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Abstract This work focuses on electron transfer (ET) and electrocatalysis of inorganic hybrid Prussian blue nanoparticles (PBNPs, 6 nm) immobilized on different chemical surfaces.
Through surface self-assembly chemistry, we have enabled to tune chemical properties of the electrode surface. Stable immobilization of the PBNPs on Au(111) surfaces modified
by self-assembled monolayers (SAMs) with various terminal groups including positively charged groups (–NH3

+), negatively charged groups (-COO-), and neutral and hydrophobic
groups (-CH3) has been achieved. The surface microscopic structures of immobilized PBNPs are characterized by atomic force microscopy (AFM). Reversible electron transfer (ET) was
detected by cyclic voltammetry (CV) of the PBNPs on all the surfaces. ET kinetics can be controlled by adjusting the chain length of the SAMs. The rate constants are found to depend
exponentially on the ET distance, with a decay factor (β) of ca. 0.9, 1.1, 1.3 per CH2, respectively. This feature suggests a tunneling mechanism adopted by the nanoparticles,
resembling that for metalloproteins in a similar assembly. High-efficient electrocatalysis towards the reduction of H2O2 is observed, and possible catalytic mechanisms are discussed.

Schematic diagrams of assembling PBNPs on different chemical surfaces: (a)

NH2(CH2)nS-Au(111); (b) HOOC(CH2)nS-Au(111), and (c) CH3(CH2)nS-Au(111).
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Controlling Electron Transfer Kinetics

Systems

Formal  redox potential

Eo´ (mV) vs. SCE 

Rate constant

Ks (S-1)

Normalized current density

10-8 jcat (A/mol.M)

PBNPs-H2N(CH2)2S-Au 149 1706 77

PBNPs-H2N(CH2)6S-Au 154 1166 37

PBNPs-H2N(CH2)8S-Au 152 599 25

PBNPs-H2N(CH2)11S-Au 181 15 13

PBNPs-H2N(CH2)16S-Au 177 0.4 0.9

Systems

Formal  redox potential

Eo´ (mV) vs SCE 

Rate constant

Ks (S-1)

Normalized current density

10-9 jcat (A/mol.M)

PBNPs-OOC(CH2)2S-Au 147 920 142

PBNPs-OOC(CH2)5S-Au 152 175 43

PBNPs-OOC(CH2)7S-Au 142 22 29

PBNPs-OOC(CH2)10S-Au 188 0.8 undetectable

Systems

Formal  redox potential

Eo´ (mV) vs SCE 

Rate constant

Ks (S-1)

Normalized current density

10-8 jcat (A/mol.M)

PBNPs-H3C(CH2)2S-Au 140 7.7 48

PBNPs-H3C(CH2)4S-Au 144 2.5 29

PBNPs-H3C(CH2)6S-Au 137 0.4 24

PBNPs-H3C(CH2)7S-Au 125 0.05 undetectable
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AFM images and size distribution of PBNPs immobilized on different chemical surfaces: (a) and (b)

PBNPs-NH2(CH2)6S-Au(111); (c) and (d) PBNPs-OOC(CH2)5S-Au(111); (e) and (f) PBNPs-CH3(CH2)5S-

Au(111). AFM images: 2 µm x 2 µm. The PBNP size distribution is based on statistic analysis of the

particle height profiles in the AFM images, and at least 300 particles were used in each statistic analysis.
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Top: Cyclic voltammograms (CVs) of (A) PBNPs-NH2(CH2)6S-Au(111); (C) PBNPs-OOC(CH2)5S-Au(111), and (E) PBNPs-
CH3(CH2)5S-Au(111) obtained in 0.1 M KCl with the same scan rate of 0.5 V s-1.

Bottom:The dependence of apparent rate constants on the distance denoted by the number of -CH2- units

(B) PBNPs-NH2(CH2)nS-Au(111), gives rise to a decay factor (β) of ca. 0.9 per CH2 (i.e., equivalent to ca. 0.7 Å-1).
(D) PBNPs-OOC(CH2)nS-Au(111), a decay factor (β) of ca. 1.1 per CH2.
(F) PBNPs-CH3(CH2)nS-Au(111), a decay factor (β) of ca. 1.3 per CH2.

Table 1. Comparison of the redox potential and population of -NH2(CH2)n-. Scan rate 0.5 V s-1.

Table 2. Comparison of the redox potential and population of -COOH(CH2)n-. Scan rate 0.5 V s-1.

Table 3. Comparison of the redox potential and population of -CH3(CH2)n- . Scan rate 0.05 V s-1.
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Comparison of electrocatalytic activity towards reduction of H2O2 with (red) or without PBNPs (black) and
calibration plots of electrocatalytic activity towards different concentrations of H2O2 for (a) and (b) NH2(CH2)6S-
Au(111); (c) and (d) HOOC(CH2)5S-Au(111); (e) and (f) CH3(CH2)5S-Au(111) in 0.1 M KCl. Scan rate: 20 mV s-1.
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Conclusion We have demonstrated feasibility of tuning interfacial ET and electrocatalysis for redox-active
nanoparticles by modification of the Au(111) electrode surfaces via surface self-assembly chemistry. The
SAMs offer different surfaces with distinct chemical properties for immobilization of 6 nm inorganic hybrid
PBNPs. PBNPs were stable on all the three types of surfaces, but display different ET and electrocatalytic
efficiency. Surface interactions between the PBNP and SAM are mostly likely responsible for the present
observations. The results appear to reflect the heterogeneous structures of the PBNP surfaces.
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