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Summary

The general aim of the thesis was to contribute to the improvement of data

analytical techniques within the chemometric field. Regardless the multivariate

structure of the data, it is still common in some fields to perform uni-variate data

analysis using only simple statistics such as sample mean and variance. Recent

instrumental developments in chemometrics often result in high-order data, for

which uni-variate tools do not suffice and multivariate data analysis is required.

Moreover, many multivariate models assume normality of the residuals (which

in many cases is far from reality) and are not resistant towards outliers (which

are known to be more the rule than the exception for empirical data). That is

the reason for robust methods being a valuable tool for both semi-automated

detection of outliers and model building.

The approach adapted in this thesis, can be split in two main parts: 1. applying

a multivariate and multi-way data analytical frame-work in fields where less

sophisticated data analysis methods are currently used, and 2. developing new,

more robust alternatives to already existing multivariate tools.
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The first part of the study was realized by delivering and comparing two-

and three-way chemometrical methods (such as Principal Component Analy-

sis (PCA), Parallel Factor Analysis (PARAFAC), Partial Least Squares (PLS)

regression and its multi-way alternative, N-PLS) for explanatory and regression

analysis of Conductivity-Temperature-Density (CTD) sea water samples. This

data, so far analyzed using mostly uni-variate methods, is defined by three data

modes (depth, variables and geographical location), and therefore, can benefit

from introducing more complex analysis tools. The results of the study indi-

cated superiority of the three-way frame-work, potentially constituting a novel

assessment of the sea water measurements. Particularly in the case of regression

models there is a clear preference towards the more complex model, delivering

more reliable predictions than a classical 2-way PLS. Therefore, using multi-way

data analysis tools is recommended, in order to extract the full information from

multi-way data structures.

The second part of the thesis targeted qualitative properties of the analyzed

data. The broad theoretical background of robust procedures was given as

a very useful supplement to the classical methods, and a new tool, based on

spherical PCA (S-PCA), aiming at identifying Rayleigh and Raman scatters

in excitation-emission (EEM) data was developed. Moreover, the functioning

of S-PCA was investigated in order to facilitate its usage among practitioners.

The results show clearly that robust methods can significantly contribute to the

improvement of existing analytical techniques used commonly in chemometrics,

for example by providing excellent outlier detection tools. It is therefore advised

to apply robust and classical procedures simultaneously, at least to determine if

contamination in the data is present. For this becoming a standard procedure,

further work is required, aiming at implementing reliable robust algorithms into



iii

standard statistical programs.
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Preface

This thesis was prepared at the Departament of Informatics and Mathematical

Modelling in fulfillment of the requirements for acquiring the Ph.D. degree at

the Technical University of Denmark.

The thesis deals with different aspects of mathematical modeling applied in the

field of chemometrics. The main focus is on delivering appropriate data-driven

analysis techniques. Special attention is payed to the robustness issues of the

methods used within.

The thesis consists of a summary report containing a reviw of applicable robust

procedures and a collection of three research papers written during the period

of 2010-2013, among which one has been published and two other submitted to

relevant research journals.

Lyngby, October 2012

Ewelina Kotwa
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Chapter 1

Introduction

1.1 Background

Understanding chemical phenomena depends on interpretation of analytical data

obtained during experiments. A common practice is to treat data in the uni-

variate manner and describe individual variables by simple location and spread

statistics such as sample mean and variance. Recent instrumental developments

within chemometrics field have made high-order multivariate data common, of-

ten with the number of variables exceeding the number of observations. In

order to deal with this high-dimensionality of the data, uni-variate tools do

not suffice and multivariate analysis is required. Methods such as fluorescence

spectroscopy, chromatography, magnetic resonance, EEG etc. call for the use of
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multi-way treatment, such as Principal Component Analysis (PCA), PARAllel

FACtor analysis (PARAFAC) or Tucker types of models. Moreover, these tools

are more and more used outside of strictly chemometric applications, prop-

agating to environmental science, kinetics, classification problems or sensory

analysis. A common rule for all multivariate methods is that: to obtain reliable

results, high data quality is needed. Gross errors, which often manifest them-

selves as outliers, are observations that appear to break the pattern or grouping

shown by the majority of the data. Moreover, many multivariate models assume

the residuals to be normal (or following another reasonable distribution). To-

day it is already well-known that the normality assumption often does not hold

and the presence of outliers is more the rule than the exception when collecting

and analyzing real data. The reasons for the occurrence of these erroneous data

can be numerous, for example instrumental failure, transcription errors, non-

representative sampling or objects belonging to other population. Usually, only

complete objects (samples) are regarded as outliers, but it is equally relevant to

consider variables or even individual data elements as possibly outlying. The

most conventional multivariate methods such as PCA or Partial Least Squares

(PLS) regression are highly sensitive to outliers due to the fact that they are

based on the least squares criterion where, in the extreme case, even one outlier

can have an arbitrarily large effect on the estimate, and thereby, completely

offset the model. Outlier treatment is therefore mandatory prior to a proper

analysis and modeling. This is usually solved in two ways: either by outlier

diagnostics or by applying robust statistics. In the first case, the contaminated

data are identified and expelled from the data set before building a multivariate

model. However, when working with vast, multi-order data structures, visual

evaluation and screening might be no longer available. In the second approach,
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robust estimators are used instead of the ordinary least square estimators. Ro-

bust methods remove or reduce the effect of outlying data points, allowing the

remainder to predominantly determine the model. Moreover, construction of ro-

bust models allows for later recognition of outlying observations where relevant.

The outliers identification is not only essential for a proper modeling but, also

for understanding the reasons for unique character of these samples, which may

constitute the most interesting part of the data. Therefore, robust methods are

a valuable tool for both semi-automated detection of outliers by looking at the

robust residuals and for model building.

1.2 Objectives

The main objectives of this Ph.D. project can essentially be categorized accord-

ing to two thematic blocks, aiming at:

• proposing multivariate and multi-way analysis tools within certain chemo-

metric areas, currently predominant in less sophisticated methodology (for

example still based on uni-variate investigations);

• development and analysis of new, more robust alternatives to already ex-

isting multivariate tools such as PCA or PARAFAC models;

The first part of the study focuses on delivering an appropriate multivariate

methodology for analyzing spatial and depth profiles of sea water samples and

on identifying possible geographical differences within and between the Arctic

and Antarctic Sea. To enable this, 2- and 3-way chemometric methods, such
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as PCA and PARAFAC models, were applied and their performance examined.

The emphasis was also put on predicting fluorescence values, as being a natu-

ral measure of biological activity, from the other physio-chemical variables by

applying and comparing the Partial Least Squares (PLS) regression technique

with its multi-way alternative, N-PLS. In the second part, being the core of this

work, a particular attention is paid to qualitative properties of the analyzed

data. The broad theoretical background of robust procedures is presented and

promoted as a very practical supplement to the classical methods. Addition-

ally, a new tool, based on robust PCA, for identification of Rayleigh and Raman

scatter in fluorescence excitation-emission (EEM) data is given as an example of

successful practical application of robust work-frame in the real data situations.

Finally, the functioning of Spherical PCA is examined and explained in order

to encourage its usage among practitioners.

1.3 Outline

Following the Introduction, a brief preface to the chemometrics field is given

in Chapter 2, including an overview of commonly encountered data types. The

following chapter addresses topics of multivariate statistics in chemometrics.

Tools such as PCA, PARAFAC, PLS and N-PLS will be shortly described and

the results of the Arctic and Antarctic sea water investigation will be revealed.

Finally, Chapter 4 refers to the statistical robustness theory, describing some of

the conventional, least squares based tools confronted with their robust alter-

natives. Pros and cons of each approach are discussed. The chapter ends with

case study results, showing an example of using a robust PCA method (S-PCA)
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in the practical application, and simulation results, characterizing S-PCA as an

outlier detection tool. The last chapter provides a discussion and few concluding

remarks, bonding the achievements obtained in this thesis.
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Chapter 2

Chemometrics

Since chemometrics is a relatively new field, continuously broadening its seman-

tic borders and not necessarily known among all statisticians and data analysts,

a few words of introduction are to be given here. This chapter delivers a short

resume of what is currently understood under the name ’chemometrics’ together

with some of the most common data characteristics and data types encountered

within the field.

2.1 Definition and origins

In its most global meaning, chemometrics can be perceived as science of ex-

tracting information from chemical systems, using data-analytic tools, such as
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multivariate statistics, applied mathematics, and computer science [1]. Chemo-

metrics is a highly inter-disciplinary field aiming at solving both descriptive and

predictive problems in experimental life sciences, especially in chemistry, bio-

chemistry, medicine, biology and environmental science.

The name ’chemometrics’ was coined by Svante Wold in the early 1970s [1]. It

was around this time, when the computer revolution reached the scientific world,

allowing faster calculations and development of more computation-intensive al-

gorithms. The computerisation progressed rapidly and already in the early 1980s

a wide variety of data- and computer-driven chemical analyses were occurring.

Concurrently, the more and more complex instrumental techniques emerged,

such as infra-red and UV/visible spectroscopy, mass spectrometry, nuclear mag-

netic resonance, atomic emission/absorption or chromatography. The output of

these instruments reached often thousands of measurements per sample, yield-

ing highly complex multivariate data structures.

Multivariate analysis has therefore always been in the focal point of chemo-

metric tools. Decomposition and ’data compression’ methods, such as PCA or

PLS regression gained an extreme popularity among practitioners in the field [2].

The reasons for this lay in the colinearity of these high-dimensional data sets,

and implicitly, in the fact that already a low-rank linear structure can often rep-

resent the data at a satisfactory niveau. PCA, PLS and other similar projection

methods proved over time to be effective tools for data exploration, visualisa-

tion and calibration for chemically interesting phenomena. Some of these tools,

PLS in particular, after having been heavily used in chemometric applications,

gained acknowledgement in other fields.
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A more recent approach towards analysis of chemometrical data, gaining pop-

ularity in the 1980s and blooming in the late 1990s, consists of the multi-way

work-frame [3]. While standard multivariate data are arranged in the two-way,

matrix-like structures (a table where each row corresponds to a sample and each

column to a variable, e.g. absorbance at a particular wavelength), a three-way

data could be logically represented by three different indices and stored in a

cube (as in the case of fluorescence spectroscopy where for each sample a set

of emission wavelengths is determined for several excitation wavelength values).

Moreover, it is not rare to encounter even higher-order (more than three) data

sets within the chemometrics world. A proper statistical methodology was de-

veloped in order to match the conceptual requirements, yielding PARAFAC and

N-PLS models (corresponding to PCA and PLS in the 2-way case) among other

multi-way procedures. In some situations the 3-way structure can be analysed

by ordinary 2-way tools by rearranging the data into matrices, however, it can

be argued (see [2]) that in principal, 3-way techniques would be more beneficial

for a 3-way data, as they preserve the inner covariance structure. Both types of

methods will be described in more details in the forthcoming sections.

Chemometrics is an application driven discipline, where the continuous advances

in analytical instrumental techniques constantly call for new developments of

corresponding data analysis tools. While the standard chemometric method-

ologies are very widely used industrially, the goal and challenge for academic

environments is to come up with new proposals targeting theoretical, method-

ological and application-wise development.
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Below, two of the most common chemometrical data types will be indicated

and briefly described.

2.2 Data types

2.2.1 Fluorescence spectroscopy

Fluorescence spectroscopy is a type of electromagnetic spectroscopy which de-

tects fluorophores present in an analyte (sample). Fluorophores are the molecules

able to emit light when relaxing to the ground state form an excited state. The

method involves using a beam of light for exciting the electrons in molecules

of certain compounds and causing them to emit light, which is measured. By

analysing the different frequencies of emitted light along with their relative in-

tensities, the particular compounds can be identified. This technique is fast,

sensitive and non-invasive, and therefore, it found a broad usage in fields such

as biochemistry, analytical chemistry, food and environmental science. An out-

come of a fluorescence spectrometer is usually written in a so-called excitation-

emission (EEM) matrix representing intensities of the compounds for certain

excitation (j = 1, ..., J) and emission (k = 1, ...,K) wavelengths. If a number

of samples I is considered, the whole data form a 3-way array, X(I × J ×K)

(see Figure 2.1). This fundamental structure of the fluorescence data happens

to be closely related to underlying assumptions of the unique PARAFAC model,

which is therefore able to resolve the spectral curves and deliver the estimates of

the concentrations of analytes. A chemometrician is then able to identify partic-

ular fluorophores, present in the sample, according to the peaks of the resolved
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Figure 2.1: Left: a fluorescence spectrosopy ’step-by-step’ scheme; right: an
output of a spectrofluorometer - an EEM landscape.

spectra. This ’close relation’ became the reason of great interest of applying

multi-way analysis tools within this type of data (see for example [3–5]).

Even though 3-way decomposition models such as PARAFAC seem to be ideal

for EEM data, a few issues usually occur, leading to complications in applying

these methods practically. The most commonly encounter problem is the pres-

ence of Rayleigh (1st and 2nd order) and Raman light scatter effects. These

diagonal ridges appear in the EEM landscapes (as visible in Figure 2.1) due to

interactions between the molecules in the solution causing some incident light

leading to deterioration of the PARAFAC results. If that is the case, Rayleigh

and Raman scatters should be identified and removed from the data set, prior to

PARAFAC-based analysis which was widely investigated in the literature [6–13].

Recently, automatic scatter removal techniques based on robust statistics have
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been proposed in [14] and the continuation of these investigations is pursued

in [15] (Paper B).

2.2.2 Chromatography

Chromatographic techniques have for a goal the isolation and identification of

the components in the chemical mixtures and are by far the most widely used

analytical separation methods [2]. There are a number of different types of

chromatography, among which gas (GC) and liquid chromatography (LC) are

the most abundant, being broadly used in a variety of fields, including pure

and applied sciences, forensics, and athletics, among others. The principle of

chromatography is twofold: in the first step, a mixture is dissolved in a solvent

(mobile phase), and secondly moved across an absorbent medium (stationary

phase). The process relies on the fact that particular molecules will behave in

different ways, travelling at different speeds, taking therefore different times to

elute.

The output of a chromatograph takes the form of a chart, as shown in Fig-

ure 2.2 with a series of troughs and peaks. Each peak represents a substance

present in the sample, and the concentrations of these substances can be de-

termined by looking at the height and width of the peak. If chromatographic

measurements are taken at different stationary phases, for different mobile phase

compositions and for diverse solutes, this leads to a three-way data structure of

retention factors, calling for a use of adequate analysis tools.
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Figure 2.2: Left: a chromatographic experiment; right: resulting chromatogram.

2.2.3 Other data

Many other types of analytical instruments can produce vast data structures

suitable for multivariate and multi-way analysis. Data resulting from infrared

and UV/visible spectroscopy, mass spectrometry, nuclear magnetic resonance

or atomic emission/absorption experiments can produce thousands of measure-

ments per sample and are by nature highly multivariate. But these are just some

of the examples contributing to the immense range of data which can benefit

form the multivarite tools application.

Paper A gives an example of less common data, consisting of water samples ac-

quired by a CTD (Conductivity-Temperature-Depth) sensor device during two

oceanographic expeditions at different depths and locations. This device mea-

sures a set of water related variables (temperature, conductivity, fluorescence,

etc.) at different sea levels. The resulting data can be then arranged according

to three modes: sea water depth, measured variables and geographical location.
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Chapter 3

Multivariate data analysis

Multivariate statistics is used when simultaneous observations and analysis of

more than one variable is considered. As stated in the previous chapter, this is

the case for most chemometric applications. Multivariate data analysis is there-

fore focused on understanding the different inter-relations between variables or

samples, by using knowledge about the correlation structure present in the data.

These methods offer much more powerful tools for extraction of the full infor-

mation from the data, often obtained as a result of difficult and/or expensive

experiments, compared to the uni-variate approach, where each variable is han-

dled separately.

There are many different models, which can be collected under the common

multivariate category, such as multivariate analysis of variance (MANOVA),
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multivariate regression analysis and PCA. Models, which use projection meth-

ods for representing the data by a low-rank linear structure (in chemometrics it

is possible due to the high variable co-linearity), are especially popular. PCA

and PLS models are among the most widely used techniques and for this reason

will be briefly described below.

Another category of statistical tools, appropriate for analyzing vast amounts of

data is gathered within the multi-way work-frame [2, 3] which is considered as

an extension of multivariate data methods. This branch of statistics classifies

the data according to number of ways (directions) in which each data point can

be characterized. For example, a single sample of fluorescence spectroscopy can

be considered as a 2-way data, as the intensities are registered according to two

distinct directions: emission and excitation wavelengths. However, if the exper-

iment is repeated for a range of mixtures, this adds a supplementary direction

(samples) and the data set becomes of a 3-way nature. It is easy to imagine

that four- or in general multi-way data can occur, however in this thesis only 2-

and 3-way methods will be considered. A short description of PARAFAC and

N-PLS models (corresponding to PCA and PLS in the 2-way case) will be given

in the following sections. It is worth mentioning that 3-way data can be also

analyzed by standard multivariate tools, after unfolding the cubic structure and

reshaping it into a table. An example of such unfolding is illustrated in Fig-

ure 3.1. By doing so, however, one risks that the information inherent to the

multi-way correlation structure will most likely be lost.

In the forthcoming part of this chapter some of the 2- and 3- way multivari-

ate methods will be presented. PCA and PARAFAC are perhaps most widely

applied exploration tools in chemometrics, whereas PLS and N-PLS find broad

usage when the multivariate regression problems are considered. A practical
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Figure 3.1: Three-way data cube and two unfolding directions: variable and
station-wise.

example treating 2- and 3- way regression analysis, given in the last section,

illustrates conceptual difference of both approaches and emphasizes the impor-

tance of choosing the analysis tools according to data nature.

3.1 Exploratory tools

3.1.1 PCA

Principal Component Analysis is a linear subspace-based technique, perhaps

most commonly found in chemometric literature. A PCA model is presented in

Equation 3.1:

xij =

R∑

r=1

tirpjr + eij i = 1, ...I; j = 1, ...J ; (3.1)

where xij is an element of the matrix X(I × J), t and p are the decomposed

vectors and eij contains model’s residuals. In brief, PCA maps objects and

variables to lower dimensional spaces where it is easier to explore and visualize



18 Multivariate data analysis

them. This is completed by finding a sum of the vector products, called scores

(t) and loadings (p) which are orthogonal and determined by maximizing the

variance explained by them. Those vector products, being a linear combina-

tions of the original variables (or objects), are called principal components and

often already a small number of those components allows us to explain the data

variation in a satisfactory way. More details concerning PCA method can be

found in the literature (see references [16], [17] or [18]).

3.1.2 PARAFAC

A PARAFACmodel, introduced by Harshman [19] and popularized by Smilde [2]

and Bro [10], is a tri-linear generalization of PCA, which decomposes a data cube

X(I × J ×K) into a sum of triple vector products, called loadings. The most

common way of writing the model is following

xijk =

R∑

r=1

airbjrckr + eijk (3.2)

where xijk is an element of X, A(I × R), B(J × R) and C(K × R) are the

orthogonal matrices with elements air, bjr and ckr respectively. R is number

of components and eijk represents the error term. If the experimental data

fulfills the tri-linear assumption (required invariability of the component pro-

files across the different data slices with different weighting coefficients for each

slice [19], [2]), the application of a PARAFAC model is usually superior to

its bilinear counterpart PCA. The reasons for this are numerous: first of all,

PARAFAC takes into account that interrelations exist in all three data direc-

tions. Moreover, the problem of rotational freedom, typical to PCA is solved,
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as PARAFAC provides the unique solution (up to the scaling constant, sign and

permutation ambiguities) [2]. In addition, the PARAFAC model resolves each

mode separately, giving a straightforward physical interpretation for the depth,

station and variable profiles (there is no need to unfold the data in different

directions and fit 2 or 3 different models). Finally, due to the relatively low

number of degrees of freedom, it does not tend to over-fit, as is often the case

of PCA.

In spite of benefits that may be gained from applying a PARAFAC model,

some drawbacks also exist. The most important consideration is that the real

data do not always conform adequately to a tri-linear assumption. In this case,

the model might return degenerated solutions. Degeneracy might also occur

when a large number of factors is needed and if they are interrelated (compare

with the Tucker model [20]). In most of these cases, the bilinear model is still

appropriate and PCA or other methods like MCR, described by [21], can be

successfully applied.

3.2 Regression

3.2.1 PLS

Partial Least Squares regression is a multivariate, 2-way calibration method.

Essentially, it was invented by Wold [22, 23] as a remedy for co-linearity prob-

lem in the multidimensional data and since then, it has been broadly used by

practitioners in various application fields (see [24] for tutorial and [25] for more
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detailed description). The method approximates the X block by r components

(called latent variables) and, at the same time, projects Y on those components,

which are constructed to compromise between fitting X and predicting Y. This

can be written in a matrix notation following Ref. [2]:

X = TP′ +EX ; (3.3)

Y = TQ′ +EY . (3.4)

T and P are again score and loaing matrices, Q contains regression coefficients

and EX an EY are the corresponding error terms. This algorithm is run sequen-

tially, meaning that only one component is calculated at a time, and afterwards

the Xmatrix is replaced by the residualsE−1 = X−t1p1. A broader description

of PLS and its applications can be found in [2, 23, 25].

3.2.2 N-PLS

Multi-way PLS (or N-PLS) is a generalization of Partial Least Squares regression

into a higher dimension, which predicts y and decomposes X similarly to the

PARAFAC model [26–28]. This is performed by searching for a vector t, being

a linear combination of columns of X, which has a maximum covariance with

y. This, [2] can be formulated in the following way

X = t(wK ⊗wJ ) +EX ; (3.5)
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y = tb + ey, (3.6)

where X and y are arrays of dimension (I×J×K) and (I×1×K) respectively,

wJ and wK are weighting vectors defined for modes J and K, ⊗ defines the

Kroneker product [29] and b is the regression coefficient. As N-PLS is also a

sequential method, after finding the first component, both X and y are being

’deflated’ (replaced by residuals of the respective models), in order to recom-

mence the algorithm.

3.3 Multivariate investigation of water samples

from the Arctic and Antarctic Sea

In order to compare the performance of 2- and 3-way statistical methods, an

example will be given here, presenting partial results of Arctic and Antarctic

water investigations (the full survey can be found in Paper A). The analytical

aim is to verify the possibility of predicting the fluorescence, being a natural

measure of biological activity, from other physical variables.

3.3.1 Data

The data was collected by a CTD sensor (a standard measurement device used

during oceanographic expeditions) and consists of variables given in Table 3.1.

This common and rather simple measurement method was deployed in over 170

locations on both extremes of the globe. In each location the sensor was dropped
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Table 3.1: Measured CTD variables.
No. Variable Unit

1 Temperature [ITS-68, deg C]
2 Conductivity [mS/cm ]
3 Salinity [PSU]
4 Oxygen SBE 43 [ml/l]
5 Beam Transmission [%]
6 Fluorescence arbitrary units [AU]
7 Sea-point Turbidity [FTU]

down to a specific depth producing the depth-profile for each variable. Even-

tually, a 3-way data structure was created with variable, depth and location

modes. It is not uncommon to analyze this kind of output in a uni-variate way

(one variable at a time and independently from the others). This treatment

however, does not take into account possible underlying covariance dependen-

cies and therefore, does not use the whole information contained in these fairly

complex data structures. In order to overcome these risks, two multivariate

regression models, PLS and N-PLS, will be applied and their performance com-

pared.

3.3.2 Methodology and data pre-treatment

It is well-known that measured fluorescence will be strongly correlated to the

other ’light related’ variables, such as beam transmission or sea turbidity, and

therefore it will be even more interesting to investigate if the biological activ-

ity might be inferred from some purely physico-chemical conditions, e.g. the

amount of dissolved oxygen, temperature, conductivity and salinity. This will

be the focus of the modeling step presented below. Before that however, the

data was preprocessed (mean centering and scaling) and screened for outliers.
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The problem of missing values was circumvented by interpolation.

Two models are to be applied: PLS regression and its 3-way generalization,

N-PLS. For this reason data is arranged in ’Y block (predictions)’ and ’X block

(explanatory variables)’. As the sea water measurements analysed in this study

follow three different modes (variable, depth and location), the data cube must

be unfolded (as in Figure 3.1, variable direction) and rearranged into a matrix,

in order to fit the 2-way PLS model. As an alternative approach is to use a

N-PLS on the whole, unchanged data cube. In order to identify the optimal

number of components for both models, the Cross-Validated Root Mean Square

Error (RMESCV) was calculated by means of cross-validation (200 contiguous

blocks).

3.3.3 Results

The results collected in Table 3.2 show clearly that the three-component PLS

model accounts for only 25% of the observed fluorescence variation, which is

a very weak result. The control plot in Figure 3.2a, showing measured versus

predicted Y values, indicates that the model is not able to identify the difference

in data behavior within Arctic Sea and Antarctica, leading to poor predictions

for each of the locations. At the same time the X-block is fully explained, as

the remaining variables in the model are highly correlated. The situation is

quite different in the case of multi-linear PLS. Remarkably, the model is able to

explain up to 78% of the measured fluorescence and, at the same time, around

74% of the X array variability. A plot of predicted versus observed values (Fig-

ure 3.2b) confirms the obtained improvement seen ’by eye’. This result can
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Table 3.2: Explained variance of PLS and N-PLS models for two variants of
predictive block: 1. with all CTD variables; 2. with physico-chemical variables
only.

all variables physico-chemical

No. X block Y block X block Y block

P
L
S

1 40.54 65.01 27.26 22.36
2 70.30 70.47 81.42 22.64
3 92.32 74.08 100 23.05

n
P
L
S 1 26.66 60.40 46.00 31.56

2 65.56 76.88 72.04 69.73
3 72.55 85.50 83.42 79.13

be explained by the fact that the 3-way model accounts for the interrelations

existing within the data locations, which could have been disregarded during

unfolding of the data set.

It can be concluded that the 2-way PLS model is largely outperformed by its

multi-way alternative in predicting the fluorescence values out of non-radiation

related variables. It seems here, that by unfolding the data in such a manner,

the 3-way correlation structure has been ’flattened’ and some information lost.

More importantly however, this example emphasizes how crucial the choice of

correct modeling techniques is for extracting the full information from multi-

order data set.
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Figure 3.2: Predicted versus observed values for PLS (left) and N-PLS (right)
models, with only physico-chemical variables entering X-block.
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Chapter 4

Robustness procedures in

chemometrics

This chapter will address concepts of statistical robustness, being the focus

point of this thesis. This relatively newly defined branch of statistics (however

it should be emphasized that issues discussed within that field certainly remem-

ber the days of first statistical theorems) investigates the influence of deviations

from modelling assumptions on known statistical procedures. Nowadays, it is

already well-known that normality assumption often does not hold nor, in ad-

dition, are the gross errors in the real data uncommon. In these situations,

classical statistical tools are at risk of not being able to perform adequately,

especially when multidimensional data (typical in chemometrics) is considered

and a priori outlier detection tools are not available. The most dynamic devel-
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opment period of robustness theory fell on the second half of the XX century,

due to contributions of many prominent statisticians, where Box, Tukey, Hu-

ber, Hampel and Rousseeuw are just few to be mentioned. Thanks to them, the

theoretical background within robustness work-frame equips practitioners with

various alternatives to the standard statistical procedures. On the other hand,

the constant computerisation of the modern world and development of com-

plex instrumental measurement techniques, are a bottom-less source of needs,

steadily calling for new creative robust tools.

Unfortunatelly, this fairly important, especially from the practical point of view

branch, seems to be still fairly neglected in academia, where general statistics

courses treat the topic marginally if at all.

In the following chapter a broad theoretical background of robust statistics

will be presented together with some practical examples of robustified models.

Furthermore, the application of these models will be demonstrated within the

chemometrics, used for the indentification of Rayleigh and Raman scattering

in fluorescence spectroscopy data. Finally, results of investigations aiming at

deeper understanding of spherical PCA (S-PCA) - a robut version of classical

PCA - will be demonstrated. Full study concerning removing influence of scat-

ters in fluorescence data is included in Paper B and S-PCA analysis can be

found in Paper C.
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4.1 Robustness theory

4.1.1 Why do we need robustness in statistics?

The most common assumptions of classical statistical procedures are those con-

cerning normality (or any other reasonable parametric model) and independence

of the model’s residuals. Historically, considerations about the underlying er-

ror distribution go back to Gauss [30]. Instead of asking for the ’true’ value

(the best estimate) of n-observation sample, he formulated the problem other

way round by questioning which error distribution would make the arithmetic

mean optimal as a location measure. This led to the normal distribution for

the error term and further sanctioning of the least squares work-frame as opti-

mal. Additionally, the famous central limit theorem made ”everybody believe

in the ’dogma of normality’, the mathematicians because they believed it to

be en empirical fact, and the users of statistics because they believed it to be

a mathematical theorem” (Frank Hampel, orally). Whereas that theorem only

suggests the asymptotic normality under well-specified conditions, the empirical

results show that a typical error distribution of high-quality data (data with no

palpable gross errors) has longer tails than normal [31].

Moreover, already Legendre (in 1805) in his first work on the least squares

noticed a need for outliers rejection rules. He was followed by many other

pronounced statisticians such as Newcomb [31] (who was the first to propose

a normal mixtures for modelling heavy-tailed distributions), Daniell [32] (first

mathematical analysis of estimators being linear functions of order statistics

and first treatment of the trimmed mean) or Jeffreys [33] (first appearance of
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M-estimators in the context of robust statistics). Finally, the investigations

conducted by Tukey [34], and later by Huber [35] and Hampel [36] proved that

the least squares based estimators, such as standard deviation, lose their effi-

ciency, even under tiny deviations from normality (see the example and discus-

sion in [35]). In fact, Hampel [36] claims that these efficiency losses of least

squares estimators would most likely be between 10% and 50%, which are dev-

astating news for a classical statistician.

The above considerations concern still some ’well-behaving’ data, deviating only

slightly from the assumed parametric model. In the case of any empirical data,

however, it is not uncommon to encounter the occurrence of gross errors. These

observations often manifest themselves as outliers but not all outliers are gross

errors. Some outliers can be true values and their presence might be highly

interesting. For example when investigating waves hight, a 20m observation

might mean a wrongly registered gross error or a tsunami phenomena which

could be the most wanted information in the data set. A separate branch of

statistics, called ’extreme values analysis (EVA)’ is especially interested in those

observations.

The concept of ’outliers’, meaning observations which do not follow the pat-

tern established by the majority of the data, is useful but not clearly defined.

There are no clear boundaries defining when a point becomes an outlier and

when it is still an ’ordinary’ observation, and one should be aware of the contin-

uous transition between them. It is well known, that a single, arbitrarily distant

outlier may attract the least squares fit and completely offset the results. In or-

der to mitigate this risk, different outlier rejection rules were elaborated. Even
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though, as a principal, the outliers should be set aside for separate analysis,

the most common practice is to identify and reject these ’problematic’ points

and perform least squares routines on the ’cleaned’ data set. This approach

assumes that reasonable rejection rules are available, which is not evident in

practice and according to Hampel [37] 10-20% efficiency losses compared to

better robust methods should be expected. The situation becomes only more

complicated when multi-variable and multidimensional data sets are taken into

account, where visual outliers identification becomes infeasible.

All these ’inconveniences’ urged some prominent statisticians to come up with

new, more adequate solutions. Among them, inspired by Tukey [34], Peter Hu-

ber and Frank Hampel played the crucial role in building up and propagating

some new concepts related to robust statistics. The most known theories in-

clude (among others): M-estimators (a generalisation of maximum likelihood

estimators, given different objective functions) a small and rather full ’neigh-

bourhood’ of parametric model and the related minimax work frame; a stability

theory of statistical procedures including influence curve (measuring the effects

of infinitesimal perturbations) and breakdown point measure (being the largest

fraction of outliers tolerated by an estimator before turning unreliable).

4.1.2 Robustness - definitions and measures.

4.1.2.1 Definition of robustness

Back in the 18th century, the term ’robust’ referred to someone who was strong,

crude and vulgar, and it was not before 19th−20th century when this pejorative
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connotation disappeared in the language evolution process, in favour of healthy,

tough and strong enough to oppose difficulties [38]. The statistical meaning

was coined by Box in 1953, and it was around that time when it became clear

that: [39]

• it is impossible to have an accurate knowledge of underlying ’true’ distri-

bution;

• the performance of some classical procedures is very unstable, even under

very small deviations from assumed model;

• even though some robust estimates are less efficient than their classical

counterparts under strict normality, they show much more steady and

better results once deviations from normality occur;

There is no unique definition of robustness as such. According to Box [40] ro-

bust means ”insensitive to changes in extraneous factors not under test”. Other

criteria exist, for example related to absolute or relative efficiency of an estimate

(see [39]). For Hampel, an estimate is robust, when its distribution changes lit-

tle under arbitrary small variation of the underlying distribution (see [36, 41]),

whereas Huber proposes somewhat broader definition, namely: ”robustness sig-

nifies insensitivity against small deviations from assumptions” [35]. These ’small

deviations’ can be few gross errors or many smaller irregularities.

Having said all that, it seems that a consensus can be found in the following

definition: Robust statistics investigates the effects of deviations from modelling

assumptions on known statistical procedures (being equivalent to the stability

theory of these procedures) and, if necessary, develops new, better alternatives.
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4.1.2.2 Huber’s M-estimators and the minimax result

This small paragraph is dedicated to Peter J. Huber and his contribution within

robust estimation techniques, which, together with Hampel’s later stability the-

ory (see below), give a foundation to the modern robust statistics. In one of his

first works [42] he introduced a flexible class of estimates Tn, called ’maximum

likelihood type’ or simply ’M-estimates’. The concept was based on the idea

of replacing the squared residuals in the standard least squares work-frame, by

another arbitrary function ρ yielding a minimum problem of following form

n∑

1

ρ(xi;Tn) → min. (4.1)

If we assign the derivative of ρ as ψ(x, θ) = (∂/∂θx)ρ(x; θ), it implies

n∑

1

ψ(xi;Tn) = 0. (4.2)

For Tn being a location parameter, these equations become
∑n

1 ρ(xi − Tn) →

min and
∑n

1 ψ(xi − Tn) = 0, respectively. A special case, when ρ and ψ are

equal to −logf and −f ′/f , with the xi being identically distributed according

to f(xi − Tn), is a standard maximum likelihood estimator of location.

Later, Huber develops his concept of rather full neighbourhood of a strict para-

metric model (earlier work was considering a finite number of competing para-

metric models). This is based on the gross-error model which assumes that

given a parametric model G(x) for known G and a known fraction of corrupted

data ε ∈ (0, 1) from the distribution H(x), the modelled distribution will be

of a form F (x) = (1 − ε)G(x) + εH(x). Based on this assumption, the op-
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Figure 4.1: A sketch of derivatives (functions ψ) of objective functions for two
estimators: a) Huber estimator (solid line) and least squares estimator (dotted).
In the first case the influence of the data points far away form the center is visibly
bounded.

timisation of the worst scenario over the model’s neighbourhood is performed

by the means of asymptotic variance of the estimator. This resulted in the

least favourable distribution (normal in the middle and exponential in the tails)

and the famous minimax result, known as a class of Huber-estimators, with

ψ(x) = max(−k,min(k, x)), as illustrated in Figure 4.1. Huber also develops

estimator for robust regression (discussed more in Section 4.1.4) and covari-

ance matrix. His most important investigations are gathered in Reference [35]

(and [43] in a more compact version).
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4.1.2.3 Qualitative and quantitative robustness

Together with increasing interest and development of new robust techniques, a

necessity of establishing some performance measures of these techniques became

apparent. Three main reasons for deviations form parametric model will be

distinguished:

1. rounding and grouping of the observation values,

2. presence of gross errors (described above),

3. an approximative nature of the model itself, for example by the means of

central limit theorem.

Below, the division on qualitative and quantitative robustness will be presented,

taking care of all three aspects concerning model deviations. Both approaches

might be considered as components of the stability theory of statistical proce-

dures.

Qualitative robustness. The fundamental principle of stability or continuity

in the context of robustness could be expresses as follows

∀ε > 0, ∃δ > 0, ∀G, ∀n;

d∗(F,G) < δ → d∗(LF (Tn),LG(Tn)) < ε,

(4.3)

where d∗ is a suitable metric (for example the Prokhorov distance) in the space

of the probability measures, F is a distribution of i.i.d. random variables

X1, · · · , Xn, G is a probability measure (distribution) in the neighbourhood
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of F and Tn = Tn(X1, · · · , Xn) is any estimate. Briefly, it means that a small

deviation in the underlying distribution F = L(X) should cause only a small

change in the performance of the estimate L(Tn). A small change is assumed

to be either a small contamination in many observations (due to the grouping

or rounding) or a large change in few of them (presence of gross errors).

In order to metrize the distance between the two probability measures in the

metric space, a notion of distance in needed. Among many possibilities, the

Prokhorovmetric seems to be most attractive [43]. Prokhorov distance dPr(F,G)

between probability distributions (or generally, probability measures) on a mea-

surable space (Ω,A), where Ω is a complete separable metric space and A is its

Borel-α-algebra generated by the topology, is defined as

dPr(F,G) = inf {ε > 0 | ∀A,F{A} 6 G{Aε}+ ε} (4.4)

where for every A ⊂ Ω its closed ε-neighborhood is defined as Aε = {x ∈

Ω | inf
y∈A

d(x, y) 6 ε)}. It is equivalent to the set of all points (a closed ball)

whose distance from A is less than ε. This expression takes care of deviations

included in points 1 and 2 explicitly (stated above), and because of the fact

that the Prokhorov distance leads to weak(-star) topology (convergence) [41], it

also solves point 3. A much more detailed discussion concerning other types of

distances and qualitative robustness definition can be found in [35].

Quantitative robustness: the breakdown point. The second aspect of

the robust stability theory is a quantitative expression of how reliable a pro-

cedure under investigation is globally, or simply, how big the perturbation can
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be, before it turns that procedure ’useless’, in the statistical meaning. In order

to measure that, Hampel [41, 44] defined a breakdown point δ∗ of a sequence

of estimators {Tn} as a value indicating up to which Prokhorov distance (or

alternatively, which fraction of gross errors) from the parametric model, the es-

timator can still give some reliable information about the original distribution.

It can be written

δ∗ = δ∗({Tn}, F ) = sup{δ 6 1 : ∃ a compact set K = K(δ)

which is a proper subset of the parameter space such that

dPr(F,G) < δ ⇒ G{Tn ∈ K} → 1 as n→ ∞}.

(4.5)

This expression, being asymptotic and quite ’mathematical’ in nature, doesn’t

seem to be very practical, therefore another definition given by Donoho and

Huber [45] will be presented for a finite-sample of n points stored in F , and the

estimator T

δ∗n(T, F ) = min
{m
n
; bias (m;T, F ) is infinite

}
. (4.6)

Here, bias (m;T, F ) = sup
F ′

‖T (F ′)− T (F )‖ means the maximal bias which can

be caused by replacing any m data points by some corrupted values, stored in

F ′. According to this expression, if bias is infinite, this means that m points

cause the estimator T breaking down.

Breakdown point can be given depending on the sample number (for exam-

ple 1/n) or as a limiting percentage value of n→ ∞ (e.g. 0%). If an estimator

has a 0-breakdown point (which is the case for all procedures with least squares

cost function), that signifies that even a single, distant enough outlier can com-
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pletely spoil the model. Alternatively, a breakdown point equal to 1/2 (typical

to some robust estimates such as sample median but also many others) is the

highest possible value, tolerating as much as 50% of outliers. Conceptually, it is

no longer possible to distinguish between the ’good’ and the ’bad’ points if the

outlier fraction exceeds 50%. Due to its simple interpretation and very practical

aspects, the breakdown point became perhaps the first index to look at, once

evaluating the properties of en estimator.

Influence function: infinitesimal aspect of robustness. The last compo-

nent of Hampel’s stability theory is so called infinitesimal approach, measuring

the local sensitivity of an estimator. The cornerstone of this approach is the

famous influence function (IF), introduced in [44, 46], about which Huber said

as being ”the most important single heuristic tool for constructing robust esti-

mates with specified properties” [39].

The influence function tries to describe the impact that an infinitesimal per-

turbation at the point x has on the estimate, standardized by the mass of the

contamination, when the size n → ∞. Using Hampel’s notation, this can be

expressed by the means of Gateaux type of derivative [44]

IF (x;T, F ) = lim
t→0

T ((1− t)F + t∆x)− T (F )

t
, (4.7)

where t∆x is a point mass 1 at x. In other words, IF explains what will happen if

we replace the true distribution F , according to an error law, by (1− t)F + tH ,

where t is assumed to be typically between 0.01 − 0.1. Then, the influence

function will measure the asymptotic bias t
∫
IF (x, F,H)H(dx) caused by con-
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tamination tH in the observations. From the practical point of view, one would

like IF to be bounded and continuous in x. The first condition would limit the

effect of potential gross errors, whereas the second would help achieving insen-

sitivity towards small changes to the whole distribution (caused by rounding or

grouping). A recently updated work concerning influence functions, together

with mathematical derivations and vast theoretical background, can be found

in [44].

Other measures of robustness. There exist also other properties of esti-

mators which should be taken into account when evaluating their properties, or

when comparing to an alternative estimator:

• Absolute efficiency 1/(I(F )σ2
F (T )) where I(F ) is the Fisher information

and σ2
F (T ) is the asymptotic variance. This value should be high for all

suitable smooth shapes F , or alternatively, over a strategically selected

parametric family of shapes.

• Relative efficiency σ2
F (T

′)/σ2
F (T ), which measures how well the robust

estimate performs compared to a standard LS estimator when applied to

data with no contamination.

• Equivariance, which means that a systematic transformation of the data

will cause a corresponding transformation of the estimator. There exist

different types of equivariance defined by the nature of transformation.

Details can be found in [47].
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4.1.3 Estimators. Location and spread.

If we assume X1, · · · , Xn to be independent random variables of common dis-

tribution Fn, then any classical estimate Tn(X1, · · · , Xn) in the least squares

sense will be found as a solution to a following minimisation problem

n∑

1

(xi;Tn)
2 → min (4.8)

The basic idea behind this famous procedure was to optimize the fit by making

the residuals very small, assuming that they would follow a certain (most often

normal), well-behaved distribution. As it was stated previously, there is no

reason why deviations from the assumed distribution or gross errors would not

occur in the case of empirical data, leading occasionally to catastrophic results.

As an alternative solution, Edgeworth [48] proposed replacing least squares by

least absolute value criterion, in the context of regression estimator

n∑

1

|xi;Tn| → min, (4.9)

often being referred to as L1 estimator, whereas L2 notation corresponds to the

least squares work-frame. This criterion was used already before by Laplace

for estimating parameter of location in one-dimensional samples, yielding the

sample median.

In the robust statistics theory sample mean and median (or more general L2

and L1 types of estimates) define the two extremities, having breakdown points

equal to 0 and 1/2, respectively. However many techniques have their break-

down point within δ∗ ∈ (0, 0.5) and different quality properties, offering there-
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fore many possibilities for choosing a relevant analysis tool.

Various classes of estimators are available, yielding different types of estimates,

such as a group ofM -estimators (which were briefly described in Section 4.1.2.2),

being a generalised concept of maximum likelihood estimation. Moreover, some

examples of L- and R- and S -estimates, characterised by different level of ro-

bustness will be taken into account. L-estimates (well known example is the

median or t-quantile range) come from linear combinations of order statistics,

R-estimators are derived from the rank tests and S -estimators are based on

minimisation of a scale statistic. The mathematical background and derivation

techniques can be found in [35, 44, 47]. Below, some selected robust proposals

of location and spread measures will be discussed for low and high-dimensional

data.

4.1.3.1 Robust location and scale in low dimensions

The simplest scenario to be considered is a univariate sample x = (x1, · · · , xn)

where xi are independent and identically distributed according to the unknown

F . In this case, classical estimates of location and spread, µ and σ, are simply

arithmetic mean x̄ = 1
n

∑n
i=1 xi and standard deviation s =

√∑n
i=1(xi − x̄i)2/(n− 1).

Both of them, being derived from (4.8) have zero-breakdown point and are un-

bounded (see dotted function in Figure 4.1 in section 4.1.2.2). Alternatively,

on the other end-point of the robustness scale stands the sample median and

the corresponding median absolute deviation, defined for the ordered sample



42 Robustness procedures in chemometrics

(x(1), x(2), · · · , x(n)) where (x(1) <= x(2) <= · · · <= x(n))

median(xi)
i=1,··· ,n

=





x((n+1)/2) if n is odd

x(n/2) + x((n/2)+1) if n is even
(4.10)

MAD = 1.483 median
j=1,··· ,n

|xj −median(xi)
j=1,··· ,n

|. (4.11)

Here, factor 1.483 is a necessary correction, derived from a certain quantile of

the normal distribution, in order to make MAD unbiased. The breakdown value

of these estimates equals 50%, and their influence functions are bounded. The

price to be paid for these properties is loss of efficiency at the normal model

compared to their classical competitors and therefore many other estimates have

been proposed.

One way of finding a better balance between robustness and efficiency could

be obtained by applying a M -estimator, discussed in [49], which technically

speaking is just a simple modification of the classical least squares estimator.

It attributes a full weights to observations from the main body of the data and

down-weights those coming from the tails. For the data centre it yields

x̄ =

n∑

i=1

wixi

/ n∑

i=1

wi (4.12)

where wi = w(di) = ψ(di)/di, ψ is a bounded influence function, for example

proportional to solid lined function in Figure 4.1, di = (xi− x̄)/s and s is a cor-

responding weighted estimate of spread. Depending on the choice of ψ, different

M-estimates can be produced, having different robustness properties. Another

well-known robust procedure is based on the concept of trimming, called α-
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trimmed mean [35], which belongs also to so called L-estimators.

On the other hand, there exist also some good robust estimates of spread. Two

commonly applied alternatives to MAD, aiming at increasing its very low effi-

ciency at Gaussian distribution are:

Sn = c medi {medj |xi − xj |} (4.13)

and

Qn = d{|xi − xj |; i < j}(k) (4.14)

with c and d being consistency factors, k =
(
h
2

)
≈
(
n
2

)
/4, and h = [n/2]+1. Both

estimates do not depend on the location, have 50%-breakdown point, are easy

to compute and much more efficient (especially Qn) than MAD. Additionally,

Sn and MAD have discontinuous influence function which is overcome in the

case of Qn. A thorough analysis of the properties of Sn and Qn can be found

in [50].

4.1.3.2 Robust location and scale in higher dimensions

A straightforward generalisation of mean and standard deviation into multidi-

mensional space results in the vector of means x̄ = 1
n

∑n
i=1 xi and the variance-

covariance (scatter) matrix Sx =
∑n

i=1(xi − x̄i)(xi − x̄i)
T /(n− 1). In fact,

each of the univariate estimates of location can be applied coordinate-wise lead-

ing to column means, column medians etc. These, however, do not take into

consideration the multivariate nature of the data and possible co-dependencies

within it. The situation is even more complicated in the case of scatter matrix,
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where such a generalisation is not even possible, therefore numerous studies

aiming at robustifying these multidimensional estimates emerged, among which

some will be briefly described below.

Multidimensional medians There are many concepts trying to generalize

the median into higher dimensional spaces, yielding different definitions of re-

sulting estimates. The most famous seems to be Weber’s L1 -median, also called

the spacial median [35]. It is defined as a point, µL1(X), in the multidimen-

sional space found by minimizing the sum of Euclidean distances from the data

objects to this point. This can be expressed in the following way

min
µL1

n∑

i=1

‖xi − µL1(X)‖ (4.15)

where ‖· · · ‖ is the L1 -norm. Spacial median is unique [51] and its breakdown

point equals 50%. Other multidimensional medians exist, based on differently

defined centres of symmetry, such as simplex median, half-space median and

others. An extensive review on multidimensional medians can be found in [52,

53].

Multivariate trimming One of the first methods of calculating a robust co-

variance matrix is known under the name Multivariate Trimming (MVT). It is

based on Mahalanobis distance, where for every iteration a fraction of samples

with highest distances are removed and the new scatter matrix is estimated

without them. When the estimates of the mean of the remaining ’clean’ set

converge, the algorithm stops and the final scatter matrix is calculated. Un-

fortunately the breakdown point of MVT decreases when the dimensionality
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grows [54].

Minimum Covariance Determinant (MCD) and Minimum Volume El-

lipsoid (MVE) estimators MCD, a method of Rousseeuw [55], attempts to

find a covariance matrix with minimal determinant, which would include at least

h data points, where h is defined by the user and determines the breakdown point

(δ∗ = (n−h+1)/n) of the estimator. The subsequent MCD estimates of location

(µ̂) and spread (Σ̂) are the arithmetic mean and covariance matrix (multiplied

by consistency factor), defined on the h-subset. Moreover, in order to increase

the efficiency on the finite-sample, a reweighing step was proposed by assigning

to each xi a weight wi, for instance wi = 1 if (xi− µ̂)T Σ̂−1(xi− µ̂) <= χ2
p,0.975,

and wi = 0 otherwise [56], obtaining

µ̂R(X) =

(
n∑

i=1

wixi

)/(
n∑

i=1

wi

)
(4.16)

Σ̂R(X) =

(
n∑

i=1

wi(xi − µ̂R)(xi − µ̂R)
T

)/(
n∑

i=1

wi − 1

)
(4.17)

MCD estimators have bounded influence function and can take up to 0.5n out-

liers. However, in order to assure that the robustness/efficiency ratio stays

reasonable, h ∼ 0.75n is recommended. Due to the fact that the MCD algo-

rithm iterates through all possible h-subsets, it might become computational

exhaustive. In order to overcome this risk, faster versions of the algorithm were

elaborated [57].

MVE, also proposed by Rousseeuw [58], searches for the minimal ellipsoid cov-

ering at least half of the data points, however this estimator has very low rate
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of convergence and hence, efficiency.

Stahel-Donoho outlyingness A conceptually similar technique, consisting

of applying least squares estimates to previously ’cleaned’ data as in equa-

tions (4.16) and (4.17), was presented before MCD and MVE by Stahel [59]

and Donoho [60], being the first high-breakdown estimator. They introduced

independently a measure called outlyingness of xi

outl(xi) = max
d

∣∣xT
i d−medianj=1,··· ,n(xT

j d)
∣∣

MADj=1,··· ,n(xT
j d)

, (4.18)

where xT
j d is a projection of xj on the direction d (it is therefore related to

projection pursuit techniques) and maximum is taken over all directions. Later,

relevant weights wi are given to xi according to outl(xi) and the estimates

calculated. Even-though the estimator has good robustness properties, its usage

has serious limitations due to the calculation intensiveness.

4.1.4 Regression estimators

A classical multiple regression model can be expresses as

yi = xi1θ1 + · · ·+ xipθp + εi, for i = 1, · · · , n, (4.19)

where yi and xi1, · · · , xip are respectively response and explanatory xariables,

εi is the error term (in the classical case εi ∼ N(0, σ) is assumed) and n denotes

the sample size. The aim of the regression is trying to explain a behaviour of

certain response variable y, by means of linear combination of some measured
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quantities (explanatory variables). Under this model, a vector of coefficients θ̂

is to be estimated. As previously mentioned, this is usually done by optimising

the least squares criterion

Minimize
θ̂

n∑

i=1

r2i , (4.20)

which, as we already know, is very sensitive to outliers, with the breakdown

point δ∗ = 1/n and unbounded influence function. An outlier, in the regres-

sion sense, is any point (xi1, · · · , xip, yi) deviating from the linear trend, set by

the majority of the data. Rousseeuw [47] distinguishes 2 most common types:

y-direction outliers and x-direction outliers (also called leverage points), which

are denoted as group 1 and group 2 in Figure 4.2, respectively. Not all leverage

points, however, have destructive influence on the fitted regression model (group

3 outliers). Alternatively, it is also possible to find the erroneous observations

which fit within the data range on both x and y directions but still do not follow

the data pattern and as a result, would most likely tilt the regression line (group

4). Figure 4.2 illustrates all these scenarios for the case of univariate regression,

however it is clear that the difficulty in identification of outliers grow together

with dimensionality of the data set.

Some of the first attempts in ’robustyfying’ regression estimation were inspired

by previously elaborated robust estimators of univariate location and were al-

ready briefly discussed in Section 4.1.3. L1- or least absolute values regression

(its objective function minimizes
∑n

i=1 |ri| with respect to θ̂) was firstly pro-

posed by Edgeworth [48]. This technique gives an improvement in comparison

to L2 fit, as its breakdown point reaches 25% for uniform or normal x′s. Unfor-

tunately δ∗ drops to zero if ’bad’ leverage points are present in the data, since

this estimator bounds the influence of y′is and cannot handle heavily outlying
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Figure 4.2: Types of regression outliers: 1. y-direction outliers; 2. x -direction
outliers; 3. leverage points which do not disturb the fit; 4. points with non-
outlying values on x and y but not following regression line.

x′s. The situation is similar if M -estimator is considered. Huber arrived at his

famous minimax result

ψ(x) = max(−k,min(k, x)), (4.21)

called Huber’s estimator, being the M -estimator for the least favourable dis-

tribution (assumed to be normal in the middle and exponential in the tails)

over the neighbourhood of the model. The limiting cases, when the assumed

fraction of contamination ε → 0 or 1, and when k → ∞ or 0 return arithmetic

mean and median. Huber’s method shows improved results towards both L1

and L2 techniques, however the influence of leverage points is still not treated
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and therefore δ∗ = 0 for long-tailed designs (in cases of ’nicely’ distributed x′s,

the breakdown point is never higher than 25%).

In order to overcome the risks of destructive effects of the leverage points on

regression model, the range of positive breakdown point estimators were elab-

orated. Generalised M -estimator [42], repeated median [61], least median of

squares [55] and least trimmed squares [47] belong to the most known tech-

niques, therefore they will be discussed below in more details.

4.1.4.1 Generalized M-estimators

This group of estimators, also called bounded influence estimators, was designed

with a clear purpose of safeguarding against the outlying xi, by introducing

some weighting functions w(xi) and v(xi) inside of the standard M-estimator

expression
n∑

1

w(xi)ψ(riv(xi))xi = 0. (4.22)

Weights should be selected so that the entries coming from the main data body

receive full influence, whereas outliers become down-weighted. Different sets of

weights were proposed such as Huber [42], Hampel or Andrews [62] and others

(see Figure 4.3), but in general, δ∗ <= 30%, and it turns out that its value

decreases as a function of p (number of regression coefficients), which might still

be unsatisfactory in certain situations.
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Figure 4.3: Objective functions for least squares (blue), Huber (green), L1-
estimator (dashed red), Andrews (light blue) and Cauchy estimator (pink).
Source: http://esd.lbl.gov/itough2



4.1 Robustness theory 51

4.1.4.2 Siegel’s repeated median

The first high breakdown regression estimator was proposed by Sigel in 1982 [61]

under the name repeated median algorithm. Parameter vector θ is defined

coordinate-wise as follows

θ̂j = med
i1

(...(med
ip−1

(med
ip

θj(ii, ..., ip)))...), (4.23)

for any p observations (xi1 , yi1), ..., (xip , yip). The repeated median procedure

will remain bounded whenever more than 1/2(n + p − 1) points will come

from non-contaminated sampling, while the remaining points can be arbitrarily

moved. That implies that its asymptotic breakdown value is 50%, when n→ ∞

and p is fixed. Since the algorithm requires iterating throughout all possible

subset of p variables, the computational complexity of n data points is O(np),

which makes it fairly calculation intensive. Moreover, due to its coordinate-wise

construction, the repeated median is not equvariant for linear transformations

of xi [47].

4.1.4.3 Least median of squares

Next step in the attempts for making classical regression estimates more robust

was proposed by Rousseeuw [55]. He approached the task from a different angle,

and instead of defining a new function of errors (replacing ’squares’ by another

relation), he undermined the rightfulness of the summation sign involved in the

least squares expression. By saying ironically ”(...) as if the only sensible thing

to do with n positive numbers would be to add them”, he replaced the sum with
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the median and arrived at the least median of squares (LMS) estimator

Minimize
θ̂

med
i

r2i . (4.24)

In the case of simple bi-variate regression, LMS fit corresponds geometrically

to a line laying in the middle of the narrowest stripe covering [n/2] + 1 of the

data points, where [n/2] denotes an integer part of the division. The breakdown

point of the method δ∗ = ([n/2]−p+2)/nwhich asymptotically equals 1/2 when

n → ∞ and p is fixed. Moreover, LMS is equivariant with respect to the linear

transformations on xi. The biggest two drawbacks are low efficiency when the

errors actually are normal and fairly slow convergence rate n−1/3 [47, 55].

4.1.4.4 Least trimmed squares

Another proposal of Rousseeuw, aiming at overcoming low efficiency rate of

LMS is least trimmed squares estimator (LTS)

Minimize
θ̂

h∑

i=1

(r2i )i:n, (4.25)

where (r2)1:n <= · · · <= (r2)n:n are squared and ordered residuals coming

from the LMS fit and h is the number of points to be excluded, specified by the

user. This technique is actually equivalent to least squares performed on non-

contaminated, outlier free data, after identifying them by a robust technique.

As h might vary from 0 to n/2, it results in different efficiency-robustness ratios,

but in general the breakdown point is (n− h+ 1)/n. The algorithm converges

satisfactorily as n−1/2 and its efficiency is superior over LMS, however it is fairly

computation intensive. More details about LTS can be found in [47].
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4.1.4.5 Other robust estimators of regression.

Many other definitions of robust regression have been made, offering a wide

range of tools for practitioners in terms of breakdown/efficiency/calculation

speed ratio. For example, as a generalisation of LMS Rousseeuw and Yohai [63]

introduced a class of S-estimators. Afterwards, Yohai improved the method by

proposing MM-estimator [64] in order to augment the efficiency, and recently

Rousseeuw came up with his MCD regression [65] for treating multivariate prob-

lems.

4.1.5 Robust multivariate models

In the previous section it was demonstrated how to safeguard a regression model

from unwanted influence of outliers in the data. However, presence of outliers or

deviations from assumed underlying distribution affect all kind of models with

least squares cost function. In this section, some of the popular models used in

multivariate data analysis, will be briefly presented together with their robust

alternatives.

4.1.5.1 Robust Principal Component Analysis

If the focus of the analysis lies in summarising patterns, dependencies or differ-

ences within the data set, decomposition methods, such as Principal Component

Analysis (PCA) might be of interest. PCA is a 2-way linear subspace-based tech-

nique, extensively used in many application fields. A PCA model is presented
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in Equation (4.26)

xij =

R∑

r=1

tirpjr + eij i = 1, ...I; j = 1, ...J (4.26)

where xij is an element of the matrix X(I × J), t and p are the decomposed

vectors and eij contains model’s residuals. In brief, PCA maps objects and vari-

ables to lower dimensional spaces where exploration and visualization becomes

easier. This is completed by finding a sum of vector products, called scores (t)

and loadings (p) which are orthogonal and determined by maximizing the vari-

ance explained by them. Those vector products, being a linear combinations

of the original variables (or objects), are called principal components and often

already a small number is sufficient to explain the data variation in a satisfac-

tory way. More details about the classical PCA method can be found in the

literature, for example in [16–18].

An outlier in the PCA context can be defined as an observation or object hav-

ing either large orthogonal (OD) or score distance (SD). Large OD means that

the observation lies far away from the subspace spanned by the correct eigen-

vectors and high SD values indicate elements for which the projection into the

model lies far from the main data bulk within that subspace. Due to the least

square origins of PCA, many attempts have been made in order to improve

the model quality, when data contamination is present, but essentially, two dis-

tinct approaches can be specified. The first group of methods consist of robust

covariance matrix. The reasoning for that is quite straightforward, namely be-

cause PCA decomposes the covariance matrix where PC’s are the eigenvectors.

This implies that if the covariance matrix will be replaced by its robust version,
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it will also lead towards robust PCA. Some of the methods for robustifying

the covariance matrix, as MVT, MVE or MCD were already discussed in Sec-

tion 4.1.3.2, however their functionality is restricted to few dimensions. The

second group of robust PCA techniques is based on Huber’s famous Projection

Pursuit (PP) [66]. PP searches for structure in the high dimensional data by

projecting it into lower dimensional space, where a certain criterion would be

maximized. Depending on this criterion, also called projection index, a par-

ticular method can be obtained. PP can be applied to high-dimensional data,

due to its sequential construction, however it might be fairly computationally

exhaustive. A compromise seems to be reached by combining the two methods

in various ways, which often yields a faster algorithm, still functional in high

dimensions. Some of the most important contributions aiming at constructing

a robust PCA technique will be discussed below in more details.

Robust covariance matrix approach

As previously mentioned, replacing the classical scatter matrix by a robust ver-

sion will lead to a robust PCA model. Many simultaneous studies were proposed

to determine which robust estimator should be used. Some of the most com-

monly discussed are the M -estimators [49], S -estimators (MVE) [47] or the one-

step reweighedMCD estimator [58]. Since theM -estimators are characterised by

breakdown point decreasing towards zero when dimensionality grows, the high-

breakdown methods are preferable. According to Croux and Haesbroek [67]

the theoretical results (influence function and efficiency) favour S -estimators

however low or moderate dimensionality should be kept due to extremely high

computation time. Moreover if the number of variables exceeds (n(1−α)) both
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MVE and MCD break and are no longer defined, which is a serious limitation

in certain application fields. Some efforts have been made to overcome this in-

convenience by compressing the data by means of PCA which, as an orthogonal

data transformation, will not influence the distances between the objects, and

use the resulting PC’s for derivation of the robust estimates [68]. Alternatively,

projection-based methods may be useful in the case of high dimensional data.

Robust PCA by Projection Pursuit

Projection Pursuit represents a wide range of projection methods. In brief, PP

searches for the projections in the multidimensional data space, which mostly

expose outliers. This is being done by finding a direction vp which would op-

timise a projection index ρ(Xv) being a robust measure of spread. In fact, a

classical PCA is the special case of PP with the classical variance as projection

index. Therefore if a robust measure of spread will be applied, it will lead to a

robust PCA. Additionally, the robustness of resulting method will also depend

on the selection of the data centre estimator. One of the first algorithms was

introduced by Li and Chen [69], with Hubers M-estimate as projection index

and weighted mean as a data centre. This method was proven to inherit a

high breakdown point of the robust scale estimator, however, appeared compu-

tational exhaustive. Later Xie et al. [70] came up with generalized simulated

annealing as an optimisation procedure in calculation of PP, and used a robust

measure of spread based on L1-norm, such as MAD, still yielding a slow algo-

rithm. Afterwards, countless studies on different variants of robust PCA aiming

at speeding up the algorithms and maintaining good robustness features, were

elaborated, among which, few will be described below.
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Summing up briefly, PCA based on the Projection Pursuit has very attractive

features. In particular, by using scale measures as MAD or Qn, the resulting

PCA inherits decent robust properties. Moreover, the calculation process can

be stopped when the satisfactory amount of PC’s is reached, which is not pos-

sible when PCA based on robust covariance matrix is considered. Finally, the

newest algorithms allow high dimensionality situations and variables exceeding

the number of objects.

CR algorithm

One of the most influential contributions in the PP-based PCA field is due to

Croux and Ruiz-Gazen. They came up with a faster and relatively simple algo-

rithm (CR-algorithm) with L1-median as data centre and Qn as the projection

index [71]. In order to find the optimal direction, it was proposed to search

within a set constituted only by the data points directions. This however means

that the solution will be approximative and losses of efficiency expected, espe-

cially when the number of data objects is small (n < p). In this case, a new

algorithm (GRID) was recently presented [72] as a complement to the previously

proposed CR algorithm.

RA-PCA

An improvement of the CR-algorithm was also proposed in [73], where reflection-

based algorithm for PCA (RA-PCA) was defined. The novelty of the approach

consists of the initial compression of the data by the means of singular value
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decomposition (SVD) of Xn,p if n < p. This transformation reduces the data

space to the affine subspace spanned by the n observations. Thanks to that,

the procedure can deal with low- and high-dimensional data without loosing

generality. Afterwards, the main idea of RA-PCA is to search for directions with

maximal value of the projection index, which in this case is the Qn estimator.

In order to reduce calculation time the same procedure as in the CR method

was used for initialising the choice of directions. The authors claim that the

RA-PCA is more stable numerically and faster than CR method.

ROBPCA

Another, already well established proposal of robustifying the PCA model is

called ROBPCA and was developed by Hubert et al. [74]. This method combines

projection pursuit ideas with robust scatter matrix estimation based on the

MCD estimator. As in the case of RA-PCA, the algorithm starts by reducing

the data to the n-dimensional full-rank subspace by the means of PP. Here the

measure called outlyingness wi is maximised throughout each i-th direction

wi = argmax
‖p‖=1

∣∣xip
T − µMCD(xip

T )
∣∣

σMCD(xipT )
. (4.27)

Then, a preliminary scatter matrix S0 is constructed in order to select k com-

ponents to be retained This results in a k-dimensional subspace which fits the

data well. Finally, the data points are projected into that subspace and PCA

is performed on that projection, yielding robust PC’s. ROBPCA is location

and orthogonal equivariant (the scores do not change under shift or orthogonal

transformations). It can be computed relatively fast and has breakdown point
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of MCD estimator. Finally, as a ’by-product’ ROBPCA can deliver a diagnostic

plot which is a great tool to displaying and identifying outliers.

S-PCA

S-PCA is a very fast and robust version of classical PCA introduced by Lo-

cantore in [75]. This method exploits the robustness feature of the median,

combined with the projection pursuit framework and is conceptually fairly sim-

ple. In the first step the robust centre of the data is defined as the L1-median.

Then, all data points xi are centred and down-weighted by the inverse of these

distances, which is equivalent to projection on the unit radius hyper-sphere with

the centre in L1:

xp
i =

xi − µL1(X)

‖xi − µL1(X)‖ + µL1(X) (4.28)

where xp
i is the ith data object projected onto the sphere and ‖xi −µL1(X)‖ is

the Euclidean distance to the robust centre of the data µL1. In this setting, the

influence of outliers manifesting normally large distances in the denominator of

the equation, will be bounded. In the next step, a classical PCA is carried out

on the down-weighted data and the robust scores and loadings are obtained by

projecting the original data on the resulting PCs. Further, in order to identify

the outlying samples, the usual detection methods based on Robust and Or-

thogonal distances (RD and OD, respectively) are to be applied.

Another version of S-PCA was also defined. By taking into account differ-

ent scales of the variables, data objects are projected on hyper-ellipse instead

of hyper-sphere, resulting in Elliptical PCA (EPCA) [75], however this method

seems to have problems with consistency.
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Other approaches

Many other approaches towards robust PCA exist, for example, consisting of re-

placing the classical least square function by its robust alternative (idea already

used in robust regression estimation). Least Trimmed Squares or M-estimator

of the PCA residuals was suggested in [76]. However, since it is not the scope of

this report to review all the possible robust PCA models, but rather to give a

general overview of the available methods, this objective is assumed to be met.

4.1.5.2 Robust PLS

Partial Least Squares (PLS) regression is a multivariate calibration method,

aiming at estimating uni- or multi-variate response (assigned y and Y , respec-

tively) by the means of high-dimensional regressors (X). Essentially, it was

invented by Wold [22, 23] as a remedy for co-linearity problem in the multi-

dimensional data and since then, it has been broadly used by practitioners in

various application fields (see [24] for tutorial and [25] for more detailed descrip-

tion). Two algorithms are commonly used for PLS: non-linear iterative partial

least squares NIPALS [22] or SIMPLS [77], yielding the same result when uni-

variate response is considered, but differing slightly in the multivariate case (for

more details consult reference [77]). Nevertheless, both algorithms optimise a

least squares criterion, and hence, are sensitive to data contamination. In this

section the emphasis will be put on SIMPLS approach as it appears to be faster

and more intuitive for interpretation (all components are linear combinations of

the original variables), however some robust versions concerning NIPALS will

aslo be mentioned.
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The classical PLS problem (in SIMPLS workframe) might be expressed as a

bilinear model [78]

xi = x̄+ P t̃i + εi (4.29)

yi = ȳ +AT t̃i + δi (4.30)

where x̄ and ȳ are the means of X and Y , vectors t̃i are the scores, matrix

P contains the loadings and A is the regression slope matrix. Residuals of the

models are stored in εi and δi. Essentially, the objective is to explain Y as good

as possible and at the same time obtain a reasonable relation between X and

Y . For this purpose,

cov(Ỹ qa, X̃ra) = qT
a

Ỹ T X̃

n− 1
ra = qT

a Sxyra (4.31)

is to be maximised with respect to normalised weight vectors ‖qa‖ = ‖ra‖ = 1.

Here, Ỹ and X̃ are mean-centred data matrices and Sxy is the symmetric cross-

covariance matrix between X and Y . Then, the elements of the score matrix are

found as linear combinations of the mean-centred data: ˜tia = x̃i
Tra. SIMPLS

takes the first left and right eigenvector of Sxy to be r1 and q1. In order to

find the rest of weight vectors (for a = 2, · · · , k) the orthogonality constraint,

∑n
i=1 tiatib = 0 is imposed and the cross-covariance matrix deflated by first

calculating

pa = Sxra/(r
T
a Sxra), (4.32)
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where Sx is the empirical scatter matrix of X. Afterwards, an orthonormal

base {v1, · · · ,va} of {p1, · · · ,pa} is constructed and the deflation performed

Sa
xy = Sa−1

xy − va(v
T
a S

a−1
xy ) (4.33)

Finally the responses are regressed on k chosen components from T̃ according

to

yi = α0 +AT t̃i + δi. (4.34)

Since the PLS uses least squares criterion when calculating weights, loadings,

scores and regression coefficients, it is clearly exposed to the damaging effect of

outlying observations.

Two main strategies were adapted in order to circumvent this problem: 1. down-

weighting of the outliers; 2. robust estimation of the covariance matrix. The

first group of methods aimed at replacing all steps of classical least squares

regression by a robust alternative by introducing different weighting functions

to be applied to the data. This, however, led to high computational cost and

loss of efficiency. An alternative solution would be replacing only selected steps

resulting in ’semi-robust’ approaches. Among others, the work of Wakeling and

Macfie [79], Cummins and Andrews [80], Gil and Romera [81] and Pell [82]

should be acknowledged. Second group of methods is related to SIMPLS, which

is based on the cross-covariance Sxy, empirical covariance Sx and the multiple

regression step. Hubert and Vanden Branden [78] proposed a method called

RSIMPLS, based on ROBPCA for robust estimation of ti which are later used

for the regression step. As an alternative to that, Snereels et al. [83] introduced

another weighting procedure called partial robust M-regression (PRM) which
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uses continuous weights to diminish gradually the influence of outliers. Simu-

lation study showed that PRM outperforms RSIMPLS in terms of statistical

efficiency, however the method can so far be applied only to univariate response

problems and due to reliance on GM-estimator, its breakdown point reaches at

most 30%.

4.1.5.3 Robust PARAFAC model

Until now only 2-way methods were considered, where a term ’2-way’, not to

be confused with ’2-dimensional’, refers to data sets which can be arranged in

a matrix, having two distinct directions (modes), e.g. objects and variables.

’3-way’, consequently, denotes structures accommodated in a cubic form, where

a third direction (for example location or time) is added. Practice shows that

many types of empirical data can be accommodated in 3- or even multi-way

structures, which creates needs for relevant data analysis techniques.

A PARAFAC model, introduced by Harshman [19] and popularized by Bro [10]

and Smilde et al. [2], is a tri-linear generalization of PCA, which decomposes

a data cube into the sum of triple vector products, called loadings. The most

common way of writing it is following

xijk =
R∑

r=1

airbjrckr + eijk (4.35)

where xijk is an element of the array X, A(I × R), B(J × R) and C(K × R)

are the orthogonal matrices with elements air, bjr and ckr respectively. R is

the number of components and eijk is the error term. If the experimental data
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fulfils the tri-linear assumption (required invariability of the component profiles

across the different data slices with different weighting coefficients for each slice,

see [2,19]), the application of a PARAFAC model is usually superior to its bilin-

ear counterpart PCA, which is often applied after unfolding the data cube into

a matrix form. The reasons for this are numerous. First of all, PARAFAC takes

into account the interrelations existing in all three data directions. Moreover,

the problem of rotational freedom, typical to PCA is solved here as PARAFAC

provides a unique solution (up to the scaling constant, sign and permutation

ambiguities) [2]. In addition, PARAFAC model resolves each mode separately,

giving a straightforward physical interpretation for the depth, station and vari-

able profiles (there is no need to unfold the data in different directions and fit

2 or 3 different models). Finally, due to the relatively low number of degrees of

freedom, it does not tend to over-fit, as is often the case of PCA.

In spite of the benefits that may be gained from applying PARAFAC model,

some drawbacks also exist. The most important one is that the real data do

not always conform adequately with a tri-linear assumption. In this cases, the

model might return degenerate solutions. Degeneracy might also occur when

contaminated samples (outliers) are present in the data, due to the cost function

of PARAFAC depending on the least squares criterion. This objective function

can be expressed as

∥∥∥X − X̂
∥∥∥
2

F
=

I∑

i=1

J∑

j=1

K∑

k=1

(xijk − x̂ijk)
2 → min, (4.36)

which is equivalent to minimisation of the squared residuals. In fact, the algo-

rithm usually used for optimising expression (4.36) is called Alternating Least
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Squares (ALS) and it consists of iterative minimisation of least squares crite-

rion [2].

As it was described in section (4.1.5.1), many approaches toward robust PCA

exist in the literature. Unfortunately, it is not the case for PARAFAC, where

only few studies address the issue of robustness. In [84], Rui and Bro devel-

oped an outlier detection technique based on jack-knifing, where influence of

each sample is evaluated by resolving PARAFAC model without this sample.

If scores and loadings change significantly, that indicates an outlying sample.

This method might be fairly computation expensive if large sample size is con-

sidered. Moreover it will suffer from so called masking effect, when outliers form

clusters. A better method for dealing with outlying samples was proposed by

Engelen and Hubert [85]. The procedure is looking for an ideal h-subset of the

samples with the minimal squared residuals. The value h ∈ (0.5, 1), defining the

breakdown point of the method, is the fraction of I samples set by the user, as

for MCD or LTS. The algorithm starts by applying ROBPCA on the unfolded

matrix XIxJK and finding the initial h-set as data points with the h small-

est robust distances. Afterwards, a classical PARAFAC is performed on the h

samples and scores are computed for each observation Xi together with resid-

ual distances. A new h-subset is constructed by storing samples with smallest

residual distance and the whole procedure is iterated until changes in h subset

become insignificant. At the end a reweighing step, for increasing efficiency is

performed. The simulation study [85] shows that this method outperforms the

classical PARAFAC when data contamination is present, and also, it delivers

reasonable results (in terms of statistical efficiency) for the clean data scenario.
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4.1.5.4 Other robust multivariate techniques

In this section some robust procedures for PCA, PLS and PARAFAC modes

were discussed. However, apart of these frameworks, each model with least

squares cost function is at risk when outliers or other deviations from model’s

assumptions occur in the analysed data. If dealing with the real (non-simulated)

data, this is more of a rule than exception. Some of the ideas presented above,

such as using robust cost function or robustifying a particular ’weak’ point of

the algorithm, find applications in other multivariate settings. Various robust

proposals were given for models, such as robust Principal Component Regres-

sion (PCR) [68, 86, 87], classification tools: Quadratic Discriminant Analysis

(QDA) [88] or Soft Independent Modelling of Class Analogy (SIMCA) [89–91]

or a 3-way Tucker3 model [92]. For reviewing papers on robust multivariate

methods used in data analysis consult references [93–96].

4.1.6 Discussion and conclusions

Empirical data often deviates from the commonly assumed normal distribution

and contains corrupted observations, manifesting themselves in the form of out-

liers. Both types of nuisance can significantly deteriorate the performance of

conventional data analysis methods based on least squares criterion. Therefore,

there is no doubts that smart robust methods can largely contribute to improv-

ing data analysis tools.

A broad theoretical background of robust procedures was given here, however,

since practical considerations usually diverge from purely theoretical point of
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view, a few important issues will be addressed and discussed here.

In theory, the ’perfect’ robust estimator is characterised by a high breakdown

point, bounded influence function and high efficiency rate at normality. How-

ever, data sets with a high percentage of outliers would most likely be discarded

and generation of higher quality data recommended. Therefore, robust esti-

mators with the 50%-breakdown point might be helpful for general assessment

of data quality and outlier identification, more than for actual analysis. This

is also supported by the fact that high-breakdown robust methods are usually

computational intensive and have lower efficiency rate then classical techniques.

If the method allows, it is advisable to tune the breakdown point according to

needs of the analysed data, in order to reach a compromise between good robust

properties and quality of the estimate. As a contra-argument, it can be argued

that if good robust techniques, delivering reliable results were at hand, the time

and cost of re-running the experiments for obtaining better data quality could

be saved.

A relevant question emerges here: when should robust techniques be used.

To answer this, the author agrees with the opinion of Peter Rousseeuv [47],

who claims that by principle both, a classical and a robust procedure should

be applied. If their performance is similar (meaning no or insignificant outlier

presence), the results of classical methods should be taken into account, as they

yield more efficient estimates. On the contrary, if the two methods are signifi-

cantly different, it is a signal that part of the data is corrupted and care should

be taken in order to avoid misleading results.
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To conclude, the robustness theory and methods are able to provide tremendous

benefits to practitioners, dealing for example with multivariate data analysis. In

order to facilitate that however, implementations of robust procedures should

be available for some standard statistical data analysis programs such as R,

S-plus or Matlab. Some attempts have already been undertaken resulting in

few robust toolboxes (like TOMCAT or LIBRA for Matlab and rrcov for R),

however more work is needed to propagate the usage of robust methodologies

within the world of applications.

4.2 Robust PCA for automatic detection of Rayleigh

and Raman scattering in fluorescence data.

As already mentioned in Section 2.2.1, the presence of Rayleigh and Raman

light scatter effects leads to a deterioration of the PARAFAC performance in

fluorescence excitation-emission (EEM) data. In this section, a method for

identifying these scatters, based on Spherical Principal Component Analysis (S-

PCA) will be given and compared to the earlier approach based on ROBPCA [14]

(for the full study consult Papaer B).

The data used for this study consists of 23 laboratory prepared samples in-

cluding 4 fluorophores mixed in different quantities (these are: phenylalanine,

3,4-dihydroxyphenylalanine (DOPA), 1,4-dihydroxybenzene and tryptophan).

Excitation-emission landscapes were produced, measuring the emission spectra

ranging from 250 to 482 nm (with 2 nm intervals), for excitation wavelengths

within 230 and 315 nm every 5 nm. Visible 1st and 2nd order Rayleigh ridges
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Figure 4.4: Dorit data with the visible Rayleigh scatter.

are present in every data sample, which is illustrated in Figure 4.4. The method

for identification of these undesired scatter lines is based on S-PCA, assuming

that the scatter is a set of outlying observations, which differ in behavior from

the rest of the data. By slicing our three-way data array X according to the

excitation and emission modes and, subsequently, transposing the resulting ma-

trices, the scattering effect will be placed in the rows of those matrices. As

a consequence, these rows can be perceived as sample-wise outliers and hence,

detected by a robust PCA method applied to each matrix separately. Both, the

slicing and transposing operations are illustrated in Figure 4.5.

In order to identify the outlying samples, Robust and Orthogonal distances

(RD and OD, respectively) are calculated: RDi =
√∑k

j=1 t
2
ij/lj, where tj is a

vector of robust scores for the jth component and l contains robust eigenval-

ues; and OD = ‖X − µL1(X − TPT )‖, with ‖·‖ denoting the Euclidean norm
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Figure 4.5: Slicing of the data cube according to emission mode (analogous
operation can be performed according to excitation mode.

and k selected components being contained within TPT model. Cutoff values

defining outlying samples are determined by the means of robustified version

z-scores, where robust location and scale estimates, such as median (med) and

median absolute deviation (mad), were applied as alternatives to the standard

procedures: z = |d−med(d)|/mad(d).

Based on this outlier identification procedure the output of S-PCA algorithm

is given in the form of a binary matrix M(J ×K), which will be referred to as

an ’outlier mask’. This mask attributes ones to the regular observations and

zeros to the elements identified as outliers and is illustrated in Figure 4.6a. It

can be noticed that some regions, where the scatter ridges are present, remain

undetected by S-PCA, which occasionally fails to identify the outlying samples

if particular data circumstances occur. In this case, an additional interpolation

step is proposed, based on the linear nature of the scatter. Firstly, observations
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flagged as outliers by S-PCA are projected onto a 2-dimensional coordinate

system where a robust regression (here, based on the LTS) is applied. This

method has a high breakdown point ensuring that the calibration line will match

the majority of the data points, which in this case would be the first scatter

stripe. In parallel, observations laying far from the regression line will be flagged

as outliers. Afterwards, the width of the line is determined, usually by adopting

the broadest band of the initially discovered pattern. The same two operations

are repeated for the second scatter line, which was flagged as outliers by the

previously fitted regression model. An example of the interpolated scatters can

be seen in Figure 4.6b.

Figure 4.7 represents resolved spectra from PARAFAC models fitted to three

different data scenarios: 1. when S-PCA was applied without the correction

adjustment and the influence of undiscovered scatter is still visible in the ap-

pearance of the resolved curves; 2. with corrected scatter region, as in the

Figure 4.6b, where a significant improvement of the resolved curves is observed;

3. by additionally applying a non-negativity constraint to both excitation and

emission modes, resulting in ’perfectly’ resolved profiles of the four investigated

compounds. For comparison, some quantitative results of the PARAFAC mod-

els based on both, S-PCA and ROBPCA, for different scatter region treatment

scenarios and constraints application, can be found in Table 4.1. From the

indices included in the table and the resolved excitation/emission profiles (de-

tailed ROBPCA results can be found in [14]), it is judged that the two methods

perform similarly well and contribute significantly to a successful recovery of

the underlying spectra within the data. The core consistency and explained

variance, both having values > 90% indicate slightly in favor of the S-PCA

approach, whereas the running time of the PARAFAC model and number of it-
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Figure 4.6: Correction undiscovered scatter: a) outlier mask after initial S-PCA
routine; b) interpolated (corrected) scatter region.

Table 4.1: PARAFAC results for Dorit data expressed by the standard set of
indeces. It is evident that the time required for finding the scatter by S-PCA is
significantly lower than by ROBPCA.

Name of Time of scatter Time of No of Core Variance
method finding [s] PARAFAC [s] iter. consist. [%] explained [%]

S
-P

C
A no correction 2.36 1.99 29.47 98.82 97.74

correction 3.07 1.65 38.47 99.72 99.91
correct.+ nonneg. 3.07 3.30 44.25 99.73 99.90

R
-P

C
A no constraints 293.28 54.94 44 99.30 99.78

nonneg 293.30 26.89 57 99.73 99.77
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Figure 4.7: Correction of S-PCA for North Sea data: a) user chosen outlier
mask after initial S-PCA routine, b,c,d) interpolated scatter regions depending
on user chosen bandwidth adjustement factor set to 0, 1 and 2, respectively.

erations required seem to be un-influenced by the scatter identification method.

The obvious point, where S-PCA largely outperforms the previous method is

the time required to find the scatter region, which in the case of Dorit data is

around 100 times shorter than for ROBPCA.
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4.3 Spherical PCA. A sensitivity study.

Since S-PCA method was first proposed [75], it has been used broadly within

multivariate data analysis (e.g. [15, 90, 91, 97–99]) and mentioned in a few re-

view papers concerning the chemometrics field (e.g. [94,95,100]). However, as it

was shown in the previous section (see also [15]), S-PCA tends to fail in outlier

identification when certain (non-specified) circumstances occure. Also Stan-

imirova et al. [97] mentions briefly that problems might emerge when outliers

form clusters, but again the details are not known. That was the motivation

for a simulation study, presented fully in Paper C, investigating the functioning

scheme of S-PCA and its potential as an outlier identification tool for elliptical

data and the case when outliers form clusters.

A great advantage of the S-PCA is its exceptional computation speed and rela-

tive simplicity which can be desired in many applications, especially when high

dimensionality of data is considered. Figure C.3 presents a comparison of six

PCA models: Classical PCA (PCA), ROBPCA [74], two versions of Projection

Pursuit based PCA: by Croux and Ruiz-Gazen [101] (PP) and by Croux et

al. [72] (Grid) and finally two Spherical S-PCA algorithms: traditional (SPCA)

and its nested version (SPCA2). The ’nested S-PCA’ will be described further.

System time of algorithm execution is plotted agains the number of dimensions,

for constant sample size n = 500. One can observe that only S-PCA methods

and classical PCA have a linear time dynamics function, whereas other methods

- exponential. This high computation time might cause that even a very good

method could be impossible to implement in certian circumstances, for example

when on-line analysis of large data set is considered.
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Figure 4.8: Execution time [s] of different PCA methods as a function of number
of dimensions for constant number of observations n = 500.

The functioning scheme of S-PCA has been previously described in details

in Section 4.1.5. In short, it can be split into four major parts, depicted graph-

ically in Figure C.4, respectively:

1. find the L1 robust center of the data (red dot)

2. project all data points xi on the unit radius sphere centered in L1

3. fit classical PCA to the projected data, find robust loadings and scores

4. apply the robust loadings to original data and identify outliers

Considering this functioning scheme, a sensitivity study of S-PCA was designed,

aiming at investigating potential factors having influence on performance of the

method. 100 samples were drawn from a bi-variate normal distribution with
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and later contaminated (see Paper C for details). The factors in question were:

d - direction from the center of main data cloud to the center of outlier cloud; r

- distance from main data to outlying observations; ǫ - ratio of outliers. In total

16 directions d ∈ {0, 1/8π, · · · , 15/8π}, three distances r ∈ {4, 6, 8} and three

contamination ratios ǫ ∈ {0.1, 0.2, 0.3} have been taken into account, resulting

in 144 data scenarios. In an example presented in Figure 4.10 we consider four

’difficult’ data scenarios, corresponding to directions d ∈ {0, 1/8π, 1/4π, 3/4π}

with r = 6 and ǫ = 0.3. One can see that S-PCA is able to identify correctly

the outlying samples only in the first case, as they are situated outside of red

tollerance ellipse. At the same time, only the last panel of Figure 4.10 depicts

the situation when PCA fit is well aligned (PC axes correspond to directions

of highest variability in data). This is the case of good leverage outliers, which

even though unrecognized, do not harm the performance of the method.

It has been concluded that location, distance and amount of contaminated sam-

ples may influence outlier identification ability of SPCA: if the outlier cloud is

too close to the main data, some or all outlying samples might stay unidentified

(panels b, c and d in Figure 4.10). Moreover, if the outlier ratio is high and

its location not aligned with the first eigenvector, the S-PCA fit will deteriorate

(panels a, b and c). Therefore, even if S-PCA is able to correctly identify the

corrupted signal, its fit (loadings and scores) is often attracted towards it.

As described above, the S-PCA method functions by firstly performing clas-

sical PCA on down-weighted data, and afterwards identifying outlying samples.
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Figure 4.10: S-PCA results for first 4 directions d ∈ {0, 1/8π, 1/4π, 3/4π}, dis-
tance=8, outlier ratio=0.3

This might lead to the situation presented in Figure 4.10a, where contamination

is well identified but resulting PCA loadings highly corrupted. In order to avoid

that inconvenience, a simple correction called ’nested S-PCA’ or ’S-PCA2’ has

been proposed. This correction assumes that after identification of outliers by S-

PCA method, another S-PCA routine is executed, but this time on the cleaned,

outlier-free data set. Then, new loadings are used for constructing robust scores

by projecting them on the initial data and new distances are determined. The

potential advantage of this method is twofold: in the case when ordinary S-

PCA is able to correctly identify the outliers, the final fit will not be affected

by them and resulting loadings will be determined correctly. Secondly, if only a

part of contamination was discovered, S-PCA2 might be able to correct for that.

Figure C.13 shows ’flag plots’ resulting from application of S-PCA2 and two
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other robust alternatives, ROBPCA and Grid, to the four ’difficult’ data sce-

narios. The Flag Plot shows ’flags’ (∈ {0, 1}) which were assigned to each obser-

vation during the outlier identification procedure. Real outliers are marked with

red color and identified outliers have flag = 0. Observations with flag = 1 are

considered regular. Blue points denote data points wrongly qualified as outliers.

All three methods return satisfactory results for d ∈ {0, 1/8π}, corresponding

to directions where outlier cloud is further from the main data. One can see

that S-PCA2 seems to be most sensitive, as it starts having ’problems’ already

for d = 1/8π, and ROBPCA most resistant, performing well even for d = 1/4π.

All methods fail however in the case of good leverage outliers (panel d).

It has been concluded that S-PCA (and especially its nested version) can be

a valuable asset in the toolbox of every practitioner, especially when short ex-

ecution time is an important factor. It is recomended that it is applied with

consciousness of possible shortcomings, such as described in this work and in

Paper C
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Figure 4.11: Flag plots resulting from S-PCA2, ROBPCA and Grid methods
for 4 data scenarios: d ∈ {0, 1/8π, 1/4π, 3/4π} with r = 6 and ǫ = 0.3



Chapter 5

Discussion and conclusions

The focus of this project was twofold, targeting:

• new fields, where multivariate and multi-way data analytical tools could

find their application for more efficient analysis of chemometric phenom-

ena, by replacing less suitable data analysis techniques used currently;

• new data analytical methods, where usage of the robustness frame-work

would contribute to improvement and automatisation of already existing

multivariate techniques.

The first part of the study was realised by delivering appropriate multivariate

tools for analysing polar CTD sea water samples, defined by three data modes:
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depth, variables and geographical location. Two- and three-way chemometrical

methods, such as PCA and PARAFAC models, were applied and their perfor-

mance indicated superiority of the three-way frame-work, constituting a novel

assessment of the sea water measurements. Moreover, fluorescence values were

predicted from the other physio-chemical variables by applying PLS and N-PLS

regression models. This resulted in a clear preference towards the more complex

model, delivering more reliable predictions than a classical 2-way PLS.

It has been argued [2] that by using methods of lower order compared to the data

order (for example using PCA on 3-way data), precious information inherent to

the multi-way correlation structure are likely to be lost. On the other hand,

some underlying assumptions of certain multi-way models, such as PARAFAC,

might be more strict than in the case of two-way models, say PCA. The viola-

tion of these assumptions can lead to model degeneracy and make the analysis

infeasible. Nevertheless, application of multi-way data analysis tools is advo-

cated as a principle whenever the nature of the data allows.

The second part of the thesis was devoted to qualitative properties of the anal-

ysed data. The broad theoretical background of robust procedures was provided

and a new tool, based on S-PCA, aiming at identifying Rayleigh and Raman

scatters in EEM landscapes was elaborated, delivering a practical application

of the robust frame-work in real data situations. Moreover, a simulation study

of S-PCA has been performed, specifyling the outlier identifiation ability of the

method and comparing it to the other robust alternatives.

It was indicated and underlined that standard least squares analysis proce-
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dures do not withstand the presence of outliers or deviations from assumed

distribution, occasionally leading to dramatical loss of efficiency of the resulting

estimates. The ’perfect’ robust estimator is therefore characterised not only

by a high breakdown point and bounded influence function, but also by high

efficiency at normality condition. The arguments encouraging the removal of

outliers from the data, prior to the actual analysis, have been issued. However,

in the case of multidimensional data structures, visual screening for outliers is no

longer possible. Furthermore, a definite removal of distant samples could result

in ignoring an important phenomenon present in the data. A relevant question

emerges here: when should robust techniques be used. To answer this question,

the author agrees with the opinion of Peter Rousseeuv [47], who claims that by

principle it is advised to apply both, a classical and a robust procedure. If their

performance is similar (meaning no or insignificant outlier presence), the results

of classical methods should be taken into account, as they yield more efficient

estimates. On the contrary, if the two methods are significantly different, it is

a signal that part of the data is corrupted and care should be taken in order to

avoid misleading results.

Another point worthy attention in the discussion over robustness issues is the

concept of the 50%-breakdown point. This value is assumed to be the highest

possible, and if the contaminated data constitutes more than half of the ob-

servations, it is no longer possible to distinguish between good and bad data.

However, one can ask: how realistic it is to encounter a data set where half of

the observations are corrupted. In theory, there is no reasons to exclude such

a scenario, however it is not expected to be encountered frequently in practice.

Moreover, data sets with a high percentage of outlying points are often con-
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sidered non-representative and therefore, are discarded. On the other hand, if

good robust techniques, delivering reliable results were at hand, the time and

effort of re-running the experiments for obtaining better data quality could be

saved.

Many robust methods reach the 50%-breakdown point, however this often leads

to less accurate estimates. If the method allows, it is advisable to tune the

breakdown point according to the analysed data, in order to reach a compro-

mise between good robust properties and quality of the estimate. Finally, if the

data quality appears extremely bad, repeating the experiment generating better

data quality should always be an option (as long as it is not financially- and

time-exhausting), yielding a chance for more reliable results.

The studies included in Paper B and Paper C show clearly that robust methods

can contribute to improving the existing analytical techniques used commonly

in chemometrics. In the included papers, robut techniques (such as S-PCA)

proved to be a good outlier detection tool and pattern recognition technique,

and their usage can likely be spread to many other fields and applications (see

for example [102]). In order to facilitate that, implementations of robust proce-

dures should be available for some standard statistical data analysis programs

such as R, S-plus or Matlab. Some attempts have already been undertaken re-

sulting in few robust toolboxes (like TOMCAT or LIBRA for Matlab, and two

R packages chemometrics and rrcov), however more work is needed to propa-

gate the usage of robust methods among practitioners, who could benefit largely

from these tools.

In order to summarise the discussion conducted above, the following final con-
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clusions can be issued:

• in order to extract full information from multi-way data structure, multi-

way data analysis tools are required;

• it is advised to apply robust and classical procedures together, in order to

indicate if contamination in the data is present;

• data-driven tuning of the breakdown point in certain robust methods is

recommended, to find a compromise between good robustness properties

and efficiency of the estimate;

• propagating the usage of robust methods among practitioners is certainly

a challenge which could be addressed in future work.
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Abstract

In this paper an examination of 2- and 3-way chemometric methods for analysis

of Arctic and Antarctic CTD (Conductivity-Temperature-Depth) water samples

was performed. A standard CTD sensor devices were used during two oceano-

graphic expeditions (July 2007 - Arctic, February 2009 - Antarctica) within a

total number of 174 locations. An output of those devices can be arranged in

3-way data structures (according to sea water depth, measured variables and

geographical location). 2- and 3-way statistical tools such as PCA, PARAFAC,

PLS and N-PLS were applied for exploratory analysis, spatial patterns discov-

ery and calibration, and their performance discussed. Special importance was

given to correlation and possible prediction of fluorescence, from other phys-

ical variables. MATLAB’s mapping toolbox was used for geo-referencing and

visualization of the results. It was concluded that: 1) PCA and PARAFAC

models were able to describe data in a satisfactory way, but PARAFAC results

were easier to interpret; 2) applying a 2-way model to 3-way data, raises the

risk of flattening the covariance structure of the data and loosing information; 3)

The distinction between Arctic and Antarctic Seas was revealed mostly by PC1,

related to physico-chemical properties of water samples; 4) The possibility of

predicting fluorescence values from physical measurements has been confirmed

when the three-way data structure was considered in N-way PLS regression.

Keywords: Arctic and Antarctica, CTD, multi-way analysis, fluorescence
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A.1 Introduction

Recent changes observed in the Arctic and Antarctica ocean regions give sup-

port to proposals assuming that polar ecosystems are responding rapidly to

processes influenced by global climate changes. In these proposals, changes are

driven by patterns like sea water transport, ice melting, global atmospheric cir-

culation, and increasing concentrations of green-house gases at a global scale.

Measurements from large ocean areas such as Arctic and Antarctica are crucial

for tracking and understanding ocean and environmental change effects in these

areas, which can be then extended to other parts of the globe.

The main goal of this contribution is to deliver and examine appropriate multi-

variate tools for exploratory and regression analysis of so-called CTD (conductivity-

temperature-depth) data. These data come from CTD profilers installed in

surface ships navigating polar ocean waters during the open iced seasons (July-

August in Arctic and January-February in the Antarctica), constituting an im-

portant source of available measurements about these areas. The resulting data,

being a 3-way structure with variable, depth and location modes, is often ana-

lyzed in a uni-variate way (one variable at a time and independently from other

variables and locations). This treatment does not take into account possible

underlying covariance dependencies and, therefore, does not use the whole in-

formation contained in these fairly complex data structures. Moreover, if a large

amount of variables is considered, it might become highly time consuming and

simply inconvenient. It is known and broadly described in the literature, for

example [Smilde et al.(2004)], that more sophisticated 2-, 3- or multi-way sta-

tistical methods, such as Principal Component Analysis (PCA) or PARAFAC

model, Partial Least Squares (PLS) regression or its multi-way version N-PLS
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are more relevant for extracting the full information from multi-way data sets,

as those obtained by the CTD sensor, which will be considered throughout this

paper.

Data used in this study consists of measurements collected during 2007 ATOS I

and 2009 ATOS II polar expeditions in the Arctic and Antarctic Oceans within

a total number of 174 locations. Depth profiles of 7 variables, common for both

polar areas were considered and included in the analysis: temperature, conduc-

tivity, salinity, oxygen, beam transmission, fluorescence and sea-point turbidity.

The second objective of this study is a comparative sea water study aiming at

identifying geographical differences within and between the Arctic and Antarc-

tic Seas, considering their physical and chemical characteristics. For this sake

Principal Component Analysis and PARAFAC models were applied and their

results delivered and discussed.

Moreover, in the sea water investigations, measured fluorescence is an espe-

cially interesting property. It reflects the amount of chlorophyll (reflecting the

maximum concentrations of biota and algae population), and hence, biologi-

cal activity in the water. Therefore, a regression study, aiming at explaining

and predicting fluorescence values from remaining variables is of interest here,

and becomes the third objective of this paper. Methods used for attaining this

objective are Partial Least Squares regression technique with its multi-way al-

ternative - N-PLS.

The outline of the paper is following: Section A.2 describes the two data sets and

the data transformations applied before chemometric analysis. A brief method-

ological overview of the techniques employed in the investigation is presented in

Section A.3, followed by the results and discussion (Section A.4). Finally, the

conclusions are given in Section A.5.
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A.2 Experimental Data

A.2.1 Data from the Sea

Data samples used in this work were collected during two oceanographic ex-

peditions, spanning the areas of 68◦N - 81◦N , 20◦W -20◦E and 60◦S- 70◦S,

50◦W -77◦50′W respectively, presented in Figure A.1. During both expeditions

a standard, real-time CTD sensor was used producing the depth-profile data in

each of the 93 locations in Antarctica and 49 Arctic stations (for some stations,

due to the position of permanent ice and current needs of scientists, the mea-

surement was repeated, resulting in the total number of 80 samples). Since the

sensors used in the campaigns were non-identical, they were measuring different

ranges of variables, sometimes in different units. Eventually, 7 variables, com-

mon for both locations, were maintained and considered in the study. They are

presented in Table A.1. Among them, the first four are of physical (temper-

ature and conductivity) or chemical nture (salinity and dissolved oxygen) and

the other three are related to radiation (beam transmission, fluorescence and

sea turbidity).

In each location the sensor was dropped down to a certain depth (ranging form

50-1000 m, depending on specific location) resulting in replicated measurements

as it was descending and during ascent. In this study, only the up-cast measure-

ments were included as they proved to have nearly identical profiles as down-cast

data, but contain a lower number of incomplete observations, and therefore will

produce more reliable results. These measurements were collected continuously,

approximately every few seconds, and therefore, for the sake of calculation con-

venience, the data set was reduced by taking averages depth-wise, resulting in
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Figure A.1: Locations of CTD measurement stations in the Antarctica (left)
and in the Arctic Sea (right).
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Table A.1: Variables measured at every station in both, the Arctic Sea and the
Antarctica.

No. Variable Unit

1 Temperature [ITS-68, deg C]
2 Conductivity [mS/cm ]
3 Salinity [PSU]
4 Oxygen SBE 43 [ml/l]
5 Beam Transmission [%]
6 Fluorescence arbitrary units [AU]
7 Sea-point Turbidity [FTU]

one observation per meter (arbitrary choice). Moreover, considering that the

largest amount of changes in the measured signal was situated near the surface,

we decided to disregard all data collected below 100 m depth, as most of these

values were effectively constant and non-informative.

A.2.2 Arranging the data sets

The most ’natural’ and straight-forward way for arranging the whole data set

was a 3-way framework. In Figure A.2 one can visualize the resulting data cube,

relevant for PARAFAC and NPLS models. For the PCA and PLS analysis, the

data were unfolded and the two distinct unfolding directions were adapted for

this study: variable (on the left) and station-wise (on the right). Moreover,

due to the high amount of missing values (> 60%) we disregarded one station

(number 71) from the Antarctic expedition. In addition, the first 5 stations (10

first measurements due to repetitions) were eliminated from the Arctic data.

These measurements were taken ’on the way’ to the final destination area, were

not of significant interest to the overall study and their location did not follow

a 2-D ’grid’ on the map (they were alligned), which woudl cause later plotting
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Figure A.2: Arrangement of the CTD data in a cubic structure according to
three modes: depth, variables and stations. Two unfolding directions, variable-
and station-wise were adapted to fit the 2-way workframe.

inconvenience. After the reduction, we arrive at the total number of location

being 92 for Antarctica and 70 for the Arctic Sea (each repetition was considered

as a separate measurement), resulting in the final dimension of the data, being:

[100× 7× 162] for 3-way methods, [16200× 7] and [162× 700] for both unfolded

data sets, variable- and station-direction, respectively.

A.2.3 Missing values and outliers

Due to technical issues during sensor data acquisition (presumably strong waves

on the surface or instrumental errors during ascent or descent), the data close

to the surface is often corrupted or missing. Consequently, the first step of the

analysis was to remove anomalous signal disturbances and to interpolate the re-

sulting empty spaces in the data matrix. This is a necessary step before applying

any of the classical Least Square routines, which cannot accommodate the pres-
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ence of missing values. This step was performed by means of a variable-wise

standardization method. Standardized values exceeding 99% confidence interval

were flagged as outliers and then substituted by a weighted average of neighbor-

ing values. More sophisticated methods for both, outliers removal and missing

data interpolation exist in the literature ( [Filzmoser et al.(2008)], [Rousseeuw

et al.(2006)], [Serneels and Verdonck(2009)], [Stanimirova and Walczak(2008)])

using for example robust statistics or EM-algorithm, but for the needs of current

research, the adapted methodology yields satisfactory results.

In addition, data centering and scaling was performed variable-wise. This pre-

processing step was performed for the whole joined data set (Arctic plus Antarc-

tica) and as such, it did not remove the offset, specific for each location. On

the contrary, the aim was to maintain and emphasize the differences in variable

behavior between them. However, since fluorescence and sea turbidity were ini-

tially given using different units for Antarctica and the Arctic Sea, in order to

avoid the case where unit differences would corrupt the results, these variables

were scaled prior to pre-processing step applied to all data set.

A.3 Methods

As previously stated, the objective of this work is delivering and comparing

multivariate statistical tools which can be used in two ways: firstly, to explore

and understand interdependencies present in the CTD data, and secondly to

explain the fluorescence variability by regressing it on remaining variables. For

this purpose, two approaches towards data analysis were adopted. We start

by considering and implementing the most commonly used 2-way chemometric
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techniques, such as PCA and PLS. A term ’2-way’, not to be confused with

’2-dimensional’, reffers here to data sets which can be arranged in a matrix,

having two distinct directions (modes), e.g. objects and variables. ’3-way’,

consequently, denotes structures accommodated in a cubic form, where a third

direction (here, location) has been added. Hence, before fitting a 2-way model

to the 3-way data, the analyzed cube has to be unfolded (according to one of

its modes) and reshaped into a matrix (see Section A.2.2). However, it can

be argued [Smilde et al.(2004)] that in principal, 3-way techniques would be

more suitable and beneficial for a 3-way data structure. Therefore, some of the

generalizations of 2-way methods, such as PARAFAC and multi-way PLS (N-

PLS), will be applied and discussed within this paper. Below, we explain the

reasons for using particular techniques, whereas a more detailed mathematical

background can be found in Appendix 1.

A.3.1 2-way methods

If the focus of the analysis lies in summarizing patterns, dependencies or differ-

ences within the data set, decomposition methods, such as Principal Component

Analysis might be applied for this purpose. In brief, PCA projects the data to

the lower dimensional spaces where it is easier to explore and visualize them, by

means of small amount of so-called Principal Components (PCs). In order to

cover the most important information contained in the polar data, two unfold-

ing directions of the data cube (according to variable and location modes) will

be taken into account. Classical and robust versions of PCA (here, ROBPCA,

developed by [Hubert et al.(2005)]) will be fitted, due to the potential influence

of outliers.
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In parallel, in order to explain measured fluorescence by other available vari-

ables, PLS regression, being a popular 2-way calibration model, will be applied.

As it was stated in Section A.1, the measured fluorescence carries information

about amount of chlorophyll, and therefore, biological activity in the water. It

is well known that fluorescence will be strongly correlated to other measured,

’light related’ variables, such as beam transmission or sea turbidity. One could

also expect that the biological activity might be influenced by some physico-

chemical conditions, e.g. the amount of dissolved oxygen, temperature, and

salinity. Therefore, it will be interesting to compare the regression results of a

PLS model when the predictors block (X) is constructed by all CTD variables

and, as a second scenario, by the physico-chemical variables only.

In order to identify the optimal number of components for PCA and PLS mod-

els, the Cross-Validated Root Mean Square Error (RMESCV), illustrated in Fig-

ure A.3 was calculated by means of cross-validation with 81 contiguous blocks.

That corresponds to one ’split’ being equal to 2 locations (200 observations for

variable- and 2 for station-wise unfolded data).

A.3.2 3-way data analysis.

As the sea water measurements analyzed in this study follow three different

modes (variable, depth and location), by unfolding the data cube and using

2-way techniques we risk that the 3-way correlation structure will be ’flattened’

and some information lost. PARAFAC model, which can be perceived as one of

tri-linear extensions of PCA, is able to overcome this issue. Other ’extensions’

exist, such as Tucker3 model [Smilde et al.(1994)], however here we consider

PARAFAC due to its simplicity and and easy interpretation of loadings. More-
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over, it solves the problem of rotational freedom, typical to PCA, by providing

a unique solution. Since the studies on a robust version of PARAFAC are

still somewhat ambivalent, only the classical version of the algorithm will be

presented. A number of components will be chosen according to four indices

describing model’s performance: explained variance, core consistency, number

of iterations and total elapsed time, shown in Table A.2. An overview regarding

component selection criteria can be found in [Bro and Kiers(2003)].

Analogously, a regression model can also be generalized to fit the 3-way data

structure. In this case, we ’slice out’ the Y-block (fluorescence) from the initial

data cube. The remaining variables constitute a predictor block X, also of a cu-

bic shape. For selecting the number of components, a multi-way cross-validation

is performed, indicating a three component model. Again, two scenarios for the

predictive block will be considered: including all variables, or alternatively only

these, related to physico-chemical properties.

A.3.3 Is 2- or 3-way better?

If the experimental data fulfills the tri-linear assumption (required invariability

of the component profiles across the different data slices with different weight-

ing coefficients for each slice [Harshman(1970)], [Smilde et al.(2004)]), the ap-

plication of a PARAFAC model is usually superior to its bilinear counterpart

PCA. Reasons for this are numerous. First of all, PARAFAC takes into account

interrelations existing in all three data directions. Moreover, the problem of

rotational freedom, typical to PCA is solved, as PARAFAC provides the unique

solution (up to the scaling constant, sign and permutation ambiguities) [Smilde

et al.(2004)]. In addition, PARAFAC model resolves each mode separately, giv-
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ing a straightforward physical interpretation for the depth, station and variable

profiles (there is no need to unfold the data in different directions and fit 2

or 3 different models). Finally, due to the relatively low number of degrees of

freedom, it does not tend to over-fit, as is often the case of PCA.

In spite of benefits that may be gained from applying a PARAFAC model, some

drawbacks also exist. The most important one is that the real data do not always

conform adequately to a tri-linear assumption (as in the case of oceanographic

data). In this case, the model might return degenerated solutions. Degener-

acy might also occur when a large number of factors is needed and if they are

interrelated (compare with Tucker model). In most of these cases, the bilin-

ear model is still appropriate and PCA or other methods like MCR, described

by [Tauler(1995)], can be successfully applied.

A.3.4 Mapping method

An effective visualization tool is available when working with PARAFAC or

location-unfolded PCA model. It projects the third mode location loadings di-

rectly onto a map and creates a kind of loading variability image. This map uses

the method known in geo-statistics as ”kriging” and its conceptual background,

which mathematically consists of random field interpolation techniques, might

be technically complex, and therefore, will stay out of the scope of this paper. In

brief, MATLAB’s mapping toolbox, which has been used in this work, allows to

transfer the loading values according to their GPS coordinates on the specified

fragment of the world’s map. Afterwards the 2D interpolation of these values is

performed within the smallest convex set (results should be used with caution

because they are insensitive to water/land borders) spanned by the locations
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coordinates. This way of representing the loadings offers an attractive tool for a

better understanding and interpretation of the spacial variability in the data.

A.4 Results and Discussion

A.4.1 Data exploration

Figure A.3 shows the eigenvalues of covariance matrix and validated RMSE for

variable- and station-unfolded data scenario. It can be seen that the two plots

are dissimilar. In the first case two or three components seem to be enough,

explaining 85% and 92% of data variability respectively, and it is clear that the

model would over-fit if more components were chosen. For the latter scenario,

the RMSE index decreases in value monotonously and therefore it is less evident

what number of components is relevant. Eventually, in order to obtain similar

variance explanation as in variable-wise case (> 80%), a 3-component model is

chosen.

Robust and classical PCA models show a similar performance when the station-

wise unfolding of the data is considered, therefore only the results of the classical

version will be discussed. The situation is different when it comes to the variable

direction. Namely, the robust PCA attributes 62% of the explained variation to

PC1, 23% to PC2, and 7% to PC3 whereas the same components account for

52%, 31% and 8.5% of data variability, respectively, for its classical counterpart.

This might be due to the Singular Value Decomposition and the resulting di-

rections of Singular Vectors, which are likely to be attracted to the outliers still

present in the data. Therefore only the output of the robust version of PCA for
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Figure A.3: Cross-Validated Root Mean Square Error (red squares) and eigen-
values of the covariance matrix X for the PCA model, for X being a) variable-
wise unfolded data; b) station-wise unfolded data.

the variable direction will be finally reported.

In Figure A.4 scores (PC1, PC2, PC3) and loadings (on PC1 vs PC2 and PC1

vs PC3) for both fitted models are presented. It is quite straight forward to see

the different behavior of scores corresponding to the Arctic Sea (red crosses)

and Antarctica (blue circles), mostly along the PC1 and PC2 coordinates axis.

In Figure A.4b, almost all Arctic locations were assigned with positive, and

Antarctica with negative score values on PC1, and in Figure A.4c, red crosses

have on average higher values than blue points. Another interesting property

observed is the fact that the Arctic scores are more widely scattered throughout

the coordinate system, which manifests higher inner variation within the that

location. The third Principal Component does not seem to introduce any addi-

tional information and therefore its interpretation becomes onerous. One could

argue that in order to avoid over-fitting a two component model would be more

relevant here for the sufficient data explanation.

From the loading plot (Figure A.4a) it seems that there are two major types

of depth profiles indicated by PC1 (blue solid line): one for physico-chemical
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variables and another for light related variables. By adding information from

the score plot, we read that temperature, conductivity, salinity, fluorescence and

sea turbidity have higher values in the Arctic Sea than in Antarctica (as their

corresponding profile loadings are positive on PC1).

Moreover, two clusters are visible within the Arctic data: the main data cloud

having strictly positive values on the PC1 and being centered around zero on

PC2, and a second smaller group having negative PC2 values and being closer

to zero at PC1. This second cluster consists of the data from stations: 41-46

coming from the most North-West part covered by the expedition (apparently

at the border of the ice where the ship could not move freely any longer, see

Figure A.1). Therefore, we would expect them to have different characteristics

(e.g. lower temperature) than the other locations investigated in the Arctic Sea.

Finally, information obtained from ’variable direction’ confirm that PC1, being

again the component dividing the 2 polar areas, has high positive values for

temperature, conductivity, salinity, fluorescence and sea turbidity. Therefore,

all these variables present on average higher values in the Arctic Sea and only

beam transmission would give higher scores in the Antarctic waters. On the

other hand, PC2 is positively correlated with salinity and negatively with oxy-

gen, however the geographical interpretation is more difficult as the scores from

both locations are spread more evenly across this component. It seems that on

average samples from Antarctica have slightly higher values on PC2 but more

statistical tests should be completed in order to confirm this hypothesis.

The main difficulty in interpreting the two-way PCA model output is that

in order to obtain the full information about each mode, the data cube should

be unfolded in three different directions. However this formally induces 3 dif-

ferent models (here only 2 were shown) and one should be careful with cross-
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wise (down) unfolded data.
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Table A.2: Choosing amount of components in PARAFAC model according to
four indices: explainced variance, core consistancy, number of iterations and
total calculation time.

No. Variance explained Core consistancy Iteration Time

1 30.32 100 5 0.56
2 63.46 100 5 0.41
3 73.70 −481 24 1.06

interpreting their results, as there is no certitude, that for example PC1 in

variable direction will reflect the same information as the corresponding com-

ponent in the station-wise unfolded data set. This risk can be mitigated by

applying one PARAFAC model.

Table A.2 presents four different indexes, which are normally used when de-

termining the number of PARAFAC components. It is inferred that the whole

data system can be well approximated (63% of the total data variation) using

only two components, with a core consistency of 100% and converging fast to

the minimum, as the model starts degenerating once the number of components

increases. This degeneracy might be caused by the fact that the data does not

follow the tri-linearity condition (see discussion in Section A.3.3 or simply that

more components will lead to model over-fitting. Loading profiles resolved by

PARAFAC in the three data modes: depth, variable and location, are given

below in Figure A.5. From this picture, it becomes apparent how advantageous

the properties of the PARAFAC method are when summarizing the whole data

variability and its underlying interrelations using only three plots. The loading

profiles of the two components in the depth mode, given in Figure A.5a, describe

the sea water changes observed from the surface to deeper sea water samples.

The variable contributions resolved in the second mode are shown in Figure A.5b

and finally, the location (geographical) profiles are presented in A.5c.
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Information contained in these figures can be read as follows: first component

describes the major changes occurring in physico-chemical characteristics of the

water carried by temperature, conductivity and salinity. The corresponding

depth profile indicates an increase in the contribution of this component until

around 25m below the sea level, slowly declining afterwards with depth. More-

over, from image A.5c we can conclude that this component has substantially

higher values for the Arctic Sea samples (except for some of the last station

samples, located close to the glacier), which confirms the common knowledge

about the two polar locations. On the other hand, the second component is pre-

dominated by the influence of variables such as fluorescence, beam transmission,

dissolved oxygen and sea turbidity with the positive drive from the first three

of them. The depth profile for this component first increases to reach its peak

around 15 meters below the sea level, where the average maximum of chloro-

phyll (DCM) is expected, and then decreases exponentially with depth. The

location profile emphasizes again the differences between Arctic and Antarctica

samples by attributing higher values (and also higher variance) to the Arctic

area, with significant exceptions for some Antarctica samples (sample 27 being

the South-East extreme station). From this, we could draw an initial conclusion

that biological activity, reflected by fluorescence, is richer in the Arctic Sea.

In addition, this second component has low loadings for temperature (high for

the first component), which indicates that it describes a completely different

pattern of measured parameter changes than the first component, therefore we

will call it ’radiation related’. It is noticed, that changes on dissolved oxygen

and fluorescence (biological activity) in this component are independent from

changes to temperature, conductivity and salt content, in contrast to the pattern

depicted by the first resolved component, where these variables were positively
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Figure A.5: Resolved profiles by 2-component PARAFAC model according to
a) depth, b) variable, c) station mode.

inter-correlated. Moreover, the fact that the shapes of depth profiles for the two

components are different, with their maxima around 25 and 15 meters for the

first and second component respectively, confirms the existence of two different

types of phenomena and patterns, interacting differently.

It could be argued that similar information can be extracted by looking at a

collection of plots, depicting one variable at the time. This might be true in

this case, however this kind of treatment would require fairly time consuming

analysis of multiple plots, which would grow even more if higher number of vari-

ables was considered. It has been demonstrated that the more complex model

structure was chosen, the easier was interpretation of its results. To sum up, the

above analysis shows that: 1. similar information can be extracted by applying

2 (or 3 - not shown) PCA models or one PARAFAC model; 2. it is evident that

interpretation of PARAFAC results is substantially easier, as it delivers concise
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information about all 3 data modes in only three figures; 3. care should be taken

when choosing the number of components for both data as when this number

grows it might lead to over-fitting the PCA model and degenerating PARAFAC

results;

A.4.2 Map representation of the scores

In the previous section we found out that the first and second PARAFAC com-

ponents cover the two major patterns present in the data: physico-chemical

and spectral radiation-related. The map representation of these components for

both Antarctic and the Arctic areas, shown in Figure A.6, can then be inter-

preted via the variability image of those two major phenomena. By looking at

the first component (two upper figures), we notice that in the Antarctica the

gradient (direction in which the values grow) is pointed towards the North and

in the Arctic towards the South-East. This confirms the expectation that the

temperature (and other related variables) should rise when moving away from

the Poles or approaching land (Svalbard). The biological activity, represented

by the second component follows considerably different patterns as is illustrated

in Figure A.6c. In the Antarctica region we can clearly observe an extremely

high value at station 27. It is probably related to the different bio-characteristics

of the region as it is located in the most South-East part covered by expedition,

which might be more advantageous for biological activity. Alternatively, in the

Arctic Sea one can distinguish the peaking area around stations 10-11 which

might be caused by some local phenomena. In addition, the higher concentra-

tions of bio-activity are located close to the ice border in the North. This region

corresponds to relatively low temperatures, which is an observation worthy of
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Figure A.6: Map representation of the Components 1 (up) and 2 (down) for the
PARAFAC model for Antarctica (left) and the Artctic Sea (right).

note.

A.4.3 Regression

As it was previously mentioned, it is expected to discover a high correlation

between radiation related variables and measured fluorescence. The most in-

teresting results, however, will be generated when these variables are excluded

from the explanatory variable X-block, which will give us information to which

degree the fluorescence can be determined by physico-chemical conditions of
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the sea water. To start, a standard 2-way PLS regression model is fitted, using

all the variables in the unfolded (variable-wise) data set. The validated RMSE

suggests three latent variables (LVs) to be used, explaining respectively 92%

and 82% of X- and Y -block variability (consult Table A.3). When inspecting

the model’s weights, which show the impact of each explanatory variable on Y ,

it doesn’t come as a surprise that beam transmission (negative) and sea tur-

bidity (positive) have the highest values, being both incorporated in the first

latent variable. This is expected as these variables carry the light-related in-

formation, and therefore, they dominate LV1. Subsequently, the influence of

temperature and conductivity was taken into account by LV2 and salinity and

oxygen were manifested only in LV3. Alternatively, as a second scenario the

radiation variables are removed from the predicting block. Now, the reduced,

three-component model accounts for only 25% of the observed fluorescence vari-

ation, which is a very weak result. The control plot in Figure A.7a, showing

measured versus predicted Y values, indicates that the model is not able to

identify the difference in data behavior within Arctic Sea and Antarctica, lead-

ing to poor predictions. At the same time the X-block is fully explained, as the

remaining variables in the model are highly correlated.

The situation is quite different in the case of multi-linear PLS. Again we de-

cided on a 3 component structure after consulting the cross-validation results.

Remarkably, the N-PLS model with only physico-chemical variables as predic-

tors, was now able to explain up to 78% of the measured fluorescence and around

74% of the X array. A plot of predicted versus observed values (Figure A.7b)

confirms the obtained improvement. The complete results for both data sce-

narios are presented in Table A.3, from where we can conclude that 2-way PLS

is largely outperformed by its 3 way alternative in predicting the fluorescence
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Table A.3: Explained variance of PLS and N-PLS models for two variants of
predictive block: 1. with all CTD variables; 2. with physico-chemical variables
only.

all variables physico-chemical

No. X block Y block X block Y block

P
L
S

1 40.54 65.01 27.26 22.36
2 70.30 70.47 81.42 22.64
3 92.32 74.08 100 23.05

n
P
L
S 1 26.66 60.40 46.00 31.56

2 65.56 76.88 72.04 69.73
3 72.55 85.50 83.42 79.13

values out of non-radiation related variables.

This result can be explained by the fact that the 3-way model accounts for

the interrelations existing within the data, which could have been disregarded

during unfolding of the data set. Therefore, this example clearly shows the

importance of choosing an adequate modeling technique.

A.5 Conclusions

It has been shown that Arctic and Antarctica sea waters could be clearly dif-

ferentiated, according to their CTD water samples collected during 2007 ATOS

I and 2009 ATOS II polar expeditions. Two Principal Components have been

identified by PCA and PARAFAC models, summarizing well the whole data

set: 1st PC related to physico-chemical properties and 2nd PC accounting for

light related variables. The distinction between Arctic and Antarctic Seas was

revealed mostly by PC1. Moreover, multi-way PLS regression confirmed the

possibility of predicting fluorescence values (and therefore life presence) from
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Figure A.7: Predicted versus observed values for PLS (left) and N-PLS (right)
models, with only physico-chemical variables entering X-block.
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measured CTD physical variables like temperature, conductivity, salinity and

dissolved oxygen. This outstanding result could only be clearly revealed when

the three-way data structure was considered in the regression model, and was

completely hidden in the case of classical two-way unfolded PLS method.

Pros and cons related to 2- ad 3-way chemometric methods were analyzed and

discussed, and the resulting conclusions can be formulated as follows:

1. similar set of information could be extracted by applying 2 (or 3 - not

shown) PCA models or one PARAFAC model, however interpretation of

PARAFAC results is substantially simpler, and more straight-forward

2. in general, 3-way methods will describe 3-way data better than 2-way mod-

els, if the data conforms to assumptions laying underneath these models

3. applying a model of a structure less complex than the data structure itself,

raises the risk that the underlying correlation structure will be flattened

and important information lost, deteriorating significantly the result qual-

ity (see the PLS correlation model)

4. care should be taken when choosing number of components for both data,

as when this number grows it might lead to over-fitting the PCA model

and degenerating PARAFAC results

To sum up, recent instrumental developments within analytical chemistry, envi-

ronmental sciences etc. cause that high-dimensional data sets frequently occur.

This leads directly to higher requirements for data analytical tools, as often, sim-

ple statistical methods become not only highly time consuming, but in general

no longer applicable to these vast data structures. Multivariate data analysis
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tools, such as presented in this paper, are therefore likely to become widely used

in the future studies within environmental sciences inducing oceanography.

Appendix 1. Two- and three- way chemometrical

methods

PCA

Principal Component Analysis is a linear subspace-based technique, perhaps

most commonly found in chemometric literature. A PCA model is presented in

Equation A.1:

xij =

R∑

r=1

tirpjr + eij i = 1, ...I; j = 1, ...J ; (A.1)

where xij is an element of the matrix X(I × J), t and p are the decomposed

vectors and eij contains model’s residuals. In brief, PCA projects objects and

variables to lower dimensional spaces where it is easier to explore and visualize

them. This is completed by finding a sum of the vector products, called scores

(t) and loadings (p) which are orthogonal and determined by maximizing the

variance explained by them. Those vector products, being a linear combina-

tions of the original variables (or objects), are called principal components and

often already a small number of those components allows us to explain the data

variation in a satisfactory way. More details concerning PCA method can be

found in the literature, for example in [Pearson(1901)], [Eckart and Young(1936)]

or [Wold et al.(1987)].
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PLS

Partial Least Squares regression is a 2-way calibration method. It approximates

X block by r components (called latent variables) and, at the same time, projects

Y on those components, which are constructed to compromise between fitting

X and predicting Y. This can be written in a matrix notation following [Smilde

et al.(2004)]:

X = TP′ +EX ; Y = TQ′ + EY (A.2)

This algorithm is run sequentially, meaning that only one component is cal-

culated at a time, and afterwards the X matrix is replaced by the residuals

E−1 = X− t1p1. Broader description of PLS and its applications can be found

in [Wold et al.(1984)], [Martens and Naes(1992)] or [Smilde et al.(2004)].

PARAFAC

A PARAFAC model, introduced by [Harshman(1970)] and popularized by [?]

and [Smilde et al.(2004)], is a tri-linear generalization of PCA, which decomposes

a data cube X(I × J ×K) into a sum of triple vector products, called loadings.

The most common way of writing the model is following

xijk =
R∑

r=1

airbjrckr + eijk (A.3)

where xijk is an element of X, A(I × R), B(J × R) and C(K × R) are the

orthogonal matrices with elements air, bjr and ckr respectively. R is number

of components and eijk represents the error term. If the experimental data

fulfils the tri-linear assumption (required invariability of the component pro-
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files across the different data slices with different weighting coefficients for each

slice [Harshman(1970)], [Smilde et al.(2004)]), the application of a PARAFAC

model is usually superior to its bilinear counterpart PCA. Reasons for this are

numerous. First of all, PARAFAC takes into account interrelations existing in

all three data directions. Moreover, the problem of rotational freedom, typical

to PCA is solved, as PARAFAC provides the unique solution (up to the scaling

constant, sign and permutation ambiguities) [Smilde et al.(2004)]. In addition,

PARAFAC model resolves each mode separately, giving a straightforward phys-

ical interpretation for the depth, station and variable profiles (there is no need

to unfold the data in different directions and fit 2 or 3 different models). Fi-

nally, due to the relatively low number of degrees of freedom, it does not tend

to over-fit, as is often the case of PCA.

In spite of benefits that may be gained from applying a PARAFAC model, some

drawbacks also exist. The most important one is that the real data do not

always conform adequately to a tri-linear assumption. In this case, the model

might return degenerated solutions. Degeneracy might also occur when a large

number of factors is needed and if they are interrelated (compare with Tucker

model [Smilde et al.(1994)]). In most of these cases, the bilinear model is still

appropriate and PCA or other methods like MCR, described by [Tauler(1995)],

can be successfully applied.

N-PLS

Multi-way PLS (or N-PLS) is a generalization of Partial Least Squares regres-

sion into a higher dimension, which predicts y and decomposes X similarly to

the PARAFAC model [Bro(1996)], [Smilde(1997)], [de Jong(1998)]. This is per-
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formed by searching for a vector t, being a linear combination of columns of

X, which has a maximum covariance with y. This, [Smilde et al.(2004)] can be

formulated in the following way

X = t(wK ⊗wJ) +EX ; y = tb + ey (A.4)

where X is an array of dimension (I×J×K), wJ and wK are weighting vectors

defined for modes J and K, ⊗ defines the Kroneker product [McDonald(1980)]

and b is the regression coefficient. As N-PLS is also a sequential method, after

finding the first component, both X and y are being ’deflated’ (replaced by

residuals of the respective models), in order to recommence the algorithm.
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Automatic scatter detection in fluorescence
landscapes by means of spherical principal
component analysis

Ewelina Kotwaa*, Bo Jørgensenb, Per B. Brockhoffa and Stina Froschb

In this paper, we introduce a new method, based on spherical principal component analysis (S-PCA), for the identifi-
cation of Rayleigh and Raman scatters in fluorescence excitation–emission data. These scatters should be found and
eliminated as a prestep before fitting parallel factor analysis models to the data, in order to avoid model degenera-
cies. The work is inspired and based on a previous research, where scatter removal was automatic (based on a robust
version of PCA called ROBPCA) and required no visual data inspection but appeared to be computationally intensive.
To overcome this drawback, we implement the fast S-PCA in the scatter identification routine. Moreover, an additional
pattern interpolation step that complements the method, based on robust regression, will be applied. In this way, sub-
stantial time savings are gained, and the user’s engagement is restricted to a minimum, which might be beneficial for
certain applications. We conclude that the subsequent parallel factor analysis models fitted to excitation–emission
data after scatter identification based on either ROBPCA or S-PCA are comparable; however, the modified method
based on S-PCA clearly outperforms the original approach in relation to computational time. Copyright © 2013 John
Wiley & Sons, Ltd.

Keywords: S-PCA; Raman and Rayleigh scatters; robustness; PARAFAC; fluorescence

1. INTRODUCTION

Fluorescence spectroscopy is a measurement technique used for
providing information about fluorophores, molecules which emit
light when going from excited to ground state. The method is
fast, sensitive and non-invasive, and found a broad usage in fields
such as biochemistry, analytical chemistry, food, and environ-
mental science. An outcome of a fluorescence spectrometer is
usually written in a so-called excitation–emission (EEM) matrix
representing intensities of the compounds for certain excitation
(j = 1, ..., J) and emission (k = 1, ..., K) wavelengths. If a number of
samples I are considered, the whole data form a three-way array,
X(I � J � K).

It is known that parallel factor analysis (PARAFAC) is able to
explain mathematically the physical behavior of low-rank fluores-
cence data as these data conform to the trilinearity assumption,
which lies at the foundation of the model [1]. PARAFAC, being a
multiway decomposition method, usually expressed as

xijk =
RX

r=1

airbjrckr + eijk (1)

returns a set of resolved spectral curves, stored in A, B, and C
terms for each of the three data modes. An analytical chemist
or a chemometrician, being mostly interested in excitation
and emission modes, is then able to identify particular fluo-
rophores, present in the analyte, according to the peaks of the
resolved spectra.

Rayleigh (first and second orders) and Raman light scatter
effects appear in the EEM landscapes because of the physical
properties of the fluorescence technique itself, namely the inter-
actions between the molecules in the solution causing some
incident light. These diagonal ridges do not provide any addi-
tional chemical information about the investigated samples. On
the contrary, as the placement of the scatter peaks varies with
excitation wavelength, the low-rank trilinear model assumption
is violated, which might cause a significant deterioration of the
PARAFAC performance. If that is the case, Rayleigh and Raman
scatters should be identified and removed from the data set prior
to PARAFAC-based analysis.

Mitigation of the destabilizing influence of scattering effects
was a subject of several investigations after the PARAFAC model
gained popularity. Techniques such as down-weighting [2,3] or
specific modeling of scatter regions [4], inserting missing values
[1], interpolation [5], constraining PARAFAC decomposition [6],
or inserting zeros outside of data area [7] were discussed in the
literature; however, they only propose a particular treatment of
the scatter signal, assuming that it is predefined according to
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a (subjective) visual inspection and not by statistically mean-
ingful techniques. Only subtracting a standard [8] can be per-
ceived as an “objective” technique; nevertheless, its usage can
be hampered by several inconveniences: (i) subtraction of two
large values can leave a significant residual that will still violate
PARAFAC assumptions (yielding still degenerated spectra); (ii)
blanc subtraction might help dealing with Rayleigh scatter but do
not solve the problem of Raman scatter; and (iii) not for each EEM
data it is possible to obtain a valid blanc.

A few years ago, Engelen et al. [9] successfully used the robust
statistics framework for automatic identification of the scatter
regions. That new approach proposed certain transformations of
the data cube, after which the scatter signal could be consid-
ered as element-wise outliers. The method was based on ROBPCA
described in [10], which provides an excellent outlier detecting
tool; however, it appeared to be computationally intensive, espe-
cially if large data structures were to be considered. This became
a reason to search for a faster alternative to ROBPCA, which will
be presented in this paper.

In the following sections, the concept of spherical principle
component analysis (S-PCA) will be described, together with its
usage in identifying the scatter regions within the EEM data. First,
the methodological background will be given in Section 2 and
later applied to two different data sets (Section 3). Finally, the
results will be discussed in Section 4.

The calculations were conducted in MATLAB using an
open source package LIBRA (KU Leuven, Belgium http://wis.
kuleuven.be/stat/robust/LIBRA.html/ [16 August 2012]) for
robust statistics and the PLS Toolbox (Eigenvector Research Inc.,
Wenatchee, WA 98801, USA) for PARAFAC applications.

2. METHODOLOGY

2.1. Combination of S-PCA and PARAFAC

As previously stated, Rayleigh and Raman scattering effects might
be highly disturbing when fitting a PARAFAC model to the EEM
data, and therefore, their elimination techniques are of a great
interest to practitioners. The method considered in this contri-
bution combines the S-PCA for automatic identification of these
undesired patterns, with PARAFAC modeling of the corrected
data set for resolving EEM spectra. This approach assumes that
the scatter is a set of outlying observations, which differ in
behavior from the rest of the data. Following [9], if we slice our
three-way data array X according to the excitation and emission
modes and, subsequently, transpose the resulting matrices, the
scattering effect will be placed in the rows of those matrices. As
a consequence, these rows can be perceived as sample-wise out-
liers and hence detected by some robust PCA methods applied
to each matrix separately. Both the slicing and transposing oper-
ations are illustrated in Figure 1. A substantial advantage of
applying the robust framework over its classical counterpart is
twofold: robust models are fitted to the majority of data points,
avoiding the common pitfalls of least squares-based methods,
which can be largely influenced by some extreme observations
(such as those contained in the scatter lines) and approximate the
main data poorly. Secondly, observations that do not follow the
fitted model can be flagged as outliers and can easily be localized
and eliminated.

After having identified, the scatter lines by means of robust
PCA, an adequate treatment of these areas has to be elaborated
before a PARAFAC model can be employed. In this paper, three

Figure 1. Slicing of the data cube according to (a) mode B (emission) and
(b) mode C (excitation) in order to contain the scatter line as element-wise
outliers within a set of matrices.

scenarios will be considered to fulfill this requirement: setting the
identified scatter region to “missing values”, “down-weighting”,
and an “interpolation” method. Additionally, nonnegativity and
unimodality constraints will be applied if relevant.

2.2. PCA, ROBPCA, and S-PCA

Principal component analysis is a well-known statistical method
for data compression and visualization. The main idea is to
explain the data by means of preferably a small number of “arti-
ficial,” orthogonal variables called principal components (PCs),
being linear combinations of the genuine variables. The PCs are
constructed by searching for directions of the highest variance
throughout the data and involve the largest amount of infor-
mation possible to be extracted by linear combinations. A more
detailed description can be commonly found in the literature
[11–13]. Even though PCA carries very beneficial characteristics,
one must not forget that its algorithm is based on the least
squares framework, and therefore, it automatically encounters
some difficulties when a certain number of outlying elements
appear in the data set. In fact, its breakdown point [14] equals
zero, which means that in the extreme case, even one outlier
can severely damage the fit and cause further errors in data
interpretation.

To deal with this shortcoming, various robust alternatives were
elaborated, based either on robust covariance matrix approach
(e.g., M-estimators [15], S-estimator [16], or MCD [14]), the pro-
jection pursuit [17], or their combination (ROBPCA developed in
[10]). For a review of the common robust methods used in data
analysis, see [18,19]. Implementing ROBPCA for scatter identifica-
tion was described in [9,20]; however, the fact that the method4

wileyonlinelibrary.com/journal/cem Copyright © 2013 John Wiley & Sons, Ltd. J. Chemometrics 2013; 27: 3–11
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appeared computationally intensive when analyzing vast data
structures encouraged a search for the faster alternative.

In this paper, we focus on S-PCA, being a very fast and robust
version of classical PCA. This method exploits the robustness
feature of the median, combined with the projection pursuit
framework and is conceptually fairly simple. In the first step, the
robust center of the data is defined as the L1-median [15], being
a point in the multidimensional space found by minimizing the
sum of Euclidean distances from the data objects to this point.
Then, all data points xi are centered and down-weighted by the
inverse of these distances, which is equivalent to the projection
on the unit radius hyper-sphere with the center in L1:

xp
i =

xi – �L1(X)

kxi – �L1(X)k
+ �L1(X) (2)

where xp
i is the ith data object projected onto the sphere and

kxi – �L1(X)k is the Euclidean distance to the robust center of
the data �L1. In this setting, the influence of outliers manifesting
normally large distances in the denominator of the equation will
be bounded. In the next step, a classical PCA is carried out on
the down-weighted data, and the robust scores and loadings
are obtained by projecting the original data on the resulting
PCs. Further, to identify the outlying samples, the usual detection
methods based on robust and orthogonal distances (RD and OD,
respectively) are to be applied. Moreover, the Euclidean (and/or
Mahalanobis) distance, itself, to the center of the data also proves
to be advantageous in certain situations. The robust distance
(RDi), which is expressed as

RDi =

vuuut
kX

j=1

t2
ij

lj
(3)

where tj is a vector of robust scores for the jth component and
l contains robust eigenvalues, is actually a Mahalanobis distance
to the robust data center. On the other hand, the orthogonal
distance (OD) informs how far, with respect to the space spanned
by the robust model, the ith object is located.

OD = kX – �L1(X – TPT )k (4)

The k�k denotes the Euclidean norm, and the model TPT contains
k-selected components.

To establish cutoff values for all the distances, a robust version
of z-scores was suggested in [21], by incorporating robust loca-
tion and scale estimates such as median (�) and median absolute
deviation (� ) as an alternative to the standard procedures:

z =
|d – �(d)|

� (d)
(5)

On the basis of this outlier identification procedure, the output
of S-PCA algorithm is given in a form of a binary matrix M(J � K),
which will be referred to as an “outlier mask.” This mask attributes
ones to the regular observations and zeros to the elements iden-
tified as outliers. In the proposed implementation of the method,
the user is supplied with three different masks related to the prior
slicing mode of the data cube X: mode B, mode C, and their
product. The reason for this is that the algorithm will perform
differently in each of these modes, and depending on the data
circumstances, one of the proposed option might be more ben-
eficial than others. A great advantage of the S-PCA approach is

its exceptional computation speed and relative simplicity, which
can be desired in many applications. It is known, however, that
the method tends to fail when the outliers form clusters [22]. As
a consequence, it might lead to the situation where not all cor-
rupted data will be regarded as outlying samples, or opposite,
some signal can be wrongly eliminated from the further analysis.
In the following section, we will describe a possible solution to
those shortcomings.

2.3. Correction method

As stated earlier, S-PCA will occasionally fail to identify the out-
lying samples if particular data circumstances occur. In the case
of EEM landscapes, some regions, where the scatter ridges are
present, might remain undetected. This phenomenon is espe-
cially common, when the scatter and signal intensities are on
average of similar magnitude and therefore lay in a similar dis-
tance from the robust center of the data, which makes them
nondistinguishable by RD and OD.

In this case, additional steps can be taken to ensure a better
performance of the sub-sequentially fitted PARAFAC model. The
proposed methodology uses physical properties of the scatter
areas, namely their linear nature. In the first step, observations
flagged as outliers by S-PCA are being projected onto a two-
dimensional coordinate system. Subsequently, a robust regres-
sion (here, based on the least trimmed squares estimator [16]) is
applied. This method has a high breakdown point ensuring that
the calibration line will match the majority of the data points,
which in this case would be the first scatter stripe. In parallel,
observations laying far from the regression line will be flagged
as outliers. Afterwards, a width of the line is being determined,
usually by adopting the broadest band of the initially discov-
ered pattern (default); however, user-made adjustments are also
allowed if needed. The same two operations are repeated for the
second scatter line, which was flagged as outliers by the previ-
ously fitted regression model. An example of the interpolated
scatters can be seen in Figure 4 and 5.

There are a few points that are worthy of attention when apply-
ing this approach. First of all, unlike in the case of ROBPCA, here,
the users participation is required when selecting which one of
the three images (outlier masks) is to be interpolated (Figure 4)
and, optionally, adjusting the width of the corrected scatter. The
first choice should be dictated by considering the image that
grasps relatively large amount of discovered scatter and, at the
same time, low quantities of mis-identified signal observations (to
ensure that the model fits the majority of the data being actually a
scatter line). Secondly, the bandwidth around the regression line
should be determined so that it corresponds to scatter thickness.
Practice shows that it is more beneficial to remove some extra sig-
nal than leaving out erogenous observations; however, care must
be taken as it is always a matter of trade-off. A more detailed algo-
rithm for the correction method can be found in the Appendix,
at the end of this work.

3. Data

3.1. Dorit

Dorit data is a set of laboratory prepared samples consisting
of four fluorophores mixed in different concentrations
(these are phenylalanine, 3,4-dihydroxyphenylalanine, 1,4-
dihydroxybenzene, and tryptophan). This data has already been

J. Chemometrics 2013; 27: 3–11 Copyright © 2013 John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/cem
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Figure 2. Dorit data with the visible Rayleigh scatter.

used in numerous investigations of the similar nature because of
its “nice” properties and known components [9,23]. A total num-
ber of 27 EEM landscapes was produced, measuring the emission
spectra ranging from 250 to 482 nm (with 2-nm intervals), for
excitation wavelengths within 200 and 315 nm every 5 nm. The
first-order and second-order Rayleigh ridges are present in every
data sample, which can be clearly seen in Figure 2. No Raman
scatter has been identified. The previous research suggested
removing observations corresponding to excitation between 200
and 230 nm and emissions lower than 250 nm as they contain
mainly missing elements. Additionally, four samples are known
to be corrupted [24] and will be kept aside for further considera-
tions as the scope of this paper is to handle scatter-like nuisance
only. This leads to a (23 � 116 � 18) data array used in this work.

3.2. North Sea

The second data set used for testing the method is composed
by samples of dissolved organic matter in water coming from
the Dogger bank in the North Sea (see [9]). A total of 37 EEM
landscapes of unknown fluorophores were produced, measuring
emissions in a range of 240–600 nm every 2 nm, corresponding
to the excitation wavelengths from 240–450 nm with an inter-
val of 5 nm. The first 39 emission wavelengths were eliminated
because of the presence of some artifacts, whose analysis is of
no importance in this work. The resulting data cube has the
size of (37 � 142 � 43). As no blank was available to diminish
the scatters, the data suffers from highly disturbing Raman and
Rayleigh effects that make it impossible to determine the data
structure visually. Figure 3(a) illustrates this issue, and Figure 3(b)
shows the data after removing the scatter ridges, where the sig-
nal becomes recognizable. Another difficulty related to this data
set is a high noise-to-signal ratio, which will surely have important
(and negative) impact on the results quality.

4. RESULTS AND DISCUSSION

Because both data sets used in this study were already analyzed
and discussed previously, the results included in this section will
only reflect the performance and comparison of the two meth-
ods (S-PCA and ROBPCA) related to the identification of scatter
regions, excluding the chemical analysis of the data itself, for
which appropriate references should be consulted ( [9,23] for the
Dorit and [9] for the North Sea data).

The Dorit data, presented in Figure 2, is one example of EEM
data where the two Rayleigh scatter ridges manifest themselves:
first for Emission = Excitation and second when Emission =
2*Excitation. A four-component PARAFAC model applied directly
to the raw data returns degenerated profiles (see [9] or [20]);
therefore, a scatter treatment is necessary to assure reliability
of the results. Figure 4 illustrates the first output of the scatter
identified by S-PCA for the Dorit data, where the user is shown
three outlier masks (Figure 4(a)–(c)). As none of these masks
cover the scatter region fully (leaving some kind of a “hole” in
the middle of the pattern), it is advised to implement the cor-
rection step described in Section 2.3. The user is asked then to
choose between one of the three images to undergo the correct-
ing method. In the case of the Dorit data, it would be sensible to
select the left-side or middle image (Figure 4(a) or (b)), as they
include both scatter lines and a very low amount of wrongly
identified data. In the third image (4c), the Raman scatter is not
visible, which would cause that the correction algorithm, set to
finding two scatter stripes, would fit the second line wrongly.
The final result of the correction is visible in the most right-side
image (Figure 4(d)), which is incorporated into the subsequent
PARAFAC analysis. Figure 6 represents the resolved spectra from
the PARAFAC models fitted to three different data scenarios:
(i) when S-PCA was applied without the correction adjustment,
where the influence of undiscovered scatter is still visible in
the appearance of the resolved curves; (ii) with corrected scat-
ter region, as in Figure 4(d), where a significant improvement of
the resolved curves is observed; (iii) by additionally applying a
nonnegativity constraint to both excitation and emission modes,
resulting in “perfectly” resolved profiles of the four investigated
compounds. For comparison, some quantitative results of the
PARAFAC models based on both S-PCA and ROBPCA, for different
scatter region treatment scenarios and constraints application,
can be found in Table I. From the indices included in the table
and the resolved excitation/emission profiles (detailed ROBPCA
results can be found in [9]), it can be judged that the two methods
perform similarly good and contribute significantly to a success-
ful recovery of the underlying spectra within the data. The core
consistency and explained variance, both having values > 90%,
indicate slightly in favor of S-PCA approach, whereas the time of
PARAFAC model and number of iterations seem to be uninflu-
enced by the scatter identification method. The obvious point,
where S-PCA largely outperforms the previous method, is the
time of finding the scatter region, which in the case of Dorit data
is around 100 times shorter than for ROBPCA.

The new method was also challenged on a more difficult,
very noisy data set of unknown fluorophores, called “North Sea”
(Figure 3). The previous research (see [9]) showed that five differ-
ent peaks can roughly be identified on both emission and excita-
tion profiles, but as in the previous case, the severe first-order and
second-order Rayleigh scatter ridges have to be removed before
fitting a PARAFAC. Again, after applying an identification method
based on S-PCA, the user chooses one of the three images to
undergo the correction routine. For this data constellation, the
two scatter lines were already well marked by the first part of the
algorithm and, therefore, the correction focuses mostly on adjust-
ing the thickness of those lines. Figure 5 illustrates those proceed-
ings. Further, a five-component PARAFAC model was fitted to the
resulting versions of the scatter-adjusted data set (Figure 6). Miss-
ing values and interpolation are the only presented methods for
treating the identified scatter regions (“weighting” returned poor
results, perhaps because of a very noisy nature of the data), and6

wileyonlinelibrary.com/journal/cem Copyright © 2013 John Wiley & Sons, Ltd. J. Chemometrics 2013; 27: 3–11



EMM scatter detection by S-PCA

250
300

350
400

450

250
300

350
400

450
500

550
600

0

500

1000

1500

2000

2500

Excitation
Emission

In
te

ns
ity

250
300

350
400

450

250
300

350
400

450
500

550
600

0

50

100

150

200

250

Excitation
Emission

In
te

ns
ity

(a) (b)

Figure 3. North Sea data (a) with the visible Rayleigh and Raman scatters and (b) after manual scatter removal.
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Figure 4. Correction of spherical principle component analysis (S-PCA) for the Dorit data: (a)–(c) outlier masks after initial S-PCA routine and (d)
interpolated (corrected) scatter region.

Table I. PARAFAC results for the Dorit data expressed by the standard set of indices. It is evident that the time required for finding
the scatter by S-PCA is significantly lower than by ROBPCA.

Name of method Time of scatter Time of No. of Core Variance
finding (s) PARAFAC (s) Iterations consistency (%) explained (%)

S-PCA No correction 2.36 1.99 29.47 98.82 97.74
Correction 3.07 1.65 38.47 99.72 99.91

Correction + nonnegativity 3.07 3.30 44.25 99.73 99.90

ROBPCA No constraints 293.28 54.94 44 99.30 99.78
Nonnegativity 293.30 26.89 57 99.73 99.77

J. Chemometrics 2013; 27: 3–11 Copyright © 2013 John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/cem
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Figure 5. Correction of spherical principle component analysis (S-PCA) for the North Sea data: (a) user-chosen outlier mask after initial S-PCA routine
and (b)–(d) interpolated scatter regions depending on the user-chosen bandwidth adjustment factor set to 0, 1, and 2, respectively.
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Figure 6. Parallel factor analysis resolved spectra for the Dorit data: (a) spherical principle component analysis (S-PCA) without correction method,
(b) S-PCA with correction, and (c) S-PCA with correction and nonnegativity constraint.8
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Figure 7. Parallel factor analysis resolved spectra for the North Sea data: (a) spherical principle component analysis (S-PCA) without correction method,
(b) S-PCA with correction and bandwidth adjustment d = 1, and (c) S-PCA with correction and bandwidth adjustment d = 2.
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Figure 8. Parallel factor analysis resolved spectra for the North Sea data: (a) spherical principle component analysis (S-PCA) with correction and
unimodality constraint, (b) S-PCA with correction and nonnegativity constraint, and (c) S-PCA with correction and unimodality and nonnegativity
constraints.

J. Chemometrics 2013; 27: 3–11 Copyright © 2013 John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/cem

9



E. Kotwa et al.

Table II. PARAFAC results for the North Sea data. Negative values of core consistency indicate that PARAFAC encounters difficulties
in fitting the data, which is most likely caused by the noisy character of the data. Yet, S-PCA identifies scatter region much faster than
ROBPCA.

Name of method Time of scatter Time of No of Core Variance
finding (s) PARAFAC (s) iter. consistency (%) explained (%)

S-PCA No correction 12.32 31.059 170 –41, 235.55 83.64
Correction band = 0 13.41 43.084 170 –634.54 96.32
Correction band = 1 13.44 48.33 107 –1306.18 97.95
Correction band = 2 13.47 29.058 176 –804.07 98.22
Correction + unimodality 13.47 54.257 947 –178, 821.93 97.98
Correction + nonnegativity 13.47 39.197 275 –62, 838.01 97.98
Correction + unimodality + nonnegativity 13.47 15.233 115 –18, 040.26 97.94

ROBPCA No constraints 403.60 46.31 175 –1059.38 98.06
Unimodality 403.60 41.8 636 –1, 776, 998.60 97.81
Nonnegativity 403.60 12.90 144 –57, 907, 920.21 97.04
Unimodality + nonnegativity 403.60 6.38 371 –50, 811, 514.17 97.77

additionally, the possible improvements by applying nonnegativ-
ity and unimodality constraints were verified. Some visualizations
of the results are presented in Figure 7 and 8, and the quantita-
tive measures, in relation to ROBPCA, are given in Table II. It is
clear that because of the high noise-to-signal ratio, the PARAFAC
model fits the data worse than in the case of Dorit data, which
is manifested in the negative core consistency values for each
model. Moreover, the reliability of the resolved spectra is some-
how doubtful as it seems that four or five components could be
fitted, depending on the amount of removed scatter and method
used for dealing with the identified regions. Judging from the
variance explanation index, it is more favorable to choose the
thicker bandwidth in the correction step, as its value grows from
94% to 98% when increasing the bandwidth by a factor 2. As in
the case of Dorit data, the strength of the new proposed method
is recognized in the exceptionally fast algorithm for finding the
scattering effect regions, which is around 13 s for S-PCA com-
pared with > 400 s for ROBPCA. In parallel, the performance of
the PARAFAC model is comparable for both underlying methods.

5. CONCLUSIONS

In this paper, we have applied S-PCA as a fast alternative to
ROBPCA method for scatter detection in EEM landscapes. It is
concluded that results of the PARAFAC models, fitted to the
scatter-free data, based on the two techniques are comparable in
performance. The proposed implementation of S-PCA is not fully
unsupervised, and some user participation is required; however,
it significantly outperforms the ROBPCA in terms of computation
efficiency.
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APPENDIX: A CORRECTION METHOD
ALGORITHM

Let S(J�K) be a scatter pixel mask of “ones” for good observations
and “zeros” for outliers, identified during S-PCA routine (Figures 4
and 5). The correction of the undiscovered scatter regions might
be conducted in the following way for data including two scatter
ridges:

(1) For every sjk = 0, project a point of coordinates in [j, k] onto a
two-dimensional coordinate system.

(2) Fit a robust regression line (in this work based on least
trimmed squares) to the projected data according to
equation:

ki = �0 + �1ji + "i (6)

where O�0 and O�1 are found by minimizing squared errors of h
smallest residuals (see [14]).

(3) Store the coordinates
h

ji , k*
i

i
of fitted regression line, where k*

i
equals to ki rounded to the nearest integer, in vectors j1 and
k1.

(4) Store the coordinates of the outliers identified by the regres-
sion model in j0 and k0.

(5) Define thickness of a bandwidth d = max
˚

number of k :
sjk = 0 for j 2 j1

�
+ band, where band is a correction factor

specified by the user.
(6) Fill in the scatter region in the initial matrix S for j 2 j1 by

setting S(j, (k – 1/2d) : (k + 1/2d)) to zero.
(7) Repeat the same procedure for the second scatter line starting

from the data stored in j0 and k0.

J. Chemometrics 2013; 27: 3–11 Copyright © 2013 John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/cem
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Spherical Principal Component Analysis. A simulation study for data

containing clustered outliers.

Abstract

Spherical Principal Component Analysis (S-PCA) is known as a robust and very

fast version of the classical PCA. These qualities can be desired, especially when

high dimensionality of data is considered. Since the method was proposed, it

has been used in many applications within multivariate data analysis, and it is

known that S-PCA tends to fail in outliers identification under certain circum-

stances. However, these circumstances were never described in a methodical

way.

This paper delivers a simulation study investigating the potential of S-PCA as

a fast outlier identification tool when outliers form clusters and the main data

originates from an elliptical distribution. The failure reasons of the method

and a possible correction named ’nested S-PCA’ or ’S-PCA2’ have been deter-

mined. Finally, a comparison of S-PCA and other robust PCA methods was

given. Keywords: S-PCA, robust, simulation, outliers
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C.1 Introduction

Principal Component Analysis (PCA) [1–3] is probably the mostly spread sta-

tistical method for data compression and visualization. It attempts to explain

usually vast data structures by means of a preferably small number of orthogo-

nal variables called Principal Components (PCs), being linear combinations of

genuine variables. A common problem encountered by practitioners applying

PCA comes from the lack of robustness related to the Least Squares foundation

of the method. Its breakdown point [4] equals zero, which means that in an

extreme case, even one outlier may severely damage the fit and lead to wrong

data interpretation.

In order to deal with this issue, various robust alternatives were elaborated,

based either on the robust covariance matrix approach (e.g. M-estimators [5],

S-estimator [6], MVE or MCD [4]), the Projection Pursuit (first introduced by

Li and Chen [7] and described by Huber [8], later modified by Croux and Ruiz-

Gazen [9] and Croux et al. [10]), or their combination (ROBPCA developed

in [11]). For a review of the common robust methods used in data analysis

see [12–18].

Spherical PCA (S-PCA) is a robust and very fast version of classical PCA intro-

duced first by Locantore [19]. The essence of the method is the classical PCA

performed on data projected on a unit sphere with its midpoint in the robust

center of that data. In this way the harmful influence of outlying samples, which

are assumed to have large distances to the center, is bounded. Since the method

was proposed, it has been used in many applications within multivariate data

analysis, including chemometrics (e.g. [20–25]) and mentioned in a few review

papers within the field (e.g. [13, 15, 18]).
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Some simulation studies [26, 27] aiming at deepening the understanding of the

method have also been performed. First simulations were run by Boente and

Fraiman [26], indicating that if data has elliptical distribution, the estimates

of eigenvectors are consistent. Moreover, authors claim that S-PCA will be

resistant for any contamination model with underlying elliptical distribution.

Additionally, some statistical properties (equivariance, influence function and

efficiency) were studied by Croux [28]. The covariance matrix estimator is or-

thogonal equivariant and has bounded Influence Function. The efficiency of the

method depends on the parameter gamma γ and it becomes higher for more

spherical distributions.

Maronna in [29] used S-PCA as one of the alternatives to his newly proposed

method, showing relatively good behavior of S-PCA in terms of efficiency (us-

ing Mean Prediction Error as a criterion). Wilcox [27] compares several robust

PCA methods among which S-PCA) using a generalized variance criterion. Fi-

nally S-PCA, together with other robust methods were incorporated into two R

packages: chemometrics and rrcov described in [18].

A great advantage of the S-PCA is its exceptional computation speed and rela-

tive simplicity. This can be desired in many applications, especially when high

dimensionality of data (including problems with p > n) is considered. It is

known, however, that the method tends to fail under certain circumstances.

For example Stanimirova [21] mentions that problems might occur when out-

liers form clusters. Recently, Kotwa et al. [25] used S-PCA to identify disturbing

scatter effects in EEM fluorescence landscapes. Their findings show that an ad-

ditional correction step is needed, as S-PCA itself fails in discovering outlying

elements (scatter) in certain situations. In both cases, it remains unclear which

situations they are.



Case study 147

In this paper we investigated the potential of S-PCA as a fast outlier identifi-

cation tool when outliers form clusters and the main data originates from an

elliptical distribution (a ’standard’ case). We determined failure reasons of the

method and proposed a possible correction called ’nested S-PCA’ or ’S-PCA2’.

Finally, a clarification of advantages and disadvantages of S-PCA compared to

some other robust PCA methods were given.

C.2 Case study

In order to show the performance of different robust PCA methods and intro-

duce issues which will be discussed further in this paper, a simulation case-study

example will be presented. Six PCA models were applied to two contaminated

data sets: Classical PCA (PCA), ROBPCA [11], two versions of Projection Pur-

suit based PCA: by Croux and Ruiz-Gazen [9] (PP) and by Croux et al. [10]

(Grid) and finally two S-PCA algorithms: traditional (SPCA) and its nested

version (SPCA2). Both S-PCA methods will be described in details in Sec-

tion C.3.

Two data sets were constructed from two multivariate normal distributions

X1 ∼ N(0,Σ1) and X2 ∼ N(0,Σ2), with number of samples n1 = n2 = 500

and number of variables k1 = 5 and k2 = 100. Covariance matrices Σ1 and

Σ2 were calculated in the following way: Σ1 = Y T
1 Y1 and Σ2 = Y T

2 Y2, where

Y1 and Y2 were drawn from multivariate standard normal distributions of cor-

responding dimensionality. Subsequently, both data sets were contaminated

by adding 20% degenerated samples from a generic contamination distribution

X
′
i ∼ N(µ

′
i,Σ

′
i), where µ

′
i = si(1, ..., ki) and Σ

′
i = 0.5Σi, for i ∈ {1, 2}. Here,
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the outlier covariance matrices Σ
′
i correspond to scaled version of data covari-

ances. This is to ensure that outliers form a cluster - a cloud of points smaller

than the main data bulk. A scalar si was set to s1 = 1 and s2 = 4, which

corresponds to ’small’ and ’large’ distances of the outlier cluster towards the

main data distribution.

Figures C.1 and C.2 depict the outlier identification process for each of applied

methods by a Diagnostic Plot of score (SD) and orthogonal (OD) distances and

a Flag Plot. In the Diagnostic Plot the introduced outliers are marked by red

and a horizontal and vertical line determines the cut-off values for each of the

two distances. Data points having distance values exceeding particular cut-off

value are identified as outliers (the cut-off values are described in details further

in Section C.3.2). The Flag Plot shows ’flags’ (∈ {0, 1}) which were assigned

to each observation during the outlier identification procedure. Again, ’real’

outliers are marked with red color and identified outliers have flag = 0. Obser-

vations with flag = 1 are considered regular. Blue points denote data points

wrongly qualified as outliers.

In brief, it is shown that Classical PCA, as expected, fails completely in iden-

tifying outliers for both data scenarios, as all ’red points’ lay within the area

demarked by the cut-off value lines and the correposonding flags equal 1. The

best method (able to determine all outlyig samples) when k = 5 seems to be

ROBPCA and for k = 100 the Grid-PCA, however, in both cases S-PCA2 per-

forms nearly as good (though, it has somewhat higher amount of non-outliers

concidered as contamination). Interestingly enough, ROBPCA breaks when di-

mensionality grows (in this set-up when k > 36, results not shown), which is not

surprising as this method is designed for low dimensional data. The situation is

quite opposite in the case of Grid-PCA, which wrongly qualifies outliers when
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Figure C.1: Diagnostic and Flag plots for X1 and X
′
1 (k = 5)
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Case study 151

Table C.1: Running system Time [s] for 6 PCA methods performed on data with
number of dimensions k=5 and k=100 and the constant sample size n = 500.

PCA SPCA SPCA2 ROBPCA Grid PP

k=5 0.01 0.08 0.34 0.09 0.09 0.06
k=100 0.07 0.46 0.58 16.02 20.10 3.29

number of dimensions is small (this might also be related to the small distance

of outlier bulk to the rest of the data). The ordinary S-PCA seems to suffer

from similar factors and fails to identify all the corrupted observations when

data and contamination lie close to each other. Table C.1 reveals the system

computation time for each applied method, which is comparable when k = 5 but

grows significantly together with dimensionality for ROBPCA and Grid-PCA.

Moreover, Figure C.3 shows the dynamics of computational time as a function

of number of dimensions given constant sample size: linear for S-PCA and ex-

ponential for ROB- and Grid-PCA algorithms.

This simple example shows that PCA based on spherical projection has a great

potential when a robust and quick data compression method, especially for vast

data structures, is needed. For practitioners being able and willing to use it,

more information about performance of S-PCA is needed, which will be the

topic and objective of the rest of this paper.
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Figure C.3: Execution time [s] of different PCA methods as a function of number
of dimensions for constant number of observations n = 500.

C.3 S-PCA. How does it work?

C.3.1 L1-median and spherical projection

S-PCA, being a very fast and robust version of classical PCA, belongs to the

so-called ’projection methods’. It combines the robustness feature of the me-

dian with the projection pursuit framework and is conceptually fairly simple. In

the first step, the robust center of the data is determined as the L1-median [5].

L1-median is defined as a point in the multidimensional space found by min-

imizing the sum of Euclidean distances from the data objects to that point.

Subsequently, all data points xi are centered and down-weighted by the inverse

of these distances, which is equivalent to projecting each data point onto a unit
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radius hyper-sphere with the center in L1:

xp
i =

xi − µL1(X)

‖xi − µL1(X)‖ + µL1(X) (C.1)

where xp
i is the ith projected data object and ‖xi − µL1(X)‖ is the Euclidean

distance to the robust center of the data µL1. In this setting, the influence

of outlying samples manifesting normally large distances in the denominator

of the equation (C.1), will be bounded. In the next step, a classical PCA is

carried out on the down-weighted data and the robust scores are obtained by

projecting the original data on the resulting robust loadings. Finally, the outlier

detection is conducted, based on robust center of the data, eigenvalues of the

robust covariance matrix, robust scores and loadings.

In short, we propose describing the functioning scheme of S-PCA as a four step

algorithm, depicted graphically in Figure C.4, respectively:

1. find the L1 robust center of the data (red dot)

2. project all data points xi on the unit radius sphere centered in L1

3. fit classical PCA to the projected data, find robust loadings and scores

4. apply the robust loadings to original data and identify outliers

C.3.2 Outlier identification

A popular method for determining outlying elements consists of Score and Or-

thogonal distances (SD and OD, respectively). The score distance (SDi), also
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median); b) projecting all data points on a sphere with unit radius; c) performing
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known as robust distance, expressed as:

SDi =

√√√√
k∑

j=1

t2ij
lj

(C.2)

where tj is a vector of robust scores for the jth component and l contains robust

eigenvalues, is actually a Mahalanobis distance to the robust data center. On

the other hand, the Orthogonal Distance informs how far, with respect to the

space spanned by the robust model, the ith object is located.

ODi = ‖xi − µL1 − Pti‖ (C.3)

Here, ‖·‖ denotes the Euclidean norm and the model TPT contains k selected

components. A data point exceeding a certain cut-off value of at least one of

distances is automatically flagged as an outlier.

Two rules were taken into consideration in order to define cut-off values:
√
χ2
n−1,0.975,

where n is a number of observations (for SD) or selected PCs (for OD) [11], or

a robust version of z-scores (suggested in [21]). These scores are constructed

by incorporating robust location and scale estimates such as median (µ) and

median absolute deviation (σ) as an alternative to the standard procedures:

z =
|d− µ(d)|
σ(d)

(C.4)

Then, a default cut-off value equal to three can be used for identification of

observations with large distances. Both approaches give similar results, however

it seems that the z-sores cut-off value tends to be slightly higher.
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C.3.3 Weak points

Previously, in Section C.2, we saw that even though S-PCA (and especially

nested S-PCA) provided decent robust results, it failed in identifying outliers

in certain situations, and only a part of contamination was discovered (see Fig-

ure C.1). Judging from the functioning scheme presented in Figure C.4, the

performance of S-PCA might be hampered by clustered outliers if at least one

of the following situation occurs:

1. a bulk of outliers affects significantly the location of L1 median

2. a number of outliers is high enough to attract the classical PCA fit on

projected data and, as a consequence, corrupt the resulting loadings

3. an outlier cloud is too close to the main data so that the two distances

(SD and OD) do not succeed in identifying it

These three factors will be in the focus point of the S-PCA sensitivity study

conducted in the following sections.

C.3.4 Nested S-PCA

In the rrcov R package introduced in [18], the S-PCA method is impremented

as described above: by first performing Classical PCA on down-weighted data,

and afterwards identifying outlying samples. This means that contaminated ob-

servations are neutralized distance-wise, however not direction-wise. They still

are able to attract the Classical PCA fit and corrupt the out-coming loadings,

even if the outliers are identified correctly. In order to avoid that inconvenience,
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we propose a simple correction, which will further be referred to as ’S-PCA2’

or ’nested S-PCA’. The correction assumes that after identification of outliers

by the S-PCA method, another S-PCA routine is executed, this time on the

cleaned, outlier-free data set. Then, loadings are used for constructing robust

scores by projecting them on the initial data and new distances are determined.

The potential advantage of this method is twofold: the actual PCA results will

be more reliable as they will be less (or at all) affected by outlying samples

direction-wise, and secondly, if simple S-PCA was able to identify only some

part of outliers, S-PCA2 might be able to correct for that (as in Figure C.1).

C.4 Simulations

C.4.1 A bi-variate design.

In order to clearly present functioning of S-PCA, a simple bi-variate design is

considered: a number of observations n = 100 is drawn from a bi-variate normal

distribution with µ = (0, 0) and

Σ =




1 0.9

0.9 3




following a contamination model (as in [30]):

(1− ǫ)Np(0,Σ) + ǫNp(µ̃, Σ̃) (C.5)
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Figure C.5: Directions for the placement of outliers bulk center.

where ǫ stands for contamination ratio. In this experimental design, it has been

decided to introduce a cluster of outliers by varying the following parameters: d

- direction from the center of main data cloud to the center of outlier cloud; r -

distance from main data to outlying observations; ǫ - ratio of outliers. In total

16 directions d ∈ {0, 1/8π, · · · , 15/8π} (presented in Figure C.5), three distances

r ∈ {4, 6, 8} and three contamination ratios ǫ ∈ {0.1, 0.2, 0.3} have been taken

into account. The distances were chosen so that they correspond to a small,

medium and large distance of outlier bulk to the main data. The selection of

outlier ratios can be motivated by the fact that these scenarios will be of highest

interest for practitioners. From the experience a common practice would most

likely be rejecting a data set where contamination constitutes more than 1/3 of

the data. As performance measures in the simulation study, following criteria

are considered (similar to [30]):
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1. γ - an angle between the first eigenvector of the investigated method and

first eigenvector of classical PCA in the case of uncontaminated data

2. NIO (not identified outliers) - outlying points which have not been recog-

nized by the classical or robust PCA method

3. WIP (wrongly identified point) - data points which have been wrongly

flagged as outliers

Optimal values of NIO, WIP and γ are 0. Time of execution is disregarded

in this study due to a small data size. Other criteria exist and have been

used in the literature, i.e. relative generalized variance estimate [27] or relative

prediction error and relative estimation error [29]. However, for this study the

three selected criteria will sufficiently describe differences between the applied

models.

C.4.2 Sensitivity study.

The S-PCA algorithm was applied to 144 (3x3x16) contaminated data sets.

Some selected results obtained from the analysis are presented in Figures C.6,

C.7, C.8 and C.9 and Table C.2. The results lead to the following conclusions:

in the case of data following elliptical distribution, assuming constant distance

to the outlier cloud, the direction d indicating location of the outlier cloud has

an influence on S-PCA results. The most sensitive scenario, likely to result in

un-identified outliers, is the case of good leverage points, situated closest to the

main data bulk. Secondly, the distance r also impacts method’s performance

as the S-PCA fails to identify outlying samples, when their cloud is situated
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Figure C.6: S-PCA results for first 8 directions, distance=4, outlier ratio=0.1

’too close’ to the main data distribution (compare Figure C.6c, d and e with

the corresponding panels of Figure C.7, where the distance has been increased).

Finally, the amount of outliers can have a major influence on the S-PCA fit.

Figure C.8 and Figure C.7 present the same data scenario, where only the ratio

of outliers has been increased to ǫ = 0.3. Also, the resultis in Table C.2 indicate

clearly that the angle γ is much larger when amount of outliers grows, reflecting

corrupted results.

C.4.3 Failure reasons

Above, three parameters which influence the performance of S-PCA have been

identified: amount of outliers contaminating the data, their position and dis-

tance towards the main data bulk. These factors will affect different parts of the
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Figure C.7: S-PCA results for first 8 directions, distance=6, outlier ratio=0.1
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Figure C.8: S-PCA results for first 8 directions, distance=6, outlier ratio=0.3
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Table C.2: Simulation results for S-PCA.

1/8Pi 1/4Pi 3/8Pi 1/2Pi 5/8Pi 3/4Pi 7/8Pi Pi

d=4, e=0.1
Angle 0.0489 0.0946 0.0736 0.0223 0.1025 0.1637 0.1684 0.0061
NIO 0.0000 0.0000 10.0000 10.0000 9.0000 0.0000 0.0000 0.0000
WIP 0.0000 0.0000 0.0000 2.0000 0.0000 0.0000 0.0000 2.0000

d=6, e=0.1
Angle 0.0369 0.1019 0.0795 0.0268 0.1006 0.1639 0.1715 0.0019
NIO 0.0000 0.0000 0.0000 2.0000 0.0000 0.0000 0.0000 0.0000
WIP 0.0000 0.0000 0.0000 3.0000 0.0000 0.0000 0.0000 2.0000

d=6, e=0.3
Angle 0.5390 0.4286 0.1771 0.0220 0.2616 0.2916 0.0952 0.3414
NIO 9.0000 29.0000 30.0000 30.0000 28.0000 23.0000 0.0000 0.0000
WIP 0.0000 0.0000 0.0000 9.0000 0.0000 0.0000 0.0000 0.0000

d=8, e=0.3
Angle 0.5442 0.4187 0.1749 0.0176 0.2524 0.3053 0.0916 0.3421
NIO 0.0000 0.0000 0.0000 4.0000 0.0000 0.0000 0.0000 0.0000
WIP 0.0000 0.0000 0.0000 9.0000 0.0000 0.0000 0.0000 0.0000
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Figure C.9: S-PCA results for first 8 directions, distance=8, outlier ratio=0.3

algorithm, when ’difficult’ circumstances occur. We are in particular interested

in the behavior of the L1 center, robust loadings, as well as score distance.

As a case study we use the ’difficult data’ from section C.4.2, corresponding

to r = 6, ǫ = 0.3 and d ∈ {0, 1/8π, 1/4π, 3/8π}, where for three out of four

cases outliers remained unidentified and the fit was corrupted. Figure C.10

shows the four outlier scenarios considered, and Figure C.11 depicts a shift of

the L1 center (blue dot) in relation to the ’real’ center of not contaminated

data (red dot). One can observe that the L1 median is attracted by clustered

outliers, depending on their location. Moreover, the blue line stands for the

first PC, resulting from the S-PCA fit. Here, it becomes apparent that location

of high ratio of clustered outliers has a major influence on the resulting PCA

fit. This could surely be adjusted, if the method would succeed in identifying

these erroneous points correctly, by disregarding the outliers and repeating the



164
Spherical Principal Component Analysis. A simulation study for data

containing clustered outliers.

−5 0 5 10

−
4

−
2

0
2

4
6

X1

X
2

a

b

c

d

Figure C.10: Directions for the placement of outliers center for the case study:
a) 0, b) 1/8π, c) 1/4π, d) 3/8π

PCA routine on cleaned data (nested S-PCA). In order to determine outlier

identification ability of the method, we will look at the Score (Robust) distance.

Since Orthogonal Distance informs about how far a particular data point lies

from a subspace spanned by the fitted model, it will not be reliable here as the

considered fit is burdened with an error and therefore corrupted. In this case, it

is the SD which can be used for detecting the outlying observations. Figure C.12

presents outlier identification by the means of SD, for data containing different

ratios of outliers. Here, it is obvious that the amount of outliers has a direct

influence on the determined robust distances to the L1 center. One should keep

in mind that the center itself will change its location depending on the amount

of clustered outliers causing the distance change. Additionally, for construction

of SD distances, we scale the PCA scores using (corrupted) eigenvalues obtained

from the previous PCA fit. Both reason lead to situations where the clustered
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outliers remind unidentified.

To sum up the above breakdown study of S-PCA, we can conclude the following:

1. Location, distance and amount of contaminated samples may influence

outlier identification ability of S-PCA: if the outlier cloud is too close

to the main data, some or all outlying samples might stay unidentified

(especially good leverage points), if the outlier ratio is high and its location

not aligned with the first eigenvector, the S-PCA fit (reflected in γ) will

deteriorate.

2. Even if S-PCA is able to correctly identify the outliers, the resulting load-

ings and scores are often attracted corrupted by the contamination, there-

fore a relevant correction, based on outliers removal and re-fitting the

model on clean data is necessary (for example nested S-PCA).

C.4.4 Final case study - nestes S-PCA

In previous sections we discussed possible breakdown reasons of the S-PCA

and introduced a correction which could partialy improve the inefficiency of the

method. Here, the final comparison of nested S-PCA together with two alterna-

tive approaches, ROBPCA and Grid PCA (which showed most reliable results

in Section C.2), are examined, taking into consideration outlier identification

ability. Again, the 4 data scenarios (r = 6, ǫ = 0.3, d ∈ {0, 1/8π, 1/4π, 3/8π}),

presented in Figure C.10 will be considered. The results in Figure C.13 show

how well each of the three robust techniques is able to identify the simulated

contamination (shown in red), by plotting resulting flags associated to each

ovservation (flag = 0 means that the data point was qualified as outlying).
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Figure C.11: L1 center and loadings study of S-PCA for the data containing
outliers situated in defferent locations towards the main data bulk: a) d = 0; b)
d = 1/8π; c) d = 2/8π; d) d = 3/8π
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All three methods return satisfactory results for d ∈ {0, 1/8π}, corresponding

to directions where the outlier cloud is further from the main data. One can see

that S-PCA2 seems to be most sensitive, as it starts having ’problems’ already

for d = 1/8π, and ROBPCA most resistant, performing well even for d = 1/4π.

All methods fail however in the case of good leverage outliers ( d = 3/8π, see

Fig. C.10).

C.5 Discussion and conclusion

In this work we investigated potential applications of Spherical PCA as an outlier

identification tool, focusing on multivariate elliptical data and outliers forming

clusters. The functioning scheme of the method and its weak points have been

identified, leading to better understanding of circumstances where S-PCA could

be applied, and when it would fail. Simulations performed in this study show

that S-PCA is able to identify contaminated observations in data, however its

functionality is subject to specific data circumstances. Location, distance and

amount of contaminated samples were found to have a large impact. If outliers

are too close to the main data cloud, some or all contaminated samples might

stay unidentified (especially good leverage points). Moreover, if the outlier ratio

is high and its location not aligned with the first eigenvector, the resulting load-

ings can be corrupted, and hence, the S-PCA fit will deteriorate. A relevant

correction, called S-PCA2 (or nested S-PCA), has been proposed in order to

account for deteriorated fit of S-PCA and to increase overall applicability of the

method.

S-PCA and S-PCA2 were also compared to other robust versions of PCA in
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Figure C.13: Flag plots resulting from S-PCA2, ROBPCA and Grid methods
for 4 data scenarios: d ∈ {0, 1/8π, 1/4π, 3/4π} with r = 6 and ǫ = 0.3
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Spherical Principal Component Analysis. A simulation study for data

containing clustered outliers.

terms of outlier detection ability, reliability of the fit and time. The study

showed that none of the methods was relevant for all data circumstances, hav-

ing each its limitations and functionality field. For example, ROBPCA being

a very reliable method in low dimensions can not be used for vast data struc-

tures. Grid PCA seems to be applicable in opposite situations as shown in Fig-

ures C.1 and C.2, however, when ’big’ data are considered, it becomes highly

computation-expensive, with an exponential execution time growth. Since nowa-

days data structures with number of variables > 1000 are no longer uncommon

and robust PCA is often used as part of larger algorithms as an outlier detecting

tool, the high performance time can constitute a serious limitation.

We conclude that S-PCA (and especially its nested version as proposed here)

can be a valuable asset in the toolbox of every practitioner, especially when

short execution time is an important factor. We highly recommend that S-PCA

is applied with consciousness of possible shortcomings, such as described in this

work.
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