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A full second-order theory for coupling numerical and physical wave tanks is presented. The ad hoc unified
wave generation approach developed by Zhang et al. [Zhang, H., Schäffer, H.A., Jakobsen, K.P., 2007. Deter-
ministic combination of numerical and physical coastal wave models. Coast. Eng. 54, 171–186] is extended
to include the second-order dispersive correction. The new formulation is presented in a unified form that
includes both progressive and evanescent modes and covers wavemaker configurations of the piston- and
flap-type. The second order paddle stroke correction allows for improved nonlinear wave generation in the
physical wave tank based on target numerical solutions. The performance and efficiency of the new model
is first evaluated theoretically based on second order Stokes waves. Due to the complexity of the problem,
the proposed method has been truncated at 2D and the treatment of regular waves, and the re-reflection
control on the wave paddle is also not included. In order to validate the solution methodology further, a
series of nonlinear, periodic waves based on stream function theory are generated in a physical wave tank
using a piston-type wavemaker. These experiments show that the new second-order coupling theory pro-
vides an improvement in the quality of nonlinear wave generation when compared to existing techniques.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Deterministic models have increasingly been used by coastal engi-
neers for combining numerical and physical wave tanks. Indeed, this
approach allows the numerical model to focus on wave propagation
in the offshore region and the physical model to treat the wave trans-
formation in the near-shore region. Wave generation in the physical
model completely utilizes the calculated wave motions by a suitable
numerical model along with the boundary data connecting the two
models and considers the asymmetry and nonlinearity of the progres-
sive wave. The data transfer between the two models is built upon
real-time nonlinear wave motion instead of stochastic parameters
such as significant wave height and peak period. Consequently, this
approach exploits the advantages of numerical and physical modeling
to provide an improved description of full-scale, realistic engineering
problems.

Initial efforts in this direction include Zhang and Schäffer (2004)
and Zhang and Schäffer (2007) for wave flumes, and Zhang and
Schäffer (2005) for the theoretical aspects in 3D. The most advanced

theory developed for this purpose is referred to as the ad hoc unified
wave generation theory (Zhang et al., 2007), which blends linear,
fully dispersive wavemaker theory with a nonlinear, shallow water
wave generation approach. In this method, the wave paddle control
signal is calculated from a nonlinear shallow wavemaker difference
equation and then corrected with a linear dispersion parameter.
This method has been experimentally verified to be well suited for
generation of small amplitude waves in all water depths and for
nonlinear shallow water waves. The method's performance deterio-
rates however for nonlinear waves in intermediate or deep water.
In order to extend the range of application of this method, Yang et
al. (2011b) proposed a real-time correction method to correct the
error which is produced in the hydrodynamic frameworks and the
mechanical system of wavemaker. However, while the dispersion
correction or the real-time correction in previous studies are based
on linear wavemaker theory, the evanescent modes are not accounted
for in the paddle signals which renders them inadequate for correcting
the high harmonic components which appear when generating highly
nonlinear or relatively deep water waves. Quite recently Yang et al.
(2011a) developed an approximate second-order coupling theory
which pushes the limits of application from shallowwater to relatively
deep water, but this theory did not include the evanescent modes.
Moreover, the previous models collectively ignored the unwanted
spurious free waves in the physical tank. Therefore, in this paper we
introduce a new second-order coupling theory for numerical and
physical wavemodels which includes the evanescent modes. Relevant
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analyses regarding the generation and the corresponding suppression
efficiency of the spurious free waves have also been addressed.

Since the accuracy of a coupling model mainly depends on the as-
sumption of wave paddle motion and the description of the resultant
physical wave field, we are motivated to extend the model to include
second-order wavemaker theory. Second-order wavemaker theory
has a long history of development going back at least to Fontanet
(1961) for regular waves. Ottesen-Hansen et al. (1980), Sand (1982)
and Sand and Donslund (1985) discussed the second-order long wave
generation in the laboratory. Hudspeth and Sulisz (1991) derived the
complete second-order Eulerian theory for waves generated by a
monochromatic wave paddle motion with special emphasis on Stokes
drift and return flow in wave flumes. In addition, Flick and Guza
(1980) and Sulisz and Hudspeth (1993) addressed the effects of spuri-
ous super-harmonic waves. In seeking an explanation of these effects,
Schäffer (1996) derived a complete second-order model including
both sub- and super-harmonics. This full theory successfully predicts
the second-order motion of the wave paddle required to produce a
spatially homogeneous wave field at second order. In this study, we
apply the complete second-order wavemaker theory given by Schäffer
(1996), except that we only consider regular (monochromatic) waves.
The extension to irregular waves is the subject of ongoing work.

In the present model, the first- and second-order solutions for the
wave paddle position are obtained by combining wavemaker theory
with a fully nonlinear, depth-integrated flux based on a numerical
model. This development is based on a classical perturbation ap-
proach combined with Taylor expansion of the boundary conditions
on the free surface, which is formulated in a unifying form that in-
cludes both progressive and evanescent mode and covers wavemaker
configurations of the piston- and flap‐type. Except being restricted
by the inherent limitations of second-order Stokes wave theory, this
theory does not assume the primary waves to be restricted by a narrow
frequency band, shallow water, or small amplitude. With a second-
order dispersion correction and the consideration of evanescent modes
in the control signal, this new formulation allows the physical model
to capture more accurately the high order behavior of nonlinear wave
motion.

The derivation and effectiveness of the new formulation have
been evaluated numerically by considering a theoretical second-
order Stokes wave. To test the limits of the method, we attempt to
generate a wide range of nonlinear waves based on stream function
theory using a piston-type wavemaker and compare with the original
model of Zhang and Schäffer (2007). For better comparison of the ac-
curacy and efficiency of the present model with the previous method,
no attempt is made to consider re-reflection control on the wave pad-
dle, so that all the wavemaker signals are based solely on the calculated
wave paddle position. These experiments show that the newmodel has
a wider range of applicability than existing wave generation methods.

The remainder of this paper is structured as follows. In Section 2
the formulation of the second-order coupling theory are given.
Section 3 describes a recipe for the generation of the complete control

coupling signal including a general procedure of the connection be-
tween the numerical and physicalmodel and the solution of the coupling
difference equation. Section 4 presents a numerical analysis on the
relevant first- and second‐order coupling parameters. Section 5 evalu-
ates the model in terms of the suppression of spurious second-order
free waves and the accuracy and efficiency of the proposed numerical
scheme for solving the coupling equations. Section 6 discusses the
range of application. Experimental validation is provided in Section 7.
Finally, conclusions are drawn in Section 8.

2. Modeling the second-order coupling wave field

2.1. General description

The geometry of the coupling model is illustrated in Fig. 1. The
simulation area is divided into a numerical field Ω1 and a physical
field Ω2. Ω1 represents the far wave field which allows numerical
waves to be generated and propagate into the physical model, and
Ω2 indicates the near-shore area with the complex physics where
the physical waves are generated from a coupled wavemaker signal
based on the numerical wave information. Any suitable theory or nu-
merical wave model can be used in the far field Ω1. It is clear that the
kernel of the coupling problem is the data transformation between
the two models, i.e., how to obtain accurately the wave paddle signals
from a given numerical wave in order that the physical waves can
proceed successfully in Ω2.

In order to fully understand the complexity of the data transfor-
mation, the wavemaker has to be considered as a coupled system.
In this context, it is important to appreciate the following. Applying
a single-frequency, sinusoidal signal to the wave paddle in Ω2 will
cause it to move and generate a wave field. This wave field induces
hydrodynamic feedback, such as wave surface elevation or velocity,
around the wave board. The nature of this hydrodynamic feedback
is dependent on the full nonlinearity of the numerical waves at the
boundary of the two fields and it is this nonlinear hydrodynamic
feedback that determines, via the paddle controller, the position to
be applied at the next time step. Zhang et al. (2007) has proposed a
first-order coupling approach, namely the ad hoc unified wavemaker
theory, coupling provided by the depth-averaged horizontal particle
velocity based on a linear wave theory. In this paper, however, we ex-
tend this method to include the second-order dispersive correction by
forcing the moving wave paddle to match the second-order boundary
condition between the two models. Consequently, for each time step
t, numerical and physical model must satisfy the matching condition
at a specific location x, i.e.,

UP x; tð Þ≡UN x; tð Þ ð1Þ

where, subscripts “N” and “P” represent the numerical and physical so-
lution, respectively, U the depth-averaged horizontal particle velocity.

Fig. 1. Definition sketch of the coupled system of numerical and physical wave models.
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2.2. Induced waves in physical field Ω2

The second order calculation of wave field by giving a motion of
the paddle has been extensively discussed see (e.g. Flick and Guza,
1980; Schäffer, 1996; Sulisz and Hudspeth, 1993). Throughout this
paper the notation of Schäffer (1996) will be employed to describe
the induced waves in the physical field Ω2. With the physical wave
field known, the coupling relation between the numerical and physi-
cal model can be determined. Similar to Schäffer (1996), the induced
wave potential solution can be separated into the following four com-
ponents:

ϕ ¼ εϕ 1ð Þ þ ε2ϕ 2ð Þ þ O ε3
� �

ð2� aÞ

ϕ 2ð Þ ¼ ϕ 21ð Þ þ ϕ 22ð Þ þ ϕ 23ð Þ ð2� bÞ

where ε is a small ordering parameter proportional to the wave
steepness H/L, in which H is the wave height and L the wavelength.

(1) The first-order velocity potential— ϕ(1): This velocity potential
satisfies the first-order boundary condition on the free surface
and the moving wave paddle, which describes the progressive
wave to be generated as well as the associated evanescent
modes arising at, or near, the wave paddle.

(2) The second-order bound wave velocity potential — ϕ(21): This
gives the bound waves due to the cross-interaction between
first-order wave components, which satisfies the second
order free surface boundary condition. The bound waves are
phase locked to the first order wave components.

(3) The second-order spurious free wave potential — ϕ(22): This
potential describes the free waves due to the wavemaker leav-
ing its mean position and due to the fact that ϕ(2l) mismatches
the boundary condition at the wavemaker. If the control signal
of the wavemaker only contains a first-order motion, then the
resultant second-order surface elevation is given by ϕ(2)=
ϕ(2l)+ϕ(22), i.e., the spurious free waves expressed as ϕ(22)

will be generated.
(4) The additional second-order potential induced by second order

numerical correction— ϕ(23): Although ϕ(2l) and ϕ(22) together
satisfy the second order free surface boundary condition, they
do not fully satisfy the second-order boundary condition at
the moving wave paddle. The additional potential ϕ(23) is in-
troduced, together with ϕ(2l) and ϕ(22), to fully satisfy the sec-
ond order boundary condition on the free surface and at the
moving wave paddle, which generates a compensated wave
field to eliminate the spurious free waves.

The solution of the first three velocity potential, ϕ(l), ϕ(2l) and
ϕ(22), is identical to that presented by Schäffer (1996). In contrast,
for the potential ϕ(23) described in the pure second-order wavemaker
theory, it can be obtained by counteracting the free wave potential,
ϕ(22), such that ϕ(23)=−ϕ(22). However, for a second order coupling
theory in the present paper, ϕ(23) should be determined from a given
second-order hydrodynamic feedback of depth-averaged horizontal
particle velocity wave paddle motion in the numerical model. In
order to determine the complete motion of the wave paddle, the
coupled wave field has to be modeled.

2.3. Coupling of numerical and physical wave field up to second order

2.3.1. First-order coupling solution
The first-order coupling approach has been discussed by Zhang et

al. (2007), but their analysis neglected the evanescent terms in the
wavemaker signal. In the present paper, the first-order coupling solu-
tion therefore should be re-derived including the evanescent terms,
and a complex representation is chosen.

Let the time series of the depth-averaged horizontal particle ve-
locity and the wave paddle position be denoted by U0(t), and X0(t),
respectively, in physical space, while Ua(ω), and Xa(ω) denote the
equivalent complex Fourier amplitudes, i.e.,

U0 tð Þ ⇔
Fourier transform

Ua ωð Þ ð3� aÞ

X0 tð Þ ⇔
Fourier transform

Xa ωð Þ ð3� bÞ

where subscripts “0” and “a” represent the time and frequency do-
main respectively. The perturbation series of (U, X) can be expanded
as

U ¼ εU 1ð Þ þ ε2U 2ð Þ þ O ε3
� �

ð4� aÞ

X ¼ εX 1ð Þ þ ε2X 2ð Þ þ O ε3
� �

: ð4� bÞ

In order to produce a coupling wave field, the first-order displace-
ment of the wavemaker paddle needs to be firstly assumed to be

X 1ð Þ
0 ¼ 1

2
−iX 1ð Þ

a eiωt þ c:c:
n o

ð5Þ

where Xa
(1) is the first-order complex paddle amplitude at the still

water level, ω the angular frequency, and c.c. the complex conjugate
of the preceding term. Then the solution to the first-order wave po-
tential can be expressed as

ϕ 1ð Þ ¼ 1
2

igX 1ð Þ
a

ω

X∞
j¼0

cj
coshkj zþ hð Þ

coshkjh
ei ωt−kjxð Þ þ c:c:

8<
:

9=
; ð6Þ

Here i is the imaginary unit showing a 90° phase shift, the wave
numbers, kj, are the solutions to the first-order dispersion relation,

ω2 ¼ gkj tanhkjh ð7Þ

This is the linear dispersion relation generalized to complex wave
numbers, where g denotes the acceleration of gravity. Eqs. (6) and (7)
cover both the progressive-wave term (j=0) and the evanescent
modes (j=1, 2,…). The coefficients cj, are referred to as the Biésel
transfer function, and are determined by requiring the solution to sat-
isfy the boundary conditions at the wavemaker which are formulated
in Appendix A. This paper will address two wavemaker configura-
tions: piston-type (l→∞) and flap-type (l=0), see Fig. 1.

According to the first-order velocity potential and applying the
boundary condition Eq. (1), the relation between the numerical and
physical models for the first-order depth-averaged horizontal particle
velocities is given by

U 1ð Þ
N ¼ U 1ð Þ

P ¼ 1
h
∫0
−hϕ

1ð Þ
x

x¼0
dz ¼

1
2

ωX 1ð Þ
a

X∞
j¼0

cj
kjh

eiωt þ c:c:

8<
:

9=
;

������ ð8Þ

Substituting Eq. (5) into Eq. (8) and considering the frequency do-
main expression, we get,

ωX 1ð Þ
a ωð Þ ¼ Λ1j ωð Þ⋅U 1ð Þ

N;a ð9Þ

where Λ1j is the first-order coupling function obtained by

Λ1j ωð Þ ¼
X∞
j¼0

cj
kjh

þ c:c:

2
4

3
5−1

ð10Þ
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which includes both the progressive part and the evanescent modes.
For j=0, i.e. without evanescent terms, Eq. (10) gives the real
quantityΛ10 which is known as the transfer function Λ in Zhang et
al. (2007). For j=1, 2,…, Λ1j is purely imaginary.

Eq. (9) gives a frequency-domain relation between the wave pad-
dle position for the physical model and the first-order component
of the depth-averaged particle velocity exported from a numerical
model. In practice, this is readily converted to the time domain. For
convenient conversion, as in Zhang et al. (2007), it can firstly be re-
written as two equations

ωX 1ð Þ
a;sw ωð Þ ¼ U 1ð Þ

N;a ð11� aÞ

X 1ð Þ
a ωð Þ ¼ Λ1j ωð Þ·X 1ð Þ

a;sw ωð Þ ð11� bÞ

By means of the assumption of the first-order wave paddle mo-
tion, Eq. (5), the time-domain form can also be expressed as

dX 1ð Þ
0;sw tð Þ
dt

¼ U 1ð Þ
N;0 tð Þ ð12� aÞ

X 1ð Þ
0 tð Þ ¼ F−1 Λ1j ωð Þ·F X 1ð Þ

0;sw tð Þ
h ih i

ð12� bÞ

where F−1 and F represent the inverse and forward Fourier trans-
form, respectively. They are evaluated in practice via the Fast Fourier
Transform (FFT). The subscript “sw” indicates the use of shallow
water theory for obtaining the paddle position, since Eq. (12-a) is
consistent with the idea which is widely applied in shallow long
wave generation (see e.g. Synolakis, 1990). UN,0

(1) denotes the time se-
ries of first-order depth-averaged particle velocity exported from a
numerical model or a suitable wave theory. Eq. (12-a) formulates a
real-time link between the numerical and physical models under
the assumption of shallowwater. Eq. (12-b) gives a first-order disper-
sion correction needed when deviating from the shallow water limit.
Consequently, without the evanescent modes, Eqs. (12-a) and (12-b)
are identical to the ad hoc unified wavemaker theory proposed by
Zhang et al. (2007).

2.3.2. Second-order coupling solution
At second order, the idea will be consistent with the first order

coupling solution, i.e., to seek the relation between the wave paddle
position for the physical model and the depth-averaged particle ve-
locity exported from a numerical model. The velocity potential ϕ(21)

and ϕ(22) are identical to those of Schäffer (1996), which will be
cited directly. With the present study limited to regular waves, only
the superharmonics are important, i.e.,

ϕ 21ð Þ ¼ 1
2

iX 1ð Þ2
a

2

X∞
j¼0

X∞
l¼0

Hþ
jl

Dþ
jl

cjcl
cosh kj þ kl

� �
zþ hð Þ

cosh kj þ kl
� �

h
ei 2ωt−kjx−klxð Þ þ c:c:

8<
:

9=
;

ð13Þ

and

ϕ 22ð Þ ¼ 1
2

igc20X
1ð Þ2
a

2hω

X∞
p¼0

c 22ð Þþ
p

coshKþ
p zþ hð Þ

coshKþ
p h

ei 2ωt−Kþ
p xð Þ þ c:c:

( )
ð14Þ

with Hjl
+, Djl

+, Kp
+ and cp

(22)+ given in Appendix A.
For the potential ϕ(23) described in Schäffer (1996) in a pure

second-order wavemaker theory, it can be obtained by counteracting
the free wave potential, ϕ(22)±, such that ϕ(23)±=−ϕ(22)±. But, for a
second-order coupling theory as in the present study, ϕ(23), should be
determined from the given second-order wave paddle motion by
matching the second-order numerical wave field. This quantity, in

fact, cannot be obtained directly since the second-order wave paddle
motion is unknown. Therefore, analogous to the first-order problem,
we firstly assume the second-order paddle motion as

X 2ð Þ
0 ¼ 1

2
−iX 2ð Þ

a e2iωt þ c:c:
n o

ð15Þ

where Xa
(2) denotes the second-order complex paddle amplitude at

still water level, then ϕ(23) will be obtained by

ϕ 23ð Þ ¼ 1
2

igX 2ð Þ
a

2ω

X∞
p¼0

c 23ð Þþ
p

coshKþ
p zþ hð Þ

coshKþ
p h

ei 2ωt−Kþ
p xð Þ þ c:c:

( )
ð16Þ

where cp
(23)+ is given in Appendix A.

Similar to the separation of the velocity potential, the given
second-order depth-averaged particle velocity in a numerical model
can also be separated into the following three terms,

U 2ð Þ
N ¼ U 21ð Þ

N þ U 22ð Þ
N þ U 23ð Þ

N : ð16Þ

Making the depth-averaged integration of ϕx
(2) at x=0 in the same

way as for ϕx
(1) in Eq. (8), and considering Eq. (4-a) and the boundary

condition of Eq. (1), the relation between the second-order depth-
averaged horizontal particle velocity in the numerical model and the
second-order wave paddle position in physical models can be derived
as

U 21ð Þ
N ¼ 1

2
X 1ð Þ2
a

2h

X∞
j¼0

X∞
l¼0

Hþ
jl cjcl tanh kj þ kl

� �
h

Dþ
jl

e2iωt þ c:c:

8<
:

9=
; ð17� aÞ

U 22ð Þ
N ¼ 1

2
2c20ωX 1ð Þ2

a

h

X∞
p¼0

c 22ð Þþ
p

Kþ
p h

e2iωt þ c:c:

( )
ð17� bÞ

U 23ð Þ
N ¼ 1

2
2ωX 2ð Þ

a

X∞
p¼0

c 23ð Þþ
p

Kþ
p h

e2iωt þ c:c:

( )
ð17� cÞ

Notice that once Xa
(1) in first-order problem is known, UN

(21) and
UN
(22) can be obtained. Applying the assumption of Eq. (15), UN

(23)

can now be determined from

U 23ð Þ
N ¼ 2iωX 2ð Þ

0

X∞
p¼0

c 23ð Þþ
p

Kþ
p h

þ c:c:

( )
ð18Þ

Combining Eqs. (17-a), (17-b), and (17-c) with Eq. (18) gives

2ωX 2ð Þ
a ωð Þ ¼ Λ2p ωð Þ· U 2ð Þ

N;a−ν12 ωð Þ
h i

ð19Þ

where Λ2p is the second-order coupling coefficient given by

Λ2p ωð Þ ¼
X∞
p¼0

c 23ð Þþ
p

Kþ
p h

þ c:c:

" #−1

: ð20Þ

As before, Λ20 represents the real, and Λ2p (p=1, 2…) the purely
imaginary. v12(ω) is the complex cross-order depth-averaged particle
velocity, found from

ν12 ωð Þ ¼ λ2 ωð ÞX 1ð Þ
a ·X 1ð Þ

a ð21Þ
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with

λ2 ωð Þ ¼ 1
2h

X∞
j¼0

X∞
l¼0

Hþ
jl

Dþ
jl

cjcl tanh kj þ kl
� �

hþ 2c20ω
h

X∞
p¼0

c 22ð Þþ
p

Kþ
p h

þ c:c:

8<
:

9=
;:

ð22Þ

Note that λ2(ω) is the term in the cross-order coupling coefficient
which depends on the relative water depth and contains the interac-
tion between the first- and second‐order problems.

Considering the solution in the frequency domain, as in the
first-order problem, Eq. (19) can be split into two equations

2ωX 2ð Þ
a;sw ωð Þ ¼ U 2ð Þ

N;a−ν12 ωð Þ ð23� aÞ

X 2ð Þ
a ωð Þ ¼ Λ2p ωð Þ·X 2ð Þ

a;sw ωð Þ ð23� bÞ

with the corresponding expressions in the time domain given by

dX 2ð Þ
0;sw tð Þ
dt

¼ U 2ð Þ
N;0 tð Þ−ν12 tð Þ ð24� aÞ

X 2ð Þ
0 tð Þ ¼ F−1 Λ2p ωð Þ·F X 2ð Þ

0;sw tð Þ
h ih i

: ð24� bÞ

Here subscript “sw” again refers to the shallow water solution.
Eq. (24-b) gives a second-order dispersion correction needed when
deviating from the shallow water limit. The complete wave paddle
motion in the physical model is now

X0 tð Þ ¼ X 1ð Þ
0 tð Þ þ X 2ð Þ

0 tð Þ: ð25Þ

The full second-order coupling theory between the numerical and
physical models has now been derived. It represents a unifying and
compact form that includes both progressive and evanescent mode
contributions and includes wavemakers of the piston- and flap‐type.

3. Implementation

Now that we have derived the coupling model up to second order,
we will give the recipe for the generation of the complete coupling
control signal. There are three aspects that have to be addressed.
Whilst the first question involves the general procedure of the
presented second-order coupling from a numerical model to a physi-
cal model, the second problem relates to the decomposition of the
depth-averaged particle velocity and the last aspect deals with the
solution of the coupling equation.

It is well known from the ad hoc wavemaker theory (Zhang et al.,
2007; see also Yang et al., 2011b) that there are three steps to get a
coupling control signal. Firstly, a suitable numerical model is used
to simulate wave propagation from the far field to the boundary
between the numerical and physical models. Then the time series of
depth-averaged particle velocity at the connecting boundary must
be determined, in which the first- and second-order components
have to be calculated (from Eq. (26) to Eqs. (27-a) and (27-b)). Secondly,

thefirst- and second-order components of control signalwill be obtained
to provide the total second-order signal in the time domain. Finally, the
physical wave is generated using the complete wavemaker signal. The
detailed description is given in Fig. 2 which provides a general proce-
dure of the new control mode (double-headed and continuous lines).
Fig. 2 also shows the first-order coupling control mode, i.e., the ad hoc
unified wavemaker theory of Zhang et al. (2007) (single-headed and
dotted line). Itmust be kept inmind that in thefirst-order coupling con-
trol mode, the control signal can be calculated directly from Eqs. (12-a)
and (12-b) by taking the first-order component of depth-averaged ve-
locity, U(1) to be the total velocity, U.

For calculating the wave paddle position, various mathematical
tools could be employed to exactly decompose the total depth-
averaged particle velocity U calculated from the numerical model
into its first- and second-order components, U(1) and U(2). In this
paper, a frequency-spectrum Fourier analysis method is adopted.
Converting the depth-average velocity from the time domain to the
frequency domain, we get

U tð Þ ¼ Re∑
j
Δje

i ωj tþφjð Þ with eiφjΔj ¼
1
2π

∫tU tð Þe�iωj tdt ð26Þ

in which Δj and φj correspond to the amplitude and phase compo-
nent, respectively, of the depth-averaged particle velocity U in the
frequency-domain at radian frequency ωj. For the regular wave case
the phase can be set asφj≡0. Then the first- and second-order solutions
in the time domain can be determined by taking the second- and
first-order component in frequency domain to be 0, respectively, and
using an inverse Fourier transform, i.e.

U 1ð Þ tð Þ ¼ F−1
Δ1; ω ¼ ω1
0; ω ¼ ω2
⋯ others

8<
:

3
5

2
4 ð27� aÞ

U 2ð Þ tð Þ ¼ F−1
0; ω ¼ ω1
Δ2; ω ¼ ω2
0; others

8<
:

3
5:

2
4 ð27� bÞ

Finally, we consider the solution of the coupling equation. The
depth averaged velocity U(t) in Eqs. (12-a) and (24-a) are modified
accordingly as U(X0,sw(t), t) in order to include the effect of the wave
paddle position to yield

dX rð Þ
0;sw tð Þ
dt

¼ U rð Þ X rð Þ
0;sw tð Þ; t

� �
: ð28Þ

Note that Eq. (28) is a nonlinear equation with “r” representing
either first- or second-order. Since the numerical model may not
have many grid points distributed over the range of the moving pad-
dle, the nonlinear term U(X0,sw(t), t), was interpolated by Zhang
(2005) using a ‘spline’ method to smooth out the distribution of the
velocity near the moving paddle. They also used the explicit forward
Euler (1st order) scheme for the discretization of time derivative
terms. Furthermore, in order to avoid a slow drift of the paddle due
to the discrepancy between the exact signals and the numerical

Fig. 2. General procedure of the coupling control modes.
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integration, a small term proportional to the paddle signal ωcX0,sw(t)
(ωc the characteristic angular frequency) is added to the left hand
side of the differential equation. However, the choice of the character-
istic angular frequency ωc, is arbitrary and may lead to noticeable
calculated errors.

In this paper, we adopt a new numerical scheme (see Section 5.2
for a detailed discussion regarding the accuracy and efficiency). The
numerical solution for the depth-averaged horizontal particle veloci-
ties U are saved at five fixed locations surrounding the mean paddle
position, with Δx being the spatial step-size between each of the
five locations, and interpolation is used to get the instantaneous
values. For the time-integration, the classical fourth-order Runge–
Kutta scheme is used:

Xi ¼ Xi−1 þ Δt
6

ψ1 þ 2ψ2 þ 2ψ3 þ ψ4ð Þ: ð29Þ

Here, the superscript “sw” and subscript “0” have been omitted for
simplicity; Δt is time step size, and ψ1, ψ2, ψ3 and ψ4 are the interpo-
lated coefficients determined from

ψ1 ¼ Γ i−1 Xi−1
� �

ð30� aÞ

ψ2 ¼ 1
2

Γ i−1 Xi−1 þ Δt·ψ1=2
� �

þ Γ i Xi−1 þ Δt·ψ1=2
� �h i

ð30� bÞ

ψ3 ¼ 1
2

Γ i−1 Xi−1 þ Δt·ψ2=2
� �

þ Γ i Xi−1 þ Δt·ψ2=2
� �h i

ð30� cÞ

ψ4 ¼ Γ i Xi−1 þ Δt⋅ψ3

� �
: ð30� dÞ

These terms are obtained using Lagrange interpolation between
the five stored values of the velocity U:

Γ i ξð Þ ¼
X5
j¼1

ui
j·lj ξ½ � ð31Þ

where ui
j represents the U values exported from the numerical model

at time step i, position j, and lj[ξ] is the interpolation function

lj ξ½ � ¼
ξ−x1ð Þ⋯ ξ−xj−1

� �
ξ−xjþ1

� �
⋯ ξ−x5ð Þ

xj−x1
� �

⋯ xj−xj−1

� �
xj−xjþ1

� �
⋯ xj−x5
� � ; j ¼ 1;2…5ð Þ : ð32Þ

4. Coupling coefficients and their relevant analyses

Before presenting the results, the correctness of the computer
code is verified numerically by reproducing some numerical results
described by Hudspeth and Sulisz (1991) and Sulisz and Hudspeth
(1993). Fig. 3 shows a comparison of the ratio of the amplitudes
of the second-order, far-field, free wave (A(22) arising from ϕ(22)) to
the bound wave (A(21) arising from ϕ(21)) with the two-dimensional
solution of Sulisz and Hudspeth (1993). Two curves are given; one
corresponds to the piston-type wavemaker and the other the flap-
type. In both cases, only the progressive wave part is considered. It
is apparent that excellent agreement is observed over the entire fre-
quency range of interest.

Having verified the accuracy of the associated computer code for
the limiting case of monochromatic waves, some numerical results
will now be presented for the first- and the second‐order theory. All
of the comparisons are plotted against relative water depths and for
the two wavemaker configurations.

For the first-order coupling coefficient, Eq. (10) includes both real
(j=0) and imaginary (j=1, 2…) parts, which are shown in Figs. 4
and 5, respectively. This complementary imaginary expression can

be regarded as an extension of those given by Zhang et al. (2007).
As noted in Zhang (2005), the contribution of the evanescent modes
is insignificant in shallow water, which led them to only include the
progressive part. The new components, however, do change the re-
sults of the wavemaker signal significantly in some specific condi-
tions, evidence of which can be found in Fig. 6. For example, in case of
the piston-type wavemaker, the contribution of evanescent compo-
nents is tiny and can be neglected when h/L0b0.15. This is a relatively
shallow water case and the progressive part is hence significant. How-
ever, with the relative water depth increasing this proportion is sub-
stantial, contributing maximally about 25.1% to the total value when
h/L0=0.63. Examining further the contribution greater than or equal
to 20%, we can get the corresponding range of relative water depth
h/L0=0.42–1.15. For a flap-type of wavemaker the equivalent peak
value occurs at h/L0=0.39, range h/L0=0.26–0.68. Indeed, these
ranges correspond to relatively deep water cases for most coastal
wave modeling and thus can reasonably be neglected in relatively
shallow water studies.

For the second-order coupling coefficient, the form of Eq. (20) is
consistent with the first-order coupling except for the second-order
wave number Kp

+. Figs. 7 and 8 similarly plot the real (p=0) and

Fig. 3. Ratio of free second-order wavemaker and Stokes wave amplitude in far field for
piston-type (l→∞) and flap-type (l=0) wavemaker. Comparison of results from the
present method [lines] with that of Sulisz and Hudspeth (1993) [symbols] for mono-
chromatic wavemaker motions.

Fig. 4. The real part of the first-order coupling coefficients versus relative water depth
for piston- and flap-type wavemakers.
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imaginary (p=1, 2…) part of the second-order coupling coefficients
versus relative water depth. From this plot, together with Figs. 4
and 5, we can see that the second-order coupling coefficient exhibits
a similar trend to the first-order coefficients. Fig. 9 shows the contri-
bution of the evanescent components to the total value for the
second-order terms. For a piston-type wavemaker, we see that the
maximum contributed proportion by the evanescent terms is 25.1%
and the corresponding relative water depth is h/L0=0.37. The region
where the relative contribution is ≥20% occurs for h/L0=0.29–0.52.
For the flap-type wavemaker, the corresponding values are h/L0=
0.28 for the maximum point and the range h/L0=0.22–0.38.

It is important to emphasize that for extremely shallowwater con-
ditions with the relative water depth approaching 0, we get

Λ2→Λ1

λ2→0
for h=L0→0:

(
ð33Þ

Thus the present second-order coupling theory tends towards the
first-order method of Zhang et al. (2007) in this limit. The common
asymptotic value gives different results depending on the type of
wavemaker. For example from Figs. 4 and 7, the limit is 1 for a piston
type wavemaker and 2 for a flap-type. Furthermore, neglecting the

evanescent modes the current theory also makes it collapse to the
approximate second-order coupling theory derived by Yang et al.
(2011a), regardless of whether it is in shallow or deep water.

Figs. 10 and 11 present the real and imaginary parts of the
cross-order coupling coefficient for the two wavemaker configura-
tions. It can be observed from these two figures that the cross-order
coupling coefficient grows continuously with increasing relative
water depth and has the shallow water limit of 0. This is to demon-
strate that the nonlinear interaction between first- and second-order
is negligible in relatively shallow water and considerable in relatively
deep water.

5. Model evaluations

5.1. Suppression of the spurious free waves

By analogy with a pure second-order wavemaker theory, a quali-
fied second-order coupling signal should be calculated avoiding the
existence of unwanted spurious second order free waves in the phys-
ical model domain. To this end, we present here several expressions
and numerical results for evaluating the performance of the proposed
second-order coupling theory. These will be illustrated by the evalu-
ations for the suppression of the second-order spurious free waves.

Fig. 6. Contribution of the evanescent modes in the first-order coupling coefficients for
piston- and flap-type wavemakers.

Fig. 7. The real part of the second-order coupling coefficients versus relative water
depth for piston- and flap-type wavemakers.

Fig. 8. The imaginary part of the second-order coupling coefficients versus relative
water depth for piston- and flap-type wavemakers.

Fig. 5. The imaginary part of the first-order coupling coefficients versus relative water
depth for piston- and flap-type wavemakers.
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A theoretical second-order Stokes wave is invoked as a test wave to
evaluate the behavior.

Before estimating the efficiency of the proposed coupling model
on the suppression of spurious second-order free waves, we should
first introduce the theoretical solution for wave generation without
spurious free waves in a physical model. Madsen (1971) pointed
out, in a pure second-order wavemaker theory, that the spurious
second-order free wave that is produced by a sinusoidally moving
wave paddle could be theoretically eliminated by specifying the
second-order wave paddle motion X0

(2) such that ∂ϕ22/∂x=0. Here
ϕ22 corresponds to the sum of ϕ(22) and ϕ(23) of Schäffer (1996). In
terms of this assumption, the second-order paddle amplitude can be
obtained by

X 2ð Þ
a ¼ Fþc20

h
X 1ð Þ2
a ð34Þ

where the transfer function F+ is found by ensuring that the progres-
sive part of the spurious free wave and the progressive part of the
additionally generated wave cancel out. The definition of F+ is given
in Appendix A.

It is more convenient to use the normalized form of second-order
paddle amplitude of Eq. (34) to define the ideal suppression strength of
spurious free waves. According to the first-order free surface condition,
and neglecting evanescent modes yields: Xa

(1)c0=H (see Schäffer,
1996), Eq. (34) can be re-written as

X 2ð Þ
a

X 1ð Þ
a Suppress

¼ R 2=1ð Þ
t ωð ÞH

h
:

���� ð35Þ

Eq. (35) is defined as the theoretical relative second-order com-
pensation of the paddle amplitude. It is obvious that the calculated
relative second-order amplitude from the coupling model deviating
from this quantity will lead to spurious second-order free waves.
Rt
(2/1)(ω) denotes the theoretical disturbance parameter, where the

superscript “(2/1)” means the ratio of the second-order to the first-
order and subscript “t” the theoretical value, given by

R 2=1ð Þ
t ωð Þ ¼ Fþc0: ð36Þ

Rt
(2/1)(ω) obviously depends on the relative water depth h/L0 since

both F+ and c0 are functions of h/L0. It is hence deduced from Eq. (35)

Fig. 10. The real part of the cross-order coupling coefficients versus relative water
depth for piston- and flap-type wavemakers.

Fig. 11. The imaginary part of the cross-order coupling coefficients versus relative
water depth for piston- and flap-type wavemakers.

Fig. 12. Theoretical relative second-order compensation of paddle amplitude required
for (a) the piston-type wavemaker and (b) the flap-type wavemaker, where three
wave cases are considered; 0.1, 0.5, 0.9 times of the limiting relative wave height.

Fig. 9. Contribution of the evanescent modes in the second-order coupling coefficients
for piston- and flap-type wavemakers.
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that this quantity varies only with the relative water depth h/L0
(dispersion) and the relative wave height H/h (nonlinearity), diagrams
of which are provided in Fig. 12. Two wavemaker configurations and
three wave cases (H/h)/(H/h)max=0.1, 0.5 and 0.9 are plotted, where
(H/h)max is the limiting wave height found from Williams (1981), see
also Fenton, 1990) for a stable, periodic wave. Two points are notable
from this plot. First, in rather shallowwater a larger second-order com-
pensation of the wave paddle motion is required while in deep water a
smaller value is required. Second, in both types of wavemaker, the the-
oretical relative second-order compensation of paddle amplitude grows
with increasing relative wave height. Of particular interest is that the
value 0 occurs at h/L0=0.21 in piston-type wavemaker and h/L0=
0.12 in flap-type wavemaker.

To compare the discrepancy between the theoretical relative
second-order compensation of wave paddle amplitude, Eq. (35), and
the calculated value, we now consider the actual relative second-order
paddle amplitude obtained from the couplingmodel using a theoretical
second-order Stokes wave. These solutions are formulated in the same
unified form as the theoretical solution. Again, twowavemaker config-
urations are included. Comparison of the current model (hereinafter
referred as to “second-order coupling model”) is also made to the ad
hoc unifiedwave generation theory of Zhang et al. (2007) (hereinafter
referred as to “First-order coupling model”).

Neglecting the evanescent terms in second-order Stokes wave po-
tential, the depth-averaged velocity of the progressive wave can be
obtained by applying the second-order velocity potential (Dean and
Dalrymple, 1991), that is,

U ¼ U 1ð Þ þ U 2ð Þ ¼ Hω
2kh

eiωt þ 3H2ω coshkh
16h sinh3kh

e2iωt ð37Þ

with H being the given wave height. Inserting Eq. (37) into the
second- and the first-order coupling model, respectively, the wave
paddle position can be obtained. It should be emphasized that the cal-
culated wave paddle signal in first-order coupling model must con-
tain second order components, since there is an inherent second
order component included in the input depth-averaged velocity of
Eq. (37). For the first-order coupling mode, the relative second-
order paddle amplitude can be obtained as

X 2ð Þ
a

X 1ð Þ
a First

¼ R 2=1ð Þ
1 ωð ÞH

h

���� ð38� aÞ

R 2=1ð Þ
1 ωð Þ ¼ 3kh coshkh

8 sinh3kh
ð38� bÞ

and, for second-order coupling control model, the equivalent solution
is expressed as

X 2ð Þ
a

X 1ð Þ
a Second

¼ R 2=1ð Þ
2 ωð ÞH

h

���� ð39� aÞ

R 2=1ð Þ
2 ωð Þ ¼ Λ2

Λ1

3kh coshkh
16 sinh3kh

− kh2λ2

4c20ω

 !
: ð39� bÞ

Similarly, the subscripts “1” and “2” in R(2/1)(ω) describe the dis-
turbance parameters arising from the second-order coupling mode
and the first-order coupling mode, respectively.

As previously discussed in the theoretical solution, the relative
second-order paddle amplitude obtained from the second-order cou-
pling or the first-order coupling model depends on the relative water
depth h/L0 and the relative wave height H/h. Leaving aside the effect
of H/h, Fig. 13 compares the disturbance parameters found from the
second-order coupling model with the first-order coupling model
for the two wavemaker configurations. In both models, the curve is
compared to the theoretical solution. The curve obtained from the

second-order coupling model has a tendency which follows the theo-
retical curve at larger relative water depths. This is especially true for
h/L0>0.5 where the second-order model tends perfectly to the theo-
retical curve. At smaller relative water depth, corresponding to shal-
low water, the deviations between theoretical and second-order
coupling solutions are apparent. This is mainly due to the fact that
the validity of Stokes second-order wave hypotheses in Eq. (37) grad-
ually vanishes as relative depth (h/L0) decreases (see e.g. Dean and
Dalrymple, 1991). In the coupling model, the total spurious wave is
given by the sum of the original spurious wave and the wave that is
used to eliminate the original content by the coupling-induced paddle
motion at second order, X(2). In the shallow water wave region, the
inherent invalidity of Stokes second-order hypotheses is hence signif-
icant, so that the calculated relative second-order paddle amplitude
obtained from the second-order coupling model tends to have diffi-
culty matching the desired solution. Nevertheless, for most of the re-
gion of interest, the second-order coupling solution is much better
than a first-order coupling.

Finally, we consider the practical development of the spurious
second-order free waves. Fig. 14 compares the ratio of the total
second-order, spurious free waves to the Stokes bound waves,
(A(22)+A(23))/A(21), found from the second-order coupling model

Fig. 13. Comparison of the disturbance parameters found from second-order coupling
mode with first-order coupling mode for (a) the piston-type wavemaker and (b) the
flap-type wavemaker.

Fig. 14. Comparison of relative spurious second-order free waves due to the
second-order coupling mode with the first-order coupling mode for (a) the piston-type
wavemaker and (b) the flap-type wavemaker.
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with the first-order coupling model, where (a) is for the piston-type
wavemaker and (b) for the flap-type. This plot illustrates two general
features. First, the second-order coupling model clearly cancels out a
significant proportion of the original spurious second order free wave
of the first-order coupling method. For example, in the flap-type
wavemaker, the maximum values of the dimensionless ratio,
(A(22)+A(23))/A(21), occurring at h/L0=0.25 in the first-order coupling
model is reduced by roughly 90% through second-order coupling.
Of particular interest is that, in deep water h/L0>0.5, the spurious
wave content is completely eliminated when using the second-order
coupling model. Second, it is only towards relatively shallow water
that the difference between the two approaches reduces. In practice,
however, this effect is hardly noticeable since the actual resultant
spurious wave content is, on one hand, very limited, only around 1.6%
when h/L0→0, and, on the other hand, in shallow water the spurious
wave wavenumber Kp (found from (2ω)2=gKptanhKph) tends to the
bound wave wavenumber 2k (found from ω2=gktanhkh). This
means that the spurious free waves become the same harmonic as the
primary boundwaves, leading to a both spatially and temporally homo-
geneous wave field again. Similar results can also be seen for the
piston-type wavemaker, the only difference being that the critical
value 0 in the first-order coupling occurs at h/L0=0.14. Furthermore,
the piston-type wavemaker is found to be better for suppressing the
spurious second-order free waves than the flap-type wavemaker in a
coupling wave model.

5.2. Accuracy and efficiency of the numerical scheme

At the end of Section 3, we have proposed a new numerical scheme
for the solution of the nonlinear coupling equations, Eq. (28), which
needs to be verified. To quantify the accuracy and efficiency of the
numerical scheme discussed above, we consider here a linear periodic
wave characterized by height H, a period T and the water depth h. It
is well-known that the linearized wave problem has a theoretical solu-
tion, i.e., U=Re{(ωH/2kh)ei(kx-ωt)} and Xlin.=Re{(−iH/2c0)ei(kx−ωt)},
where Xlin. denotes the wave paddle position obtained in linear
wavemaker theory. As an example, we use Eqs. (29)–(32) to discretize
the first-order coupling term in Eqs. (12-a) and (12-b) by taking U(1) to
be U. The tests were run for a total of five periods after which the rela-
tive error per period was computed from

Error ¼ ‖X5−Xlin:‖2
5‖Xlin:‖2

; ‖⋅‖2≡twonorm ð40Þ

where X5 is the computed wave paddle position after exactly five wave
periods. As a comparison, the method of Zhang (2005) has also been
used to solve the same coupling equation. Fig. 15(a) collects the errors
for the present numerical scheme on the first-order coupling equation
as functions of the time and spatial resolutions Nt and Δx, respectively,
where we have taken Nt=T/Δt so that Nt represents the number of
grid points per wave period. A linear wave characterized by (T, H, h)=
(1.5 s, 0.05 m, 0.5 m) was used for all tests, corresponding to (h/L0,
H/L0)=(0.18, 0.018). For each case, the time resolutions Nt are [8, 10,
20, 30, 50, 100, 500] and the spatial resolution Δx are [1, 2, 3, 5, 7, 10]×
10−2 m. This plot makes it clear that all the errors increase with in-
creasing spatial step Δx and decreasing number grid points per wave
period Nt. Fig. 15(b) shows the comparison of error on the present
numerical scheme with those of Zhang (2005). The maximum spatial
step Δx=0.1 m chosen in Fig. 15(a), and the characteristic angular fre-
quency (normalized by the angular frequency of the target wave) ωc/ω
of [0.1, 0.4, 0.7, 1.0, 1.2] were used. As can be seen in the scheme of
Zhang (2005), the numerical error depends on the choice of the normal-
ized characteristic frequency ωc/ω. It is also clear that, a significant im-
provement in accuracy can be obtained using the present numerical
scheme. This is not surprising since the present scheme is formally
fourth-order accurate in both spatial- and time-differencing, while the

methods used in Zhang (2005) are only first- and second-order. The pro-
posed numerical scheme is generally satisfactory.

6. Range of application

In shallow water conditions, it is well known that the Stokes theory
over predicts the second-order component even for very moderate
wave steepness. Schäffer (1996) introduced a nonlinearity parameter
S; a value of S=1 corresponding to the limiting case when a secondary
peak appears in the trough of the primary wave. Consequently, for S>1
the theory fails to generate the correct second-order content. For a
regular wave case, the nonlinearity parameter S is given by

S ¼ 2H
ωHþ

2g2k tanh2kh−4gω2 −
1
4g

g2k2

ω2 −3ω2

 !�����
����� ð41Þ

where H+ follows from Hjk
+ but only considers the progressive wave

component

Hþ ¼ 3ω3−3g2k2

ω
: ð42Þ

Waves violating this criterion can be generated using a numerical
technique such as Flick and Guza (1980), or perhaps in some instances
waves might be better represented by Stream function wave theory.

7. Experimental validation

To further verify the proposed model, we now present experimen-
tal results for several test cases of theoretical wave generation. Since
the stream function theory of Fenton (1988) has been successfully
used by Zhang and Schäffer (2007) we consider this theory here to
test the second-order coupling theory.

The depth-averaged horizontal particle velocity U(x, t) can be
expressed by means of continuity equations (Dean and Dalrymple,
1991)

U x; tð Þ ¼ cη x; tð Þ
hþ η x; tð Þ ð43Þ

Fig. 15. Relative error Eq. (40) of the numerical scheme for solving the coupling equa-
tion; (a) for the present numerical scheme, Δx values are at [1, 2, 3, 5, 7, 10]×10-2 m;
and (b) a comparison between the present method and the one of Zhang (2005) (lines
with markers), Nt points values are [8, 10, 20, 30, 50, 100, 500].
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where the surface elevation η(x, t) is calculated in the Stream Func-
tion theory, which is expanded in Fourier functions as

η x; tð Þ ¼
XN
j¼1

Aj cos jk x−ctð Þ½ � ð44Þ

in which, k is the first-order wave number, c the phase velocity, and
A1…N are constants for a givenwave heightH, water depth h and period
T.

The experimentswere carried out in thewave flumeof the Technical
University of Denmark. The flumemeasures 0.75 mwide, 0.80 m deep,
and 23 m long, and is equipped with a piston-type wavemaker driven
by an electric drive system including a brushless AC motor and an inte-
grated linear drive/bearing system at one end (x=0). At the far end, a
passive absorbing beach is installed. The wavemaker is controlled by
the DHI AWACS system in position mode, where the control signal is
a time series of wavemaker paddle position, which is the traditional
method for nonlinear wave generation. In order to compare the accu-
racy of the present model with the existing method, no attempt is
made to consider re-reflection control on the wave paddle, however,
all measurements are completed before any reflected wave energy
can return to the measurement locations from the beach.

The sample frequency of the coupling wavemaker signal is fixed at
0.02 s. For each wave case, two control signals, the first-order cou-
pling signal and the second-order coupling signal, are used. Three
wave gauges at 1.0 m (gauge 1), 4.5 m (gauge 2), and 6.5 m (gauge 3)
from the mean paddle position are fixed in the flume to measure the
time series of surface elevation. The wave phases are shifted for each
recorded signal to get a wave crest at t=0 for better comparison of
wave profiles at each wave gauge location. Minor offsets from zero
mean elevation were removed from the signals. All the cases (see
Table 1) are fixed with water depth h=0.5 m. Various wave periods
and heights are chosen for considering the dimensionless water depth
kh and nonlinearity H/L0, where L0 is the wavelength in deep water
according to linear theory. At each kh, five values of wave height H cor-
responding to H/H_max=0.1, 0.3, 0.5, 0.7 and 0.9 are given, where
H_max is found from Williams (1981) (see also Fenton, 1990) and

gives the steepest stable wave. Considering the limitations of the
wavemaker, no cases are possible with heights of less than 0.04 m.
Fig. 16 shows the distribution of the test cases in terms of the relative
wave height versus the dimensionless water depth.

7.1. Shallow water cases

First of all, we consider a shallowest water case for a period of T=
2.4 s and a height of H=0.18 mwith kh=0.63 and H/L0=0.022. This
case corresponds to a theoretical value of S=0.94, i.e., approximate to
the limit of the validity of the theory as given by Eq. (41). Figs. 17 and 18
show time series of surface elevation at three different wave gauges
using the first-order and second-order coupling signals, respectively.
Both the first- and second-order coupling signal give quite good agree-
ment at each position. To further investigate the efficiency of model
when the nonlinearity parameters go out of the validity criterion,
we therefore turn up the wave height to H=0.32 m keeping the same
period T=2.4 s, in which the nonlinearity parameter S exceeds the
limit considerably at S=3.13. The comparisons of surface profiles mea-
sured at three wave gauges with the theoretical results are shown in
Figs. 19 and 20. Both the first- and second-order wave profiles agree
fairly well with the theoretical solution at gauge 1, but further down
the flume (at gauges 2 and 3) this agreement is misleading because
some unwanted spurious free wave appears in the wave troughs.
These plots demonstrate that nonlinear effects have a tendency to re-
quire some time (or distance) to reveal their presence. The first-order

Table 1
Wave cases tested in the flume with h=0.5 m.

Case Wave period,
T (s)

Wave height,
H (m)

Dimensionless
water depth, kh

Wave
steepness,
H/L0

Nonlinearity
parameter, S

1 2.40 0.32 0.63 0.064 3.13
2 0.25 0.050 1.45
3 0.18 0.036 0.94
4 0.11 0.022 0.78
5 0.08 0.016 0.56
6 1.60 0.28 1.04 0.093 1.12
7 0.22 0.073 1.03
8 0.16 0.053 0.87
9 0.09 0.030 0.54
10 0.05 0.017 0.30
11 1.20 0.23 1.53 0.112 0.97
12 0.18 0.088 0.79
13 0.13 0.064 0.57
14 0.08 0.039 0.35
15 0.04 0.020 0.18
16 1.00 0.18 2.08 0.119 0.85
17 0.14 0.093 0.66
18 0.10 0.066 0.47
19 0.06 0.040 0.28
20 0.80 0.13 3.16 0.131 0.83
21 0.10 0.100 0.64
22 0.07 0.070 0.45
23 0.04 0.040 0.26
24 0.60 0.08 5.59 0.125 0.78
25 0.06 0.107 0.67
26 0.04 0.071 0.45

Fig. 16. Region of cases in Table 1, compared with Williams line (1981) which is the
limit of the highest steady wave in practice.

Fig. 17. Time series of surface elevations measured at different gauges in the flume
using thefirst-order coupling signal for T=2.4 s,H=0.18 m, comparedwith the theoretical
stream function theory (SF).
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couplingmodel appears to be unable to eliminate the spuriousmodes in
this extreme case. However, a slight improvement can be observed in
the second-order coupling model.

To quantify the accuracy and efficiency of the coupling model
discussed in relatively shallowwater,we consider the observeddeparture
between experiments and theoretical solution for the selected two
wave period of T=2.4 s and 1.6 s in Table 1 using two statistical
errors, i.e.

rms ¼ 1
HT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Tn

∫Tn
0 ηT tð Þ−ηP tð Þ� �2dt

s
ð45� aÞ

α ¼ ρTP τ0ð ÞσP

σT
¼ RTP τ0ð Þ

σT
2 ð45� bÞ

whereHT is the theoretical wave height, Tn the statistical timewindow.
Subscripts “T” and “P” represent the time series in the theoretical and
experimental result, respectively. σ, ρ(τ0) and R(τ0) are the standard
deviation, standard covariance and the correlation coefficient function
of two time series, respectively. rms (root-mean-square errors) is cho-
sen to indicate the average deviation error of twowave trains. α varies
between 0 and 1 with τ0=0 representing the non-dimensional corre-
lation function of two time series. A perfect agreement between theo-
retical solution and experiment should result in rms→0 and α→1.

Fig. 21 gives the errors rms and α obtained by Eqs. (45-a) and
(45-b) in the relatively shallow water wave cases, T=2.4 s and

1.6 s, at the three wave gauges for each wave height. This plot illus-
trates that the errors increase as the wave height increases. When
the wave height is relatively small, both the first- and second-order
coupling signals give small errors. The difference between the two
coupling theories is not very clear for shallow water and weakly
nonlinear waves, such as H=0.08 m, 0.11 m, 0.25 m for T=2.4 s
and H=0.05 m, 0.09 m for T=1.6 s. As the wave height grows, the re-
sults of the first-order coupling signal deteriorate. The second-order
coupling signal, however, gives better results with almost all error rms
being less than or around 5%, and α being greater than 0.75.

7.2. Moderate and deep water cases

We now turn to the cases of moderate and deep relative water
depth with a period of T=0.6–1.2 s corresponding to dimensionless
water depth of kh=2.08–5.59. Time series of wave surface elevations
measured at three wave gauges compared with the theoretical solu-
tions are shown in Fig. 22 for the 90% steepness cases, which corre-
spond to the strongest nonlinearity for each period. These plots are
for the results of the second-order coupling model. All the nonlinearity
parameters S are chosen to be below 1. As it might be expected, the
measured surface elevations at differentwave gauges are in satisfactory
agreement with related theoretical results. The wave shape is steady,
and little spurious free waves can be observed. The conclusion holds
even in the very deep water case.

Finally, Fig. 23 quantitatively collects the errors rms and α for each
wave height tested over the remaining periods. The trend is very similar
to the shallow water cases. The errors generally increase with larger
relative water depth and wave height. For example, when T=1.2 s,
1.0 s, and 0.8 s, using the second-order signal, almost all the errors
rms are smaller than those using the first-order coupling signal, and
they are less than or around 5% for most of the cases at all three gauges,
except for some strongly nonlinear wave cases such as T=1.2 s, H=
0.23 m and T=0.8 s, H=0.13 m. This plot also makes it clear that the
merits of the second-order coupling signal become increasingly pro-
nounced with increasing water depth and wave nonlinearity compared
to the first-order coupling. This is especially true for the extreme case,
T=0.6 s, H=0.08 m, the errors are very large when using first-order
coupling signal. In this case, the average linear rms at the three gauges
is 24.2%, and the average α is 0.58 while the second-order coupling sig-
nal gives smaller average errors of rms=9.2% and α=0.88.

The reason for this improvement is that the dispersion correction
for the paddle position in the second-order signal is based on a full
second-order theory and that the evanescent modes are included in
the coupling wavemaker signal. These two improvements allow the
physical model to capture more accurately the high order wave infor-
mation that exists in the theoretical stream function solution. In shallow
water, as discussed in Section 4, the second-order coupling theory tends

Fig. 18. Same as for Fig. 17, but using the second-order coupling signal.

Fig. 19. Time series of surface elevations measured at different gauges in the flume
using thefirst-order coupling signal for T=2.4 s,H=0.32 m, comparedwith the theoretical
stream function theory (SF).

Fig. 20. Same as for Fig. 19, but using the second-order coupling signal.
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to be consistent with the first-order theory since the second- and
first-order coupling coefficients tend to be identical when the relative
water depth tends to zero. However, as water depth and nonlinearity
increases, the first-order dispersion correction based on linear theory
becomes inadequate for correcting the high order component. The use
of the second-order coupling theory helps to solve these problems.

8. Conclusions

The ad hoc unified wave generation theory of Zhang et al. (2007)
has been extended to include a second-order correction term for the
paddle motion based on wavemaker theory. The result provides a
more accurate means of coupling numerical and physical wave
tanks which includes both progressive and evanescent mode effects
and covers both piston- and flap-type wavemakers.

A series of practical implementation problems have been solved to
allow the theory to be applied in the laboratory. A theoretical analysis
of the new formulation has been carried out based on the second-
order Stokes theory. Using a piston-type wavemaker, an experimental
validation of the new model has also been conducted by considering a
large range of cases based on stream function theory.

The new model collapses to the ad hoc wave generation theory of
Zhang et al. (2007) and Yang et al. (2011b) in shallow water and to
that of the approximate second-order coupling theory by Yang et al.
(2011a) when the evanescent modes are neglected. Towards relatively
deep water, the proposed second-order coupling theory provides an
improved link between numerical and physical wave models and
gives reduced spurious second-order free waves compared to existing
methods. Work is currently underway to address the practical perfor-
mance of the coupling model and to extend the present formulation
to account for irregular and three-dimensional waves.

Fig. 21. The statistical errors rms and α for relatively shallow water wave cases.

Fig. 22. Time series of surface elevations measured at different gauges in the flume using the second-order coupling signal for 90% steepness cases with T=0.6 s–1.2 s, compared
with the theoretical stream function theory (SF).
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Appendix A. Related coefficients used in coupling theory

At first-order, the wave field is described by the velocity potential
ϕ(1). Herein, the transfer coefficients follow directly from the formu-
lation in Madsen (1971) and are given by

cj ¼
4 sinhkjh

2kjhþ sinh2kjh
� � sinhkjhþ 1− coshkjh

kj hþ lð Þ

 !
: ðA� 1Þ

At second-order full theory, the expressions for Hjl
+, Djl

+,cp(22)+ and
cp
(23)+ need to be defined. They are cited directly from Schäffer (1996)
but only consider the special case of regular waves and the generation
of superharmonics:

Hþ
jl ¼ 3ω3−

2g2kjkl
ω

− g2

2ω
k2j þ k2l
� �

ðA� 2Þ

Dþ
jl ¼ g kj þ kl

� �
tanh kj þ kl

� �
h−4ω2 ðA� 3Þ

c 22ð Þþ
p ¼ h cosh2Kþ

p h

2gc20δ Kþ
p

� �fX∞j¼0

cjk
2
j M2 kj;K

þ
p

� �
−3ω2

� �
k2j − Kþ

p

� �2

þ
X∞
l¼0

clk
2
l M2 kl;K

þ
p

� �
−3ω2

� �
k2l − Kþ

p

� �2

−2ω
g

X∞
j¼0

X∞
l¼0

cjclH
þ
jl kj þ kl
� �

kj þ kl
� �2− Kþ

p

� �2g
ðA� 4Þ

c 23ð Þþ
p ¼ 4 sinhKþ

p h

2Kþ
p hþ sinh2Kþ

p h
� � sinhKþ

p hþ 1− coshKþ
p h

Kþ
p hþ lð Þ

 !
ðA� 5Þ

in which, cp(23)+ is the second-order transfer function, M2(κ, Kp
+) and

δ(Kp
+) are given by

M2 κ ;Kþ
p

� �
¼ − g

hþ lð Þ
2 Kþ

p

� �2
κ2− Kþ

p

� �2 f1− 1
coshκh coshKþ

p h

−
2ω4 κ2 þ Kþ

p

� �2� 	

g2κ2 Kþ
p

� �2 g ðA� 6Þ

δ Kþ
p

� �
¼ 1

2
Kþ
p hþ sinhKþ

p h coshK
þ
p h

� �
ðA� 7Þ

Fig. 23. The statistical errors rms and α for relatively deep water wave cases.
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where Kp
+ is second-order wave number, obtained by

2ωð Þ2 ¼ gKþ
p tanhKþ

p h ðA� 8Þ

which is the dispersion equation generalized to the second-order
complex numbers. The transfer function F+ found by Schäffer (1996)
is described as

Fþ ¼ − c 22ð Þþ
0

c 23ð Þþ
0

ðA� 9Þ

where the subscript “0” denotes the progressive-wave components
(p→0).
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