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Abstract: Robust model predictive control (RMPC) of a class of nonlinear systems is considered
in this paper. We will use Linear Parameter Varying (LPV) model of the nonlinear system. By
taking the advantage of having future values of the scheduling variable, we will simplify state
prediction. Because of the special structure of the problem, uncertainty is only in the B matrix
(gain) of the state space model. Therefore by taking advantage of this structure, we formulate
a tractable minimax optimization problem to solve robust model predictive control problem.
Wind turbine is chosen as the case study and we choose wind speed as the scheduling variable.
Wind speed is measurable ahead of the turbine, therefore the scheduling variable is known for
the entire prediction horizon.

Keywords: Robust model predictive control, linear parameter varying, nonlinear systems, wind
turbines, LIDAR measurements.

1. INTRODUCTION

Model predictive control (MPC) has been an active area
of research and has been successfully applied on different
applications in the last decades (Qin and Badgwell [1996]).
The reason for its success is its straightforward ability to
handle constraints. Moreover it can employ feedforward
measurements in its formulation and can easily be ex-
tended to MIMO systems. However the main drawback of
MPC was its on-line computational complexity which kept
its application to systems with relatively slow dynamics for
a while. Fortunately with the rapid progress of fast compu-
tations, off-line computations using multi-parametric pro-
gramming (Baotic [2005]) and dedicated algorithms and
hardware, its applications have been extended to even very
fast dynamical systems such as DC-DC converters (Geyer
[2005]). Basically MPC uses a model of the plant to predict
its future behavior in order to compute appropriate control
signals to control outputs/states of the plant. To do so, at
each sample time MPC uses the current measurement of
outputs and solves an optimization problem. The result of
the optimization problem is a sequence of control inputs
of which only the first element is applied to the plant and
the procedure is repeated at the next sample time with
new measurements (Maciejowski [2002]). This approach is
called receding horizon control. Therefore basic elements
of MPC are: a model of the plant to predict its future, a
cost function which reflects control objectives, constraints
on inputs and states/outputs, an optimization algorithm
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and the receding horizon principle. Depending on the
type of the model, the control problem is called linear
MPC, hybrid MPC, nonlinear MPC etc. Nonlinear MPC
is normally computationally very expensive and generally
there is no guarantee that the solution of the optimization
problem is a global optimum. In this work we extend
the idea of linear MPC using linear parameter varying
(LPV) systems to formulate a tractable predictive control
of nonlinear systems. MPC problem of LPV systems has
been considered in (Casavola et al. [1999]) and min-max
MPC of LPV systems has been addressed in (Casavola
et al. [2003]), however in this work we use future values
of the scheduling variable to simplify the optimization
problem. To do so, we use future values of a disturbance
to the system that acts as a scheduling variable in the
model. However there are some assumptions that restrict
our solution to a specific class of problems. The scheduling
variable is assumed to be known for the entire prediction
horizon. And the nonlinear dynamics of the system is
determined by the scheduling variable.

2. PROPOSED METHOD

Generally the nonlinear dynamics of a plant could be
modeled as the following difference equation:

xk+1 = f(xk, uk) (1)

With xk and uk as states and inputs respectively. Using
the nonlinear model, the nonlinear MPC problem could be
formulated as:



min
u

p(xN ) +

N−1∑
i=0

q(xk+i|k, uk+i|k) (2)

Subject to xk+1 = f(xk, uk) (3)

uk+i|k ∈ U (4)

x̂k+i|k ∈ X (5)

Where p(xN ) and q(xk+i|k, uk+i|k) are called terminal cost
and stage cost respectively and are assumed to be positive
definite. U and X show the set of acceptable inputs and
states. As it was mentioned because of the nonlinear
model, this problem is computationally too expensive.
One way to avoid this problem is to linearize around
an equilibrium point of the system and use linearized
model instead of the nonlinear model. However for some
plants assumption of linear model does not hold for long
prediction horizons. Because the plant operating point
changes for example based on some disturbances that act
as a scheduling variable. An example could be a wind
turbine for which wind speed acts as a scheduling variable
and changes the operating point of the system.

2.1 Linear MPC formulation

The problem of linear MPC could be formulated as:

min
u0,u1,...,uN−1

‖xN‖Qf +

N−1∑
i=0

‖xk+i|k‖Q + ‖uk+i|k‖R (6)

Subject to xk+1 = Axk +Buk (7)

uk+i|k ∈ U (8)

x̂k+i|k ∈ X (9)

Assuming that we use norms 1, 2 and ∞ the optimization
problem becomes convex providing that the sets U and X
are convex. Convexity of the optimization problem makes
it tractable and guarantees that the solution is the global
optimum. The problem above is based on a single linear
model of the plant around one operating point. However
below we formulate our problem using linear parameter
varying systems (LPV) in which the scheduling variable is
known for the entire prediction horizon.

2.2 Linear Parameter Varying systems

Linear Parameter Varying (LPV) systems are a class
of linear systems whose parameters change based on a
scheduling variable. Study of LPV systems was motivated
by their use in gain-scheduling control of nonlinear systems
(Apkarian et al. [1995]). LPV systems are able to handle
changes in the dynamics of the system by parameter
varying matrices.

Definition (LPV systems) let k ∈ Z denote discrete
time. We define the following LPV systems:

xk+1 = A(γk)xk +B(γk)uk (10)

A(γk) =

nγ∑
j=1

Ajγk,j B(γk) =

nγ∑
j=1

Bjγk,j (11)

Which A(γk) and B(γk) are functions of the scheduling
variable γk. The variables xk ∈ Rnx , uk ∈ Rnu , and γk ∈
Rnγ are the state, the control input and the scheduling
variable respectively.

2.3 Problem formulation

Using the above definition, the linear parameter varying
(LPV) model of the nonlinear system is of the following
form:

x̃k+1 = A(γk)x̃k +B(γk)ũk (12)

This model is formulated based on deviations from the
operating point. However we need the model to be formu-
lated in absolute values of inputs and states. Because in
our problem the steady state point changes as a function
of the scheduling variable, we need to introduce a variable
to capture its bahavior. In order to rewrite the state space
model in the absolute form we use:

x̃k = xk − x∗k (13)

ũk = uk − u∗k (14)

x∗k and u∗k are values of states and inputs at the operating
point. Therefore the LPV model becomes:

xk+1 = A(γk)(xk − x∗k) +B(γk)(uk − u∗k) + x∗k+1 (15)

Which could be written as:

xk+1 = A(γk)xk +B(γk)uk + λk (16)

with

λk = x∗k+1 −A(γk)x∗k −B(γk)u∗k (17)

Now having the LPV model of the system we proceed to
compute state predictions. In linear MPC predicted states
at step n is:

xk+n = Anxk +

n−1∑
i=0

AiBuk+(n−1)−i

for n = 1, 2, . . . , N

(18)

However in our method the predicted state is also a func-

tion of scheduling variable Γn = (γk+1, γk+2, . . . γk+n)
T

for n = 1, 2, . . . , N − 1 and we assume that the scheduling
variable is known for the entire prediction. Therefore the
predicted state could be written as:

xk+1(γk) = A(γk)xk +B(γk)uk + λk (19)

And for n ∈ Z, n ≥ 1:

xk+n+1(Γn) =

(
n∏
i=0

AT (γk+i)xk

)T

+

n−1∑
j=0

(
n−j∏
i=1

AT (γk+i)

)T
B(γk+j)uk+j

+

n−1∑
j=0

(
n−j∏
i=0

AT (γk+i)

)T
λk+(n−1)−j

+B(γk+n)uk+n + λk+n

(20)

Using the above formulas we write down the stacked
predicted states which becomes:

X = Φ(Γ)xk +Hu(Γ)U + Φλ(Γ)Λ (21)

with

X = (xk+1 xk+2 . . . xk+N )
T

(22)

U = (uk uk+1 . . . uk+N−1)
T

(23)

Γ = (γk γk+1 . . . γk+N−1)
T

(24)

Λ = (λk λk+1 . . . λk+N−1)
T

(25)



In order to summarize formulas for matrices Φ,Φλ and
Hu, we define a new function as:

ψ(m,n) =

(
m∏
i=n

AT (γk+i)

)T
(26)

Therefore the matrices become:

Φ(Γ) =


ψ(1, 1)
ψ(2, 1)
ψ(3, 1)

...
ψ(N, 1)



Φλ(Γ) =


I 0 0 . . . 0

ψ(1, 1) I 0 . . . 0
ψ(2, 1) ψ(2, 2) I . . . 0

...
...

...
. . .

...
ψ(N − 1, 1) ψ(N − 1, 2) ψ(N − 1, 3) . . . I



Hu(Γ) =


B(γk) 0 . . . 0

ψ(1, 1)B(γk) B(γk+1) . . . 0
ψ(2, 1)B(γk) ψ(2, 2)B(γk+1) . . . 0

...
...

. . .
...

ψ(N − 1, 1)B(γk) ψ(N − 1, 2)B(γk+1) . . . B(γN−1)


After computing the state predictions as functions of con-
trol inputs, we can write down the optimization problem
similar to a linear MPC problem as a quadratic program.

3. MINIMAX PROBLEM

3.1 Minimax for Linear Model

MPC uses a model of the system (to be controlled) to
predict its future behavior. In nominal MPC the prediction
of the state (x̂k+N |k) is a single value and it is calculated
based on one model. However in robust MPC where the
model is uncertain, this prediction is no longer a unique
value, but it is a set instead. An approach to tackle the
problem with uncertain model is to try to optimize the
most pessimistic situation with respect to uncertainties.
This means maximizing cost function on the uncertainty
set. After maximization, we minimize the obtained cost
function over control inputs as we do in nominal MPC.
This approach is called minimax MPC which is a common
solution to robust MPC problems (Löfberg [2003]). The
special structure of our problem (having uncertainty only
in the gain of the system) can help us simplifying the
minimax MPC problem. Therefore we formulate robust
MPC of our system in the form of minimax MPC of a
system with uncertain gain (Löfberg [2003]):

xk+1 = Axk +B(∆k)uk (27)

yk = Cxk +Duk (28)

We have employed norm-bounded uncertainty (Boyd et al.
[1994]) to model our system:

B(∆k) = B0 +Bp∆kCp, ∆k ∈∆ (29)

∆ = {∆ : ‖∆‖ ≤ 1} (30)

And as the B matrices are dependent on γ, we have:

B(γk,∆k) = B0(γk) +Bp(γk)∆kCp(γk), ∆k ∈∆ (31)

∆ = {∆ : ‖∆‖ ≤ 1} (32)

With norm-bounded uncertain model of the system, we
can formulate the minimax MPC with quadratic perfor-
mance and soft constraints on inputs in the following form:

min
u

max
∆

∑N−1

j=0
‖yk+j|k‖2Q + ‖uk+j|k‖2R+

‖υk+j|k‖2S1
+ ‖ξk+j|k‖2S2

subject to x̂k+1|k = Ax̂k|k +B(∆k)uk

ŷk|k = Cx̂k|k +Duk

uk+j|k ≤ Umax + υk+j|k

uk+j|k ≥ Umin − υk+j|k

∆uk+j|k ≤ ∆Umax + ξk+j|k

∆uk+j|k ≥ ∆Umin − ξk+j|k

ηk+j|k ≥ 0

ξk+j|k ≥ 0

In order to simplify notations, we use stacked variables.
The stacked output predictions, control sequences and
auxiliary variables become:

U =
(
uk|k uk+1|k . . . uk+N−1|k

)T
(33)

∆U =
(
∆uk|k ∆uk+1|k . . . ∆uk+N−1|k

)T
(34)

Y =
(
ŷk|k ŷk+1|k . . . ŷk+N−1|k

)T
(35)

Ξ =
(
ξk|k ξk+1|k . . . ξk+N−1|k

)T
(36)

Υ =
(
υk|k υk+1|k . . . υk+N−1|k

)T
(37)

Φx(Γ) = (Cψ(1, 0) Cψ(1, 1) . . . Cψ(1, N − 1))
T

(38)

Which gives:

min
U

max
∆N

Y TQY+UTRU + ΥTS1Υ + ΞTS2Ξ (39)

subject to U ≤ Umax + Υ (40)

U ≥ Umin −Υ (41)

∆U ≤ ∆Umax + Ξ (42)

∆U ≥ ∆Umin − Ξ (43)

Υ ≥ 0 (44)

Ξ ≥ 0 (45)

Where:

Y = Φx(Γ)x̂k|k−1 +Hu(Γ)U + Φλ(Γ)Λ (46)

Hu(Γ) = H0
u(Γ) +H∆

u (Γ,∆N ) (47)

∆N = (∆1 ∆2 . . . ∆N )
T

(48)

And

H0
u(Γ) =

CB(γk) 0 . . . 0
Cψ(1, 1)B(γk) CB(γk+1) . . . 0
Cψ(2, 1)B(γk) Cψ(2, 2)B(γk+1) . . . 0

...
...

. . .
...

Cψ(N − 1, 1)B(γk) Cψ(N − 1, 2)B(γk+1) . . . CB(γN−1)


(49)

In above, Y is uncertain and depend on ∆N . Our next
task is to eliminate uncertainties from our optimization
problem. To do so, we pull out the ∆ variables. We start
by writing the stacked output vector Y in the following
form and then use theorem 1 to pull out the uncertainties:

Y =Φx(Γ)x̂k|k−1 + Φλ(Γ)Λ +H0
u(Γ)U

+
∑N

j=1
Vj∆jWjU, ∆j ∈∆

(50)



V1 = (CBp(γk) Cψ(1, 1)Bp(γk) . . . Cψ(N − 1, 1)Bp(γk))
T

V2 = (0 CBp(γk+1) . . . Cψ(N − 2, 2)Bp(γk+1))
T

...

VN = (0 0 0 . . . CBp(γk+N−1))
T

W1 = (Cp(γk+1) 0 . . . 0)
T

W2 = (0 Cp(γk+1) . . . 0)
T

...

WN = (0 0 . . . Cp(γk+1))
T

Now we pull out the first uncertain element (∆1) from Y
in the LMI constraint. To do so we define the following
variable:

γi = Φx(Γ)x̂k|k−1 + Φλ(Γ)Λ +H0
u(Γ)U

+
∑N

j=i
Vj∆jWjU, i = 1, . . . , N

(51)

And afterwards we have:
t γT2 UT ΥT ΞT

? Q−1 0 0 0
? ? R−1 0 0
? ? ? S−1

1 0
? ? ? ? S−1

2

+


UTWT

1
0
0
0
0

∆T
1


0
V1

0
0
0


T

+


0
V1

0
0
0

∆1


UTWT

1
0
0
0
0


T

� 0

(52)

After pulling out the first uncertain element, we use the
following theorem to find its equivalent certain LMI:

Theorem 1. robust satisfaction of the uncertain LMI:

F + L∆(I −D∆)−1R+RT (I −∆TDT )−1∆TLT � 0

is equivalent to the LMI[
F L
LT 0

]
�
[
R D
0 I

]T [
τI 0
0 −τI

] [
R D
0 I

]
τ ≥ 0

Using theorem 1, it could be seen that the above LMI is
equivalent to the following LMI:

t γT2 UT UTWT
1 ΥT ΞT

? Q−1 0 0 0 0
? ? R−1 0 0 0
? ? ? 0 0 0
? ? ? ? S−1

1 0
? ? ? ? ? S−1

2



�


0 0
V1 0
0 0
0 I
0 0
0 0


(
τ1I 0
0 −τ1I

)


0 0
V1 0
0 0
0 I
0 0
0 0


T

(53)

Which is equivalent to:


t γT2 UT UTWT

1 ΥT ΞT

? Q−1 − τ1V1V
T
1 0 0 0 0

? ? R−1 0 0 0
? ? ? τ1I 0 0
? ? ? ? S−1

1 0
? ? ? ? ? S−1

2

 � 0 (54)

We pulled out ∆1, and now we repeat the same procedure
until we pull out all the uncertainties ∆i for i = 2, . . . , N .
Afterwards we apply Schur complement to write the final
LMI in the form of smaller LMIs. Finally the optimization
problem can be written in the following form:

min
t,τ,U

tx + tu + tυ +
∑N−1

j=0
tj

subject totx x̂
T
k|k−1Φx(Γ)T + Φλ(Γ)Λ + UTH0

u(Γ)T

? Q−1 −
N−1∑
j=0

τjVjV
T
j

 � 0

(
tu UT

? R−1

)
� 0

(
tυ ΥT

? S−1

)
� 0

(
tj U

TWT
j

? τjI

)
� 0 I

−I
Ψ
−Ψ

U −

 Umax + Υ
−Umin + Υ

∆Umax + I0uk−1 + Ξ
−∆Umin − I0uk−1 + Ξ

 ≤ 0

τj ≥ 0 Υ ≥ 0 Ξ ≥ 0

(55)

We have used SeDuMi (Sturm [1999]) to solve this opti-
mization problem. SeDuMi is a program that solves opti-
mization problems with linear, quadratic and semidefinite
constraints.

4. CASE STUDY

The case study here is a wind turbine. Wind turbine
control is a challenging problem as the dynamics of the
system change based on wind speed which has a stochastic
nature. The method that we propose here is to use wind
speed as a scheduling variable. With the advances in
LIDAR technology (Harris et al. [2006]) it is possible to
measure wind speed ahead of the turbine and this enables
us to have the scheduling variable of the plant for the entire
prediction horizon.

4.1 Modeling

In this section modeling of a wind turbine is explained. For
detailed explanation on the modeling see (Mirzaei et al.
[2012a]).

Nonlinear model For modeling purposes, the whole wind
turbine can be divided into 4 subsystems: Aerodynamics
subsystem, mechanical subsystem, electrical subsystem
and actuator subsystem. To model the whole wind turbine,
models of these subsystems are obtained and at the end
they are connected together. The dominant dynamics of
the wind turbine come from its flexible structure. Several
degrees of freedom could be considered to model the
flexible structure, but for control design mostly just a
few important degrees of freedom are considered. In this
work we only consider two degrees of freedom, namely
the rotational degree of freedom (DOF) and drivetrain



torsion. Nonlinearity of the wind turbines mostly comes
from its aerodynamics. Blade element momentum (BEM)
theory (Hansen [2008]) is used to numerically calculate
aerodynamic torque and thrust on the wind turbine. This
theory explains how torque and thrust are related to wind
speed, blade pitch angle and rotational speed of the rotor.
Having aerodynamic torque and modeling drivetrain with
a simple mass-spring-damper, the whole system equation
with 2 degrees of freedom becomes:

Jrω̇r = Qr − c(ωr −
ωg
Ng

)− kψ (56)

(NgJg)ω̇g = c(ωr −
ωg
Ng

) + kψ −NgQg (57)

ψ̇ = ωr −
ωg
Ng

(58)

Pe = Qgωg (59)

In which Qr is aerodynamic torque, Jr and Jg are rotor
and generator moments of inertia, ψ is the drivetrain
torsion, c and k are the drivetrain damping and stiffness
factors respectively lumped in the low speed side of the
shaft and Pe is the generated electrical power. For numer-
ical values of these parameters and other parameters given
in this paper, we refer to (Jonkman et al. [2009]).

Linearized model To get a linear model of the system
we need to linearize around some operating points. In our
two DOFs model only the aerodynamic torque (Qr) and
electric power (Pe) are nonlinear. Taylor expansion is used
to linearize them. Uncertainty in the measured wind speed
and also in pitch actuator leads to uncertainty in the B
matrix, yet the A matrix is known with enough accuracy.
For more details on the uncertain state space model
see (Mirzaei et al. [2012b]). Collecting all the discussed
models, matrices of the state space model become:

A(γ) =


a(γ)− c
Jr

c

Jr
− k

Jr
c

NgJg
− c

N2
g Jg

k

NgJg
1 −1 0

 C =

(
1 0 0
0 1 0
0 Qg0 0

)

(60)

B(γ, δ) =

b1(γ, δ) 0

0 − 1

Jg
0 0

 D =

(
0 0
0 0
0 ωg0

)
(61)

In which x = (ωr ωg ψ)
T

, u = (θ Qg)
T

and y =

(ωr ωg Pe)
T

are states, inputs and outputs respectively.
In the matrix B, parameter b1 is uncertain. Therefore the
uncertain linear state space model becomes:

ẋ = A(γ)x+B(γ,∆)u

y = Cx+Du

4.2 Control objectives

The most basic control objective of a wind turbine is to
maximize captured power during the life time of the wind
turbine. This means trying to maximize captured power
when wind speed is below its rated value. This is also
called maximum power point tracking (MPPT). However
when wind speed is above rated, control objective becomes

Table 1. Performance comparison between gain
scheduling approach and linear MPC

Parameters Proposed approach Linear MPC

SD of ωr (RPM) 0.042 0.103
SD of Pe (Watts) 4.158× 104 9.975× 104

Mean value of Pe (Watts) 4.998× 106 4.998× 106

SD of pitch (degrees) 2.781 3.005
SD of shaft moment (kNM) 295.26 482.49

regulation of the outputs around their rated values while
trying to minimize dynamic loads on the structure. These
objectives should be achieved against fluctuations in wind
speed which acts as a disturbance to the system. In this
work we have considered operation of the wind turbine in
above rated (full load region). Therefore we try to regulate
rotational speed and generated power around their rated
values and remove the effect of wind speed fluctuations.

5. SIMULATIONS

In this section simulation results for the obtained con-
trollers are presented. The controllers are implemented
in MATLAB and are tested on a full complexity FAST
(Jonkman and Jr. [2005]) model of the reference wind
turbine (Jonkman et al. [2009]). Simulations are done with
realistic turbulent wind speed, with Kaimal model (iec
[2005]) as the turbulence model and TurbSim (Jonkman
[2009]) is used to generate wind profile. In order to stay in
the full load region, a realization of turbulent wind speed
is used from category C of the turbulence categories of
the IEC 61400-1 (iec [2005]) with 18m/s as the mean
wind speed. Control inputs which are pitch reference θin
and generator reaction torque reference Qin along with
system outputs which are rotor rotational speed ωr and
electrical power Pe are shown in figures 1-4. Sampling
time and prediction horizon are chosen to be 0.1 and 10
respectively. Uncertainty is multiplicative and chosen to be
%20 of the nominal value. Simulation results show good
regulations of generated power and rotational speed. Table
1 shows a comparison of the results between the proposed
approach and MPC with linearization at each sample point
(Henriksen [2007]). As it could be seen from the table, the
proposed approach gives better regulation on rotational
speed and generated power (smaller standard deviations)
than MPC, while keeping the shaft moment and pitch
activity less. In all the figures 1-4 x-axis is time in seconds.
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Fig. 1. Blade-pitch reference (degrees, red-dashed line
is linear MPC and solid-blue line is the proposed
approach)
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Fig. 2. Generator-torque reference (kNM, red-dashed line
is linear MPC and solid-blue line is the proposed
approach)
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Fig. 3. Rotor rotational speed (ωr, rpm, red-dashed line
is linear MPC and solid-blue line is the proposed
approach)
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Fig. 4. Electrical power (mega watts, red-dashed line
is linear MPC and solid-blue line is the proposed
approach)

6. CONCLUSIONS

A method for dealing with robust MPC of nonlinear sys-
tems whose scheduling variable is known for the entire
prediction horizon is proposed. The method is used for
wind turbine control and the results are compared with a
linear MPC that uses linearized model of the system at
each sample time. Stability of the closed loop and recur-
sive feasibility of the optimization problem are important
issues that will be dealt with in future.
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