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Abstract

Current state of the art within the wind industry dictates the use of conventional
rolling element bearings for main bearings. As wind turbine generators increase in
size and output, so does the size of the main bearings and accordingly also the cost
and potential risk of failure modes.

The cost and failure risk of rolling element bearings do, however, grow exponen-
tially with the size. Therefore hydrodynamic bearings can prove to be a competitive
alternative to the current practice of rolling element bearings and ultimately help
reducing the cost and carbon footprint of renewable energy generation.

The challenging main bearing operation conditions in a wind turbine pose a de-
manding development task for the design of a hydrodynamic bearing. In general these
conditions include operation at low Reynolds numbers with frequent start and stop at
high loads as well as difficult operating conditions dictated by environment and other
wind turbine components.

In this work a numerical multiphysics bearing model is developed in order to
allow for accurate performance prediction of hydrodynamic bearings subjected to the
challenging conditions that exist in modern wind turbines. This requires the coupling
of several different theoretical fields:

• fluid film forces

• heat transfer

• thermoviscous effects

• dynamic response

• deformation of structure and components

• angular misalignment

• wear

The multiphysics bearing model is applied for various bearing types in order to
study the bearings, their hydrodynamic performance and related phenomena:

• a new wear model is proposed which can, with only moderate efforts, be imple-
mented into existing EHD models.

• it is discovered that radial tilting pad bearings can exhibit discontinuity effects
when subjected high dynamic loads.
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• the influence of compliant liners on the dynamic response of journal bearings
subjected to dynamic loads is studied using a soft EHD model.

• the influence of the geometrical design parameters of a radial flexure pad is
studied as well as the effect of a compliant liner using an EHD model.

• an innovative radial flexure journal bearing designed for operation at heavy
angular misalignment is presented. Its hydrodynamic behavior, as well as the
effect of a compliant liner, is studied using a TEHD model.

• the EHD model is extended to cover 5 degrees of freedom and is applied for a
novel compact moment-carrying hydrodynamic bearing.
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Abstrakt

Nuværende state-of-the-art indenfor vindmølleindustrien dikterer brugen af konven-
tionelle rulningslejer for hovedlejer. I takt med at vindmøllerne stiger i størrelse og
effekt stiger ogs̊a størrelsen af lejerne og s̊aledes ogs̊a kostprisen og den mulige risiko
for skader.

Kostprisen og risikoen for skader for rulningslejer stiger dog eksponentielt med
størrelsen. Derfor kan hydrodynamiske glidelejer vise sig at være et konkurrencedygtigt
alternativ til den nuværende praksis med rulningslejer og ultimativt bidrage til at re-
ducere udgiften og klimap̊avirkningen for vedvarende energiproduktion.

De udfordrende driftsbetingelser for hovedlejerne i en vindmølle udgør en krævende
udviklingsopgave for designet af et hydrodynamisk glideleje. Generelt indebærer
driftsbetingelserne drift ved lave Reynolds værdier med jævnlige start-stop cykler
ved høje laster s̊avel som vanskelige betingelser dikteret af omgivelserne og de øvrige
vindmølle komponenter.

I dette værk udvikles en multifysisk lejemodel der muliggør præcis forudsigelse af et
hydrodynamisk glidelejes drift n̊ar det udsættes for de udfordrende driftsbetingelser
som eksisterer i moderne vindmøller. Dette kræver kobling af adskillige forskellige
teoretiske felter:

• smørrefilmens kræfter

• varmeledning

• termoviskose effekter

• dynamisk respons

• deformation af struktur

• vinkelskævhed

• slid

Den udviklede multifysiske lejemodel anvendes p̊a adskillige lejetyper for at studere
lejerne og deres hydrodynamiske drift samt relaterede fænomener:

• en ny slidmodel opstilles som kan, med moderat indsats, implementeres i eksis-
terende EHD modeller.

• det afsløres at radiale vippeskolejer kan udvise diskontinuitets-fænomener n̊ar
de udsættes for meget dynamiske laster.
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• indflydelsen af komplianse linere p̊a den dynamiske respons af radiale glidelejer
udsat for dynamiske laster studeres ved brug af en soft EHD model.

• de geometriske designparametre for et radial-fleks-vippeskoleje studeres sammen
med p̊avirkning af kompliante linere ved brug af en EHD model.

• et innovativt radial-fleks-glideleje udviklet for drift ved stor vinkelskævhed præsen-
teres. Dets hydrodynamiske drift, og indflydelsen af en kompliant liner, studeres
ved brug af en TEHD model.

• EHD modellen udvides til at dække 5 frihedsgrader og anvendes p̊a et nyskab-
ende, kompakt, momentbærende hydrodynamisk glideleje.
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Chapter 1

Introduction

The understanding of hydrodynamic bearings began with Beauchamp Tower’s dis-
covery of the hydrodynamic lubrication effect in 1883 and Osborne Reynolds (1886)
equation describing the hydrodynamic pressure build-up in the oil film. Since then
the hydrodynamic bearing technology has proven its worth in numerous applications.
The bearings are used extensively within the marine industry, for hydro power plants,
steam turbines and combustion engines. Figure 1.1 shows various examples of con-
ventional hydrodynamic bearings for a wide range of applications.

However, the wind industry has relied on rolling element bearings from the very
first kW rated turbines to the latest state-of-the-art MW power plants. Thus the
rolling element bearing technology has grown to be a well proven and trusted technol-
ogy within the wind industry. Recent examples are the geared Siemens Wind Power
2.3 MW wind turbine [SWT-2.3-101] and the Siemens Wind Power 2.3 MW direct
drive wind turbine [SWT-2.3-113] shown in figures 1.2(a) and 1.2(b) respectively.

The geared wind turbine uses two double row spherical bearings for supporting
the 62 ton rotor. The bearing type is shown in figure 1.3 and supports both axial and
radial loads. Furthermore it allows the rollers and cage to adjust to angular deflection
along the bearing center line and hence avoid severe edge loading when the structure
deforms due to external loading on the overhung rotor.

The direct drive wind turbine is built around a revolutionizing permanent magnet
generator which enables the number of parts to be reduced with 50% compared to a
traditional geared wind turbine. A double row tapered bearing of the type shown in
figure 1.3 supports the rotor.

The increasing size of wind turbines and increasing trend towards offshore tur-
bines puts high demands on bearing robustness and the ability to accurately predict
bearing lifetime. As the size of bearings increases, so does the risk of potential failure
modes. Classic ones being for example material flaws or contamination initiating local
damages which then spread within the bearing, often with exponential growth rate.

The thin lubricant film and extreme pressures occurring in rolling element bearings,
even when operating at normal operating conditions, make the bearings sensitive to
deviations from design specifications. For idealized pure rolling an oil film of molecu-
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Figure 1.1: Examples of hydrodynamic bearings. a: Thrust tilting pad bear-
ing [Kingsbury] b: Radial tilting pad bearing [Kingsbury] c: Automotive plain
bearing shells d: Thrust bearing with hydrostatic jacking for hydro power plant
[Pioneer Motor Bearing] e: Stern tube bearing using polymer liner [Thordon Bearings]
f: Bearings for 2800 kW ball mills [KEW Foundries].
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(a) Siemens Wind Power 2.3 MW geared wind turbine

(b) Siemens Wind Power 2.3 MW direct drive wind turbine

Figure 1.2: State of the art wind turbines
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Figure 1.3: Double row spherical roller bearings (left) and double row tapered roller
bearing (right) [NKE Bearings].

lar dimensions is sufficient to fully separate the roller and raceway [2]. However, when
factors as sliding, contamination, lubrication, electrical currents, deformation, ther-
mal expansion or corrosion is included it gets difficult to predict the bearing lifetime,
especially for large bearings. Another aspect is the manufacturing of large bearings.
There are only a relative few companies which supply these bearings which hinders a
good procurement situation.

Hydrodynamic bearings operate at much thicker films and lower pressures com-
pared to roller bearings. This reduces many of the failure modes known from rolling
element bearings.

The general properties of a hydrodynamic bearing is listed below, compared to a
rolling element bearing:

• overall more robust, when designed correctly for the application

• requires a minimum rotational speed for full film operation

• much higher friction at startup

• moderately higher friction at normal operation

• less sensitive to particles and contamination

• less sensitive to material failures, as bearing sizes grows this becomes more and
more pronounced since bearing surface increases

• less strict requirements for manufacturing tolerances

• no wear or fatigue when operating at full film and steady state

• more potential suppliers and thus easier to procure

• no requirement for high grade steel and surface treatment

• lower stiffness
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• higher damping

The most significant differences between the two bearing technologies are the high
startup torque, when starting with load applied, and the requirement for a minimum
sliding speed before a fully separating lubrication film is reached. The high friction
at start-up can be eliminated using hybrid or hydrostatic bearings. This will then
imply the addition of a high pressure lubrication system to the bearing application,
which then adds complexity and possible failure modes. The focus of this work will be
on hydrodynamic bearings. Assuming that the friction challenges can be solved, the
hydrodynamic mode of operation looks very attractive compared to rolling element
bearings. As bearings sizes grow, to suit larger wind turbines, this becomes more
pronounced. Offshore wind turbines furthermore benefit from a more robust design
since main bearing repairs are very costly due to offshore service crane costs and
challenging conditions at sea.

This leads to the interesting question: Why are hydrodynamic bearings not yet
adopted as main bearings by the wind industry?

Compared to typical applications, where hydrodynamic bearings are used, there
are a number of challenging operating conditions related to wind turbine operation:

• gravitational load is high giving correspondingly high loads at start-up

• no direct control of external loads

• low sliding speeds

• frequent start and stop

• difficult operating conditions, for a hydrodynamic bearing, dictated by environ-
ment and other components

It is not uncommon to see hydrodynamic bearing applications operating under one
or two of the listed items, but not all of them at one time. All items exist in a wind
turbine and therefore increases the complexity of the design task.

In this work a numerical multiphysics bearing model has been developed in order
to allow for accurate performance prediction of a hydrodynamic bearing subjected to
conditions existing in modern wind turbines. This includes simulation of the following
parameters:

• fluid film forces

• heat transfer

• thermoviscous effects

• dynamic response

• deformation of structure and components

• angular misalignment

• wear
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When these are combined they comprise a thermoelastohydrodynamic (TEHD)
model that can simulate the response for dynamic loads and estimate wear when
operating at thin films. In this work the numerical models will be derived and applied
on various bearing applications.

Ultimately the goal of this work is to reduce the carbon footprint of energy pro-
duction through improvement of one of the central components in wind turbines. This
is facilitated through the development of knowledge and know-how required to imple-
ment a hydrodynamic bearing solution in a wind turbine and thereby present a strong
alternative to current state of the art.
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Hydrodynamic bearings

Hydrodynamic bearings rely on the pressure generated when two conditions for a
sliding pair are met:

• the surfaces must move relative to each other

• the surfaces must form a converging oil film geometry

In a conventional journal bearing, such as the ones shown in figure 1.1c, e and f,
the converging geometry is formed when the journal center location is non-concentric
in the bearing. The journal rotation drags oil into the wedge and generates pressure
which then separates the sliding pair.

The generated pressure is a function of numerous geometrical and operational
parameters. For a journal bearing the dimensionless Sommerfeld number So (2.1)
states the relationship between the primary parameters:

So =
μω

p

(
R

cr

)2

(2.1)

For example halving the radial clearance will result in a quadruplicating of the
pressure and so on. Early studies often depicted results as functions of the Sommerfeld
number since one figure can show the influence of all five variables [3]. This approach
does, however, neglect many important non-linear interrelated phenomena such as
thermo-viscous and elasticity effects and influences of more complex geometries.

2.1 Tilting pad bearings

Since A.G.M. Michells discovery of the tilting pad bearing it has been widely adopted
for both thrust and radial bearing applications. The pivoted pad bearing allows the
angular position of the pad to adjust according to the operating conditions. Ideally the
pivot ensures that the pad operates with constant ratio between oil film thickness at
leading and trailing edge of the pad [4]. Thereby the pivoted pad operates better over
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a much broader range of operation conditions compared to a fixed geometry pad like
the tapered thrust pad with a flat land. Figure 1.1a, b and d shows typical examples
of radial and thrust tilting pad bearings. Figure 1.1a shows several interesting features
worth noticing:

• a leading edge groove supplies lubricant directly at the leading edge allowing the
bearing to run without submersion into an oil bath thereby reducing parasitic
losses.

• an offset pivot point positioned roughly 65% from leading edge.

• a load equalization system using mechanical lever arms.

• a two-half design allowing the bearing to be split and mounted radially.

The location of the pivot has significant influence on the hydrodynamic perfor-
mance of the tilting pad bearing. For bi-directional operation a central location,
i.e. 50 % from leading edge, is the preferred choice. But for uni-directional operation
locations from 60 to 80 % have been reported as optimum choice. It is important to
consider thermo-hydrodynamics when searching for the optimum pivot location, since
the lubricant flow into the bearing is increased rapidly, and hence also the cooling,
when moving the pivot towards the trailing edge [5]. From this it is evident that the
optimum pivot location depends on the specific bearing application.

Large tilting pad bearings cannot make use of the conventional rocker pivot con-
tact, as shown in figure 1.1a, since the stresses on the contact zone will be excessive.
Figure 2.1 shows examples of alternative pivot mechanisms: cylindrical line contact
support, flexure pivots, fluid pivots and spring beds. All alternative solutions either
increase resistance towards angular adjustment or increase complexity. Some designs
does however give additional advantages, for example the required pad stiffness is
reduced significantly for the spring bed supported pad since it is supported under the
full pad length and deformations due to bending are reduced.

Niclas and Wygant [6] study tilting pads with cylindrical line contacts, spherical
point contacts and ball-in-socket designs for high load applications. The pivot designs
are compared and design guidelines given for high load applications.

Kim and Kim [7] show that the frictional resistance in the pivot can have a high
influence on bearing performance and that the resistance is increased significantly for
bearings using ball-in-socket pivot mechanisms.

Tilting pad thrust bearings always comprises several individual pads, more than
10 pads is not unusual. This will inevitably result in some difference in pad height
due to assembly and manufacturing tolerances of the complete bearing system. When
this is combined with general operational misalignment due to elastic and thermal
distortion equal load sharing cannot be expected without a equalizing system. Load
equalization can be achieved through mechanical systems using levers, hydraulics or
elasticity. Alternatively the bearings are designed without equalization system, this
usually results in lower load capacity corresponding to the accuracy of the assembled
bearing.
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Figure 2.1: Alternative pivot mechanisms. a: Flexure bearing for small pump
application [Grundfos]. b: Advanced hydrostatic tilting pad using ball-in-socket
pivot mechanism and hydraulic load equalization for large ball mill [SKF].
c: Spring bed support for hydro power plant. d: Mechanical equalization using
lever arms [Waukesha Bearings]. e: Fluid pivot using self-generated hydrostatic
film [Pioneer Motor Bearing].
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Flexible rotors operating at high rotational speeds are often supported in tilting
pad journal bearings due to their stabilizing effect compared to other bearing types
with fixed geometry. The tilting pads ensure that the cross-coupling coefficients in
the stiffness and damping matrices of the bearing are small compared to the direct
coefficients. For applications where high shaft misalignments are unavoidable, radial
tilting pad bearings can also be the preferred choice over plain journal bearings due
to low sensitivity to this issue.

Thomsen and Klit [8], appendix A, has shown that large radial tilting pad bearings
seeing highly dynamically loads during slow rotation can show instabilities when the
squeeze term dominates the right-hand side of Reynolds equation and the pad cir-
cumferential extent is large. The work also discusses calculation of angular moment
equilibrium and how it correlates with angular position.

Hargreaves and Fillon [9] studied fluttering and spragging and describes how an
instability at one pad can cause the neighboring pads to reach instabilities when the
journal changes position due to the decreased pressure at some pads.

Gardner [10] studies flutter experimentally and successfully provokes flutter condi-
tions, which is shown to develop at low oil flow rates for unloaded tilting pads. Flutter
reveals as clicking sounds and can eventually cause fatigue damages.

Adams and Payandeh [11] describe how unloaded pads can show self-excited vi-
brations if a pad’s operating pivot clearance is larger than the concentric bearing
clearance. Preloading is shown to reduce instabilities and it is also found that smaller
pads are less prone to self-excited vibrations.

A topic not covered in this work is thermal crowning of the tilting pads. Since the
subject is of high importance for highly loaded tilting pad bearings it deserves a brief
notice.

The viscous dissipation in the lubricant heats the sliding surfaces and the heat flux
induces a thermal gradient through the pad resulting in differential thermal expansion.
This is known as thermal crowning. Ettles [12] has studied the size effects when scaling
up bearings and reports that the effect of thermal crowning increases with bearing
size. He mentions insulation, cooling and elaborate pad support systems as methods
to reduce thermal crowning. Heinrichson [13] has studied thrust pads and uses a flat
plate approximation for calculation of thermal crowning and finds good correlation
with experimental results. Glavatskih [5] describes how elasticity can be used to
counteract thermal crowning if the deformation is concave. He also refers to efficient
oil supply decreasing hot oil carry over and high pad thermal conductivity as means
of reducing thermal crowning effect.

2.2 Flexure bearings

The term flexure bearing is used for bearings for which important parts of their
tribological characteristics are achieved through structural flexibility. One family



2.3 Compliant liners 11

of the flexure bearings are the flexure pad bearings, in which the pivot mechanism
from conventional pads is replaced with a flexible structure that allows the bearing
to adapt to the load and operating conditions. Hereby pivot contact related failure
modes are eliminated and load capacity is not restricted by the force that can be
transfered through the pivot contact. The flexure bearing combines the simplicity
and sturdiness of a fixed geometry bearing with the adaptable nature of the pivoted
pad. From a manufacturing viewpoint the flexure bearing can also be advantageous
because the number of parts is reduced and the tolerance chain is shorter. Figure 2.1a
shows an example of a mass-produced flexure bearing for a small pump application
using process-medium, in this case water, as lubricant. The stiffness of the a flexure
pad design eliminates the risk of pad flutter that otherwise can be encountered on the
unloaded pads when using traditional tilting pad bearings. The flexure pad bearing
is, however, more sensitive to the initial alignment as it takes a minimum pad load to
elastically deform the pad and align it to the sliding pair if not perfectly aligned at
assembly.

In [14], appendix C, a flexure thrust pad is studied. The main geometrical dimen-
sions of a radial flexure pad are varied and the affect on pad performance is analyzed
and it is shown that flexure pads can be an attractive alternative to pivoted pads.

A flexure bearing does not necessarily need to use pads, i.e., a radial or a thrust
pad bearing. Traditional journal bearings can also take advantage of flexibility. It
can be used to increase tolerance to misalignment for traditional journal bearings
significantly as shown in [15], appendix D. Here it is shown that the flexure journal
can operate safely at much higher journal misalignments compared to a traditional
stiff bearing design.

2.3 Compliant liners

The study of compliant liners have seen increasing interest in the recent years. Due
to the polymer liners’ low brake away friction and good wear properties the liners
have very good operational characteristics when operating in the mixed lubrication
regime. When this is combined with the compliant nature of the polymer bearings it
also mean that they are less sensible to imperfections in the bearing surface geometry.
This is particularly interesting for large bearings.

The polymers does, however, also give the engineers new challenges in the form of
creep, the Achilles heel of polymers when applied to bearing applications. For example
PTFE will creep even at low temperatures and it is therefore not suitable for highly
loaded applications in its pure form. In order to decrease creep to an acceptable level,
the polymers are often reinforced with glass or carbon fibers.

The fiber reinforcement furthermore has the advantage of increasing the wear
resistance of the polymer provided that there is a strong adhesion between the fibers
and the polymer base material [4]. The fibers can, however, increase the wear of the
sliding partner.
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The low thermal conductivity of polymers must also be taken into account when
introducing polymer liners in hydrodynamic bearings as it will reduce the heat flux
between bearing and lubricant. This can be a disadvantage giving higher lubricant
temperatures. However, it can also be an advantage since it will reduce thermal
crowning for pads using polymer liners.

PTFE and PEEK composites are popular choices for bearing applications. The
polymer composition and fillers have major influence on its mechanical and tribological
properties and this may be used to engineer the best compromise among the required
material properties.

The polymer technology has been implemented for diverse bearing applications.
Examples from the industry are water hydraulic pumps, thrust bearings for hydro
power plants and propulsion shaft and stern tube bearings used in marine applications.
Cases from the industry [16] show that it is possible to up-rate existing machinery
when replacing the existing metal alloy faced bearings with polymer liners. The
uprating can either be used to decrease the bearing size and thereby reduce loss or
to simply use the same bearings to carry a higher load and hereby increase the load
density of the machinery.

Local pressures up to 35 MPa are common for bearings in large combustion engines
using babbitted liners and typical industry design guidelines state around 4 MPa as
maximum specific pressure for babbitted bearings. Ettles [12] reports specific loads
up to 5.5 MPa and down to 3.3 MPa for large thrust bearings. 3.5 MPa is reported
by Nicholas [17] for heavily loaded radial tilting pad bearings.

When using polymer lined pads the specific pressure can be increased and thereby
increase the potential load density of the bearing. Specific loads of up to 11 MPa are
reported as safe operational loads for large thrust bearings in hydro power plants [18].

When using polymer lined bearings it is furthermore possible to design hydro-
dynamic bearing systems, which would traditionally need jack-up systems, without
jack-up. This is because of the polymers’ low brake away friction and good wear prop-
erties when operating in the mixed lubrication region. When considering to start-up
a bearing at high load without a jacking system it is important to consider that the
static friction increases over time due to increase in adhesion. The static friction
can more than double over time, having the highest gradient just after contact and
standstill is initiated. The adhesion increases with smoothness of the sliding pair
and therefore start-up frictional moment can increase as the surfaces smoothen and
conform during running-in [19].

The better operational characteristics at thin films make it possible to use alter-
native lubricants, in some cases even water, or to use thinner oil in order to reduce
power loss.

The influence of the liner stiffness on the dynamic response of a highly dynami-
cally loaded journal bearing is studied in [20], appendix B. Three configurations with
different liner stiffnesses are evaluated on the parameters that are traditionally used
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to evaluate hydrodynamic bearing designs: dynamic response, maximum pressure,
minimum film thickness, wear, power loss and temperature response. The primary
findings are that the maximum pressures are reduced significantly and this comes at
the expense of slightly higher eccentricity ratios during operation.

The radial flexure pad study [14], appendix C, also includes the influence of a
compliant liner and its stiffness on the hydrodynamic performance of the pad. It is
found that the liner clearly reduces peak pressures giving a flatter pressure profile.
The concave deformation contribution of the polymer liner reduces the lubricant flow
into the pad because the film thickness is reduced at the edges of the pad. There
is no clear trend in the polymer liner effect on either power loss or lubricant film
thickness. Another conclusion is that very compliant liners must be avoided. If liner
deformation is excessive its concave contribution will exceed the convex contribution
from the pad body and thus pad performance decreases drastically. Thicknesses of
2 mm are generally performing well.

The effect of compliant liners is a part of the work [15] appendix D. Here it is found
that the compliant liner shows a remarkably increase in hydrodynamic performance
when applied to a conventional stiff journal bearing. It increases the hydrodynamic
performance at normal operating conditions with perfect alignment and also at sig-
nificant misalignment. The positive influence is however not observed for the studied
flexure journal bearing.
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Chapter 3

General bearing design limits

In this chapter the general limits of operation for a hydrodynamic bearing will be
explained briefly:

• thin lubricant film limit

• liner temperature&pressure limit

• lubricant temperature limit

• instability limit

• mechanical strength limit

• thermal expansion limit

Figure 3.1 shows three of the limits for a tilting pad bearing as function of shaft
speed and load. When considering all bearing operational conditions the picture
inevitable becomes more complex. In the following sections the limits will be discussed
individually.

Figure 3.1: Limits of safe operation for tilting pad bearings [1]
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3.1 Thin lubricant film limit

The lubrication regime in a hydrodynamic bearing can be divided into three categories:
boundary, mixed and hydrodynamic lubrication. The three lubrication regimes are
shown in figure 3.2. In order for a hydrodynamic bearing to function properly the
lubricant film must ensure full separation of the bearing surfaces and thus primarily
operate in the hydrodynamic regime.

• During boundary lubrication there is no lubricating film separating the sliding
pair and there is significant asperity contact resulting in high friction and wear.
In this zone the physical and chemical composition of the sliding pair&lubricant
interaction determines the friction and wear properties. The term lubricity is
used to describe the friction and wear properties of a sliding pair&lubricant
and can be improved by the use of boundary lubricants/additives. Lubricant
viscosity is not an influential parameter in this lubrication regime [21].

• In mixed lubrication some asperity contact occurs and the tribological properties
are governed by a combination of boundary and hydrodynamic lubrication.

• At full hydrodynamic film there is no asperity contact and the tribological prop-
erties can be described using Reynolds equation.

Figure 3.2: Typical Stribeck curve showing typical conditions from start-up to normal
hydrodynamic operation. Hersey number: μω/p
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From an efficiency viewpoint a hydrodynamic bearing must operate near the cut-
off point, in the full film film regime, of figure 3.2. In this case power loss is minimal
and no wear occurs. However, in order to ensure safe operation of the bearing some
safety margin must be added. The lambda ratio, which specifies the ratio between
the lubricant film thickness and the effective surface roughness, is used for this pur-
pose. It is generally accepted that the lubricant zone can be characterized as fully
hydrodynamic if λ > 5. Mixed lubrication occurs in the interval 1 < λ < 5 and finally
boundary lubrication is present when λ < 1. When factors such as contamination of
lubricant, misalignment, surface finish and general build quality are controlled very
well, one can reduce the λ value required for safe operation.

λ =
h√

R2
qa
+R2

qb

(3.1)

Jacobson [2] has explained how λ values down to 0.05 can still fully separate two
surfaces in extreme cases. This is possible if the slopes of the surface roughness peaks
are in the range of 10−3 to 10−4 and they then act as small inclined sliders. Hereby
a pressure will build up and elastically deform the peak leaving a thin lubricant film
to separate the surfaces. Cann et al. [22] report the same findings and conclude that
the traditional use of the λ-ratio cannot determine the lubrication regime.

Xiaobin and Khonsari [23] has studied the transition zone from mixed to full
hydrodynamic film experimentally for a small journal bearing. The Stribeck curve is
established for a series of different configurations of load and lubricant temperature.
To give an example, full hydrodynamic lubrication is achieved at a sliding speed of
0.2 m/s at a specific load of 1.1 MPa using SAE 5W30 at 40 ◦C.

3.2 Liner temperature&pressure limit

The mechanical properties of the liner compose a design limit for hydrodynamic bear-
ings. The absolute maximum temperature of a babbitt liner is defined by its melting
point. However, the mechanical strength is reduced significantly at these high temper-
atures and therefore the temperature limit is well below the melting point. The liner
will creep when exposed to high pressure at elevated temperature. As an example for
a specific alloy creep begins at 190 ◦C for a pressure of 1.4 MPa and at 127 ◦C for a
pressure of 7 MPa [24]. For comparison, the yield limit for typical babbitt materials
at 120 ◦C is 20-30 MPa [25]. Typical allowable liner temperatures for babbitt alloys
are 120-200 ◦C [26]. The choice of babbitt alloy is a compromise between strength,
ductility, ability to embed particles, behavior at mixed lubrication and temperature
dependence.

Typical maximum temperatures for polymer composites, based on PTFE or PEEK,
are 170 to 200 ◦C [25]. The creep, pressure and temperature correlation for polymers
applied to bearing applications is not well described in the literature and it is difficult
to give design guidelines on this.
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3.3 Lubricant temperature limit

Mineral oils will rapidly oxidize if exposed to high temperatures. The lubricant degra-
dation is a function of time of exposure and, most important, temperature since oxi-
dation increases exponentially with temperature. Mineral oils typically oxidize exces-
sively at temperatures above 75-80 ◦C [27] whereas some synthetic oils can withstand
temperatures higher than 300 ◦C [4].

3.4 Instability limit

Lightly loaded journal bearings operating at high speeds are in danger of whirl and
whip phenomena. This is due to the high cross coupling coefficients of journal bearings.
For rotor-bearing-systems deemed in the danger-zone of instability a stability analysis
must be performed. A widely used analytical criterion for simplified analysis is that
of Routh-Hurwitz.

Tilting pad bearings and non-circular bearings like the lemon bore bearings display
significantly reduced cross couping coefficients and are thus less prone to instability
phenomena.

3.5 Mechanical strength limit

For moderately sized tilting pad bearings the load capacity of a conventional pivot
mechanism is in the same order of magnitude as the load capacity of the oil film. Since
the pivot load capacity is limited by the allowable Hertzian contact stress and that the
pivot mechanism cannot be scaled up without loosing its tilting ability, large tilting
pad bearings must use alternative tilting mechanisms. These are then a compromise
since they often introduce resistance towards angular rotation which again reduces
pad performance.

3.6 Thermal expansion limit

Radial bearings, and in less degree also thrust bearings, can seize if the clearance
is consumed by difference in thermal expansion. The clearance can be increased to
reduce the risk of thermal seizure, however, this will also impact the overall bearing
properties since the clearance is an important design parameter. Generally a higher
clearance implies:

• lower minimum film thickness

• lower stiffness and dampening coefficients

• higher flow rate

• lower viscous loss
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• lower lubricant temperature

Tilting pad bearings are furthermore exposed to thermal crowning, due to differen-
tial thermal expansion, which changes pad geometry and effectively reduces the load
carrying area of the pad.
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Chapter 4

Wear

One of the most important failure modes for hydrodynamic bearings is wear of the
bearing liner, especially for machines operating at low Reynolds numbers or machines
subjected to frequent start and stop cycles. For hydrodynamic bearings the typical
wear phenomena can be divided into two groups: abrasive and adhesive wear respec-
tively. Sometimes fatigue, corrosive and chemical failure modes are also categorized
as wear. These will, however, not be addressed in this work.

Generally bearing grade polymers display much improved wear properties com-
pared to the conventional babbitt alloys.

Simmons et al. [16] give references to laboratory work and applications from hydro
power plants, where exceptional low wear rates are observed using polymers, compared
to babbitt. The same conclusion is drawn by McCarthy and Glavatskih [28] who study
the wear and friction behavior of PTFE and babbitt at thin lubricating films.

For bearings, where the sliding pair consists of a polymer sliding against a steel
surface, it is common practice to use hardened steel. This is in order to avoid abrasion
of the steel surface which subsequently then continuously abrades the polymer sliding
partner. Some studies has used a hardness of 700 Vickers giving good results [4],[29].

The roughness of the sliding partner for polymer bearing applications is generally
required to be as low as possible, in order to reduce wear. However, it is shown that
some polymers during dry sliding exhibit least wear at a specific surface roughness.
For Ultra-High Molecular Weight Polyethylene a minimum amount of wear is observed
at a roughness of Ra 0.2 μm [30].

4.1 Abrasive wear

Abrasive wear is one of the most dominant causes of failures in mechanical machines
and causes the largest costs to industries, compared to other types of wear.

Plowing and cutting processes are both categorized as abrasive wear, where a hard
particle or asperity is sliding over a surface and hereby causing damage.

For metals the primary resistance towards abrasion is hardness. Generally it is
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stated that abrasive wear rate is inverse proportional to hardness. As a rule of thumb,
the hardness of a surface must be at least 0.8 times the hardness of the abrasive
particles or asperities in order to keep the wear rate on an acceptable level [4].

Polymers generally have increased resistance towards abrasive wear, despite their
low hardness, compared to metals. Polymer surfaces tend to deform elastically instead
of abrading. Furthermore, abrasion in metal to metal contacts often produce sharp
particles whereas the particle or asperity will stay blunt, or at least not be sharpened,
when metal is sliding against a polymer [4].

4.2 Adhesive wear

Adhesive wear is the results of micro-welds between a sliding pair when the load is so
high, that contacting asperities deform and adhere to each other and thereby cause
material transfer from one sliding partner to the other.

The terms galling, scuffing, scoring, or smearing are sometimes used for severe
cases of adhesive wear although the terms are not strictly defined.

In general, most metals are prone to adhesive wear. Conventional babbitt alloys
has improved resistance towards adhesion compared to other metals.

Most polymers adhere to other materials through van der Waals forces. Generally
this form of adhesion is not strong enough for asperities to be torn off the contact and
will thus not cause damage [4].

Lubricants can, through composition and additives, be designed to ’contaminate’
the surfaces of the sliding pair and thereby not allow the creation of strong bonds
between them and thus avoid adhesive wear.

4.3 Prediction of wear

Since wear is one of the most important failure modes for hydrodynamic bearings it
is of high interest to be able to predict the wear rate reliably. It is however very
difficult to quantify the expected wear with good accuracy. The λ-ratio defined in
equation (3.1) can be used with reasonable confidence to evaluate if a bearing operates
within the full film regime of lubrication, and thus not subjected to wear (assuming
no or low contamination levels).

Back in 1961 Archard [31] suggested that the wear volume is proportional to the
real contact area times the sliding distance. If we assume this simple postulate is true,
it is still a demanding task to implement it in a hydrodynamic bearing simulation tool.
Using the traditional form of Reynolds equation contact newer occurs because, as the
minimum film thickness approaches zero the pressure, and thus the load carrying
capacity, goes towards infinity.

Basically the problem of wear modeling can be broken into three steps:
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• determination of the oil film pressure at thin films including surface roughness,
elasticity and preferably also lubricant piezo-viscous and thermo-viscous effects

• determination of contact area and force

• determination of wear rate as a function of the properties of the contact zone

Patir and Cheng [32][33] suggest an average flow model which includes the effects of
surface roughness in the pressure field using a stochastic roughness profile and hereby
extends the validity of Reynolds equation to very thin films. The work of Patir and
Cheng is compared to modern deterministic models by Dobrica at al. [34] and is found
to correctly anticipate the effects of surface roughness.

The contact pressure is usually derived from dividing the load carrying zone into
two regions: one governed by Reynolds equation, where the surfaces are fully separated
and one which is governed by contact mechanics, for example using Greenwood and
Tripp’s [35] model for asperity contact. When using conventional models the boundary
between the regions must be determined. One criteria for transition from the film zone
to the contact zone is based on the film thickness. Hu and Zhu [36] present a method
where Reynolds equation can be applied to both the full film zone and the contact
zone, and thus circumventing the problem of defining the boundary.

Experimental data is required in order to establish the relation between the wear
rate and its influencing parameters. The primary factors are the contact pressure,
sliding speed and material hardness. In this context it is also interesting to mention
the term lubricity which is used to characterize the wear properties of a given sliding
pair and lubricant.

Zhu et al. [37] present a numerical implementation for prediction of sliding wear
of a deterministic surface operating in the mixed lubrication regime. They apply
the model for a sliding contact and compare the results qualitatively finding good
correlation.

The workshop presentation by Thomsen and Klit [38], appendix E, proposes a
wear model based on film thickness only. A significant advantage of this approach is
that it is relatively simple to introduce into existing EHL solvers and does not require
additional computational capacity. The wear model is applied using a soft EHL model
to predict the wear of a compliant liner under misaligned operation and the results are
compared qualitatively to experimental results finding good correlation. Due to the
simplicity of the model it can only be expected to give reliable results for simulation
parameters close to that of the experimental setup, for which the wear coefficients
are obtained. Especially with respect to material and lubricant properties. This is,
however, an inherent attribute of all wear models.
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Chapter 5

Fluid film forces

In this chapter the basis for the derivation of Reynolds equations is explained and it
is shown how the equation is used for finding the fluid film forces through application
of finite element theory. In parallel with the derivation of the finite element equations
for Reynolds equation the corresponding models for the dynamic coefficients of the
film are derived using Lund’s principle of perturbation.

5.1 Reynolds equation

5.1.1 Assumptions

Reynolds equation can be derived from Navier-Stokes equation assuming that the
pressure and viscous terms are much more dominant than the inertia and body force
terms. The Reynolds number (Re), Frode number and Euler number are used to
evaluate the significance of the various terms and can be used in combination to asses
the validity of the assumption.

Reynolds number =
inertia

viscous
(5.1)

Frode number =
inertia

gravity
(5.2)

Euler number =
pressure

inertia
(5.3)

Further necessary assumptions for this work are listed below and are addressed
individually in the following paragraphs.

• lubricant is Newtonian.

• flow is laminar.

• lubricant film thickness is much smaller than all other dimensions.

• fluid is iso-viscous across film thickness.

25
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• no slip at boundaries.

• surfaces are smooth compared to film thickness.

• incompressible lubricant

Assumption on Newtonian fluid

For a Newtonian fluid the viscosity μ is proportional with the shear stress τ over the
shear rate s as shown in (5.4).

μ =
τ

s
(5.4)

This assumption is generally deemed valid for all traditional lubricants. The vis-
cosity, and consequently shear stress, can however be functions of other parameters
such as pressure and temperature while maintaining its Newtonian properties.

Assumption on laminar flow

Reynolds equation is only valid for laminar flow. If Reynolds number (5.1) exceeds
2000 [39] there is possibility of turbulent flow and the premises of Reynolds equation
change. For a journal bearing the flow can be assumed as inbetween parallel plates
and Reynolds number is defined as in equation (5.5):

Re =
ρωRcr
μ

< 2000 (5.5)

Assumption on lubricant film thickness

Reynolds equation assumes a film thickness much smaller than all other dimensions.
For bearing applications this always holds true since the film thickness is in the order
of μm while other dimensions are in the order of mm.

Assumption on iso-viscous lubricant across film thickness

This is a common assumption when analyzing hydrodynamic bearings in order to
reduce the size of the computational problem. However, at high specific viscous dis-
sipations in the lubricant film the temperature, and thus also the viscosity, will vary
significantly across the lubricant film thickness. Dowson [40] has shown this already
in the 1960’s.

For wind turbine main bearing applications the rotational speed is low inducing
low specific viscous dissipation and hence temperature gradients are correspondingly
small.
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Assumption on no slip at boundaries

For hydrodynamic bearing applications this will always hold true. In extreme cases
with extremely high sliding speed and low film thickness slip may occur. For this
to happen other assumptions are also violated and Reynolds equation will not give
reliable results.

Assumption on smooth surfaces

The assumption of smooth surfaces can be assessed with the λ-value given in equa-
tion (3.1). As explained earlier, it is generally accepted that the lubricant zone can
be characterized as fully hydrodynamic if λ > 5. At these λ-ratios the roughnesses
has only negligible effect.

Assumption on incompressibility

For oil lubricated hydrodynamic bearings this assumption is deemed valid for all cases.

5.1.2 The reduced form of Reynolds equation

Equations (5.6), (5.7) and (5.8) shows the standard reduced forms of Reynolds equa-
tion presented in Cartesian, cylindrical and polar coordinate systems respectively.
The left hand side represents the Poiseuille terms whereas the two right hand terms
represent the Couette and squeeze terms.

∂

∂z

(
h3

μ

∂p

∂z

)
+

∂

∂y

(
h3

μ

∂p

∂y

)
= 6v

∂h

∂y
+ 12

∂h

∂t
(5.6)

1

R

∂

∂θ

(
h3

μR

∂p

∂θ

)
+

∂

∂z

(
h3

μ

∂p

∂z

)
= 6ω

∂h

∂θ
+ 12

∂h

∂t
(5.7)

1

R

∂

∂θ

(
h3

μR

∂p

∂θ

)
+

∂

∂R

(
h3

μ

∂p

∂R

)
= 6ω

∂h

∂θ
+ 12

∂h

∂t
(5.8)

Figure 5.1(a) shows the coordinate system for a full journal bearing matching the
cylindrical representation of Reynolds equation. The bar denotes system coordinates
(x̄, ȳ, z̄) whereas (x, y, z) are mesh coordinates. z̄ is coincident with z, this is also the
case for θ where no bar notation is used.

Figure 5.1(b) shows the unwrapped mesh coordinate system, here shown with
equidistant node layout. The x-coordinate represents the film thickness direction.

The basic film geometry for a full journal bearing, as illustrated in figure 5.1(a),
is calculated using equation (5.9). In this form the film thickness is only a function of
the journal’s position in the bearing (x̄, ȳ) and the radial clearance cr. The equation
can be modified to include misalignment, grooves or pockets for oil in- and outlet and
other geometrical features.
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x

y

z

h

(a) System coordinates

z

x

(b) Mesh coordinates

Figure 5.1: Coordinate systems for cylindrical representation

h = cr − x̄ cos (θ)− ȳ sin (θ) (5.9)

5.1.3 Viscous friction and flow

The lubricant velocity components v across the film thickness is expressed in equa-
tion (5.10) and (5.11). The tangential flow rate (5.10) includes contributions from
Poiseuille and Couette flow whereas the axial side flow (5.11) only contains the
Poiseuille flow.

vθ =
(x− h) x

2μR

∂p

∂θ
+ ωR

x

h
(5.10)

vz =
(x− h) x

2μ

∂p

∂z
(5.11)

Figure 5.2 shows the fully developed Poiseuille and Couette velocity profiles as
well as the combined velocity across the film thickness.

The lubricant volume flow rate q per unit width is calculated by integration of the
lubricant velocity over the lubricant film height:

q′θ =

∫ h

0

(vθ) dx = −
h3

12μR

∂p

∂θ
+
ωR

2
h (5.12)

q′z =

∫ h

0

(vz) dx = −
h3

12μ

∂p

∂z
(5.13)

The power loss P is derived multiplying the sliding speed ωR with the shear
stress τ in sliding direction at the journal surface (x = h) integrated over the bearing
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Figure 5.2: Velocity profiles along lubricant cross section (film height)

area Ω. From equation (5.4) we know that the shear stress in a Newtonian fluid is
equal to the fluid viscosity times the shear rate where the later can be expressed using
the derivative of (5.10). This is then combined into equation (5.14) expressing the
viscous power loss in a journal bearing.

P = ωR

∫
Ω

(τxθ (x = h))dΩ

= ωR

∫
Ω

(
μ
∂vθ (x = h)

∂x

)
dΩ

= ωR

∫
Ω

(
h

2R

∂p

∂θ
+
μωR

h

)
dΩ

(5.14)

5.2 Dynamic coefficients

In this section it is shown how Lund’s principle of infinitesimally small perturba-
tion [41] is used for finding the linearized dynamic coefficients.

The dynamic coefficients can be used for stability analysis. A simplified approach
is the Routh-Hurwitz criterion of stability. If this simplified approach indicates an
unstable condition, and hence a large journal orbit, the dynamic forces cannot be
assumed proportional to the displacements. In this case the dynamic coefficients
cannot be assumed linear and one must perform an integration in time in order to
find the dynamic response of the bearing and finally evaluate if the resulting orbit
violates a specified critical threshold. This limit is also referred to as limit-cycle.

An alternative method for calculating the dynamic coefficients is to perform finite
perturbations to the journal position and velocity, this is however associated with
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extra computational efforts since perturbation is required in all dimensions and its
derivatives in time. Furthermore, since the problem is not linear, the magnitude
of perturbation will influence the accuracy of the solution. Qiu and Tieu [42] has
studied this subject and finds that the method of finite perturbation converges to
that of infinitesimally small perturbation if the perturbation magnitude is sufficiently
small. They also give guidelines on how to select perturbation amplitudes.

For this work the thermo- and elastohydrodynamic effects are assumed constant
at the state of perturbation. This implies that the oil film characteristics account
for the most significant parts of the stiffness and damping properties of the bearing.
Kuznetsov and Glavatskih [43] have included the elasticity of a compliant liner in
the calculation of the dynamic coefficients. They have, however, not compared their
method with the traditional assumption of constant thermo- and elastohydrodynamic
conditions at the state of perturbation.

As explained, the equations for calculating the dynamic coefficients are derived
using Lund’s principle of infinitesimally small perturbation. Reynolds equation (5.7)
and the expression for the film thickness (5.9) are perturbed with respect to journal
center position and velocity using equation (5.15).

x̄ = x̄0 +Δx̄
ȳ = ȳ0 +Δȳ
˙̄x = ˙̄x0 +Δ ˙̄x
˙̄y = ˙̄y0 +Δ ˙̄y
Δx̄,Δȳ,Δ ˙̄x,Δ ˙̄y � 1

(5.15)

The solution for p at this perturbed condition around the known solution p0 can
then be approximated using a Taylor expansion if the derivatives of the pressure with
respect to the perturbation dimensions are known:

p =p0 +Δx̄
∂p

∂x̄
+Δȳ

∂p

∂ȳ
+Δ ˙̄x

∂p

∂ ˙̄x
+Δ ˙̄y

∂p

∂ ˙̄y

+
Δx̄2

2!

∂2p

∂x̄2
+

Δȳ2

2!

∂2p

∂ȳ2
+

Δ ˙̄x
2

2!

∂2p

∂ ˙̄x
2 +

Δ ˙̄y
2

2!

∂2p

∂ ˙̄y
2 + ...

(5.16)

Assuming that the perturbations are small only the first order terms are significant
giving equation (5.17) when using the notation ∂p/∂i = pi for the derivatives of the
pressure. The linearization of the dynamic coefficients originates from the neglection
of higher order terms of the perturbation.

p = p0 +Δx̄px̄ +Δȳpȳ +Δ ˙̄xp ˙̄x +Δ ˙̄yp ˙̄y (5.17)

The perturbed expression of the film thickness and its derivatives, equations (5.18)
to (5.20), are inserted into Reynolds equation (5.7) giving equation (5.21). The deriva-
tive of h0 is not expanded in order to allow for alternative expressions for the initial
film thickness, e.g. a lemon bore geometry or similar.
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h = cr − x̄ cos (θ)− ȳ sin (θ)︸ ︷︷ ︸
h0

−Δx̄ cos (θ)−Δȳ sin (θ) (5.18)

∂h
∂θ

= ∂h0
∂θ

+Δx̄ sin (θ)−Δȳ cos (θ) (5.19)

∂h
∂t

= − ( ˙̄x0 +Δ ˙̄x) cos (θ)− ( ˙̄y0 +Δ ˙̄y) sin (θ) (5.20)

1

R

∂

∂θ

(
h30
μR

∂p

∂θ

)
+

∂

∂z

(
h30
μ

∂p

∂z

)
= 6ω

[
∂h0
∂θ

+Δx̄ sin (θ)−Δx̄ cos (θ)

]
(5.21)

−12 [( ˙̄x0 +Δ ˙̄x) cos (θ) + ( ˙̄y0 +Δ ˙̄y) sin (θ)]

Equation (5.17) is then inserted into (5.21) and the equation is separated with
respect to the perturbations and keeping only the first order perturbation terms:

1

R

∂

∂θ

(
h30
μR

∂pi
∂θ

)
+

∂

∂z

(
h30
μ

∂pi
∂z

)
=⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

6ω ∂h0
∂θ

− 12 [ ˙̄x0 cos (θ) + ˙̄y0 sin (θ)] , pi = p0
1
R
∂
∂θ

(
3h20 cos(θ)

μR

∂p0
∂θ

)
+ ∂

∂z

(
3h20 cos(θ)

μ

∂p0
∂z

)
+ 6ω sin (θ) , pi = px̄

1
R
∂
∂θ

(
3h20 sin(θ)

μR

∂p0
∂θ

)
+ ∂

∂z

(
3h20 sin(θ)

μ

∂p0
∂z

)
− 6ω cos (θ) , pi = pȳ

−12 cos (θ) , pi = p ˙̄x

−12 sin (θ) , pi = p ˙̄y

(5.22)

Equation (5.22) is used to solve for the pressure distribution p0 and its derivatives
with respect to the perturbation dimensions. Finally the resulting oil film force com-
ponents and dynamic coefficients are found through integration using equation (5.23)
to (5.27). {

Fx̄
Fȳ

}
= R

∫ +L/2

−L/2

∫ 2π

0

p0

{
cos (θ)
sin (θ)

}
dθdz (5.23)

K =

[
kx̄x̄ kx̄ȳ
kȳx̄ kȳȳ

]
(5.24)

{
kx̄x̄
kȳx̄

}
= R

∫ +L/2

−L/2

∫ 2π

0
px

{
cos (θ)
sin (θ)

}
dθdz

{
kx̄ȳ
kȳȳ

}
= R

∫ +L/2

−L/2

∫ 2π

0
py

{
cos (θ)
sin (θ)

}
dθdz

(5.25)
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D =

[
dx̄x̄ dx̄ȳ
dȳx̄ dȳȳ

]
(5.26)

{
dx̄x̄
dȳx̄

}
= R

∫ +L/2

−L/2

∫ 2π

0
pẋ

{
cos (θ)
sin (θ)

}
dθdz

{
dx̄ȳ
dȳȳ

}
= R

∫ +L/2

−L/2

∫ 2π

0
pẏ

{
cos (θ)
sin (θ)

}
dθdz

(5.27)

Ultimately the force equilibrium equation can be assembled where W is the exter-
nal load to be counterbalanced by the oil film forces and inertia as shown in (5.28).

{
Wx̄

Wȳ

}
+

{
Fx̄
Fȳ

}
=

{
Wx̄

Wȳ

}
+K

{
x̄
ȳ

}
+D

{
˙̄x
˙̄y

}
+M

{
¨̄x
¨̄y

}
=

{
0
0

}
(5.28)

For this work accelerations are assumed negligible and hence the mass term cancels
out.

5.3 Finite element formulation

In this chapter the derivation of the finite elements equations matching Reynolds
equation and the corresponding perturbed equations (5.22) is explained.

5.3.1 Variational principle

The variational approach, also used by Booker and Huebner [44], is used to derive the
element equations equivalent to equations (5.22). Functionals Fi (5.29) corresponding
to the equations must be found so that they extremize the equations for which a solu-
tion is searched for (5.22). This is ensured when the Euler-Lagrange equation (5.30) is
satisfied. Equation (5.31) can then be used to to solve for the stationary nodal values.

Ii =

∫
A

FidΩ , i = 0, x̄, ȳ, ˙̄x, ˙̄y (5.29)

∂F

∂pi
−

∂

∂θ

(
∂F

∂ ∂pi
∂θ

)
−

∂

∂z

(
∂F

∂ ∂pi
∂z

)
= 0 , i = 0, x̄, ȳ, ˙̄x, ˙̄y (5.30)

∂Ii
∂pij

=

∫
Ω

∂Fi
∂pij

dΩ = 0 , i = 0, x̄, ȳ, ˙̄x, ˙̄y

j indicates the nodal number of the element.

(5.31)

The functionals (5.32) satisfying the Euler-Lagrange equation are found using ed-
ucated guesses together with trial’n’error.
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Fi =
h3

2μ

((
1

R

∂pi
∂θ

)2

+

(
∂pi
∂z

)2
)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

− (6ωh0 − 12 ˙̄x0 sin (θ) + 12 ˙̄y0 cos (θ))
∂p0
∂θ

, pi = p0

+
(
−

3h20 cos(θ)

μR2

∂p0
∂θ

+ 6ω cos (θ)
)
∂px̄
∂θ

−
3h20 cos(θ)

μ

∂p0
∂z

∂px̄
∂z

, pi = px̄

+
(
−

3h20 sin(θ)

μR2

∂p0
∂θ

+ 6ω sin (θ)
)
∂pȳ
∂θ

−
3h20 sin(θ)

μ

∂p0
∂z

∂pȳ
∂z

, pi = pȳ

+12 sin (θ) ∂p ˙̄x

∂θ
, pi = p ˙̄x

−12 cos (θ)
∂p ˙̄y

∂θ
, pi = p ˙̄y

(5.32)

(5.32) are then inserted into (5.31) giving the element equations for a single element
prior to inserting interpolation functions. A set of equations are constructed for every
node j in the element:

∫
Ω

∂Fi
∂pij

dΩ = 0 =

∫
Ω

[
h30
μ

(
1

R2

∂pi
∂θ

∂

∂θ

(
∂pi
∂pij

)
+
∂pi
∂z

∂

∂z

(
∂pi
∂pij

))
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− (6ωh0 − 12ẋ0 sin (θ) + 12ẏ0 cos (θ))
∂
∂θ

(
∂p0
∂p0j

)]
dΩ , pi = p0

+
(
−

3h20 cos(θ)

μR2

∂p0
∂θ

+ 6ω cos (θ)
)

∂
∂θ

(
∂px̄
∂px̄j

)
−

3h20 cos(θ)

μ

∂p0
∂z

∂
∂z

(
∂px̄
∂px̄j

)]
dΩ , pi = px̄

+
(
−

3h20 sin(θ)

μR2

∂p0
∂θ

+ 6ω sin (θ)
)

∂
∂θ

(
∂pȳ
∂pȳj

)
−

3h20 sin(θ)

μ

∂p0
∂z

∂
∂z

(
∂pȳ
∂pȳj

)]
dΩ , pi = pȳ

+12 sin (θ) ∂
∂θ

(
∂p ˙̄x

∂p ˙̄xj

)]
dΩ , pi = p ˙̄x

−12 cos (θ) ∂
∂θ

(
∂p ˙̄y

∂p ˙̄yj

)]
dΩ , pi = p ˙̄y

(5.33)

5.3.2 Interpolation functions

Three-node triangular elements are used for the element formulation along with linear
interpolation functions N . Using the interpolation functions any field variable φ inside
an element can be evaluated at any point in the element using equation (5.34) where
m represents the respective node numbers:

φ =
3∑

m=1

Nmφm (5.34)

The linear interpolation functions, derived in [45], and their derivatives, using
natural coordinates, are shown in equation (5.35) and (5.36):

Nj =
1

2A
(aj + bjRθ + cjz) (5.35)
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∂Nj

∂θ
=

R

2A
bj

∂Nj

∂z
=

1

2A
cj

(5.36)

A characteristic of the interpolation function is that the sum at any point inside
the element is 1:

3∑
m=1

Nm = 1 (5.37)

The calculation of the element area A and definition of the coefficients a, b, and c
is shown in equation (5.38) and (5.39).

A =
R

2

∣∣∣∣∣∣
1 θ1 z1
1 θ2 z2
1 θ3 z3

∣∣∣∣∣∣ (5.38)

a1 = R (θ2z3 − θ3z2)
a2 = R (θ3z1 − θ1z3)
a3 = R (θ1z2 − θ2z1)

b1 = z2 − z3
b2 = z3 − z1
b3 = z1 − z2

c1 = R (θ3 − θ2)
c2 = R (θ1 − θ3)
c3 = R (θ2 − θ1)

(5.39)

Equation (5.34) is then used to calculate the derivatives of a field variable φ:

∂φ

∂θ
=

3∑
m=1

∂φ

∂Nm

∂Nm

∂θ
=

3∑
m=1

φm
∂Nm

∂θ

∂φ

∂z
=

3∑
m=1

∂φ

∂Nm

∂Nm

∂z
=

3∑
m=1

φm
∂Nm

∂z

(5.40)

When introducing the interpolation functions into the functionals (5.33) the fol-
lowing expressions are also needed:

∂

∂θ

(
∂φ

∂φj

)
=
∂Nj

∂θ

∂

∂z

(
∂φ

∂φj

)
=
∂Nj

∂z

(5.41)

5.3.3 Derivation of element equations

In order to find the element equations (5.40) and (5.41) are inserted into (5.33):
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∂Ii
∂pij

=

∫
Ω

∂Fi
∂pij

dΩ =

∫
Ω

[
h30
μ

(
1

R2

3∑
m=1

(
pim

∂Nm

∂θ

)
∂Nj

∂θ
+

3∑
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(
pim

∂Nm

∂z

)
∂Nj

∂z

)
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− (6ωh0 − 12 ˙̄x0 sin θ + 12 ˙̄y0 cos θ)
∂Nj

∂θ

]
dΩ pi = p0(

−
3h20 cos θ

μR2

3∑
m=1

(
p0m

∂Nm

∂θ

)
+ 6ω cos θ

)
∂Nj

∂θ
−

3h20 cos θ

μ

3∑
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(
p0m

∂Nm

∂z

)∂Nj

∂z

]
dΩ pi = px̄(

−
3h20 sin θ

μR2

3∑
m=1

(
p0m

∂Nm

∂θ

)
+ 6ω sin θ

)
∂Nj

∂θ
−

3h20 sin θ

μ

3∑
m=1

(
p0m

∂Nm

∂z

)∂Nj

∂z

]
dΩ pi = pȳ

12 sin θ
∂Nj

∂θ

]
dΩ pi = p ˙̄x

−12 cos θ
∂Nj

∂θ

]
dΩ pi = p ˙̄y

and j=1,2,3

(5.42)

The interpolation functions (5.35) and their derivatives (5.36) are inserted into
(5.42) and the system of equations is set up for for all nodes j giving equations (5.43)
to (5.49). For simplicity the equations are shown before integration over the element
is performed.

[
Hijk

]
3×3

{
pij
}

3×1

=
{
Vij

}
3×1

where

i = 0, x̄, ȳ, ˙̄x, ˙̄y
j = 1, 2, 3
k = 1, 2, 3

(5.43)

[
Hijk

]
=

∫
Ω

[
h30

4μA2
(bjbk + cjck)

]
dΩ (5.44)

It is seen from equation (5.44) that the fluidity matrixH is symmetric. This can be
used with advantage by assembling only the upper triangular part of H when solving
equation (5.43) and hereby reduce memory requirements and increase performance of
the solver.

{
V0j

}
=

∫
Ω

{
3Rbj
A

(ωh0 − 2 ˙̄x0 sin (θ) + 2 ˙̄y0 cos (θ))

}
dΩ (5.45)

{
Vxj

}
=

∫
Ω

{(
3h20 cos (θ)

μR2

3∑
m=1

(
p0m

R

2A
bm

)
− 6ω cos (θ)

)
R

2A
bj

+
3h20 cos (θ)

μ

3∑
m=1

(
p0m

1

2A
cm

)
1

2A
cj

}
dΩ

(5.46)
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{
Vyj

}
=

∫
Ω

{(
3h20 sin (θ)

μR2

3∑
m=1

(
p0m

R

2A
bm

)
− 6ω sin (θ)

)
R

2A
bj

+
3h20 sin (θ)

μ

3∑
m=1

(
p0m

1

2A
cm

)
1

2A
cj

}
dΩ

(5.47)

{
Vẋj

}
=

∫
Ω

{
−12 sin (θ)

R

2A
bj

}
dΩ (5.48)

{
Vẏj

}
=

∫
Ω

{
12 cos (θ)

R

2A
bj

}
dΩ (5.49)

5.3.4 Integration of field variables

Integration over the element is performed using Gauss integration. Three-node tri-
angular elements have only one Gauss point and thus the integration of a single field
variable over the element area presented by equation (5.50) is straight forward:

∫
Ω

φdΩ =
A

3

3∑
m=1

φm (5.50)

For terms including products of field variables equation (5.51) presents a convenient
method: ∫

Ω

Nα
1 N

β
2N

γ
3 dΩ =

α!β!γ!

(α + β + γ + 2)!
2A (5.51)

Equation (5.51) is used to integrate φ2 over the element area. This is done by
expanding the sums and products of the interpolation functions and finally applying
(5.51) for integration:

∫
Ω

φ2dΩ =

∫
Ω

(
3∑

m=1

φmNm

)2

dΩ

=

∫
Ω

(2N1N2φ1φ2 + 2N1N3φ1φ3 + 2N2N3φ2φ3

+N2
1φ

2
1 +N2

2φ
2
2 +N2

3φ
2
3

)
dΩ

=
A

12

⎛
⎝(

3∑
m=1

φm

)2

+
3∑

m=1

φ2
m

⎞
⎠

(5.52)



5.4 Temperature-viscosity relation 37

Same procedure is applied for φ3 and φ2ψ giving equations (5.53) and (5.54)

∫
Ω

φ3dΩ =
A

10

((
3∑

m=1

φm

)(
3∑

m=1

φ2
m

)
+

3∏
m=1

φm

)
(5.53)

∫
Ω

φ2ψdΩ =
A

30

⎛
⎝(

3∑
m=1

φm

)2( 3∑
m=1

ψm

)
+

(
2

3∑
m=1

φ2
mψm

)

− (φ1φ2ψ3 + φ1φ3ψ2 + φ2φ3ψ1))

(5.54)

5.4 Temperature-viscosity relation

The Walther and McCoull [46] expression (5.55) is used to describe the temperature
and viscosity correlation. Please note the special units used for this expression.

log log (ν + a) = b− n log (T ) (5.55)

ν is kinematic viscosity in mm2/s
T is temperature in K
a = 0.7 when ν>2 mm2/s
b, n constants of the lubricant

The relation between kinematic and dynamic viscosity is defined as shown in (5.56):

μ = νρ (5.56)

The term viscosity index is also used to state the viscosity-temperature dependency
of a fluid. In qualitatively terms a lubricant’s viscosity-temperature dependency de-
creases with increasing viscosity index. Generally synthetic oils have higher viscosity
index compared to mineral based oils [47].

5.5 Pressure-viscosity relation

Oil possesses a piezo-viscous property where the viscosity changes with pressure. It
does however only start to have an influence when pressures reach that of rolling ele-
ment bearings, i.e. in the GPa range. At extreme pressures the viscosity can reach val-
ues where an oil film can be maintained even in a non-conformal contact zone at high
forces, such as in a rolling element bearing. When included in elasto-hydrodynamics
the lubrication regime is said to shift from soft EHD to hard EHD because the roller
and raceway, in the case of a rolling element bearing, will now see pressures where the
oil pressure reaches levels where deformation of the contact bodies is significant.
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One approach for including the piezo-viscous effect is that of Barus [48] shown
in (5.57), where ξ is a pressure-viscosity coefficient:

ln

(
μ

μ0

)
= ξp (5.57)

Although the Barus formula, which excels in its simplicity, is extensively used it is
not considered very accurate. The work of Roelands [49] is considered a much better
approximation. Roelands furthermore suggests an expression which includes both the
pressure- and temperature effects.

For this work viscosity is considered to vary with temperature only. All other fluid
properties are considered constant.

5.6 Boundary conditions and cavitation

The general boundary condition for all nodes located at the edges of the bearing, and
thus separating the bearing area from the ambient environment, is a pressure of zero.
Pressures below this levels is referred to as negative pressures, although the absolute
pressures are naturally positive.

Cavitation occurs due to the lubricant’s inability to endure pressures below the
ambient one. Cavitation can take place in one or more of the following phenomena:

• air coming from the external environment may enter the bearing at the bound-
ary nodes due to lower pressure in the bearing lubricant. Hereby pressure is
equalized.

• lubricant pressure is below the vapour pressure of either the lubricant or gases
dissolved in it. The lubricant or gases then vaporize and thereby equalizes
pressure to that of the vapour pressure.

The iterative procedure shown in figure 5.3 is used to define the cavitated region.
In each iteration the Reynolds equation (5.7) is solved to solve for the pressure p.
Nodes with negative pressures are identified and a pressure value of zero is enforced
on the regions with the lowest pressure. This procedure is repeated until no nodes
exhibit negative pressures and no nodes continuously changes back and forth between
cavitated and non-cavitated state.

It is possible, especially when the cavitation algorithm is coupled with elasto- or
thermohydrodynamics, that a number of nodes continuously change back and forth
from cavitated to non-cavitated status. To account for this a counter nj is introduced.
It keeps track of the number of times n every node j has changed cavitation status.
If the number of occurrences passes 10 the node will have its status permanently set
to cavitated until the calling function is converged.

The algorithm uses a fixed mesh and this gives a slightly non-conservative result
because the cavitated region is underestimated. The error depends on the size of the
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If nj>10 lock node j

as cavitated
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Input:

p, d,  and nj

Solve for p

Nodes for which 
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Figure 5.3: Algorithm for defining cavitated region
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elements and the maximum error (in area) is the sum of areas for all elements which
have at least 1 but not all nodes in the cavitated region. Adaptive meshes can be
implemented to eliminate this error.

Linear three-node triangular elements are used and thus Reynolds boundary con-
dition, for which the pressure gradient is zero at the onset of cavitation, cannot be
fulfilled.

An important comment regarding the described algorithm is that it does not ensure
mass-equilibrium. Hereby the algorithm can underestimate the cavitated region of the
bearing. Care needs to be taken for highly dynamically loaded bearings in which the
journal rapidly changes direction and also bearing designs without axial oil supply
grooves. Kumar and Booker [50] suggest a cavitation algorithm which ensures mass
conservation.



Chapter 6

Elasticity

As briefly mentioned earlier in this work, the elasticity of the bearing and journal can
have a significant impact on the tribological properties of a hydrodynamic bearing.
This is for example evident from the work of Garnier et al. [51] who analyze the
hydrodynamic bearings of a four cylinder automotive engine. It is concluded that the
modern light weight engines deform excessively under operation. This requires the
use of elastohydrodynamic models in order to reliably predict bearing performance.

Desbordes et al. [52] compare the response of a dynamically loaded radial tilting-
pad bearing using different stiffness approaches. They find a significant difference
when assuming the pads as infinity stiff, compared to using a full 3-dimensional elastic
model.

McIvor and Fenner [53][54] have studied elastohydrodynamics and done an exten-
sive work on the implementation of Newthon-Raphson methods which allows for rapid
computational convergence when coupling elasticity and hydrodynamics.

In the following sections two different approaches for implementing elasticity in the
oil film calculations are described. The first approach uses an analytical expression to
include the effects of a compliant liner whereas the second method derives the Newton-
Raphson method allowing the full elasticity of bearings and surrounding structure to
be implemented.

The work presented in appendix B relies on the analytical approach and studies
the influence of compliant liners for highly dynamically loaded bearings while the work
presented in appendix C and D are based on the full elastic model.

6.1 Modeling compliant liner using column model

The column model shown in equation (6.1) can be used for bearings with compliant
liners. Only the liner is modeled and the supporting structure is regarded as infinity
stiff. The model is adequate for representing bearings with polymer liners operating
at moderate loads where the supporting structure does not deform significantly under
the lubricant pressure. Even though the structure is typically many times stiffer

41
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compared to the compliant liner its elasticity often cannot be disregarded. This is
shown by Thomsen and Klit [15], appendix D, who show that a solid steel bearing
housing, that would traditionally be regarded as infinitely stiff, deforms up to 10 μm
at a specific load of 5 MPa and misaligned operation.

Due to the thin compliant liner a local pressure does not affect other parts of
the bearing liner, and especially not when using the column model since neighboring
nodes are completely de-coupled. However, for the supporting structure, the elasticity
is typically coupled much stronger and local pressures will affect the deformations of
other sections of the bearing.

Convergence can be difficult to achieve with the column model because deformation
of neighboring nodes is only indirectly coupled through Reynolds equation. This can
lead to high pressure gradients which are prone to give non-converging iterations. A
fine mesh in high-pressure regions reduces instabilities in the iteration procedure.

d = Lp =
(1 + ν) (1− 2ν)

1− ν

t

E
p (6.1)

In [55] references are made to comparisons with finite element models that confirms
the accuracy of the equation.

6.2 Under-relaxation method

An under-relaxation method can be used to implement the compliance of the bearing
structure and liner using strong under-relaxation as shown in equation (6.2). Espe-
cially when using the column model it is necessary to apply under-relaxation because
of the very non-linear coupling between the oil film forces and the liner compliance.

dl is the deformation at the l’th iteration and is added to the undeformed film
thickness h0 to give the film thickness at the l’th iteration.

dl =αLpl + (1− α) dl−1

hl =h0 + dl
(6.2)

The iteration loop is repeated until convergence is achieved. A convergence criteria
is shown in equation (6.3).

|Lpl − dl−1|

|Lpl|
< 10−4 (6.3)

The under-relaxation method slows down the rate of advance by using linear inter-
polation between the two solutions dk−1 and Lpk. The optimum value of the under-
relaxation factor α depends on the EHD problem. Values from 0.001 to 0.1 have been
used with success. When the iteration process is converging the under-relaxation
factor can be increased in order to speed up the rate of convergence.
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The advantage of using the under-relaxation method for coupling elasticity with
hydrodynamics is its simplicity whereas the disadvantage is slow convergence and even
the risk of no convergence.

6.3 Full elastic model

In this work an industrial state-of-the-art finite element program, in this case Ansys,
is used when including the full elasticity of a bearing structure. A link is created so
that Ansys can be called from the developed simulation tool in order to export the
stiffness matrix. If the Ansys structural model is parametric the simulation tool can
make successive calls to Ansys, varying the geometry for each call, and hereby perform
a geometrical parameter study as done for the work [14], appendix C.

Since the fluid film forces are only acting on the bearing surfaces it is advantageous
to condense the stiffness matrix into a superelement before exporting it. The method
of exporting and reading the stiffness matrix is verified by modeling geometries than
can be compared to analytical results using elementary beam theory.

6.4 Force and pressure formulation

The exported superelement stiffness matrix K correlates forces F with deformations
d. However, when coupling elasticity with lubricant pressure it is advantageous to
convert the force stiffness matrix to pressure compliance matrix L. This is done using
the integration matrix A as shown in equation (6.4). Hence the deformations can be
calculated directly using L and p.

[K] {d} = {F} ⇔

{d} = [K]−1 {F} = [K]−1 [A] {p} = [L] {p}
(6.4)

The element integration matrix for the three-node triangular element using one
Gauss point is shown in equation (6.5) where 1 is the unit matrix, consisting of all
1s, and A is the element area. (6.5) is then assembled into the full system integration
matrix.

[A] = A
1

9
[1]3x3 (6.5)

6.5 Newton-Raphson method

The Newton-Raphson method is a very robust scheme for coupling elasticity with the
hydrodynamic forces. It is derived using a Taylor expansion around the solution f(p)
with respect to p giving equation (6.6).
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f (p+Δp) = f (p)+Δp
∂f (p)

∂p
+
Δp2

2!

∂2f (p)

∂p2
+
Δp3

3!

∂3f (p)

∂p3
+ ...+

Δpn

n!

∂nf (p)

∂pn
(6.6)

Derivatives of orders higher than one are neglected giving equation (6.7).

Δp
∂f (p)

∂p
= f (p+Δp)− f (p)

where
Δpn

n!

∂nf (p)

∂pn
� Δp

∂f (p)

∂p
for n > 1

(6.7)

The functionals f(p) and f(p +Δp) are the usual Reynolds equation (5.7) where
the later is perturbed with respect to the pressure. The two functionals are shown in
equations (6.8) and (6.9). h0 is the oil film thickness for the undeformed structure.

f (p) =
1

R

∂

∂θ

(
h3

μR

∂p

∂θ

)
+

∂

∂z

(
h3

μ

∂p

∂z

)
− 6ω

∂h

∂θ
− 12

∂h

∂t

where h = h0 + Lp

(6.8)

f (p+Δp) =
1

R

∂

∂θ

(
h3

μR

∂ (p+Δp)

∂θ

)
+

∂

∂z

(
h3

μ

∂ (p+Δp)

∂z

)
− 6ω

∂h

∂θ
− 12

∂h

∂t

where h = h0 + L (p+Δp)

(6.9)

h3 from equation (6.9) is reformulated and terms including LΔp in powers of 2 or
higher are neglected:

h3 = (h0 + L (p+Δp) )3 = (h0 + Lp )3 + 3LΔp(h0 + Lp )2

and (LΔp)n � h0 forn > 1
(6.10)

Equations (6.8), (6.9) and (6.10) are put together and simplifies to (6.11).

Δp
∂f (p)

∂p
=f (p+Δp) − f (p)

=
1

R

∂

∂θ

(
3h2LΔp

μR

∂p

∂θ

)
+

∂

∂z

(
3h2LΔp

μ

∂p

∂z

)

+
1

R

∂

∂θ

(
h3

μR

∂Δp

∂θ

)
+

∂

∂z

(
h3

μ

∂Δp

∂z

)
− 6ω

∂LΔp

∂θ
− 12

∂LΔp

∂t
where h =h0 + Lp

(6.11)
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Equation (6.11) can then be used to solve for Δp using (6.12) where S is the
residual from equation (5.43) when assembled over all elements.[

∂f (p)

∂p

]
{Δp} = [J] {Δp} = {S} = [H] {p} − {V } (6.12)

The final solution for the pressure p and the corresponding state of deformation d
is found by solving equation (6.12) multiple times through an iterative procedure until
the convergence criterion stated in (6.13) is fulfilled. In each iteration l the pressure
is updated using (6.14) which, when the solution is converging, will find successively
better approximations to the true solutions of p and the corresponding deformation.

|Δp|

|p|
< 10−4 (6.13)

pl = pl−1 +Δp (6.14)

The algorithm used to implement the Newton-Raphson scheme is presented in
section 6.5.2 page 48.

6.5.1 Finite element formulation

The finite element technique is used to solve for Δp using equation (6.12). The
Jacobian matrix of (6.12) consists of six terms corresponding to the right hand terms
of equation (6.11):

[J] = [J]I + [J]II + [J]III + [J]IV + [J]V + [J]V I (6.15)

The derivation of the element equations is shown in the following paragraphs.

First term

The first term of equation (6.11) is expanded and the derivative of p of second order
is neglected:

1

R

∂

∂θ

(
3h2LΔp

μR

∂p

∂θ

)
=
1

R

∂

∂θ

(
3h2LΔp

μR

)
∂p

∂θ
+

3h2LΔp

μR2

∂2p

∂θ2︸︷︷︸
�

∂p
∂θ

=
6hLΔp

μR2

∂h

∂θ

∂p

∂θ
+

3h2

μR2
L
∂Δp

∂θ

∂p

∂θ

(6.16)

Equation (6.16) is put into integral form according to the Galerkin principle. For
each element an equation is set up for all nodes j :
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∫
Ω

(
6h

μR2

∂h

∂θ

∂p

∂θ
LΔpNj

)
dΩ +

∫
Ω

(
3h2

μR2

∂p

∂θ
L
∂Δp

∂θ
Nj

)
dΩ (6.17)

The field variable Δp and its derivatives are expressed using interpolation func-
tions (5.34) and (5.40). Furthermore the field variables h, p, μ and its derivatives
are integrated using a single Gauss point. Therefore they can be moved out of the
integration bracket and be treated as constants with their respective values at the
element centroid.

6h

μR2

∂h

∂θ

∂p

∂θ

∫
Ω

(
L

3∑
m=1

(ΔpmNm)Nj

)
dΩ+

3h2

μR2

∂p

∂θ

∫
Ω

(
L

3∑
m=1

(
Δpm

∂Nm

∂θ

)
Nj

)
dΩ (6.18)

The interpolation functions (5.36) are then inserted into (6.18) and integration is
performed using (5.51). The resulting formula is put into matrix form (6.19) and
shown in (6.20), where I is the identity matrix and 1 is the unit matrix.

[Jjk]I {Δpj} (6.19)

[Jjk]I =
Ah

2μR2

∂h

∂θ

∂p

∂θ
L ([1] + [I]) +

h2

2μR

∂p

∂θ
Lbk (6.20)

Note that since L is a full matrix of size n × n, JI becomes 3 × n when using
3 DOF elements.

Second term

The second term of equation (6.11) is derived using the same procedure as for the
first term. The contribution to the Jacobian matrix is shown in equation (6.21).

[Jjk]II =
Ah

2μ

∂h

∂z

∂p

∂z
L ([1] + [I]) +

h2

2μ

∂p

∂z
Lck (6.21)

Third term

The third term of equation (6.11) is shown in equation (6.22) and expanded.

1

R

∂

∂θ

(
h3

μR

∂Δp

∂θ

)
=

h3

μR2

∂2Δp

∂θ2
+

1

μR2

∂h3

∂θ

∂Δp

∂θ
(6.22)

Equation (6.22) is put into integral form and for each element an equation is set
up for all nodes j. As for the first term, the field variables h, μ and its derivatives can
be moved out of the integration bracket because they are integrated using a single
Gauss point.

h3

μR2

∫
Ω

(
∂2Δp

∂θ2
Nj

)
dΩ +

1

μR2

∂h3

∂θ

∫
Ω

(
∂Δp

∂θ
Nj

)
dΩ (6.23)
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Integration by parts is used to reduce the order of the first term in equation (6.23)
giving (6.24). The first term of (6.24) cancels itself at all interior nodes of the solution
domain. For the nodes located on the boundary the term brings in the possibility
of specifying the pressure gradient, and hence the flow, as a boundary condition.
However, since I wish to solve for Δp, I do not need to specify the gradient. The
gradient is overwritten when specifying Δp at boundary nodes and therefore the term
is removed from equation (6.24).

h3

μR2

⎛
⎜⎜⎝
[
∂Δp

∂θ
Nj

]
Ω︸ ︷︷ ︸

cancels out

−

∫
Ω

(
∂Δp

∂θ

∂Nj

∂θ

)
dΩ

⎞
⎟⎟⎠+

1

μR2

∂h3

∂θ

∫
Ω

(
∂Δp

∂θ
Nj

)
dΩ (6.24)

The interpolation functions (5.36) and (5.40) are introduced in equation (6.24)
giving (6.25):

−
h3

μR2

∫
Ω

(
3∑

m=1

(
Δpm

R

2A
bm

)
R

2A
bj

)
dΩ +

1

μR2

∂h3

∂θ

∫
Ω

(
3∑

m=1

(
Δpm

R

2A
bm

)
Nj

)
dΩ

(6.25)
Equation (6.25) is integrated giving (6.26):

−
h3

4Aμ

3∑
m=1

(Δpmbm)bj +
1

6μR

∂h3

∂θ

3∑
m=1

(Δpmbm) (6.26)

Finally the equation is put into matrix form stating the element equations:

[Jjk]III = −
h3

4Aμ
bjbk +

1

6μR

∂h3

∂θ
bk (6.27)

Fourth term

The fourth term of equation (6.11) is derived using the same procedure as for the
third term. The contribution to the Jacobian matrix is shown in equation (6.28).

[Jjk]IV = −
h3

4Aμ
cjck +

1

6μ

∂h3

∂z
ck (6.28)

Fifth term

The fifth term of equation (6.11) is shown in (6.29). It originates from the Couette
term of equation (5.7).

− 6ω
∂LΔp

∂θ
(6.29)
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The term is put into integral form using the Galerkin principle:

− 6ω

∫
Ω

(
∂LΔp

∂θ
Nj

)
dΩ (6.30)

Interpolation functions are introduced giving equation (6.31):

− 6ω

∫
Ω

(
3∑

m=1

(
LΔpm

R

2A
bm

)
Nj

)
dΩ (6.31)

Integration is performed producing equation (6.32):

−RωL

3∑
m=1

(Δpmbm) (6.32)

The resulting set of equations is put into matrix form (6.19) and shown in (6.33):

[Jjk]V = −RωLbk (6.33)

Sixth term

The sixth term of equation (6.11) is shown in (6.34). It originates from the squeeze
term of equation (5.7). Since Δp is not time dependent the term cannot be expressed
and the contribution to the overall Jacobian matrix is set to 0 as stated in equa-
tion (6.35).

− 12
∂LΔp

∂t
(6.34)

[Jjk]V I = 0 (6.35)

6.5.2 Numerical implementation

The Newton-Raphson method is implemented using the algorithm shown in figure 6.1.
The Newton-Raphson method does not account for cavitation and thus any cavitated
region must be specified before initializing the Newton-Raphson scheme. The scheme
can be initiated with both pressure and deformation set to 0. If another solution is
available, e.g. from integration in time domain or in connection with coupling with the
energy equation, it can be used with great advantage to achieve a rapid convergence.

The pressure p is updated using equation (6.14) and the convergence of the Newton-
Raphson (figure 6.1 #5) method is checked using (6.13). The handling of cavitation
(figure 6.1 #2) is described in section 5.6 page 38. nj is a counter used in the cavitation
algorithm that needs initialization here.
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Figure 6.1: Algorithm for integrating cavitation algorithm with Newton-Raphson
method
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Chapter 7

Thermal modeling

In this chapter it is shown how the energy equation is used to determine the heat flux
in lubricant, journal and bearing using the finite difference technique.

Since the cavitation algorithm applied in this work does not ensure mass conser-
vation, energy balance cannot be assured in the cavitated region either. Van Ostayen
and van Beek [56] uses a mass-conserving cavitation algorithm that enables accurate
prediction of energy flow in the cavitated regions.

It is important to consider the thermal effects when performing hydrodynamic
bearing studies. Dowsen et al. [40][57] revealed this already in the 1960’s. In order to
model the thermohydrodynamics better than the isothermal and adiabatic approaches
they propose a model which includes the heat transfer from lubricant to bearing using
heat transfer coefficients and compare the results with experimental findings. Good
agreement is found when comparing experimental findings with theoretical results.

Klit [58] has studied the energy-balance in journal bearings and showed that
thermo-viscous effects have significant influence on bearing performance. Bearing-
and journal-temperature have great impact on the temperature distribution in the
lubricant which is also shown to vary strongly across the film thickness. The majority
of the dissipated heat is carried from bearing through convection.

Glavatskih et al. [47] study the influence of lubricant viscosity and viscosity index
on thrust bearing performance experimentally and compare with simulations using a
TEHD model. Interestingly it is found that bearing efficiency can be increased without
sacrificing bearing safety by substituting a mineral oil with a thinner synthetic oil
having a higher viscosity index. The viscous shear is reduced while maintaining the
same lubricant film thickness.

When not using full CFD simulations to solve the flow conditions, as done by
Piotr for a fully flooded bearing [25], it is difficult to predict, with sufficient accuracy,
the mixing of hot and cold oil at the oil inlet system. This is an issue for all types
of bearings ranging from conventional full journal bearings to pad bearings being
fully flooded or fitted with leading edge grooves or spray bars. It is important to
know the mixing parameters due to the high temperature-dependency of lubricant
viscosity and hence load carrying capacity. Heshmat and Pinkus [59] have studied

51
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the topic experimentally and propose empirical relations for a wide range of operating
conditions and bearing sizes covering both thrust and journal bearings.

Ettles [60] has performed a similar experimental study on 14 different thrust bear-
ing assemblies and reports that 60 to 80 %, depending on sliding speed and bearing
type, of hot oil is carried over to the next pad.

Using a THD model Roy [61] has performed a parametric study in order to deter-
mine the influence of the lubrication groove position in a conventional journal bearing.
The optimum groove location and size is found to depend heavily on bearing opera-
tional parameters.

Other interesting studies are that of Fillon, Frene et al. [62],[63],[64] which treat
dynamic thermo-hydrodynamic behavior of thrust bearings both theoretically and
experimentally. Different thermo-hydrodynamic models are compared and dynamic
responses are studied. It is shown that isothermal assumptions are not very accu-
rate and that thermoelastic deformations can lead to significant changes in bearing
performance.

7.1 Energy equation

The differential equation shown in equation (7.1), also called the energy equation,
describes the energy balance of convection, conduction and dissipation. For this work
four different thermo-models will be derived:

• isothermal assumption, i.e. constant lubricant temperature

• adiabatic assumption, i.e. no energy transfer from lubricant

• energy transfer using radial temperature gradient

• energy transfer using heat transfer coefficients

The most basic method of hydrodynamic bearing analysis assumes isothermal
conditions in the lubricant. Since the lubricant temperature is regarded as constant,
regardless of bearing conditions, the energy equation is not required for this modeling
approach.

The adiabatic assumption is a special case of using heat transfer coefficients, where
the coefficients are set to zero and thus not allowing heat transfer to and from lubri-
cant.

Two sections are dedicated to the description of the two remaining models: 7.1.1
Conduction using radial temperature gradient and 7.1.2 Conduction using heat trans-
fer coefficients.

The energy equation (7.1) is shown in its cylindrical form, which is suited for
journal bearings. The corresponding coordinate system is shown in figure 5.1(b) page
28.

A number of assumptions are made in order to reduce the complexity of the prob-
lem:
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• steady state conditions are assumed when solving for the temperature

• heat conduction is only included in radial direction

• viscous dissipation terms assume large velocity gradients in radial direction com-
pared to other directions

• lubricant velocity component in radial direction is negligible

• convection terms assume a mean lubricant temperature across the lubricant
thickness

Conduction is only included in radial direction since convection dominates the
energy transfer in circumferential and axial direction. The viscous dissipation term
assumes a thin lubricant film giving large velocity gradients in radial direction com-
pared to other dimensions.

ρcp

(
1

R

∂

∂θ
(vθT ) +
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(7.1)

In the following sections the finite difference equations for implementing the energy
equation in the TEHD bearing model will be derived.

Equation (7.2) shows the left-hand-side of equation (7.1) after integration over the
lubricant film thickness h. The velocity gradients cancel out when using the continuity
equation shown in equation (7.3) and the velocity component in radial direction is
assumed much smaller than in the other dimensions and is therefore negligible.
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1

R

∂vθ
∂θ

+
∂vz
∂z

+
∂vx
∂x

= 0 (7.3)

In equation (7.4) the temperature T from (7.2), for the convection terms, is ex-
pressed using the mean temperature Tm over the lubricant film thickness and hence



54 Chapter 7. Thermal modeling

the temperature derivatives are constant across the film thickness and can be moved
outside the integrals.

The integration of the fluid velocity components in (7.2) equals the flow per unit
width and can be replaced by equations (5.12) and (5.13) as also shown in (7.4).

LHS =ρc
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∫ h

0
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0

vzdx

)
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q′θ +
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q′z

) (7.4)

Equation (7.5) shows the right-hand-side of the energy equation (7.1) when inte-
grated across the lubricant film thickness h.
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The expressions for the fluid velocities (5.10) and (5.11) are inserted and differ-
entiation of these are applied. Furthermore a mean viscosity μm, corresponding to
the mean temperature, is employed. Finally integration of the expression leads to
equation (7.6).
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(7.6)

Equation (7.4) and (7.6) are put together giving the final form of the energy
equation as shown in equation (7.7). The left hand side represents the convection
term whereas the right hand side represents the conduction, viscous dissipation due
to Couette flow and viscous dissipation due to Poiseuille flow respectively.

However, before numerical implementation is possible, the conductive term needs
further attention. The sections 7.1.1 and 7.1.2 are dedicated to this.
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7.1.1 Conduction using radial temperature gradient

In this section it is explained how conduction from lubricant to journal is calculated
assuming a parabolic temperature profile across the film thickness. The method re-
sembles the approach originally developed by Klit [58].
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In this work emphasis is put on compliant polymer liners, of which a side effect is
their highly insulating properties. Therefore the bearing surface is treated as adiabatic
only allowing conduction through the journal.

The conduction is calculated using the temperature gradient of a parabolic tem-
perature profile and the thermal conductivity of the lubricant. For the derivation,
using this approach, two assumptions are made:

• the temperature gradients for the convection terms are set to 0

• pure Couette flow is assumed

• a polymer material is used for the bearing liner giving adiabatic conditions on
this side

In order to derive an expression for the temperature variation across the lu-
bricant film thickness the energy equation (7.1) is used. Equivalent to the steps
from (7.1) to (7.5) integration, this time indefinite, is performed on both sides and
again the continuity equation (7.3) is employed.

Furthermore the temperature gradients in circumferential and axial direction are
set to 0 as shown in equation (7.8). These gradients are small compared to the
radial temperature gradient. Therefore we can can, with good approximation, neglect
the convective terms when evaluating the radial heat transfer. This only leaves the
constant of integration on the left-hand-side which is moved to the right-hand-side
giving (7.9).

∂T

∂θ
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∂z
= 0 (7.8)
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Pure Couette flow is assumed giving the expressions for the velocity components
shown in (7.10).

vθ = ωR
x

h
vz = 0

(7.10)

Equations (7.10) are then inserted into (7.9) giving (7.11):
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+
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2R2x

h2
+ C1 (7.11)

Equation (7.11) is integrated again giving (7.12):

0 = kT +
μmω

2R2x2

2h2
+ C1x+ C2 (7.12)
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The constants of integration are determined using the boundary conditions at
x = 0 and x = h corresponding to the bearing surfaces at the bearing and journal.

For a polymer material the radial temperature gradient is very small, correspond-
ing to good insulating properties. As a result the gradient is set to 0 as shown in
equation (7.13) stating the boundary conditions for the bearing:

x = 0

∂T

∂x
= 0

(7.13)

For the journal a fixed temperature TJ is chosen as boundary condition. This
is believed to be a good assumption since the journal rotational speed is typically
at a magnitude that gives a very small local transient temperature fluctuation at
the journal surface during rotation. The journal boundary conditions are shown in
equation (7.14):

x = h

T = TJ
(7.14)

The constants of integration are then identified using (7.12), (7.13) and (7.14):

C1 = 0

C2 = −kTJ −
1

2
μmω

2R2
(7.15)

The constants are inserted into (7.16) expressing temperature as a function of x:

T =
μmω

2R2

2k

(
1−

x2

h2

)
+ TJ (7.16)

The final form of the energy equation (7.7) is expressed using the mean temper-
ature. Therefore the mean value of (7.16) is found through integration as shown
in (7.17). The expression is rearranged to allow for substitution into (7.16) giv-
ing (7.18).

Tm =
1

h

∫ h

0

Tdx =
μmR

2ω2

3k
+ TJ ⇔
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2k
=

3

2
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(7.17)

Equation (7.18) shows the parabolic temperature variation across the lubricant
film thickness with the given assumptions.
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T =
3

2
(Tm − TJ)

(
1−

x2

h2

)
+ TJ (7.18)

Figure 7.1 shows an example of a local temperature distribution for a journal tem-
perature of 50 ◦ C and a lubricant mean temperature of 60 ◦ C. This gives a maximum
temperature of 65 ◦ C at the polymer lined bearing surface. The temperature gradient
at the journal surface is negative leading to a negative conductive term corresponding
to cooling of the lubricant.
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Figure 7.1: Parabolic temperature distribution along lubricant cross section (film
height)

The approach used to derive the temperature profile given in (7.18) has a question-
able element. The assumption on the temperature gradients stated in (7.8) basically
induces that the viscous dissipation is equal to the conduction through the journal
surface when the pressure gradients are zero. This aspect does not originate in a real
physical condition and is as such difficult to justify. It may however give a better
representation of the thermal conditions than an adiabatic model. Another aspect of
the derivation of (7.18) is that pure Couette flow is assumed. The Poiseuille terms
can also be included, this does however not lead to as elegant a solution as for the
pure Couette assumption.

Calculation of mass and energy balance

In this section is is shown how the mass and energy balance is checked for the thermo-
model using the radial temperature gradient for calculating the conduction. A control
volume, as shown in figure 7.2, is moved along the oil-filled bearing clearance and for
every location the mass and energy balance is checked. This approach will show if
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the assumptions give valid results obeying the rules of mass and energy conservation.
Since the cavitation algorithm applied in this work does not ensure mass conservation,
energy balance cannot be assured in the cavitated region either.

x

y

z

Control 

volume

Viscous 

dissipation

Circumferential

convection

Axial

convection

Conduction

Adiabatic 

surface

Figure 7.2: Control volume for energy and mass balance

For checking the mass balance, equations (5.12) and (5.13) are used.
Convection of energy through axial flow per unit length is calculated using (7.18)

inserted into (5.11) as shown in (7.19). The equation states the energy flux through
a cross section over the lubricant thickness in circumferential direction as illustrated
in figure 7.2. Sign is according to the cylindrical coordinate system.
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(7.19)

Energy convection through circumferential flow per unit width is calculated using
(5.10) and (7.18) as expressed in (7.20). The equation states the energy flux through
a cross section over the lubricant thickness in radial direction. Sign is according to
the cylindrical coordinate system.
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∫ h
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8
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1
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∂p

∂θ
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(7.20)

Energy conduction through the journal is calculated using the temperature gradi-
ent derived from (7.18) at x = h as expressed in (7.21). A positive value denotes flux
into the control volume.
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The viscous dissipation in the lubricant is calculated using (5.14).
Finally the energy balance can be expressed using (7.22) where e is the error:

∫
P ′

AxialdΛ +

∫
P ′

CircumferentialdΛ + PConduction + PV iscousdissipation = e (7.22)

7.1.2 Conduction using heat transfer coefficients

An alternative approach to the method based on the radial temperature gradient
and thermal conductivity of the lubricant is to use the temperature difference of
lubricant and solid coupled with the heat transfer coefficient of the interface according
to Newton’s law of cooling: ”The rate of heat loss of a body is proportional to the
difference in temperatures between the body and its surroundings” [65]. Basically this
approach requires only one assumption:

• Newton’s law of cooling is assumed valid using a mean lubricant temperature
Tm across the lubricant thickness

Applying this method the conduction term of equation (7.7) is replaced with the
terms using heat transfer coefficients as shown in (7.23). The ratio heat loss to tem-
perature difference is called the heat transfer coefficient α.

The transfer of energy from solid to lubricant is also known as convective heat
transfer, however, the term conduction will be used in this work. As previously TJ
denotes the temperature of the journal and TB the temperature of the bearing. αJ
and αB are the heat transfer coefficients of the corresponding interfaces.[

k
∂T

∂x

]x=h
x=0

= αJ (TJ − Tm) + αB (TB − Tm) (7.23)

When inserted into the energy equation (7.7) it becomes:
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Using this method the questionable nature of the method derived in section 7.1.1
is avoided, where the viscous dissipation equals the conduction through the journal
surface when the pressure gradients are zero, but a new challenge rises: How to select
proper heat transfer coefficients and corresponding boundary conditions. These prob-
lems of defining proper system parameters and boundary conditions can be reduced
by increasing the system which is modeled. This will move the boundary conditions
further away and also, in most cases, make it easier to identify true values for the
system. The disadvantage is naturally that the modeling and computational task
increases drastically.

Calculation of mass and energy balance

In this section is shown how the mass and energy balance is checked for the thermo-
model using heat transfer coefficients for calculating the conduction. Again the control
volume principle shown in figure 7.2 is used for the the control of mass and energy
balance. For calculation of the former, equations (5.12) and (5.13) are used.

Convection through axial flow per unit length is calculated using (5.11) together
with the mean temperature Tm which is constant across the lubricant film thickness.
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Similarly the convection through circumferential flow per unit width is calculated
using (5.10) as stated in (7.26).
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The conduction through the journal and bearing using heat transfer coefficients is
calculated using (7.23) as stated in (7.27):

PConduction =

∫
Ω

(αJ (TJ − Tm) + αB (TB − Tm)) dΩ (7.27)

The viscous dissipation in the lubricant is found using (5.14) and finally the energy
balance is calculated using (7.22).
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Heat transfer coefficients

In this work emphasis is put on polymer lined bearings. The heat transfer coefficient
for the bearing αB is then close to that of adiabatic conditions and therefore set to
zero.

Jiji [66] states that the typical heat transfer coefficient for forced convection in
liquids is stated to be in the range 50 to 20,000 W/m2/◦C

Using Baehr and Stephan’s [67] approach, the heat transfer coefficient for internal
forced laminar flow between between parallel plates can be approximated using (7.28)
where the Nusselt number Nu is 7.5. The Nusselt number is the ratio of convective
to conductive heat transfer through a surface.

α =
kNu

2h
(7.28)

Equation (7.28) gives a local heat transfer coefficient of 11,250 W/m2/◦C using a
thermal conductivity of 0.15 W/m/◦C, corresponding to that of conventional lubrica-
tion oil, and a film thickness of 50 μm.

This value is a gross overestimation when comparing to the work of Almquist et
al. [68] who compare a THD model of a tilting pad thrust bearing with experiments
and adjust model parameters to obtain good correlation between measurements and
simulation results with emphasis on the thermal response. They achieve fairly good
agreement using a coefficient of 1,000 W/m2/◦C.

7.2 Variable journal temperature

Both presented methods for calculating the conduction through the journal surface
require the journal temperature to be defined. A model is developed for the axial
energy conduction in the journal which allows the journal temperature to be defined
at the bearing edges only. For this approach two assumptions are made:

• journal temperature is constant at any radial cross section

• journal temperature profile in axial direction is symmetric about bearing center

In order to maintain energy conservation the heat flux from oil film to the journal,
PConduction, must be transfered axially in the journal, PJ , imposing a temperature
gradient in the journal.

The axial journal temperature variation is determined assuming that the journal
temperature is constant at any radial cross section, and thus independent of radial and
circumferential coordinates R and θ. For simplicity the conduction from lubricant to
journal is also assumed to be symmetric about the midsection of the bearing (z = 0)
giving (7.29). Hereby the energy conduction through any section of the journal can
be calculated using (7.30). The journal temperature is then defined at the bearing
edges only (z = ±L

2
).
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PConduction

PJ

PJ

Figure 7.3: Heat flux in journal

PJ =
PConduction

2
(7.29)

PJ = AJkJ
∂TJ
∂z

(7.30)

Given the assumption on symmetric conduction from lubricant to journal, the
power through any cross section (z = zcs) of the journal can be calculated using the
conductive terms (7.21) and (7.27) as expressed in (7.31). The double prime indicates
pr. unit area.

PJz=±zcs
= R

∫ +zcs

−zcs

∫ +π

−π

P ′′
Conduction

2
dθdz (7.31)

Finally (7.30) and (7.31) are combined into (7.32) expressing the journal temper-
ature gradient at any cross section of the journal:

∂TJ
∂z z=±zcs

=
R
∫ +zcs
−zcs

∫ +π

−π
P ′′

Conductiondθdz

2AJkJ
(7.32)

Hereby the axial temperature profile can be found solving the boundary value
problem described by the differential equation (7.32) knowing the temperature at
z = ±L

2
.

Figure 7.4 shows an example of the axial temperature variation in a journal using
a constant conduction from the lubricant. The impact of the variable journal tem-
perature is that the journal is capable of transferring a higher heat flux at the edges
of the journal which are closer connected to the boundary with no lubricant heat flux
and thus a big heat sink and heat transfer capacity by convection and conduction.

Once the validity of the axial temperature profile is established through compar-
ison with a full 3-dimensional thermal model or an experimental setup it is easy to
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Figure 7.4: Example of variation of journal temperature at constant heat conduction
through journal.

apply to various bearing applications since the temperature at the bearing edges is
straightforward to measure accurately.

7.3 Boundary conditions

The lubricant temperature for all nodes located in the inlet grooves or on the groove
boundary as well, as journal temperatures for all nodes on the journal edges, are
defined and constant throughout an analysis.

The iterative procedure required to include a hot oil carry-over effect is not imple-
mented. This corresponds to a very effective oil exchange at the lubrication grooves.

In order to compensate for the missing implementation of the hot oil carry-over
effect, the lubricant inlet temperature is offset, typically +5 to +10 ◦C, compared to
the actual lubricant supply temperature.

7.4 Finite difference formulation

The energy equations (7.7) and (7.24) are solved numerically using finite difference
formulation where the temperature gradient at each individual node is approximated
using the node value together with the neighboring nodes’ values as illustrated in
figure 7.5. Dφ(x∗)centered denotes the derivative of the field variable φ (x) at x∗ using
a centered approximation. Using this method the derivatives are removed from the
energy equations and instead a linear system of equations is obtained. The pressure
gradients will not be expressed using finite difference. Instead the FEM interpolation
functions (5.40) are used for the gradients at the FDM node locations.
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The finite element method can be applied for the energy equation although special
attention is required since the convective term in the energy equation can cause insta-
bilities when using FEM. This can be solved using upwind finite element techniques
[69][70][71].

The thermo-model is coupled with the elastohydrodynamic model using direct
substitution.

( )
centered

D xφ ∗

( )
forward

D xφ ∗

( )
backward

D xφ ∗

x∗
xΔ xΔ

φ

x

Figure 7.5: Finite difference approximations: Forward, backward and central approx-
imations

The finite difference equations corresponding to the energy equations (7.7) and
(7.24) are derived simultaneously including both of the two methods representing the
conduction terms as shown in (7.33).

ρc

(
1

R

∂Tm
∂θ

q′θ +
∂Tm
∂z

q′z

)
=[

k
∂T

∂x

]x=h
x=0

+ αJ (TJ − Tm) + αB (TB − Tm)

+
μmω

2R2

h
+

h3

12μm

(
1

R2

(
∂p

∂θ

)2

+

(
∂p

∂z

)2
) (7.33)

The definite integral of (7.33) is calculated using the temperature profile (7.18) to
calculate gradients at x = 0 and x = h as shown in (7.34) and (7.35).

∂T

∂x x=0
= 0 (7.34)

∂T

∂x x=h
=

3 (TJ − Tm)

h
(7.35)
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(7.34) and (7.35) are substituted into (7.33) giving (7.36). The flow expres-
sions q′θ (5.12) and q

′
z (5.13) are left out for simplicity.

ρc

(
1

R

∂Tm
∂θ

q′θ +
∂Tm
∂z
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)
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3k (TJ − Tm)

h
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+
μmω

2R2

h
+

h3

12μm

(
1

R2

(
∂p

∂θ

)2

+

(
∂p

∂z

)2
) (7.36)

7.4.1 Derivation of finite difference approximations

The centered finite difference approximation is derived using the two neighboring
node values as illustrated in figure 7.5. The three node values are combined in a
linear manner as shown in equation (7.37).

Dφ(x∗)centered = aφ (x∗) + bφ (x∗ +Δx) + cφ (x∗ −Δx) (7.37)

The unknowns a, b and c are determined using the Taylor expansions of φ (x)
around x∗ shown in (7.38):

φ (x∗ +Δx) = φ (x∗) + Δx
∂φ

∂x∗
+

1

2!
Δx2

∂2φ

∂x∗2
+

1

3!
Δx3

∂3φ

∂x∗3
+ ...

φ (x∗ −Δx) = φ (x∗)−Δx
∂φ

∂x∗
+

1

2!
Δx2

∂2φ

∂x∗2
−

1

3!
Δx3

∂3φ

∂x∗3
+ ...

(7.38)

The Taylor expansions (7.38) are inserted into (7.37) giving (7.39). Since only
three coefficients (a, b and c) are chosen for the approximation, terms of Δx3 and
higher cannot be included and hence the order of accuracy of the approximation is
O (Δx2).

Dφ(x∗)centered = (a+ b+ c)φ (x∗) + (b− c)Δx
∂φ

∂x∗
+ (b+ c)

1

2!
Δx2

∂2φ

∂x∗2
+O

(
Δx3

)
(7.39)

In order for the approximation to be valid equation (7.40) must be satisfied. Us-
ing this requirement together with (7.39) allows for the establishment of the equa-
tions (7.41) which are then used to determine the coefficients a, b and c.

Dφ (x∗) =
∂φ

∂x∗
(7.40)
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a+ b+ c = 0
(b− c)Δx = 1
(b+ c) 1

2!
Δx2 = 0

⇔
a = 0
b = 1

2Δx

c = −1
2Δx

(7.41)

Combining (7.41) and (7.39) gives the central finite difference approximation:

Dφ(x∗)centered =
φ (x∗ +Δx)− φ (x∗ −Δx)

2Δx
(7.42)

The same procedure is applied to achieve the forward and backward approxima-
tions shown in (7.43) and (7.44) obtaining the same order of accuracy as the centered
approximation (7.42): O (Δx2).

Dφ(x∗)forward =
−3

2
φ (x∗) + 2φ (x∗ +Δx)− 1

2
φ (x∗ + 2Δx)

Δx
(7.43)

Dφ(x∗)backward =
3
2
φ (x∗)− 2φ (x∗ −Δx) + 1

2
φ (x∗ − 2Δx)

Δx
(7.44)

7.4.2 Finite difference equations

The finite difference approximations (7.42), (7.43) and (7.44) are used to create ap-
proximations of the derivatives of the lubricant temperature in axial and circumferen-
tial direction. These expressions are then substituted into the energy equation (7.36).
The forward and backward approximations are applied for the boundary nodes which
only have neighboring nodes to one side.

When the centered approximations are used in both the axial and circumferential
direction the energy equation (7.36) is expressed as shown in (7.45) using the node
values illustrated in figure 7.6.
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(7.45)

The same procedure is applied to obtain the remaining 8 combinations of for-
ward/central/backward approximations in axial and circumferential direction.
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z

z

z*

*

Figure 7.6: Node values used for finite difference center/centre approximation for
energy equation

7.5 Conversion between FEMmesh and FDMmesh

When the finite element based hydrodynamic and elasticity equations are coupled with
the finite difference based energy equations a conversion between the field variables
is required due to the different mesh layouts. The FEM mesh originates from the
finite element program used to set up the force-displacement correlation. The FEM
mesh must therefore be expected to be arbitrary whereas the FDM mesh requires an
equidistant node layout.

Mesh transformation: FEM to FDM

A transformation matrix is used to convert field variables from the FEM mesh to the
FDM mesh. The element interpolation functions are used for this purpose using the
procedure described in the following:

All coefficients of the element interpolation functions are found using (5.38) and
(5.39). Then, for all elements, the natural coordinates Nj can be found for all FDM
nodes using the nodal coordinates in equation (5.35). When all natural coordinates
are known, the values are used to identify the FEM elements in which the individual
FDM nodes reside. When an FDM node is inside or at the boundary of an FEM
element all natural coordinates will be equal to or less than 1. If a natural coordinate
equals 1 the FDM node is coincident with a FEM node and thus several FEM elements
can be used for the interpolation. Since the FEM mesh has C0 continuity it does not
matter which of these elements is chosen for mesh transformation.

A transformation matrix T can then be established by assembly of the identified
natural coordinates N1 to N3 for all FDM nodes. The method of assembly is shown
in (7.46) for meshes comprised of m FEM nodes and n FDM nodes.
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Mesh transformation: FDM to FEM

When performing the reverse transformation, from FDM to FEM mesh, is it straight
forward to apply double linear interpolation due to the equidistant properties of the
FDM mesh.

7.6 Check of mass and energy balance

To evaluate the implementation of the models described in chapter 7, the energy- and
mass-balance is checked. This is done for the two different methods of treating the
conduction term.

A conventional full journal bearing is used for this purpose and the bearing pa-
rameters and operating conditions are shown in table 7.1.

Bearing radius R 50 mm
Bearing length L 50 mm
Radial clearance Cr 50 μm
Rotational speed ω 1690 rpm
Journal position in x χx 0 μm
Journal position in y χy −0.8Cr μm
Journal velocity in x χ̇x 0 mm/s
Journal velocity in y χ̇y 0 mm/s
Lubricant grade ISO VG - 32 -
Lubricant temperature at inlet TInlet 50 ◦ C
Journal temperature at brg.edge TJ 55 ◦ C
Lubricant thermal conductivity k 0.13 W/m/◦C
Journal thermal conductivity kJ 40 W/m/◦C
Heat transfer coefficient α 1500 W/m2/◦C

Table 7.1: Bearing geometry and operating conditions
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Due to the complications of mass- and energy-balance calculations at the lubrica-
tion grooves the bearing used for the verification purpose only has a single groove at
θ = 0. See figures 5.1(a) and 5.1(b) for coordinate system (page 28).

7.6.1 Conduction using temperature gradient

Using the temperature gradient model to predict conduction through the journal, the
steady state solution is found for the bearing parameters listed in table 7.1. In the
following pages the thermohydrodynamic behavior is examined through discussion
of the solutions found for pressure, lubricant temperature, conduction and viscous
dissipation. Finally the mass- and energy-balance analysis is shown.
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Figure 7.7 shows the pressure distribution reaching a maximum pressure of 14.1 MPa
giving a load carrying capacity of 19.6 kN. As expected the the pressure build-up zone
is only covering the left section of the bearing, i.e. 0.5π < θ < 1.5π, due to cavitation
in the region with divergent bearing clearance.
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Figure 7.7: Pressure distribution. No mesh shown for cavitated nodes.



7.6 Check of mass and energy balance 71

Figure 7.8 shows the mean temperature in the lubricant with a maximum mean
value of 62.5 ◦C corresponding to a maximum lubricant temperature of 63.9 ◦C at the
adiabatic surface (x = 0) according to equation (7.18).

As stated in table 7.1 the journal temperature is set to 55 ◦C at the bearing edges
and is found to increase to a maximum value of 59.8 ◦C at the bearing center in a
parabolic manner as illustrated in figure 7.4 page 63.

Interestingly the temperature gradient ∂Tm
∂θ

is zero in the cavitated region just after
the pressure build-up (1.5π < θ < 2π).
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Figure 7.8: Local mean lubricant temperature. Averaging over lubricant film thickness
as described in equation (7.17).
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Figure 7.9 shows the local energy conduction though the journal surface. Just after
the lubricant inlet groove, θ = 0, the journal heats up the lubricant. At the pressure
build-up zone, and also the following cavitated region, the viscous dissipation heats
the lubricant to a level above that of the journal and hence the journal removes energy
in this region.

From this it is evident that the journal transfers energy to and from the lubricant
and hence smoothens the temperature spikes. In this case it furthermore has an overall
cooling effect on the lubricant (evident from figure 7.12).
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Figure 7.9: Local conduction through journal. Negative values (blue) imply cooling
of the lubricant.
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Figure 7.10 shows the local viscous dissipation pr. unit film height in the bearing.
Interestingly the maximum specific dissipation occurs at the edges of the bearing.
This is due to the high axial pressure gradient at this location imposing a high ax-
ial flow and thus also a correspondingly high shear rate dissipating energy into the
lubricant. Furthermore, the lubricant temperature is also low at the edges, giving a
correspondingly higher viscosity which again leads to higher viscous dissipation when
exposed to shear.

Also worth noticing, the location with the maximum temperature (on figure 7.8)
does not hold the highest viscous dissipation, on the contrary, there is actually a dip
on viscous dissipation in this zone. This is because the Poiseuille flow counterbalances
the Couette flow and hence reduces viscous shear due to reduced lubricant flow rate.
The reduced flow rate also induces less lubricant exchange and this then results in
high lubricant temperatures.
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Figure 7.10: Local viscous dissipation per unit film height.

The mass- and energy-balance is checked using a control volume as illustrated in
figure 7.2 page 58. The volume has a circumferential extent of 10 ◦. The volume
is moved along the bearing clearance and for each location the error e is found and
plotted in figure 7.11.

The error is calculated using equations (7.47) and (7.48), where the subscript Λ
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denotes through boundary.

emassbalance =

∑
qΛ∑
|qΛ|

100% (7.47)

eenergybalance =

∑
PΛ∑
|PΛ|

100% (7.48)

As expected figure 7.11 shows a significant error in energy-balance in the cavitated
regions. This error is a consequence of the cavitation algorithm which does not ensure
mass-balance in the cavitated regions. It is also seen that the error in energy-balance
starts already at the zone with a high pressure gradient just before the cavitated
region, near θ = 1.5π.

Overall the mass-balance error is at a very low level, around 0.2 %, in the pressure
build-up zone and the energy-balance error is within 1-5 %, in the major part, which
is believed to be within acceptable accuracy.
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Figure 7.11: Mass and energy balance check.
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Figure 7.12 breaks the energy flows into the individual contributers: viscous dis-
sipation, axial convection, circumferential convection and conduction. Positive is de-
fined as energy into the lubricant.

Interestingly, the viscous dissipation is almost entirely counterbalanced by the con-
duction. Thus the axial convection is counterbalanced by circumferential convection.

Ideally the sum should be 0 over the entire circumference if energy-balance was
achieved.

The spikes are caused by jumps in the size of the control volume at locations when
the mesh does not coincide nicely with the control volume.
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Figure 7.12: Energy balance break down.
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7.6.2 Conduction using heat transfer coefficients

The same bearing configuration is used to analyze the response of the model us-
ing temperature difference and heat transfer coefficients to predict heat conduction
through the journal.

Figure 7.13 shows the pressure distribution reaching a maximum pressure of 11.3 MPa
giving a load carrying capacity of 16.6 kN, somewhat lower compared to the previous
model.
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Figure 7.13: Pressure distribution. No mesh shown for cavitated nodes.
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Figure 7.14 shows the local lubricant temperature with a maximum value of
82.4 ◦C. This is much higher compared to the previous model and is due to less
cooling through the journal. The axial lubricant temperature gradient is almost zero
and can, for this model and bearing parameters, be neglected if one wishes to simplify
the model.

The lower heat transfer through the journal induces a correspondingly lower tem-
perature rise to 57.3 ◦C compared to the 59.8 ◦C of the previous model. This gives a
journal temperature difference of 2.3 and 4.8 ◦C of respectively.
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Figure 7.14: Local lubricant temperature
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Figure 7.15 and 7.16 shows the journal conduction and viscous dissipation respec-
tively. Qualitatively they have the same tendencies as for the previous model, except
the conduction sees very little variation in axial direction due to the low axial lubricant
and journal temperature gradients.

0
½pi

pi
1½pi

2pi

0.02
0.01

0
0.01

0.02

5

4

3

2

1

0

1

2

x 104

θ [rad]Z [m]

C
o
n
d
u
ct
io
n
,
jo
u
rn
a
l
[W

/
m

2
]

Figure 7.15: Local conduction through journal. Negative values (blue) imply cooling
of the lubricant.
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Figure 7.16: Local viscous dissipation per unit film height.
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The mass- and energy-balance analysis shown in figure 7.17 is almost identical to
the previous one with an error in mass-balance of 0-0.3 % and 1-3 % in energy-balance
when only considering the region with pressure build-up (again showing a higher error
in energy-balance, up to 19%, at the very last part with high pressure gradients).
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Figure 7.17: Mass and energy balance check.
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Figure 7.18 shows the individual contributers of energy transfer and again positive
is defined as energy into the lubricant.

For this model, with the given parameters, the majority of the viscous dissipa-
tion is carried away through convection. Not by conduction, as for the model using
temperature gradient shown in figure 7.12.
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Figure 7.18: Energy balance break down.
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Chapter 8

5 DOF bearing model

The bearing model described until now only allows forces and journal movements in
x̄- and ȳ-direction, e.g. 2 degrees of freedom (DOF). If accurate prediction of bearing
performance is required for a full bearing system the model must be extended to 5
DOF for loads and movements.

For bearing systems where the axial and radial bearings are coupled, maybe indi-
rectly through the elasticity of the supporting structure, it is advantageously to solve
the two, or more, bearing systems simultaneously and thus avoid the iteration process
that would elsewise be required to achieve a converged solution for elasticity and oil
film forces.

A literature study on simulations of 5 DOF bearing systems only reveal the work
of Kim et al. [72][73]. They analyze the spindle bearing of a computer harddisk
drive with respect to stability and especially the influence of the angular position of
the journal on stability. The stability is investigated using an analytical approach
together with the dynamic coefficients of the bearing system.

No work has been found studying coupled bearing systems supporting 5 DOF and
also considering the structural elasticity as presented in this work.

Equation (8.1) shows the equation of motion describing how the external forcesW
and moments G are counterbalanced by oil film forces and inertia forces. Again
accelerations are assumed negligible and hence the inertia forces can be neglected.
The mass matrix M is consequently removed. χ represents linear position coordinate
whereas and ψ represents angular position. Subscripts refer to the axis of translation
or rotation (see figure 5.1(a) page 28 for coordinate systems).

83
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(8.1)

The extension from 2 to 5 DOF is facilitated through 2 major changes:

• in addition to the radial bearing model for oil film forces and elasticity, using
a cylindrical coordinate system, an axial bearing model is added using a polar
coordinate system. These models are then solved simultaneously.

• angular and axial DOF are added to motion and load equations obtaining
5 DOF.

The element equations for the fluid forces and dynamic coefficients, for the 5 DOF
system, will be derived in the following sections for the cylindrical and polar coordinate
systems. The approach is similar to the one described in sections 5.2 and 5.3.

The thermal model will not be implemented for the 5 DOF model, thus the model
will be elastohydrodynamic (EHD).

8.1 Cylindrical representation

Let us recall Reynolds equation in cylindrical coordinates:
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(8.2)

Using Lund’s principle of perturbation Reynolds equation and the film thickness
expression are perturbed with respect to the 5 DOF. A Taylor expansion is used and
terms of orders 2 and higher are neglected since perturbations can be assumed to be
small. The notation ∂p/∂i = pi is used for the differentiations of p with respect to
perturbation dimension i.

p =p0 +Δχx̄pχx̄
+Δχ̇x̄pχ̇x̄

+Δχȳpχȳ
+Δχ̇ȳpχ̇ȳ

+Δχz̄pχz̄
+Δχ̇z̄pχ̇z̄

+Δψx̄pψx̄
+Δψ̇x̄pψ̇x̄

+Δψȳpψȳ
+Δψ̇ȳpψ̇ȳ

(8.3)
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To facilitate projections a unit vector n normal to the bearing surface, pointing
from stator towards rotor, is introduced:

n (θ) =
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nȳ
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0

⎫⎬
⎭ (8.4)

The perturbations are also introduced in the film thickness and squeeze term equa-
tions (8.5) and (8.6):

h = h0 +Δχx̄nx̄ +Δχȳnȳ −Δψx̄z̄nȳ +Δψȳz̄nx̄ (8.5)

∂h

∂t
=
∂h0
∂t

+Δχ̇x̄nx̄ +Δχ̇ȳnȳ −Δψ̇x̄z̄nȳ +Δψ̇ȳz̄nx̄ (8.6)

From (8.5) and (8.6) it is seen that perturbations in z̄-direction has no influence on
the film thickness or squeeze term and hence the corresponding terms can be canceled
from (8.3).

Equations (8.3) to (8.6) are inserted into (8.2) and separated with respect to
perturbations and only keeping the first order perturbation terms.

1

R

∂

∂θ

(
h30
μR

∂pi
∂θ

)
+

∂

∂z

(
h30
μ

∂pi
∂z

)
=⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+6ω ∂h0
∂θ

+ 12∂h0
∂t

, pi = p0

− 1
R
∂
∂θ

(
3h20nx̄

μR

∂p0
∂θ

)
− ∂

∂z

(
3h20nx̄

μ

∂p0
∂z

)
+ 6ω ∂nx̄

∂θ
, pi = pχx̄

− 1
R
∂
∂θ

(
3h20nȳ

μR

∂p0
∂θ

)
− ∂

∂z

(
3h20nȳ

μ

∂p0
∂z

)
+ 6ω ∂nȳ

∂θ
, pi = pχȳ

+ 1
R
∂
∂θ

(
3h20z̄nȳ

μR

∂p0
∂θ

)
+ ∂

∂z

(
3h20z̄nȳ

μ

∂p0
∂z

)
+ 6ωz̄ ∂nȳ

∂θ
, pi = pψx̄

− 1
R
∂
∂θ

(
3h20z̄nx̄

μR

∂p0
∂θ

)
− ∂

∂z

(
3h20z̄nx̄

μ

∂p0
∂z

)
+ 6ωz̄ ∂nx̄

∂θ
, pi = pψȳ

+12nx̄ , pi = pχ̇x̄

+12nȳ , pi = pχ̇ȳ

−12z̄nȳ , pi = pψ̇x̄

+12z̄nx̄ , pi = pψ̇ȳ

(8.7)

Equation (8.7) is used to solve for the pressure p0 and its derivatives with respect
to the perturbation dimensions. The derivatives are then integrated and the stiffness
and damping matrix of (8.1) can be established. The perturbations in z̄-dimension
has no influence on the pressure and therefore the corresponding coefficients are zero
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(third columns in (8.8) and (8.9)). Since the pressure always acts on the cylindrical
surface it cannot give a reaction in z̄-dimension, and hence the third rows are also
zero.

KCylindrical =

⎡
⎢⎢⎢⎢⎣
kFx̄χx̄

kFx̄χȳ
0 kFx̄ψx̄

kFx̄ψȳ

kFȳχx̄
kFȳχȳ

0 kFȳψx̄
kFȳψȳ

0 0 0 0 0
kMx̄χx̄

kMx̄χȳ
0 kMx̄ψx̄

kMx̄ψȳ

kMȳχx̄
kMȳχȳ

0 kMȳψx̄
kMȳψȳ

⎤
⎥⎥⎥⎥⎦ (8.8)

DCylindrical =

⎡
⎢⎢⎢⎢⎣
dFx̄χx̄

dFx̄χȳ
0 dFx̄ψx̄

dFx̄ψȳ

dFȳχx̄
dFȳχȳ

0 dFȳψx̄
dFȳψȳ

0 0 0 0 0
dMx̄χx̄

dMx̄χȳ
0 dMx̄ψx̄

dMx̄ψȳ

dMȳχx̄
dMȳχȳ

0 dMȳψx̄
dMȳψȳ

⎤
⎥⎥⎥⎥⎦ (8.9)

8.1.1 Finite element formulation

Similar to the approach in section 5.3 the variational principle is used for deriving
the element equations: The functionals corresponding to (8.7) and satisfying the
Euler-Lagrange equation (5.30) are found and inserted into (5.31). The interpola-
tion functions are then introduced giving the element equations shown in (8.10) to
(8.20). The interpolation functions and element coefficients are identical to the ones
used for the 2 DOF model (5.34) to (5.41). Finally the complete set of finite element
equations can be assembled and solved using boundary conditions as described in
chapter 5.6 Boundary conditions and cavitation.

[
Hijk

]
3×3

{
pij
}

3×1

=
{
Vij

}
3×1

(8.10)

where j is the node number and

i = 0, χx̄, χȳ, ψx̄, ψȳ, χ̇x̄, χ̇ȳ, ψ̇x̄, ψ̇ȳ
j = 1, 2, 3
k = 1, 2, 3

[
Hijk

]
=

∫
Ω

[
h30

4μA2
(bjbk + cjck)

]
dΩ (8.11)

{
V0j

}
=

∫
Ω

{
3Rbj
A

ωh0 − 12Nj

∂h0
∂t

}
dΩ (8.12)
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{
Vχx̄j

}
=

∫
Ω

{
−

(
3h20nx̄
μR2

3∑
m=1

(
p0m

R

2A
bm

)
− 6ωnx̄

)
R

2A
bj

−
3h20nx̄
μ

3∑
m=1

(
p0m

1

2A
cm

)
1

2A
cj

}
dΩ

(8.13)

{
Vχȳj

}
=

∫
Ω

{
−

(
3h20nȳ
μR2

3∑
m=1

(
p0m

R

2A
bm

)
− 6ωnȳ

)
R

2A
bj

−
3h20nȳ
μ

3∑
m=1

(
p0m

1

2A
cm

)
1

2A
cj

}
dΩ

(8.14)

{
Vψx̄j

}
=

∫
Ω

{
+

(
3h20z̄nȳ
μR2

3∑
m=1

(
p0m

R

2A
bm

)
− 6ωz̄nȳ

)
R

2A
bj

+
3h20z̄nȳ
μ

3∑
m=1

(
p0m

1

2A
cm

)
1

2A
cj

}
dΩ

(8.15)

{
Vψȳj

}
=

∫
Ω

{
−

(
3h20z̄nx̄
μR2

3∑
m=1

(
p0m

R

2A
bm

)
− 6ωz̄nx̄

)
R

2A
bj

−
3h20z̄nx̄
μ

3∑
m=1

(
p0m

1

2A
cm

)
1

2A
cj

}
dΩ

(8.16)

{Vχ̇x̄j} =

∫
Ω

{
−12nx̄

R

2A
bj

}
dΩ (8.17)

{
Vχ̇ȳj

}
=

∫
Ω

{
−12nȳ

R

2A
bj

}
dΩ (8.18)

{
Vψ̇x̄j

}
=

∫
Ω

{
+12z̄nx̄

R

2A
bj

}
dΩ (8.19)

{
Vψ̇ȳj

}
=

∫
Ω

{
−12z̄nȳ

R

2A
bj

}
dΩ (8.20)
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8.2 Polar representation

Reynolds equation in polar coordinates (8.21) is used to describe the thrust bearings
using the same approach as for the cylindrical representation.

1

R

∂

∂θ

(
h3

μR

∂p

∂θ

)
+

∂

∂R

(
h3

μ

∂p

∂R

)
= 6ω

∂h

∂θ
+ 12

∂h

∂t
(8.21)

Again Lund’s principle of perturbation is introduced giving equation (8.22).

p =p0 +Δχx̄pχx̄
+Δχ̇x̄pχ̇x̄

+Δχȳpχȳ
+Δχ̇ȳpχ̇ȳ

+Δχz̄pχz̄
+Δχ̇z̄pχ̇z̄

+Δψx̄pψx̄
+Δψ̇x̄pψ̇x̄

+Δψȳpψȳ
+Δψ̇ȳpψ̇ȳ

(8.22)

Using a normal vector (8.23) the film thickness and squeeze term is expressed using
the perturbations as shown in (8.24) and (8.25), respectivly.

n =

⎧⎨
⎩

nx̄
nȳ
nz̄

⎫⎬
⎭ = ±

⎧⎨
⎩

0
0
1

⎫⎬
⎭ (8.23)

h = h0 +Δχz̄nz̄ +Δψx̄nz̄ sin (θ)R−Δψȳnz̄ cos (θ)R (8.24)

∂h

∂t
=
∂h0
∂t

+Δχ̇z̄nz̄ +Δψ̇x̄nz̄ sin (θ)R−Δψ̇ȳnz̄ cos (θ)R (8.25)

From (8.24) and (8.25) it is seen that the perturbations χx̄ and χȳ has no influence
on the film thickness or squeeze term and hence the corresponding terms can be
canceled from (8.22).

Equations (8.22) to (8.25) are inserted into (8.21) and separated with respect to
perturbations and only keeping the first order perturbation terms giving (8.26).
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∂

∂θ

(
h3

μR

∂pi
∂θ

)
+

∂

∂R

(
h3

μ

∂pi
∂R

)
=⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

6ω ∂h
∂θ

+ 12∂h
∂t

, pi = p0

− 1
R
∂
∂θ

(
3h20nz̄

μR

∂p0
∂θ

)
− ∂

∂R

(
3h20nz̄

μ

∂p0
∂R

)
, pi = pχz̄

− 1
R
∂
∂θ

(
3h20nz̄ sin(θ)R

μR

∂p0
∂θ

)
− ∂

∂R

(
3h20nz̄ sin(θ)R

μ

∂p0
∂R

)
+ 6ωnz̄ cos (θ)R , pi = pψx̄

+ 1
R
∂
∂θ

(
3h20nz̄ cos(θ)R

μR

∂p0
∂θ

)
+ ∂

∂R

(
3h20nz̄ cos(θ)R

μ

∂p0
∂R

)
+ 6ωnz̄ sin (θ)R , pi = pψȳ

+12nz̄ , pi = pχ̇z̄

+12nz̄ sin (θ)R , pi = pψ̇x̄

−12nz̄ cos (θ)R , pi = pψ̇ȳ

(8.26)
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Equation (8.26) is used to solve for the pressure p0 and its derivatives with respect
to the perturbation dimensions. The derivatives are then integrated and the stiffness
and damping matrix of (8.1) can be established. The perturbations χx̄ and χȳ has no
influence on the pressure and therefore the corresponding coefficients are zero (first
and second columns in (8.27) and (8.28)). Since the pressure always acts on the thrust
surfaces it cannot give a reaction in χx̄ or χȳ, and hence the first and second rows are
also zero.

KPolar =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 0 kFz̄χz̄

kFz̄ψx̄
kFz̄ψȳ

0 0 kMx̄χx̄
kMx̄ψx̄

kMx̄ψȳ

0 0 kMȳχx̄
kMȳψx̄

kMȳψȳ

⎤
⎥⎥⎥⎥⎦ (8.27)

DPolar =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 0 dFz̄χz̄

dFz̄ψx̄
dFz̄ψȳ

0 0 dMx̄χx̄
dMx̄ψx̄

dMx̄ψȳ

0 0 dMȳχx̄
dMȳψx̄

dMȳψȳ

⎤
⎥⎥⎥⎥⎦ (8.28)

8.2.1 Finite element formulation

The interpolation functions for the polar representation are presented in equations (8.29)
to (8.32).

Nj =
1

2A
(aj + bjRcθ + cjR) (8.29)

a1 = Rc (θ2R3 − θ3R2)
a2 = Rc (θ3R1 − θ1R3)
a3 = Rc (θ1R2 − θ2R1)

b1 = R2 −R3

b2 = R3 −R1

b3 = R1 −R2

c1 = Rc (θ3 − θ2)
c2 = Rc (θ1 − θ3)
c3 = Rc (θ2 − θ1)

(8.30)

A =
Rc

2

∣∣∣∣∣∣
1 θ1 R1

1 θ2 R2

1 θ3 R3

∣∣∣∣∣∣ (8.31)

Rc = R

(
N1 = N2 = N3 =

1

3

)
(8.32)

The calculation of the area using equation (8.31) introduces a small error since the
centroid value Rc of the radius R is used for all three nodes. The error is small due the
the small difference between the node values and the centroid value. This approach is
however necessary in order to satisfy the requirements for the interpolation functions,
where the sum must be one and the individual function values equal to one or zero at
the boundaries.
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Alternatively the elements of the polar coordinate system can be transfered into a
Cartesian coordinate system. This can be accomplished using the same interpolation
functions, which are isoparametric, so they can be used to interpolate both the geom-
etry and the field variables. This approach requires two velocity terms which again
adds to the complexity of the model.

Again, the variational principle described in section 5.3 is used for deriving the
element equations:

[
Hijk

]
3×3

{
pij
}

3×1

=
{
Vij

}
3×1

(8.33)

where

i = 0, χx̄, χȳ, ψx̄, ψȳ, χ̇x̄, χ̇ȳ, ψ̇x̄, ψ̇ȳ
j = 1, 2, 3
k = 1, 2, 3

[
Hijk

]
=

∫
Ω

[
h30

4μA2
(bjbk + cjck)

]
dΩ (8.34)

{
V0j

}
=

∫
Ω

{
3Rbj
A

ωh0 − 12Nj

∂h0
∂t

}
dΩ (8.35)

{
Vχz̄ j

}
=

∫
Ω

{
−

(
3h20nz̄
μR2

3∑
m=1

(
p0m

R

2A
bm

))
R

2A
bj

−
3h20nz̄
μ

3∑
m=1

(
p0m

1

2A
cm

)
1

2A
cj

}
dΩ

(8.36)

{
Vψx̄j

}
=

∫
Ω

{
−

(
3h20 sin (θ)nz̄

μR

3∑
m=1

(
p0m

R

2A
bm

)
− 6ωR sin (θ)nz̄

)
R

2A
bj

−
3h20R sin (θ)nz̄

μ

3∑
m=1

(
p0m

1

2A
cm

)
1

2A
cj

}
dΩ

(8.37)

{
Vψȳj

}
=

∫
Ω

{
+

(
3h20 cos (θ)nz̄

μR

3∑
m=1

(
p0m

R

2A
bm

)
− 6ωR cos (θ)nz̄

)
R

2A
bj

+
3h20R cos (θ)nz̄

μ

3∑
m=1

(
p0m

1

2A
cm

)
1

2A
cj

}
dΩ

(8.38)
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{
Vχ̇z̄j

}
=

∫
Ω

{
−12nz̄

R

2A
bj

}
dΩ (8.39)

{
Vψ̇x̄j

}
=

∫
Ω

{
−12R sin (θ)nz̄

R

2A
bj

}
dΩ (8.40)

{
Vψ̇ȳj

}
=

∫
Ω

{
+12R cos (θ)nz̄

R

2A
bj

}
dΩ (8.41)

8.3 Combining the cylindrical and polar equations

The finite element equations for the cylindrical and the polar representations are setup
for all the respective elements and assembled into one system of equations to allow
the solution to be found simultaneously. This is done for the pressure and also its
derivatives with respect to the 2× 5 perturbations so the dynamic coefficients can be
established.

The equations required to find the fluidity matricesH, for the cylindrical and polar
representation respectively, are identical except for the interpolation functions and the
corresponding element coefficients. This is also the case for the Jacobian matrices J,
which are used as a part of the Newton-Raphson scheme to couple elasticity and
hydrodynamic forces.

Using a set of index vectors, used to differentiate between the cylindrical and
polar elements and their corresponding equations, it is possible to set-up an efficient
procedure that assembles the finite element equations vectorized using the technical
computing softwareMatlab. Hereby it is possible to solve for the pressure and dynamic
coefficients in a very efficient manner.
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Chapter 9

The use of dynamic coefficients

In this work the dynamic coefficients obtained from perturbation of Reynolds equation,
as described in section 5.2, are used for two purposes:

• finding the equilibrium position of the rotor that corresponds to the imposed
external load

• integration in time domain in order to find the response to dynamic loads

The numerical procedures for these are described in the two following sections.

9.1 Solving for equilibrium position

When Reynolds equation is used directly, the rotor position (χ, ψ) and velocity (χ̇, ψ̇)
are defined giving the lubricant film response, which can then be integrated giving
the oil film forces (F,M). However, often the external loads (W,G) are given and the
rotor position which returns force equilibrium is desired.

Usually the solution of interest is that of steady state. Therefore the velocity
components are set to zero, although this is not a requirement.

In order to find the equilibrium position for a given external load, a guess on rotor
position is made and the corresponding film forces are found so the equation of force
equilibrium (9.1) can be established.{

ΔF
ΔM

}
=

{
W
G

}
+

{
F
M

}
(9.1)

The stiffness coefficients are then used to calculate a correction, as shown in (9.2).{
Δχ
Δψ

}
= K−1

{
ΔF
ΔM

}
(9.2)

Finally the position at the i-th iteration can be calculated using (9.3), if necessary
using a coefficient of under-relaxation β.
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{
χ
ψ

}
i

=

{
χ
ψ

}
i−1

− β

{
Δχ
Δψ

}
(9.3)

For checking convergence of the iteration process (9.4) is used. Using the preceding
LHS-values of (9.4) the coefficient of under-relaxation can be adjusted to achieve a
faster rate of convergence. ∥∥∥∥

{
ΔF
ΔM

}∥∥∥∥∥∥∥∥
{
W
G

}∥∥∥∥
< 10−3 (9.4)

9.2 Integration in time domain

When searching for the response of a hydrodynamic bearing subjected to dynamic
loads one faces an initial value problem. This induces that the initial rotor position
and velocity must be defined after which the response can be found.

At a given point in time, the equation of force equilibrium (9.1) is used to find
the force unbalance and together with the damping coefficients a correction for the
velocity is calculated using (9.5). Thus, the force unbalance results in a velocity
change. {

Δχ̇

Δψ̇

}
= D−1

{
ΔF
ΔM

}
(9.5)

Using equation (9.6) the correction is used to define a new guess for a rotor velocity,
for which the oil film forces will counterbalance the external forces. This iterative pro-
cedure, using (9.1), (9.5) and (9.6), is repeated until the convergence criteria of (9.4)
is satisfied. {

χ̇

ψ̇

}
i

=

{
χ̇

ψ̇

}
i−1

− β

{
Δχ̇

Δψ̇

}
(9.6)

When convergence is achieved, the rotor velocity is used to step forward in time.
Equation (9.7) shows the most basic method of numerical integration, also called the
Euler method. {

χ
ψ

}
t=t1+Δt

=

{
χ
ψ

}
t=t1

+

{
Δχ̇

Δψ̇

}
Δt (9.7)

The Euler method is a method of first order, meaning that the local error pr. time
step is proportional to the square of the step size (Δt1+1).

For this work the Bogacki-Shampine method is implemented. The method is
adaptive and of third order, meaning that the local error is proportional to Δt3+1.
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Furthermore it possesses the first-same-as-last property, commonly denoted FSAL,
and therefore only requires three evaluations even though it consists of four stages, as
shown in the Butcher tableau of (9.8).

0
1/2 1/2
3/4 0 3/4
1 2/9 1/3 4/9

2/9 1/3 4/9
7/24 1/4 1/3 1/8

(9.8)

Using the Butcher tableau a time step n is calculated according to the procedure
of equation (9.9), here performing time integration for the function y (t).

k1 = ẏ (tn, yn)
k2 = ẏ (tn + 1/2Δt, yn + 1/2Δtk1)
k3 = ẏ (tn + 3/4Δt, yn + 3/4Δtk2)
yn+1 = yn + 2/9Δtk1 + 1/3Δtk2 + 4/9Δtk3
k4 = ẏ (tn +Δt, yn+1)
ỹn+1 = yn + 7/24Δtk1 + 1/4Δtk2 + 1/3Δtk3 + 1/8Δtk4

(9.9)

ỹn+1 is the third order approximation to the exact solution whereas yn+1 is of
second order. The difference of these two can be used to estimate the local error
and followingly adapt the step size in order to achieve a rapid solution while staying
within an acceptable margin of error eacc. Equation (9.10) shows how the step size is
adapted according to the local error estimate. β is an under-relaxation factor used to
ensure that the acceptable error is not exceeded. For this work β = 0.8 and eacc is set
to the least of 0.5 μm or 1/50’th of the minimum film thickness.

Δtn+1 = βΔtn

(
eacc

|ỹn+1 − yn+1|

) 1

3+1

(9.10)

If |ỹn+1 − yn+1| > eacc the solution must be discarded and recalculated using a
smaller step size. This is of course undesirable, since it is computationally heavy.
Therefore β is introduced.

The FSAL property of the Bogacki-Shampine method is achieved since the value
of k4 of step n equals k1 of step n+1 and thus only three evaluations are required per
time step.
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Chapter 10

Verification

The bearing system shown in figure 10.1 is used to verify critical parts of the bearing
model. The bearing system consists of a partial journal bearing supporting a long
slender shaft.

Structurally the lower surface of the bearing house and the far end of the shaft
is locked in all its DOF allowing the shaft to deform as a cantilever beam. Bearing
dimensions are given in table 10.1.

Figure 10.1: Partial journal bearing used for verification.

Figure 10.2 shows a magnification of the bearing end with the shaft in its deformed
state. The bearing surface is represented by 731 nodes forming 1356 elements.

The bearing elasticity is only included in the verification of the pressure compliance
matrix in section 10.4. For the remaining analyses, the bearing is considered infinitely
stiff.
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Bearing radius R 2.5 mm
Bearing length L 5 mm
Shaft length, from fixed end to center of bearing LRod 50 mm
Bearing circumferential extent 180 ◦

Modulus of elasticity E 200 GPa

Table 10.1: Bearing geometry

Figure 10.2: Magnification of partial bearing with shaft shown in its deformed state
and also highlighting the bearing area used for the elastohydrodynamic model.

10.1 Comparison with analytical solution for the

infinitely wide bearing

The numerical solution of Reynolds equation is compared with the infinite-width so-
lution of Reynolds equation shown in equation 10.1 [74]. For the corresponding coor-
dinate system, please see [74].

In order to obtain an infinitely wide journal bearing, the length of the bearing
shown in figure 10.1 is multiplied by 10 giving it a length of 50 mm. Hence the
diameter-to-length ratio is 0.1 and the circumferential pressure gradient will dominate
Reynolds equation. This allows the numerical solution to be compared with the
infinite-width solution of equation 10.1.
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p (θ) = −6μ
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)2(
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2

2 + ε2
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ω
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)
sin θ

)

.

(
1

1 + ε cos θ
+

1

(1 + ε cos θ)2

) (10.1)

Radial clearance Cr 20 μm
Journal position in x χx 10 μm
Journal position in y χy 0 μm
Journal velocity in x χ̇x 0 mm/s
Journal velocity in y χ̇y -1 mm/s
Rotational speed ω 100 rad/s
Viscosity μ 0.0185 Pas

Table 10.2: Operational parameters used for verification.

The operational parameters of table 10.2 are selected in order that the Poiseuille
and Couette terms of the flow equations are in the same order of magnitude.
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The numerical and analytical solution for the infinitely wide journal bearing are
shown in figure 10.3. It is seen that there is good correlation between the two solu-
tions over the complete bearing area except at the edges (z = ±L/2), where the axial
pressure gradients cannot be assumed insignificant. The maximum pressure of the
analytical solution is 1.36 � higher than the corresponding result using the numerical
solution.
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Figure 10.3: Numerical and analytical solution for long bearing

10.2 Comparison with analytical short width jour-

nal bearing theory

In this section the numerical solution of Reynolds equation is compared with the short-
width solution of Reynolds equation, also known as the Ocvirk solution, shown in
equation 10.2 [74]. In order to obtain a short-width bearing, the length of the bearing
shown in figure 10.1 is multiplied by 0.1 giving it a length of 0.5 mm. Hence the
diameter-to-length ratio is 10 and the axial pressure gradient will dominate Reynolds
equation. This allows the numerical solution to be compared with the short-width
solution shown in equation 10.2.
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(10.2)

Again the operational parameters listed in table 10.2 are used for the verification.
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Figure 10.4: Numerical and analytical solution for short bearing

The numerical and analytical solution for the short bearing are shown in fig-
ure 10.4. It is seen that there is good correlation between the two solutions over the
complete bearing area. The maximum pressure of the analytical solution is 2.16 %
higher than the corresponding result using the numerical solution.

10.3 Verification of flow calculations

10.3.1 Poiseuille term

In order to verify the implementation of the Poiseuille terms belonging to the flow
equations (5.12) and (5.13) the parameters of tables 10.1 and 10.2 are used with the
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following exception: χx = 0, χy = −10μm, χ̇x = 0, χ̇y = −1mm
s

and ω = 0. These
parameters result in the pressure profile shown in figure 10.5.

Since the rotational speed is zero, there is only Poiseuille driven flow and thus only
these parts of the flow equations are verified. Using the numerical model, the flow is
predicted to 24.1mm
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Figure 10.5: Numerical solution used for flow calculation and verification of its
Poiseuille term.

The numerical result can be compared to the journal travel velocity times the
projected area perpendicular to the journal’s travel direction. Using this approach
one obtains the result shown in equation (10.3).

Q = |2RLχ̇y|

=2 · 2.5mm · 5mm · 1
mm

s

=25.0
mm3

s

(10.3)

The numerical model underestimates the flow with 3.68 % compared to the simple
analytical approach.
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10.3.2 Couette term

The implementation of the Couette term of the flow equation (5.12) is verified using
the pressure distribution found using the parameters of tables 10.1 and 10.2 except
the journal velocity is set to zero: χ̇y = 0.

Using these parameters the journal center travel velocity is zero and thus there
must be flow balance of lubricant in and out of the bearing when considering both
the Poiseuille and Couette terms.

From the flow components of table 10.3 it is seen that there is an error in flow of
2.91 % when Couette flow into the bearing is defined as 100 %.

Flow component Flow mm3/s Percentage of positive Couette
Poiseuille - 11.9 63.7 %
Couette, negative part - 6.26 33.4 %
Couette, positive part 18.7 100 %
Error 0.544 2.91 %

Table 10.3: Flow components in and out of bearing lubricant volume. Positive is
defined as into the bearing volume.
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Figure 10.6: Numerical solution used for flow calculation and verification of its Couette
term.
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10.4 Verification of pressure compliance matrix

In order to verify the pressure compliance matrix L of equation (6.4) page 43 a pressure
of 10 MPa is applied to the bearing surface of the model shown in figure 10.1 giving
the deformation shown in 10.2. Using the pressure compliance matrix the deformation
at the midsection of the bearing is found to be 1.70 mm when only considering the
elasticity of the long slender beam.

For verification this result is compared with elementary beam theory. The defor-
mation at the end of a cantilever beam with a force at the free end is found using
equation (10.4) [75]. The resulting force F on the rod is replaced with the pressure
times projected area giving a force of 250 N.

d =
FL3

Rod

3EI
=

2RLpL3
Rod

3E πR4

4

=
2 · 2.5mm · 5mm · 10 N

mm2 · (50mm)3

3 · 200·103 N
mm2

π(2.5mm)4

4

=1.70mm

(10.4)

Using the same geometry and material parameters the deformation is found to be
identical to the result using the pressure compliance matrix: 1.70 mm. From this it is
concluded that the pressure compliance matrix is implemented correct.

This furthermore entails that the force stiffness matrix K is condensed correctly
from 3 DoF (x,y,x) to 1 DoF (film thickness direction). The correctness of the inte-
gration matrix A, which is used to transform to pressure compliance matrix, is also
verified during this procedure.



Chapter 11

Analysis of 5 DOF bearing

In this chapter the response of a bearing supporting 5 degrees of freedom is ana-
lyzed. Firstly, an analysis on system-level is performed examining the bearing’s over-
all steady-state response when exposed to a range of combined radial and moment
loads. Secondly, the most severe load-case is picked out for further analysis looking
into the individual pad behavior.

11.1 Bearing geometry

The bearing geometry is shown in figure 11.1 with main dimensions. Further geomet-
rical and operational parameters are given in table 11.1.

The generated mesh for establishing the super element representing rotor- and
stator-flexibility is shown in figure 11.2, displaying the rotor and stator individually
in (a) and (b) respectively. The surfaces which are used to constrain the structural
model are pointed out in figure 11.1.

Figure 11.2(c) shows an enlargement of the mesh on the pad surfaces which are
also used for the oil film model. Furthermore the radial flexure support is visible
between the two thrust pads.

Care is taken to obtain a mesh-density on the pad surfaces for the oil film model
that will allow for good oil film results without being too computational demanding.
Furthermore an extra fine mesh is employed for the flexure supports since the response
of these are of vital importance for the simulation output.

Table 11.2 shows the amount of nodes and elements used for the oil film and
structural models. As indicated by the table, 7,440 nodes are used for the oil film
model. This induces a super element of size 3 · 7, 440 × 3 · 7, 440 for both rotor and
stator since the structural model has 3 DOF whereas the oil film model only has 1.
This gives a total number of coefficients of 1.0 ·109 requiring 8 GB of memory to store.
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A-A

A A

Rear thrust pad (z<0)
Radial pad

Front thrust pad (z>0)

Stator ring

Rotor ring

Rotor ring
Stator ring

n20x5 flex support for all pads.
Located 53% from leading edge.

13°

22°

176
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z

Surface DOF locked
on this surface

Surface DOF locked
on this surface

Figure 11.1: Bearing with main dimensions, terminology and coordinate system. Note
that only half the bearing is shown.
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Axial clearance ca 75 μm
Radial clearance cr 75 μm
Journal radius RJ 420 mm
Radial pad radius Rp 421.075 mm
Leading edge chamfer dimensions - 5 x 5·10−3 mm
Flexure support diameter - 20 mm
Flexure support hight - 5 mm
Flexure support location from leading edge - 53 %
Lubricant viscosity grade - 320 ISO VG
Lubricant temperature T 50 ◦C
Lubricant viscosity μ 0.1716 Pas
Lubricant density ρ 854 kg/m3

Lubricant specific heat capacity cp 2000 J/kg/◦C
Rotational velocity ω 30 rpm
External force in x-direction Wx̄ 0 kN
External force in y-direction Wȳ -0.1 to -300 kN
External force in z-direction Wz̄ 0 kN
External moment about x-axis Gx̄ -0.1 to -500 kNm
External moment about y-axis Gȳ 0 kNm
Modulus of elasticity E 200 GPa
Poisson’s ratio ν 0.3 -

Table 11.1: Bearing parameters and operating conditions

Rotor flexibility Stator flexibility Oil film
Nodes 299,983 870,696 7,440

Elements 234,228 638,469 12,768

Table 11.2: Number of nodes and elements used for the models
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(a) Rotor (b) Stator

(c) Zoom on pads. The radial pad flex support is visible between the thrust pads

Figure 11.2: Meshed bearing
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11.2 Bearing response to radial loads and bending

moments

Firstly, the system response of the bearing is analyzed in section 11.2.1 after which
section 11.2.2 is devoted to showing the rotor position in the stator as a function of
the bearing load.

Since the external loads W&G are negative, the bearing reactions F&M are plot-
ted on the axes.

11.2.1 Oil film response on system level

Figure 11.3 shows the global minimum oil film thickness in the bearing as func-
tion of bearing reaction forces. In the unloaded part of the figure, Fȳ=0.1 kN and
Mx̄=0.1 kNm, the film thickness is close to that of the radial and thrust clearances
(67 μm vs. 75 μm).

The 90 ◦ bends of the isolines reveal that the response of the radial and axial pads
are not coupled strongly. One half of any of the isolines is governed by the radial pads
whereas the other half is governed by the thrust pads, with the transition lying at the
90 ◦ bend, where both the radial and thrust pad systems display identical minimum
film thicknesses.

This non-coupled nature shows on all system level figures. Even though the pad
response shows little signs of coupling when looking at the tribological parameters, the
axial and radial bearing elastic responses are still indirectly coupled by the supporting
structure.
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Figure 11.4 shows the global maximum pressure in the bearing. Again we see the
90 ◦ bends of the isolines. The isoline-bends for the pressure plot are not located at
the same loads as for the minimum film thickness isoline-bends. This induces that
for some loads, the minimum film thickness occurs in the radial pads whereas at the
same load, the maximum pressure is on the thrust pads.

The correlation between external load and maximum pressure is very linear telling
two things:

• the flexure supports work as intended, allowing the pads to adjust according to
operating conditions

• the deformations are not excessive, giving unfavorably pressure distributions.
This could be the case if, for example, the pad bodies where too flexible

However, if thermohydrodynamic modeling is included, this linear correlation will
cease to exist due to the strong temperature dependence on viscosity.

The maximum pressure of 36 MPa is in a range where care must be taken with
respect to material fatigue properties, if many load cycles of this magnitude are ex-
pected.
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Figure 11.4: Maximum pressure as function of bearing load. Isoline difference: 2 MPa

Figure 11.5 shows the maximum deformation in the bearing including the rigid
body motion that the pads undergo when the flexure supports deform. Again we
see a clear division between radial and thrust pads and also a very linear correlation
between deformation and external load.

Figure 11.6 shows the total viscous dissipation in the bearing. This parameter fits
very well with a plane for the entire load spectrum and does not exhibit the division
into radial and thrust regimes as seen previously.
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In order to calculate the coefficient of friction for the bearing equation (11.1) is
established and used for generating figure 11.7 which shows the COF as function of
external load. Values as low as 1.6·10−3 are obtained for the highest load case.

COF =
P/ω

|Mx|+ |FyR|
(11.1)
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11.2.2 Rotor position in stator

In this section the bearing rotor position in the stator is shown as function of the
bearing load in figures 11.8 to 11.12.

The figures show that the bearing displays very little cross-coupling between the
5 DOF. Only χy (figure 11.9) and ψx (figure 11.11), which are directly related to the
imposed loads Fȳ and Mx̄, show large variations across the load spectrum.

Again, the variations are close to linear except for the small changes the cross-
coupled reactions for χx (figure 11.8), χz (figure 11.10) and ψy (figure 11.12).

The unsymmetrical translation χz (figure 11.10), i.e. translation in axial direction,
is due to the unsymmetrical boundary conditions for the stiffness model where only
one side has its DOF locked (if neccesary, see figure 11.1 page 106 for illustration).
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Figure 11.9: Rotor position χy as function of bearing load. Isoline difference: 15 μm
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11.3 Analysis of single load case

This section is devoted to the steady state analysis of the most severe load case from
the previous study, i.e. a radial force in y-directionWȳ = -300 kN in combination with
a bending moment around the x-axis Gx̄ = -500 kNm.

First the system response is studied looking at the response of all 3× 12 pads and
finally a single thrust and a single radial pad is chosen further analysis.

11.3.1 System response

Pressure and film thickness profiles

In this section the pressure and film thickness profiles are shown for all pads in the
bearing. Emphasis is on the qualitative characteristics whereas a more quantitative
approach is used in the next section.

Figure 11.13 shows the pressure distribution for all pads in the bearing with a
maximum value of 36 MPa. It is clearly seen that the pressure build-up corresponds
to the external load comprised of a radial force in combination with a bending moment.
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Figure 11.14 shows the film thickness for the thrust pads. Is is seen how the rings
and pads have deformed in the loaded sections and thereby allowing more pads to
build up a pressure in the lubricant due to the low film thickness. This is also seen
for the radial pads in figure 11.15.

Usually for a conventional pivoted tilting pad bearing, the unloaded pads will also
build up and oil film pressure, although often negligible. This is not always the case for
the flexure supported pads because it takes a minimum force to facilitate the flexing
and achieve a converging lubricant film geometry allowing the pressure to build up
hydrodynamically.

Interestingly the the maximum film thickness for the thrust pads is 510 μm (for
the rear thrust pads) and when adding the film thickness of the corresponding pad
sitting on the front row (10 μm) it gives a total axial clearance of 520 μm. The total
axial clearance in the bearing’s undeformed state is 2 × 75 μm. Thus the flexibility
is responsible for up to 147 % extra axial clearance in the bearing. Radially the
flexibility adds 100 % extra clearance at the given load.

The original clearance of 75 μm in radial and axial direction in the undeformed
state seems small, but these values are justified because of the significant elastic
deformation of pads and supporting structure.
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Figure 11.14: Oil film thickness for thrust pads
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Individual pad operational parameters

In this section the bearing performance is analyzed through figures 11.16 to 11.18.
Each dot on the curves represents a discrete location, namely the combined pad pa-
rameter at that given location, and thus the lines connecting the dots do not represent
a continuous function. They merely connect the dots to allow for easier interpretation.

The resulting forces on the pads, corresponding to the pressures from figure 11.13,
are shown in figure 11.16(a).

For an infinitely stiff bearing the front thrust pads would show exactly the same
force distribution as the rear thrust pads. Due to the non-symmetric deformation there
is a small difference as seen in figure 11.16(a): the front row pads have a narrower
distribution and thus also higher peak values.
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Figure 11.16: Pad parameters for the individual pads

Figure 11.16(b) shows the minimum film thicknesses for the individual pads with
minimum values of 8.8 and 7.4 μm for the thrust and radial pads respectively.

Figure 11.17(a) shows the viscous dissipation for the individual pads. The total
loss is 3,072 W of which the 18 unloaded pads account for 352 W, i.e. a parasitic loss
of 11 %.
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Figure 11.17(b) shows the lubricant flow for the individual pads. The combined
flow for all pads is 24 l/min of which the 18 loaded pads account for just 4.0 l/min.
Since the unloaded pads do not carry any load, it is not strictly necessary to supply
the full amount of oil to these pads (assuming a spray bar or leading edge groove
lubrication system is used, where the lubrication of each individual pad is specified).
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Figure 11.17: Pad parameters for the individual pads

When lubricant properties, flow rate and viscous dissipation are known, the corre-
sponding temperature rise can be calculated assuming adiabatic boundary conditions
using equation (11.2). The equation is only valid for steady state conditions, where
the viscous loss and lubricant flow rate can be considered constant over time. If this is
not the case, the lubricant volume within the lubricant zone must also be considered,
since it acts as a heat sink.

ΔT =
P

qcpρ
(11.2)

The temperature rise, assuming adiabatic boundaries, is shown in figure 11.18. A
temperature rise of 57 ◦C is found for the hardest loaded pads. This shows that the
iso-viscous model cannot be expected to return reliable results even though the inlet
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temperature of 50 ◦C is set somewhat high. Preferably the model should be extended
to include the thermohydrodynamic-model proposed in section 7.
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Figure 11.18: Lubricant temperature rise for the individual pads assuming adiabatic
boundaries

11.3.2 Elastic behavior of thrust pad

In this section the elastic behavior of the hardest loaded rear thrust pad carrying
162 kN is analyzed. Since the film thickness and pressure profile is closely connected
to the deformation, these parameters are shown in figure 11.19.

Figure 11.19(a) shows the film thickness and interestingly the location of the flexure
support can be seen as a small curvature. The pressure profile of figure 11.19(b) shows
very high gradients at the trailing edge of the pad. This could lead to an error in the
calculated lubricant flow rate at this boundary, since this calculation is based directly
in the pressure gradients at the edges. The load carrying capacity, derived from the
pressure distribution, is not expected to be influenced in a significant extent.

Figure 11.20(a) shows the combined deformation of the rotor and stator (incl. the
pad) projected into the film thickness direction. Values up to 413 μm is observed.

In order to see how the pad itself deforms, excluding rigid body motions and
contributions from the supporting structure, a plane is fitted through the deformation
plot from figure 11.20(a) using the method of least-mean-squares. This plane is then
subtracted from the deformation values giving the values shown in figure 11.20(b).
It must be noted that the deformation still includes local contributions from both
rotor and stator. Positive deformation values induce larger film thickness due to
deformation.

Again the curvature arising from the extra stiffness just over the flexure support
is clearly visible. It is also seen that the pad deformation is not only due to bending,
since the deformation has a local maximum at the same location as the maximum
pressure and not at the edges. The bending is deemed to be on a moderate level
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and from this, and also the film thickness plot of figure 11.19(a), it is concluded that
the bad body is sufficiently stiff. This is also backed up by the linear nature seen on
figure 11.4, which displays the maximum pressure as function of bearing load.
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Figure 11.19: Hardest loaded rear thrust pad response
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Figure 11.20: Hardest loaded rear thrust pad response



126 Chapter 11. Analysis of 5 DOF bearing

11.3.3 Elastic behavior of radial pad

As for the thrust pad, the hardest loaded radial pad is examined. Figure 11.21 shows
the film thickness and corresponding pressure distribution. Cavitation is observed at
the trailing edge of the pad.

The film thickness has a saddle shape which is somewhat contra-intuitive since
one may expect that the bending would contribute most significantly. However, the
local compression is biggest giving large deformations corresponding to the pressure
profile. This is probably due to the low width of the radial pad (75 mm) compared
to the diameter of the flex support (20 mm). This only leaves 27.5 mm overhang on
each side of the flexure support.

At the applied load the angular position of the rotor ψx is -794 μrad c.f. fig-
ure 11.11. This corresponds to a difference in film thickness of 60 μm over the 75 mm
width of the radial pad. However, as seen on figure 11.21(a) there is no sign of edge
loading indicating that the flexure support works as intended.

The flex support location is not clearly visible on the deformation plot (figure 11.22(b)),
as for the thrust pad. It is possibly due to the narrower pad and lower pressure levels.
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Conclusion

The present thesis deals with numerical modeling of hydrodynamic bearings focus-
ing on the operational conditions of modern wind turbines. The unique operational
conditions for these are discussed as well as general design limits for hydrodynamic
bearings.

Elaborate work is done on developing numerical models capable of predicting the
behavior of hydrodynamic bearings under the conditions that apply for wind turbines.

The variational principle is applied to Reynolds equation, using the classical as-
sumptions, in order to establish the finite element equations that allow for calculation
of the oil film forces and cavitated regions. A model for the angular equilibrium po-
sition of tilting pads is established and implemented. Lund’s perturbation method is
applied in order to efficiently and accurately determine the dynamic coefficients of the
bearings.

The fluid film pressure model is coupled with an elastic deformation model for
the bearing solids giving an elastohydrodynamic model. Two different modeling ap-
proaches are investigated. The first model includes the local deformation of the liner
using a column model and can thus be used to study the effect of compliant liners.
The second, and much more comprehensive, model includes the full structure of a
bearing using state of the art industrial software to set up the matrix correlating force
and displacement. This model is then coupled with the film force model using the
Newton-Raphson iterative method. The, in this respect, essential Jacobian matrix is
derived using the Galerkin principle.

In order to study the heat transfer in the hydrodynamic bearings the energy equa-
tion is solved using the finite difference method. Four different energy models are
presented of which two include heat conduction through the journal. One model is
based on the radial temperature gradient whereas the other uses heat transfer coeffi-
cients to calculate the radial heat transfer. Furthermore a new model is presented for
the journal heat transfer, which enables calculation of the axial temperature variation
in the journal without extensive numerical efforts.

Finally the EHD model is extended into 5 DOF allowing for accurate simulations
of complex bearing systems. The presented approach, where the polar and cylindrical
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representation of Reynolds equation is solved simultaneously and coupled with elastic-
ity, is not seen before in the literature and therefore considered to be groundbreaking
within this field.

Furthermore a wear model, which omits the need of determining the contact forces,
is proposed and implemented.

A significant part of the present thesis is devoted to flexure bearings and through
several studies the flexure mechanism is proven to work well and new ways of taking
advantage of bearing flexibility are presented.

In the following sections the individual achievements of this work are presented.
Four of the studies are published as journal papers.

Application of a new wear model

The aim of this work is to develop a wear model which can be used for wear estimation
at thin lubricant films and at the same time be applicable for conventional EHD solvers
without requiring extensive modifications.

A model, where the wear is based on the local film thickness, is presented and
applied for a misaligned journal bearing. The predicted wear rate and pattern is
compared quantitatively with experimental findings and good correlation is found.

The advantage using this model is that there is no need for estimation of contact
pressure, which most wear models are based upon together with wear coefficients.
Instead, the proposed model directly links film thickness with wear rate and thus
indirectly includes the contact pressure and other influencing parameters in the ex-
perimentally obtained wear coefficients.

The wear model requires wear coefficients that correlate the wear rate with film
thickness. These must be obtained through experimental work. However, it is difficult
to measure the film thickness in the zone of mixed lubrication, especially if one sliding
part comprises a compliant polymer.

Discontinuity effects in dynamically loaded tilting pad journal bearings

Based on the HD model two discontinuity effects that can occur in dynamically loaded
tilting pad journal bearings are revealed and it is shown how the tilting pads in a
radial tilting pad bearing display two distinct equilibrium positions, of which only one
is stable.

The first discontinuity effect is related to a pressure build-up discontinuity and its
fundamental cause is the fact that the squeeze term can vary significantly along the
circumferential pad extent. Thus the squeeze term can cause cavitation at one end of
the pad while increasing pressure at the other end.

The other discontinuity effect is caused by contact between tilting pad and journal
and once this is included in the numerical model the discontinuity disappears. Thus
it is not a real physical phenomenon.

In order for the first discontinuity to appear two conditions are required:
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• the squeeze term must dominate the right-hand side of Reynolds equation. This
requires slow rotation in combination with large dynamic loads.

• the pad circumferential extent must be large, so that the influence from the shaft
center velocity on the squeeze term is different from leading edge to trailing edge
of the pad.

Compliant liners and their influence on dynamically loaded hydrodynamic

journal bearings

The influence of the liner stiffness on the dynamic response of a highly dynamically
loaded journal bearing is evaluated by varying the stiffness and comparing the re-
sponse using a soft EHD model. The hydrodynamic performance is evaluated on the
parameters that are traditionally used to evaluate hydrodynamic bearing designs: dy-
namic response, maximum pressure, minimum film thickness, wear, power loss and
temperature response.

The primary findings are that the maximum pressures are reduced significantly
and this comes at the expense of slightly higher eccentricity ratios during operation.

The influence of the geometrical design parameters and compliant liners

on a radial flexure pad

A hydrodynamic journal bearing utilizing flexure pads with a compliant liner is studied
and its performance is evaluated through a parametric study using the EHD model.
The main geometrical dimensions are varied and the effect on pad performance is
analyzed.

This has put more knowledge into the design and function of flexure pads. Guide-
lines are given to the design of the flexure pads, including the polymer liner.

It is found that the use of flexure pads is an attractive alternative to pivoted pads.
Pivot contact-related failure modes are eliminated and load capacity is not restricted
by the force that can be transferred through the pivot contact. When combined with
a polymer liner, the pad performance is enhanced further, especially when operating
at thin lubricant films.

Improvement of journal bearings operating at heavy misalignment using

flexure design and compliant liners

Misalignment is the root cause of many journal bearing failures and therefore a flexure
journal bearing design is proposed that improves the operational behavior of a journal
bearing operating at heavy misalignment. The design does not add extra components
or systems that require fine machining and can thus be categorized as inexpensive.
The design does however require extra space for the flexure web that may be difficult
to combine with some bearing applications.
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Using the TEHDmodel it is shown that the proposed flexure journal bearing design
effectively increases bearing performance when operating at high misalignments. The
performance at low or no misalignment is not affected.

Based on the predicted minimum film thicknesses the proposed flexure journal
bearing can operate at 3 times the misalignment compared to the stiff bearings. The
studied bearing has a width to diameter ratio of only 0.5 and the effects are expected
to be even more pronounced for bearings with higher ratios since these are more
sensitive to misalignment.

Furthermore the influence of a compliant bearing liner is investigated and a remark-
able increase in hydrodynamic performance is found when applied to the stiff bearing,
interestingly also at low or no misalignment. The positive influence is however not
seen on flexure bearings. The polymer liner does, however, still give the increased per-
formance at boundary or mixed lubrication, giving better wear properties and lower
friction. This comes with the side-effect of increased thermal insulation.

It is also shown that the traditional assumption of infinitely stiff journal and bear-
ing is not valid since a high deformation, several times the minimum film thickness,
is observed for the bearing configuration using a solid steel housing.

Analysis of a novel compact moment-carrying hydrodynamic bearing sup-

porting 5 DOF

A novel moment-carrying hydrodynamic bearing supporting 5 DOF is presented and
its hydrodynamic performance is studied using the EHD model.

The bearing performance is studied for a combination of radial forces and bending
moments. When studying the global behavior of the bearing system, i.e. maximum
and minimum values for parameters such as pressure and lubricant film thickness, the
radial and axial pads are found not to couple strongly. That is, for a region of the
applied loads, the hydrodynamic parameter is governed primarily by the radial load
or the bending moment.

A linear relationship is found between radial force and maximum pressure and
also between bending moment and maximum pressure. For the bearing configuration
investigated it is demonstrated that the pad deformations are not excessive giving
unfavorable pressure distributions. It is furthermore found that the flexure supports
work as intended allowing the pads to adjust according to the external loads.

This linear relationship can only be observed because the thermoelastohydrody-
namic model is not yet implemented for the 5 DOF bearing model. The effect of the
heat transfer and thermo-viscous effects will influence the results in a very nonlinear
manner, especially for the highest loads, where a temperature rise of 57 ◦C is found
assuming adiabatic boundary conditions.

As expected for a tilting pad bearing only little cross coupling is found between
the 5 DOF.

When studying a single load case the seemingly rigid bearing structure is found
to deform to a high degree, compared to the bearing clearance. The clearance is
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found to increase with 147 % axially and 100 % radially. This inevitably results in
correspondingly high rotor eccentricities in the stator, it does however also lead to a
high degree of load equalization between neighboring pads.

Recommendations for further work

In order for the presented 5 DOF bearing model to accurately describe the full op-
erational envelope of a hydrodynamic bearing, the thermoelastohydrodynamic model
must be expanded to cover 5 DOF.

Additionally it is recommended to extend the lubrication regime, at which the
multiphysics bearing model is valid, into the mixed lubrication regime. This includes
the effects at very thin films, where surface roughness affects the pressure build-up as
well as the influence on friction from asperity contacts.
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