
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 20, 2017

A branch-and-price algorithm for the long-term home care scheduling problem

Gamst, Mette; Jensen, Thomas Sejr

Published in:
Operations Research Proceedings 2011

Link to article, DOI:
10.1007/978-3-642-29210-1_77

Publication date:
2012

Link back to DTU Orbit

Citation (APA):
Gamst, M., & Jensen, T. S. (2012). A branch-and-price algorithm for the long-term home care scheduling
problem. In D. Klatte, H-J. Lüthi, & K. Schmedders (Eds.), Operations Research Proceedings 2011: Selected
Papers of the International Conference on Operations Research (pp. 483-488). Springer.  (Operations Research
Proceedings). DOI: 10.1007/978-3-642-29210-1_77

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Online Research Database In Technology

https://core.ac.uk/display/13798421?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1007/978-3-642-29210-1_77
http://orbit.dtu.dk/en/publications/a-branchandprice-algorithm-for-the-longterm-home-care-scheduling-problem(3f37101c-b340-4ac0-be3f-be30f89cc098).html


A branch-and-price algorithm for the long-term
home care scheduling problem

M. Gamst and T. Sejr Jensen

Abstract In several countries, home care is provided for certain citizens living at
home. The long-term home care scheduling problem is to generate work plans such
that a high quality of service is maintained, the work hours of the employees are
respected, and the overall cost is kept as low as possible. Wepropose a branch-
and-price algorithm for the long-term home care schedulingproblem. The pricing
problem generates a one-day plan for an employee, and the master problem merges
the plans with respect to regularity constraints. The method is capable of generating
plans with up to 44 visits during one week.

1 Introduction

In several countries, home care is provided for certain citizens living at home. Home
care offers cleaning, grocery shopping, help with personalhygiene and medicine,
etc. The long-term home care scheduling problem is to generate work plans span-
ning a longer period of time, such that a high quality of service is maintained, the
work hours of the employees are respected, and the overall cost is kept as low as
possible.

Quality of service consists of the following.Regularity: all visits at a citizen
should be conducted at the same time of the day and by the same (small group of)
employee(s) in order for the citizen to feel safe.Skill set requirements: certain tasks
can only be performed by a subset of the employees due to skillrequirements.

All time windows are soft, i.e., preferred visit times and employee work hours
can be violated at a cost. Such violations are denoted “busyness”. The overall cost
of a solution consists of a linear combination of travel timebetween visits, quality
of service, and busyness.

The long-term home care scheduling problem isNP-hard and is typically ap-
proached in one of two ways in the literature: (1) plans for employees for a single
day are generated. This corresponds to a modified VRPTW and isdenoted thedaily
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planning problem [1, 4, 5]. (2) Otherwise a Periodic VRPTW is solved, i.e., plans
are made for several days, but regularity constraints are ignored [2,6,7].

We propose a branch-and-price (BP) algorithm for the full long-term home care
scheduling problem. The pricing problem generates a one-day plan for an employee,
and the master problem merges the plans with respect to regularity constraints. The
method is capable of generating plans with up to 44 visits during one week. This
truly illustrates the complexity of the problem.

2 Exact solution algorithm

The problem considers a given period of time consisting ofL ∈ N days. Time is
discretized into time steps, which together spanL. The set of employees is denoted
E. For each employeej ∈E is given a set of daysH j and time windows[a jh,b jh],h∈
H j, that specify the work hours ofj.

The set of visits is denotedV , the set of citizens isC, and the set of visits at
citizenc is Vc ⊆ V . Each visit j ∈ V is repeated afterp j amount of time. The visit
repetitions are scheduled independently of each other and are denotedactivities.
Let A be the set of all activities andA j ⊆ A the set of activities for visitj ∈ V .
Two consecutive activities from visitj are denoted(i,k) ∈ A j. An activity i ∈ A
has attached a prioritized list of employees to conduct the activity, denotedpri. The
prioritized list represents theskill set requirement. The duration ofi ∈ A is di and
the time window is[ai,bi]. The travel time between two activitiesi, j ∈ A is ci j ≥ 0.
Finally, busyness, i.e., the amount of time employeej is late for conducting visiti,
is denotedbi j ≥ 0.

Dantzig-Wolfe decomposing the problem results in a pricingproblem, which
generates a daily schedule for a given employee on a given day, and a master prob-
lem, which merges the daily schedules into an overall feasible solution.

The daily schedule for an employee is denoted apath and contains an ordered
list of activities with attached starting times. The overall solution consists of paths
for appropriate employees on appropriate days, covering all activities. Letsi ∈ N

denote the starting time of activityi ∈ A. Recall that the objective function consists
of travel time, quality of service, and busyness. We aggregate these into a single,
weighted objective function. Letw be the non-negative weight vector. The objective
function which is to be minimized consists of:

1. Travel time (TT) between activities.
2. Busyness (B), i.e., how late an employeej is for conducting an activityi with

respect to travel times and time windows.
3. Employee priority (EP).
4. Employee regularity (ER), i.e., the number of different employees at a citizen.
5. Visit regularity (VR), i.e., if the time between two consecutive activities(i,k) ∈

A j differs from p j.
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Let p be a path andP the set of all generated paths. Letxp ∈{0,1} denote whether
or not pathp is part of the solution, and letuik ≥ 0 denote the difference in the start-
ing times between two consecutive activities(i,k) ∈ A j. Each pathp has a number
of constants attached:δ i j

Bp ≥ 0 denotes the amount of busyness for employeej and

activity i, δ i
p ∈ {0,1} denotes if activityi is visited,δ i

sp ≥ 0 denotes the start time

at activity i, δ i j
p ∈ {0,1} denotes if employeej visits activity i in the path, and

δ jh
p ∈ {0,1} denotes if the path is generated for employeej on dayh ∈ H j. The

master problem is formulated as:

min ∑
p∈P

∑
i∈A

(

∑
k∈A

wT T cikδ i
pδ k

pxp + ∑
j∈E

(

wB δ i j
Bp xp+ wEP pri( j) δ i j

p xp
)

)

+

∑
c∈C

∑
j∈E

wER y j
c + ∑

j∈V
∑

(i,k)∈A j

wV R uik (1)

s. t. ∑
p∈P

δ i
pxp = 1 ∀i ∈ A (2)

∑
p∈P

δ i
spxp + p j − ∑

p∈P

δ k
spxp ≤ uik ∀ j ∈V, ∀(i,k) ∈ A j (3)

∑
p∈P

δ k
spxp − (∑

p∈P

δ i
spxp + p j)≤ uik ∀ j ∈V, ∀(i,k) ∈ A j (4)

∑
p∈P

δ i j
p xp ≤ y j

c ∀c ∈C, ∀v ∈Vc,

∀i ∈ Av, ∀ j ∈ E (5)

∑
p∈P

δ jh
p xp ≤ 1 ∀ j ∈ E, ∀h ∈ H j (6)

xp ∈ {0,1} ∀p ∈ P (7)

uik ≥ 0 ∀ j ∈V, ∀(i,k) ∈ A j (8)

y j
c ∈ {0,1} ∀c ∈C,∀ j ∈ E (9)

The objective function (1) minimizes a weighted sum of travel times, busyness,
employee priorities, employee regularity and visit regularity. Constraints (2) ensure
that every activity is visited. Constraints (3) and (4) measure visit regularity. Con-
straints (5) measure employee regularity. Constraints (6)ensure that at most one
path per employee per day is part of a solution. The number of columns in the mas-
ter problem is reduced by fixing daily visits to days: if a visit must be repeated every
day, then the corresponding activities are fixed to day 1, 2, 3, etc., respectively. The
pricing problem only allows such activities to be part of paths on appropriate days.

Let π (2)
i ∈ R be the dual of constraints (2),π (3)

ik ≤ 0 the dual of (3),π (4)
ik ≤ 0 the

dual of (4),π (5)
ic j ≤ 0 the dual of (5), andπ (6)

jh ≤ 0 the dual of (6). The pricing problem
is solved for each employeej ∈ E on each dayh ∈ H j. The reduced cost of visiting
activity i ∈ Av,v ∈Vc,c ∈C is:

c̄i
jh = wEP pri( j)−π (2)

i −π (5)
ic j −

{

si(π (3)
ik −π (4)

ik ) ∃k ∈ A : (i,k) ∈ Av

0 otherwise
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Activity i ∈ A is visited exactly once, hence the reduced cost for employeej ∈ E on
dayh ∈ H j is defined as:

c̄ jh = ∑
i∈A

(

c̄i
jh +wBbi j + ∑

k∈A

wT T cik

)

≤ π (6)
jh (10)

Recall thatbi j ≥ 0 is the amount of busyness for employeej at activity i and that
cik ≥ 0 is the travel time between activitiesi,k ∈ A. Now, π (6)

jh is a constant, so if

the pricing problem generates a path where ¯c jh ≤ π (6)
jh , then the path has negative

reduced cost and the corresponding column is added to the master problem. The
pricing problem is recognized as a shortest path problem with time constraints and
potentially negative edge weights. This is also denoted theElementary Shortest Path
Problem with Resource Constrained (ESPPRC), which isNP-hard. We solve the
problem to optimality using the labeling algorithm in [3]. Initially, we try to solve
the pricing problem heuristically using the labeling algorithm, where only a single
label is stored at each activity.

Branching is necessary when the optimal solution in a branchnode is fractional.
The following strategy is finite and eventually ensures a feasible solution. Fractional
solutions occur when:
An employee j visits a citizen c fractionally. Two branching children are gener-
ated with added cut:

(

y j
c = 0

)

resp.
(

y j
c = 1

)

.
An activity i is visited by several employees j, j′ or on several days h,h′. Two

branching children are generated with rules:
(

∑p∈P δ i
pδ jh

p xp = 0
)

resp.
(

∑p∈P δ i
pδ j′h′

p

xp = 0
)

. The pricing problem ensures that employeej (resp.j′) never visits activity
i on dayh (resp.h′).
An employee j travels on edges (ik),(ik′) on a given day h a fractional number
of times. Let i be the first activity, from which employeej travels on different edges
or at different times. Let constantδ sik

p denote whether or not pathp travels from
i to k at time sik. Two branching children are generated with the following rules:
(

∑p∈P δ jh
p δ sik

p xp = 0
)

resp.
(

∑p∈P δ jh
p δ sik′

p xp = 0
)

. The pricing problem ensures that
employeej never travels fromi to k (resp.k′) at timesik (resp.sik′ ) on dayh.

The branching rules do not complicate the pricing problem, because they either
consider different columns (y j

c) or consist of rules, which can trivially be handled by
forbidding appropriate extensions in the labeling algorithm.

3 Computational Results

The BP algorithm is implemented using the framework COIN Bcp[8] and tested
on an Intel 2.13GHz Xeon CPU with 4 cores and 8 GB RAM. Note thattest results
stem from using a single core. CPLEX 12.1 is used as standard MIP solver.
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The BP algorithm is tested on a number of real-life benchmarkinstances pro-
vided by Papirgrden, a home care center in Funen, Denmark. Time is discretized
into either 5 or 10 minute time steps. The objective weights are as follows:W T T =
500, wB = 750, wEP = 0, wER = 750·5/τ andwV R =50, whereτ denotes the size of
a time step. We have tested two algorithms: (1) The exact BP algorithm as described
and (2) a heuristic BP algorithm where columns are only generated heuristically.

InstanceMaster Problem Tree Gap Sol. TimeMaster Problem Tree Sol. Tim
Cols Rows Size Value Sec. Cols Rows Size Value Sec.

1-20-5 6327 199 1 0.00 27000.0 3.97 1794 199 1 38750.0 0.75
1-25-5 8671 250 4687 0.79 29750.0 1801.33*608 250 1 44500.0 0.18
1-30-5 12883 295 2079 3.17 38000.0 1801.97*2852 295 1 86000.0 1.45
1-40-5 28365 397 171 0.00 43000.0 812.94 903 397 1 67500.0 0.55
1-50-5 31480 493 27 110.91 87000.0 1803.35*1235 493 1 97500.0 1.45
1-80-5 8737 787 1 333.89 259250.0 1906.50*2954 787 1 259250.0 10.96
2-20-5 8917 346 5 0.00 27000.0 8.58 1917 346 1 31750.0 0.66
2-25-5 10089 432 2405 0.94 29750.0 1803.39*1416 432 3 34750.0 0.27
2-30-5 16383 512 695 1.41 38400.0 1803.29*5637 512 481 73500.0 117.37
2-80-5 8261 1354 1 297.49 237500.0 1908.73*12677 1354 185 237500.0 388.09
1-20-10 4877 199 59 0.00 17250.0 6.37 1286 199 1 24750.0 0.29
1-25-10 5507 250 277 0.00 18125.0 27.36 324 250 1 29625.0 0.11
1-30-10 10934 295 2449 0.32 25300.0 1801.07*1845 295 1 54250.0 0.71
1-40-10 14037 397 63 0.00 27750.0 90.16 733 397 1 48750.0 0.32
1-50-10 19907 493 3 0.00 36500.0 337.041002 493 1 67500.0 0.71
1-55-10 19912 544 3 0.00 60375.0 123.641409 544 1 86875.0 0.69
1-58-10 40434 571 111 73.60 64450.0 1803.82*2270 571 1 106650.0 1.89
1-80-10 19711 787 1 224.63 161100.0 1847.78*2255 787 1 161100.0 4.44
2-20-10 5913 346 39 0.00 17250.0 9.19 1770 346 1 20750.0 0.43
2-25-10 6594 432 81 0.00 18125.0 16.30 714 432 3 23125.0 0.15
2-30-10 10109 512 1245 0.20 25200.0 1802.52*4585 512 751 48000.0 115.49
2-40-10 15937 684 77 0.00 27250.0 162.933267 684 7 37500.0 1.00
2-50-10 25457 850 21 0.00 35750.0 654.536914 850 191 61250.0 58.38
2-55-10 29331 936 49 133.70 80625.0 1841.08*6090 936 67 80625.0 21.94
2-58-10 21593 984 31 160.61 96750.0 1826.54*7242 984 143 96750.0 76.81
2-80-10 22136 1354 3 201.76 149750.0 2475.74*8552 1354 221 149500.0 265.50

Table 1 Results for the exact BP (left hand side) and heuristic BP (right hand side) for instances
named “|E|−|A|−τ”, τ =time step size. Tests marked with * exceeded the 30 minute time bound.

Test results are summarized in Table 1. As can be seen from theleft hand size of
the Table, only few instances with 5 minute time steps can be solved to optimality
within half an hour. A coarser discretization helps, but theBP algorithm still suffers
from a large time usage. The number of columns is large, whichis caused partly
by large time windows and partly by busyness, i. e., that timewindows may be
violated. The tree size grows very large for some instances not solved to optimality,
hence branching also constitutes a bottleneck. As can be seen from the right hand
side of the Table, the heuristic BP algorithm is generally faster. Few instances suffer
from large tree sizes and many columns, but the far majority of instances are solved
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in seconds. Unfortunately, the objective values generallysuffer from the heuristic
approach.

Improving the exact BP approach would require methods for reducing the num-
ber of columns and for improving the bounds to prune larger parts of the tree.
The authors attempted stabilizing the value of dual variables using an interior point
method [9], but with no avail. Other stabilization methods could be investigated, as
better values for the dual variables could reduce the numberof generated columns.
The authors also tried different primal and incumbent heuristics for improving the
bounds with little luck. Future work could continue on such heuristics or on chang-
ing the branching strategy.

4 Conclusion

In this paper, we presented a BP algorithm for the long-term home care schedul-
ing problem. TheNP-hard pricing problem consisted of calculating a work plan on
a given day for a given employee and the master problem mergedthe plans into
an overall optimal solution. The BP algorithm was tested on anumber of real-life
instances and was capable of only solving smaller instancesdue to the large num-
ber of combinations of visits, visit times and employees. This truly illustrates the
complexity of the problem.
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