameter describing the delayed effect of glucose on insulin response was more
decreased than the immediate, indicating that mechanism(s) responsible for the delayed
effect are more sensible to changes in fasting plasma glucose than the mechanism(s)
responsible for the immediate effect
o Waist circumference was found to be the variable that best explained variationsin the
basal insulin level, adding more to the evidence of no (smple) relation between the

fasting plasma glucose and fasting plasma insulin

The second part of the chapter investigated the variability of the phase plot described by the
glucose oral minimal model, where insulin was used as input and glucose as output. The phase
plot was investigated by changing model parameters one by one and analysing the outcome of the
simulation. The simulations showed that:

o Early deterioration of glucose meal response when insulin response is normal or near
normal may be prevented by increasing insulin action (p, ) and/or sensitivity. An
isolated increase in insulin action may however lead to (transiently) elevated glucose
levels as the time for effect of insulin is correspondingly lowered. An isolated increase
in insulin sengitivity may on the other hand lead to undesirable glucose undershoot.

o A better strategy could be to increase the effect of glucose, as thiswould decrease a
glucose overshoot, but would not lead to glucose undershoot. Another choice could be
to lower the glucose absorption rate. However a too low absorption rate would
(trangiently) lead to elevated glucose. A combination of an increasing effect of glucose

and a decreasing glucose absorption rate could be a good choice
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Chapter 5

The meal response

The meal-related responses, i.e. the responses corrected for fasting values, of glucose and insulin
after a meal tolerance test for a large dataset of healthy subjects and subjects with type 2 diabetes
are analysed.

The analysis show that for the healthy subjects the disappearance rate of glucose seems to be
regulated in such a way as to follow the appearance rate. The analysis also show that the meal-
responses from the subjects with type 2 diabetes are quite similar regardless of insulin levels,
treatment and/or disease progression, but differ fundamentally from the healthy responses. On
the other hand fasting plasma glucose, FPG may be affected by treatment, and the variability and
regulation of FPG are analysed and discussed.

51 OwensMTT data

Fig. 5.1 shows the mean plasma glucose and plasma insulin profiles after a standard meal tolerance
test, MTT of 356 newly diagnosed subjects with type 2 diabetes and 85 healthy subjects from the
Owens database, cf. Chapter 3. The subjects with type 2 diabetes are divided in five groups
according to their fasting plasma glucose, FPG values, where the stratification according to FPG is
similar to the one performed in Chapter 4, cf. Table 4.1.

For al the subjects with type 2 diabetes it can be seen that both the plasma glucose profiles
and the insulin profiles peak later than the healthy profile. The subjects with type 2 diabetes have a
later return to their FPG values than the healthy subjects.

87



=—e— Healthy (N=85)
—e— FPG <7 mM (N=44)
—e— FPG 7-9 mM (N=93)
25+ —e— FPG 9-11 mM (N=69)
@) FPG 11-13 mM (N=61) 600+
FPG >13 mM (N=89)

(b)

154

54

Glucose (mM)
Insulin (pM)

v L) v L) v L) v L} L) v L) v L) v L] v L]
0 60 120 180 240 0 60 120 180 240
Time (min) Time (min)

Fig. 5.1: (a) Plasma glucose responses in 85 healthy and 356 newly-diagnosed subjects with type 2
diabetes grouped according to their fasting plasma glucose, FPG after aMTT. (b) The
corresponding insulin responses. The legends in (a) show the colour coding used for the groups, and
the number of subjects in each group. The stratification according to FPG as shown in Table 4.1 is
used, however the number of subjects in each group differ.
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Fig. 5.2: (a) The plasma glucose responses from Fig. 5.1 subtracted by the basal (fasting) glucose at
t=0 min. (b) The corresponding insulin responses subtracted with the respective basal value.

Fig. 5.2 shows the same profiles and groupings as in Fig. 5.1, but now the profiles have been
corrected for their respective fasting values. The profiles for increasing glucose are similar for the
first approximately 30 min for all the subjects, healthy as well as the subjects with type 2 diabetes.
As described in Chapter 3 the mean maximal glucose value for the healthy is reached faster (tmax =
40 min) than the subjects with type 2 diabetes (tnx=50-75 min), and the basal state is reached
within 90 min. Strikingly, the glucose downstrokes for the subjects with type 2 diabetes are almost

parallel. The large differences present in the subjects insulin profiles are not much apparent in the
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glucose profiles where the overall glucose response shape seems to be similar for the subjects with
type 2 diabetes. The major effect of insulin on the glucose profile seems to be on the glucose peak
value and peak time, with smaller glucose peak values and peak times for larger insulin levels. The
large insulin levels at t=180 min for the T2DM groups with FPG < 9 mM leads to glucose
undershoot. The healthy subject glucose profile is fundamentally different from the profile in the

subjects with type 2 diabetes with a fast return to pre-meal glucose values.

5.1.1 Subjectsfollowed through years

Figs. (5.3)-(5.6) show data of subjects with type 2 diabetes from the Owens database that have been
followed through the years 1, 2, 5, and 10. Even with different subjects and numbers and with
different treatments included, the overall conclusion is the same as with the data from the newly-
diagnosed subjects, cf. Fig. 5.2. The effect of insulin is primarily on the time to reach the maximum
glucose concentration and on the respective maximum value. The glucose downstrokes are almost
parallel and decline in a slowly linear fashion. For some subjects, a large glucose undershoot is
present. Furthermore, for all years a clear difference between the subjects with type 2 diabetes and
the healthy is evident.
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Fig. 5.7 shows the mean of the differentiated glucose profiles of the groupings for all the years and
the corresponding insulin profiles, together with the healthy profiles. It is evident that the changes
in glucose are similar for the subjects with type 2 diabetes, despite different insulin levels, and also
despite different treatment throughout the years. The consistent difference between the healthy
profile and the profile from the subjects with type 2 diabetes is also clear. Furthermore, the subjects
with type 2 diabetes seem well-treated as the mean HbA 1c goes from 8.7 at year 0 to 6.5, 6.8, and
7.0 a year 1, 5, and 10, respectively. Also notice the relatively large amount of subjects at each year
from 356 at year O, to 180, 144, 51, and 39 at year 1, 2, 5, and 10, respectively. Hence the

conclusions are based on a large data material.
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Fig. 5.7: (a) The time courses of the means of the differentiated glucose profiles for the subjects
with type 2 diabetes at first visit (year 0), and follow up visits at year 1, 2, 5, and 10. (b)
Corresponding time courses of mean plasma insulin profiles.

5.1.2 Same subjectsfollowed through years

In the previous section the glucose and insulin profiles for the different years were analysed without
taking into account if the same subjects were presented at all the years. Hence one could argue that
the findings are not consistent, as both the number of subjects and the specific subject vary from
year to year.

To address this issue, | inspected the database, and found that the same 44 subjects were
followed at the year O, 1, and 5. | disregarded the year 2 subjects in this analysis as it was expected
to give similar results as with the year 1 subjects, due to the similar insulin profiles, cf. Fig. 5.7(b),
and due to the relatively small time lapse between the visits. Unfortunately only very few subjects

were left if | included the subjects at year 10. Hence these were dropped in this analysis.
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To examine the insulin dependency of the glucose profiles for the remaining subjects, i.e. the 44
subjects followed at year O, 1, and 5, respectively, the subjects were grouped according to the mean
AUC values of the year 1 insulin profiles above fasting value. Hence if a subject had a value of
AUC of insulin (above fasting value) for the year 1 insulin profile that was above the mean the
AUC of year 1 insulin profiles (above fasting values), the subject was arranged in group 1.
Correspondingly if the value of the AUC of the year 1 insulin profile (above fasting values) was
below (or at) the value of the mean of the year 1 insulin AUC, the subject was arranged in group 2.

| choose to dratify according to the mean AUC value of the year 1 profile as year 1 is
special in the sense that this is the first visit at which the subjects received treatments before the
visit, also this was the smallest time lapse for progression of the disease. Hence it was expected that
any effect of insulin on the glucose profiles was most prominent with this choice of stratification.
Stratification according to mean insulin AUC of year 0 or 5 was however also performed, with
similar results as the chosen stratification procedure (results not shown).

Fig. 5.8 shows the results of the 44 subjects arranged in two groups according to the mean
AUC of insulin above fasting values at year 1 together with the healthy data. Again the overall
conclusions are the same. The effect of insulin is primarily on the glucose peak time and value,
whereas the glucose downstrokes declines linearly and almost in parallel. Some effect of insulin on
the glucose profile are however visible at the highest insulin levels where it is most prominent for
the subjects at year 1 in grp. 2, where also a considerable glucose undershoot develops at the end of
the test. However the overall similarities between the groups of subjects with type 2 diabetes are
clear from Fig. 5.8(c), where the differentiated glucose profiles are almost overlapping. Again the

differences between the healthy and the subjects with type 2 diabetes are undeniable.
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Fig 5.8: The subjects with type 2 diabetes are grouped according to the mean of the Area Under the
Curve, AUC insulin time courses above fasting value. (a) Time course of mean plasma glucose
concentration above fasting values. (b) Time course of mean plasma insulin concentration above
fasting. (c) Time course of the mean of the differentiated individual plasma glucose concentration
time courses.

5.1.3 Fundamental difference between healthy and subjectswith type 2 diabetes

As pointed out several times now there is a clear difference between the glucose profiles of the
healthy subjects and the subjects with diabetes as shown in Fig. 5.9. Here the differentiated mean
plasma glucose responses are shown for all the subjects with type 2 diabetes and the healthy
subjects. The figure shows the net glucose fluxes and the curves correspond to the difference
between the glucose appearance, R, and the glucose disappearance, Ry. The initial upstroke flux is
similar for the subjects with type 2 diabetes and the healthy subjects , but it lasts longer for the
subjects with type 2 diabetes. For the healthy the downstroke is brief and vanishes as the fasting
value is reached. For the subjects with type 2 diabetes the downstroke lasts longer and continues

even after the fasting has been reached.
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Fig. 5.9: The mean of the differentiated individual glucose profiles for the healthy (black line), and
the subjects with type 2 diabetes (grey line). Left y-axis shows the difference between the
appearance, R, and disappearance, Ry of glucose.

The positive rate of change of glucose (dG/dt > 0) is commonly used as an indicator for the first
phase insulin secretion, where in the oral case it is denoted the dynamic phase, cf. chapter 3. As
evident from Fig. 5.9 the dynamic phase is longer for the subjects with type 2 diabetes, lasting
approximately 60 min, whereas for the healthy subjects the dynamic phase is finished within
approximately 40 min. Hence the assessment of the dynamic phase insulin secretion is based on
different glucose stimulation pattern, which makes the interpretation of the dynamic phase index
difficult.

Fig. 5.10 shows the increase of plasma glucose and plasma insulin above the fasting values
for the healthy subjects. Glucose is normalised within two hours but insulin is still increased,
implying that insulin is still released. The increased insulin release for decreasing glucose as
compared with the insulin release for increasing glucose was described in Chapter 4 by the delayed
component in the relation between insulin and glucose, cf. Egs. (4.1), (4.3). For the C-peptide
minimal model this was described by the static secretion component.

An even more interesting observation that can be extracted from the figure is that the
increased insulin does not lead to hypoglycaemia.

Normally the increased insulin after ameal inhibits the hepatic glucose output and increases glucose
uptake, hence it would be expected that the still elevated insulin when glucose has returned to FPG

would lead to hypoglycaemia, as aresult of an apparent net increased glucose uptake. However this
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is seemingly not the case and the figure suggests that the effect of insulin, i.e. the net disappearance

of glucose is controlled in such away asto follow the rate of appearance of glucose.
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Fig. 5.10: The increase of mean plasma glucose concentration above fasting value after a meal for
healthy subjects (black line, left y-axis), and the corresponding increase of mean plasma insulin
above fasting value (grey line, right y-axis). The dashed black line illustrates the time course of the
appearance rate of glucose from the meal. The effect of insulin seems to be controlled in such away
asto follow the rate of appearance of glucose.

The situation is quite different for the subjects with type 2 diabetes as shown in Fig. 5.11. After the
peak glucose value has been reached, the glucose profile from the subjects with type 2 diabetes, in
contrag with the healthy subjects, continue to decline slowly and in an almost linear fashion
throughout the rest of the 4-hour test period.

The elevated insulin level seems to have minor impact on the glucose profile, however the elevated

insulin at the end of the test period seems to provoke glucose undershoot.
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Fig. 5.11: The increase of mean plasma glucose concentration above fasting value after a meal for
subjects with type 2 diabetes (black line, left y-axis), and the corresponding increase of mean
plasmainsulin above fasting value (grey line, right y-axis).
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As mentioned earlier the post-prandial glucose profile is determined by the balance between the net
glucose appearance, i.e. the sum of the rate of absorption of glucose from the meal and the net
heapatic (and kidney) glucose output, and the net glucose uptake rate, primarily by muscle and
adipose tissue. The meal-derived glucosg, i.e. the rate of absorption has been found to be similar for
healthy and in subjects with impaired fasting plasma glucose and/or impaired glucose tolerance
(Bock et al. 2006). In subjects with type | diabetes, insulin given 20 min prior to a mixed meal
yielded no significant difference in the meal-derived glucose rate of appearance, as compared with
basal insulin administration (Pennant et al. 2008). Hence these studies indicate that meal-derived
glucose rate of appearance is similar for healthy and subjects with diabetes. The debate is then on
the balance between (and regulation of) the hepatic glucose output and the peripheral tissue uptake.

Traditionally the main regulating substance of the post-prandial glucose flux is considered to
be insulin, or more precisely the insulin/glucagon ratio. More recently also the effect of glucose, i.e.
glucose effectiveness, has been suggested to play a major role in the regulation of both hepatic
glucose production as well as peripheral tissue glucose uptake (Nielsen 2008).

Interpreting the findings regarding the Owens meal response data in light of this would then

imply that the glucose profiles from the subjects with type 2 diabetes are lowered more or less
solely due to the glucose effectiveness, as insulin does not seem to have a major effect on the
glucose profiles, i.e. they appear to be completely insulin resistant. The term glucose effectiveness
does however prompt some issues.
First of all, glucose uptake by the tissue depends both on the glucose concentration as well as on the
insulin concentration (YKki-Jarvinen et al. 1987) as shown in Fig. 5.12. The glucose uptake at fixed
insulin levels is saturable due to the transport by special glucose transporters, cf. Fig 5.12(a), and
the insulin-mediated glucose uptake at fixed glucose levels can be described by a hill function, cf.
Fig. 5.12(b). Hence fromthe figure it is clear that no constant measure for the glucose effectiveness
can be defined as it depends on the prevailing glucose as well asthe insulin level.

Secondly as shown in the next section the effect of glucose on the hepatic glucose output

differ from the glucose effect on the peripheral tissue uptake.
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Fig 5.12: Whole body glucose uptake versus (a) plasma glucose at different insulin levels, and (b)
insulin concentration at different plasma glucose levels. Adapted from Yki-Jarvinen et al. (1987).

If the subjects are severely insulin resistant, the glucose effectiveness would be the dominating
glucose lowering effect. One explanation to the similarities between the meal responses of the
subjects with type 2 diabetes could then be that due to the intrinsic saturability of the glucose
uptake, cf. Fig 5.12(a), the effect of glucose to increase its own uptake would be similar and almost
constant for the subjects, and hence the glucose responses would be similar.

The glucose dependent glucose uptake can be described by a Michaélis-Menten relation
with a half-saturable constant Ky =5 mM (Hallgreen et al. 2008). The glucose concentrations for
the subjects with type 2 diabetes vary over awide range, with FPG going from below 7 mM to
above 15 mM. At 7 mM the glucose transport is 58% saturated, and at 15 mM glucose transport is
75% saturated. Hence unless the glucose transporters are severely damaged in the subjects it would
be expected that the uptake of glucose is different in the subjects, and hence a clear difference
would be visible in the glucose responses.

Glucose has to pass the capillary wall to enter the interstitial space, where it can be taken up
by the cells. The passage across the capillary wall introduces some delay between changes in
plasma concentration and the resulting uptake, hence in reality the relation between plasma glucose
concentration and uptake is more flat than a Michéelis-Menten relation with Kyy=5 mM would
yield. However unless the passage across the capillary wall, which is generally assumed to be by
mere diffusion (Zierler 1999), is severely damaged, it would still be expected that the glucose
uptake differ between the subjects.

Neither the glucose rate of appearance nor the glucose uptake (or disappearance) rate has

been determined in the subjects, hence it cannot be determined how the balance between these two
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fluxes nor their regulation influences the meal responses. Some authors find normal meal regulation
of hepatic glucose production but impaired glucose uptake in subjects with pre-diabetes and
diabetes (Bock et al. 2006) as compared with control, while others find impaired after-meal
regulation of hepatic glucose production to be most important for the glucose meal response (Gerich
1991).

Whatever flux may be most important, the curves of the differentiated after meal glucose
profile show that the net effect of the fluxes are more or less similar for the subjects with type 2
diabetes at any degree of impaired fasting plasma glucose, at any insulin level, at any treatment, and
at any diabetes progression state, cf. Fig. 5.7.

The balance between the effect of insulin and the effect of glucose on the meal responses
cannot clearly be determined from the present data. The effect of glucose is much debated (Nielsen
2008). Investigators report unchanged (Alzaid et al. 1994; Nielsen 2008) or even increased
(Henriksen et al. 1994) glucose effectiveness in subjects with pre-diabetes or diabetes. Most of the
results are based on minimal model assessment of both the insulin and the glucose effect, hence
these results are model-dependent, and the ability of the minimal model to correctly assess the
effect of glucose aswell as insulin is questionable, cf. chapter 3. The minimal model independent
methods to estimate glucose effectiveness are often based on infusion of somatostatin to inhibit the
insulin secretion such that insulin can be infused to match the healthy insulin profile. However,
somatostatin elicits a multitude of actions (Lahlou et al. 2004) and treatment with a somatostatin
analog has been shown to decrease glucose effectiveness (Kahn et al. 1990). Hence also these
model-independent methods with somatostatin infusion seem to contain questionable steps, and the
results should be handled cautiously.

Hence the question to what extend the glucose effectiveness play arole seems still to contain a
somewhat blurred answer.

No matter what, the regulation of after-meal glucose in subjects with type 2 diabetes is
clearly impaired as compared with the healthy regulation, cf. Fig. 5.9, and insulin seems just to
follow the glucose and not controlling it, to any significant extend. However glucose undershoot do
seem to develop at the end of the meal test period for some of the subjects with type 2 diabetes with
the highest insulin levels, cf. Fig. 5.2.

Strikingly the healthy glucose disappearance seemsto be regulated in such away asto
follow the appearance, cf. Fig. 5.10. This seemsto be atotally new aspect in the regulation of meal
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glucose responses, and it will be further discussed in chapter 7. Certainly in the subjects with type 2
diabetes this regulation seems to be highly impaired.

The subjects with type 2 diabetes at the different years are all well-treated. As the meal-
responses are quite similar the main effect of treatment seemsto be on the fasting plasma glucose,

FPG. The next section will focus on the variability and regulation of FPG.

5.2  Fasting plasma glucose

Even though, as noted in the previous section, the meal-related glucose responses for the subjects
with type 2 diabetes seem quite similar, the fasting plasma glucose values vary greatly and spread in
the range from 5-21 mM, cf. Fig. 4.2. Hence this section will concentrate on the variability and
regulation of the fasting plasma glucose, where the fasting plasma glucose is the concentration of
glucose in the (arterial) plasmawhen the body is in the fasting state. The fasting state is the state
where there is no intestinal absorption of glucose. Hence the fasting plasma glucose concentration is
determined by the balance between the hepatic glucose output and the disappearance of glucose by
uptake.

In the fasting state, the liver breakdowns the glycogen that has been stored during fed state
via glycogenolysis and releases free glucose. Furthermore, the liver makes new glucose via
precursors, with the main contributors being lactate, glycerol, and amino acids, primarily alanine,
by the process of gluconeogenesis, GNG. In the fasting state the skeletal muscle tissue primarily
oxidise fatty acids, FA, and glucose is spared or turned into lactate that goesto the liver for rebuild
of glucose. The adipocytes breakdown fat, TG vialipolysis and releases FA and glycerol. The FA
goesto the skeletal muscle for oxidation and the glycerol goesto the liver for rebuild of glucose by
GNG.

Normally these processes work in concert to maintain arelatively constant fasting plasma glucose
concentration where the insulin/glucagon ratio plays a prominent role by directing the different
fluxes in the right direction by regulating the activities of the involved enzymes. In subjects with
type 2 diabetes the high diversity in the fasting plasma glucose values may be caused by an

imbalance between these processes.
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5.2.1 Variability of FPG

Fig. 5.13(a) shows the scatter plot between HbA1c and FPG for the newly-diagnosed subjects with
type 2 diabetes from the Owens database, cf. Chapter 3. From this plot, for agiven HbA1c value a
“mean” FPG value can be determined, cf. the red line in the figure.

Fig. 5.13(b) showsthe distribution of the difference between the individual FPG values and
the estimated “mean” value from Fig. 5.13(a) for agiven value of HbA1c. The distribution is seen
to resemble a normal distribution with a mean at 0 mM and a standard deviation of 2 mM. Hence as
already noticed, thereisalarge spread in the FPG values. Similar distributions as the one shown in
Fig. 5.13 isfound for the subjects at year 1, 5, and 10 (results now shown), hence FPG have large
variability for all the years.
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Fig. 5.13: (a) The scatter plot between HbA1c and fasting plasma glucose, FPG values for newly-
diagnosed subjects with type 2 diabetes from the Owens database, cf. Chapter 3. From the plot a
“mean” value of FPG can be determined for a given HbA1c, i.e. thered line (b) The distribution of
the difference between individual FPG and the “mean” determined from (a). The distribution
resemble a normal distribution, full drawn curve, with a standard deviation, SD = 2 mM.
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Fig. 5.14: For the subjects at the second visit (year 1), the distribution of the difference between the
individual FPG value and the “mean” FPG value is split in two, according to if the subjects with
type 2 diabetes had a positive difference (dark grey) or a negative difference (light grey) at the first
visit (year 0) when they where newly-diagnosed. The two distributions are similar to the
distribution found at first visit for all subjects (black and Fig. 5.13(b)). Hence the variation in FPG
is completely random.

Fig. 5.14 shows the distributions of the differences between the individual FPG value and the
“mean” as determined according to Fig. 5.13(a) for the subjects at year 1, where the subjects are
grouped according to whether they had a positive or a negative value of the difference at the year 0.
Both distributions, the positive as well as the negative are similar to the one found for all subjects at
year 0. Hence the variations of the FPG over time are large and seem to be completely random.

Fig 5.15 shows the changes in fasting plasma insulin concentration, FPI from year 1 to year
5 against the changes in fasting plasma glucose concentration, FPG from year 1 to year 5 for the
subjects with type 2 diabetes from the Owens database. The main tendency is that the large changes
in FPG is not seen in the changes in FPI as it only changes moderately, both for increased as well as
decreased FPG values.

Hence not only isthe “relation” between FPG and FPI complex, cf. Fig. 4.2, but also the
changes over time of FPG for both decreased as well as increased values seems unrelated and not
caused by changes in FPI levels. In note we found the waist circumference to be an explaining
variable for the variability in fasting plasma insulin, cf. Chapter 4.

Furthermore Radziuk and Pye (Radziuk and Pye 2006) found that the 24-h fasting plasma
glucose concentration in subjects with type 2 diabetes elicited a particular diurnal rhythm driven by

the hepatic glucose output via changes in gluconeogenesis. Fasting plasma glucose values rose from
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aminimum value of around 6 mM to apeak value of around 8 mM. No similar pattern was found in
the insulin profile that decreased slightly throughout the 24-h period. In contragt, the healthy fasting
plasma glucose profile remained essentially constant throughout the period while decreasing
slightly towards the end. Insulin levels decreased slightly throughout the period.

Thus the fasting plasma glucose for subjects with type 2 diabetes does not only elicit alarge
variation from year to year, but aso on adaily-basis a large variation can be observed depending on

the time of the day, while independent on the prevailing insulin level.
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Fig. 5.15: Changes in fasting plasma insulin, FPI from year 1 to year 5 plotted against the
corresponding changes in fasting plasma glucose, FPG for subjects with type 2 diabetes from the
Owens database. The small dot indicates values at year 1, and the big dot indicates values at year 5.
The main tendency for both decreasing (red) and increasing (green) glucose values from year 1 to
year 5, isthat large changes in the FPG occurs while FPI only changes moderately (almost
constant). Hence changes in FPG seem independent of changesin FPI.

5.2.2 Relation between FPG and HGO

Investigators report of a positive correlation between FPG and HGO as shown in Fig. 5.16.

On the other hand in hyperglyceamic clamp studies with constant insulin, HGO has been found to
be inhibited by the glucose level in subjects with diabetes to asimilar degree as in healthy control
subjects, cf. Fig. 5.17.
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Fig. 5.16: Positive correlation between hepatic glucose output and fasting plasma glucose. Adapted

from (Gerich 1991).
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Fig. 5.17: Relation between hepatic glucose output, HGO and glucose clamp levelsina
hyperglycaemic clamp study with constant insulin. HGO is seen to be inhibited similarly in healthy
as well as in subjects with diabetes. Adapted from (Del Prato et al. 1997).

Thus contradicting results exists regarding the relation between FPG and HGO. The different results

may arise from the fact that it is very difficult to estimate HGO, and the different methods applied

have different accuracy (Basu et al. 2008).The circumstances under which the methods are applied

will also give different results.

Furthermore as the fasting plasma glucose also depends on the disappearance rate of glucose

by cellular uptake and in cases of high glucose values (> 10 mM) also by renal excretion the

situation is more complex. Fig. 5.18 shows the major glucose fluxes during the fasting state.
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Fig. 5.18: Glucose fluxes in the fasting state. Fasting plasma glucose is determined by the balance
between the hepatic glucose output, HGO and the cellular uptake by muscle and adipose tisseu,
JeLuT, the brain glucose uptake, Jsrsin, ad in cases of high glucose values (>10mM) also renal

excretion, Jren

The equation governing the fluxes given in Fig. 5.19 can be written (Hallgreen et al. 2008)
dG
VGE: HGO-J,, (5.2
where V¢ is plasma glucose distribution volume, G is plasma glucose, and J, is the sum of cellular
glucose uptake and renal excretion, given by

Iy = Jpus +Varr —2 43 (5.2)

upt brain K L+ G Ren
where Jysin = 80 mg/min is the normally constant brain uptake, Vg ut isthe sum of the maximal
activities of the saturable glucose transporters GLUT1 and GLUT4, with Ky, =5 mM being the
half-saturation value, and Jgen IS the renal excretion rate shown in Fig. 5.19.
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Fig. 5.19: Renal glucose extraction rate. Adapted from (Hallgreen et al. 2008).

107



From Egs. (5.1) and (5.2) we have in the fasting state

+ VGLUT L‘F J

. 53
brain K y + G Ren ( )

HGO=1J

The fasting HGO (overnight fast) isin the order of 140 mg/min. Of this the brain takes 80 mg/min.
The remainder, 60 mg/min, is the glucose dependent uptake. With Kg yt=5 mM and a fasting
glucose of 5 mM, the fasting value of VgLut = VeLuri+ VeLuta becomes 120 mg/min.
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Fig. 5.20: Relation between plasma glucose concentration and hepatic glucose concentration in the
fasting state as determined by Eq. (5.3) for different values of Vg ut corresponding to different
values of insulin. Even for moderate changes in HGO an increase is VgL ur IS necessary for keeping
low levels of glucose. The renal extraction sets in for glucose concentration values above 10 mM
(dashed line), and hence a much weaker dependency on HGO is seen for large glucose values.

The relation between G and HGO in the fasting state as determined by Eq. (5.3) is shown in Fig.
5.20 for different values of Vi ur, corresponding to different fasting insulin concentrations. It is
seen that even moderate increases in HGO requires an increase in VgL ut to keep G low. The renal
extraction work as a safety valve that keeps the glucose within reasonable limits, so above a G of
10-15 mM there is a much weaker dependency on HGO.

Hence the exact relation between fasting plasma glucose and hepatic glucose output depends
on the glucose transport activities as well as on the renal extraction that both may vary
considerably. Aswe shall see in the next chapter the overall control of fasting plasma glucose

concentration gets even more complicated.
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The glucose and insulin responses for a large number of subjects with type 2 diabetes and

healthy subjects have been re-assessed in a new and simple way. The novelty of the method was

based on the evaluation of the meal-related responses, i.e. the responses corrected by the fasting

values, and the differentiated after-meal glucose profile. This representation of the response data

revealed completely new facets of the glucose dynamics for both the healthy as well asthe

subjects with type 2 diabetes. The findings were:

The mean meal-related glucose responses for newly-diagnosed untreated subjects with
type 2 diabetes were strikingly independent of the prevailing insulin levels as well ason
the fasting plasma glucose values, however insulin was shown to affect the glucose peak
and peak-time value and glucose undershoot developed for largeinsulin levels at the end
of the test period

Subjects with type 2 diabetes followed at years 1, 2, 5, and 10 after diagnoses and well-
treated according to need showed similar results aswith the newly-diagnosed subjects
with type 2 diabetes with a dowly, almost linear, declining glucose response

The meal-related glucose responses for subjects with type 2 diabetes thus seem to be
strikingly unaffected by the prevailing insulin level, the fasting plasma glucose, and the
treatment and/or disease progression. Insulin levelsin subjects with type 2 diabetes seem
just to follow the glucose profile, but not controlling it to any significant extend

The similarities of the meal-responses for the subjects with type 2 diabetes were even
more prominent when evaluated by the differentiated glucose profile that represents the
meal-related glucose fluxes

Healthy glucose was quickly lowered within 90 min and stayed at fasting value
throughout therest of the 4-hour test period. This was fundamentally different from the
subjects with type 2 diabetes with a lowly linear declining glucose throughout the test
period.

Strikingly in the healthy subjects insulin was still released when glucose was at fasting
value. Thislead to the novel conclusion that the apparent glucose uptake for healthy
subjectsisregulated in such a way asto follow the glucose rate of appearance asthe

glucose stayed at the fasting value even when insulin continued to be elevated.
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Chapter 6

Glucose sensing and contr ol

The common view of regarding the glucose-insulin control system as an isolated system to
control plasma glucose concentration is shown to be much more complex. Firstly the glucose
sensing mechanisms in the beta cell is shown to possess important intrinsic non-linear properties
and the beta cell worksin a complex network with other glucose sensors. Secondly, the handling
of metabolites inside and between the different organsis shown to be critical for glucose control.

Insulin and the nervous system are important componentsin the control system.

When the plasma glucose concentration increases, e.g. after ameal, the consecutive increased
plasma insulin concentration lowers the glucose concentration primarily by inhibiting hepatic
glucose output and stimulating glucose uptake in muscle and adipose tissue cells. In that respect, the
glucose-insulin control system is often viewed as an isolated system to keep plasma glucose
concentration within narrow limits, where the system is described by a closed-loop, or feedback
loop, interms of classic control theory, cf. Fig. 6.1. In this context, the controlled variable CO
would be plasma glucose concentration, and the desired value Cl, the fasting plasma glucose value.
The controller signal CC would represents plasma insulin (or secretion), and CS the converted
sensor signal to be processed by the controller. Hence one would regard the beta cell as representing
the controller and sensing part, whereas the glucose uptake would be represented by the effector

subsystem.

Cl CcC CcO
== Controller ——p Effector >

CS|
Sensor (¢

Fig. 6.1: Schematic structure of the three main parts of a classic control system; The controller, the
effector and the sensor. Cl is the desired value (or trace) of the controlled variable CO. CC isthe
signal from the controller to the effector, and CS is the signal from the sensor to the controller.
Adapted from (Hallgreen et al. 2008).
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The control systemis classified according to how the controller handles the difference between the
desired value, ClI and the controlling variable CO, where Cl and CO are characterised in same the
modalities (Hallgreen et al. 2008). The most common application is to describe the beta cell asa
Proportional-Integral-Differential, PID controller. The PID description of the sensing and
controlling mechanisms in the beta cell has gained interests in the task of developing a closed-loop
insulin delivery system to be used e.g. in subjects with type 1 diabetes or in subjects with developed
type 2 diabetes for the automatic delivery of insulin based on PID control strategies (Panteleon et
al. 2006).

A drawback of the PID control system isthat it needs an error, i.e. difference between the
actual CO and the desired CI value, to work. For the error to be small the gain, i.e. the ratio between
the controller output and input, has to be large. However large system gain may lead to undesirable
instabilities, oscillations etc. (Hallgreen et al. 2008).

A way to improve the control is by the use of feed-forward control, often denoted model
predictive control, MPC. The idea behind the MPC strategy isto construct a control signal, CCrgr
that reflects the expected time-course of CC that is needed to keep CO close to ClI (Hallgreen et al.
2008).

The human biological system elicits many examples of both PID as well as MPC control
strategies, where the MPC strategy often is conveyed by neural signals (Hallgreen et al. 2008;
Peters et al. 2002). However, in contrast with classic control theory, biological systems have
intrinsic non-linearities, that most often are crucial for the proper function. More over biological
systems are interwoven, with many seemingly redundant signalling and controlling pathways, with
the result that it is very difficult to intervene if something goes wrong. On the other hand the
complexity and redundancy makes the biological system robust (Hallgreen et al. 2008; Peterset al.
2002).

With that in mind the chapter will focus on how glucose is sensed and handled in the human
body, and to what extend classic control theory can be used to describe the complexity of the
glucose-insulin control theory. Firstly, the glucose sensing will be described, and then secondly the

glucose handling or uptake.
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6.1 Time-dependent mechanismsin the beta cell glucose sensing

The beta cell is able to sense glucose and secrete insulin. Hence in a structural context the beta cell
is viewed as presenting both the sensing and controlling subsystems as given in Fig. 6.1. The classic
view of presenting the beta cell asaPID controller has its roots in the biphasic release pattern
elicited by the beta cell, when stimulated by a square-wave glucose pulse (Steil et al. 2006).

In order to describe the different secretion phases elicited by the beta cell based on a more
mechanistic basis, in contrast with classic control theory, we developed a new model to describe the
time-dependent glucose-sensing mechanisms in the beta cell (Hallgreen et al. 2008; Korsgaard and
Colding-Jorgensen 2006).

6.1.1 Glucokinase, GK: The key enzymein the glucose sensing mechanismsin the beta cell
GK isessential in all glucose sensing cells and due to its co-localisation with the glucose transporter
GLUT2 and its affinity for glucose in the physiological range it has laid the foundation of the
glucose sensor concept (Korsgaard and Colding-Jorgensen 2006; Sweet and Matschinsky 1995).
The transport across the cell membrane in the betacell is done by GLUT2, with aKy in the order
10-20 mM (Johnson et al. 1990; Thorens 1996), hence the intracellular glucose concentration
mirrors the glucose in the physiological range. Furthermore, GK has a low affinity for glucose with
half saturation at 8 mM (Meglasson and Matschinsky 1986), a value which is 50-100 times higher
than other hexokinases, making GK maximal sensitive for the normal physiological range of
glucose concentration.

These characteristics make GK the key regulatory step in the glucose sensing of the beta
cell. Further evidence for the important role of GK in the glucose sensing mechanism has been
found from studies showing that GK translocate from an inactive (bound) state to an active state
upon glucose stimulation, with arelatively fast time constant in the order of 20-60 min (Miwa et al.
2004; Rizzo et al. 2002). The result is avarying (dynamic) amount of active GK inthe cell. To give
a clear presentation of the effects of the different mechanisms behind insulin release, the model is

presented in steps. First the model without the GK translocation is presented.
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6.1.2 Themode without GK trandocation

The structure of the model is shown in Fig. 6.2. Glucose is transported across the cell membrane by
the glucose transporter GLUT2. Except its own phosphorylation, glucose does not appear to play a
role inside the cell, hence it is quickly phosphorylated to glucose-6-phosphate, G6P by GK.

The signalling pathway from glucose entersthe cell to final secretion of insulin is complex, but the
main triggering pathway iswell studied. In short, the increased ATP/ADP due to glucose
metabolism closes ATP sensitive potassium-channels that results in membrane depolarisation which
closes the voltage-dependent sodium channels. The resulting increase of intracellular sodium then
triggers the release of insulin. It is assumed that a sgnal substance, S in combination with the

increased ATP/ADP ratio trigger insulin release, R according to
Q- (S-S)+R,, forS>S,
R= (6.2)

R,, otherwise

where Q is a proportionality factor, Ry is basal insulin release and S the threshold value of S for

glucose dependent insulin release.

Hence with this formulation of insulin release, the signal substance S determines the connection

between glucose and insulin release.

GK

EE
G G . G6P ——» S —> ATP/ADP ——>»

Insulin

QO
O

Fig. 6.2: Model structure. Glucose, G is transported across the cell membrane by GLUT?2, hence the
extracellular glucose concentration mirrors the intracellular glucose concentration. G is
phosphorylated by glucokinase, GK to glucose-6-phosphate, G6P and fed into the glycolytic
pathway. The glycolytic intermediate S is assumed to trigger insulin release in combination with the
increased ATP/ADP ratio. The net flow of glucose J, must match the energy expenditure, EE,
assumed to be achieved by inhibition of GK by S.

113



6.1.3 Flux conservation
The beta cell has little or no glucose-6-phosphatase and lactate dehydrogenase (Giroix et al. 1987;
Matschinsky 1996; Perales et al. 1991; Sekine et al. 1994), hence removal of excess G6P by
conversion to glucose or lactate is not possible or in any case very limited. Furthermore the beta cell
has little or no glycogen and fat storage (Newgard and Matschinsky 2001), hence removal of excess
G6P by these routes is not possible either. The result isthat al the inflowing glucose, J, must be
oxidised to match the energy expenditure, EE.
The glucose influx, Jy, is given by the product of the amount of glucokinase, GK and the
phoshorylation rate of asingle GK enzyme, v
J, = VGK (6.2)

with the phosphorylation rate, v of the single GK enzyme described by the hill equation (Cornish-
Bowden and Cardenas 2004)

h

= % = VmafoiII (G) (6.3)

where Vina is the maximal phosphorylation rate, h = 1.7 is the hill coefficient, and Ky = 8 mM is
the concentration for half saturation (Magnuson and Matschinsky 2004).
Thus the inflow of glucose depends on the amount of GK and the glucose concentration, but as the
energy expenditure, EE generally is independent of G, this call for aregulation. Here we assume
that the inflow of glucose is inhibited by the substrate S, or some substrate proportional to S, but
other assumptions can be made, yielding however similar result (Korsgaard and Colding-Jorgensen
2006). Assuming afirst order inhibition of J, by S, the equation describing the development of Sis
given by (Korsgaard and Colding-Jorgensen 2006)

,d—S: o _pp (6.4)
dt  1+S

where K| is a constant determining the degree of inhibition of the inflow by S, and where Sis

written in units of K.

Eq. (6.4) impliesthat J, must be larger than EE for S to be non-zero and positive in steady state.
This meansthat if J, istoo small EE will go down. However in reality other nutrients as fatty acids
and amino acids can also contribute to EE (Newgard and Matschinsky 2001). To account only for

the contribution of glucose oxidation to EE, we modify Eq. (6.4)
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S J,  ES
"dt 1+S a+S

with a being a constant, and Eq denoting the resting energy expenditure.

(6.5)

We assume that E is constant even though this might not be true when insulin is released
(Fridlyand et al. 2003; Kennedy et al. 2002).

From Eq. (6.5) wefind that the steady state relation between S and G is given by

_ ‘Jin - EO + \/(‘Jin - EO)2 +4a'JinE0
- 2E,

with J, determined by Egs. (6.2) and (6.3).

S

(6.6)

Fig. 6.3 showsthe steady state relation between the normalised S and glucose, G given by Egs.
(6.2), (6.3) and (6.6), for different values of the parameter ks described by
Vo GK

Kk
s E,

(6.7)

with GK+ denoting the actual total amount of GK.

ks isthe ratio between the maximal glucose influx and the resting energy expenditure, where we

assume that ks isrelatively small, i.e. ks= 2 -10 (Korsgaard and Colding-Jorgensen 2006).

As evident from Fig. 6.3, decreasing the amount of GK or increasing Ey, as with lower ks values,
shift the steady state relation between S and G to the right, and hence lower the release of insulin.
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Fig. 6.3: Steady state relation between S and G described by Eqg. (6.6) with a= 0.2 and varying ks
described by Eq. (6.7). Decreasing amount of GK shifts the curve to the right. The fy;; curve
described in Eq. (6.3) is plotted for comparison.
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6.1.4 First phase
The first phase is modelled by assuming a simple first order delay on the inhibition by S of the
glucose influx, i.e. Eq. (6.5) turnsinto
| as = I - _ES (6.8)
d 1+S° a+S
with
s 1 "
—==(S-S 6.9
m T( ) (6.9)

Hence S is delayed compared to S with the time constant .

Eq. (6.9) is applied based on the assumption that cellular diffusion takes some time. Hence, for fast
changes in glucose concentration with the resulting fast changes in S, the inhibition effect will be
delayed compared to S, dueto the diffusion time.

Using Egs. (6.2), (6.3), and (6.7), EQ. (6.8) can be written

d9S_ k(@) S
dt 1+ a+Ss

with o = E¢/K, being arate constant.

) (6.10)

Fig. 6.4 showsthe effect of various values of o on the size of the first phase, when G is briskly
increased from5 mM to 15 mM at timet = 10 min. For decreasing values of o the first phase
decreases accordingly. One of the earliest signs of type 2 diabetes is seemingly a decreased, or even
absent first phase (Caumo and Luzi 2004). The model reproduces this reduced first phase with
decreased o values. Increasing K, values decreases o, and as K, determines the inhibition effect of S
on GK, with larger K, values giving less inhibition, the decreased o value, and hence diminished
first phase, could be part of a compensatory mechanism, whereby K, is increased, hence less
inhibition on GK, to counteract the lower amount of GK seen in type 2 diabetes (Matschinsky et al.
1993).

Fig. 6.5 showsthe effect on the first phase for different rates of change of glucose
concentration. The first phase is almost proportional with the rate of change of glucose dG/dt.
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Fig. 6.4: Shape of the first phase as described by Egs. (6.9) and (6.10) for various values of the rate
constant o and with the parameters a=0.2 and © = 1 min. Glucose is briskly increased from 5 mM to

15 mM at timet = 10 min. Decreasing o. values decreases the first phase as aresult of a
compensatory mechanism for the lower amount of GK seen in type 2 diabetes.
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Fig. 6.5: Effect of different rates of changes of glucose, dG/dt on the shape of the first phase. A
timet = 10 min, glucose is changed linearly from 5 mM to 15 mM within 1, 2, 5, and 10 min. For
larger dG/dt afirst phase develops almost proportional with dG/dt.

The proportionality of the first phase with the rate of change of glucose dG/dt can also be described
mathematically. Assuming for simplicity that the glucose oxidation is a constant, Go, (Hallgreen et
al. 2008), Eq. (6.10) modifiesto
dS _ (k A(c))
dt 1+S

where Gy iswritten in units of E,.

-G, (6.11)

According to Eq. (6.11) the steady state value for S* is given by

R, fu (G) -1 (6.12)
with Rox = ke/Gox being the ratio between the maximal possible GK phosphorylation rate (in units of
Eo) and the actual glucose oxidation rate (in units of Eg) (Hallgreen et al. 2008).
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By differentiation with time in Eq. (6.12) we can eliminate S’ with Eq. (6.9), and hence we get
. dG
S=Ry (frn (G) + 1f 4, (G) E) -1 (6.13)

Eq. (6.13) showsthat it seems reasonable to assume that S, and hence insulin release, respondsin
proportionality with the rate of change of glucose for fast changes in G as also suggested by
Grodsky and Licko (Grodsky 1972; Licko 1973).

6.1.5 Themodé including trandocation of GK

The model without the description of GK translocation has shown to be able to explain the insulin
release pattern due to fast changes in glucose concentration, i.e. first phase, which occurs within 5-
10 min, as aresult of a delayed inhibition of GK, dueto cellular diffusion. As described earlier,
recent research has shown that GK translocate from an inactive state to an active state, upon glucose
stimulation, with atime constant in the order of 20-60 min (Miwa et al. 2004; Rizzo et al. 2002).
Hence the GK translocation is a somewhat slower regulation, than the regulation responsible for the
first phase.

The structure of the model including the translocation of GK is shown in Fig. 6.6. As
previously glucose is transported across the cell membrane by the glucose transporter GLUT2.
Glucose is quickly phosphorylated to glucose-6-phosphate, G6P by GK. Now GK is assumed to be
present in an inactive, GKg and an active, GK 5 state. Upon stimulation by glucose, GK is assumed
to be translocated from GKg to GKa. The translocation is assumed to be regulated not by glucose,
but by a substance S, assumed to be a glycolytic intermediate (G6P or other).

GKg

f

GKa

J T EE
G {+—>G _G6P — S —» ATPIADP —»

Insulin

Q0O
O

Fig. 6.6: Model structure with GK translocation. GK is assumed to translocate from an inactive
state, GKg to an active state, GK 5 and the translocation is controlled by S. For further details see
caption in Fig. 6.2.
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For smplicity we have assumed that the translocation of GK can be described by a chemical
reaction, with the rate constant k;, and ka as evident from Fig. 6.6. Thetotal amount of GK, GKr is

now divided into the inactive amount, GKg and the active amount GK, i.e.

GKt = GKA + GKp (614)
The activation (translocation) of GK by S is described by the rate constant Ka
Kact = K1 + K3S (6.15)

The equation describing the translocation is given by

dX
th =K (1= X)) =k X =Ky = (K + k)X, (6.16)
where X isthe active fraction, i.e.
X, = CK4 (6.17)
GK;
From Eq. (6.16) we find the steady state relation
X _ K (6.18)
Ky + K,

Now the inflow of glucose, J, depends on the active amount of GK, hence
Jn= VmaxGKTinII(G)XA (619)

Fig. 6.7 showsthe relation between S and G described by Egs. (6.6), (6.18) and (6.19) at steady

state translocation. The main effect of translocation is to introduce a glucose threshold value for S

and hence insulin release, cf. Fig. 6.3.
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Fig. 6.8: At timet = 10 min, glucose is changed briskly from 5 mM to 15 mM and maintained at
that elevated value. The variation with time of Sis described by Egs. (6.9), (6.16) and (6.20). The
typical biphasic pattern is evident, with the first phase explained by delayed inhibition of GK, and
the slowly rising second phase explained by the translocation (activation) of GK. For increasing ki
the translocation, i.e. second phase, saturates. The parameters are k; = 0.006 min™, k, = 0.03 min™,

a=02 0=10mint, t=1minandks= 7.
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With Eq. (6.19), Eg. (6.10) transforms into

ds KsX af i (G) __S

=
dt 1+S a+S

) (6.20)

Fig 6.8 shows the variation with time of Swhen G is changed briskly at t = 10 min. A typical
biphasic pattern is evident. The first phase is explained by the delayed inhibition of GK, and the
slowly rising second phase is explained by the translocation, or activation, of GK by S. The second
phase rises more or less linearly as also noted in (Elahi 1996). However the translocation, i.e.
second phasg, is saturable as seen for large values of ks which determines the effect of S on

translocation.

6.1.6 Glucose memory

It has been shown several times that the beta cells display a memory effect towards glucose, i.e. the
present insulin release depends on the pre-history of glucose stimulation. The mechanism by which
thisis achieved is unknown (Caumo and Luzi 2004; Grill et al. 1978; Nesher and Cerasi 2002). An
explanation to the glucose memory could be increased GK+, but such an increase appears to take
days (Liang et al. 1992). An other option could be Sitself, but many investigators point toward
mechanisms depending on Ca®* and/or insulin action via the beta cells insulin receptors (Aspinwall
et al. 1999; Borge et al. 2002; Magnuson and Matschinsky 2004).

We assume that the insulin release is stimulated by its own release and described by the following

equations
{Q'(S-SOHRO, forS>S,
R= (6.21)
R,, otherwise
L= pQ.(R)-Q 6.22)
Q.(R,)=Qy(+ %) (6.23)

withR, =R - R, and where 3, Qo, A, Kr are constants.

Q-(Ry) isthe steady state amplification factor. For low insulin release, i.e. Ry small, Q..(Ra)
approaches the value Qo, and for large insulin release Q..(Ra) approaches the value Qq(1+A). Often
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very large differences are seen (Grill et al. 1978; Nesher and Cerasi 2002), so in the simulations we
have assumed A = 10.

Fig. 6.9 showsthe steady state relation between insulin release, R and glucose for different values
of ks. The curves are sigmoidal, i.e. S-shaped, which istypical for autocatalytic processes. The total
amount of GK is seen to control both the threshold value for insulin release, as well as the glucose
sensitivity, i.e. the slope, with larger threshold values and lower glucose sensitivity for decreasing
total amount of GK, i.e. decreasing ks.

1.0

0.84 e k=9

R (arbitrary unit)

O-C ) ) ) ) ) ) ) ) ) ) ) ) ) ) 1
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Glucose (mM)

Fig. 6.9: Relation between insulin release, R and glucose at Seady state for different values of ks.
Insulin release exerts an autocatalytic effect described by Egs. (6.22) and (6.23). The parameters are
Kr=1, Q=0.1, and p = 0.003 min™.

The glucose memory effect is clearly visible when the beta cells undergo consecutive square wave
glucose stimulation (Caumo and Luzi 2004; Grill et al. 1978; Nesher and Cerasi 2002). Fig 6.10
shows the insulin release pattern when two consecutive square waves, or pulses are applied. Both
the first phase and the second phase are augmented at the second glucose pulse, in accordance with
findings from other investigators (Caumo and Luzi 2004; Grill et al. 1978; Nesher and Cerasi
2002).
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Fig. 6.10: The glucose memory effect elicited by two equal 30 min glucose pulses given 30 min
apart. Both first and second phase are augmented at the second pulse. Other parametersare k; =
0.006 min™, k, = 0.03min™, ks = 0.03min™, ks=7,a=0.2, Qo=1, A =10, Kg = 1, Ry = 0.05, o0 =
10 min*, B = 0.003 min™, and T = 1.43 min.

Summary

The model provides a novel mechanism-based explanation to the biphasic insulin release; The first
phase is explained by a delayed inhibition of GK by the signal substance S. The delay is introduced
due to the assumption that S has to diffuse through the intra-cellular environment before exerting its
inhibitory effect on GK. The value of 1 min for the delay time constant T needed to simulate a first
phase in the order of 5 min, atime lapse that is generally found, is in agreement with findings
demonstrating a delay on the order of 1 min from start of glucose increase to start of insulin release
(Rorsman and Renstrgm 2003).The simulations showed that a decreased first phase, as observed in
type 2 diabetes, is partly due to compensatory mechanisms in order to minimize the effect of
diminished amount of total GK. Insulin in the readily releasable pool, RRP (Korsgaard and
Colding-Jorgensen 2006) contribute to the first phase release, hence the diminished, or lack of, first
phase insulin release in type 2 diabetes can be due to damaged signalling or defects in the
exocytotic processes, or both. The model confirms the rate dependency of glucose changes of the
first phase (cf. Fig. 6.5), giving the grounds for using dG/dt as an indicator for the first phase.
However, as demonstrated by Eq. (6.13), the relation between dG/dt and first phase insulin release
is more complex than merely being proportional.

The second phase is explained by the translocation of GK from an inactive to an active state
upon stimulation by glucose. However it is not glucose, but some substance S downstream of the
glycolysisthat controls the translocation. Thisresult in an autocatalytic process (positive feedback)
giving asigmoidal relation between glucose and S, hence insulin release, where the threshold value
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and slope (glucose sensitivity) is determined by the amount of GK. Grodsky et al. describe the
second phase insulin release as caused by mobilization, or provision, of insulin from a stabile pool
to the labile, readily releasable, pool. In contrast, we have described the second phase as the result
of the translocation property of GK.

The glucose memory effect adds yet another time-dependent effect upon the beta cell. We
have described this as caused by another autocatalytic effect, whereby insulin release is augmented
by its own release. The mechanisms responsible for the memory effect are not understood, and
insulin has been found to both inhibit and enhance its own release (Korsgaard and Colding-
Jorgensen 2006). However the model results with the assumption that the memory effect is caused
by an autocatalytic process of insulin release resemble literature findings (Caumo and Luzi 2004,
Grill et al. 1978; Nesher and Cerasi 2002), cf. Fig. 6.10.

During the exocytotic process, when the insulin granules are enclosed in the cell membrane, it is not
clear what happens to the granule-bound GK. If GK isreleased to the cytoplasm and hence
activated, it could contribute to the memory effect (Korsgaard and Colding-Jorgensen 2006).

As mentioned earlier, in terms of classic control theory the beta cell is often considered to

work as aPID controller. With the GK translocation property, Eq. (6.13) modifies to

S=RoX fur (6)+ o1y ()5 -1 (6.24)

The first term in the parenthesis of Eq. (6.24) correspond to the proportional, and the second term to
the derivative control component. Xa, i.e. the translocation property, correspond to an integral
control component. Hence it is seen from Eq. (6.24) that some parallels can be drawn between the
characteristics of aclassic PID controller and the actions of the beta cell. However the beta cell has
intrinsic non-linear characteristics and work under saturable signals (Korsgaard and Colding-
Jorgensen 2006). The result of these described time-dependent control mechanismsis that as long
as glucose is elevated, insulin will continue to be released. The manner in which thisis achieved
can vary from person to person, and as long as glucose is normalised within a reasonable time
frame, the control is characterised as being normal. This explains the wide range of values for the
parameters describing beta cell function found even for healthy persons, cf. chapter 3.
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6.2  Multiplicity of glucose sensors

The beta cells are not the only glucose sensitive cells in the body. It now appears that there are
many glucose sensors, and that they are interwoven in a complex network (Herman and Kahn 2006;
Matschinsky et al. 2006; Peters et al. 2002; Schuit et al. 2001; Thorens 2004a)designed to respond
and cope with the different glucose loads a human body experience day after day, year after year.
Glucose sensors are present in the intestine, the brain, the pancreas (alpha-cells, beta cells), the
hepatic region, and perhaps other places (Herman and Kahn 2006; Matschinsky et al. 2006; Peters
et al. 2002; Schuit et al. 2001; Thorens 2004a). The sensors each have their own regulatory function
and respond to different glucose concentrations. As previously described, GK seemsto be
characteristic for many of the glucose sensors, and the sensing mechanisms resemble the sensing
mechanisms found in the beta cells. Hence the beta cell model described in the previous section

seems to apply as a general model of glucose sensing model in the body.
6.3  Glucose control

The glucose control or handling is depicted in Fig. 6.1 by the effector subsystem. Most common is
to view the glucose uptake into the cell as the main effector to lower the plasma glucose
concentration. In reality however, the picture is more complicated. When glucose enters the body,
as for instance after an intake of ameal, it istaken up and/or shuffled between the different organs
in the body, as shown in Fig 6.11.

Intake

Z B
Mus:cle

Fig 6.11: The most important organs in the body that use and/or reshuffle plasma glucose, G.
Adapted from Hallgreen et al. 2008.

Once glucose is transported across the membrane, in either of the cells in the different organs, it is
phosphorylated to glucose-6-phosphate, G6P, which cannot escape the cell; hence glucose is
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trapped inside the cell as G6P. The liver and the kidney are the only major organs capable of
releasing glucose again, by de-phosphorylation of G6P back to glucose. The other organs need to
handle G6P by other means. Hence, the handling of G6P is of immense importance for the glucose
control.

Fig 6.12 shows the most important pathways by which the cells in the organs can handle G6P. The
handling of G6P is complex and different from one cell type to the other. The pathways are
described in (Hallgreen et al. 2008). Shortly, G6P can be handled and removed by:

1. Oxidation: Present in all cells.
Glycogen storage: Primarily in muscle and liver cells.
Conversion into fat and stored: Normally in adipocytes
Conversion into lactate: Almost all cells.

Conversion into fatty acids: Primarily adipocytes and liver cells.

o g A~ w0 DN

Conversion into glucose: Liver and kidney cells.

Glucose
'S
.

O

Oxidation 4— @ —_— Fat

Lactate Glycogen

Fig. 6.12: The most important pathways by which glucose-6-phosphate, G6P can be handled by the
cell types in the different organs. The dashed line indicates that only the liver (and kidney) cells are
able to release free glucose from G6P. For details see text and (Hallgreen et al. 2008).

The different options outlined serve to redirect the metabolic fluxes between storage, release and
oxidation. Options 4 and 5 are particularly important, as they seem to be the only ways the cells can
adjust the net influx of glucose to their need (Hallgreen et al. 2008).

Fig 6.13 shows the main routes of glucose fluxes in the most important organs in the handling of

glucose, i.e. liver, muscle, and adipocyte. After ameal, glucose is predominantly stored in the
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muscle cells as glycogen, whereas fat is predominantly stored astriacylglycerols, TG in the adipose
tissue cells (Hallgreen et al. 2008).

The details of the handling of glucose for each of the different cells have been described in
(Hallgreen et al. 2008). In the following section, the control of glucose and its metabolites in the

muscle cells will be discussed in details.

~~ ~~ 4~

G G Gi
GﬂP +— Glycogen GﬁP +— Glycogen G6P .- Glycogen
e Pyruvate ——= Lactate Pyruvate —=—= Lactate Pyruvate —=—= Lactate

Amino acids *~ l l
Glycerol . . . . . .

T(l:A — Lipogenesis TCA — Lipogenesis TCA — Lipogenesis

Oxidation Oxidation Oxidation
(a) Liver cell (b) Muscle cell (c) Adipocyte

Fig. 6.13: The main routes of glucose fluxes in the most important cells for handling of glucose (a)
Liver cell, (b) muscle cell, and (c) adipocyte. Adapted from (Hallgreen et al. 2008).

6.3.1 Glucosetransport and phosphorylation in muscle tissue cells
The transport of glucose across the muscle cell membrane is as mentioned earlier viathe
transporters, GLUT1 and GLUT4. GLUT1 is denoted the insulin-independent glucose transporter.
Its activity is fairly constant at the cell membrane, and fasting glucose uptake is predominantly via
this transporter. GLUT4 is the insulin-dependent glucose transporter, where in the fasting state most
of the transporters are sequestered in intracellular stores. Upon insulin stimulation, GLUT4
translocates to the membrane and hence increases glucose uptake.

Both transporters are saturable and can simplified be described by a Michaelis-Menten
relation with the same half-saturation value Ky = 5 mM (Frayn 2003). Hence we have

G G

‘]influx = (VGLUTl + VGLUT4) m = VGLUT m (6-25)

where Jnsiux 1S the glucose influx, VeLuri and VeLuts are the maximal transport capacity of GLUT1

and GLUT4, respectively, where Vg uyr4 depends on insulin, and Vg ur isthe sum of Vg yr1 and

VeLuTa.
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The glucose transporters are generally assumed to be symmetric (Klip and Marette 2001), hence
intracellular glucose concentration, G; can be transported out of the cell by the efflux, Jesiux
described by

G,

Jetix = Verur KM—'*I'Gu (6.26)
Hence the net uptake, J.« is given by the difference between the influx and efflux
G G,
Joet = Jinix — Jestix = VaLur {K +G - K, _L G, ) (6.27)

To be further processed by the muscle cell, the intracellular glucose, G; needs to be activated, i.e.
phosporylated to G6P. In the muscle cell thisis achieved by hexokinase. The activity of hexokinase
isregulated by both G; and G6P via a mixed inhibition (Toews 1966), hence the flux through
hexokinase, J.e can be described by
V,..G,

5 = (6.28)
1+ 2P 11+ P
KGGP KGGP

where the constants K ne=0.188 mM, Kgp=0.068 mM, and K gep=0.022 mM are estimated from
(Toews 1966).

As seen from Eq. (6.28) the flux through the hexokinase is dependent on the removal of G6P.
Muscle cell lack glucose-6-phosphatase, hence once phosphorylated, glucose istrapped inside the
cell as G6P. As aresult the glucose uptake becomes critically dependent on the removal of G6P, as
seen in the following.

To simplify, we assume that the removal rate or flux of G6P, Jsep is proportional to the
concentration of G6P according to

Jaep = Ry - GOP (6.29)

with Reep being a constant determining the G6P removal capacity.

To investigate the effect of the balance between the maximal net uptake, the maximal
phosphorylation, and the maximal removal on the net uptake, we evaluated the fluxes given by Egs.
(6.27)-(6.29) in the steady state, i.e.

Jhet = Jhex = Joep (6.30)
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To simplify the system given by Eq. (6.30), we introduced the ratio, A describing the maximal
glucose uptake in relation to the maximal phosphorylation rate, and the ratio, B describing the
removal capacity in relation to the maximal phosphorylation rate, i.e.

A=Vour g Bo Rew (6.31)
Vhex Vhex

Fig 6.14(a) showsthe increase of G; as a consequence of increasing A values, for instance by
increasing the insulin levels. Fig. 6.14(b) shows the relation between the normalised net uptake
and the A parameter. Net uptake decreases for increasing values of A as a consequence of the
increased G;, cf. EQ. (6.27). The decreased uptake can be diminished by an increase in the B
parameter, for instance by increasing the removal capacity of G6P.
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Fig. 6.14: (a) Relation between the intracellular glucose, G; and the parameter A for different values
of the parameter B (b) Relation between the normalised net glucose uptake J. and the parameter A
for different values of the parameter B assuming constant plasma glucose value, G =5 mM.
Relations are determined by the Egs. (6.27)-(6.31). High G; values are able to decrease net uptake
as according to Eq. (6.27), depending on the capacity to remove G6P.

Fig. 6.15(a) shows that the concentration of GEP saturates for increasing values of A, with the result
that the net uptake becomes independent of changes in A. Hence an isolated change in the glucose
transporter activity, e.g. by increasing insulin levels to increase the amount of GLUT4 on the cell
membrane will have no effect on the glucose uptake. G6P has to be removed, before glucose uptake
can continue, as shown in Fig. 6.15(b). Thusthe handling of G6P is a critical determining factor for
the glucose uptake.
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Fig. 6.15: (a) Relation between the glucose-6-phosphate, G6P and the parameter A for different
values of the parameter B (b) Relation between the net glucose uptake J.e and the parameter A for
different values of the parameter. Relations are determined by the Egs. (6.27)-(6.31). High values of
A, for instance as a consequence of high insulin levels, are able to saturate the concentration of G6P
(a) As aconsequence the net uptake becomes independent of the changesin A (b). The saturation
can be diminished by increasing the removal capacity of GE6P.

As shown in Fig. 6.13(b) the produced G6P can be removed by different processes. In the fed state
the main G6P remover is glycogen synthesis as in the liver, and normally insulin stimulates the
glycogen synthase strongly (Berg et al. 2006). In the fasting state, muscle cells only take up little
glucose that mainly goes to oxidation. The energy need is met by oxidation of fatty acids, FA. The
maximum glycogen storage in the whole-body has been estimated at some 1000 g for an untrained
person (Acheson et al. 1988) with the storage predominantly being in muscle and liver cells. Hence
the glycogen storage is limited and the storage rate declines exponentially (Hallgreen et al. 2008)
Hence a massive load of glucose can only be removed via the glycogen synthesis pathway
for some time. Many authors report that during hyperinsulinaemic clamps, the glucose infusion rate
and hence the glucose uptake does not decline substantially with time (Hallgreen et al. 2008) and
plasma glucose does not appear to increase during glucose loads (Hallgreen et al. 2008). Hence the
removal of G6P seems to continue for large glucose loads at least in healthy persons. In subjects
with type 2 diabetes it may be possible that an insufficient removal of G6P and hence high
intracellular glucose leads to decreased glucose uptake. As the resting muscle has low energy
expenditure, the oxidation pathway does not contribute to the removal of G6P to any significantly
extend. Two options are then left, cf. Fig. 6.13(b). G6P can be converted to lactate, and leave the

cell, or G6P can be converted into fat.
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Lactate formation seems to be the first choice. During high glucose uptake, lactate plasma
concentration typically rises with a factor 2-3. As most cells can take up lactate for oxidation or
storage as glycogen, this option seemsto be a way surplus glucose can be reshuffled between the
different organs. However in awhole-body perspective, this cannot continue when the glycogen
stores arefilled.

The only other option left then is the formation of fat via de novo lipogenesis, DNL, i.e. the
formation of TG from glucose. It has been found that during overfeeding around 5 mg/kg/min of
glucose could be converted to fat in the whole-body (Acheson et al. 1988). Hence a substantial
amount of glucose can be converted into fat during overfeeding.

Normally DNL is considered to take place predominantly in the adipose tissue, and only to a
minor extend in liver and muscle cells. However, DNL make take place in the muscle cells, at least
temporarily, in cases of overfeeding (Hallgreen et al. 2008).

It is not known what happens with the produced FA in the muscle tissues; some may be
oxidised, some, at least temporarily may be stored as fat and then later oxidised, and some may be
transported to the adipose tissue for storage. Interestingly the produced FA in the muscle cell may
inhibit GLUT4 activity leading to akind of insulin resistance (Boden 2001; Dresner et al. 1999).

6.3.2 Integration of metabolism

The major organs participating in the control of plasma glucose concentration all have their
particular metabolic profile for shuffling the glucose and metabolite fluxes between oxidation,
storage, and release, cf. Fig 6.13.

In the fasting state glucose is normally kept at arelatively constant level, due to several
things. Firstly in the liver glycogen is broken down via glycogenolysis to glucose and released into
the blood. Secondly the adipocytes release glycerol and FA. Thirdly the muscle tissue mainly
oxidises FA instead of glucose. Furthermore the glycerol released by the adipocytes goesto the
liver for rebuild of glucose. All these processes are initiated by the decrease in the insulin levels.

In the fed state, the muscle tissues shift the energy dependency to glucose and are the primary tissue
for glucose uptake. Surplus of glucose may be exported as lactate, and rebuild as glucose in the
liver, or reshuffled between oxidation, release or storage in other organs. In massive overfeeding
glucose may temporarily be converted into FA in muscle cells and stored or oxidised, or transported

to adipocytes for storage.
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Fig. 6.16: The balance between glucose oxidation, glycogen storage, and de novo lipogenesis, DNL
in healthy subjects undergoing massive glucose overfeeding. Adapted from (Acheson et al. 1988).

The contribution of glycogen storage, glucose oxidation, or DNL seems to be balanced in a graded
manner as demonstrated in Fig. 6.16. In the muscle cells the lactate production that is needed to
remove surplus glucose when the glycogen stores are filled, would lead to much higher plasma
lactate concentration values than normally reported (Hallgreen et al. 2008), hence in these situations
at least temporarily DNL must occur. The signal(s) for shifting between glycogen storage and DNL
is not known, but it may be G6P that increases when the glycogen storesfills up.

Often subjects with type 2 diabetes have an increased fasting HGO that is primarily caused
by increased GNG via increased lactate fluxes. The increased lactate fluxes must be a consequence
of a decreased glucose oxidation, mainly due to increased levels of FA and hence an increased FA
oxidation. Hence the glucose is not oxidised, but exported again as lactate that goes to the liver for
rebuild of glucose via GNG, and the recycling continues. To lower fasting plasma glucose it would
not be feasible to inhibit the GNG from lactate. Thiswould just increase lactate levelsin the liver
and give lactoacidosis. Furthermore an increase in glucose uptake would just create more lactate.
Instead the FA concentration should be lowered to increase glucose oxidation.

The ideaisthat the activity of the hormone sensitive lipase, HSL that simulates lipolysis
but normally is inhibited in a strongly insulin-dependent way, is increased, as a consequence of
insulin resistance at the adipocytes. As aresult more FA isreleased and oxidised and glucose
oxidation is decreased.

However as atypical person with type 2 diabetes is obese, the lipolysis cannot go on
forever. As previously mentioned a substantial amount of glucose can be converted into fat during
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overfeeding, primarily in the adipocytes. The fat can then be stored or oxidised. In all casesthe

variable FPG in subjects with type 2 diabetes may be caused by a mismatch between fat and

glucose oxidation.

In this chapter the glucose-insulin control system has been discussed and it has been assessed to

what extend classic control theory can be used to describe the system. Thefirst part of the

chapter concerned a model of the glucose sensing in the beta cell based on the regulation of the

enzyme glucokinase, GK. The model results showed that:

GK isthe key enzyme controlling glucose sensing activities in the beta cell

First phaseinsulin release can partly be explained by a delayed inhibition of GK, by
signalling substance(s) downstream of the glycolytic pathway.

Diminished first phase release observed in subjects with type 2 diabetes can in part be
explained by mechanismsin order to compensate for small amount of GK
Trandocation of GK from an inactive to an active state is an autocatalytic process that
controls the offset of insulin release and explain the second phase of insulin release
Damaged trandocation of GK and/or diminished amount of GK may be responsible for
the increased offset of insulin release and diminished slope observed in subjects with
type 2 diabetes

Glucose memory in the beta cell may in part be explained by autocatal ytic enhancement
of insulin release

The beta cell has some characteristics of a classic PID controller. However the sensing
mechanisms are highly non-linear and saturable that makes the classic PID controller
description limited

The glucose sensing in the body is achieved by a complex interwoven network of

different sensorsin different parts of the body

The second part of the chapter concerned the glucose handling and control. Each organ hasits

unigue metabolic profile for handling glucose that makes the task of describing the handling of

glucose much more complex than just describing the uptake of glucose into the cells.
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More specifically it was shown that:

o Thefateof G6P iscritical for the handling and control of glucose

o Particularly in the muscle cells, it was shown that insufficient removal of G6P resulted
in glucose uptake that did not depend on the GLUT4 activity, i.e. increased insulin
would not increase glucose uptake

o During massive overfeeding when glycogen stores are saturated, glucose may be
converted to fat in the muscle cell that may lead to insulin resistance at the muscle cell

o Normally thereis a tight balance between glucose oxidation, glycogen storage and de

novo lipogenesis during overfeeding

Hence the handling of glucose by the body is determined by a complex shuffling of glucose and
metabolites between the need for oxidation, storage and release of glucose and conversionsto
and from other nutrients within and between the organs, where the traffic are regulated by
insulin as well as the nervous system. In light of this, an effect of e.g. insulin on glucose uptake
is hard to quantify, as the resulting effect depends on the dynamical balance between oxidation,

storage and release.

134



Chapter 7

Discussion and conclusion

There is no doubt that an understanding of the way the beta cells work is a tremendous task, but
likevise a very important one. The preceding chapters have described and discussed the different
components that are needed to establish atest of beta cell functionality. From the different protocols
designed to receive data and the mathematical models linking data with indices used to quantify
beta cell functionality and insulin action in chapter 2, 3 and 4, to the mechanism-based description
of the processes behind beta cell functionality and effects of insulin within the glucose-insulin
control system in chapter 6. Chapter 5 provided a novel way to look at meal response data that
pointed at strikingly new results for the responses of both the healthy and the subjects with type 2
diabetes.

71 Discussion

M athematical modelling

Mathematical models with different levels of complexity are used intensively in order to gain a
coherent picture of beta cell functionality (Bertuzzi et al. 2007; Giugliano et al. 2000; Korsgaard
and Colding-Jorgensen 2006; Pedersen et al. 2010). The level of complexity of the model is
generally aresult of the question being asked. Minimal models, as implied by the name, are based
on the concept that the dynamics of the biological system should be described by a minimum
number of identifiable parameters. Hence these parameters should describe the main characteristics
of the system. In contrast, maximal models are comprehensive descriptions which consolidate large
amount of biological knowledge. Maximal models are generally not identifiable, and therefore not
designed to quantify specific processes, but serve to simulate the behaviour of the system, and test
new hypothesis.

The minimal model approach has its strengths in its simplicity and ability to give
guantitative measures of specific processes. The simplicity can however also be a weakness of this
approach. Biological systems are complex and most definitely not identifiable. To force the criteria
of identifiability on the description of biological systems restricts the domain of validity of the

model.
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The strength of the maximal model approach is the implementation of biological knowledge. By
this approach, as much knowledge as possible about the biology is intended to be taken into
account, and thus a more correct description than that gained with the minimal model approach isto
be expected. Y et again, the strength of this approach may become its weakness. To include more
and more biological knowledge in a mathematical model is not only an immense laborious task, but
more importantly the model becomes more and more difficult to validate. Furthermore the
circumstances under which the model is going to be used should be kept in mind.

Assessment of beta cell functionality

No gold standard exists for the assessment or testing of the beta cell functionality. The
deconvolution method proposed by Eaton-Polonsky (Eaton et al. 1980; Polonsky et al. 1986) has
been termed the gold standard. However as previously discussed this method determines absolute
insulin secretion, and not the ability to respond to stimuli, i.e. beta cell function. Furthermore it is
cumbersome and may underestimate the actual secretion, as pointed out in chapter 2

By no doubt, the most reliable test to use for the assessment of beta cell functionality could
be the MTT, and secondary the OGTT. These tolerance tests resemble daily life most appropriate,
withthe MTT as preference due to the influence of also proteins and fatty acids. Furthermore they
are relatively convenient, however they require some blood samples, but thisis not different from
any other test. With that said | wrote “could be” in regards with reliability of these tests. Thisis due
to the vital importance of the right mathematical model to be used. As previously described, even
after decades of intense research regarding the biphasic nature of insulin secretion, there are till
many missing pieces to the puzzle; we are not there yet, but we are approaching.

Hence for now, maybe the most reliable test to assess at least the first phase insulin secretion
appearsto bethe IVGTT or the glucose clamp. However the first phase insulin secretion bot be
evaluated in light of the insulin action, due to the adaptive nature of the beta cell function to the
insulin sensitivity viathe disposition index.

The disposition index

The disposition index was first introduced by (Bergman et al. 1981) as an index to quantify the
ability of the beta cell to adapt to the prevailing insulin sensitivity. Numerous studies have since
then confirmed this ability (Cobelli et al. 2007). Strikingly, even though the disposition index has
been denoted “the hyperbolic law” (Stumvoll et al. 2005), the mechanism(s) responsible for this
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adaptation has yet to be clearly established. (Stumvoll et al. 2003) provided evidence to show that
glucose itself isthe signal responsible for the compensating increased insulin release, as measured
by AIR, in case of developed insulin resistance. Despite constant disposition index, the authors
found changes in fasting plasma glucose and 2-hour postprandial glucose value. Hence even when
the beta cell was able to compensate for changes in insulin sensitivity, glycemia was changed. The
logic they put forward for this view was that when insulin resistance develops (for whatever
reason), glucose increases with aresulting increase in insulin release. (Bergman 2005) induced
insulin resistance and hyperinsulinemia in dogs by a high fat diet. He found no changes in glucose,
GLP-1, cortisol or growth hormone pattern, but found a significant increase in FFA overnight, and
hypothesized that this nocturnal increase of FFA was the signal responsible for the compensating
increase in insulin release. 1n section 6.3.1 we argued that the produced FFA in muscle cells during
overfeeding could induce insulin resistance. Hence FFA may also provide as a link for the
adaptation of beta cell function to the insulin action.

Recently (Maiztegui et al. 2009) performed a study with rats, where insulin resistance where
induced by a fructose rich diet. The investigators found normal fasting plasma glucose values, but
impaired glucose tolerance and increased insulin release. The compensating increase in insulin
release where explained to be due to the found increase in GK activity and protein levels. This
reasoning isin line with the model we presented in section 6.1 regarding the beta cell functionality,
where the translocation of GK from an inactive state to an active state was found to be an important
mechanism in the glucose sensing mechanism of the beta cell. Thus recent evidence gives further
supports for the importance of GK translocation in insulin release.

Another recent interesting study (Bouche et al. 2010) investigated the effect of insulin on its
own secretion in healthy humans during clamps. The investigators found that pre-exposure to
exogenous insulin (4-h) were able to enhance the glucose stimulated insulin release, asthe
clearance of insulin did not change. Hence presumably, the ability of insulin to enhance its own
release could explain the compensating link between decreased insulin action and resulting
increased insulin release. This study is also interesting as it highlights the importance of insulin
signalling in the beta cell. In the model we proposed in section 6.1 we also took into account that
insulin (or rather release) was able to enhance its own release. This mechanism was able to explain
the glucose memory (or potentiation) phenomenon. However the study by (Anderwald et al. 2011)
showed that insulin enhances its own secretion only in insulin sensitive subjects. In insulin-resistant
and subjects with type 2 diabetes, insulin appeared to be suppress its own secretion.
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Assessment of insulin sensitivity

The findings in chapter 6 that the fate of GE6P is a critical regulator for the handling and uptake of
glucose have important consequences. Firstly, as shown, an insufficiently removal of G6P can result
in akind of insulin resistance. Secondly in glucose clamp studies which are widely used for the
assessment of the glucose-insulin control system and the action of new insulin types, the level of the
GIR value isimportant. The clamp istypically performed after an overnight fast (Hallgreen et al.
2008).

With small to moderate insulin levels the GIR mainly goes to glucose oxidation and to
replace decreased hepatic glucose production. Lipolysis is most sensitive to insulin with a half-
maximal suppression value, EC50 of around 60 pM, with the inhibiting effect of insulin on the
hepatic glucose production being secondary with an EC50 value around 150 pM. Thus at low
insulin values and hence low GIR values, the clamp mainly evaluates the insulin action on the
lipolysis and secondarily the action on the hepatic glucose production. A large insulin value may
require a GIR of 10 mg/kg/min or more, avalue that corresponds to massive overfeeding (Hallgreen
et al. 2008). Aswas shown in Fig. 6.21, the glucose uptake during massive overfeeding is
determined by a dynamic balance between oxidation, storage as glycogen and conversion into fat.
Thus the clamp assesses the glucose removal and the specific action of insulin is determined by the
relative contribution of the glucose removal pathways. Hence focus must also be directed to what
goeson in the cell and not just the description of the uptake of glucose.

Despite these limitations, the hyperinsulinemic-euglycemic clamp still offers the best direct
way of assessing insulin action (Muniyappa et al. 2008). However it is time-consuming, thus if
precise and reliable value are not that important other surrogate indices may be used (Muniyappa et
al. 2008). The minimal model of glucose kinetics could also be used, however as also shown in

chapter 3, the model may once in awhile produce spurious result (Muniyappa et al. 2008).

Glucose-sensing in the beta cell

In technical applications the beta cell has often been considered working asaPID. Theoral C-
peptide minimal model has been compared to the characteristics of a PID controller in connection
with the use of a model for a closed-loop design (Steil et al. 2003). In contrast with a PID
controller, the C-peptide minimal model only make use of the positive rate of change of the glucose
concentration to characterise the dynamic beta cell secretion phase, and introduces a delay between
glucose stimulation and resulting insulin secretion described by the static secretion component.
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Despite equal performances during a glucose clamp (Steil et al. 2003), the C-peptide minimal

model proved unstable in closed-loop conditions where the action of insulin was modelled through
the glucose minimal model (Steil et al. 2003). It has been shown that both the dynamic as well as
the delayed action of glucose on the secretion are necessary components to describe C-peptide data
in healthy as well as impaired glucose tolerant subjects undergoing OGTT (Breda et al. 2002).
Other studies have shown that in some subjects the secretion is more appropriately described by a
proportional secretion component with no delay, although a delay was evident in most subjects
(Stell et al. 2004). Interestingly in arecent study (Pedersen et al. 2010), the authors provided further
evidence for the importance of the three main control components in the C-peptide oral minimal
model, i.e. derivative control, proportional control, and delay. The authors showed that a previous
publiced model (Pedersen et al. 2008), which incorporate present knowledge of intracellular events,
could in a straight forward manner explain these technical control elements, thus providing alink
between a minimal model and a maximal model capable of describing the biological eventsin the
exocytosis.

In chapter 4 we found that the insulin concentration response after aMTT in healthy and in
subjects with type 2 diabetes was most appropriately described by a combination of proportional
and delayed effects of glucose. We omitted arate of change of glucose (dynamic) component asthe
estimation of this component did not converge.

In chapter 6 we showed that the biphasic nature of the beta cell secretion can be explained
by the regulation of the glucose sensor enzyme, glucokinase, and that the beta cell has
characteristics of a PID controller, but with non-linear and saturable components. We stated the
importance of the translocation of GK from an inactive to an active state for the glucose sensing.
Such importance was again established in a recent study (Maiztegui et al. 2009). The recent
advance in the knowledge of the intracellular events in the glucose sensing of the beta cell where
discussed in section 2.2.3, where the importance of the metabolic amplifying pathway was
discussed, especially in connection with glucose potentiation. We modelled the glucose potentiation
(or memory) as aresult of an autocatalytic effect of insulin secretion; however the signal substance
S we introduced could as easily be a messenger in the proposed amplifying pathway. The non-sense
to glucose is an important marker for type 2 diabetes. In our model this could be obtained by a
reduced amount of total GK and/or an impaired translocation capability. Both dearangement have
been observed in literature. Interestingly GK has been found to be bound to the insulin granules, cf.
chapter 6. Upon insulin release it is not clear what happens to the now unbound GK. One possibility
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isthat it could partake in a potentiation effect. Furthermore it will be interesting in future sudiesto
integrate the property of GK translocation with the amplifying pathway, and a description of the
granules in the distinct pools.

Physiological mechanisms governing the meal response

The finding that the glucose meal responses for the subjects with type 2 diabetes were quite similar
despite different levels of insulin, different levels of fasting plasma glucose values, different disease
stages and different treatments is novel and remarkable. The analysis of the healthy glucose meal
response led to the novel conclusion that for the healthy subjects, the apparent glucose rate of
appearance seems to be controlled in such away as to follow the glucose uptake. Furthermore the
analysis showed a fundamental and consistent difference between the responses of healthy and the
subjects with type 2 diabetes. These findings contradict the current knowledge of insulin as being
the single most important player in the control of glucose and triggers several questions: If other
mechanism(s) than the well-studied insulin-dependent mechanisms play arole during a meal, then
what are these mechanisms and how are they conveyed? Can they explain the difference observed
in the meal responses between the healthy and subjects with type 2 diabetes? How should this be
taken into account when evaluation beta cell functionality?

A step towards answering the first of these questions may be taken by investigating the
actions of a glucose sensor situated in the hepatoportal vein (Thorens 2004b). This hepatoportal
glucose sensor, HPS is activated by a positive glucose gradient between the portal vein and the
arterial blood, exactly the situation encountered during meal absorption. The activity of the sensor
depends on GLP-1 and GLUT2 and probably also glucokinase. Furthermore, the action is inhibited
by somatostatin. Thus the sensing mechanisms of the hepatoportal glucose sensor resemble that of
the beta cell. The effect of the sensor is a nerve signal that goes to the central nervous system, CNS.
The sensor has been shown to €elicit a nerve-mediated increase of the first phase insulin secretion
activities. Moreover HPS has been shown to trigger a nerve-mediated insulin-independent glucose
uptake that act via GLUTA4, similar to the action of exercise (Burcelin et al. 2003). In fact the
system has been observed to be so strong as to induce hypoglycemia without increase in the insulin
concentration (Burcelin et al. 2000).

The fact that the activity of HPS depends on GLP-1 may explain the reason for the
production of GLP-1 in the intestine. It has been calculated that only 10-15% of the produced GLP-
1 in the intestine reaches the systemic circulation (Holst 2007). Asthe half-life of GLP-1 in plasma
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is< 2 min (Holst 2007; Holst et al. 2008) the amount reaching the pancreatic beta cell may be even
less. Thus it may be speculated that the action of GLP-1 is primarily to trigger HPS that act viathe
nervous system, and thus the action of GLP-1 may primarily be nerve-mediated.

It has been found difficult to relate the index of dynamic phase secretion of insulin during
meal tests with the corresponding first phase secretion indices found with either IVGTT or HGC
studies (Steil et al. 2004) taken as the AUC of insulin during the first 10 min. This may primarily be
explained by the cephalic phase insulin secretion acting during the first 10 min before any
noticeable increase in the plasma glucose concentration (Ahrén and Holst 2001). However the
activation of HPS via GLP-1 may also to some extent contribute to the difference between the oral
index and the intravenous indices.

The activation of HPS when only a positive gradient between the portal vein and arterial
blood is present means that HPS measures the glucose absorption rate (Hallgreen et al. 2008). The
translocation of GLUT4 by the activation of HPS is interesting. It provides a mechanism by which
glucose is lowered independently of the action of insulin. The principle of the action of HPS in the
overall glucose control after a meal can be seen from the equation describing the glucose dynamics
after ameal (Hallgreen et al. 2008)

dG G

Vo—=J, +HGO-J,, —(Vaur +Vaura) ———— (7.2)
G dt abs o] GLUT1 GLUT4 KGLUT +G

where Vg is the glucose distribution volume, G is plasma glucose concentration, Jysis the glucose
absorption rate, HGO is hepatic (and kidney) glucose output, Jy4iniS the brain glucose uptake,
VeLuriand VgLuts ISthe maximal insulin-independent and maximal insulin dependent glucose
uptake, respectively, and Kg_ut isthe Michaélis-Menten constant for the glucose transporters.

Assuming that the main role of the glucose control system isto maintain the glucose
concentration at a constant level, we get from Eq. (7.1)

KGLUT +G

VGLUT4 = (Jabs +HGO - Jbra’n) - VGLUTl = aJabs +b (7.2

where G is assumed constant and variations in HGO are neglected. ais a constant and b is the value
of VeLur4 before the meal (Hallgreen et al. 2008).

Eq. (7.2) show that under these assumptions the control system must, to ensure controlled
levels of glucose, work in away such that GLUT4 istranslocated in proportion with the rate of
absorption of glucose. However, the insulin system works with considerable delays from the
increase of glucose to increase of glucose uptake (Hallgreen et al. 2008).
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The HPS can in this context be regarded as a feed-forward control signal, where the anticipated
glucose change is measured viathe rate of glucose appearance, and a nerve-mediated signal is send
out to accelerate the control of glucose.

Hence it seemsthat at least two glucose-controlling systems are active during a meal. The
classic insulin-dependent pathway and the control system activated by the glucose absorption rate
and with actions conveyed by HPS. In this view the classic insulin-dependent control system seems
more directed to the control of the fasting state, whereas the control system working via HPS seems
more directed to the control of meal-related fluxes. Interestingly a recent sudy (Faerch et al.
2009)evaluating the natural history of insulin sensitivity and insulin secretion in the progrssion from
normal glucose tolerance to impaired fasting glucose and impaired glucose tolerance found
evidence to show that isolated impaired fasting glucose and isolated impaired glucose tolerance
appear from different underlying mechanisms, much in line with the above statement

With that hypothesis it seems plausible to suggest that the action of the HPS is responsible
for the observation that in the healthy subjects, the glucose uptake is regulated in such away asto
follow the rate of glucose appearance.

The observation in the subjects with type 2 diabetes that the glucose meal-response seems
independent of the prevailing insulin level put further evidence to the proposed hypothesis. The
fundamental difference between the glucose meal-responses of the healthy subjects and the subjects
type 2 diabetes could be explained by an impaired HPS control system within the subjects with
diabetes. The differences observed in the glucose peak values and times of the glucose meal
responses for the subjects with type 2 diabetes could then be explained by the different insulin
levels acting viathe insulin-dependent fasting control system.

7.2  Conclusion

This thesis has shown different findings that urge the need for a new way to think of atest of beta
cell function, but also highlight the importance of even more modelling efforts. The most important
results being those found for the glucose meal-responses of the healthy subjects and the subjects
with type 2 diabetes that led to the hypothesis of amajor role played by insulin-independent
mechanisms in the control of after-meal glucose concentrations. This really challenges the current
way and usefulness of testing beta cell function. The findings highlight the importance of a more
holistic approach to the understanding of the functionality of the beta cell in healthy subjects and in
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subjects with diabetes, and itsrole in the overall control of glucose, where neither of the elements
described throughout this thesis can be left out.
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ABSTRACT

Purpose: To describe postprandial insulin profiles in subjects with type 2 diabetes (T2DM) using
population-based mixed effects modelling, including covariate analysis.

Methods. 417 subjects with newly diagnosed T2DM and 85 non-diabetic control subjects
underwent mixed meal tolerance tests. The postprandial glucose and insulin concentrations were
used to characterize the glucose-insulin relationship and relate it to their demographic and baseline
characteristics using a population mixed effects modelling approach.

Results. Several empirical models were tested. The resulting final model incorporated an
instantaneous and a delayed stimulation by glucose on insulin. Effects of covariates on the model
parameters were analysed. Only two covariates were retained in the model: Fasting plasma glucose
was a covariate on the insulin response (both instantaneous and delayed effects) and waist
circumference was a covariate on the insulin baseline. All other covariates failed to explain more
than 10% of the remaining variation. The delayed effect of glucose on insulin response decreases
faster than the rapid effect of glucose on insulin response in subjects with T2DM compared with
controls. This difference in the two parameters is a novel finding from the population model
analysis.

Conclusion: We have proposed a new model to assess postprandial insulin responses using a mixed

effects modelling approach.

Keywords: Mathematical model, type 2 diabetes, MTT, population approach, NONMEM.

AUC: Area under the curve; FPG: Fasting plasma glucose; FPI: Fasting plasma insulin; HOMA:

Homeostatic model assessment; MTT: Meal tolerance test; T2DM: Type 2 diabetes mellitus; WST:

Waist circumference.
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INTRODUCTION

The pathogenesis of type 2 diabetes mellitus (T2DM) is not yet fully understood. Both insulin
resistance and inadequate insulin secretion are important determinants in the development of
T2DM. The main culprit of hyperglycaemia in subjects with T2DM is the decline in the beta cells
ability to secrete sufficient and timely insulin to match the peripheral insulin resistance.

The purpose of this study was to quantitatively describe the subject’s ability to secrete insulin
after amixed meal and to relate postprandial insulin to demographics and baseline characteristicsin
a population of non-diabetic control subjects and subjects with newly diagnosed T2DM. For this
purpose, we used a population-based mixed effects modelling approach. The use of mixed effects
modelling has been shown to be very useful in pharmacokinetic and
pharmacokinetic/pharmacodynamic studies, especially in regards to demonstrating the importance
of covariates on model parameters. Here, the same approach is used with data on postprandial
insulin concentrations in subjects with T2DM in order to identify covariates of importance for the
postprandial insulin response. We analysed postprandial glucose and insulin responses from 502
subjects who had undergone mixed meal tolerance tests (MTT’s). Demographics and baseline
characteristics such as age, sex, BMI, waist circumference (WST), fasting plasma glucose (FPG),

HbA1c, lipids, etc. weretested as covariates on the estimated model parameters.

RESEARCH DESIGN & METHODS

Subjects

The study was carried out a a single centre. Subjects without T2DM and subjects with newly

diagnosed, treatment nailve T2DM according to WHO criteria (WHO 1999) participated in the
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study. The study was approved by the Bro Taf Local Research Ethics Committee and undertaken
after the patients had given written informed consent and was conducted in accordance with the

Declaration of Helsinki. The demographic and baseline details are shown in table 1.

Experimental design

The MTT was commenced at 08.00h after a 10h overnight fast. An intravenous cannula was
inserted into an antecubital fossa vein in the patient’s forearm and a slow running saline infusion
started to maintain patency of the vein. Fasting samples were taken at —30 min and a 0 min.
Following the O min sample a standard 500kcal mixed meal (58% carbohydrate, 22% fat and 20%
protein; 759 glucose) was given to the patient and consumed within 10 minutes. Post-meal samples
were collected over the 4 hour test period from the commencement of the meal, every 10 min
during the first hour, every 15 min during the next half hour and then half hourly for the remainder

of the test.

Following blood sampling, the samples were separated as soon as possible. Blood was centrifuged
(2000g, 5 min) in a refrigerated centrifuge at 4°C and the plasma aliquoted and frozen at —20°C
immediately, remaining frozen until assay. All specimens were processed in a single laboratory at

the Diabetes Research Unit at Llandough Hospital.

Analytical methods

Samples were taken into fluoride-oxalate for assay of plasma glucose (Y SI 2300; Y SI, Aldershot,
Hants, U.K.) and lithium heparin for assay of insulin by a two-site sandwich immunoassay (MLT
Research, Cardiff, UK). The assay was specific for human insulin with no cross-reactivity with

intact proinsulin.
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Data analysis

As afirst step, we examined the data using a descriptive and statistical-based (non-compartmental)
analysis of the glucose and insulin data (see “Patients and Data’ in Results section). Thereafter we
developed a model-based analysis of insulin concentrations using the mixed effects modelling

approach inthe NONMEM software (Version V).

For the non-compartmental analysis S-PLUS was used. Subject characteristics and baseline blood
parameters were expressed as fasting values. For each subject, insulin plasma concentrations were
also expressed as area under the curve (AUC) following the meal (0 to 240 min), calculated by the
trapezoidal rule. The incremental AUC for both insulin and glucose was calculated by the
difference between AUC and basal AUC (with basal AUC being the theoretical AUC due to fasting
value over 240 min). HOMA indexes (%B and IR) were calculated based on the Homeostatic model
assessment (HOMA model) (Levy et al. 1998; Matthews et al. 1985).

Fasting plasma glucose (FPG) and insulin concentrations (FPI) together with incremental
insulin were correlated against demographic data (such as lipids, BMI, etc.). Furthermore, we
divided the subjects into six groups of FPG (1 group for the controls, and 5 groups for the subjects
with T2DM) and analysed for trends between their insulin response and their demographic
characteristics. The FPG cut-off points/groups were: Group 0: Controls, all with FPG <7 mM (85),
Group 1. FPG <7 mM (45), Group 2: FPG: [7-9] mM (118), Group 3: [9-11] mM (84), Group 4:
[11-13[ mM (68), Group 5: >13 mM (102). The number of subjects in each group is presented in
brackets.

Additionally, we divided the six FPG groups into 3 groups (tertiles) of waist circumference
(WST) to examine for effects of obesity. The WST tertiles were: <95 cm, [95-105] cm and >105

cm. For group O (controls): 66 subjects were in the first WST tertile, 10 subjects in the second and
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4 subjects in the last tertile. Group 1 had 6, 21, and 18 subjects in tertiles 1, 2, and 3, respectively.
Group 2 had 23, 44, and 45 subjects in tertiles 1, 2, and 3, respectively. Group 3 had 10, 32, and 39
subjectsin tertiles 1, 2, and 3, respectively. Group 4 had 14, 28, and 24 subjects in tertiles 1, 2, and

3, respectively. Group 5 had 36, 32, and 26 subjectsin tertiles 1, 2, and 3, respectively.

Model development in NONMEM
A number of different insulin models were tested on the data set, using the maximum likelihood
approximation given by the first-order conditional estimation (FOCE) method in the NONMEM
software (Version V) (Beal and Sheiner 1998). Structural models were evaluated using visual fit to
data, objective function values, and residual variation, as further described in the discussion.
The model parameters were assumed to be log-normal distributed. Intersubject variability
terms were initially included on all parameters, but the importance of this variability on parameters
was evaluated during model selection. In order to dlow for maximal model flexibility different error
models with additive and/or proportional random residuals were also tested.
The structural model evaluation included both elements describing insulin disposition (1), and
effects of glucose on insulin appearance (2), which were evaluated using goodness-of-fit plots,
objective function values, and residual variation.
1. Insulin disposition was modelled by a first order disposition model with a fixed half life
of insulin (6 min) or a direct model of insulin (i.e. where insulin disposition is included
in the secretion model). .

2. For the dynamic model of the effects of glucose on insulin concentrations, the following
structural components were evaluated: 1) glucose above baseline, 2) delayed glucose
above baseline, and 3) the positive part of the rate of change in glucose. Combinations of

these effects were also evaluated.
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RESULTS

Patients and data

The population of subjects with T2DM had an approximately 50% increased average FPI compared
to the non-diabetic control group, whereas FPG was around double and with a wider range (5-21
mM) compared to the control group (4-7 mM). The average time-concentration profiles of glucose
and insulin are shown in figure 1 (A-B). There were considerable differences between the groups
and large intersubject variations. Average maximal insulin response was reached more quickly in
the control group (tmax=50 min) compared to the group with T2DM (tm=75 min). The average
maximal insulin concentration was higher in the control subjects than the diabetic subjects (446 vs
388 pM), but this did not reach statistical significance (P=0.098).

Due to the heterogeneity in FPG in the studied population, we divided the subjects into six
groups of FPG. Figure 2 illustrates the glucose-insulin phase plot (average concentrations) for each
FPG group. The groups 0-2 (i.e. FPG below 9 mM) demonstrated the steepest slopes of the glucose-
insulin curves indicating higher beta cell glucose responsiveness than the other groups (figure 2).

In order to show if the average fasting and average postprandial insulin response varied with
FPG and WST (Unpaired t-test, P<0.05; Welch correction if variances were significantly different)
we divided the six FPG groups in tertiles of WST, cf. figure 3. In all six FPG groups average FPI
was higher in subjects with WST > 105 cm compared to subjects with WST < 105 cm (although
groups with N<10 were not significantly different, cf. methods section). In subjects with FPG above
13 mM (Grp. 5) average FPI was borderline statistically insignificant (P=0.07) (cf. figure 3A).
Average FPI was not significantly different between those subjects with WST < 95 cm and those
with WST between 95 and 105 cm (except for the control group Grp. 0, P=0.01). Regarding the

average postprandial insulin response (figure 3B), groups O and 2 showed increasing average
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incremental insulin with increasing WST (although group 0 was not significant). For Grp. 2 and 3-5
(FPG > 9 mM), WST did not correlate with the average insulin response after MTT. Grp. 1-2 had

similar average incremental responses for WST > 95 cm.

Structural model selection

Regarding insulin disposition, we found that the first order elimination model was associated with
convergence problems and had a higher objective function value than a direct model of insulin
(OBJ=-7668.605 vs OBJ= -7788.605.). The latter indicate insulin secretion to be very fadt,
potentially even faster than the rise in glucose, which could be related to cephalic insulin secretion.
Hence, it was chosen to use a model where insulin disposition is integrated with the insulin

appearance model so that insulin concentrations are modelled directly.

For the model of effects of glucose on insulin concentrations, we found that the delayed effect of
glucose was superior a model of direct effects of glucose (OBJ = -5386.849 vs OBJ = 1161.395). A
significant improvement to a model containing only delayed effects of glucose could be obtained,
either by including direct effects of glucose, or by including also the rate of change in glucose.
Although these models were visually similar, the direct effects of glucose provided the lowest
objective function value (OBJ = -7788.605 vs OBJ = -6659.414), the lowest variance of the
individual residuals (CV = 5.48% vs CV = 6.69%), and the parameter estimates appeared more
robust to small changes in the model. Hence the combination of delayed and direct effects of
glucose on insulin was chosen, and only modest improvements could be obtained by including all 3
model components (OBJ = -7862.538 vs OBJ = -7788.605). We speculate that the derivative
component could be more important in healthy volunteers where the first phase secretion is more

pronounced, and possibly also more important for the OGTT. In support of this, it should be noted
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that Steil et al. (2004) also had problems relating the derivative component in the MTT to first

phase secretion in the hyperglycemic clamp.

Thestructural model

The final selected structural model assumes the following parts and mechanisms:
1) Glucose above basal has a rapid (“immediate”) stimulatory effect on insulin. This effect
is represented by a linear function X(t)=G(t)-G,;. G(t) is the plasma glucose
concentration in mM, Gg is the measured fasting plasma glucose concentration (FPG) in
mM. If the plasma glucose concentration, G(t), is below the fasting value, Gg, the function
X(t) is assumed to be zero.

2) The beta cell has a “glucose memory”. The memory mechanism is represented by the
1 ¢ Lit-s)

functionY (t) = =- jX(s)-e © ds, where s denotes all previous times until time t. The
T —oo

Y (t) function ensures that all previous glucose concentrations until time t are taken into
account, and the exponentially decaying function in Y (t) ensures that glucose values closest
to the present time t, contribute more to the insulin, than glucose values further back in time.
The t parameter determines how fast the delayed effect decays. A large value of T will give
afast decay and thus a small contribution to insulin and vice versa - a small value of t will
result in a slow decay and thus a larger contribution to the insulin. t is therefore a measure
of the “glucose memory” in the beta cell.

3) A basal insulin concentration (the parameter 1) estimated for each individual subject.

The model of insulin dynamics can therefore be described by the following three equations:

G(t)-G;, for G(t)>G,
0, otherwise

X(t) = { (1)
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I(t) = o X(t)+B- Y(t)+1, (3)
Where I(t) is the plasma insulin concentration in pM. The parameter o (pM insulin/mM
glucose) determines the magnitude of the immediate response of insulin to glucose concentrations
above basal and the parameter 3 (pM insulin/mM glucose) determines the magnitude of the delayed
glucose effects on insulin.

The differential equation describing the time dependency of the function Y (t) in Eq. (2) can

be obtained by differentiation of the integral expression of Y (t) given in part 2).

Inter- and intra-subject variation

The structural model was fitted as a population model, i.e. including both inter- and intra-subject
variation. Intersubject variation was included on parameters o, B and lo. T was included as a fixed
effect, since intersubject variation did not improve the fit and the individual estimates of t proved
not to be robust to small changes in the model. Intersubject variation on parameters o,  and lo, was
implemented using a proportional model: 6-exp(n), where 6 is the typical value of the parameter
and n is a normal distributed random variable that varies between subjects. The individual
parameters (6-exp(n)) give rise to a set of individual insulin predictions, whereas the typical
parameters (0) give rise to a set of population predictions. A full covariance matrix was used to
incorporate the correlation between the individual parameters. Intrasubject variation was modelled
by log-transforming the data — corresponding to the proportional model: I(t)predicted = 1(t)observed *

exp(e), where € isnormal distributed.
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Covariate selection and analysis

Individual parameter estimates obtained from the initial model without covariates were used to
explore the relationship between the chosen covariates (cf. table 1) and model parameters. Based on
graphical tools and calculated correlation coefficients, continuous covariates (e.g., BMI or age)
were included either by alinear: 6ing = 6,+62°(COV-COvp), or alog-linear: 0ing = 01-exp(0.:(cov-covp))
model, where 6 isthe typical value of the parameter given a set of covariates, cov isthe value of the
covariate, covy is the average value of the covariate in the entire population, 6, representsthe typical
value of the parameter when cov = covp and 0, represents the effect of the covariate on the
parameter. Categorical covariates (such as sex, smoking, and family disease history) were included
in the model using indicator variables, as shown in the following equation: 6i,q = 61+62:ind, where
ind is an indicator variable with ind = 1 when the covariate is present, otherwise ind = 0.

Given the large number of individuals, many covariate effects were found to be statistically
significant. The relationship between the parameters and each of the covariates (cf. table 1) were
explored graphically and pair wise checked for correlation. To sort out covariates that, although
significant, explained only a small part of the intersubject variation, a value of 10% for R was used
as a selection criterion. The correlations between covariates and parameter estimates are shown in
table 2.

Lipids (LDL, HDL, triacylglycerol, and total cholesterol), smoking, age, family history, urea,
and creatinine accounted for less than 5% of the variance in the parameters and were thus
considered to be insignificant covariates on the model parameters (cf. Table 2). Only FPG, HbAlc,
and type (healthy/patients) accounted for more than 10% of the variance on o and . These
covariates were incorporated into a full model. Covariates that were not significant or did not
contribute to explain the variance were excluded by a backwards elimination procedure from the

full model. However, when the effects of FPG were included also, HbAlc and type did not explain
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more than 5% of the remaining variability. FPG was selected over HbAlc, because of a slightly
higher correlation and a better objective function value. Similarly, WST and BMI were significant
covariates that —when included alone - each accounted for more than 10% of the variability in I.
WST proved to be a slightly superior explanatory factor, and BMI did not explain more than 5% of
the variance in the final model with WST included.

Thus, in the final model only three covariates were left: FPG on o, and 3, and WST on .
The final model including covariates was able to capture the individually predicted insulin
concentrations versus the experimentally measured insulin values (R=0.971) (figure 4A). The
experimentally measured insulin values were correlated to the population predicted insulin
concentrations with R=0.618 (figure 4B). In the model without covariates the correlations were
R=0.971 and R=0.246, respectively, thus, inclusion of covariates improved the population
predictions considerably. The correlation between the estimated insulin baseline (Ig) and the
experimentally determined FPI concentration was R=0.953.

In the final model with covariates only FPG was left as a covariate on the two glucose-
stimulated insulin responses o and B (figure 5A-B). The population averages of o and 3 were 24.4
and 35.1 pM insulin/mM glucose respectively. From the covariate parameter estimates we found
that o decreased with 16% when plasma glucose increased with 1 mM, so that the expected o-value
dropped from 56.5 to 47.3 pM insuli/mM glucose if FPG increased from 5 to 6 mM. Similarly,
B decreased with 25% from 139 to 104 pM insulin/mM glucose. The population estimate for T was
49 min. The population average of the estimated basal insulin (lp) was 53.6 pM. WST was an
indicator for the individual 1o (figure 5C). If WST increased by 10 cm I increased by 6.6%. The
geometric mean parameter values of the non-diabetic control subjects and the subjects with type 2

diabetes are listed in table 3.
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Comparison between model parametersand HOMA

The model parameters and HOMA indices were compared (details not shown). HOMA%B
correlated with both o and B (Using an Emax model: R=0.770 and R=0.771, respectively). HOMA
IR did not correlate with o or . HOMA%B correlated hyperbolically with FPG (R=0.773 using a
hyperbolic function). We found a strong hyperbolic correlation between basal insulin concentrations

(both the estimated 1, and the experimentally measured FPI) and HOMA IR (R=0.925 and R=0.947,

respectively).

DISCUSSION

To the best of our knowledge, thisisthe first time that population-based covariate analysis has been
used for assessment of MTT profiles in subjects with T2DM and controls. Our results show that
despite large intersubject variation, insulin concentrations could be described by the current model
structure — explaining most of the variation in insulin responses following MTT. We find that those
subjects with the lowest FPG values have the steepest slopes — this is also evident from the
descriptive analysis shown in figure 2. Ferrannini et al. have reported a similar relationship between
insulin secretion rate and plasma glucose in subjects with normal glucose tolerance, IGT and T2DM
(Ferrannini et al. 2005). However, a novel finding from the present analysis is that the delayed
effect (estimated by the parameter B) of glucose on insulin response decreases faster than the rapid
effect (estimated by the parameter o) of glucose on insulin response in subjects with T2DM.
(Goddland et al. 2004) found loss of beta cell function, as assessed via an IVGTT, with increasing
FPG in non-diabetic subjects - in their study the decline began at FPG concentrations of around 5-

5.4 mM for first phase secretion and around 6 mM for late phase secretion. Our study results
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corroborate this finding; however, we did not assess the beta cell function via an IVGTT but an
MTT.

The delayed effect of glucose on insulin has similarities with results previously shown
experimentally (Cerasi 1975b; Cerasi 1975a; Grill et al. 1978; Nesher and Cerasi 2002; Nesher and
Cerasi 1987; Zawalich and Zawalich 1996)- where the secretory responsiveness of the beta cell can
be markedly increased by prior short term exposure to a simulatory glucose concentration. In our
study the time needed to obtain a markedly insulin appearance is identified as the parameter T which
was estimated to almost 50 min. Thus, the beta cell will respond with an enhanced insulin secretion
after about an hour of glucose stimulation.

The model results compare well with the phase plots relating postprandial plasma glucose to
insulin concentrations (figure 2). Thus, the sum of the model parameters o+f represent the slope of
the curve of the phase plot, whereas 3 represents the magnitude of the hysteresis. The larger the
loop the higher the 3, such that subjects with high FPG have small loops (e.g. low hysteresis).

Interestingly, the delayed effect (B) decreases more with increasing FPG (25% per mM
Glucose) than the rapid effect (o) (16% per mM Glucose), indicating that the development of
diabetes is associated with decreased “memory” response. This is in agreement with figure 2, in
which the delay causing a hysteresis loop decreases for patients with higher FPG. It is interesting to
find out whether effective anti-diabetic treatment will restore the memory response to normal
concentrations, or whether it is a non-reversible event. In the future, this could be explored by
examining the subjects after effective glycemic treatment.

From the data analysis it is seen that fasting insulin increased the greater the WST. For
subjects with FPG above 9 mM incremental insulin responses did not differ between WST tertiles.
Furthermore, the influence of WST on incremental insulin in subjects with FPG below 9 mM was

not as clear (cf. figure 3B). This indicates that obesity does not influence postprandial insulin
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responses equally in our population of subjects with T2DM but that this effect is correlated with the
degree of fasting hyperglycemia. Thus, obesity affects the fasting and the postprandial insulin

responses differently.

In the population based model WST was demonstrated to be a covariate on basal insulin
(figure 5C). Thisis both in accordance with our statistical analysis (cf. figure 3A) and with findings
from other groups (see for instance (Lemieux et al. 2000; Pouliot et al. 1994)). We did not find
WST to be a covariate on o, and 3, which is also in agreement with the data analysis shown in figure
3B.

A number of methods have been established for assessing beta cell responsiveness based on
either C-peptide or insulin kinetics. These include: A) the minimal model of insulin kinetics during
IVGTT (Toffolo et al. 1980), B) the model of C-peptide secretion during IVGTT (Toffolo et al.
1995), C) the combined model of insulin and C-peptide secretion during IVGTT (Watanabe et al.
1989), D) the model of C-peptide kinetics during MTT (Hovorka et al. 1998), E) the Homeostasis
Model Assessment (HOMA) (Levy et al. 1998; Matthews et al. 1985), F) the continuous infusion of
glucose method (Hosker et al. 1985), G) the models advocating simultaneous treatment of insulin
and glucose (De and Arino 2000), H) the model for insulin secretion during IVGTT and OGTT
(Overgaard et al. 2006), and 1) the models of C-peptide kinetics during OGTT and MTT (Breda et
al. 2001; Mari et al. 2002b; Mari et al. 2002a; Steil et al. 2004). Of these models, D) and I) have
been developed for estimation of beta cell responsiveness following MTT, but they differ from ours
as they use C-peptide data. Our model differs from the other models, A)-F), as it incorporates both a
rapid and a delayed effect of glucose on the insulin concentrations. The models G)-1) aso

distinguish between different glucose effects, for example by including the derivative of glucose.
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Since C-peptide is co-secreted with insulin in equimolar amounts and since insulin (unlike
C-peptide) is subject to a large and variable first pass hepatic extraction, insulin secretion and
glucose responsiveness of the beta cell is most often assessed using C-peptide data. Use of C-
peptide data has the advantage that it is a more direct measure of insulin secretion, as it is
unaffected by a potentially variable hepatic extraction across the studied population. Typically C-
peptide secretion is estimated via deconvolution (Ferrannini and Cobelli 1987b) under the
assumption of a linear kinetic model of C-peptide with a set of typical parameters. However, it
should be acknowledged that the obtained glucose responsiveness may be less than optimal, due to
intersubject variability in the C-peptide kinetic model and parameters (Ferrannini and Cobelli
1987a; Ferrannini and Cobelli 1987D).

One advantage of analyzing insulin concentrations as described here is that the kinetics of
insulin is fast (half-life around 5 min) (Luzi et al. 2007) compared to the slower C-peptide kinetics
(half-life around 35 min), so that small changes in insulin secretion leads to more pronounced
changes in insulin concentration than in C-peptide concentration. However, a consequence of
analyzing insulin concentrations alone is that elimination and secretion cannot be separated, so we
cannot determine to what extent our model predicts beta cell responsiveness and/or peripheral
insulin elimination. Since our model results show good agreement with previously published
results, we believe that the model characterizes beta cell glucose responsiveness. Both methods
have their advantages, but the largest difference lies in the outcome: C-peptide models more
precisely reflect the state of the beta cells, whereas insulin models more precisely describe the
important factor for peripheral glucose disposition.

The presented model has some structura similarity with that of a simple one-compartment

system of insulin kinetics. However, the time constant T = 49 min is 5-10 times larger in magnitude

159



than the half life of insulin elimination (5-10 min). However, it should be noted that the parameter t
is not ameasure of insulin elimination, but a measure of the “glucose memory” in the beta cell.

This study cannot elucidate the mechanisms behind this correlation between basal insulin
and WST, but it may be speculated if this is somehow linked to non-esterified fatty acids (NEFA)
metabolism. Increased NEFA (coming from visceral fat) may increase hepatic glucose production
and insulin secretion (“the portal theory” (Bergman et al. 2006)).

The HOMA model allows for estimation of both beta cell responsiveness (HOMA%B) and

insulin resistance (HOMA IR) from the fasted state. HOMA%B was correlated with both o and

B, and HOMA IR was correlated with |o and to FPI. The correlation between FPI and HOMA IR
has been found by several other groups, including Matthews et al. (1985).

Incretins, e.g. GLP-1 and GIP, are nutrient dependent gut hormones that enhance insulin
secretion. We have not measured these, and thus we cannot discriminate between effects of meal
nutrients and incretins on the insulin response and thus also on the estimated parameter value.

Furthermore, it is possible that meal size, composition or timing could also affect the values of o

and B. This is something that would need further investigation by analysis of data from such studies.

In summary, we have been able to describe postprandial insulin profilesin 417 subjects with T2DM
and 85 controls using population-based mixed effects modelling. Only FPG was a significant
covariate on the glucose-dependence of the insulin response. WST was the only covariate on
baseline insulin. This confirms that the beta cell glucose responsiveness is increasingly impaired in
T2DM and correlated with FPG. Furthermore, waist circumference influenced the fasting and
postprandial insulin concentrations differently. This result is to our knowledge new, and should be
investigated further. The model also shows the importance of time-dependent effects in the

development of the disease, as the delayed insulin response is strongly impaired in T2DM and
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decreases faster than the rapid insulin response. All the subjects in the patient group had T2DM,
were newly diagnosed and treatment naive. It will be of interest to extend the analysis of these
subjects following treatment in order to identify any subgroups which may appear with regard to

disease progression.
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Table 1. Subject demographics and baseline characteristics. Data are averagest SE.

Non-diabetic Type 2 diabetic P-value

subjects subjects
N 85 417 -
Age (years) 51.3+1.1 545+ 05 0.0053
Sex —m/f (n) 46/39 108/309 <0.0001
BMI (kg/m?) 26.0+ 05 30.7+0.3 <0.0001
Waist circumference (cm) | 85.0+ 1.4 (N=380) 102.8 £ 0.6 (N=398) <0.0001
Waist-to-hip ratio 0.84 + 0.01 (N=79) 0.94 + 0.00 (N=384) <0.0001
HbA1c (%) 4.7 + 0.1 (N=84) 8.2+0.1 <0.0001
FPG (mM) 52+0.1 10.7+ 0.2 <0.0001
FPI (pM) 50 + 3. 74+3 0.0001
Family history - no/yes 45/17 (N=62) 178/233 (N=411) 0.0467
Smoking: no/yes/ex (n) 49/21/1 (N=71) 149/104/140 (N=393) <0.0001
Total cholesterol (mM) 5.5+ 0.1 (N=83) 56+01 0.4406
Triacylglycerol (mM) 1.5+ 0.1 (N=83) 28+01 <0.0001
HDL (mM) 1.37 + 0.04 (N=81) 1.09 + 0.02 (N=411) <0.0001
LDL (mM) 3.4+ 0.1 (N=81) 3.3+ 0.1 (N=390) 0.5356
SBP (mmHg) 119 + 2 (N=81) 135+ 1 <0.0001
DBP (mmHg) 77 + 1 (N=81) 83+1 0.0009
Urea (mM) 4.9 +0.1 (N=82) 5.3+ 0.1 (N=416) 0.0152
Creatinine (UM) 89+ 1 (N=82) 81+ 1 (N=415) <0.0001
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Table 2. Correlations values (R>-values in %) between model parameters (log-transformed o, B and

lo) and demographic parameters (covariates)

o B lo
Type (healthy/patients) | 22.0 16.1 3.77
Age 0.60 0.001 0.31
Sex 0.81 0.88 0.0007
BMI 2.94 0.74 29.0
Waist circumference 0.16 0.09 27.2
Waigt-to-hip ratio 1.00 1.50 7.04
HbA1c 45.0 54.5 2.40
FPG 50.4 58.9 4.02
Family history 1.25 1.46 0.25
Smoking 2.71 1.89 0.72
Total cholesterol 3.55 3.62 0.28
Triacylglycerol 1.44 2.13 2.83
HDL 154 2.25 3.84
LDL 1.65 1.86 0.83
SBP 0.17 0.73 1.38
DBP 0.37 0.03 0.76
Urea 1.36 0.15 0.30
Creatinine 4.03 5.95 0.10
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Table 3. Geometric mean parameter values for the non-diabetic controls and subjects with type 2

diabetes mellitus (T2DM).

Controls subjects | Subjects with T2DM
a (pM Insulin/ mM Glucose) 73.6 19.9
B (pM Insulin/ mM Glucose) 139.8 27.1
lo (PM) 42.9 63.3

164



Figure legends.

Figure 1. Average plasmaglucose (A) and average plasma insulin (B) during meal tolerance test
(75 g CHO, 500 kcal) in 417 subjects with T2DM (open circles) and in 85 control subjects (full
circles). Error bars represents standard deviations.

Figure 2. Phase-plots between the average plasma glucose and average plasma insulin during meal
tolerance test in subjects grouped by FPG. The following groups were applied: Grp. 0: Controls, all
with FPG <7 mM (85), Grp. 1. FPG < 7 mM (45), Grp. 2: FPG: [7-9[ mM (118), Grp. 3: [9-11]
mM (84), Grp. 4: [11-13[ mM (68), Grp. 5: >13 mM (102). Number of subjects in each group is
presented in brackets.

Figure 3: (A) Average fasting plasma insulin (FPI) and (B) average incremental insulin (AUCq-240
min) Categorized by waist circumference (WST) and FPG for all subjects. WST is categorised by
tertiles: <95 cm (open bars), 95-105 cm (black bars), >105 cm (hatched bars). The number of
subjectsin each group is listed in table 3.

Figure 4: (A) The actual (measured) insulin concentrations (DV) versus the individually predicted
insulin concentrations (IPRED). (B) The actual (measured) insulin concentrations (DV) versus the
population predicted insulin concentrations (PRED).

Figure 5. The correlation between the fasting glucose values and the individual parameter estimate
for oo — the rapid glucose stimulated insulin response (A) — and the estimate for § — the delayed
glucose stimulated insulin response (B). The correlation between waist circumference and the
individual parameter estimate for 1o (C). Subjects with T2DM are shown as filled circles and non-
diabetic control subjects are shown as open circles.
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Figure 2.
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Figure 3.
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Figure4.
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Figureb.
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