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Defining accurate acoustical boundary conditions is of crucial importance for room acoustic simula-

tions. In predicting sound fields using phased geometrical acoustics methods, both absorption coef-

ficients and surface impedances of the boundary surfaces can be used, but no guideline has been

developed on which boundary condition produces accurate results. In this study, various boundary

conditions in terms of normal, random, and field incidence absorption coefficients and normal inci-

dence surface impedance are used in a phased beam tracing model, and the simulated results are

validated with boundary element solutions. Two rectangular rooms with uniform and non-uniform

absorption distributions are tested. Effects of the neglect of reflection phase shift are also investi-

gated. It is concluded that the impedance, random incidence, and field incidence absorption bound-

ary conditions produce reasonable results with some exceptions at low frequencies for acoustically

soft materials. VC 2012 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4740494]

PACS number(s): 43.55.Ka, 43.55.Ev [NX] Pages: 2347–2358

I. INTRODUCTION

The acoustic properties of building elements such as

sound absorption coefficients or surface impedances are cru-

cial input data for room acoustic simulations. Absorption

coefficients are mainly used for geometrical acoustics meth-

ods, whereas wave-based methods generally require surface

impedance data. Phase geometrical acoustics methods can

adopt both absorption coefficient and surface impedance

boundary conditions. This paper primarily aims to evaluate

various approximate boundary conditions for a phased beam

tracing model. The main question is which boundary condi-

tion for the phased geometrical acoustics best approximates

locally reacting boundaries. As a validation tool, the bound-

ary element method employing the identical surface imped-

ance boundary condition is used.

The phased geometrical acoustics methods have obvious

advantages over the other methods at medium frequencies as

they are faster than wave-based methods and more accurate

than energy-based methods.1–3 Generally speaking, wave

based methods are the most reliable methods in calculating

transfer functions at low frequencies, whereas the geometri-

cal acoustics methods provide approximate but reliable and

fast predictions at frequencies well above the Schroeder fre-

quency where room modes are highly overlapped; thus indi-

vidual modal characters do not need to be taken into

account. In this sense, the phased geometrical acoustics

methods are normally considered as medium frequency

methods that can bridge between low and high frequency

methods. A recent publication supports that the accuracy of

a phased geometrical acoustics turns out to be acceptable

even below the Schroder frequency, having a maximum

error of 3 dB for a disproportionate room.3 Therefore the

phased geometrical acoustics methods can be alternatives to

the wave-based methods in the acoustic simulations of small

spaces such as car cabins, small class rooms, and meeting

rooms as long as there is no significant effect of diffracting

objects.

In addition, its calculation speed is faster than the

wave-based method. For example, a narrow band transfer

function calculation from 20 Hz to 1 kHz at 2 Hz intervals

of a 1000 m3 room, employing 8000 beams up to the 100th

specular reflection order, takes 1.5 h, while a boundary

element calculation takes 56.5 h.3 The advantage in terms

of the calculation cost becomes significant as the room

becomes larger and the upper frequency limit gets higher.

An important advantage over the geometrical acoustics

methods is flexible boundary modeling. The conventional

geometrical acoustics methods can employ only absorption

coefficient boundary conditions, whereas the phased geo-

metrical acoustics methods can adopt both absorption and

impedance data as boundary conditions. Furthermore, an

advanced transfer-matrix approach for multilayer boundary

surfaces can be incorporated to a phased beam tracing

method.4

Surface impedance boundary conditions are likely to be

superior to absorption boundary conditions because they

fully describe the physical characteristics of the boundary,

i.e., the magnitude and phase changes on reflections. It has

been reported that phased geometrical acoustics simulations

using surface impedances as boundary conditions agree well

with measurements and reference calculations.1–3 Suh and

Nelson used surface impedance boundary conditions for im-

portant surfaces to estimate the plane wave reflection coeffi-

cients, whereas real-valued angle-independent reflection

coefficients are used for concrete and plaster walls, assuming

no phase shift on reflections from these reflective surfaces.1

Lam mainly studied the plane and spherical wave reflection

a)Author to whom correspondence should be addressed. Electronic mail:

chj@elektro.dtu.dk

J. Acoust. Soc. Am. 132 (4), October 2012 VC 2012 Acoustical Society of America 23470001-4966/2012/132(4)/2347/12/$30.00

A
u

th
o

r'
s 

co
m

p
lim

en
ta

ry
 c

o
p

y



coefficients in a phased image source model in comparisons

with boundary element simulations and geometrical acoustic

simulations.2 The plane wave reflection model was found to

have noticeable errors at higher admittance values and at

longer delay time, but the accuracy was improved as the fre-

quency increased. Jeong and Ih also used impedance bound-

ary conditions for a phased beam tracing model in

comparison with boundary element simulations and acoustic

Green’s function calculations.3

The normal incidence specific surface impedance (fnor)

is a typical boundary condition in the phased beam tracing

as well as the boundary element simulation. The use of fnor

implies that the absorber is of local reaction because the

surface impedance is assumed to be constant over the

angle of incidence. The normal incidence surface imped-

ance is generally complex-valued and frequency-dependent

but often approximated to real-valued, therefore the reflec-

tion coefficient is also real-valued. Another impedance

boundary condition is the field incidence surface imped-

ance used by Aretz and Vorl€ander,5 which assumes non-

locally reacting surfaces. Therefore this quantity is omitted

because only local reaction is assumed in this study.

If measured impedance data are not available, one has

to approximately estimate absorption coefficients of the

boundary surfaces. There are a variety of absorption coeffi-

cients to be used in the phased beam tracing: normal inci-

dence, random incidence, field incidence, and Sabine

absorption coefficients, which are all assumed to be inde-

pendent of the incidence angle. However, no comparisons

have been conducted between absorption and impedance

boundary conditions, and this is one of the important pur-

poses of this study.

A variety of approximate absorption coefficients can be

used as boundary conditions in the geometrical acoustics

models: normal, random, field incidence absorption coeffi-

cient (anor, arand, afield), and Sabine absorption coefficient

(aSab).6 anor holds only for normal incidence. arand strictly

assumes random incidence of randomly phased plane waves

onto a large panel, which is unlikely in actual sound fields.

afield is an empirical modification of the random incidence

absorption coefficient by truncating the integration range up

to 78�.6 The inclusion of afield is based on a recent study by

Aretz and Vorl€ander, claiming that the field incidence sur-

face impedance produces the best results in finite element

modeling.5 aSab is measured in a reverberant sound field

based on the assumption that the test chamber is completely

diffuse.6,7 The calculation of aSab additionally assumes that

the total absorption area is a simple sum of the absorption

areas of individual surfaces. The total absorption area is cal-

culated by Sabine’s formula that again assumes a totally dif-

fuse field. These many assumptions lead to a physically

impossible consequence that aSab sometimes exceeds unity,

thereby cannot be used in room acoustic simulations.

Besides, aSab has large room-to-room variations as signifi-

cant deviations in measured metrics have been found in

round robin tests.8,9 This also indicates that it is likely that

the acoustic behavior of the tested absorber in different

acoustic conditions can differ significantly from that in the

test reverberation chamber.

Two rectangular rooms with various uniform boundary

conditions and one non-uniform distribution were simulated.

As boundary conditions, the surface impedance and corre-

sponding absorption coefficient were used. Two error indica-

tors were defined to quantify the discrepancies between

boundary element solutions and phased beam tracing solu-

tions. Furthermore, effects of reflection phase shift on the sim-

ulation accuracy were investigated by employing various

complex-valued impedance boundary conditions. All in all,

the goal of this study is to find out the boundary condition that

best approximates a locally reacting boundary in rectangular

rooms and how the simulation error changes with various

boundary conditions for the phased beam tracing method.

II. THEORY

A. Normal incidence specific surface impedance

This quantity can be measured by the tube method, whcih

can characterize the impedance at a certain surface for normal

incidence of plane waves. The specific surface impedance is

normalized by the characteristic impedance of air by Eq. (1)

and will be simply called as the impedance in what follows.

fnor ¼
Znor

qc
: (1)

B. Normal incidence absorption coefficient

The normal incidence absorption coefficient is also

measured by the tube method in the following relationship to

the impedance:

anor ¼ 1� fnor � 1

fnor þ 1

����
����
2

: (2)

C. Random incidence absorption coefficient

The theoretical random incidence absorption coefficient

for plane wave incidence on an infinitely large surface can

be calculated as follows:10

arand ¼
ðp=2

0

ainfðhiÞsinð2hiÞdhi; (3)

where ainf (hi) is the oblique incidence absorption coefficient

at an incidence angle hi as follows:

ainfðhiÞ ¼
4ReðfnorÞcos hi

ðjfnorjcos hiÞ2 þ 2ReðfnorÞcos hi þ 1
: (4)

It assumes that the intensity of the incident sound is uni-

formly distributed over all possible directions, and the

phases of the waves incident on the absorber are randomly

distributed. The random incidence absorption coefficient

should have a value less than unity.

D. Field incidence absorption coefficient

The field incidence absorption coefficient is, admittedly,

not common, and its definition is still debatable. Following
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the notation by Aretz and Vorl€ander5 and Maekawa et al.,6

the field incidence absorption coefficient is calculated by

afield ¼

ð78

0

ainfðhiÞsinðhiÞdhi

ð78

0

sinðhiÞdhi

: (5)

E. Sabine absorption coefficients

The Sabine absorption coefficient is an estimated

absorption coefficient by the reverberation chamber method

and Sabine’s formula as follows:7

aSab ¼
55:3 V

S

1

c2T2

� 1

c1T1

� �
; (6)

where V is the volume of the reverberation chamber, S is the

specimen area, and c1 and T1 are the speed of sound and the

reverberation time for an empty condition, respectively. c2

and T2 are the speed of sound and the reverberation time

with the specimen installed, respectively.

The measurement standards recommend a large speci-

men, i.e., a surface area between 10 and 12 m2 according to

ISO 354 (Ref. 7) and larger than around 5.6 m2 according to

ASTM C423.11 Even for large specimens, the Sabine absorp-

tion coefficients depend heavily on the test facilities, because

the test chambers are non-diffuse in significantly different

ways. Significant deviations in measured metrics have been

found in many round robin tests (see, e.g., Refs. 8 and 9),

therefore the universal use of Sabine absorption coefficients

measured in a specific chamber is questionable. In this sense,

this quantity will not be tested in this study.

F. Remarks on local reaction

This study assumes local reaction, which means that the

wave transmitted into a porous material is refracted so that it

propagates effectively only perpendicular to the surface.12

This is likely to happen in anisotropic solids such as honey-

comb structures where the waves are forced to propagate

perpendicular to the surface. Local reaction is also related to

the ratio of the incident wave speed to the transmitted wave

speed. Local reaction occurs, when the speed of the com-

pressional wave in air is much higher than that of waves in

an anisotropic solid, ct � ci, where the subscripts i and t
denote the incidence and transmitted, respectively. By

Snell’s law, the angle of transmission, ht, becomes much less

than the incidence angle, hi, resulting in a marked bending of

the transmitted wave toward the normal direction. Therefore

it is reasonable to assume that the ratio of acoustic pressure

acting on the surface to the normal fluid velocity is inde-

pendent of the incidence angle.

The assumption of local reaction has been widely used

in room acoustic simulations using both wave-based and ge-

ometrical acoustics methods. The main reason is its simplic-

ity compared with non-local reaction models, because

knowledge of the normal surface impedance suffices for cal-

culating the absorption characteristic of the wall, whereas

extended reaction models necessitate, at least, a characteris-

tic impedance and propagation constant.

Note, however, that local reaction is a simplification in

the boundary modeling. No materials are strictly of local

reaction; the surface impedance actually changes with the

incidence angle. In certain cases, the assumption of local

reaction is not adequate, e.g., porous layers backed by an air

cavity because the refracted wave in the air cavity will prop-

agate in the same direction as the initial incidence angle

according to Snell’s law. Several authors have measured

extended reaction in porous materials.13–16 The local and

non-local reaction models are known to agree better for

higher resistivity cases and thicker absorbers. Detailed

guidelines can be found in Ref. 17. Hodgson and Wareing

also found large differences in predicted sound pressure lev-

els based on local and non-local reaction at low

frequencies.18

III. METHOD

A. Test rooms

Narrow band spectra at 2 Hz intervals were calculated

for two rooms that are different in shape and volume: a

well proportionate room with dimensions of 1.9� 1.4� 1

(all in m throughout the article) and a disproportionate

room of dimensions of 5� 1� 1. The first room ratio is

based on Louden’s work, which concluded that this room

ratio is optimum for achieving evenly spaced modes.19 For

the proportionate room, one source and 54 receivers were

chosen. The source position was (0.1, 0.1, 0.4) representing

a teacher because this room was regarded as a 1/4 scale

model of a lecture room. A total of 54 receivers were posi-

tioned with x changing from 0.15 to 1.75 with steps of 0.2

and y changing from 0.2 to 1.2 with steps of 0.2 and a fixed

z of 0.3. For the disproportionate room, one source and 36

receivers were positioned. The source was located at (0.1,

0.1, 0.4) and 36 receivers were positioned with x changing

from 0.5 to 4.5 with steps of 0.5 and y changing from 0.2 to

0.8 with steps of 0.2 and a fixed z of 0.3.

B. Boundary conditions

Various uniform distributions of absorption in the test

rooms were examined. A set of impedance values of 40, 20,

10, 7, 4, with acronyms of BC1–BC5, was tested as shown

in Table I, where the corresponding absorption coefficients

are also shown, ranging from 0.1 to 0.8. A realistic non-

uniform distribution in the proportionate room was also

tested. The ceiling, floor, and the side walls were assigned

with impedance data of 5.9, 18, 38, which corresponded to

random incidence absorption coefficients of 0.66, 0.32, and

0.17, respectively. In addition, complex-valued boundary

conditions were compared with real-valued boundary condi-

tions to estimate how much the errors were increased by

using approximate real-valued boundary conditions. The

complex-valued boundary conditions were given in two

ways. First, for a fixed magnitude of the impedance of 20,

the phase angle of the impedance was changed to 30�, 45�,
or 60�. Second, for a fixed random incidence absorption
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coefficient of 0.3, three equivalent impedance values having

the phase angles of 30�, 45�, and 60� were employed as

boundary conditions and compared with the real-valued

boundary condition. These complex-valued boundary condi-

tions are shown in Tables II and III.

C. Phased beam tracing method

The basic idea of the phased geometrical acoustics is to

retain phase information to account for wave phenomena,

particularly interference. Inclusion of phase is twofold:

phase shift on reflection and propagation phase. The former

phase requires complex-valued boundary conditions such as

surface impedances. The latter phase is simply implemented

based on the traveling distance from the source to receiver

(rtravel) and taking into account a term, exp(�jkrtravel), in cal-

culation of sound pressures, where j is the imaginary unit,

and k is the wavenumber.

PBTM used in this study is based on the triangular beam

tracing algorithm by Lewers20 but extended to include phase.

The tracing algorithm consists of source generation, surface-

geometry definition, traces of beams, and receiver detection.

Source division is based on an icosahedron, which makes the

beam cross section an equilateral triangle. Then all edges of

the equilateral triangles of the icosahedron are divided into p
equal lengths, resulting in a polygon with 20�p2 triangular

faces. For each point receiver, the source is rotated so that a

triangle faces toward the receiver to not miss the direct

sound. Room boundary surfaces should be planar, which are

mathematically modeled as AixþBiyþCizþDi¼ 0. A tra-

jectory of a beam is scanned by a combined process of deter-

mining the nearest plane, finding the new image source, and

calculating the reflected vector. A beam is defined by a cen-

tral axis and three boundary planes, each plane forming a

side of the beam. Beams do not fragment on reflection, and

the direction after reflection is determined entirely by its

central axis. Once the trajectory of the beam is identified, the

possibility that a point receiver is surrounded by the beam

boundary planes is tested using the normal vectors of the

boundary walls. Following a positive receiver point test, the

complex pressure for the beam undergoing the reflection

path is calculated, and finally the transfer function is con-

structed. Only specular reflections are counted.

Consequently, a PBTM result is a summation of the

contributions of the emitted beams from a source, which

hit a receiver in a room. Assuming a simple source

emitting spherical waves, the free-space Green’s func-

tion,21 A�exp(�jkr)/r, is a basis to calculate the transfer

function at an observation point where r is the distance

from the source to the observation point and A is an ar-

bitrary constant. For all simulations in this study, A is

assumed to be unity, therefore producing 1 Pa at 1 m

from the source.

For each reflection, a reflection coefficient is multiplied

to the free-space Green’s function. For the impedance

boundary conditions, the plane wave reflection coefficient is

calculated as follows:

rðhiÞ ¼
fnorcosðhiÞ � 1

fnorcosðhiÞ þ 1
: (7)

Therefore the reflection coefficient is a function of the inci-

dence angle although the impedance is not angle dependent.

Note that this coefficient is correct for large panels. For graz-

ing incidence or relatively small sized panels, another reflec-

tion modeling could be used.22,23

For absorption coefficient boundary conditions, the

angle dependence and phase shift on reflection are neglected.

TABLE I. Errors for five uniform absorption conditions and one non-uniform condition in the proportionate room. The surface impedance, corresponding nor-

mal, random, field incidence coefficients, and Schroeder frequencies are indicated. The lowest errors are indicated in bold.

Mean e1 Mean e2

fnor anor arand afield fSch anor arand afield fnor anor arand afield fnor

BC1 40 0.10 0.17 0.18 566 4.0 2.2 2.1 1.8 2.2 0.6 0.6 0.9

BC2 20 0.18 0.30 0.32 423 3.7 1.4 1.4 1.2 2.4 0.6 0.6 0.9

BC3 10 0.33 0.49 0.52 331 3.7 1.2 1.1 1.0 2.5 0.9 0.9 1.0

BC4 7 0.43 0.60 0.65 299 3.7 1.4 1.3 1.0 2.6 1.1 1.2 1.1

BC5 4 0.64 0.79 0.83 260 3.5 1.8 1.7 1.2 2.6 1.7 1.9 1.7

Non-uniform 0.21 0.31 0.33 414 3.5 2.5 2.5 2.2 2.9 1.2 1.2 1.5

TABLE II. Errors for different phase angles with a fixed magnitude of the impedance of 20 in the proportionate room. The surface impedance, corresponding

normal, random, fiend incidence coefficients, and the Schroeder frequencies are indicated. fnor,real indicates an error using the real-valued impedance boundary

condition, and fnor,correct indicates an error using the correct impedance boundary condition.

Mean e1 Mean e2

jfnorj l anor arand afield fSch fnor,real fnor,correct fnor,real fnor,correct

C-BC1 20 30 0.16 0.26 0.28 451 2.2 1.3 1.4 0.8

C-BC2 20 45 0.13 0.20 0.23 492 3.2 1.6 2.3 1.0

C-BC3 20 60 0.10 0.15 0.17 572 4.4 2.0 3.5 1.2

BC2 20 0 0.18 0.30 0.32 423 1.2 1.2 0.9 0.9
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Therefore a real-valued and positive reflection coefficient is

calculated as

ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1� ai

p
; (8)

where the subscript i can be “nor,” “rand,” or “field.”

Challenges still remain in the phased beam tracing, par-

ticularly in considering diffraction and diffuse reflection.

Another problem of PBTM arises when beams intersect

more than one surface. If an intersecting polygon is detected,

there are two solutions: The original beam is followed by its

central axis ray4,20,22 or the original beam can be split.24,25

Beam-splitting algorithms possibly make simulations more

accurate, but they are computationally voracious.

For all PBTM simulations, 8000 beams were emitted

from the source, and they were traced up to the 100th reflec-

tion order. The reason for the large number of beams is due

to the fact that PBTM used does not incorporate a beam-

splitting algorithm when intersecting more than two surfa-

ces. In addition, a sufficient number of late reflections should

be calculated, therefore each beam was traced up to the

100th reflection order. For BC1, the average propagation dis-

tance for the 100th reflection order is 97 m, corresponding to

a sufficient decay range of 45 dB. For the other boundary

conditions, the decay ranges are even longer as the reverber-

ation times become shorter with increasing absorption.

D. Boundary element models

The boundary element method can solve acoustic

problems numerically based on the discretized Helmholtz–

Kirchhoff integral equation on a surface mesh.26 An in-

house boundary element model is used for comparisons. For

the proportionate room, the boundary element model con-

tains 6880 triangular elements with 3442 nodes of which the

6k per element condition is satisfied up to 1000 Hz. For the

disproportionate room, it has 7228 elements and 3616 nodes,

therefore its upper cutoff frequency is about 700 Hz. For the

two rooms, the linear shape function and seven Gaussian

points were used. The boundary element simulations are

regarded as the reference simulations.

E. Error measures

In predicting transfer functions using both PBTM and

BEM, the source is assumed to produce a sound pressure of

1 Pa at 1 m from the source in a free field. Once transfer

functions at 2 Hz intervals are calculated using PBTM and

BEM, they are converted to the dB scale re. 1 Pa, SPLPBTM

and SPLBEM, respectively. In addition, 1/3 octave band spec-

tra are computed based on the narrow band transfer func-

tions, and named as SPLPBTM,oct and SPLBEM,oct. Two errors

are defined to compare phased beam tracing simulations

with boundary element simulations: a narrow band error as

e1 by Eq. (9), and a 1/3 octave band error as e2 by Eq. (10)

e1ðfcÞ ¼
1

Nline

Xfup

i¼flow

jSPLPBTMðiÞ � SPLBEMðiÞj ðdBÞ;

(9)

e2 ðfcÞ ¼ jSPLPBTM;octðfcÞ � SPLBEM;octðfcÞj ðdBÞ; (10)

where fup and flow are the upper and lower frequency limit of

a frequency band, fc is the center frequency of the band, and

Nline is the number of frequency lines in the frequency band

of interest. The upper valid frequencies of the proportionate

and disproportionate room boundary element models are

1000 and 700 Hz, respectively, therefore the highest center

frequencies of the 1/3 octave band are 800 Hz for the propor-

tionate room and 500 Hz for the disproportionate room. For

single-value errors, these errors are averaged over the entire

frequency range and over the receiver locations as shown in

Tables I–IV.

Two main sources of error in PBTM have been known:

errors at off-resonance frequencies due to geometrical trac-

ing and sphericity error.2,3 The former error influences e1

mainly for high impedances, whereas e2, which is based on

the sound pressure levels summed in 1/3 octave bands, is sel-

dom affected by the former error. However, the sphericity

error arises at very low frequencies for low surface imped-

ance. Because e2 is the 1/3 octave band error, which empha-

sizes low frequency errors more, the sphericity error can

increase e2 significantly. Therefore a larger e2 than e1 indi-

cates that the sphericity error prevails, whereas the opposite

holds for the error at off-resonance frequencies.

IV. RESULTS AND DISCUSSIONS

A. Uniform absorption in the proportionate room

Average simulation errors in the proportionate room are

shown in Table I and Figs. 1 and 2. In Table I, the frequency

and receiver averaged errors are listed, where it is found that

TABLE IV. Errors for five uniform absorption conditions in the dispropor-

tionate room. The surface impedance and corresponding Schroeder frequen-

cies are shown. The lowest errors are indicated in bold.

Mean e1 Mean e2

fnor fSch anor arand fnor anor arand fnor

BC1 40 416 4.0 2.0 1.6 3.1 1.2 1.4

BC2 20 311 4.5 2.0 1.5 3.9 1.4 1.7

BC3 10 243 5.4 2.8 1.7 4.4 2.0 2.2

BC4 7 219 6.1 3.5 1.9 4.9 2.5 2.8

BC5 4 192 7.3 5.3 2.4 6.2 4.1 4.2

TABLE III. Errors for different phase angles with a fixed random incidence

absorption coefficient of 0.3 in the proportionate room. arand indicates an

error using the random incidence absorption boundary condition, and

fnor,correct indicates an error using the correct impedance boundary

condition.

Mean e1 Mean e2

jfnorj l arand fnor,correct arand fnor,correct

C2-BC1 17.2 30 2.6 1.2 0.9 0.8

C2-BC2 13.8 45 3.5 1.4 1.5 1.0

C2-BC3 9.4 60 4.7 1.7 2.6 1.7

BC2 20 0 1.4 1.2 0.6 0.9
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the errors using afield are only marginally different from the

errors using arand. This is mainly because these two absorp-

tion coefficients are very similar as shown in Table I, there-

fore the errors for arand, which is more widely used than

afield, are only shown in Figs. 1 and 2.

Figure 1 shows the averaged errors over the receiver

positions as a function of the frequency for anor, arand, and

fnor. For the lowest absorption case, BC1, the 1/3 octave

band error is significantly lower than the narrow band error.

For e1, the random incidence absorption boundary condition

shows best results below 200 Hz, whereas the impedance

boundary condition yields the best results at higher frequen-

cies. The errors are increased as the frequency increases. For

e2, the random incidence absorption and impedance bound-

ary conditions yields similar results at frequencies higher

than 300 Hz, whereas better agreements are found for the

random incidence absorption boundary condition below

300 Hz. The normal incidence absorption coefficient bound-

ary condition yields the worst results.

BC2 shows similar results to BC1. However, the errors

become lower than those for BC1, because the simulation

errors at the off-resonance frequencies become alleviated for

higher absorption cases.3 Among the three boundary condi-

tions (anor, arand, and fnor), the lowest e1 is found for the im-

pedance boundary condition, whereas the lowest e2 is

observed using the random incidence absorption in Table I.

This is mainly ascribed to the fact that the impedance

boundary condition slightly underestimates the room

response at frequencies below 300 Hz. Beyond the

Schroeder frequency of 423 Hz, the simulation accuracy

employing the impedance boundary is enhanced and at least

comparable to the random incidence absorption boundary

condition. Again, the normal incidence absorption coeffi-

cient boundary condition yields the worst results.

For BC3, the lowest e2 is found among the tested bound-

ary conditions in Table I. The impedance boundary condition

underestimates the room response at frequencies below

300 Hz, but the errors are reduced above the Schroeder

frequency. The best boundary condition in terms of e1 is the

impedance data, whereas a slightly better result is found for

the random incidence absorption boundary in terms of e2. At

frequencies lower than 60 Hz, the normal incidence absorp-

tion boundary produces the best results.

For BC4, increased errors are noticed for the random

incidence absorption and impedance boundary conditions at

low frequencies, whereas the normal incidence absorption

boundary condition yields the best result. Above 80 Hz, the

errors using the random incidence absorption and impedance

boundary conditions tend to be lower than those using the

normal incidence absorption coefficient, and the best corre-

spondence is found for the impedance boundary condition

above the Schroeder frequency.

For BC5, noticeably amplified errors are found at low

frequencies, whereas the high frequency errors are quite

FIG. 1. Errors averaged over the re-

ceiver positions as a function of fre-

quency in the proportionate room.

(a), (c), (e), (g), and (i) e1; (b), (d),

(f), (h), and (j) e2. (a) and (b) BC1;

(c) and (d) BC2; (e) and (f) BC3;

(g) and (h) BC4; (i) and (j) BC5.

anor; , arand; and

: fnor. � indicates the

Schroeder frequency.
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reduced for the impedance and random incidence boundary

condition. The normal incidence absorption coefficient

boundary condition yields the lowest error at low frequen-

cies. Above 90 Hz, the errors using the random incidence

absorption and impedance boundary conditions become

lower, and the best correspondences are found for the imped-

ance boundary condition above the Schroeder frequency.

Note that e2 is larger than e1 for the impedance boundary

condition because large errors are found at low frequencies.

For the three low absorption cases (BC1–BC3), the ran-

dom incidence absorption boundary condition best approxi-

mates the local reaction boundary condition at low

frequencies. Above the Schroeder frequency, the impedance

boundary condition agrees best with the boundary element

simulations. e2 is smaller than e1 as can be seen in Table I;

this indicates that the errors at the resonance frequencies are

likely to be lower than those at the off-resonance frequencies

as also pointed out in Refs. 2 and 3. PBTM is inherently

more accurate at the resonance frequencies, therefore the

calculated 1/3 octave band spectra are more accurate. Gener-

ally the normal incidence absorption coefficient leads to the

most inaccurate simulations, whereas the random/field inci-

dence absorption and impedance boundary condition repre-

sent the locally reacting surfaces better. However, for the

first few axial modes below 100 Hz, the normal incidence

absorption boundary condition yields a similar agreement to

the other boundary conditions; this is not surprising because

it is obvious that the sound propagation is one dimensional.

Roughly speaking, below the Schroeder frequency, the

random incidence absorption boundary condition is better,

whereas the accurate results are guaranteed with the imped-

ance boundary condition above the Schroeder frequency.

The discrepancies between the random incidence absorption

and impedance boundary condition, however, are quite small

above the Schroeder frequency. For the very low absorption

case, the errors are increased as the frequency increases.

For the high absorption cases, the random incidence

absorption and impedance boundary conditions yield reliable

results at high frequencies, whereas the normal incidence

absorption produces the best results below 100 Hz. This is

related to the sphericity error for high absorptions at very

low frequencies as Lam and Ingard already pointed out2,27

because only the plane-wave reflection coefficient is

employed in the PBTM simulations. As Ingard found, the

sphericity error is indeed related to the angle of incidence:

The sphericity error for oblique angle incidence becomes

most significant for the lowest impedance, BC5, which sup-

ports the predominance of the incident energy at near normal

directions.27 This is the reason why the use of the normal

incidence absorption coefficient ensures accurate results in

this frequency range below 100 Hz. The best PBTM simula-

tion can be obtained by combining the boundary conditions:

the normal incidence absorption coefficient below 70 Hz, the

random incidence absorption between 70 and 150 Hz, and

the impedance beyond 150 Hz. However, this suggested

combination is specifically for this test room, and therefore

cannot be generalized. Because many room acoustic simula-

tions do not require responses in a very low frequency range,

FIG. 2. Errors averaged over the fre-

quency as a function of the source-to-

receiver distance in the proportionate

room. (a), (c), (e), (g), and (i) e1; (b),

(d), (f), (h), and (j) e2. (a) and

(b) BC1; (c) and (d) BC2; (e) and

(f) BC3; (g) and (h) BC4; (i) and (j)

BC5. , anor; , arand;

:fnor.
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say below 100 Hz, the random incidence absorption, the field

incidence absorption, and impedance boundary conditions

are recommended in most cases.

Figure 2 shows the averaged error over the frequency as

a function of the source-and-receiver distance. Among the

boundary conditions, the normal incidence absorption

boundary condition yields the most inaccurate predictions,

while the random incidence absorption and impedance

boundary conditions produce small errors. The lowest e1 is

found using the impedance boundary condition. The random

incidence absorption boundary condition produces the low-

est e2 for the three lowest boundary conditions (BC1–BC3),

but both impedance and random incidence absorption bound-

ary conditions also produce the best results for BC4 and

BC5 as shown in Table II.

At some specific receiver locations, the errors are ampli-

fied. From Figs. 2(b), 2(d), 2(f), and 2(h), it is observed that

the 1/3 octave band error using the random incidence absorp-

tion boundary condition is less influenced by the receiver

position than using the impedance boundary condition. From

Fig. 2(j), large errors using the impedance boundary condi-

tion are found for specific receiver locations at (0.15, 1.0,

0.3), (0.15, 1.2, 0.3), (1.35, 0.2, 0.3), (1.55, 0.2, 0.3), and

(1.75, 0.2, 0.3). These receivers have a common aspect that

at least one of the first order reflections has a large incidence

angle. The largest incidence angles of the first order reflec-

tions for the listed five receivers are 73.7�, 77.0�, 76.2�,
79.1�, and 78.8�, respectively. For such grazing incidence,

the plane wave reflection coefficient by Eq. (7) is known to

be incorrect and therefore yields large errors by using the im-

pedance boundary condition.23,28 To avoid such errors using

the impedance boundary condition that depend on the source

and receiver location, one may use the random incidence

absorption boundary condition.

Figure 3 compares transfer functions at two receiver

locations for BC5: one of the problematic receivers at (1.75,

0.2, 0.3) and a receiver having low errors at (0.75, 0.2, 0.3).

The 1/3 octave band errors are 4.0 and 1.6 dB, respectively.

The main differences are found at low frequencies: Larger

errors are found below 300 Hz for the problematic receiver

in Fig. 3(b), whereas the other receiver exhibits much

smaller errors in the same frequency range in Fig. 3(a). Such

low frequency errors amplify e2, although the high frequency

errors are quite acceptable as can be seen in Figs. 1 and 3.

Because e1 has a uniform weighting over the frequency of

interest, e1 is always lowest with the impedance boundary

condition that yields accurate high frequency responses.

Figure 3 also reveals that the impedance boundary condition

is actually superior to the random incidence absorption

boundary condition in terms of the identification of the loca-

tions and levels of the troughs.

Additionally, the reverberation times for the investi-

gated boundary conditions are calculated. From the calcu-

lated transfer functions, impulse responses are computed via

the inverse Fourier transformation. T20 is calculated in

octave bands for the impedance and random incidence

boundary conditions by the backward integration method29

and listed in Table V. Compared with the reference cases

(BEMfnor), the differences are fairly small. The differences

for the random incidence boundary conditions are smaller at

low frequencies, but the differences for the impedance

boundary conditions become smaller in the 500 Hz octave

band. The reverberation time results also support that the im-

pedance boundary condition provides the best results at high

frequencies, whereas the random incidence absorption

boundary condition is the best at low frequencies.

B. Non-uniform absorption in the proportionate room

A non-uniform distribution of absorption was simulated.

A typical lecture room has a large amount of absorption

treated on the ceiling, but has acoustically reflective walls.

Therefore the impedances for the ceiling, floor, and all the

side walls were chosen as 5.9, 18, and 38, respectively,

which correspond to the random absorption coefficients for

the ceiling, floor, and side walls of 0.66, 0.32, and 0.17,

respectively. The average absorption coefficients in terms of

FIG. 3. Simulated transfer functions in the proportionate room. (a) At (0.75,

0.2, 0.3); (b) at (1.75, 0.2, 0.3).

TABLE V. Reverberation times (T20) in octave bands for different boundary conditions. Differences larger than 10% is indicated in bold.

fc 63 Hz 125 Hz 250 Hz 500 Hz

BC BEM fnor PBTM fnor PBTM arand BEM fnor PBTM fnor PBTM arand BEM fnor PBTM fnor PBTM arand BEM fnor PBTM fnor PBTM arand

BC1 0.25 0.23 0.26 0.27 0.20 0.27 0.24 0.19 0.24 0.18 0.19 0.21

BC2 0.23 0.24 0.24 0.19 0.16 0.20 0.14 0.11 0.16 0.11 0.10 0.12

BC3 0.24 0.26 0.25 0.15 0.13 0.15 0.09 0.07 0.10 0.07 0.06 0.07

BC4 0.25 0.26 0.26 0.13 0.12 0.14 0.07 0.06 0.08 0.04 0.04 0.06

BC5 0.26 0.26 0.26 0.12 0.12 0.12 0.06 0.06 0.06 0.03 0.03 0.04
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the normal and random incidence absorption were calculated

as 0.21 and 0.31, which is similar to BC2 in Table I. The

Schroeder frequency of the room is 414 Hz. Figure 4 shows

the error as a function of the center frequency of the 1/3

octave bands. Similar error trends are found: The impedance

boundary condition yields the lowest e1 except for the very

low frequency bands, whereas the random incidence absorp-

tion coefficient boundary condition guarantees the lowest e2

except for the 800 Hz band.

Compared with BC2, which has a similar mean absorp-

tion coefficient, the averaged errors are increased for the

non-uniform absorption configuration; the lowest e1 for the

impedance boundary condition is increased by 1 dB and

the lowest e2 for the random incidence absorption boundary

condition by 0.6 dB. Note that this non-uniform distribution

result was already published in the previous work3 but only

up to the Schroeder frequency. In this study, the transfer

functions were further simulated up to 1000 Hz, and the error

trends were analyzed as a function of frequency. The reason

for the increased error was already discussed in the previous

paper that the phased beam tracing used cannot account for

wave phenomena due to the discontinuity in the boundary

condition, i.e., wave diffraction and scattering evoked by the

discontinuity in the boundary condition.3

C. Neglect of phase shift on reflection

In actual situations, true pressure reflection coefficients

and surface impedances are complex-valued, and therefore

the reflection phase should not be ignored. In this sense, the

impedance boundary condition has a definite advantage that

it can take account of phase shift on reflection. However, in

most cases, such reflection phase is difficult to estimate,

therefore real-valued boundary conditions are predominantly

used in practice. In this section, two scenarios are studied on

how the real-valued approximate boundary conditions influ-

ence simulation results. Assume a uniformly distributed

absorption in the proportionate room. First, the magnitude of

the specific surface impedance is assumed to be constant as

20, and the phase angle of the specific impedance, l as arc-

tan (Im(fnor)/Re(fnor)), changes from 0� to 60�. Note that the

zero phase angle case corresponds to BC2 in Table I. The

other three phase angles are chosen to be 30�, 45�, and 60�.
In Table II, the complex boundary conditions and corre-

sponding absorption coefficients are listed. As the phase

angle increases, the equivalent absorption decreases. There-

fore it is likely that the PBTM simulation with BC2 differs

from the other simulations employing the complex-valued

boundary conditions. Figure 5 shows a comparison of the

boundary element simulations with three phase angles, 0�,
30�, and 60� at the closest receiver location at (0.15, 0.2,

0.3). The frequency shifts of the peaks and troughs and their

magnitude changes are observed due to the phase shift on

reflection.

The PBTM simulations adopting the real-valued imped-

ance (BC2) and complex-valued impedance data (C-BC1 to

C-BC3) are compared with the boundary element simula-

tions with the three complex-valued boundary conditions to

estimate the additionally increased error due to the neglect

of the reflection phase. If the rooms are simulated by PBTM

with the correct boundary condition, the maximum e1 and e2

are 2 and 1.2 dB, respectively, for C-BC3 as shown in

Table III. If the approximate real-valued impedance bound-

ary condition is assigned, the simulation errors are increased

up to 4.4 and 3.5 dB, respectively. Therefore the maximum

increase due to the neglect of the phase angle in the imped-

ance boundary condition is about 2.4 dB for e1 and 2.3 dB

for e2. These significant increases in both e1 and e2 indicate

that the simulation accuracy is degraded at both resonance

frequencies and off-resonance frequencies: The frequency

shifts and the magnitude changes in the peaks mainly

increase e1, whereas only the magnitude changes in the

peaks increase e2. Another interesting finding is that as

the phase angle of the impedance increases, the accuracy of

the PBTM simulations even with the correct boundary con-

ditions become degraded; e1 and e2 are increased by 0.8 and

0.3 dB, respectively, for the phase angle of 60�. However,

such a real-valued impedance approximation is not highly

FIG. 5. Simulated transfer functions by the boundary element method at

(0.15, 0.2, 0.3) using different boundary conditions.

FIG. 4. Errors averaged over the receiver positions as a function of fre-

quency in the proportionate room for a non-uniform absorption configura-

tion. (a) e1; (b) e2. � indicates the Schroeder frequency.
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likely because one can obtain the correct phase angle infor-

mation when measuring the surface impedance by the duct

method.

A more realistic scenario is to compare various surface

impedance values that are equivalent to an identical absorp-

tion coefficient. This happens when one knows an approxi-

mate absorption coefficient of the surface of interest and

tries to estimate the surface impedance from the approximate

absorption coefficients without measurements. There are an

infinite number of combinations of the real and imaginary

part of the impedance for a fixed absorption coefficient.

Assuming the zero phase angle of the surface impedance, the

surface impedance of 20 corresponds to a random incidence

absorption coefficient of 0.3. Table III lists three other

complex-valued surface impedances having phase angles of

30�, 45�, and 60�, equivalent to the absorption coefficient of

0.3. Boundary element simulations with the three correct

complex-valued impedance boundary conditions are

compared with the PBTM simulations using the random

incidence absorption coefficient of 0.3 and the correct

complex-valued impedance boundary conditions.

Using the random incidence absorption boundary condi-

tion, the phase shift on reflection is neglected by Eq. (8),

therefore the lowest error is expected for BC2 for which the

correct reflection phase is also zero. In terms of e1, the ap-

proximate random incidence absorption coefficient degrades

the simulation accuracy by 3 dB for the phase angle of 60�,
2.1 dB for 45�, 1.4 dB for 30�, and 0.2 dB for 0�. In terms of

e2, the increase in e2 can be as large as 0.9 dB, which is rela-

tively small compared with the increase in e1. With the

neglect of the reflection phase, the PBTM simulation accu-

racy is degraded to some degree; the larger the phase angle

of the impedance, the larger the additional error due to the

neglect of the reflection phase shift.

D. Uniform absorption in the disproportionate room

Again, the five uniform boundary conditions are

assigned on the boundary walls in the disproportionate room.

It has been found that the more disproportionate the room,

the larger the errors.3 In Table IV, average errors over the

frequency range and the receiver positions are listed. In

terms of the narrow band error e1, the impedance boundary

condition always yields the best results. However, the errors

are quite increased compared with the proportional room

case, e.g., for BC5, the lowest e1 and e2 are increased by

1.2 dB (1.2 dB fi 2.4 dB) and 2.5 dB (1.7 dB fi 4.2 dB),

respectively. It turns out that the random incidence absorp-

tion boundary condition consistently yields the best results

in terms of e2, but the differences in e2 between the random

incidence absorption and the impedance boundary condition

are all less than 0.3 dB as shown in Table IV.

These errors are plotted as a function of the frequency in

Fig. 6. The random incidence absorption boundary condition

is superior at frequencies below 200 Hz, whereas the imped-

ance boundary condition agrees best with the boundary

FIG. 6. Errors averaged over the re-

ceiver positions as a function of fre-

quency in the disproportionate room.

(a), (c), (e), (g), and (i) e1; (b), (d),

(f), (h), and (j) e2. (a) and (b)

BC1; (c) and (d) BC2; (e) and (f)

BC3; (g) and (h) BC4; (i) and (j)

BC5. , anor; , arand;

:fnor. � indicates the

Schroeder frequency.
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element simulations above 200 Hz. Note increased errors in

Fig. 4(j) at frequencies lower than 100 Hz due to the spheri-

cal error, but the error employing the impedance boundary

condition decreases significantly as the frequency increases.

The random incidence absorption boundary condition con-

sistently produces the lowest error even at low frequency for

low impedances than the normal incidence absorption coeffi-

cients in terms of both e1 and e2.

V. SUMMARY

Generally speaking, the impedance, random incidence

absorption, and field incidence absorption boundary condi-

tions yield reasonably accurate results. The impedance

boundary condition together with the plane wave reflection

modeling is found to be acceptable. If narrow band spectra

are to be calculated, the impedance boundary condition is

strongly recommended. Even for 1/3 octave band spectra,

the error with the impedance boundary condition is increased

by only maximum 0.3 dB compared with the random inci-

dence boundary condition. At high frequencies, particularly

above the Schroeder cutoff frequency, the impedance bound-

ary condition always produces the best results. On the other

hand, for low impedance at very low frequencies, the sphe-

ricity error dominates, therefore the impedance boundary

condition with the plane-wave reflection modeling becomes

problematic. The impedance boundary condition exhibits

large errors at receivers with nearly grazing incidence angles

for the first order reflection. In other words, the simulation

errors depend more on the source and receiver location with

the impedance boundary condition.

The random incidence and field incidence absorption

boundary conditions are also quite acceptable if the phase

shift on reflection is close to zero. If 1/3 octave band spectra

are to be calculated, these absorptions boundary conditions

are likely to be good boundary conditions. As the reflection

phase change increases, these approximate absorption

boundary conditions cannot predict the sound field well, and

the error can be additionally increased by up to 3 dB. These

boundary conditions are more robust regardless of the source

and receiver location but again only for nearly zero phase

shift on reflection. They are relatively easy to estimate, but

great care must be taken to distinguish these quantities from

Sabine absorption coefficients.

The normal incidence absorption is least accurate in

general. This type of boundary condition is useful in a very

limited low frequency range, say, up to a few axial modes.

For acoustically soft materials, this quantity can be used at

the very low frequencies. The normal incidence boundary

condition generally increases the simulation error by around

2 dB relative to the other boundary conditions.

VI. CONCLUSIONS

This study investigates absorption and impedance

boundary conditions for a phased beam tracing model.

PBTM simulations employing normal incidence absorption,

random incidence absorption, field incidence absorption, and

impedance boundary conditions are compared with boundary

element solutions in two rectangular rooms under the

assumption of locally reacting boundaries. A wide range of

impedance and absorption boundary conditions are tested

with uniform and non-uniform absorption configurations.

Neglect of the phase shift on reflection is also studied.

The impedance boundary condition is found to yield the

best results at higher frequencies above the Schroeder fre-

quency with a few exceptions, whereas the random/field

incidence absorption coefficient boundary conditions are

proven to be robust, in particular at low frequencies. The

normal incidence boundary condition generally produces

larger errors, and this type of boundary condition is only ac-

ceptable for the first few axial room modes and/or for the

boundaries having low impedance or high absorption. A

non-uniform boundary configuration shows similar error

trends for the tested boundary conditions, but increases the

errors by about 1 dB due to wave phenomena evoked by the

discontinuous acoustic properties at the boundary. By using

the plane wave reflection coefficients computed from the im-

pedance boundary condition, the simulation errors can be

amplified at frequencies below 100 Hz for low impedance/

high absorption. This sphericity error, however, occurs only

at very low frequencies, therefore in most cases, the imped-

ance boundary condition with plane-wave reflection model-

ing is a reliable boundary condition. At receiver locations

having nearly grazing first-order reflection components, the

errors are amplified by the plane-wave reflection modeling,

whereas the random/field incidence boundary conditions are

less affected by the source and receiver location, which is a

positive aspect. For the disproportionate room, the errors are

increased, but the error trend of the boundary conditions

investigated is similar to the proportionate room case. For a

correct phase angle of 60�, the simulation error can be

increased by 2.4 dB for the wrong estimation of the phase

angle of the impedance and by 3 dB when using the random

incidence absorption boundary condition. In many cases, it

is difficult to characterize the reflection phase, therefore one

always bears such a fairly large amount of the increased

error in mind when simulating sound fields with approximate

absorption/impedance boundary conditions.
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