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Abstract. Feasible tomography schemes for large particle numbers must
possess, besides an appropriate data acquisition protocol, an efficient way
to reconstruct the density operator from the observed finite data set. Since
state reconstruction typically requires the solution of a nonlinear large-scale
optimization problem, this is a major challenge in the design of scalable
tomography schemes. Here we present an efficient state reconstruction scheme
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for permutationally invariant quantum state tomography. It works for all common
state-of-the-art reconstruction principles, including, in particular, maximum
likelihood and least squares methods, which are the preferred choices in
today’s experiments. This high efficiency is achieved by greatly reducing
the dimensionality of the problem employing a particular representation of
permutationally invariant states known from spin coupling combined with
convex optimization, which has clear advantages regarding speed, control
and accuracy in comparison to commonly employed numerical routines. First
prototype implementations easily allow reconstruction of a state of 20 qubits in
a few minutes on a standard computer.
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1. Introduction

Full information about the experimental state of a quantum system is naturally highly desirable
because it enables one to determine the mean value of each observable and thus also of every
other property of the quantum state. Abstractly, such a complete description is given, for
example, by the density operator, a positive semidefinite matrix ρ with unit trace. Quantum state
tomography [1] refers to the task to determine the density operator for a previously unknown
quantum state by means of appropriate measurements. Via the respective outcomes, more and
more information about the true state generating the data is collected up to the point where this
information uniquely specifies the particular state. Quantum state tomography has successfully
been applied in many experiments using different physical systems, including trapped ions [2]
or photons [3], as prominent instances.

Unfortunately, tomography comes with a very high price due to the exponential scaling
of the number of parameters required to describe composed quantum systems. For an N -qubit
system the total number of parameters of the associated density operator is 4N

− 1 and any
standard tomography protocol is naturally designed to determine all these variables. The
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most common scheme used in experiments [4] consists of locally measuring in the basis
of all different Pauli operators and requires an overall amount of 3N different measurement
settings with 2N distinct outcomes each. Other schemes, e.g. using an informationally complete
measurement [5] locally, would require just one setting but, nevertheless, the statistics for 4N

give different outcomes. Hence the important figure of merit to compare different methods is
given by the combination of settings and outcomes.

For such a scaling, the methods rapidly become intractable, already for present state-of-
the-art experiments: recording, for example, the data of 14 trapped ions [6], currently the record
for quantum registers, would require about 150 days, although 100 measurement outcomes
can be collected for a single setting in only about 3 s. In photonic experiments this scaling
is even worse because count rates are typically much lower; for example, in recent eight-photon
experiments [7, 8], a coincidence of single click events occurs only on the order of minutes;
hence, it would require about 7 years to collect an adequate data set. This directly shows that
more sophisticated tomography techniques are mandatory.

New tomography protocols equipped with better scaling behaviour exploit the idea that
the measurement scheme is explicitly optimized only for particular kinds of states rather than
for all possible ones. If the true unknown state lies within this designed target class, then
full information about the state can be obtained with much less effort, and if the underlying
density operator is not a member, then a certificate signals that tomography is impossible in
this given case. Recent results along this direction include tomography schemes designed for
states with a low rank [9–11], particularly for important low rank states such as matrix product
[12, 13] or multi-scale entanglement renormalization ansatz states [14]. Other schemes include
a tomography scheme based on information criteria [15, 16] or—the topic of this paper—states
with permutation invariance [17].

However, it needs to be stressed that in any real experiment all these tomography
schemes must cope up with another, purely statistical challenge: since only a finite number
of measurements can be carried out in any experiment, one cannot access the true probabilities
predicted by quantum mechanics pk = tr(ρtrue Mk), operator Mk describing the measurements,
but merely relative frequencies fk . Although these deviations might be small, the approximation
fk ≈ pk causes severe problems in the actual state reconstruction process, i.e. the task to
determine the density operator from the observed data. If one naı̈vely uses the frequencies
according to Born’s rule fk = tr(ρ̂lin Mk) and solves for the unknown operator ρ̂lin, then, apart
from possible inconsistencies in the set of linear equations, the reconstructed operator ρ̂lin 6> 0 is
often not a valid density operator anymore because some of its eigenvalues are negative. Hence,
in such cases, this reconstruction called linear inversion delivers an unreasonable answer. It
should be kept in mind that the inconsistencies can also be due to systematic errors, e.g. if the
true measurements are aligned wrongly relative to the respective operator representation, but
such effects are typically ignored [18].

Therefore, statistical state reconstruction relies on principles other than linear inversion.
In general, these methods require the solution of a nonlinear optimization problem, which is
much harder to solve than just a system of linear equations. For large system sizes this becomes,
besides the exponential scaling of the number of settings and outcomes, a second major problem,
again due to the exponential scaling of the number of parameters of the density operator. In
fact for the current tomography record of eight ions in a trap [2], this actual reconstruction
took even longer than the experiment itself (one week versus a couple of hours). Hence,
feasible quantum state tomography schemes for large systems must, in addition to an efficient
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measurement procedure, also possess an efficient state reconstruction algorithm; otherwise they
are not scalable.

In this paper, we develop a scalable reconstruction algorithm for the proposed
permutationally invariant tomography scheme [17]. It works for common reconstruction
principles, including, among others, maximum likelihood and least squares methods. This
scheme becomes possible once more by taking advantage of the symmetry of permutationally
invariant states, which provides an efficient and operational way to store, characterize and
even process those states. This method enables a large dimension reduction in the underlying
optimization problem such that it gets into the feasible regime. The final low dimensional
optimization is performed via nonlinear convex optimization which offers a great advantage in
contrast to commonly used numerical routines, in particular regarding numerical stability and
accuracy. Already a first prototype implementation of this algorithm allows state reconstruction
for 20 qubits in a few minutes on a standard desktop computer.

The outline of the paper is as follows. Section 2 summarizes the background on
permutationally invariant tomography and on statistical state reconstruction. The key method
is explained in section 3 and highlighted via examples in section 4, which are generated by
our current implementation. Section 5 collects all the technical details: the mentioned toolbox,
more notes about convex optimization, additional information about the pretest or certificate
and the measurement optimization, both addressed for large qubit numbers. Finally, in section 6
we conclude and provide an outlook on directions for further research.

2. Background

2.1. Permutationally invariant tomography

Permutationally invariant tomography has been introduced as a scalable reconstruction protocol
for multi-qubit systems in [17]. It is designed for all states of the system that remain invariant
under all possible interchanges of its different particles. Abstractly, such a permutationally
invariant state ρPI of N qubits can be expressed in the form

ρPI = [ρ]PI =
1

N !

∑
p∈SN

V (p) ρ V (p)†, (1)

where V (p) is the unitary operator which permutes the N different subsystems according to the
particular permutation p and the summation runs over all possible elements of the permutation
group SN . Many important states, such as the Greenberger–Horne–Zeilinger states or Dicke
states, fall within this special class.

As shown in [17], full information on such states can be obtained by using in total
(

N+2
N )= (N 2 + 3N + 2)/2 different local binary measurement settings, while for each setting

only the count rates of (N + 1) different outcomes need to be registered. This finally leads to a
cubic scaling in contrast to the exponential scaling of standard tomography schemes.

The measurement strategy that attains this number runs as follows: each setting is described
by a unit vector â ∈ R3 which defines associated eigenstates |i〉a of the trace-less operator â · Eσ .
Each part locally measures in this basis and registers the outcomes ‘0’ or ‘1’, respectively. The
permutationally invariant part can be reconstructed from the collective outcomes, i.e. only the
number of ‘0’ or ‘1’ results at the different parties matters but not the individual site information.

New Journal of Physics 14 (2012) 105001 (http://www.njp.org/)
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The corresponding coarse-grained measurements are given by

Ma
k =

∑
p′

V (p′)|0〉a〈0|
⊗k

⊗ |1〉a〈1|
⊗N−k V (p′)†, (2)

=

(
N

k

) [
|0〉a〈0|

⊗k
⊗ |1〉a〈1|

⊗N−k
]

PI
(3)

with k = 0, . . . , N , and where the summation p′ is over all permutations that give distinct
terms. In total, one needs the above stated number of different settings â. These settings can be
optimized in order to minimize the total variance which provides an advantage in contrast to
random selection.

In addition to this measurement strategy there is also a pretest which estimates the
‘closeness’ of the true, unknown state with respect to all permutationally invariant states
from just a few measurement results [17]. This provides a way to test in advance whether
permutationally invariant tomography is a good method for the unknown state.

Restricting oneself to the permutationally invariant part of a density operator has already
been discussed in the literature: for example, for spins in a Stern–Gerlach experiment [19] or in
terms of the polarization density operator [20–22]. Here, due to the restricted class of possible
measurements, only the permutationally invariant part of, in principle distinguishable, particles
is accessible [21, 22]. This is a strong conceptual difference compared to permutationally
invariant tomography where one intentionally constrains oneself to this invariant part.
Nevertheless, it should be emphasized that the employed techniques are similar.

2.2. Statistical state reconstruction

Since standard linear inversion of the observed data typically results in unreasonable estimates
as explained in the introduction, one employs other principles for actual state reconstruction.
In general, one uses a certain fit function F(ρ) that penalizes deviations between the observed
frequencies fk and the true probabilities predicted by quantum mechanics pk(ρ)= tr(ρMk) if
the state of the system is ρ. The reconstructed density operator ρ̂ is then given by the (often
unique) state that minimizes this fit function,

ρ̂ = arg min
ρ>0

F(ρ); (4)

hence the reconstructed state is precisely the one which best fits the observed data. Since
the optimization explicitly restricts itself to physical density operators this ensures validity of
the final estimate ρ̂ in contrast to linear inversion. Depending on the functional form of the
fit function, different reconstruction principles are distinguished. A list of the most common
choices is provided in table 1.

The presumably best-known and most widely employed method is called the maximum
likelihood principle [23]. Given a set of measured frequencies, fk , the maximum likelihood
state, ρ̂ml, is exactly the one with the highest probability of generating these data. Other common
fit functions, usually employed in photonic state reconstruction, are different variants of least
squares [4, 24] that originate from the likelihood function using Gaussian approximations for the
probabilities. There, this is often called maximum likelihood principle, but we distinguish these,
indeed different, functions here explicitly. Typically, the weights in the least squares function are
set to wk = 1/ fk because fk represents an estimate of the variance in a multinomial distribution,
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Table 1. Common reconstruction principles and their corresponding fit functions
F(ρ) used in the optimization given by equation (4); see text for further details.

Reconstruction principle Fit function F(ρ)

Maximum likelihood [23] −
∑

k fk log[pk(ρ)]

Least squares [24]
∑

k wk[ fk − pk(ρ)]2, wk > 0

Free least squares [4]
∑

k 1/pk(ρ)[ fk − pk(ρ)]2

Hedged maximum likelihood [25] −
∑

k fk log[pk(ρ)] −β log[det(ρ)], β > 0

cf the free least squares principle. However, this leads to a strong bias if the count rates are
extremal; for example, if one of the outcomes is never observed, this method naturally leads to
difficulties. A method to circumvent this is given by the free least squares function [4] or using
improved error analysis for rare events. Let us stress that all these principles have the property
that if linear inversion delivers a valid estimate ρ̂lin > 0, it is also the estimate given by these
reconstruction principles10.

Finally, hedged maximum likelihood [25] represents a method that circumvents low rank
state estimates. Via this, one obtains more reasonable error bars using parametric bootstrapping
methods [26]; for other error estimates, see the recently introduced confidence regions for
quantum states [27, 28]. In principle, many more fit functions are possible, such as generic
loss functions [29], but considering these is beyond the scope of this work.

3. Method

From the above, it is apparent that permutationally invariant state reconstruction requires the
solution of

ρ̂PI = arg min
ρPI>0

F(ρPI) (5)

for the preferred fit function. This large-scale optimization becomes feasible along the following
lines.

Firstly, one reduces the dimensionality of the underlying optimization problem because
one cannot work with full density operators anymore. This requires an operational way to
characterize permutationally invariant states ρPI > 0 over which the optimization is performed,
and additionally, demands an efficient way to compute probabilities pk(ρPI) which appear in the
fit function. Secondly, one needs a method for performing the final optimization. We employ
convex optimization for this.

3.1. Reduction of the dimensionality

This reduction relies on an efficient toolbox to handle permutationally invariant states, which
exploits the particular symmetry. Here we will explain this method and the final structure; for

10 For the least squares fit functions this follows because F = 0 in this case and clearly F > 0 for those functions.
In the case of the likelihood it follows from positivity of the classical relative entropy between probability
distributions.
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more details see section 5.1. These techniques are well proven and established; we employ and
adapt them here for the permutationally invariant tomography scheme such that we finally reach
state reconstruction of larger qubits.

The methods of this toolbox are obtained via the concept of spin coupling that
describes how individual, distinguishable spins couple to a combined system if they become
indistinguishable. Since we deal with qubits we only need to focus on spin-1/2 particles. In
the simplest case, two spin-1/2 particles can couple to a spin-1 system, called the triplet, if
both spins are aligned symmetric, or to a spin-0 state, the singlet, if the spins are aligned anti-
symmetric. Abstractly, this can be denoted as C2

⊗ C2
= C3

⊕ C1. If one considers now three
spins, then of course all spins can point in the same direction giving a total spin-3/2 system.
There is also a spin-1/2 system possible if two particles form already a spin-0 and the remaining
one stays untouched. This can be achieved, however, by more than one possibility, in fact by
two inequivalent choices11, and is expressed by C2

⊗ C2
⊗ C2

= C4
⊕ (C2

⊗ C2).
This scheme can be extended to N spin-1/2 particles to obtain the following decomposition

of the total Hilbert space,

H= (C2)⊗N
=

N/2⊕
j= jmin

H j ⊗K j , (6)

where the summation runs over different total spin numbers j = jmin, jmin + 1, . . . , N/2 starting
from jmin ∈ {0, 1/2}, depending on whether N is even or odd. Here, H j are called the spin
Hilbert spaces with dimensions dim(H j)= 2 j + 1, while K j are referred to as multiplicative
spaces that account for the different possibilities to obtain a spin- j state. They are, generally, of
a much larger dimension, cf equation (22).

Permutationally invariant states have a simpler form on this Hilbert space decomposition,
namely

ρPI =

N/2⊕
j= jmin

p jρ j ⊗
1

dim(K j)
, (7)

with density operators ρ j called spin states and according probabilities p j . Thus a
permutationally invariant density operator only contains non-trivial parts on the spin Hilbert
spaces while carrying no information on the multiplicative spaces. Note, further, that there
are no coherences between different spin states. This means that any permutationally invariant
state can be parsed into a block structure as schematically represented in figure 1. The main
diagonal is made up of unnormalized spin states ρ̃ j = p jρ j/ dim(K j), which appear several
times, the number being equal to the dimension of the corresponding multiplicative space. This
block-decomposition represents a natural way to treat permutationally invariant states and has,
for example, already been employed in the aforementioned related works on permutationally
invariant tomography [19–22] but also in other contexts [30–33].

This structure shows that if we work with permutationally invariant states, we do not need
to consider the full density operator but rather that it is sufficient to deal only with this ensemble

11 More precisely, all states of the form |ψ〉 = V (p)|ψ−
〉 ⊗ |0〉, with p being any possible permutation, are states

of total spin j = 1/2 and projection m = 1/2 to the collective spin operators Ji =
∑3

n=1 σi;n/2, σi;n being the
corresponding Pauli operator on qubit n. However, as can be checked, these states only span a two-dimensional
subspace.
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Figure 1. Block decomposition for a generic permutationally invariant state as
given by equation (7) with ρ̃ j = p jρ j/ dim(K j). Note that we interchanged the
spin- and multiplicative spaces.

of spin states. Therefore we identify from now on

ρPI ⇐⇒ p jρ j , j = jmin, jmin + 1, . . . , N/2. (8)

This provides already an efficient way to store and to visualize such states. More importantly, it
also provides an operational way to characterize valid states, since any permutationally invariant
operator ρPI represents a true state if and only if all these spin operators ρ j are density operators
and p j a probability distribution. This is in contrast to the generalized Bloch vector employed
in the original proposal of permutationally invariant tomography [17] given by equation (52),
which also provides efficient storage and processing of permutationally invariant states, but
where Bloch vectors of physical states are not as straightforward to characterize.

Via this identification one can demonstrate once more the origin of the cubic scaling of
the permutationally invariant tomography scheme. The largest spin state is of dimension N + 1
which requires parameters of the order of N 2 for characterization. Since one has of the order of
N of these states, this results in a cubic scaling.

Fixing the ensemble of spin states as parameterization, it is now necessary to obtain an
efficient procedure to compute the probabilities pa

k (ρPI) for the optimized measurement scheme.
This is achieved as follows: let us first stress that a similar block decomposition to that given by
equation (7) holds for all permutationally invariant operators. Hence also the measurements Ma

k
given by equation (2) can be cast into this form. Using the convention

Ma
k =

N/2⊕
j= jmin

Ma
k, j ⊗ 1 (9)

leads to

tr(ρPI M
a
k )=

N/2∑
j= jmin

p j tr(ρ j Ma
k, j). (10)

Therefore the problem is shifted to the computation of the spin- j operators Ma
k, j for each

setting â. As we show in proposition 5.2 below, using the idea that measurements can be
transformed into each other by a local operation Ua|i〉 = |i〉a, this provides the relation

Ma
k, j = W a

j Me3
k, j W

a,†
j . (11)
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Here Me3
k, j corresponds to the measurement in the standard basis (that need to be computed once)

and W a
j is a unitary transformation determined by the rotation Ua. This connection is given by

Ua = exp

(
−i
∑

l

tlσl/2

)
H⇒ W a

j = exp

(
−i
∑

l

tl Sl, j

)
, (12)

where Sl, j stands for the spin operators in dimension 2 j + 1. This finally provides an efficient
way to compute probabilities.

3.2. Optimization

As a second step one still needs to cope up with the optimization itself. Although there are
different numerical routines for statistical state reconstruction like maximum likelihood [34]
or least squares [4, 35], we prefer nonlinear convex optimization [36] to obtain the final
solution. Quantum state reconstruction problems are known to be convex [35, 37], but convex
optimization has hardly been used for this task. However, convex optimization has several
advantages: first of all it is a systematic approach that works for any convex fit function,
including maximum likelihood and least squares. In contrast to other algorithms such as the
fixed-point algorithm proposed in [34], it gives a precise stopping condition via an appropriate
error control (see, however, [38]) and still exploits all the favourable, convex, structure in
comparison with re-parameterization ideas as in [4]. Moreover, it is guaranteed to find the
global optimum and the accuracy obtained is typically much higher than that obtained with
other methods.

Quantum state reconstruction as defined via equation (4) can be formulated as a convex
optimization problem as follows: all fit functions listed in table 1 are convex on the set of
states. Via a linear parameterization of the density operator ρ(x)= 1/ dim(H)+

∑
xi Bi , using

an appropriate operator basis Bi such that normalization is fulfilled directly, the required
optimization problem becomes

min
x

F[ρ(x)]
(13)

s.t. ρ(x)=
1

dim(H)
+
∑

i

xi Bi > 0,

with a convex objective function F(x)= F[ρ(x)] and a linear matrix inequality as the
constraint, i.e. precisely the structure of a nonlinear convex optimization problem [36].
For permutationally invariant states, one uses ρ(x)= ⊕ j ρ̄ j(x) with ρ̄ j = p jρ j by using an
appropriate block-diagonal operator basis Bi ; therefore we continue this discussion with the
more general form.

The optimization given by equation (13) can be performed, for instance, with the help
of a barrier function [36]12. Rather than considering the constrained problem, one solves the
unconstrained convex task given by

min
x

F[ρ(x)] − t log[det ρ(x)], (14)

12 Let us stress that both least squares options can be parsed into a simpler convex problem, called a semidefinite
program, as shown in, for instance, [24, 35], but that this does not work with the true maximum likelihood function
to our best knowledge.
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where the constraint is now directly included in the objective function. This so-called barrier
term acts precisely as its name suggests: if one tries to leave the strictly feasible set, i.e.
all parameters x that satisfy ρ(x) > 0, one always reaches a point where at least one of the
eigenvalues vanish. Since the barrier term is large within this neighbourhood, in fact singular
at the crossing, it penalizes points close to the border and thus ensures that one searches for an
optimum well inside the region where the constraint is satisfied. The penalty parameter t > 0
plays the role of a scaling factor. If it becomes very small the effect of the barrier term becomes
negligible within the strictly feasible set and only remains at the border. Therefore a solution
of equation (14) with a very small value of t provides an excellent approximation to the real
solution. As shown in section 5.2 this statement can be made more precise by

F[ρ(x t
sol)] − F[ρ(xsol)]6 t dim(H), (15)

which follows from convexity and which relates the true solution xsol of the original problem
given by equation (13) to the solution x t

sol of the unconstrained problem with penalty
parameter t . This condition represents the above-mentioned error control and serves as a
stopping condition, i.e. as a quantitative error bound for a given t . Note that for permutationally
invariant tomography dim(H) is not the dimension of the true N -qubit Hilbert space but
instead the dimension of ρ(x)= ⊕ j ρ̄ j(x), i.e.

∑
j= jmin

(2 j + 1)= (N + 1)(N + 2 jmin + 1)/4
which increases only quadratically.

Small penalty parameters are approached by an iterative process: for a given starting point
xn

start and a certain value of the parameter tn > 0, one solves equation (14). Its solution will be
the starting point for xn+1

start = xn
sol for the next unconstrained optimization with a lower penalty

parameter tn+1 < tn. As the starting point for the first iteration, we employ t0 = 1 and the point
x0

start corresponding to the totally mixed state. This procedure is repeated until one has reached
small enough penalty parameters. The penalty parameter is decreased step-wise. Then each
unconstrained problem can be solved very efficiently since one starts already quite close to the
true solution.

Let us point out that via the above-mentioned barrier method, one additionally obtains
solutions to the hedged state reconstruction with β = t since the unconstrained problem given
by equation (14) is precisely the fit function of the hedged version of table 1.

Finally, for comparison purposes, we would also like to mention the iterative fixed-point
algorithm of [39]; for a modification see [40]. It is designed for maximum likelihood estimation
and is straightforward to implement, since it only requires matrix multiplication; however, it has
deficits regarding control and accuracy. For permutationally invariant tomography the algorithm
can be adapted as follows: given a valid iterate ρn

PI characterized by the ensemble of spin states
ρ̄n

j = pn
jρ

n
j , one evaluates the probabilities pa

k (ρ
n
PI) using equation (10). Next, one computes the

operators

Rn
j =

∑
a,k

f a
k

pa
k (ρ

n
PI)

Ma
k, j , (16)

which determine the next iterate ρ̄n+1
j = Rn

j ρ̄
n
j Rn†

j /N with N =
∑

j tr(Rn
j ρ̄

n
j Rn†

j ). This iteration
is started, for example, from the totally mixed state and repeated until a sufficiently good
solution is obtained.
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Figure 2. Trace distance between the analytic solution and the estimate after
n algorithm steps for the three most common reconstruction principles from
table 1.

4. Examples

The two methods from the previous section are employed in a prototype implementation under
MATLAB, which already enables state reconstruction of about 20 qubits on a standard desktop
computer.

The current algorithm is tested along the following lines: for a randomly generated
permutationally invariant state ρ true

PI we compute the true probabilities pa
k,true for the chosen

measurement settings. Rather than sampling we set the observed frequencies equal to this
distribution, i.e. f a

k = pa
k,true. In this way linear inversion would return the original state; hence

also every other reconstruction principle from table 1 has this state as the solution. We now
start the algorithm and compare the trace distance between the analytic solution ρ true

PI and the
state after n iterations ρn

PI. This distance 1
2 tr|ρ true

PI − ρn
PI| quantifies the probability with which

the two states, the true analytic solution and the iterate after n steps in the algorithm, could be
distinguished [41].

A typical representative of this process is depicted in figure 2 for 12 qubits using optimized
settings. The randomly generated state ρ true

PI was chosen to lie at the boundary of the state
space since such rank-reduced solutions better resemble the case of state reconstruction of
real data. More precisely, each spin state of the true density operator is given by a pure
state ρ true

j = |ψ j〉〈ψ j | chosen according to the Haar measure, while the p j are selected by the
symmetric Dirichlet distribution with concentration measure α = 1/2 [42]. As is apparent the
algorithm behaves similarly for all three reconstruction principles and rapidly obtains a good
solution after about 70 iterations. The steps in this plot are points where the penalty parameter
is reduced by a factor of 10 starting from t = 1 and decreased down to t = 10−10. The slight rise
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optimization and the iterative fixed-point algorithm for the described testing
procedure with respect to accuracy and algorithm time.

after these points comes from the fact that we plot the trace distance and not the actual function
(fit function plus penalty term) that is minimized.

Figure 3 shows a similar comparison for the maximum likelihood reconstruction of
20 qubits but now plotted versus algorithm time13. For comparison we include the performance
of the iterative fixed-point algorithm, which requires much more iterations in general (3000 in
this case versus about 90 for convex optimization). Let us emphasize that a similar behaviour
between these two algorithms appears also for smaller qubit numbers. As one can see, convex
optimization delivers a faster and in particular more accurate solution. In contrast, the iterative
fixed-point algorithm shows a bad convergence rate although it initially starts off better. This
was one of the main reasons for us to switch to convex optimization.

The current algorithm times of this test are listed in table 2 which are averaged over
50 randomly generated states. Thus already this prototype implementation enables state
reconstruction of larger qubit numbers in moderate times. The small time difference between
reconstruction principles is because least squares as a quadratic fit function provides some
advantages in the implementation. More details of this difference are given in section 5.

Table 2 also contains the algorithm times for reconstructions using simulated frequencies
f a
k = na

k/Nr. For each setting they are deduced from the count rates na
k sampled from a

multinomial distribution using the true event distribution pa
k,true and Nr = 1000 repetitions. The

true probabilities correspond to the same states as already employed in the algorithm test. From
the table, one observes that state reconstruction for data with count statistics requires only
slightly more time than the algorithm test with the correct probabilities. We attribute this to
the fact that a few more iterations are typically required in order to achieve the desired accuracy.

13 All simulations were performed on an Intel Core i5-650, 3.2 GHz, 8 GB RAM using MATLAB 7.12.
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Table 2. Current performance of the convex optimization algorithm on the
described test procedure and on frequencies from simulated experiments; free
least squares provides similar results to the maximum likelihood principle.

N = 8 N = 12 N = 16 N = 20

Maximum likelihood
Algorithm test 8.5 s 47 s 2.7 min 9.2 min
Simulated experiment 9.2 s 48 s 2.9 min 9.3 min

Least squares
Algorithm test 8.4 s 39 s 2.5 min 6 min
Simulated experiment 9.2 s 43 s 2.7 min 6.7 min

Finally, let us perform the reconstruction of a simulated experiment of N = 14 qubits.
Suppose that one intends to create a Dicke state |Dk,N 〉 as given by equation (26) for some k and
N , but that the preparation suffers from some imperfections such that at best one can prepare
states of the form

ρdicke mix =

N∑
l=0

(
N

l

)
pl(1 − p)N−l

|Dl,N 〉〈Dl,N |, (17)

where p = 0.6 characterizes some asymmetry. As the true state prepared in the experiment we
now model some further imperfection in the form of an additional small misalignment U⊗N ,
with U = exp(−iθσy/2), θ = 0.2, and some permutationally invariant noise σPI (chosen via the
aforementioned method but using Hilbert–Schmidt instead of the Haar measure), i.e.

ρtrue = 0.6 U⊗Nρdicke mixU †⊗N + 0.4 σPI. (18)

The frequencies are obtained via sampling from the state given by equation (18) using
intentionally only Nr = 200 repetitions per setting (to see some differences). Finally, we
reconstruct the state according to the maximum likelihood principle. Figure 4 shows the
tomography bar plots of one of these examples for the largest spin state p jρ j , j = N/2 = 7
for both states. Although this state might be artificial, this example should highlight once more
that this state reconstruction algorithm works also for realistic data and for qubit sizes where
clearly any non-tailored state reconstruction scheme would fail. Moreover, it demonstrates that
the spin ensemble p jρ j represents a very convenient graphical representation of such states
(compared to a 214

× 214 matrix in this case).

5. Details

5.1. Reduction

Let us first give more details regarding the reduction step. This starts by recalling a group
theoretic result summarized in the next section, which is then used to show how the stated
simplifications with respect to states and measurements are obtained.
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Figure 4. The real part of the true and reconstructed (according to maximum
likelihood) largest spin state ensemble p jρ j , j = N/2 = 7 using the optimal
measurement setting. The basis is given by the Dicke basis |Dk,14〉, cf
equation (26).

5.1.1. Background. Consider the following two unitary representations defined on the N qubit
Hilbert space: the permutation or symmetric group V (p) which is defined by their action onto a
standard tensor product basis by V (p)|i1, . . . , iN 〉 = |i p−1(1), . . . , i p−1(N )〉 according to the given
permutation p, and the tensor product representation W (U )= U⊗N of the special unitary group.
A result known as the Schur–Weyl duality [43, 44] states that the action of these two groups is
dual, which means that the total Hilbert space can be divided into blocks on which the two
representations commute. More precisely, one has

(C2)⊗N
=

N/2⊕
j= jmin

H j ⊗K j , (19)

V (p)=

N/2⊕
j= jmin

1 ⊗ V j(p), (20)

W (U )=

N/2⊕
j= jmin

W j(U )⊗ 1. (21)

Here V j and W j are the respective irreducible representations, and jmin ∈ {0, 1/2} depending on
whether N is even or odd. The dimensions of the appearing Hilbert spaces are dim(H j)= 2 j + 1
and

dim(K j)=

(
N

N/2 − j

)
−

(
N

N/2 − j − 1

)
(22)

for all j < N/2 and dim(KN/2)= 1. Let us note that equation (20) already ensures the
block-diagonal structure of permutationally invariant operators, while equation (21) becomes
important for the measurement computation.

A basis of the Hilbert spaceH j ⊗K j is formed by the spin states | j,m, α〉 = | j,m〉 ⊗ |α j〉

with m = − j,− j + 1, . . . , j and α j = 1, . . . , dim(K j). These are obtained by starting with the
states having the largest spin number m = j , which are given by

| j, j, 1〉 = |0〉
⊗2 j

⊗ |ψ−
〉
⊗N/2− j , (23)
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| j, j, α〉 =

∑
p

c j,pV (p)| j, j, 1〉, (24)

for all α > 2. The coefficients c j,p must ensure that the states | j, j, α〉 are orthogonal; otherwise
their choice is completely free since the detailed structure of different α’s is not important. The
full basis is obtained by subsequently applying the ladder operator J− =

∑N
n=1 σ−;n to decrease

the spin number m. Here σ−;n refers to the operator with σ− = (σx − iσy)/2 on the nth qubit and
identity on the rest. Thus in total the basis becomes

| j,m, α〉 =N J j−m
− | j, j, α〉, (25)

with appropriate normalizations N . Note that the subspace corresponding to the highest spin
number j = N/2 is also called the symmetric subspace, which contains many important states
such as the Greenberger–Horne–Zeilinger or Dicke states, which using the spin states read as

|GHZ〉 =
1

√
2

(
|0〉

⊗N + |1〉
⊗N
)
=

1
√

2
(|N/2, N/2, 1〉 + |N/2,−N/2, 1〉), (26)

|Dk,N 〉 =N
[
|1〉

⊗k
⊗ |0〉

⊗N−k
]

PI
= |N/2, N/2 − k, 1〉. (27)

5.1.2. Permutationally invariant states and measurement operators. Let us now employ this
result in order to derive a generic form for permutationally invariant states; we give the proof
for completeness.

Proposition 5.1 (Permutationally invariant states). Any permutationally invariant state of N
qubits ρPI defined via equation (1) can be written as

ρPI =

N/2⊕
j= jmin

p jρ j ⊗
1

dim(K j)
; (28)

hence it is fully characterized by the ensemble p jρ j . Moreover, ρPI is a density operator if and
only if all ρ j are density operators and p j a probability distribution.

Proof. The proposition follows using the representation V (p) given by equation (20) in the
definition of the states, cf equation (1), and then applying Schur’s lemma [43, 44]. This lemma
states that any linear operator A fromK j toKi which commutes with all elements p of the group
Vi(p)A = AV j(p) must either be zero if i and j label different irreducible representations or
A = c1 if they are unitarily equivalent. Since API = 1/N !

∑
p Vi(p)AV j(p)† fulfils this relation,

one obtains
1

N !

∑
p

Vi(p)AV j(p)
†
= δi j tr(A)

1

dim(K j)
. (29)

The normalization can be checked taking the trace on both sides. Adding appropriate identities
provides

1

N !

∑
p

1 ⊗ Vi(p)B1 ⊗ V j(p)
†
= δi j trK j (B)⊗

1

dim(K j)
, (30)

where B should now be a linear operator from H j ⊗K j to Hi ⊗Ki .
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Finally, let Pj denote the projector onto H j ⊗K j , and using equation (30) yields

ρPI =
1

N !

∑
p

V (p)ρV (p)† =

∑
i,i ′, j, j ′

1

N !

∑
p

Pi V (p)Pi ′ρPj V (p)
† Pj ′ (31)

=

∑
i, j

{
1

N !

∑
p

Pi [1 ⊗ Vi(p)]PiρPj [1 ⊗ V j(p)]
† Pj

}
(32)

=

∑
i, j

Pi

[
δi j trK j (PiρPj)⊗

1

dim(K j)

]
Pj (33)

=

⊕
j

trK j (PjρPj)⊗
1

dim(K j)
, (34)

which provides the general structure.
The state characterization part follows because positivity of a block matrix is equivalent to

positivity of each block. ut

Next let us concentrate on the measurement part. Although the block decomposition
follows already from the previous proposition, it is here more important to obtain an efficient
computation of each measurement block for the selected setting.

Proposition 5.2 (Measurement operators). The POVM elements Ma
k as defined in equa-

tion (2) for any local setting â ∈ R3 can be decomposed as Ma
k =

⊕
j Ma

k, j ⊗ 1 with

Ma
k, j = W j(Ua)M

e3
k, j W j(Ua)

†. (35)

The unitary is given by W j(Ua)= exp(−i
∑

l tl Sl, j) using the spin operators Sl, j in dimension
2 j + 1, while the coefficients tl are determined by Ua = exp(−i

∑
l tlσl/2) which satisfies â · Eσ =

UaσzU †
a . For the measurement in the standard basis â = ê3 one obtains

Me3
k, j = | j, N/2 − k〉〈 j, N/2 − k| (36)

if − j 6 N/2 − k 6 j and zero otherwise.

Proof. The basic idea is to consider the measurement in an arbitrary local basis â by a rotation
followed by the collective measurement in the standard basis. The block decomposition is
obtained as follows:

Ma
k = U⊗N

a Me3
k U †⊗N

a = W (Ua)

⊕
j

Me3
k, j ⊗ 1

W (Ua)
† (37)

=

⊕
j

W j(Ua)M
e3
k, j W j(Ua)

†
⊗ 1. (38)

The first step holds because Ua satisfies |i〉a〈i | = Ua|i〉〈i |U †
a , while the block decomposition of

the standard basis measurement Me3
k is employed afterwards. In the last part one uses the tensor

product representation given by equation (21).
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Since one knows that W j is irreducible it can be uniquely written in terms of its Lie algebra
representation dW j as W j(Ua)= W j(e−iX)= e−idW j (X), which is given by the spin operators in
this case, i.e. dW j(σl/2)= Sl, j [45].

Thus we are left to compute the measurement blocks Me3
k, j for the standard basis. Note

it is sufficient to evaluate Me3
k, j ⊗ |1 j〉〈1 j | such that one can employ the spin basis states

| j,m, 1〉 as introduced in section 5.1.1. At first, note that Me3
k exactly contains k projections

onto |0〉, while each basis state | j,m, 1〉 possesses (N/2 + m) zeros. Therefore one obtains
Me3

k, j | j,m, 1〉 ∝ δk,N/2+m| j,m, 1〉. Since each POVM has to resolve the identity this is only
possible if each Me3

k, j is the stated rank-1 projector on the basis states. ut

Finally one still needs to express Ua = exp(−i
∑

l tlσl/2) for the chosen setting â ∈ R3.
Since this can be related to a familiar rotation [45] these coefficients can be expressed as
tl = (θ n̂)l via a rotation about an angle θ around the axis n̂. Since this rotation should turn
ê3 into â, its parameters are given by

n̂ =
ê3 × â

‖ê3 × â‖2
, (39)

θ = arccos(ê3 · â), (40)

and n̂ = ê1 (or any other orthogonal vector) if â = ±ê3.

5.2. Convex optimization

In this part, we collect some more details of the described convex optimization algorithm; for
complete coverage see the book [36].

Each unconstrained optimization given by equation (14) is solved via a damped Newton
algorithm. The minimization of f (x)= F[ρ(x)] − t log[det ρ(x)] is obtained by an iterative
process. In order to determine a search direction at a given iterate xn, one minimizes the
quadratic approximation

f (xn +1x)≈ f (xn)+ ∇ f (xn)T1x + 1
21x T

∇
2 f (xn)1x . (41)

This reduces to solving a linear set of equations called the Newton equation

∇
2 f (xn)1xnt = −∇ f (xn), (42)

which determines the search direction 1xnt. The step length s for the next iterate xn+1
=

xn + s1xnt is chosen by a backtracking line search. Here one picks the largest s = maxk∈N β
k

with β ∈ (0, 1) such that the iterate stays feasible ρ(xn+1) > 0 and that the function value
decreases sufficiently, i.e. f (xn+1)6 f (xn)+αs∇ f (xn)T1xnt with α ∈ (0, 0.5). The process is
stopped if one has reached an appropriate solution, which can be identified by ‖∇ f (xn)‖26 ε.
If the initial point xstart is already sufficiently close to the true solution then the whole algorithm
converges quadratically, i.e. the precision gets doubled at each step.

At this point, let us give the gradient and Hessian of the appearing functions. For the barrier
term ψ(x)= − log[det ρ(x)] restricted to the positive domain ρ(x)= 1/ dim(H)+

∑
i xi Bi>0,

one obtains [36]

∂ψ(x)

∂xi
= − tr[ρ(x)−1 Bi ], (43)
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∂2ψ(x)

∂x j∂xi
= tr[ρ(x)−1 B jρ(x)

−1 Bi ]. (44)

Equation (44) shows that the Hessian of the penalty term ∇
2ψ(x) > 0 is positive definite,

such that ψ(x) is indeed convex. The derivatives of the preferred fit function can be computed
directly. For instance, using the likelihood function Fml(x)= −

∑
k fk log pk(x) with pk(x)=

tr[ρ(x)Mk], they read

∂Fml(x)

∂xi
= −

∑
k

fk

pk(x)
tr(Bi Mk), (45)

∂2 Fml(x)

∂x j∂xi
=

∑
k

fk

p2
k(x)

tr(B j Mk)tr(Bi Mk). (46)

The bottleneck of such an algorithm is the actual computation of the second derivatives.
Although the expansion coefficients of each measurement tr(B j Mk) can be computed in
advance, it is still necessary to compute equation (46) anew at each point x due to the
dependence of pk(x). With respect to that, the least squares fit function bears a great advantage
since its Hessian is constant, i.e. ∂ j∂i Fls(x)= 2

∑
k wktr(B j Mk)tr(Bi Mk), such that one saves

time on this part.
Finally, let us comment on the optimality conditions, known as the Karush–Kuhn–Tucker

conditions [36]. A given x? is the global solution of the convex problem given by equation (13)
if and only if14 there exists an additional Lagrange multiplier Z ? (as given in the equations
beneath) such that the pair (x?,3?) satisfies

∂

∂xi
F(x?)− tr[3?Bi ] = 0, ∀i, (47)

3? > 0, ρ(x?)> 0, (48)

tr[3?ρ(x?)] = 0. (49)

Given the solution x t
sol of the corresponding unconstrained problem with penalty parameter t ,

it follows from ∇ f (x t
sol)= 0 using equation (43) that the gradient conditions are satisfied with

3t = tρ(x t
sol)

−1 being the Lagrange multiplier. This pair (x t
sol,3t) also satisfies equation (48);

only the duality gap condition tr[3tρ(x t
sol)] = t dim(H) > 0 does not hold exactly. However,

this quantity appears in the following inequality:

F(x t
sol)− tr[3tρ(x

t
sol)] = min

x :ρ(x)>0
F(x)− tr[3tρ(x)] (50)

6 min
x :ρ(x)>0

F(x)= F(xsol). (51)

Here one used that x t
sol is the solution of F(x)− tr[3tρ(x)] because the gradient vanishes

(and the solution is not at the border), and tr[3tρ(x)]> 0 for the inequality. This is the stated
accuracy given by equation (15) which relates the function value of x t

sol to the true solution xsol.

14 Sufficiency holds under the Slater regularity condition that demands a strictly feasible point ρ(x) > 0, which
naturally holds for state reconstruction problems.
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5.3. Additional tools

5.3.1. Optimization of measurement settings. Measurement settings, each described by a unit
vector âi ∈ R3 as explained in section 2.1, are chosen to optimize a figure of merit characterizing
how well a given permutationally invariant target state ρtar can be reconstructed. As such a
quality measure we use the sum of errors for the tomographically complete operator set of all
tensor products of Pauli operators. Note that a permutationally invariant state ρPI is already
uniquely determined by its generalized Bloch vector [17] defined as

bklmn = tr
([
σ⊗k

x ⊗ σ⊗l
y ⊗ σ⊗m

z ⊗ 1⊗n
]

PI
ρPI

)
(52)

with natural numbers satisfying k + l + m + n = N . Consequently, the total error of all Bloch
vector elements is given by

E2
total(âi , ρtar)=

∑
k,l,m,n

(
N

k, l,m, n

)
E2

bklmn
(âi , ρtar), (53)

where the multinomial coefficient weights the error of each generalized Bloch vector by its
number of appearance in a generic Pauli product decomposition.

The error of each Bloch vector element must now be related to the carried out
measurements. For that, note that each Bloch vector element can be expressed as

bklmn =

∑
i

cklmn
i tr([(âi · Eσ)⊗N−n

⊗ 1⊗n]PIρtar) (54)

using appropriate coefficients cklmn
i and the expectation values of [(âi · Eσ)⊗N−n

⊗ 1⊗n]PI which
can be computed from the coarse-grained measurement outcomes Mai

k of setting âi as given by
equation (2) using linear combinations. Assuming independent errors, one obtains

E2
bklmn

(âi , ρtar)=

∑
i

cklmn
i E2

ρtar

(
[(âi · Eσ)⊗N−n

⊗ 1⊗n]PI

)
. (55)

The detailed form of the error expression E2
ρtar
([(âi · Eσ)⊗N−n

⊗ 1⊗n]PI) may depend on the actual
physical realization, but we assume the following form:

E2
ρtar

(
[(âi · Eσ)⊗N−n

⊗ 1⊗n]PI

)
= K1ρtar

(
[(âi · Eσ)⊗N−n

⊗ 1⊗n]PI

)
, (56)

where1ρ[A] = tr(ρA2)− [tr(ρA)]2 is the standard variance and K is a state-independent factor.
This form fits well, for example, to the common error model in photonic experiments where
count rates are assumed to follow a Poissonian distribution. For more details of this derivation,
see [17].

For large qubit numbers, N , this optimization is carried out iteratively. Starting from
randomly chosen measurement directions or from vectors which are uniformly distributed
according to some frame potential [46], one searches for updates according to

â′

i =
pân

i + (1 − p)r̂i

‖pân
i + (1 − p)r̂i‖

. (57)

Here ân
i is the current iterate, p < 1 a probability close to 1 and r̂i are randomly chosen unit

vectors. If this new set of directions â′

i leads to a smaller total error E2
total(â

′

i , ρtar) than the
previous set, then these new measurement settings form the next iterate ân+1

i = ân
i ; otherwise

this procedure is carried out once more. This process is repeated until the total error does not
decrease anymore. This way of optimizing the measurements requires a method for computing
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the total error E2
total(âi , ρtar) for a given set of measurements âi . Using the generalized Bloch

vector or the spin ensemble this computation can be carried out again efficiently for larger qubit
numbers N .

Although this algorithm is not proven to attain the true global optimum it is still a
straightforward technique to obtain good settings. In the end this is often sufficient, recalling
that the true unknown state can deviate from the target state and that one considers ‘just’ an
overall single figure of merit. For our simulations we always use the optimized settings for the
totally mixed state; a reasonable guess if no extra information is available [47].

Regarding this point, we finally like to add that if one does not employ the minimal number
of measurement settings, but rather an over-complete set, e.g. four times as many settings but
four times fewer measurements per setting, then the procedure is quite insensitive to the chosen
measurement directions. Hence, in many practical situations the search for optimal directions
might not even be necessary and randomly chosen measurement directions suffice equally well.

5.3.2. Statistical pretest. Via the pretest one estimates the fidelity between the true ρtrue

and the best permutationally invariant state FPI(ρtrue)= maxρPI>0 tr(
√√

ρtrueρPI
√
ρtrue) using

only measurement results from a few settings â ∈ T , e.g. employing only T = {ê1, ê2, ê3}.
Depending on this quantity, one decides on whether permutationally invariant tomography is
worth continuing. As explained in detail in [17], this fidelity can be bounded by

FPI(ρtrue)> [tr(ρtrue Z)]2 (58)

with an operator Z =
∑

za
k Ma

k being built up by the carried out measurements Ma
k given by

equation (2) and satisfying Z 6 Psym, where Psym denotes the projector onto the symmetric
subspace.

The expansion coefficients za
k should be optimized to attain the best lower bound. For a

given target state ρtar this problem can be cast into a semidefinite program [36, 48] that can
be solved efficiently using standard numerical routines. However, for larger qubit numbers one
must again employ the block structure of the measurement operators as given by equation (9) to
handle the operator inequality. Note that the projector on the symmetric subspace has a Block
structure Psym, j = δ j,N/21. Then the final problem reads as

max
z

∑
a∈T,k

za
k tr(ρtar M

a
k )

(59)

s.t.
∑

a∈T,k

za
k Ma

k, j=N/2 6 1,
∑

a∈T,k

za
k Ma

k, j 6 0, ∀ j < N/2.

If one experimentally implements this pretest, one must account for additional statistical
fluctuations. For the chosen Z , one can employ the sample mean Z̄ =

∑
za

k f a
k using the

observed frequencies f a
k = na

k/NR in NR repetitions of setting â, as an estimate of the true
expectation value tr(ρtrue Z). This sample mean Z̄ will fluctuate around the true mean but
large deviations will become less likely, such that for an appropriately chosen ε the quantity
sign(Z̄ − ε)(Z̄ − ε)2 is a lower bound to the true fidelity at the desired confidence level. The
proof essentially uses the techniques employed in [49, 50].

Proposition 5.3 (Statistical pretest). For any Z =
∑

za
k Ma

k 6 Psym let Z̄ =
∑

za
k na

k/NR

denote the sample mean using NR repetitions for setting â ∈ T . If the data are generated by
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the state ρtrue, then

Prob
[
FPI(ρtrue)> sign(Z̄ − ε)(Z̄ − ε)2

]
> 1 − exp(−2NRε

2/C2
z ) (60)

with C2
z =

∑
a

(
zs

max − zs
min

)2
where za

max/min are the respective optima for setting â over all
outcomes k.

Proof. The given statement follows along

Prob
[
FPI(ρtrue)> sign(Z̄ − ε)(Z̄ − ε)2

]
> Prob

[
tr(ρtrue Z)> Z̄ − ε

]
, (61)

> 1 − Prob
[
tr(ρtrue Z)6 Z̄ − ε

]
> 1 − exp(−2NRε

2/C2
z ). (62)

Here the first inequality holds because the set of outcomes satisfying {na
k : tr(ρtrue Z)> Z̄ − ε}

is a subset of {na
k : FPI(ρtrue)> sign(Z̄ − ε)(Z̄ − ε)2} using equation (58). In the last inequality

we use the Hoeffdings tail inequality [51] to bound Prob[tr(ρtrue Z)6 Z̄ − ε]. ut

Note that this pretest can also be applied after the whole tomography scheme in which
case the projector Psym =

∑
za

k Ma
k becomes accessible. Moreover, let us point out that a strong

statistical significance, or a low ε respectively, might not be achieved with the best expectation
value as given by equation (59) [52]; hence, optimizing Z for a rather mixed state is often better.

Finally, let us remark that the pretest can be improved by additional projectors, see the
supplementary material of [17]. This leads to the bound FPI(ρtrue)>

∑
j p2

j with p j being the
weight of the corresponding spin- j state of the permutationally invariant part of ρtrue as given
in equation (7). From this expression one sees that this test only works well for states having a
rather large weight on one of these spin states. Others, like the totally mixed state, while clearly
being permutationally invariant, are not identified as states close to the permutationally invariant
subspace. This is in stark contrast to compressed sensing where the certificate succeeds for the
whole class of low-rank target states [10].

5.3.3. Entanglement and the MaxLik–MaxEnt principle. Following the last comment from
the previous subsection, we want to argue that even in the case of an inefficient certificate,
permutationally invariant state reconstruction as given by equation (5) is meaningful. Firstly
we would like to emphasize that the permutationally invariant part of any density operator
corresponds to a good representative to investigate the entanglement properties of the true,
unknown state. This is because the transformation given by equation (1) can be achieved by
permutations or multiple swap operations together with classical mixing, whereby entanglement
cannot be created [53]. Thus if the permutationally invariant part of the density operator is
entangled this holds true also for the real state. In addition, any symmetric entanglement
measure, i.e. all commonly known ones, can only decrease under this operation, thereby even
quantification is faithful [54].

Secondly, permutationally invariant state reconstruction also represents the solution of the
maximum-likelihood maximum-entropy principle as introduced in [55], which goes as follows:
if the carried out measurements are not tomographically complete, then there is, in general, not
a single state ρ̂ml that maximizes the likelihood but rather a complete set of them. In order to
single out a ‘good’ representative, the authors of [55] propose to choose the state that has the
largest entropy, which, according to the Jaynes principle [47], is the special state for which one
has the fewest information.
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Proposition 5.4 (Permutationally invariant MaxLik–MaxEnt principle). Using the de-
scribed permutationally invariant tomography scheme, the reconstructed permutationally
invariant state given by equation (5) (with the likelihood function) is also the solution of the
maximum-likelihood maximum-entropy principle.

Proof. Since the measurements given by equation (2) are invariant and tomographically
complete for permutationally invariant states, all density operators with the same spin ensemble
as ρ̂PI have the same maximum likelihood. According to Ref. [47], the state with maximal
entropy and consistent with a given set of expectation values for operators Ma

k has the form
ρ ∝ exp(

∑
a,k λ

a
k Ma

k ). The Lagrange multipliers λa
k ∈ R must be chosen such that the given

expectation values match. However, because all Ma
k are permutationally invariant we can

employ the block decomposition given by equation (9) and finally obtain exp(
∑

a,k λ
a
k Ma

k )=

exp(⊕ j
∑

a,k λ
a
k Ma

k, j ⊗ 1)= ⊕ j exp(
∑a

k λ
a
k Ma

k, j)⊗ 1. Hence we obtain the same structure as
ρ̂PI, which therefore is also the state with maximum entropy. ut

6. Conclusion and outline

In this paper, we have provided all the necessary ingredients to carry out permutationally
invariant tomography [17] in experiments with large qubit numbers. This includes, besides
scheme-specific tasks such as the statistical pretest and the optimization of the measurement
settings, in particular the state reconstruction part. Accounting for statistical fluctuations due
to a finite number of data, this reconstruction demands the solution of a nonlinear large-
scale optimization problem. We achieve this, firstly, by using a convenient toolbox to store,
characterize and process permutationally invariant states, which largely reduces the dimension
of the underlying problem and, secondly, by using convex optimization, which is superior
compared to commonly used numerical routines in many respects. This makes permutationally
invariant tomography a complete tomography method requiring only moderate measurement
and data analysis effort.

There are many questions one may pursue in this direction: firstly, let us stress that
the current prototype implementation is still not optimal. As explained, the bottleneck is
the computation of the second derivatives; hence, we strongly believe that Hessian free
optimization, like quasi-Newton or conjugate gradients [56], or the use of other barrier functions
more tailored to linear matrix inequalities [57] are likely to push the reconstruction limit
further. Secondly, it is natural to try to exploit other symmetries in the development of
‘symmetry’ tomography protocols; that is, tomography should work for all states that remain
invariant under the action of a specific group. Clearly, any symmetry decreases the number
of state-dependent parameters, but the challenge is to devise efficient local measurement
strategies. Interesting classes here are graph-diagonal [58] or, more general, locally maximally
entangleable states [59], translation or shift-invariant states [60], or U⊗N invariant states
[61, 62]. Thirdly, it is worth investigating to what extent particularly designed state tomography
protocols are useful for further tasks, such as process tomography for quantum gates. For
instance, permutationally invariant tomography might be unable to resolve the Toffoli gate [63]
directly, but since the operation on all N target qubits is symmetric, a permutationally invariant
resolution of this subspace (and the additional control qubit) might be sufficient. Finally, let us
point out that permutationally invariant tomography can be further restricted to the symmetric
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subspace, which often contains the desired states. This is reasonable since we have seen that the
pretest is only good if the unknown state has a large weight in one of the spin states. However,
since the symmetric subspace grows only linearly with the number of particles, this tomography
scheme can analyse many more qubits efficiently.
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[2] Häffner H et al 2005 Nature 438 643
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