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Abstract

In this report, we aim at establishing proper ways for model checking
the global security of distributed systems, which are designed consisting
of set of localised security policies that enforce specific issues about the
security expected.

The systems are formally specified following a syntax, defined in detail
in this report, and their behaviour is clearly established by the Seman-
tics, also defined in detail in this report. The systems include the formal
attachment of security policies into their locations, whose intended in-
teractions are trapped by the policies, aiming at taking access control
decisions of the system, and the Semantics also takes care of this.

Using the Semantics, a Labelled Transition System (LTS) can be in-
duced for every particular system, and over this LTS some model checking
tasks could be done. We identify how this LTS is indeed obtained, and
propose an alternative way of model checking the not-yet-induced LTS,
by using the system design directly. This may lead to over-approximation
thereby producing imprecise, though safe, results. We restrict ourselves
to finite systems, in the sake of being certain about the decidability of the
proposed method.

To illustrate the usefulness and validity of our proposal, we present
2 small case-study-like examples, where we show how the system can be
specified, which policies could be added to it, and how to decide if the
desired global security property is met.

Finally, an Appendix is given for digging deeply into how a tool for
automatically performing this task is being built, including some imple-
mentation issues. The tool takes advantage of the proposed method, and
given some system and some desired global security property, it safely (i.e.
without false positives) ensures satisfaction of it.
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1 Introduction

When developing distributed systems, security of the information travelling
throughout them plays an important role. One must take care of how the in-
formation can be accessed in order to meet certain confidentiality requirements.
If one can design such systems and formally prove that certain desired security
requirements are met by the system, then one has a point even before starting
with the implementation of the system itself.

The implementation of such distributed systems is then an issue, as it is
supposed to meet the requirements achieved during the specification phase.
However, if one can detect possible flaws as early in the development process
as possible, those flaws could be more easily overcome. Therefore, a proper
specification framework for dealing with security issues in distributed systems
is necessary, and as closest as possible the framework can be to a realistic imple-
mentation way, helps in keeping things simple while translating from the verified
specification to the actual implementation.

In this report, we present a framework with which it is possible to specify
distributed systems in a certain level of abstraction. The interactions among
the various locations of the system can be predicted and analysed. This allows
us to intercept them and perform access control decisions when they are about
to happen, in order to provide certain security features. For doing this, the
framework provides the possibility of specifying access control security policies
scattered among the various locations of the system, and then we aim at proving
certain global security properties that might be desirable, which are indeed
enforced thanks to the partial contribution done by the localised access control
policies.

For achieving this, the combination of the several involved security policies
in each possible interaction is needed, and there is a specific Logics that allows
us to perform this combination in a consistent way. This is presented in the
remainder of this Section.

Later, in Section 2 we present the framework for modelling the distributed
systems and their localised access control security policies. In Section 3 we
present the Logics for analysing global properties over the framework. In Sec-
tion 4 we introduce an alternative approach for performing the model checking,
making it faster than in the standard way of inducing the entire state space of
the system. We describe some case-study-like examples in Section 5, to provide
better insights on what the framework can be used for, and finally we conclude
in Section 6. Moreover, there is an extra in Appendix A, which presents the
implementation of a tool for performing the model checking.

1.1 A review of Belnap Logics

For granting access according to some security policy, the traditional boolean
values (tt and ff) are enough: tt grants while ff denies access. However, for a
distributed setting, where policies might be contradictory (or not sufficiently
informative), those two values might not be enough. We shall consider an
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Figure 1: The Belnap bilattice Four: ≤k and ≤t.

extension to the Boolean Logic proposed by Belnap [3], which has been used for
combining security policies [4].

In this extension to the boolean logic, two more values are considered: ⊥
and > (read “bottom” and “top”). The traditional tt would mean “the policy
accepts the interaction” whereas the traditional ff would mean “the policy does
not accept the interaction”. Since different locations might aim to different
security properties, their policies could be contradictory or they may lack infor-
mation about some particular interaction. These situations can be represented
by the two extra values that we have: ⊥ meaning “no decision” and > meaning
“contradiction”.

With this set of values, which we will call here Four (i.e. Four = {⊥, tt, ff,>}),
it is possible to extend the usual boolean operations (∧ and ∨) and to define
new ones (⊗ and ⊕). For obtaining that, the set Four is equipped with two
partial orderings, say ≤k and ≤t, as shown in Figure 1.

The usual boolean ∧ is extended as computing the greatest lower bound in
the ≤t lattice, and the usual ∨ as computing the least upper bound (thereby
obtaining the same results as in boolean logic in case the operands belong to {tt,
ff }). Analogously, the new operators over Four can be defined as computing
the greatest lower bound (the ⊗ operator) and the least upper bound (the ⊕
operator), both in the ≤k lattice.1

The negation operator ¬ is extended by leaving the two new values un-
changed (i.e. ¬⊥ = ⊥ and ¬> = >), and the implication ⇒ is extended as
follows:

p1 ⇒ p2 =

{
p2 if p1 ≤k tt
tt otherwise

∀p1, p2 ∈ Four

Another useful operator is the priority >, which returns the first operand unless
it is ⊥, in which case it returns the second operand. This would always consider

1Notice that this could also be done by just extending the “truth tables” of the usual
boolean operators and defining new ones for the new operators That would mean, however,
having not just 2 truth tables with 4 cells each but 4 truth tables with 16 cells each, making
difficult to remember for a human what each operator produces. Furthermore, it would also
make it difficult to assess the usefulness of new operators that might be defined.

3



what the first operand suggests unless it has no decision, in which case the
second operand is considered.

1.1.1 Power of Belnap Logic

As discussed in several places[4][8], Belnap Logic is enough for dealing with
conflicting policies, thereby is proper for our intended use of combining several
policies occurring in different locations of a distributed system.

The decision we shall take is that in order to allow an interaction, no policy
should recommend that the interaction should be denied, otherwise we just con-
sider the negative policy and deny the interaction. This follows a conservative
approach, commonly named as liberal, since an interaction is denied as long as
there is one policy that suggests so. The proper Belnap operator for combina-
tion of policies which could indeed be used for achieving this aim is ⊕. Below
this shall be clearer.

Another issue that is worth mentioning about Belnap Logic is that it is
not capable to express voting. Indeed, if one aims at some combination of
policies where no conservative approach (or some other approaches with which
Belnap Logic could cope) is taken, but some voting among the involved policies
is intended, aiming at taking the decision most of the policies agree on, then
Belnap Logics is not the right choice.

2 A language for distributed security policies

In this Section, a formal language for specifying distributed system is presented.
It is based on a subset of the Coordination [6] language KLAIM [9], and it follows
a Process Algebraic approach. Furthermore, the language, named AspectKBL,
has primitives for adding localised security policies [7] into the various locations
of the distributed system, aiming at providing access control [12] decisions based
on them.

We will present the AspectKBL language by giving its Syntax and Se-
mantics, and intuitively explaining what can be obtained by using them. The
security policies that can be attached to the locations follow also a formal Syn-
tax, which will of course be given as well, and moreover they are then considered
by the Semantics, as they are the ones that would either allow the system to
progress or not.

In the next Subsections, the Syntax and Semantics follow, and also a small
example of a distributed system.

2.1 Syntax

The syntax of AspectKBL is given in Tables 1 and 2, the former being the
way of describing basic system locations and the latter the way of describing
the attached security policies.

A system consists of a network which consists of a set of parallel locations,
each of which has either a process running or some data on it. A process is a

4



N ∈ Net N ::= N1 || N2 | l ::pol P | l ::pol 〈
−→
l 〉

P ∈ Proc P ::= P1 | P2 |
∑
i ai.Pi | ∗P

a ∈ Act a ::= out(
−→
` ) @ ` | in(

−→
`λ) @ ` | read(

−→
`λ) @ `

c ∈ Cap c ::= out | in | read
`, `λ ∈ Loc ` ::= u | l `λ ::= ` | !u

Table 1: AspectKBL Syntax – Nets, Processes, Actions and States.

pol ∈ Pol pol ::= asp | ¬pol | pol ⊕ pol | pol ⊗ pol | pol⇒ pol |
pol > pol | pol ∧ pol | pol ∨ pol | true | false

asp ∈ Asp asp ::= [rec if cut : cond]
cut ∈ Cut cut ::= ` :: at . X

at ∈ Actt at ::= out(
−→
`t ) @ ` | in(

−→
`tλ) @ ` | read(

−→
`tλ) @ `

rec ∈ Rec rec ::= `1 = `2 | ¬rec | rec⊕ rec | rec⊗ rec | rec ∧ rec |
rec ∨ rec | rec⇒ rec | true | false | a occurs-in X

cond ∈ Cond cond ::= `1 = `2 | ¬cond | cond1 ∧ cond2 | cond1 ∨ cond2 |
true | false | a occurs-in X

`t ::= ` | `tλ ::= `λ |

Table 2: AspectKBL Syntax - Aspects for Security Policies.

parallel composition of processes, a choice among a set of processes that follow
some action or a replicated process, meaning an arbitrary number of the same.
An action can be an out, which writes some data to the target location (the
one after the ‘@’ symbol), or it can be an in or a read, both of which gather
data from the target location, differing in that the former deletes the data from
the source whereas the latter does not. For notation purposes, we use the curly
` for unknown locations (although it will never be used for expressing actual
networks) and the italic l for fixed ones. u refers to variables that are bound
after reading from a target, and then if they are used for expressing actual
networks they will be bound at runtime. Non-determinism might be introduced
both by writing a choice among a set of processes and also by reading from a
target that contains several pieces of data (and binding a variable while doing
so).

Attached to each location of the system there is some security policy, which
can be either a four-valued Belnap Logic combination of policies or a single
aspect. This latter consists of some pointcut cut, which may at runtime trap
some of the interactions the location may be involved into. Furthermore, there
is a boolean applicability condition cond that determines for a given trapped
interaction whether the aspect should actually be applied. Finally, there is
a four-valued Belnap Logic advice rec (for recommendation) that tells if the
trapped interaction under the given condition should be actually allowed. The

5



a occurs-in (P1 | P2) = (a occurs-in P1) ∨ (a occurs-in P2)
a occurs-in (

∑
i ai.Pi) =

∨
i(a matches ai ∨ a occurs-in Pi)

a occurs-in (∗P ) = a occurs-in P

Table 3: Continuation analysis operator occurs-in.

N1 →lab N ′1

N1 || N2 →lab N ′1 || N2

N ≡M M →lab M ′ M ′ ≡ N ′

N →lab N ′

(ls ::pols read(
−→
`λ)@lt.P + · · · ) || (lt ::polt 〈

−→
l 〉)

→ls:r(
−→
l )@lt ls ::pols Pθ || lt ::polt 〈

−→
l 〉

if grant([[pols ⊕ polt]](ls :: read(
−→
`λ)@lt.P ))

and match(
−→
`λ;
−→
l ) = θ;

(ls ::pols in(
−→
`λ)@lt.P + · · · ) || (lt ::polt 〈

−→
l 〉)

→ls:i(
−→
l )@lt ls ::pols Pθ

if grant([[pols ⊕ polt]](ls :: in(
−→
`λ)@lt.P ))

and match(
−→
`λ;
−→
l ) = θ;

(ls ::pols out(
−→
l )@lt.P + · · · ) || (lt ::polt Q)

→ls:o(
−→
l )@lt ls ::pols P || lt ::polt 〈

−→
l 〉 || lt ::polt Q

if grant([[pols ⊕ polt]](ls :: out(
−→
l )@lt.P ));

Table 4: Reaction Semantics of AspectKBL .

operator occurs-in, used for analysing the future behaviour of the trapped
process, is defined in Table 3.

2.2 Semantics

The semantics is given by a reduction relation on nets whose rules are given in
Table 4. It makes use of a structural congruence relation on nets, consisting of
the usual congruence rules besides those given in Table 5. It also makes use of a
match operator, defined in Table 6, for matching input patterns to actual data.

The rules should be straightforwardly understood since they follow the tra-
ditional pattern for process calculi, in this case also considering the security
policies attached to the locations involved in the interaction. For this purpose,
each rule only defines a transition if the policies agree on allowing the interac-
tion to take place. That is the purpose of calling the auxiliary function grant(),

6



l ::pol P1 | P2 ≡ l ::pol P1 || l ::pol P2

l ::pol ∗P ≡ l ::pol P | ∗P
l ::pol P ≡ l ::pol P || l ::pol 0

N1 ≡ N2

N || N1 ≡ N || N2

Table 5: Structural Congruence.

match( !u,
−→
`λ ; l,

−→
l ) = [l/u] ◦match(

−→
`λ ;
−→
l )

match( l,
−→
`λ ; l,

−→
l ) = match(

−→
`λ ;
−→
l )

match( ε ; ε ) = id
match( · ; · ) = fail otherwise

Table 6: Matching Input Patterns to Data.

with the four-valued Belnap Logic combination of the involved policies and the
intended action, for turning the four-valued policies’ recommendations into an
actual boolean decision. This is to be further explained in the Subsection 2.3.

When the interaction is actually allowed by the policies, the data is either
written to the target location (if the action is an out) or gathered from there (if
the action is an in or read, deleting the data in the former case). In the case of
reading some data, the continuation process is substituted with it, according to
the result of the function match (if there is such result, otherwise the interaction
cannot take place). In the case of writing some data, the target location is
annotated with the security policy previously existent on it, that is why for the
interaction to take place some process running there must be pattern matched.

The syntax of the labels is given by l : c(
−→
l )@l, where c ∈ { r, i, o } (the set

of capabilities). This means that each transition will be labelled by the actual
parameter bound.

Finally, we may notice that the Semantics of Table 4 induces a Labelled Tran-
sition System (LTS). In such LTS, a denied operation (by the function grant())
does not occur at all. Indeed, the Semantics does not define any transition in
the LTS for a denied operation as there is no rule that might say so.

2.3 Granting access according to policies

In the reaction rules of Table 4, the process is either terminated (being replaced
by a 0) or continued (writing a data to some location or being substituted with
some read data), and this is done according to the result of the function grant().

The function is just a way to map a four-valued Belnap Logic result into a
boolean decision, to actually allow the interaction or not. The approach taken
is to map to tt in the cases where the four-valued parameter is tt ∈ Four or
⊥ ∈ Four. The former is obvious, while the latter aims to allow an interaction
that is not explicitly forbidden by any policy. If the four-valued parameter is

7



[[[rec if cut : cond]]](l :: a . P ) =
case check( extract(cut) ; extract(l :: a . P )) of

fail : ⊥

θ :

{
[((rec θ))] if [(cond θ)]
⊥ if ¬[(cond θ)]


[[¬pol]](N) = ¬([[pol]](N))
[[pol1 φ pol2]](N) = ([[pol1]](N)) φ ([[pol2]](N)), (φ ∈ {⊕,⊗,⇒, >,∧,∨})
[[true]](N) = tt
[[false]](N) = ff

Table 7: Meaning of Policies in Pol for AspectKBL.

either ff ∈ Four or > ∈ Four, the result of the function grant() will be ff, thereby
denying the interaction as long as there is some policy that suggests so. This is
inlined with the already-mentioned liberal approach, and that is also why the
operator used for combining the policies coming from the source and from the
target location in all the rules of Table 4 is the operator ⊕. The definition of
the grant() function in terms of four-valued Belnap Logic operand is:

grant(f) = f ≤k tt.

Moreover, in the reaction rules of Table 4, the function grant() is called
with an argument equal to the combination of the involved policies and also
the intended action, whose result will be produced according to Table 7. The
combination of the policies is done using the four-valued Belnap Logic operator
⊕, and this aims to produce a value in the set {>, ff} as long as some of the
policies belongs to that very same set. This follows the same principle discussed
in the previous paragraph, denying access as long as some policy suggests so.
The intended action is also passed and the purpose is to check whether the
involved policies actually trap that action (preformed by the function check and
extract, explained below), and that the applicability condition is met, otherwise
the action should not be denied (this is achieved due to the ⊥ returned by [[.]]).

The function check determines whether there is a substitution θ that can be
performed in the cut that matches the given argument, and it could be straight-
forwardly defined by induction on its arguments. The function extract facilitates
function check’s task by producing the list of literals that occur in a given syntac-
tic construction in a way that, for instance, extract(` :: out(`t1, · · · , `tn)@`′.X) =
[`,out, `t1, · · · , `tn, `′, X], which is done by just pattern matching the components
of the given parameter and then pushing them into a list.

2.4 Example of network

Let us discuss a tiny example to understand how it is written, and how the
Semantics makes it evolve.

8



2.4.1 Syntactic description

Assume that in a given Hospital we have a Health Care System where there is
a centralised data base, named EHDB (for Electronic Health Data Base), with
some information about some patients. In this case, let us assume there is one
tuple (piece of data) regarding Alice, and that the tuple specifies a given Care
Plan for her. Besides, there is another tuple regarding Bob, and it is related
to some Private Notes some Doctor might have taken about him. This can be
written in AspectKBL as follows:

NetData =
EHDB ::polEHDB< Alice, CarePlan, alicetext >||
EHDB ::polEHDB< Bob, PrivateNotes, bobtext >

Note that, according to the syntax, although both tuples are in the same lo-
cation, it must be written explicitly both times, since there is no Structural
Congruence equivalence that allows to write it just once (as, for instance, the
first equivalence in Table 5 for Processes). Note also, that each of the occur-
rences of the location has a security policy polEHDB attached. Let us discuss
later how to define the policy.

Assume now that there is also another location with information about the
staff of the Hospital, which could be defined in the following way:

NetRoles =
ROLES ::polROLE< Doctor, Hansen >||
ROLES ::polROLE< Nurse, Olsen >

Now, assume that both employees have some location, and there is a Process
running on each of them. The Doctor Hansen might try to read patient Bob’s
information, and then leak it to the Nurse Olsen. On her side, Nurse Olsen
might also try to read Bob’s information directly. This could be defined as
follows:

NetHansen =
Hansen ::poldefaultDr

read(Bob, PrivateNotes, !content)@EHDB.
out(Bob, PrivateNotes, content)@Olsen.
0

NetOlsen =
Olsen ::true

read(Bob, PrivateNotes, !content)@EHDB.
0

Finally, the entire network could be defined using the previous definitions as
follows:

NetData || NetRoles || NetHansen || NetOlsen (1)

Now, let us assume for the moment that there is no policy at all attached to
any location (or, strictly speaking, there is a trivial policy, that always allows

9



any interaction). According to what he have written, this could be directly
obtained by defining:

polEHDB = polROLE = poldefaultDr = true

2.4.2 Semantics evolving

Given the network for the Hospital we could obtain, for instance, the following
possible path the network might follow, according to the Semantics:

NetData || NetRoles || NetHansen || NetOlsen
→Hansen:r(Bob, PrivateNotes, bobtext)@EHDB

NetData || NetRoles || NetOlsen ||
Hansen ::poldefaultDr out(Bob, PrivateNotes, bobtext)@Olsen.0

→Hansen:o(Bob, PrivateNotes, bobtext)@Olsen

NetData || NetRoles || NetOlsen ||
Hansen ::poldefaultDr 0 ||
Olsen ::true< Bob, PrivateNotes, bobtext >

→Olsen:r(Bob, PrivateNotes, bobtext)@Olsen

NetData || NetRoles || Olsen ::true 0 ||
Hansen ::poldefaultDr 0 ||
Olsen ::true< Bob, PrivateNotes, bobtext >

That is the path that is followed in case of both actions from the process
in location Hansen take place before the only action in location Olsen. Other
two paths are possible if the interleaving of the actions is different:

NetData || NetRoles || NetHansen || NetOlsen
→Hansen:r(Bob, PrivateNotes, bobtext)@EHDB

NetData || NetRoles || NetOlsen ||
Hansen ::poldefaultDr out(Bob, PrivateNotes, bobtext)@Olsen.0

→Olsen:r(Bob, PrivateNotes, bobtext)@Olsen

NetData || NetRoles || Olsen ::true 0 ||
Hansen ::poldefaultDr out(Bob, PrivateNotes, bobtext)@Olsen.0

→Hansen:o(Bob, PrivateNotes, bobtext)@Olsen

NetData || NetRoles || Olsen ::true 0 ||
Hansen ::poldefaultDr 0 ||
Olsen ::true< Bob, PrivateNotes, bobtext >

10



and

NetData || NetRoles || NetHansen || NetOlsen
→Olsen:r(Bob, PrivateNotes, bobtext)@Olsen

NetData || NetRoles || NetHansen || Olsen ::true 0
→Hansen:r(Bob, PrivateNotes, bobtext)@EHDB

NetData || NetRoles || Olsen ::true 0 ||
Hansen ::poldefaultDr out(Bob, PrivateNotes, bobtext)@Olsen.0

→Hansen:o(Bob, PrivateNotes, bobtext)@Olsen

NetData || NetRoles || Olsen ::true 0 ||
Hansen ::poldefaultDr 0 ||
Olsen ::true< Bob, PrivateNotes, bobtext >

These three paths are those occurring in the LTS induced by the Semantics of
AspectKBL. In more complex networks, the LTS will be much more complex,
consisting of many more paths, and much longer.

2.4.3 With policies

Now, let us assume we do not want that Private Notes from any patient can be
obtained by any Nurse, nor even given to them by any Doctor. Then, we could
replace the trivial access control security policies that we put in the location for
the following ones:

polEHDB =

 test(Doctor,#u)@ROLES
if #u :: read(−, PrivateNotes,−)@EHDB :

true



poldefaultDr =

 test(Doctor,#target)@ROLES
if #u :: out(−, PrivateNotes,−)@#target :

¬(#target = EHDB)


The first policy is the one attached to location EHDB, and it will avoid

actions such as the one in the process of location Olsen. The second policy is
the one attached to location Hansen (and it could besides be attached to any
other location that represents a Doctor), and it will avoid actions such as the
second one in the process of location Hansen. Indeed, now the only possible
path in the LTS induced by the Semantics would be:

NetData || NetRoles || NetHansen || NetOlsen
→Hansen:r(Bob, PrivateNotes, bobtext)@EHDB

NetData || NetRoles || NetOlsen ||
Hansen ::poldefaultDr out(Bob, PrivateNotes, bobtext)@Olsen.0

From that network state, there is no possible transition according to the
Semantics. Indeed, if the policies were not there, there would be 2 possible
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actions that could execute, corresponding to the first two paths shown in Sub-
subsection 2.4.2. Ergo, the resulting LTS obtained when a network also consists
of some security policies, could be interpreted as a kind of “pruned” LTS.

We could make the example a bit more complex by adding for instance a
location Administrator with a process that will change the position of employee
Olsen, like this:

NetUpgradeOlsen =
Administrator ::true

in(Nurse, Olsen)@ROLES.
out(Doctor, Olsen)@ROLES.
0

and by re-defining the entire network to be:

NetData || NetRoles || NetHansen || NetOlsen || NetUpgradeOlsen

Now, according to the specific interleaving taken, if that action is executed
before the actions that would be denied in the previous case, then the policies
would allow them, otherwise they will still be denied. For avoiding “hackers”
to make such change in the ROLES database, we could re-define the following
policy:

polROLES = polROLES1 ⊕ polROLES2
where

polROLES1 =

 #u = Administrator
if #u :: in(−,−)@ROLES :

true


and

polROLES2 =

 #u = Administrator
if #u :: out(−,−)@ROLES :

true



2.5 Generic “pruned” LTS

In the previous Subsection we have seen a tiny example of how an LTS is induced
by the Semantics, and we have noticed that if a network contains security policies
then the induced LTS could be understood as a kind of “pruned” LTS, with
shorter paths and perhaps fewer ones. Certainly, this pruned LTS is the actual
one induced by the Semantics, so in the general case we could think that we are
in a situation like the one in Figure 2:

Then, the LTS that would be induced if no security policies is different than
the trivial one, is the outermost. However, the actual LTS we must be dealing
with is the innermost, because the actions that might have happened in the
“border” are those that are actually denied by some policy.

12



Figure 2: Generic pruned LTS.

3 A Logics for analysing Global Properties

Having defined the language for describing networks and localised security poli-
cies over them, we shall proceed on devising a technique for analysing the net-
works actually described using this language.

What we expect to have is a Logics for expressing the desired global security
property of our network, and a way to check if the property is actually met by
the network, considering the existing localised policies that we have attached.
We approach the problem by defining a variant of the temporal logics ACTL
[11] giving its syntax and semantics, and then we observe some properties useful
for the later model checking of it.

3.1 Defining the Logics

We expect to describe useful desired global security properties, so let us assess
what exactly might be a useful property to be described. As for global, what we
need to establish is something that happens always, the system should always
be secure in the sense of the property we might expect. As for security, what
we need to establish is something that happens whenever some security threat
might arise, the system should never actually fall into the threat thereby moving
into an insecure state.

In a process calculi as the one we are dealing with, the interactions among
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locations are those that need to be monitored and controlled, and in particu-
lar when they happen some information may go from one location to another.
Therefore, what we need to check and assess as possible threats are the move-
ments of information that might not be desired. In such cases, we need to assure
that the state reached after the interaction is secure.

Having said that, it shall be straightforward to realise that we need to trap
all the possible interactions that are of our interest, and whenever they take
place we need to check the states just before and just after the interaction, to
see whether the interaction is leading to some insecure state. With this, the
logic formula that naturally arises is the traditional AG, in our case annotated
with some set of transitions, thereby converting our Logics in a variant of ACTL
as already mentioned.

Moreover, the problem of properly characterising what security properties
can indeed be enforced at runtime by access control methods has been dealt
with by Schneider [13], and certainly they come up with the conclusion that
safety [1] properties are the answer. Then, as safety properties are those related
with the G modality of LTL and the AG one in CTL [2], our assessment of the
previous paragraph makes even more sense.

3.1.1 Syntax

The formal syntax of our Logic is given in Table 8. We shall express an obligation
(something we want the network to satisfy) as an AG formula, meaning we want
the property to be satisfied always, and in all possible paths the system might
run into; this clearly enforces security. As a subscript to the formula, some set
of transitions is to be given. The target of the transition must be a constant net,
which is a restriction that will be later understood, but it is still useful as we
will in general be willing to ensure security properties of databases or so. The
idea is that some of the transitions in the running network might be trapped by
the set of transitions given in this subscript, and in those cases the states related
by the transition are to be analysed. The network states relating the transition
are then analysed by checking the Pred expressed in the formula, which can be
a combination of smaller state predicates or the simplest ones comparing two
values or testing the occurrence of some value in some location. For this last
issue, the location that must be tested may be the one just before the transition
(if no prime symbol is added) or the one just after the transition (if the prime
symbol –′– is added).

3.1.2 Semantics

The formal semantics of the Logics is divided into three satisfaction relations,
one for each of the syntactic categories (Obligations, Predicates and Ba-
sicPredicates) defined in Table 8. The first satisfaction relation gives seman-
tics for the obligation formula and it is given in Table 9. It basically checks that
in every path, when it is possible to substitute the cut of the obligation thereby
matching the label of the path’s last transition, then the pair of nets that are
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Obl ∈ Obligations Obl ::= AG{labs}Pred

labs ∈ Lab labs ::= `(ws) : c(
−→
`t ) @ ` (wt)

c ∈ Cap c ::= o | i | r

Pred ∈ Predicates Pred ::= true | false | ¬Pred | Pred ∨ Pred
| Pred ∧ Pred | ∀x : Pred | ∃x : Pred | bp

bp ∈ BasicPredicates bp ::= `a = `b | test(
−→
`a)@`b | test′(

−→
`a)@`b | Γ1 ≥ Γ2

Γ ∈ L Γ ::= x | γ

Table 8: ACTLv Syntax – How to express obligations.

N0 |=Obl AG{cut}Pred
iff
∀ paths N0 →∗ Ni →ls:c(l)@lt Ni+1 :

(∀θ : cut θ = ls : c(l)@lt ⇒ (Ni, Ni+1) |=θ
Pr Pred)

Table 9: ACTLv Semantics – Satisfaction relation |=Obl.

connected by that transition satisfy the given predicate.
The satisfaction relation |=Pr is defined in Table 10. The rules should be

straightforward, the only detail that shall be explained is in the three last rules.
For the last one, if the predicate is a basic one, then the satisfaction relation
|=bp is used. For the previous two, we have to make an extra substitution in
the predicate for evaluating it, and the values that we might take are all those
that occur in the involved nets, and for that purpose the auxiliary function Loc
is defined in the same table.

The satisfaction relation for basic predicates |=bp is given in Table 11. The
rules are straightforward, checking the equality in one case, and interpreting the
test in the other two, distinguishing whether the test aims to check the net
just before or just after the transition. In the three cases, the substitution is
actually performed while checking the corresponding condition.

The way how the test is interpreted depends on the structure of the net,
and its structural inductive definition is given in Table 12.

3.1.3 An example

Continuing with our example of Section 2.4, we could decide to establish some
global property we want the network to satisfy. We should be writing the
property following the Syntax of our just-defined ACTLv Logics. The aim is
that our property is met by the given network.

As discussed in Subsubsection 2.4.3, we may aim at not allowing any Nurse
to get access any Private Notes from any patient. We should then have some
property that traps the transitions that could lead to such an “insecure” state.
Clearly, in the LTS induced by the Semantics of AspectKBL, the transitions
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(N1, N2) |=θ
Pr true iff tt

(N1, N2) |=θ
Pr false iff ff

(N1, N2) |=θ
Pr ¬Pred iff (N1, N2) 6|=θ

Pr Pred
(N1, N2) |=θ

Pr Pred1 ∨ Pred2 iff (N1, N2) |=θ
Pr Pred1 ∨ (N1, N2) |=θ

Pr Pred1
(N1, N2) |=θ

Pr Pred1 ∧ Pred2 iff (N1, N2) |=θ
Pr Pred1 ∧ (N1, N2) |=θ

Pr Pred1

(N1, N2) |=θ
Pr ∀x : Pred iff ∀l ∈ Loc(N1) ∪ Loc(N2) : (N1, N2) |=θ[l/x]

Pr Pred

(N1, N2) |=θ
Pr ∃x : Pred iff ∃l ∈ Loc(N1) ∪ Loc(N2) : (N1, N2) |=θ[l/x]

Pr Pred
(N1, N2) |=θ

Pr bp iff (N1, N2) |=θ
bp bp

Loc(l1 :: 〈
−→
l2 〉) = {l1} ∪ V ec(

−→
l2 )

Loc(ls :: a(
−→
ld )@lt.P ) = {ls, lt} ∪ V ec(

−→
ld ) ∪ Loc(P )

Loc(N1 || N2) = Loc(N1) ∪ Loc(N2)

V ec(α,
−→
α′) = {α} ∪ V ec(

−→
α′)

V ec(ε) = ∅

Table 10: ACTLv Semantics – Satisfaction relation |=Pr and auxiliary functions
Loc and V ec.

(N1, N2) |=θ
bp `a = `b iff (`aθ) = (`bθ)

(N1, N2) |=θ
bp test(`a)@`b iff [(test(`aθ)@(`bθ), N1)]

(N1, N2) |=θ
bp test′(`a)@`b iff [(test(`aθ)@(`bθ), N2)]

(N1, N2) |=θ
bp Γ1 ≥ Γ2 iff (Γ1θ) ≥ (Γ1θ)

Table 11: ACTLv Semantics – Satisfaction relation |=bp.

that could lead to such state are both if a Nurse reads the data directly or if
they are given the data by some Doctor. Therefore, we will have to express two
separate global properties, one capturing one case and another for the other
case. Informally, we could express that by “any read of Private Notes should
be only done by a Doctor” and “any out of Private Notes should not be done
to a Nurse’s location”. Formally, we have to follow our syntactic conventions,
thereby writing the following:

AG{$u:r(−,PrivateNotes,−)@EHDB}test(Doctor, $u)@ROLES (2)

and
AG{$u:o(−,PrivateNotes,−)@Olsen}test(Doctor, Olsen)@ROLES (3)

Equation 2 formalises the first informal property, but restricting to the
database where the data might be (due to our syntactic restriction that the
target location must be a constant). In Equation 3 the restriction is a bit less
practical, but still necessary due to our formal language. We need to specify
which is the target location we are talking about, and in this case we would
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[(test(
−→
l1 )@l2, N1 || N2 )] = [(test(

−→
l1 )@l2, N1)] ∨ [(test(

−→
l1 )@l2, N2)]

[(test(
−→
l1 )@l2, l ::pol P )] = ff

[(test(
−→
l1 )@l2, l3 ::pol 〈

−→
l4 〉 )] = (l2 = l3 ∧

−→
l1 =

−→
l4 )

Table 12: ACTLv Semantics – Interpretation of test.

need to write one specific global property for each location that we suspect it
might be a Nurse in our network. In our case, we do that with just location
Olsen.

Later, we will be trying to automatically check if these (and other) properties
hold in our network, and also in some other more complex ones.

3.2 Structural Congruent nets produce same results

One expected property of the Semantics defined in the previous Subsection is
that if it is given two different AspectKBL networks, but which are actually
structurally congruent, then the result should be the same. Indeed, otherwise it
would mean that the result depends on how the network is described and not on
which components it has, which in the end are the ones that make the network
run. In this Subsection we establish a lemma about this issue.

Lemma 3.1 All the following rules hold:

N1 ≡ N2

N1 |=Obl Obl ⇐⇒ N2 |=Obl Obl
[StrC1]

N1 ≡ N2 ∧M1 ≡M2

(N1,M1) |=θ
Pr Pred ⇐⇒ (N2,M2) |=θ

Pr Pred
[StrC2]

N1 ≡ N2 ∧M1 ≡M2

(N1,M1) |=θ
bp bp ⇐⇒ (N2,M2) |=θ

bp bp
[StrC3]

N1 ≡ N2

[(test(
−→
l1 )@l2, N1)] ⇐⇒ [(test(

−→
l1 )@l2, N2)]

[StrC4]

Proof: We shall only prove the rule [StrC4], the other proofs follow the same
fashion. For proving this rule, the definitions that we might use are those in
Table 12, let’s call them respectively (a), (b) and (c) just for the purposes of
this proof.

AssumingN1 ≡ N2, we have to prove [(test(
−→
l1 )@l2, N1)] = [(test(

−→
l1 )@l2, N2)].

The proof is by induction on how ≡ is obtained. We have four cases (three base-
and one inductive-), according to Table 5.
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Case N1 = l ::pol P1 | P2 and N2 = l ::pol P1 || l ::pol P2

[(test(
−→
l1 )@l2, l ::pol P1 | P2)]

= [by (b)]
ff
= [boolean logic]
ff ∨ ff
= [by (b) twice]

[(test(
−→
l1 )@l2, l ::pol P1)] ∨ [(test(

−→
l1 )@l2, l ::pol P2)]

= [by (a)]

[(test(
−→
l1 )@l2, l ::pol P1 || l ::pol P2)]

Case l ::pol P and l ::pol P || l ::pol 0
Analogous before since 0 is a process.

Case N1 = l ::pol ∗P and l ::pol P | ∗P
Even more trivially since no application of (a) is needed.

Inductive case: N1 = N || Na and N2 = N || Nb
From the induction hypothesis we have that [(test(

−→
l1 )@l2, Na)] = [(test(

−→
l1 )@l2, Nb)].

[(test(
−→
l1 )@l2, N || Na)]

= [by (a)]

[(test(
−→
l1 )@l2, N)] ∨ [(test(

−→
l1 )@l2, Na)]

= [by Induction Hypthesis]

[(test(
−→
l1 )@l2, N)] ∨ [(test(

−→
l1 )@l2, Nb)]

= [by (a)]

[(test(
−→
l1 )@l2, N || Nb)]

�
Given that two congruent nets produce the same result when checking an

ACTLv formula over them, we could rely on this to automatically check a given
formula in any net that is structurally congruent to the one we are supposed
to check. This gives the idea of single-representative for structurally congruent
nets, and helps in choosing the one that fits better for an automatic checking.
Indeed, when later we will be doing the automatic checking of the satisfaction
formula, we will often be analysing some net equivalent to the given one.

3.3 Interpretation of the Semantics over an LTS

As observed in Section 2, the Semantics of the AspectKBL language induces an
LTS, and over such a structure it is possible to interpret the ACTLv Semantics
from Subsection 3.1.

Now, if one could check that for all paths, it is always the case that, whenever
some transition over that path is done and whose label matches the cut of an
ACTLv obligation then the predicate is satisfied in the reached state; then one
would be verifying the formula.
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However, since our AspectKBL language is Turing-complete[10], the paths
might be infinite, and so the breadth of the path tree. Although there are some
results that show that for certain subclasses of LTS’s the problem is decidable
[5][2], we do not want to risk falling in a different subclass. Indeed, in [5]
it is also shown that, for instance, Branching Time Logics without EG (and
therefore AF ) operator (a similar one to our ACTLv) is undecidable for Petri
Nets, although it is decidable for some subclasses of Petri Nets, including BPP
(Basic Parallel Processes).

3.3.1 Decision taken to overcome the decidability issues

For the moment, we shall concentrate in finite AspectKBL networks, and for
achieving that we syntactically rule out any network that contains the replica-
tion operator ∗. This will of course limit our expressive power, but will at least
give us the certainty that any network that is insecure in the sense of the ACTLv
obligation we aim will be detected. Moreover, if some network is detected to be
insecure, even without having any replication operator, then any extension of
that network which includes some replication operators is also insecure.

3.3.2 Interpreting our example

In Subsubsection 3.1.3 we have two examples of global properties that would
be interesting to satisfy by a given network. If we take the network defined in
Subsubsection 2.4.1 and interpret the Semantics of Table 9 over the LTS induced
by the network, then we will see that the network does not actually satisfy the
property.

However, if we take the network of Subsubsection 2.4.3, that was slightly
modified by adding some security policies to some of the locations, and then we
again interpret the Semantics of Table 9 over the LTS induced by the network,
then we will see that the network does satisfy the property.

In the next Section, we will be assessing another way of checking this, without
having to induce the whole LTS for deciding whether a given network satisfies
a given property, as this would involve, for more complex networks (and in the
general case), exponential time due to the state explosion problem.

4 An alternative approach to model checking

It is widely known that Model Checking suffers from the state explosion problem.
Several approaches have been taken for overcoming this limitation, some based
on abstractions of the state space, and some based on combination with other
system assessing techniques such as static analysis.

In this Section, we propose an alternative approach, which works for our
AspectKBL language, in which we avoid to explore the entire state space
of the induced LTS while performing the model checking, by relying on some
features of our language. We will be model checking AspectKBL networks not
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by inducing the entire LTS but by looking at the network definition, directly in
the AspectKBL syntax.

We first informally introduce our approach (in Subsection 4.1) and then
formalise how we do it (in Subsection 4.2). Finally, an example is described (in
Subsection 4.3).

4.1 Model checking by inspecting each single action

We know that the LTS induced by our AspectKBL network could be properly
model checked following the traditional way. But we also know that this LTS
depends directly on the specific network we have at hand. Moreover, the network
is governed by some security policies attached to each location, and indeed those
security policies never change during the runtime of the network, and this is
actually ensured by the Semantics of Table 4. This is indeed a key point for the
approach we shall take in this work. Certainly, since the policies never change
during runtime, we may rely on them to be the ones that will in the end either
allow or deny the actions to happen. This is indeed a key concept that helps us
propose this alternative approach to model checking.

Over-approximation Our approach is to over-approximate the behaviour of
the runtime network, with which it is possible to model check in a very fast
way. We shall interpret the Semantics of the ACTLv formula statically, by
looking directly to the AspectKBL network instead of to the LTS induced by
it. The actions defined in each process are the basic concept, and this over-
approximation allows us to check each and every action just once, instead of
checking it in every path it may occur. Indeed, as whenever an action is matched
by the cut of the ACTLv obligation then the predicate of the obligation must
be tt, instead of checking the action considering the path in which it occurs we
can just check the action by itself, relying that it will certainly be governed by
some security policies, which will not change during runtime so we could know
them, and the possible decisions of them, beforehand. Therefore, if the Belnap
recommendation of the security policies that govern a given action implies the
intended predicate, we can safely certify the security of the given action.

Moreover, if one recalls how an LTS is induced from a given AspectKBL
network, it is straightforward that the security policies are directly involved
on how the Semantics influence the induction of every path. From there, one
could interpret the Semantics of ACTLv after every path has been obtained.
Therefore, we could think on an “order” on how the operations take part, or
how are they stepwise. Indeed, the security policies are considered first, and
then the global property should be interpreted over the resulting LTS. Since
our approach will consider each action just once, and since the policies that
govern such action are fixed at runtime, we could rely on them to know whether
the action will be allowed or not. The procedure then changes slightly. Instead
of inducing the LTS already considering the aspects, and then having just to
check the relevant transitions against the global property, here we take each
action exactly once, although in some cases it might be granted and in some
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it may not, and although the actual values bound to the occurring variables
might change dramatically. Indeed, what we have now is a more general (and
over-approximate) way of checking each action. However, the actions are still
governed by some aspects of security policies, which will be those that in the
end will either grant or deny the action.

Actually, and since the action might contain a variable as target, we may
need to ground that variable first, so we could count on a given set of policies
(the ones coming from the source of the action, which is known because it is
taken from the description of the network, and the ones coming from the target,
which after grounding the variable is also known).

Determining involved policies The process of grounding the target, if it
is indeed a variable, is done by inverting the order in which the operations
mentioned in the previous paragraph take part. Taking into account that in
the cut of an ACTLv Obligation the target must be a constant (restricted by
the Syntax of Table 8), if we first check whether the action might be trapped
by the cut then we could proceed by considering the action, otherwise we can
safely (and trivially) certify the security of the action, since it is not relevant
for our purposes. If the action is relevant, and since the target in the cut is
a constant, we may safely assume that the action will be relevant only in case
the target variable is ground to the specific constant value occurring in the
cut. To illustrate, assume the action is l1 :: read(x)@y and the cut of the
global property is $x :: read($y)@l2. The action could occur in the induced
LTS with the variables x and y bound to various different values, for instance
l1 :: read(l1)@l1, l1 :: read(l2)@l3, l1 :: read(l2)@l1, l1 :: read(l3)@l3, etc.
However, only those occurrences that have the value of variable y equal to l2 are
relevant for the global property, for instance l1 :: read(l1)@l2, l1 :: read(l2)@l2,
l1 :: read(l3)@l2, etc.

Indeed, some other variables occurring either in the action or in the cut may
also be ground during this matching, and only then we start assessing whether
the resulting (possibly completely grounded) action might be allowed or not by
the (fixed) security policies.

In future work, we may relax the syntactic restriction that the target in the
cut of the obligation must be a constant, but the some Static Analysis might be
needed in order to obtain a set of possible values for the occurring variables, in
order to determine the possible involved policies.

Using policies Now, if we can certainly assure that the policies will not allow
the action, again we can certify that the action is secure (other possible values
for the variables are not relevant for the global property, and the ones found
with this grounding will never be used for an actual transition). However, if
the action may possibly be allowed by the security policies, our task is slightly
different, although we can still do some work. Indeed, if the policies may allow
the action to take place, then their recommendations rec must be tt, but then
we can rely on them to be sure that some properties hold whenever the action
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might be allowed. The properties that hold are exactly those implied by the
constraints established in the rec of the involved security policies. If they imply
the property established in the predicate Pred of the obligation, then we can
also certify the action we are analysing.

The procedure basically involves taking one by one the aspects and finding a
substitution that can be applied to both the cut of the aspect and the action in
order to unify them. If such substitution does not exist, we ignore the aspect,
as it will give bottom (thereby granting the action when mapping into 2-valued
logic). Otherwise, if there is such substitution, we need to apply it to the
condition of the aspect to see if it might be considered, otherwise (if it will never
be considered given such substitution, it is also bottom and thereby grant) we
also ignore it. After knowing the aspect might be considered, we take the same
substitution and apply it to the recommendation, and we have to count with the
resulting constraint and proceed with the next aspects (in each finding its own
substitution), until we at the end combine all the constraints obtained using
4-valued logic and then map to 2-valued for deciding whether the action might
be granted. If it cannot be granted then we can certify the action, otherwise we
need to prove that the combination of the constraints implies the predicate of
the global property.

Summing up If each and every action is certified following that procedure,
we can certify the whole network. Otherwise, if we cannot safely certify some
of the actions, then we cannot conclude anything about the entire network.

This procedure does not need any LTS to be induced, nor the hypothetical
one assuming no security policy is different than the trivial one, and neither the
pruned one according to the security policies (recall Subsection 2.5). Certainly,
since every action is considered and their variables are ground just by matching
with the cut of the obligation, thereby detecting possible relevance of the action
for the desired global property, then we cannot even know if those values for the
variables can be indeed possible in the induced LTS. Moreover, this could be
the source of an imprecise over-approximation, since we may finally not certify
the network due to some possible action we cannot certify, but the action might
actually never occur in the pruned LTS. It is then a key subject of study to
determine the circumstances in which we could rely on the precision of our
procedure. On the other side, if the over-approximation is indeed safe, we can
certainly rely on a network that has been certified. For achieving this, the
correctness of our approach shall be proven.

4.2 The algorithm for model checking

The main algorithm for performing our alternative approach to model checking
basically does what is explained in the previous Subsection. Here we shall see
more formally how it achieves that, and show some auxiliary parts of it.

Unifying First, recall that we have to match in several occasions with the
action we are analysing in each step. For performing the matching, some sub-

22



stitution must be found, that unifies the action with the given entity that is
being matched. Whenever we are given one entity, which could be the cut of an
obligation or the cut of an aspect, we must try to match it with the action we
are analysing, and the function for making the unification is defined as follows:

unify l1 l2 = if l1 = l2 then id else fail
unify l1 v2 = [v2 7→ l1]
unify v1 l2 = [v1 7→ l2]
unify v1 v2 = [v1 7→ v2]
unify ′ −′ l2 = id
unify ′ −′ v2 = id

One should notice that in the fourth line the direction of the mapping is
always from the first to the second parameter. This must be as it is because the
actual action being analysed will always contribute to the second parameter,
and since we need to find possible relevance of the action to the cut being
considered, we have to map variable from the cut into the action. Besides, the
last 2 lines capture the case where in the cut it is ignored the value of some
given parameter, and in such cases the action might of course be trapped no
matter which is the component on it. Finally, a fail, not only here but in later
functions, means that there was not possible to find a matching, and in our case
it will mean that by no means the action might be relevant for the cut we are
taking.

That unification function is only for single literals, but while trying to match
cut with actions, there are indeed several literal occurring, and moreover the
number is unknown, and even unbound, due to the ones that can occur as
parameters of the action. Therefore, we need an extended function that allows
capturing those cases:

unifylist nil nil = id
unifylist (x : xs) (y : ys) = θ1.θ2
where
θ1 = unify x y
θ2 = unifylist (xs θ1)(ys θ1)

unifylist nil (y : ys) = fail
unifylist (x : xs) nil = fail

It should be noticed the order in which the substitution pairs are put into
the substitution sequence, in particular in the second line. This is done as
it is because it directly depends on how it is later used for performing the
substitution, with the sequence found. Indeed, given a substitution consisting
of a sequence of several pairs, we shall start applying from the beginning of the
sequence, and then continue by applying the rest of the substitution pairs to
the obtained entity, and so on.

Matching whole action Using the unification function defined in the pre-
vious paragraph, we need to find an entire substitution that allows the action
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being analysed to be matched, or trapped, by the specific cut considered right
now, namely a substitution θ such that cut θ = act θ, assuming the action is
act.

This task is performed by a function findsubs, that takes the cut and the
action, and it stepwise performs the unifications, applying the substitution parts
already found to later literals that are to be unified. The definition is the
following:

findsubs cut action = θ1.θ2.θ3
where
θ1 = unify locsrc1 locsrc2
θ2 = unifylist (params1 θ1) (params2 θ1)
θ3 = unify ((loctgt1 θ1)θ2) ((loctgt2 θ1)θ2)

and assuming
cut = locsrc1 params1 loctgt1
action = locsrc2 params2 loctgt2

Again, notice that the order, in the first line, is set in such way that then the
entire substitution is to be applied starting from the beginning of the sequence.
Moreover, the first line will give fail as long as at least one of the components
gives fail. It is also worth noticing that finding a substitution in such way is
only valid provided both the cut and the action are defined to be the same type
of operation, the same capability, namely read, in or out.

4.2.1 Applying algorithm

As discussed in Subsection 4.1, the algorithm for model checking will take each
action in its turn, and it will check if it is relevant for the cut of the obligation.
This is done by trying to match the cut with the action. If it is possible, then it
will use the substitution found in order to see if under that condition the action
might be granted by the policies, otherwise it is trivially certified. To detect
if the action might be granted by the policies, the combination of them must
be considered, and within each of them every single aspect must be considered
in its turn. For each aspect, first it is necessary to see if it is relevant for
the given action, by finding a substitution with its cut, and in case it is, then
the condition cond and later the recommendation rec must be substituted and
evaluated. Finally, if the rec might be tt then we could count on that as one
specific constraint that will hold whenever the action can be executed, and check
if under the set of constraints found the predicate of the obligation will always
be satisfied.

That is formalised under the following algorithm, which is given by stepwise
dividing its parts, in different levels of abstraction. Broadly, the algorithm
consist of three parts, the first one in charge of taking each and every action
and analysing it in an isolated way. The second part is the one in charge of
analysing how a policy influences the given action. The third part is the one
in charge of evaluating the constraints obtained in order to see whether they
imply the expected predicate.
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Isolating action This first part isolates the action, and it makes the alter-
native calls to other functions to determine in which cases the action might be
certified. It consists of three subparts: the one in charge of the entire algorithm,
the one in charge of deciding whether the specific action is relevant for the global
property, and the one in charge of checking if a relevant action complies with
the obligation.

The main algorithm just splits the entire network into single actions, for
checking them separately. If each and every actions satisfies the predicate then
the entire network does so, otherwise it may not:

[MAIN algorithm: Checks if Network N satisfies Obligation Obl]

If each action A from Network N satisfies Obl

Then Return True

(obligation is satisfied)

Else Return False

(obligation may not be satisfied)

In capital letters it is referenced to some other parts of the algorithm, or to some
function already formally defined. Besides, the sentences between parenthesis
are comments of what the output of the pseudo code means.

Once each action is isolated, the certification of it must be done by first
checking its relevance to the given global property, by trying to match it using
some possible substitution. If no substitution can be found, then the action
trivially satisfies the obligation, otherwise its compliance has to be assessed:

[Split for actions: Checks if Action A satisfies Obligation Obl]

If FINDSUBS (cut) (A) can find a substitution

Then CHECKCOMPLIANCE of A under the substitution found

Else Return True

(obligation is satisfied)

(where cut is the cut of the Obligation Obl)

For checking the compliance of the action, first it has to be checked whether
the action might indeed be executed at all, because otherwise the action is
again trivially certified. In case the action might indeed be executed, then the
constraints raised by the policies must be checked:

[CHECKCOMPLIANCE algorithm: Checks if Action A

satisfies Obligation Obl, under the given substitution Theta0]

If both policies coming from the source and from the target

of action (A Theta0) MIGHTGRANT action (A Theta0)

Then CHECKCONSTRAINTS given by the policies

Else Return True

(obligation is satisfied)

These two auxiliary procedures are the points of the other parts of the algo-
rithm.
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Policy influence This part is the one in charge of deciding whether the in-
volved policies might grant the action, and collecting some constraints in case
it is, to recall the conditions under which the action might indeed be granted.

For a complex set of policies, each of them must be checked individually, and
then their results must be taken and combined, according to the Belnap opera-
tors that are used to combine them in the locations where they are attached:

[MIGHTGRANT algorithm: Checks if there might be some

chance that action A is allowed by the policy Pol]

If Belnap Combination of every SINGLEPOLICY in Pol

might grant action A

Then Return True

(might grant -> don’t know yet about obligation)

Else Return False

(never grants -> obligation is satisfied)

Given a single involved policy, for checking its decision for a specific action,
the first step is to find whether its cut can match the action, by finding some
possible substitution. If no substitution is found, then the policy is not actually
considered, allowing the action by default. In case there is some substitution,
the applicability condition of the policy must be assessed, given the substitution
found:

[SINGLEPOLICY algorithm: Checks if there might be some

chance that action A is allowed by the single aspect Asp]

If FINDSUBS (cut) (A) can find a substitution

Then CHECKCONDITION under the substitution found

(don’t know yet if it may grant)

Else Return True

(might grant -> don’t know yet about obligation)

(where cut is the cut of the Aspect Asp)

If the applicability condition says the policy must be applied, then its rec-
ommendation will give the final decision of it:

[CHECKCONDITION algorithm: Checks if the aspect Asp

might be applied, under the given substitution Theta1]

If (cond Theta1) might be True

Then CHECKRECOMMENDATION of aspect Asp

(don’t know yet if it may grant)

Else Return True

(might grant -> don’t know yet about obligation)

While checking the recommendation of a single policy, if it will never grant
the action then the action can be trivially certified, otherwise the conditions un-
der which the action might be granted have to be collected for later assessment:
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[CHECKRECOMMENDATION algorithm: Checks if the aspect Asp

might grant action A, under the given substitution Theta1. If it

might, then enqueue new constraint]

If (rec Theta1) might be True

Then ENQUEUECONSTRAINT (rec Theta1)

(might grant -> don’t know yet about obligation)

Else Return True

(never grants, always denies -> obligation is satisfied)

(where rec is the recommendation of aspect Asp)

(ENQUEUECONSTRAINT is not defined, but used within CHECKCONSTRAINTS)

Solving the constraints After determining which single policies would al-
low the action to occur, and under which conditions, we need to solve the set
of constraints given by those conditions in order to determine if under those
conditions the predicate of the obligation that we are analysing is satisfied. If
that is the case, then we can certify the action, as it will always be the case that
if the action is allowed, it is due to the recommendation of the involved policies,
and because they form a set of conditions that imply the predicate, then the
action is indeed secure:

[CHECKCONSTRAINTS algorithm: Checks if the combination

of recommendation from the policies imply the predicate Pred.

under the given substitution Theta0]

If set of Enqueued constraints implies (Pred Theta0)

Then True

(implication holds -> obligation is satisfied)

Else False

(implication does not hold -> obligation may not be satisfied)

4.3 Model Checking our example

Let us illustrate the model checking procedure with our running example. The
network is the one from Equation 1, in Section 2, and let us take the Obligation
from Equation Equation 2, in Section 3.

The list of all the single actions described in the network is the following:

Hansen :: read(Bob, PrivateNotes, !content)@EHDB
Hansen :: out(Bob, PrivateNotes, content)@Olsen
Olsen :: read(Bob, PrivateNotes, !content)@EHDB

The first two coming from the sub-network named NetHansen and the last one
from the one named NetOlsen.

Our alternative model checking suggests that we are to take each and every
action from that list and check it separately. Let us start then with the first one,
Hansen :: read(Bob, PrivateNotes, !content)@EHDB, and proceed with the
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checking. The first task to do now is to check whether the action can be matched
by the cut of the Obligation, which is $u : r(−, PrivateNotes,−)@EHDB.
The unifying and matching functions from Subsection 4.2 help us to find the
substitution θ = [$u 7→ Hansen]. Certainly, findsubs cut action = θ1.θ2.θ3,
where

cut = $u (−, PrivateNotes,−) EHDB

and
action = Hansen (Bob, PrivateNotes, !content) EHDB,

and where θ1, θ2 and θ3 are obtained by:

θ1 =
unify $u Hansen = [$u 7→ Hansen]

θ2 =
unifylist ((−, PrivateNotes,−) θ1) ((Bob, PrivateNotes, !content) θ1) =
unifylist (−, PrivateNotes,−) (Bob, PrivateNotes, !content) = id.id.id

θ3 =
unify EHDB EHDB = id

The second task to do is to determine the involved policies, and they are
indeed poldefaultDr and polEHDB , the former coming from the source of the
action while the latter from the target. We need to check whether they both
might grant the action to occur. The action that must be checked is the one
after applying the substitution just found, which in this case gives the very same
action.

For each of the policies, then, the following is applied. First, it is checked
whether the cut of the policy can match the action. Indeed, taking, let us say,
polEHDB , we find the substitutition [#u 7→ Hansen]. Second, it is checked
whether the policy condition cond might apply. Indeed, in our case it does as
it is the constant true. Third, it is checked whether the recommendation rec
might evaluate to tt. Indeed, applying the substitution we get

(test(Doctor,#u)@ROLES)[#u 7→ Hansen]

which ends up being test(Doctor, Hansen)@ROLES, evaluating to tt as the
tuple occurs in NetRoles.

That constraint (test(Doctor, Hansen)@ROLES) would then be enqueued
for later solving when evaluating the predicate of the obligation. In our case,
this reduces to a single checking as we use the same substitution obtained before
(θ = [$u 7→ Hansen]), and the predicate is then the same as the constraint. If
we could prove the predicate given the constraints taken from the entire set of
policies, then we could certify that particular action.

To certify the entire network we have to proceed the same with each and ev-
ery action. Assume then, that we had taken the third action, Olsen::read(Bob,
PrivateNotes, !content)@EHDB, and proceed in the same way as before. The
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substitution found is then θ = [$u 7→ Olsen]. The involved policy is just
polEHDB , as location Olsen has the trivial policy true. Again, while check-
ing if the policy applies, we end up finding that with the substitution [#u 7→
Olsen] it might be applied, but it will not allow the action, as the substi-
tuted recommendation (test(Doctor,#u)@ROLES)[#u 7→ Olsen] ends up be-
ing test(Doctor, Olsen)@ROLES, which does not evaluate to tt. Therefore,
we can also certify the action, in this case a little more trivially (it will not
be executed). If we had not have the policy, we could not have certified the
action, as we could not have said that the action will not be executed, and
then we should have proven the predicate of the obligation, without having any
enqueued constraint (as before).

5 Examples

In this Section we show 2 more elaborated examples, in a case-study-like way.
The first one is an extension of the examples in Sections 2.4, 3.1.3 and 4.3,
with which we have been illustrating our developments. The second one comes
from the Web community, and it is an abstraction of a known problem that
has happened in actual systems, and we show that our formal framework is
able to capture it and detect the insecurity. We aim at being able to detect
also insecurities that are not known yet, by putting more detail to the example
(or formalising some other from the same domain) and playing it out with our
framework.

5.1 A health care example

In this example, based on [14] but with several changes and addings, we assume
there is a Health Care Data Base (location EHDB) and some role-based access
control rules depending on the roles of the process locations. There is a location
ROLES that defines this, and then some Doctors and Nurses. The general aim
is that nurses are not allowed to get access to doctors’ private notes.
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The complete description of the system is the following:

Location EHDB :

Tuples:

patiendid the id of the patient
recordtype either PrivateNotes or MedicalRecord
author the Doctor id who created it
creationtime either Past or Recent
data the data stored in the record

Policy: (polEHDB) test(Doctor,#u)@ROLES
if #u :: read(−,#type,−,−,−)@EHDB :

#type = PrivateNotes


Location ROLES :

Tuples:
roletype either Doctor or Nurse
id the id of the employee

Policy: polROLE Not explicited here to simplify the example, there should be policies
to allow creation or deletion of records only by the Administrator

For each DOCTOR location in the system: (for example Smith)
Policy:(poldefaultDr) test(Doctor,#target)@ROLES

if #u :: out(−, PrivateNotes,−,−,−)@#target :
¬#target = EHDB


The global property we want to enforce is that we don’t want private notes in

any nurse’s location. A bit closer to the Logics we have, we can (still informally)
express the property by: any read of PrivateNotes should be only done by a
Doctor and any out of PrivateNotes should not be done to any Nurse’s location.
Formally, that can be written:

AG{$u:r(−,PrivateNotes,−,−,−)@EHDB}test(Doctor, $u)@ROLES (4)

and the following three for the second informal property:

AG{$u:o(−,PrivateNotes,−,−,−)@Olsen}test(Doctor, Olsen)@ROLES (5)

and

AG{$u:o(−,PrivateNotes,−,−,−)@Smith}test(Doctor, Smith)@ROLES (6)

and

AG{$u:o(−,PrivateNotes,−,−,−)@Hansen}test(Doctor, Hansen)@ROLES (7)

due to the syntactic restriction that we still have.
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Now assume we have the following data already stored:

EHDB ::polEHDB< Alice, MedicalRecord, Hansen, Past, alicetext >||
EHDB ::polEHDB< Bob, PrivateNotes, Smith, Recent, bobtext >||
ROLES ::polROLE< Doctor, Hansen >||
ROLES ::polROLE< Doctor, Smith >||
ROLES ::polROLE< Nurse, Olsen >

and let’s call that networt Data.
Now assume three separate examples of process locations running in parallel

with it. Therefore we will have:
Example1:

Data || HansenGood || OlsenGood

Example2:
Data || HansenBad || OlsenGood

Example3:
Data || HansenGood || OlsenBad

Where we can define the process locations as follows:

HansenGood =
Hansen ::poldefaultDr

read(Alice, MedicalRecord, Hansen, Past, !content)@EHDB.
out(Alice, MedicalRecord, Hansen, Past, content)@Olsen.
read(Bob, PrivateNotes, Smith, Recent, !content)@EHDB.
out(Bob, PrivateNotes, Smith, Recent, content)@Hansen.
0

HansenBad =
Hansen ::poldefaultDr

read(Bob, PrivateNotes, Smith, Recent, !content)@EHDB.
out(Bob, PrivateNotes, Smith, Recent, content)@Olsen.
0

OlsenGood =
Olsen ::true

read(Alice, MedicalRecord, Hansen, Past, !content)@EHDB.
0

OlsenBad =
Olsen ::true

read(Bob, PrivateNotes, Smith, Recent, !content)@EHDB.
0
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5.1.1 Model Checking and results

Now, a model checking done in the entire LTS induced by the Semantics for
Example1, Example2 and Example3 will indeed prove that the three of them
satisfy both properties of Equations 4 and 5 (and of course 6 and 7). Moreover,
the alternative way of model checking defined in Section 4 is also able to prove
that.

Furthermore, if we take out all the policies and just attach true to each
location (as it is done, for instance, in Olsen location), then only Example1 will
satisfy both properties. Example2 will fail to satisfy property of Equation 5 and
Example3 will do so with property of Equation 4. Moreover, our alternative way
of model checking is also able to detect that these properties are not satisfied
in each case.

5.2 Third-party cookies

In the Web community, it has been established a mechanism for a Server to know
that a Client had already contacted it before, in order to provide better answers
to its queries. This mechanism is based on the so called cookies, and it basically
stores in the Client side some information the Server wants to keep about the
Client for future reference. In later requests, the Client automatically sends
that information to the Server, and then this latter can provide a customised
answer.

However, a twist has been made to this mechanism, with which partners of
the Server can also store information in the Client side, without this latter even
having visited the partner webpage. The Server is involved in this procedure,
and it basically stores what it is called as third-party cookie, with information
about its partner (commonly advertisers that pay the Server to do that). Later,
when the Client connects to some other Server, which has also an agreement
with the same third-party, the Client will automatically send the information
stored in the cookie to the third party, as this is automatically done whenever
is requested from the Server side and the Client has the data.

In this Subsection, we abstract this behaviour and formalise it in our As-
pectKBL language, in order to prove the Global Property that the Client will
be secure to avoid receiving any third-party cookie.

5.2.1 Our abstracted desciption

When a Client establishes a connection with a Server, this latter one sets in
the Client some information called “cookie” that the Client has to resend every
time he wants to establish further connections with the same Server for a given
period of time. Again and again, the information contained in a cookie for a
given Server can be increased, due to further connections and new pairs name-
value set by the Server inside the Client.

In some cases, Servers can set into the Client cookies “owned” by another
website (mainly for advertisement purposes). The website that owns a cookie is
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the one that will receive it from the Client every time the Client connects to it.
Therefore, if a given website “domain1” has some advertisement from a Com-
pany Ad, and another website “domain2” has the same type of advertisement,
when Client connects to domain1 he receives the cookies set by domain1, but
also a cookie set by domain1 but owned by Ad. Later, when Client connects to
domain2, because some of the content comes from Ad, it is like establishing a
parallel connection to Ad, and then the cookie is indeed sent to Ad, and this
one learns that Client had previously connected to domain1 (before this current
connection to domain2).

These mechanisms are depicted in Figure 3, showing the insecure operation
and its further consequence, which leaks information and prevents privacy.

CLIENT	  
<domain1cookie,data1>	  
<domain2cookie,data2>	  

DOMAIN1	  

DOMAIN2	  
(some	  AD	  
content)	  

Request	  page	  (SEND	  data1)	  

Answer	  page	  (SET	  NEW	  COOKIE	  
<domain1cookie,	  data1’>)	  

Request	  page	  (SEND	  data2)	  

INSECURE:	  (SET	  NEW	  COOKIE	  
<adcookie,	  data>)	  

1

CONSEQUENCE:	  (SEND	  data)	  

AD	  

2

3

Figure 3: Third-party cookie abstracted.

To avoid this, one can set in the Client side, a security policy that does not
allow third-party cookies. In the Web community this is known as the Same-
origin policy, and it is part of the Platform for Privacy Preferences Project
(P3P).

5.2.2 Formal model

When a Client connects to a Server, either it is the first time and so no cookie
is stored, so the Client just connects sending nothing, or perhaps it is not the
first time and then some cookiedata must be sent. For this, the Client reads
the data from its own storage, and then sends it to the Server, appending the
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possibly new data received for future use:

Client :: ( out(connect, self, nocookie)@Server . ∅
+

read(Server, !cookiedata)@self .
out(connect, self, cookiedata)@Server .
APPENDNEWCOOKIE )

The appending procedure has to be done stepwise, as our primitives only allow
us to read or write, and erase while reading. Therefore, the Client reads the
two pieces of cookies it has, erasing them, and then writes a new one with the
combination of both:

APPENDNEWCOOKIE ≡ in(Server, !data1)@self .
in(Server, !data2)@self .
out(Server, data1.data2)@self . ∅

After the Server has received a connection, it decides to serve it by taking it
from its space of pending connections. It will take the Client information and
the cookie, and after that it might send back to the same Client some extra
information for an updated cookie:

Server :: in(connect, !Cli, !cookiedata)@self .
out(self, morecookiedata)@Cli . ∅

On the other side, if the Server is one that tries to send third-party cookies,
it will behave slightly different:

BadServer :: in(connect, !Cli, !cookiedata)@self .
out(thirdparty, morecookiedata)@Cli . ∅

The security policy that we could attach to the Client in order to avoid
receiving such cookies from the bad latter Server, but still receiving those from
the former one, is the following:

polEHDB =

 #s = Server

if #s :: out(Server,−)@self :
true


Now, with the entire system, no matter which of the two Servers with put

in parallel with the Client, we should be able to prove the following Global
Property, which establishes that whenever we traverse a transition in which
someone is writing a pair with the name of a Server and some extra data to the
Client location, then that someone is indeed the very Server:

AG{$s:o(Server,$data)@Client}$s = Server (8)
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6 Conclusion

In this report, we have presented a framework with which it is possible to de-
scribe distributed systems consisting of distributed processes and memory loca-
tion. Furthermore, the possibility of attaching security policies to the locations
provides access control methods for the interactions among them.

With that, one can induce a Labelled Transition System (LTS), and over it
one can perform model checking tasks. In this work we have seen how to perform
this tasks in an alternative way, using a twist of the framework and a particular
version of Action Computation Tree Logic. We have proposed an algorithm
that smartly model checks the systems developed within the framework, and
provides guarantees about the desired global security properties. Everything
was illustrated with detailed examples.

Our alternative approach to model check relies on some properties given by
the framework in order to guarantee conditions that will hold in all executions,
without the need to induce the entire LTS. With this, the model checking is
performed in a fast and safe way. We discussed the limitations of our approach,
and pinpointed some weak points or restrictions we are having right now. The
development of a tool is described, and its implementation is left for the Ap-
pendix.

With this work, we aim at showing that a global security property could
indeed be achieved by localising partial access control policies throughout the
system, keeping everything well-organised, and without having the need of any
central controller. The advantages of this are the possibility of more realistic
implementation of security policies, as the policies are located where they can
indeed be controlled by the implementor. We would allow, then, to design dis-
tributed systems where the policies attached to the different parts of the system
can indeed be specified and analysed, and if the analysis gives the expected
results, then the implementation of them could be straightforwardly done.

If this work comes through, the possible applications of our approach go even
beyond the security domain, as we envision the possibility of combining policies
for decision support systems, and any other situation where possible conflicts
or unknown information may occur, while aiming to a certain global decision.

6.1 Future work

Throughout this document, some parts were mentioned to be partially done or
missing. In this Subsection they are clarified and explicitly recalled, and some
other ideas for future work are also pointed.

Our language is Turing-complete, though for doing our analysis we syntacti-
cally restrict it to have only finite paths, by forbidding the use of the replication
operator ∗. In the future, we should consider the entire language, and find some
necessary or sufficient conditions for our analyses to remain valid.

Another restriction we are having right now, is that the target location of
the cut in the obligations must be a constant. This allows us to fix the policies
involved in the granting of the relevant actions. We might relax this restriction,
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allowing the use of variables, and in the cases were the action coming from the
net is also a variable, so no grounding is possible before starting to consider the
policies, we should then use some Static Analysis in order to restrict the set of
possible policies. We then would need to do the analysis for each policy of the
set separately, in order to see if with the entire set we can certify the action, or
otherwise detecting for which policies (thereby identifying for which values of
the target location) the action cannot be certified. By doing this, we could then
iteratively improve the precision of the Static Analysis, to see if those values
are indeed possible or they were considered due to the first over-approximation
taken.

Staying in the imprecision assessment, we might also come up with exam-
ples that are secure but are not certified by our analysis, thereby showing that
it is indeed an over-approximation. Alternatively, we might be able to prove
that our analysis is actually precise. We have some clues, but this has to be
further developed. Certainly, if we find out that our analysis does some over-
approximation, having the examples could help us to define ways to give more
precision to it.

On the opposite side, as we do not want our analysis to be an under-
approximation, as we want it to be safely certifying actions, we need to prove
that this is indeed the case. Certainly, to be sure that every network that is
certified by our analysis is indeed secure, a proof of correctness is necessary.
This proof should show that the way we do our alternative approach of model
checking (including the inversion in the order the substitutions are taken) is
correct with respect to the Semantics of our language.

We have illustrated our approach for simple examples, and indeed they can
certainly be currently solved. However, although we have mentioned the possi-
bility of coming up with sets of constraints, given by the recommendations of
the policies that might allow a certain action, therefore being able to prove the
implication from them to the predicate we might be analysing, we are actually
not doing this for the moment. Certainly, the possibility of using some con-
straint solver for pursuing this task is being considered. For the moment, we
are only taking the power of the substitutions done using our approach, and if
with them we are able to certify the action, then we do it. Otherwise, we just
answer that the action cannot be certified, although it might be just a matter
of Logically understanding/arranging the certain constraints for certifying it.

Considering that, we estimated that in some case it could still be impossible
to come up with a definite answer that some action is not certified. Indeed, even
if the set of constraints is properly considered and manipulated, if we do not have
some constraint that is opposite to the predicate we are aiming at proving, then
we should not completely rule the action out, as we are not sure whether it will
perform some insecure behaviour according to our aims. Therefore, assessing the
possibility of having a 3-valued answer could be a direction to follow. A certainly
certified network would thereby obtain the answer tt, and a network that is
clearly insecure would obtain the answer ff. There might be other networks that,
due to some imprecision in our analysis, or to some complicated structures that
are beyond the power of the current state of the art of our tool, can obtain the
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answer Unknown.
Using the examples we have described in Section 5, we shall come up with

improvements to our theory, and show its usefulness as well. On one side,
aiming at detecting some other insecurities in the examples, both known ones
and hopefully also some unknown one, would be one good goal. For doing this,
it would be necessary to lower the abstraction level and give more details to
the examples. If we can achieve this, then the usefulness of our approach will
be further assessed. On the other side, we can use the examples to have an
example-guided theory improvement. Indeed, we aim at having more powerful
Logics for the global properties, and instead of just coming up with ideas that
make our Logics closer to some existing one, we aim at using our examples
to come up with useful properties that would be nice to describe about them,
and extending our Logics towards being able to express, and to later analyse,
such properties. In particular, the possibility of considering liveness properties
as well, as opposed to safety properties as we are doing right now, is on our
agenda. Moreover, the continuation processes shall be considered as well, as
they are indeed an important part of our policies, and since we are working
with a process algebra they are indeed first class objects, so it would be very
interesting to make good use of them for expressing properties.

Finally, and moving specifically to the implementation of the tool, not just
the constraint solving part is missing. Indeed, the fact that the policies that are
relevant for a certain action are combined using the liberal approach is indeed
considered from the basic implementation of the tool. So the possibility of
dealing with other approaches could be assessed, and some modifications of the
tool shall be done in order to make it more flexible. Moreover, the combination
of policies coming from a single location could follow any Belnap operator, as
that depends on how they are attached to the location. Indeed, dealing with
this in a more abstract way is also necessary, as currently they are combined by
collecting their answers and finding a final one also considering that ⊥ would
finally allow and > would not. Certainly, having two levels of abstraction and
keeping in mind within the tool that we are dealing with 4-valued elements is
necessary, in order to, only in the end, map it into 2-valued Logic.
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A Appendix: Implementation of a tool

This Appendix describes with some degree of detail how a tool is being built
to deal with the alternative approach to model checking described in Section 4
for the framework discussed in this whole report. Some algorithm design issues
are discussed in high level first, then how to deal with some specific issues, and
finally some Haskell implementation parts are shown.
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Algorithm: check [network] [obligation]

for each action [act] occurring in some process at some location of [network]

if [act] might match the cut of [obligation] producing substitution [theta0]

then

if [act] substituted by [theta0] might be granted by the involved policies

then

if predicate of [obligation] substituted by [theta0] might be False

then

Return False /* the obligation may not be satisfied */

else

Return True /* the obligation is satisfied */

else

Return True /* the obligation is satisfied */

else

Return True /* the obligation is satisfied */

Table 13: Algorithm for smartly model check.

A.1 The tool

Currently, the tool does not perform the constraint analyses described in the
algorithm part of Subsection 4.2. It indeed assumes the recommendations and
the predicates in the obligations are straightforward enough that with the power
of the substitutions found it can be determined whether the policies imply the
obligation. It is the topic of near future work to improve this restriction.

For the moment, the algorithm described in Subsection 4.2 can then be
implemented in pseudo-code as in Table 13, omitting the details of how the
mightgrant is implemented.

The substitutions that are done for matching the cut of the obligation with
the action, and the cut of the involved policies with the action, are not then
applied in the same places. Indeed, the substitution obtained with the obligation
is the one that makes us know in which situations the action is relevant for our
obligation. Therefore, such relevance is then considered while applying the
substitution to the action before checking if the involved policies would allow it.
The substitutions that might appear from the policies are only applied within
the policy, to check the cond and the rec. Although it might seem strange, since
the policies are the actual granters of actions thereby generating transitions
for the LTS which later could be matched by the obligation, this is a proper
approach, since the rec is the actual influencer of whether the predicate could
be satisfied. This shall be formally proved in future work.

Besides, the unification procedures are straightforwardly implemented ac-
cording to Subsection 4.2. The mightgrant, in its turn, is implemented stepwise
by analysing the different parts of each involved aspect, and then a combina-
tion of them is done using Belnap Logic, for finally obtaining which the decision
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might be. In cases where no definite decision can be estimated, it is very difficult
to deal with without using Static Analysis, as for instance if some recommen-
dation might be tt under certain conditions, but it might also be ff, then the
negation of that recommendation might be tt of course. Then, either with or
without negation nothing can be decided, due to some variables that are not
ground.

A.2 Dealing with implementation

The tool implements what is stated in the previous Subsection. For this, a
Haskell prototype is being developed, which currently consists of three main
modules: DataStructures.hs, Substitution.hs and Algorithm.hs. They
(and some other auxiliary ones) are organised according to Figure 4.

Example.hs	  

Lexer.hs	  

Subs1tu1on.hs	  

DataStructures.hs	  

Algorithm.hs	  

Figure 4: Module structure of tool.

The first one is in charge of defining the internal structures that will be used
for keeping the abstract syntax tree of the examples the tool has to deal with.
It mainly follows the abstract syntax of the formal AspectKBL language, with
some slight modification due to tags or so. It also defines the internal structures
for keeping the global properties, and some auxiliary functions for accessing the
structures. In particular, one of the main functions is takelactions, which is
in charge of obtaining the list of all the actions that have to be certified for
security, by recursively entering all the locations in the network. The actions
are listed including the location that holds each of them, as this is a necessary
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piece of information that is needed, because it defines some of the policies that
will govern the action.

The pretty printing of these structures is also (for the moment just partly)
defined in this module. The structures of Augmented Locations, which will
later be used by the substitutions, is also defined here (perhaps the wrong
place, though more easily findable during development process).

Some of the structures of the language are not completely defined. In some
cases this is just due to lack of time and to incremental building of the tool, so
they are appointed to be developed soon, for instance combination of recom-
mendations within a single aspect, or quantifiers in the predicate of the global
property. On the other hand, there are structures that are not completely
defined due to lack of theory on how to deal with them when doing the over-
approximation. For instance, if an aspect might trap an action, and in such
cases the action is granted, then we could check the implication from the rec-
ommendation to the predicate of the global property. However, if the aspect
is modified to have the negation of the condition (or the recommendation), it
might still be trapping, because with the non-negated we are not sure it always
traps (it was also a might and not a must). Maybe 4-valued logic could also be
used to deal with the over-approximation, or probabilities (not really consid-
ered), or really distinguish when the analysis has completely grounded variables
and so each conclusion can be definite instead of possible.

The binding of variables is also another issue that is still to be clearly estab-
lished how to implement.

The second module of the tool, Substitution.hs, relies on the module
DataStructures.hs, and is in charge of defining the necessary functions for
obtaining a substitution that unifies labels (cut from global properties) and
actions or pointcuts (cut from aspects) and actions. It also defines the functions
for applying the substitutions to any possible entity that is plausible to have
variables (action, processes, networks, policies, conditions, recommendations,
predicates, etc.).

A naming convention for the variables is used within the prototype, for the
internal handling of substitutions and avoiding name crashes or free variables.
Variables defined in a process could have any name, variables defined in an
aspect/policy must start with the character hash (‘#’), and variables defined
in an obligation must start with the character dollar (‘$’). For instance, if a
variable occurs in an obligation without the character dollar, it means it might
be a free variable, or referring to a variable of the network, and this is strictly
forbidden. Anyway, the tool is capable of dealing with these, because for internal
computations while applying substitutions it might be some points where this
is the case. That is why one very important point for using the tool is to make
sure that when calling the main function, this does not happen.

Finally, the module Algorithm.hs, which relies in both Datastructures.hs

and Substitution.hs modules, defines the model checker itself, the function
that given a network and an obligation (a global property) will try to certify
it. It basically makes use of the function takelactions (defined in the module
Datastructes) and then checks each of them separately. The network is certified
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if and only if all of them can be certified.
For certifying an action, it implements the procedure described in the pre-

vious Subsection, of first looking for a substitution that could unify the action
with the label of the obligation. If no substitution is found then the action is
automatically certified. If a substitution is found, then it checks for each and
every aspect that will govern the action if it might grant the action. If at least
one aspect will never grant the action, then the action is certified. Otherwise,
if the action might be granted, then it is checked whether the predicate might
be False in some cases (and as established in the previous Subsection, for the
moment no system of constraints is used for this, but it is just done by relying
on the power of substitutions). If the predicate will never be False, then the
action is certified.

If in the end the action could not be certified, the answer of the model checker
is False, but this might mean the network is not secure, or it might also mean
that the procedure was not precise enough and no certifying way was found.

The tool has also implemented a module Lexer.hs, which appears to work
properly (but currently just for a subset of the language), but it cannot be
used yet because it is also necessary another module Parser, which has not been
implemented due to lack of time and concentration in other issues. One very
important point that will have to be included in the parser, is that for every
variable occurring in the obligation an starting with a dollar symbol (‘$’) must
be added, and same for variables in the aspects with the hash symbol (‘#’),
due to the issue discussed before. This has to be done while constructing the
abstract syntax tree.

A.3 Some code

In the module Substitution.hs, the necessary functions for finding and per-
forming substitutions are implemented. The unification functions are almost
straightforwardly implemented following the formal model of Subsection 4.2,
except for some little modifications to make them fit in Haskell code and type
system.

Moreover, the main function in charge of finding substitutions is findsubs,
which indeed works for any pair of entities, but indeed we are interested in the
cases of cut from the global property against action, and cut of aspect against
action. This first step is done by ad-hoc functions that split each entity into
parts and get rid of the type of the cut, so we are able to call the function
findsubs. This latter is defined as follows:

findsubs :: Oper -> Oper -> AugLoc -> AugLoc -> [AugLoc] ->

[AugLoc] -> AugLoc -> AugLoc -> AugLoc -> Maybe Substitution

findsubs op1 op2 alsrc1 alsrc2 als1 als2 altgt1 altgt2 ignored =

if theta3 /= Nothing

then Just ((fromJust theta1) ++ (fromJust theta2) ++

(fromJust theta3))

else Nothing
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where

theta1 =

if op1 == op2

then unifywithignored alsrc1 alsrc2 ignored

else Nothing

theta2 =

if theta1 /= Nothing

then

if length als1 == length als2

then unifyseqwithignored

(applysubs (fromJust theta1) als1)

(applysubs (fromJust theta1) als2)

ignored

else Nothing

else Nothing

theta3 =

if theta2 /= Nothing

then unifywithignored

(applysubs (fromJust theta2)

(applysubs (fromJust theta1) altgt1))

(applysubs (fromJust theta2)

(applysubs (fromJust theta1) altgt2))

ignored

else Nothing

Once a substitution is obtained, it can be used for actually substituting any
entity defined within the network. Indeed, this is already illustrated even within
some parts of the findsubs. The function is a polymorphic one, and its main
definition is as follows:

class Substituible a where

applysubs :: Substitution -> a -> a

Then, it has a specific implementation for each type of entity we are interested in
making it Substituible, and certainly all those defined within our framework
have their implementation.

The Haskell algorithm Finally, the algorithm for performing the smart
model checking is implemented in Haskell following the pseudo-code from Sub-
section A.1. It still misses some constraint solving routine to deal with complex
cases, but for simpler ones it makes use of the power of substitutions to come
up with an answer in a safe way. The code is the following:

checksingleaction :: Label -> Predicate -> Network -> LocAction -> Bool

checksingleaction lab pred net lact =

if theta0 /= Nothing -- label might match action

then
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if mightbegranted -- policies might grant the action

then

if predicatemightbefalse -- predicate might be false

then False

else True

else True

else True

where

theta0 = findsubslabel lab lact

-- substitution that makes the action match the label

-- of the obligation

lact0 = applysubs (fromJust theta0) lact

-- if action matched the label, then it must be substituted

-- to evaluate the rest

net0 = applysubs (fromJust theta0) net

-- this might be useless, but just to have some standard,

-- the network is also substituted by the theta0 found

pol1 = (polsrc net0 lact0)

-- this is the policy governing the action,

-- coming from the source of the action

pol2 = (poltgt net0 lact0)

-- this is the policy governing the action,

-- coming from the source of the action

mightbegranted =

if and [mightgrantpol1, mightgrantpol2]

then True

else False

mightgrantpol1 = mightgrant pol1 lact0 net0

mightgrantpol2 = mightgrant pol2 lact0 net0

predicatemightbefalse =

-- HERE is the place where the constraints should be applied,

-- instead of just relying on the power of the substitution

if evaluatealwaysTrue (applysubs (fromJust theta0) pred) net0

then False

else True

Certainly, that is the code for checking whether a specific action occurring
in the network satisfies the global property. For the whole network to satisfy it,
all its individual actions must do so, as observed in Subsection 4.1, but this is
a simple mapping in Haskell and it is performed by the following code:

checkexample :: Network -> Obligation -> Bool

checkexample net obl = and xs

where

xs = map (checksingleaction lab pred net) tls

lab = label obl

pred = predicate obl
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tls = takelactions net

Finally, for knowing whether a security policy might grant an individual
action according to the information we have so far (just substitutions to make
the action relevant for the global property), we first divide the policy into single
aspects whose decisions are later to be combined using Belnap Logic, and apply
the following function to each of them:

mightgranttrapping :: Aspect -> LocAction -> Network -> Bool

mightgranttrapping (Advice rec cut cond) lact net =

if theta /= Nothing

then

if conditionmightapply (applysubs (fromJust theta) cond)

then

if recommendationalwaysdenies (applysubs (fromJust theta) rec) net

then False

else True

else True

else True

where

theta = findsubspointcut cut lact

Certainly, the implementation of functions such as conditionmightapply

and recommendationalwaysdenies is done but for complex cases some ex-
tra theory must be developed, since as discussed for instance in Subsection
A.1, cases with negation or other operators that might change completely our
“might” approximation, can leave us in a problem due to large imprecision.
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