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Non-resonant terahertz field enhancement in periodically arranged nanoslits

Andrey Novitsky,a) Aliaksandra M. Ivinskaya, Maksim Zalkovskij, Radu Malureanu,
Peter Uhd Jepsen, and Andrei V. Lavrinenko
DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark, Ørsteds Plads 343,
DK-2800 Kgs. Lyngby, Denmark

(Received 4 January 2012; accepted 5 September 2012; published online 8 October 2012)

We analyze ultra strong non-resonant field enhancement of THz field in periodic arrays of nanoslits

cut in ultrathin metal films. The main feature of our approach is that the slit size and metal film

thickness are several orders of magnitude smaller than the wavelength k of the impinging radiation.

Two regimes of operation are found. First, when the grating period P� k, frequency-independent

enhancement is observed, accompanied by a very high transmission approaching unity. With high

accuracy, this enhancement equals the ratio of P to the slit width w. Second, when the grating

period approaches the THz wavelength but before entering the Raleigh-Wood anomaly, the field

enhancement in nanoslit stays close to that in a single isolated slit, i.e., the well-known inverse-

frequency dependence. Both regimes are non-resonant and thus extremely broadband for P < k.

The results are obtained by the microscopic Drude-Lorentz model taking into account retardation

processes in the metal film and validated by the finite difference frequency domain method.

We expect sensor and modulation applications of the predicted giant broadband field enhancement.
VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4757024]

I. INTRODUCTION

Investigation of the interaction between light and slits

cut in metals has a long history. Starting from the works of

Wood and Rayleigh,1,2 it extended through the theory of

metal apertures by Bethe3 and its improvement4–6 to modern

nanophotonics problems. The interest in the optics of metal

slits was greatly renewed in 1998 with the observation of

extraordinary optical transmission (EOT).7,8 Two mecha-

nisms for the resonance peaks to appear in the transmission

spectra of metal apertures were found in Ref. 9: coupled sur-

face plasmon-polaritons on both surfaces of the metal film

and cavity-like modes appearing when resonance condition

is satisfied for the height10–12 or width13 of a slit. One of the

important aspects of these resonance effects is a strong light

concentration in the air slits; for example, field enhancement

of up to 60 was achieved in specially designed charge and

current reservoirs in visible.14 Recent publications have

reported on high field enhancement in metallic nanoslits,

when they are illuminated by a THz electromagnetic

wave.15–19 Park et al.19 observed a 170-fold field enhance-

ment through an array of slits studied in terms of broadband

filtering; an enhancement of about 430 was expected in the

near field of periodic rectangular slits.18

At THz frequencies, bulk 20–100 nm thick metal films

become non-transparent and reflects most of the incident

radiation (in the visible 20 nm, film can transmit up to 50%).

The ability of metal to effectively transmit long-wavelength

radiation by a nanometer-thick film with low absorption is of

good use when we are interested in strong field concentration

in air gaps in the metal.

Surprisingly, high field enhancements of about 103 and

higher are accumulated inside isolated slits in the non-resonant

regime at low frequencies.17,20 The enhancement has an

inverse frequency dependence confirmed by the quasistatic

model of a local capacitor.17 The longer the wavelength, the

larger part of the metal is involved in gathering of electrons

near the slit and thus in the field concentration process. In our

study, non-resonant field enhancement in arrays of slits is

investigated. Height and period of the slits and the slit width

are chosen smaller than k to not step into the resonance

regime.

The paper consists of analytical and simulation parts.

After a brief phenomenological analysis of the problem in

Sec. II, a microscopic analytical model dealing with the dy-

namics of an individual electron in a metal is built up in Sec.

III. The structures are further investigated and the model is

validated numerically with the finite-difference frequency-

domain (FDFD) method (Sec. IV). We find the electric field

enhancement and transmission both for periodically arranged

slits and for a single slit. Section V concludes the paper.

II. SIMPLE MODEL OF FREQUENCY-INDEPENDENT
FIELD ENHANCEMENT

We consider a metal film of thickness h with a periodic

array (period P) of slits of width w in the x direction and infi-

nite extent in the y direction. The structure is illuminated by

a monochromatic plane wave of frequency f polarized per-

pendicular to the slits, in the x direction (Fig. 1). In the nu-

merical simulations, we define the field enhancement G as

the amplitude of electric field averaged over the central line

of the slit normalized to the amplitude Einc of the incident

radiation

G ¼ hEislitjz¼0

Einc
�

ð
w

Ex jz¼0 dx

w Einc
: (1)
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In the low frequency limit, field enhancement G can be esti-

mated by considering the plane wave field as a quasistatic.

The electrostatic field is a potential field and, therefore, work

A done by this field along any closed contour must be zero.

We choose rectangular contour C passing symmetrically

through one period of the perforated metal and closing at in-

finity (Fig. 1). Since there is no field in metal and the work

along the z-sides of C can be neglected, the full work AC

over contour C can be represented as the sum of the works in

the slit �hExiw and over one period distance at infinity

EincP. Equation AC ¼ 0 gives us field enhancement in terms

of the period of the array P and slit width w as

G ¼ hExi=Einc ¼ P=w: (2)

Therefore, the enhancement in periodic structures G¼P/w
depends on the period of grating and size of the opening

while slab thickness does not play any role. In the static

approximation, a uniform electric field on both sides of the

perforated metal at infinity implies also possibility of

enhanced transmission, what is in agreement with the trans-

mission increase in Fig. 17(a) from Ref. 8 at the f ! 0 limit.

The realization of the quasistatic enhancement is illus-

trated in Fig. 2, where all quantities are normalized to the

same characteristics of the incident plane wave. The electric

field does not penetrate into the metal (the metal can be

treated as a perfect electric conductor), and Ex component

(Fig. 2(a)) is strongly enhanced inside the slit with maximum

relative amplitude reaching 200 near the sharp edges of the

slit. Another component Ez (Fig. 2(b)) is strongly concen-

trated in the vicinity of metal corners and has antisymmetric

field distribution around the node x¼ 0, z¼ 0. Thus, Ez is

vanishingly small along the z¼ 0 line, which justifies our

definition of G. Being close to unity, the magnetic field does

not participate significantly in the scattering by the grating

(Fig. 2(c)), and the Poynting vector components are propor-

tional to the electric field as Sx � Ez and Sz � Ex. Inside the

slit, Sz component dominates in the total energy flux density

and jSj is similar to Ex distribution. Thus, the electric field

and the Poynting vector in the grating have similar enhance-

ments in contrast to single slit case,20 where flux enhance-

ment is less than the electric field enhancement.

To know the distribution of Ex along the middle line of

the aperture, Fig. 2(e) compares three different slit widths

providing the same enhancement of 100 calculated via Eq.

(1). Only in the case of an extremely narrow 10-nm-wide

slit, we see the uniform field, while opening of the aperture

leads to a drop of the field amplitude well below the average

value in the central region.

The calculations for Fig. 2 were made with the 2D

FDFD method with perfectly matched layers and squeeze-

transformed layers as absorbing boundary conditions in the

z-directions.21 In Fig. 2(f), we see the discretization mesh;

grid steps near the slit are around 0.1–0.4 nm and are gradu-

ally stretched to reach 20 times smaller mesh compared to

the rest of the structure.

III. MICROSCOPIC MODEL

A. Field enhancement

To build up an analytical model of the THz field

enhancement in the nano-sized slits, we employ the Drude-

Lorentz-based theory of electrons in metal. An electron in

the metal film illuminated by a plane wave is affected by

several forces: driving force eEðincÞ, friction force �mc _n, and

screening force F as a result of pushing back electrons by the

electrical forces of the displaced charges,22,23 where n is the

electron displacement, “dot” stands for the time differentia-

tion, c is the collision frequency, e and m are electron’s

charge and mass, respectively. Then the equation of motion

takes the form

m€n þ mc _n ¼ eEðincÞ þ F: (3)

The charges accumulated at the slit edges give rise to the

screening force F. Assuming homogeneous charging of the

slit edges the electric field of an edge can be approximated

by that of a y-infinite strip of width h (Fig. 1). In Appendix A,

we derive the dominant component Ex of electric field of

such a strip positioned at x ¼ x0. In the periodic array of

slits, we have infinite number of positively charged strips (at

x
ðjÞ
þ ¼ xþ w=2� jP; j ¼ �1;1) and infinite number of

negatively charged strips (at xðjÞ� ¼ x� w=2� jP; j ¼ �1;
1). For the slit j¼ 0 (see Fig. 1), the total electric field is the

sum of the contributions from all slits edges (in this paper

we use Gaussian units):

Exðx; zÞ ¼ 2gf ðx; zÞ; (4)

where surface charge density can be estimated as g ¼ eNn,

N is the volume electron density of the metal. In function,

f ðx; zÞ ¼
X1

j¼�1
arctan

zþ

x
ðjÞ
þ

 !
þ arctan

z�

x
ðjÞ
þ

 !"

�arctan
zþ
xðjÞ�

� �
� arctan

z�
xðjÞ�

� ��
; (5)

z6 ¼ h=26z and positive terms correspond to the positively

charged edges (surface density þg), while negative terms

stand for the negatively charged edges (�g).

We define the screening force as the sum of the forces

from all the slit edges averaged over the metal volume

FIG. 1. Sketch of the periodic slit array illuminated by p-polarized light.

Slits are infinitely long in the y-direction. Contour C is intended for the

enhancement estimation Eq. (2) in the static regime.
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F ¼ 1

ðP� wÞh

ð�w=2

�Pþw=2

ðh=2

�h=2

eEret
x ðx; zÞdxdz: (6)

The superscript “ret” denotes that we take into account the

retardation effects, which are introduced as the imaginary

part of the force

F ¼ 2eg
ðP� wÞh

ð�w=2

�Pþw=2

ðh=2

�h=2

1� ix
R

c

� �
f ðx; zÞdxdz; (7)

where factor 1� ixR=c is the first Taylor expansion terms of

the exponential retardation expð�ixR=cÞ. Characteristic dis-

tance R is connected with the period of the slit array P and

manages the enhancement regime. The coefficient of propor-

tionality between R and P can be obtained from the numeri-

cal simulation.

Harmonic incident wave EðincÞ � e�ixt requires har-

monic electron displacement n � e�ixt. Therefore, �ixn is

identical with _n, and the force takes the form

FIG. 2. FDFD simulations of components (a) Ex and (b) Ez of the electric field, absolute values of (c) the magnetic field Hy and (d) the Poynting vector S ¼
ReðE�H�Þ near the 10-nm-wide slit of thickness h¼ 50 nm in a gold grating with a period of 1 lm at a frequency f¼ 0.01 THz resulting in G¼ 100. Bounds

for color maps are chosen so to show better peculiarities of field distribution. (e) Profiles of the electric field component Ex in different slits, all giving enhance-

ment of 100. Parameters of gratings are given in the legend. (f) Mesh refinement (thin, grey lines) at the metal-slit boundaries (thick, black lines).
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F ¼ �mx2
0n� mc0

_n; (8)

where

x2
0 ¼ �

x2
p

2pðP� wÞh

ð�w=2

�Pþw=2

ðh=2

�h=2

f ðx; zÞdxdz;

c0 ¼
R

c
x2

0:

(9)

Plasma frequency is defined as xp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pNe2=m

p
. The

screening force F (Eq. (8)) consists of an oscillatory term

and a friction term. The oscillatory term describes collective

oscillations of the electrons with frequency x0. The oscilla-

tion frequency is large for small periods P. When the period

P gets larger, the integral in Eq. (9) does not change much,

and x2
0 behaves like 1/P. The friction term results from the

retardation effects. For large periods, e.g., for a single slit,

R � P and x2
0 � 1=P, so that the dependence on period P

disappears24 in the damping rate c0.

With the screening force (8), the equation of motion (3)

for the electron reads

€n þ ~c _n þ x2
0n ¼ ðe=mÞEðincÞ; (10)

where the effective decay rate ~c ¼ cþ c0 is introduced.

Remembering that the driving field and electron displace-

ment are harmonic in time (�e�ixt), solution of Eq. (10)

takes the form

n ¼ e=m

�x2 � i~cxþ x2
0

EðincÞ: (11)

It is worth to notice that frequency x0 describes a sort of

plasmonic oscillation. It is defined by the plasma frequency

xp that is much bigger than the frequency of the incident

THz field. Therefore, the oscillations are off-resonant. The

decay frequency c0 is proportional to the square of oscilla-

tion frequency and, therefore, is extremely large, too. Thus,

c0 � c and the approximation ~c � c0 holds well. The plasma

frequency enters both in the numerator and denominator of

the surface charge density g ¼ eNn (and the field created by

this charge). That is why, the field in the slit is almost insen-

sitive to the metal parameters c and xp, and the metal with a

very good accuracy can be regarded as a perfect electric

conductor.

The field enhancement G is defined as the ratio of the

field amplitude averaged over the slit to the incident field

G ¼ EðincÞ þ hExisl

EðincÞ

����
���� ¼ 1þ 1

wh

ðw=2

�w=2

ðh=2

�h=2

Exðx; zÞ
EðincÞ dxdz

�����
�����:

(12)

Though this definition differs from that used in numerical

simulations (see Eq. (1)), the results of both analytical and

numerical calculations can be compared in the case of nar-

row slits. Remember that Ex here is the electric field of the

charged slit edges. To get simple closed-form expressions,

we will use the field at the center of the slit (x¼ 0, z¼ 0)

instead of the averaged field,

Gc ¼
����1þ 2x2

p=p

�x2 � i~cxþ x2
0

arctan
h

w

� ��

þ
X1
j¼1

arctan
h=2

~x
ðjÞ
þ

 !
� arctan

h=2

~xðjÞ�

 !" #!�����; (13)

where ~x
ðjÞ
6 ¼ 6w=2þ jP.

For large enough periods P� w; h, frequency x0 can

be derived as it is done in Appendix B. Then in the quasi-

static limit x0 �
ffiffiffiffiffiffi
~cx
p

� x, one obtains Eq. (2) discussed

in Sec. II, Gc ¼ P=w.

For a single slit, the period tends to infinity and, there-

fore, the oscillation frequency x0 is negligible. The friction

term m~c _n dominates resulting in

Gc ¼
2x2

p

p~cx
arctan

h

w

� �
: (14)

It should be noted that we have omitted the sum in Eq. (13)

for infinitely large periods P. The inverse frequency depend-

ence for a single slit well known from the literature15,16,20,24

is clearly noticed. The geometric parameters w and h enter

not only to the explicitly written arctangent function but also

to the quantity ~c ¼ cþ c0 (remember that c0 is defined by

Eq. (9)).

Characterization of the periodic grating along the elabo-

rated model is presented in Fig. 3.

The constant values of G calculated at lower frequencies

depend on the oscillation frequency x0, while the decaying

shape of the curves in Fig. 3(a) is defined by the retardation

distance R, which is taken as R¼ 2P to be consistent with

numerical simulations (Figs. 5 and 6).

According to our microscopic model, the enhancement

factor exhibits linear dependence on the period P (see Fig.

3(b)). The model allows us to take into consideration any

number of slits by including required number of terms in the

series (see Eq. (5)). The integer number M indicates, how

many slits we want to include. When M¼ 0, we take only

one slit j¼ 0 (see Fig. 1). When M¼ 1, one slit on the right

j¼þ1 and one slit on the left j¼ –1 are added, and so on.

The results converge extremely fast. From Fig. 3(b), we con-

clude that it is sufficient to include the nearest slits only,

because the two more slits (M¼ 2) result in approximately

the same curve as in the case M¼ 1. The enhancement factor

Gc defined by field at the slit center does not strongly differ

from the enhancement with field averaging across the slit

(Eq. (12)). Therefore, the use of Gc for closed-form estima-

tions is justified. When the period P becomes very large, the

linear dependence turns into a constant value (see the inset

in Fig. 3(b)). The saturation behavior is expected, as there is

no P-dependence for a single slit. Exact inverse-width

dependencies of the G-factor on the slit width are demon-

strated in Fig. 3(c). Period P¼ 10 mm approximates the case

of the single slit and corresponds to the largest enhancement.

When the slit width is equal to the period P (no metal), the

field enhancement approaches unity. As one can see in Fig.

3(d), there is almost no dependence on the metal thickness h,

as we have already heuristically pointed in Sec. II. The

ranges of the model are approximately between 10 nm and

074318-4 Novitsky et al. J. Appl. Phys. 112, 074318 (2012)



the skin depth of the metal. For thinner metal films, the non-

local and quantum effects start to play important roles.

Thicker metal slabs bring us to the perfect conductor model

of the metal (Fig. 3(d)).

The apparent absence of a thickness dependence is

rather unusual, because conventional diffraction theory pre-

dicts the dependence. Let us consider the same situation w <
h� k ¼ 2pc=x (metallic capacitor) in two cases, perfect

electric conductor as a metal (diffraction theory) and sub-

skin-depth Drude metal (theory of this paper, skin depth is

about 250 nm at 0.1 THz).

In the approximation of the perfect conductor, the skin

depth is infinitely small and the electric current density excited

by the incident plane wave flows along the metallic surface,

j ¼ J0exðdðz� h=2Þ þ dðzþ h=2ÞÞ, where J0 is constant pro-

portional to the magnetic field at the metallic interface, dðzÞ is

the Dirac delta function, ex is the unit vector along the x axis.

Then the conservation of the electric charge for monochro-

matic excitation results in the charge at the slit edge

q ¼ � c

ix

ð
� ix

c
q

� �
dV ¼ � c

ix

ð
rjdV ¼ � c

ix

þ
jnds:

The normal vector n is orthogonal to the interface every-

where except the slit edges (n ¼ ex), hence we get

q ¼ � cJ0b

ix

ðh=2

�h=2

ðdðz� h=2Þ þ dðzþ h=2ÞÞdz ¼ � 2cJ0b

ix
;

where b is the slit dimension along the y axis. Dividing by the

area of the slit edge bh determines the surface density rPEC

¼ 2icJ0=ðxhÞ, which gives us the electric field in the slit as

EPEC ¼ 4prPEC ¼
8picJ0

xh
: (15)

In this simple model, we indeed observe the inverse thick-

ness dependence in accordance with Refs. 17 and 18.

In the sub-skin-depth regime of the Drude model of the

metal, the electric current is approximately homogeneously

distributed (because the electric field in the metal is homoge-

neous24) and is equal to j ¼ j0ex. Therefore, the charge col-

lected at the edge of the slit takes the form

q ¼ � c

ix

ð
j0ds ¼ � 2cj0bh

ix
; (16)

while the surface charge density equals rD ¼ 2icj0=x. Then

the electric field in the slit

ED ¼ 4prD ¼
4picj0

x
(17)

does not depend on the thickness. Thus, the thickness de-

pendence is a consequence of the applied metal model.

B. Transmission through an array of slits

It is interesting to look at transmission of the perforated

metal film, because transmission is the characteristic which

FIG. 3. (a) Enhancement factor G (see Eq. (12)) for different slit widths (compare with numerical simulation in Fig. 6(a)). (b) Enhancement factor for slit-

average field G and field at the slit center Gc, if 2M slits act on the slit under consideration. In the inset, the long periods P approaching to the wavelength are

considered. Enhancement factor versus (c) slit width and (d) metal thickness.
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can be directly calculated numerically or measured in experi-

ments. To calculate transmission through the array of slits,

we homogenize the metal film with cuts. Knowing the effec-

tive parameters transmission through the film with an array

of slits will be easily obtained. First, we define the unit cell

as a parallelepiped with dimensions �P to 0 in the x direc-

tion, �P/2 to P/2 in the y direction, and �h/2 to h/2 in the z
direction, with volume Vcell ¼ P2h.

It is evident that the homogenized material is anisotropic

due to different responses for x-polarized and y-polarized

incident waves. Since we are interested in the transmission

of an x-polarized incident wave, the effective parameters

will be derived specifically for this situation. The electric

field in the slit is the sum of the incident field and the screen-

ing field of the charged metal edges averaged over the slit

EðslÞ ¼ EðincÞ þ hExisl ¼ GEðincÞ; (18)

while the field inside the metal is the sum of the incident

field and the field of the charged edges averaged over the

metal

EðmÞ ¼ EðincÞ þ hEximet: (19)

Then the electric field averaged over the unit cell is

E ¼ p1EðslÞ þ p2EðmÞ; (20)

where p1 ¼ w=P and p2 ¼ 1� w=P are the filling factors of

air and metal, respectively.

The average x-component of the displacement vector in

the metal film can be written in the form

D ¼ p1EðslÞ þ p2emEðmÞ; (21)

where em is the dielectric permittivity of the metal. Both in

the model and simulation, we consider aperture gold films.

Permittivity of gold can be modeled as

�mðxÞ ¼ �1 �
x2

p

xðxþ icÞ ; (22)

with �1 ¼ 1, plasma frequency xp ¼ 1:37� 1016 rad=s, and

collision frequency c ¼ 40:7� 1012 s�1 (see Ref. 20). We do

not consider extremely thin metal films, for which the Drude

model is violated and advanced hydrodynamic model should

be applied.25–27 It should be noted that the field enhancement

and transmission weakly depend on the Drude parameters of

the metal; that is, perfect conductor model can be applied.

Electric field in the slit can be expressed in terms of the

enhancement as EðslÞ ¼ GEðincÞ. x0 is introduced through the

averaging over the metal (see Eq. (9)), therefore, electric

field averaged over the metal takes the form hEximet ¼ 2g
hf ðx; zÞimet ¼ 2gð�2px2

0=x
2
pÞ ¼ �mx2

0n, where we use the

definitions of g and xp. Then expression (19) gives EðmÞ

¼ EðincÞ � mx2
0n=e ¼ ½1� x2

0ðe� 1Þ=x2
p	EðincÞ, where we

introduce the effective metal permittivity

eðxÞ ¼ 1�
x2

p

x2 þ i~cx� x2
0

: (23)

By substituting EðslÞ and EðmÞ into Eq. (21), we arrive at the

dielectric permittivity of the unit cell

ecell ¼ D=E ¼ 1þ 4pj; (24)

where

j ¼ 1

4p

p2ðem � 1Þ½1� x2
0ðe� 1Þ=x2

p	
p1Gþ p2½1� x2

0ðe� 1Þ=x2
p	
: (25)

In the homogenization procedure, the coupling of slits can be

taken into account using the so-called interaction matrix.28

The interaction matrix Ĉ is introduced in terms of the rela-

tion E ¼ �E þ 4pĈP0, where �E is the electric field averaged

over the whole periodic structure, E is the field averaged

over the unit cell (E is its component in the x direction), and

P0 ¼ N0p is the polarization of the medium (N0 ¼ 1=Vcell is

the number of inclusions per unit volume). The interaction

matrix results from the collective action of the dipole

moments p placed in the centers of their unit cells, therefore,

4pĈN0p ¼
P

k 6¼0 Ek. Using the electric field of a dipole

Ek ¼ ð3rkðrkpÞ � r2
k pÞ=r5

k , the interaction matrix can be

determined as follows:

Ĉ ¼ Vcell

4p

X
k 6¼0

3rk 
 rk � r2
k

r5
k

; (26)

where rk 
 rk denotes a dyad (in coordinate notation ða
 bÞij
¼ aibj), k varies from �1 to1. For the 1D array of the slits,

rk ¼ kPex. Then the only important component of the interac-

tion matrix Cxx equals

Cxx ¼
Vcell

2pP3

X
k 6¼0

jkj�3 ¼ P2h

pP3

X1
k¼1

k�3 ¼ fð3Þh
pP

; (27)

where fðxÞ ¼
P1

k¼1 k�x is the Riemann Zeta function.

Thus, the effective permittivity of the periodic array for

the x-polarized incident field takes the form

eef f ¼ 1þ ðð4pjÞ�1 � CxxÞ�1: (28)

Transmission spectra calculated for slabs of different periods

P with effective parameters given by Eq. (28) are shown in

Fig. 4. As well as field enhancement, the spectrum has a pla-

teau and a falling part. For larger frequencies, the metal

becomes transparent and transmission tends to unity. Detailed

analysis of the transmission spectra is given in Sec. IV.

IV. NUMERICAL MODELING OF SLIT ARRAYS

The modeling is performed for gold films (Eq. (22)) of

thickness h¼ 20 nm. Different approaches can be used for

calculations of transmission and enhancement factors. Sim-

ulation of transmission relies heavily on a size of the com-

putational domain because the evanescent field spreads far

away from the perforated metal film. In our transmittance

calculations, the air buffer superposed with space squeez-

ing is taken around 2 to 10 lm, the biggest size being used

for extremely high enhancements generating strong
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evanescent fields. Reliable calculations of G are based on a

fine enough discretization near the slit and the domain can

be reduced further down to 1:5 lm in favor of sub-

nanometer grid step.

For both periodic and isolated slit structures, the buffer

layers along the z-direction start right after the metal slab

boundary and are squeezed with the z/(1 � z) function, one

third of them is covered by the perfectly matched layers

(PMLs). For isolated slits, the same buffers are used also

along the x-direction where the squeezing includes metal

plates. When calculating extra-narrow slits, e.g., w¼ 10 nm,

integration of the field along the air gap was substituted by a

point value of the field in the center of the aperture (see Fig.

2(e) with uniform field in the narrow slit).

A. 10-nm-wide slit in gratings of different periods

In Fig. 5(a), we plot frequency dependence of the enhance-

ment factor for a grating. Slit width w¼ 10 nm is kept constant

while the period is changed from 20 nm to 100 lm in a quasi-

logarithmic way. Thus, a broad variety of periods is examined

and for each period from Fig. 5(a) there exists low-frequency

range in which the simple static model works well. A constant

enhancement G¼P/w is found with high precision for any ra-

tio P/w from 2 up to extreme 104. The flat-enhancement behav-

ior ends up with approaching the Rayleigh-Wood condition

k ¼ P.

The transmission through a grating with varying period is

shown in Fig. 5(b). At low frequencies, we see full transmis-

sion in agreement with static model. In the domain of flat

enhancement, short THz and sub-THz pulses can be perfectly

transmitted, experiencing the same enhancement in the near

field of the gratings. The transmission has a stronger frequency

dependence than the enhancement, meaning that it starts

decreasing at frequencies approximately two orders of magni-

tude lower than the Rayleigh-Wood anomaly. For example,

for the large enhancement G¼ 2000, fR�W ¼ 15 THz and

roughly at 1 THz, the enhancement plateau breaks, while T
starts to decrease at even lower frequencies of about 0.1 THz.

For applications demanding a strong electric field (for nonlin-

ear interactions), high transmission is inessential and can be

sacrificed in favor of extended frequency range of large

enhancement factor G.

FIG. 4. Evolution of transmission spectra with period P for thin metal films

(w¼ h¼ 20 nm). Spectra are calculated for the homogenized material with

dielectric permittivity (28).

FIG. 5. (a) Field enhancement and (b) transmittance of 10-nm-wide slits cut

in a 20-nm-thick film versus frequency for different grating periods P
(FDFD simulation). The enhancements in the quasi-static limit are chosen to

be G ¼ A� 10B, where A changes from 2 to 10 and B from 0 to 3 (increment

is 1 both for A and B). The period of the grating is P¼wG. (c) The depend-

ence of the enhancement on the dimensionless parameter k=w for a single

slit (h¼ 20 nm). Each line is obtained by varying k at some slit width w, so

that a total of 23 curves are plotted for a set of 23 slit widths (taking values

between 10 nm and 2:9� 103 nm). For all the curves, the incident wave-

length k is changed from 2:9� 103 nm to 2:9� 1010 nm corresponding to

the frequency range between 10�5 and 102 THz:
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To compare the behavior of an isolated slit and a peri-

odic grating, we plot the enhancement spectrum for a single

slit of width w¼ 10 nm (red line in Fig. 5(a)). Since the

increase of the period P raises the enhancement factor G, the

periodic structure cannot accumulate a larger charge and cre-

ates a stronger field than an isolated slit (P!1). This

behavior is indeed seen in Fig. 5(a): the envelope formed by

the enhancements in the periodic structures of different peri-

ods (blue line) almost coincides with the single slit curve

(red line). Our analysis implies that for periodic structures,

there are two regimes: k� P with total transmission and

frequency-independent field enhancement P/w (electrostatic

approximation, when all slits operate cooperatively) and

k � P (cooperative action of slits comes apart and each slit

interacts with light rather as a separate scatterer).

The field in the single slit–capacitor is proportional to

the potential difference at the slit edges and inversely propor-

tional to the width w. This suggests us to operate with the

dimensionless parameter k=w when we trace enhancement in

the single slit for several slit widths in Fig. 5(c). Curve fitting

for k=w > 104 reveals that the enhancement P/w scales

approximately as ðk=wÞ0:93
, i.e., very close to linear scaling.

No limits in rising the field in the slit is seen: extremely

high enhancements of 108 are achieved at MHz frequencies.

The strong fields can damage the nanoslits, and mechanical

destruction can be considered as a limiting factor. For

k=w < 100, the deviation from simple proportionality is

more pronounced because slit dimensions become compara-

ble to the incident wavelength and the capacitor approxima-

tion breaks.

Our simulations of 10 to 100 nm thick films with periodic

or isolated slits (P!1) confirmed virtual independence of

the enhancement on the slab thickness. However towards the

optical range with faster field oscillations, a weak dependence

of G on the slab thickness might take place.

B. Changing slit width in gratings with P520 lm

Here, we investigate how the variation of the slit width

affects the field enhancement. We fix the period of the gold

grating P ¼ 20 lm and scan over different aperture widths.

Such a value of period allows to cover the major part of THz

range with very high enhancement. The widths are chosen

such that in the electrostatic approximation, they provide

enhancement factor of 50 to 1000. The rule is quite simple:

the narrower the slit, the bigger the field focusing effect. Fig.

6(a) demonstrates that electrostatic approximation with

enhancement G¼P/w again works very well for a broad

range of slit widths up to 400 nm wide opening. We see that

flat enhancement zone size slightly changes from curve to

curve, because the period is not changed and the Rayleigh-

Wood anomaly is expected at the same frequency for differ-

ent w. The threshold frequency between frequency independ-

ent and frequency dependent enhancement factors can be

estimated from the intersection of the P/w horizontal with

the ðk=wÞ0:93
line describing the single slit. This gives a very

weak dependence of threshold frequency on w while the pe-

riod P plays a key role. Note that in the case of ðk=wÞ law

for a single slit, threshold frequency would not depend on w.

Thus, if higher enhancement is required without significant

reduction of the flat zone, it is better implemented by reduction

of the slit width. Total transmission observed in Figs. 5(b) and

6(b) at low frequencies agrees with previous experimental

results,19 where very long slits were analyzed and clear fea-

tures of broadband performance were detected. This also

resolves some of the speculations about connection between

periodicity and transparency in the perforated films.31

FIG. 6. (a) Enhancement G and (b) transmittance T in gratings with perio-

dicity P ¼ 20 lm and varying slit width w¼P/G given by the following ap-

proximate set of numbers in nm: 400.0, 200.0, 100.0, 66.7, 50.0, 40, 33.3,

28.6, 25.0, 22.2, and 20.0, which correspond to enhancements 50 and 100 to

1000 with the increment 100 within the plateau zone (FDFD simulation). (c)

Detailization of several curves for the enhancement from (a) on a logarith-

mic scale. Lines with open circles correspond to the enhancement in isolated

slits of the same widths as indicated in the legend.
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In Fig. 6(c), we plot the transition region from the flat

enhancement to the Rayleigh-Wood anomaly for the periodic

slits and compare it to the enhancement in isolated slits of

the same width. Although the curves display similar trends,

different laws for the enhancement clearly show up: simple

1/f dependence for the single slits and a somewhat more

complicated behavior for periodic arrays.

V. DISCUSSIONS AND CONCLUSIONS

The results of Sec. IV for aperture gold films can be

reproduced by employing the perfect electric conductor

(PEC) model of metal instead of gold. The PEC model can

emulate plasmonic behavior: surface bound modes8 or in an

other terminology, spoof plasmons,29 were shown to contrib-

ute to the EOT phenomena in perforated PEC films. Since

metals at long wavelengths can be reasonably described as

dispersionless perfect conductors, the condition for excita-

tion of surface bound modes is the same in a wide range of

frequencies, resulting in a flat, broadband field enhancement

in the slits.

An incident s-polarized wave has a cutoff wavelength

and its transmission is strongly suppressed at THz frequen-

cies. However, additional cuts perpendicular to the slit can

drastically change s-wave transmission30 indicating the rele-

vance also for polarization other than p if the metal film is

perforated in a suitable manner.

In conclusion, we have discussed the huge non-resonant

field enhancement of the electric field in the slit arrays,

which dimensions are much smaller than the wavelength.

For a single slit, the retardation effects affecting electrons

lead to an increase of their effective collision frequency

and, as a consequence, to an inverse frequency dependence

of the field enhancement. The behavior of periodic arrays of

slits is explained by non-resonant plasmonic oscillations.

Here, we have obtained a simple law for the enhancement

factor G¼P/w which depends only on the grating period P
and the slit width w. It is remarkable that enhancement is

not influenced by changes of the metal thickness and fre-

quency variations over a wide range. We have proposed a

microscopic model to describe the physics behind the dis-

cussed phenomena. The model is able to predict both field

enhancement and transmission starting from an equation of

motion of the individual electrons and can be applied for the

homogenization of metamaterials.32 The combination of

controllable field concentration and total transmission paves

the way for usage of metallic gratings for improvement of

THz sources, detectors and sensors, as broadband polarizers

and essentially for terahertz spectroscopy33,34 and modula-

tion applications.35
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APPENDIX A: ELECTRIC FIELD OF A CHARGED
STRIP

A plane facet of a semi-infinite metal slab is a strip of

width h positioned at x ¼ x0 and infinite in the y-direction.

Assume elementary electric charges gdy0dz0 are homogene-

ously distributed on the surface of the strip with surface

charge density g. We assign each of such charges coordinates

(x0; y0; z0) to calculate electric field Ex of such strip, which

is necessary for the estimation of enhancement factor G
(e.g., see Eq. (1)). An elementary charge produces electric

field dEx ¼ gdy0dz0 cos u=r2 at point P(x, y, z), where r ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy� y0Þ2 þ ðz� z0Þ2

q
and u ¼ arccosððx�

x0Þ=rÞ is the angle to project the electric field vector onto the

x axis. Thus, the total electric field in the point P is a super-

position of all contributions from elementary charges

Ex ¼
ð1
�1

ðh=2

�h=2

gdy0dz0ðx� x0Þ
r3

: (A1)

Changing variable y0 by q as y0 ¼ yþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2þðz� z0Þ2

q
tanq we get to

Ex ¼
ðp=2

�p=2

ðh=2

�h=2

g cos qdqdz0ðx� x0Þ
ðx� x0Þ2 þ ðz� z0Þ2

: (A2)

Calculating the integral over q and changing the second vari-

able as z0 ¼ zþ ðx� x0Þtanw we arrive at

Ex ¼ 2g arctan
h=2� z

x� x0

� �
þ arctan

h=2þ z

x� x0

� �� �
: (A3)

APPENDIX B: FIELD ENHANCEMENT IN QUASISTATIC
REGIME

We consider a periodic array of slits with large periods

P� w; h in the quasistatic approximation (x0 �
ffiffiffiffiffiffi
~cx
p

� x).

Then in Eq. (13), we neglect the sum over j and terms x2 and

ix~c in the denominator, so that Eq. (13) is reduced to

Gc ¼ 1þ
2x2

p

px2
0

arctan
h

w

� ������
�����: (B1)

Frequency x0, Eq. (9), is defined by the double integration

of function f, Eq. (5). The difference of inverse tangent func-

tions in Eq. (5) for w� x;P can be approximated as

arctan
zþ

x� jPþ w=2

� �
� arctan

zþ
x� jP� w=2

� �

� d arctanðzþ=ðx� jPÞÞ
dðx� jPÞ w:

Then the sum of the terms involving zþ (similar z�) and their

integration over x takes the form
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B ¼
ð�w=2

�Pþw=2

X1
j¼�1

arctan
zþ

x� jPþ w=2

� �
� arctan

zþ
x� jP� w=2

� �� �
dx

¼ w
X1

j¼�1

ð�jP�w=2

�Pð1þjÞþw=2

d arctanðzþ=nÞ
dn

dn ¼ w
X1

j¼�1
arctan

zþ
ð1þ jÞP� w=2

� �
� arctan

zþ
jPþ w=2

� �� �
:

The sum from j ¼ �1 to �2 can be presented as

X�2

j¼�1
arctan

zþ
ð1þ jÞP

� �
� arctan

zþ
jP

� �� �

¼
X�1

j¼�1
arctan

zþ
jP

� �
�
X�2

j¼�1
arctan

zþ
jP

� �
¼ �arctan

zþ
P

� 	
:

(B2)

In the similar way, it is possible to calculate the sum from

j¼ 1 to 1, which results in �arctanðzþ=PÞ again. Writing

down the two remain summands of the whole sum B as

X0

j¼�1

arctan
zþ

ð1þ jÞP

� �
� arctan

zþ
jP

� �� �

¼ 2 arctan
zþ
P

� 	
� 2 arctan

zþ
w=2

� �

we finally derive B ¼ �2 arctanð2zþ=wÞ.
Performing in the similar form with the sum of the terms

containing z� and using z6 ¼ h=26z, we eventually obtain

x2
0 ¼

x2
pw

pPh

ðh=2

�h=2

arctan
h=2þ z

w=2

� �
þ arctan

h=2� z

w=2

� �� �
dz:

(B3)

For small 2z=w� 1, we can apply the Taylor expansion

arriving at the z-independent principle term in the integrand

2 arctanðh=wÞ. Thus

x2
0 ¼ ð2x2

pw=pPÞarctanðh=wÞ: (B4)

By substituting x2
0 into Eq. (B1), we obtain Gc ¼ P=w (2).

We would like to point out that condition 2z=w� 1 is

applied here for performing analytical calculation only. Nu-

merical evaluation of the original expressions for the G-(12)

and Gc-factor (13) confirms that formula (2) is the perfect

approximation of the enhancement factor for the periodic

arrays of slits.
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