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Abstract—Traditionally, CMUTs are modelled using the
isotropic plate equation and this leads to deviations between
analytical calculations and FEM simulations. In this paper, the
deflection profile and material parameters are calculated using
the anisotropic plate equation. It is shown that the anisotropic cal-
culations match perfectly with FEM while an isotropic approach
causes up to 10% deviations in deflection profile. Furthermore,
we show how commonly used analytic modelling methods such as
static calculations of the pull-in voltage and dynamic modelling
through an equivalent circuit representation can be adjusted to
include the correct anisotropic behaviour by using an effective
flexural rigidity. The anisotropic caluclations are also compared
to experimental data from actual CMUTs showing an error of
maximum 3%.

I. INTRODUCTION

Capacitive micromachined ultrasonic transducers (CMUT)
are a promising alternative to piezoelectric transducers and
receive considerable attention due to their advantages such
as wider bandwidth, higher sensitivity, ease of array fabri-
cation and integration [1], [2]. Analytical and finite element
calculations are important for efficient design of CMUTs and
much has been put into modelling the behavior of the CMUT
using mostly lumped element calculations [1] or finite element
modelling [3]. Currently, the analytical approach to modelling
the CMUT is based on the isotropic plate equation from which
the deflection profile w(x, y) can be obtained.

With the fusion bonding fabrication technology [4], the plate
usually consists of crystalline silicon which is an anisotropic
material. This leads to differences between analytical deflec-
tion profiles calculated with the isotropic plate equation and
deflection profiles calculated by finite element programs that
uses the correct anisotropic approach.

In this paper, the performance of CMUTs will be ana-
lytically calculated using the correct anisotropic approach.
Utilising the anisotropic plate equation with fixed boundary
conditions, the exact solution for the deflection profile can be
obtained. The anisotropic solution is compared to the isotropic
solution and FEM simulations. By combining the isotropic
and anisotropic deflection profiles an effective flexural rigidity
can be found. Using this, the pull in condition is found
for a generalised case through energy considerations and the
resonance frequency is found by lumped element modelling
and compared to measurements. The objective is thus to show
that using the anisotropic plate equation gives results matching
FEM simulations and to demonstrate how this can easily be
implemented into commonly used methods for calculating the
performance of CMUTs.

II. THE ISOTROPIC PLATE EQUATION

In some cases, the CMUT devices have a thin plate made
of an isotropic material, such as silicon nitride, and the
static deflection profile, w(x, y), is calculated by solving the
isotropic plate equation [5]
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where p is the applied pressure difference across the plate and
the flexural rigidity is given by

Di =
E

12 (1− ν2)
h3 (2)

where E is the Young’s modulus, ν is the Poisson’s ratio,
and h is the thickness of the plate. The plate equation is then
solved using appropriate boundary conditions.

The plate material, however, is not always isotropic. Crys-
talline silicon is an anisotropic material with a diamond cubic
crystal structure. For plates made on silicon (111) substrates,
Young’s modulus and Poisson’s ratio are constant and the
isotropic plate equation can be used. However, for other silicon
substrates, such as silicon (001) and silicon (011), Young’s
modulus and Poisson’s ratio are strongly anisotropic, and (1)
and (2) are therefore no longer valid.

III. THE ANISOTROPIC PLATE EQUATION

The differential equation for the deflection, w(x, y), of a
thin, anisotropic plate exposed to a uniform load p is [6]
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and ĉpq are the elements of the reduced stiffness tensor
in the plate coordinate system (using the engineering strain
convention) given by [6]

ĉpq = c′pq −
c′p3c

′
3q

c′33

(5)

Here, c′ij are the elements of the stiffness tensor in the plate
coordinate system.

By aligning the plate coordinate system to the crystal-
lographic coordinate system the expressions in (4) can be



TABLE I
ROOM TEMPERATURE (300K) STIFFNESS COEFFICIENTS FOR

CRYSTALLINE SILICON [7].

c11 c12 c44
165.6 GPa 63.9 GPa 79.5 GPa

Fig. 1. Cross sectional view of CMUT cell with applied voltage.

expressed through the stiffness coefficients of silicon shown
in Table I [7].

For a thin circular plate on a (100) substrate, we obtain

k1 = k3 = 0 (6)

k2 =
2c12

c11 + c12
+

4c11c44

c211 − c212

= 2.81 (7)

k4 = 1 (8)
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h3 = 11.75 GPa · h3 (9)

The solution to (3) for a circular plate of radius a fixed at
the boundary is easily obtained using polar coordinates. The
deflection at a point a distance r from the center is given by
[5]

w(r) = w0

(
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( r
a

)2
)2

(10)

This equation is similar to the deflection profile for the
isotropic case, however, the center deflections are different

w0,isotropic =
1

64
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Fig. 1 shows a cross sectional view of a CMUT cell with an
applied voltage with parameters shown.

By equating (11) and (12) and isolating Di it is possible to
find an effective flexural rigidity

Deff =
3 + k2 + 3k4

8
Dh (13)

This can be used to change from the isotropic equation to
the anisotropic equation in commonly used analytical models
of CMUTs. Examples of this will be shown in the following
sections.

Fig. 2 shows the normalised deflection profiles, using (10)
to (12), of a CMUT exposed to a pressure difference. Using
Young’s modulus and Poisson’s ratio along the [100] direction
(E100=130 GPa, ν100=0.278) gives the solid green curve and
using Young’s modulus and Poisson’s ratio along the [110]
direction (E110=169 GPa, ν110=0.062) gives the dashed blue
curve. The anisotropic solution is shown as a dotted red curve

Fig. 2. Normalised deflection profile of a thin circular plate of silicon (001)
as calculated by (10), (12), (11) and FEM.The anisotropic profile is on top
of the FEM simulations.

and is on top of the FEM simulation shown for comparison.
The FEM simulations were performed in COMSOL 4.2a
using the full anisotropic stiffness tensor. Excellent agreement
between the anisotropic solution and the finite element calcu-
lation is seen. The figure also shows that Young’s modulus and
Poisson’s ratio corresponding to [100] or [110] directions leads
to errors in the center deflection of around 10%. To reduce this
error, it is common practice to use mean values of Young’s
modulus and Poission’s ratio (Eave=148 GPa, νave=0.177)
which decreases the error to around 1.5%. However, using the
anisotropic approach gives the exact result. The error between
the anisotropic calculation and FEM is less than 0.3%.

IV. ANALYTICAL MODELLING

As mentioned previously, the behavior of CMUTs are in
most cases modelled using lumped element analysis or finite
element analysis. In the following, an analytical model for
CMUTs based on energy and force considerations will be
presented. By investigating the energies of the system it is
possible to estimate pull-in voltage and distance [8]. This ap-
proach also applies when using the anisotropic plate equation
and an example will be given in the end of the section.

The total potential energy of the plate, Ut, has three terms

Ut = Up + Ue + Us (14)

where Up is the energy associated with pressure, Ue is the
electrostatic energy due to the capacitor and Us is the strain
energy stored in the deflected plate. Equation (10) is the solu-
tion to the plate equation when a uniform pressure is applied.
The electrostatic pressure is not uniform but as observed by
[8] it is a very good approximation.

The energy contribution from the pressure difference is
calculated as the work performed (i.e. force times length, here
pressure times area times length) when deflecting the plate

Up = −
∫ a

0

2πprwdr = −1

3
a2pπw0 (15)



The electrostatic energy for an applied voltage V is given
by

Ue = −1

2
CtV

2 (16)

where the total capacitance Ct is given from the capacitance
of the plate Cpl and of the insulating oxide Cox

The potential energy associated with the plate acting as a
spring is given by
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The flexural rigidity appears in this equation, making it pos-
sible to switch between isotropic and anisotropic cases.

By taking the derivative of the total potential energy with
respect to the center deflection, the total equivalent force on
the center of the plate can be found
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where g is the gap distance. The stable position of the plate
is found when Ft = 0. Thus, this equation can in principle
be solved numerically to obtain the center deflection w0 for a
given design (C0, g, a, Deff ) and operating conditions (V and
p).

V. PULL IN VOLTAGE

To simplify the calculation, we normalise by using the
following expressions

x00 =
pa4
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x00 is the normalised deflection due to the external pressure,
x0 is the normalised center deflection, kox is the ratio of
capacitances at zero voltage and VA is the normalised applied
voltage. This way (18) becomes
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The pull in voltage VPI and the pull in point xPI of the
CMUT cell can be found from the expression of the force
as ∂Ftn/∂x0 = 0 and Ftn = 0 apply. By isolating VA in the
first equation and substituting this result into the second, xPI

can be obtained and then afterwards VPI.
For the special case where both the oxide thickness and

the applied pressure is zero, the pull in distance becomes
xPI = 0.46. For a parallel plate capacitor, this distance is

TABLE II
PULL IN VOLTAGES AND RESONANCE FREQUENCIES FOR THE SPECIAL

CASE OF ZERO APPLIED PRESSURE AND ZERO OXIDE THICKNESS.

VPI ω0 (0 V)
Anisotropic 179 V 9.6 MHz
Isotropic [001] 172 V 9.1 MHz
Isotropic [011] 188 V 10.0 MHZ
Isotropic average 179 V 9.5 MHz

xPI,parallel = 1/3. With the corrected pull in distance, the
pull in voltage becomes

VPI =

√
89.4459Deffg

2

a2C0
(21)

To compare calculations using the isotropic and anisotropic
approaches, the pull in voltage for the special case (21) is
found and shown in Table II. The calculation is performed
with a = 20 µm, h = 1 µm and g = 0.5 µm. A difference
of more than 10 V is observed so using different parameters
for the calculations can make a considerable difference in the
expected pull in voltage. Using the average values for Young’s
modulus and Poisson’s ratio gives a result close to the correct
anisotropic result.

VI. RESONANCE FREQUENCY

When modelling the dynamic behaviour of transducers, such
as CMUTs, it is common practice to set up a lumped parameter
equivalent circuit representation [9], [10], [11], [1]. Using the
center displacement of the CMUT plate, w0, and the equivalent
charge on the plate, Q, as state variables, the state equations
of the system are given by (18) and the three relations V =
Q/Ct, i = dQ/dt and v = dw0/dt. The system can then be
linearized around a bias point (w0,b, Qb) by using the Jacobian
of the system [11], [9], [10][

dV
dFt

]
=

 ∂V
∂Q

∣∣∣
w0,b,Qb

∂V
∂w0

∣∣∣
w0,b,Qb

∂Ft

∂Q

∣∣∣
w0,b,Qb

∂Ft

∂w0

∣∣∣
w0,b,Qb

[ dQ
dw0

]
(22)

The linearized system can then be transformed into the
complex frequency domain by Lapace transform. Denoting the
matrix in (22) as A, we get the following in the frequency
domain[

dV
dFt

]
= A

[
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[
1
sdi
1
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]
= B

[
di
dv

]
(23)

The lumped system components, the transformer factor and
the coupling coefficient of the transducer can then easily be
extracted from the matrix B [11]. The effective mass of the
plate is attached to the terminals of the mechanical domain
to complete the equivalent circuit as shown in Fig. 3, where
k∗ is the spring constant including spring softening. The
effective mass is found through the relation meff = keff/ω

2
0 ,

where keff = ∂2Us/∂w
2
0 and ω0 is the fundamental resonance

frequency of the plate. The effect on the resonance frequency
of using different flexural rigidities is demonstrated in Table
II. Note that the velocity of the system in this calculation is



Fig. 3. Equivalent circuit diagram for a CMUT.

the velocity of the center of the plate. For correct coupling
to the acoustic domain, a second transformer relation should
be added to the equivalent circuit [9], [10]. Only the coupling
between the electric and the mechanical domain is shown here
for simplicity.

In such an equivalent circuit, the full anisotropic behaviour
of the silicon plate is described by simply using the effective
flexural rigidity as given in (13). This demonstrates that ex-
isting CMUT models can easily be accommodated to include
the actual behaviour of single crystalline silicon plates.

VII. COMPARISON WITH MEASUREMENTS

To see how well the analytical model describes the behavior
of CMUTs, measurements have been performed on fabricated
devices. The impedance was measured with a HP 8752A
network analyzer for varying bias voltages and the resonance
frequency was found from the phase. The measurements were
performed on two types of devices, half of them meant for
phased array imaging with a frequency of 2.6 MHz (a =
24.5 µm, h = 1.5 µm, g = 0.37 µm and tox = 0.21 µm)
and the others for linear array imaging with a frequency of
5 MHz (a = 24.5 µm, h = 1.77 µm, g = 0.29 µm and
tox = 0.21 µm). Fig. 4 shows the resonance frequency as
a function of applied voltage calculated for our two types
of devices (red and green curve, circles). The corresponding
analytical calculations are shown for comparison (blue and
black curves, diamonds). Phased array device has solid curves
and linear array device has dashed curves. The model is seen
to match well with the measurements. The calculated values
for the linear array device (dashed curves) has an average
deviation from the measurements of 3% ± 0.7 while for the
phased array device (solid curves) it is only 2% ± 0.4. The
deviation can be explained by the metal electrode layer on
top of the membrane causing a change in effective mass
and flexural rigidity which is not included in the analytical
calculations.

VIII. CONCLUSION

We have here demonstrated how wafer bonded CMUTs can
be analytically modelled using the full anisotropic properties
of single crystalline silicon. Using this approach, the analytic
plate deflection profile shows excellent correspondence with
FEM calculations. We have used a circular CMUT as an
example to show how the anisotropic behaviour is easily incor-
porated into both static modelling of the pull-in voltage and
dynamic equivalent circuit modelling by simply introducing
an effective flexural rigidity. Using the anisotropic equivalent

4 0 6 0 8 0 1 0 0 1 2 0 1 4 0
5

6

7

8

9

1 0

1 1

1 2

1 3

 

 

 M e a s u r e d ,  L i n e a r  A r r a y
 M e a s u r e d ,  P h a s e d  A r r a y
 T h e o r y ,  L i n e a r  A r r a y
 T h e o r y ,  P h a s e d  A r r a y

Re
so

na
nc

e F
req

ue
nc

y [
MH

z]

B i a s  V o l t a g e  [ V ]

Fig. 4. Resonance frequency vs. applied voltage for measurement on two
different devices and corresponding analytical curves.

circuit model, the resonance frequency as a function of bias
voltage has been compared to measurements on wafer bonded
CMUTs in order to evaluate the accuracy of the model.
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