

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 20, 2017

Flexibility Driven Scheduling and Mapping for Distributed Real-Time Systems

Pop, Paul; Eles, Petru; Peng, Zebo

Published in:
International Conference on Real-Time Computing Systems and Applications

Publication date:
2002

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Pop, P., Eles, P., & Peng, Z. (2002). Flexibility Driven Scheduling and Mapping for Distributed Real-Time
Systems. In International Conference on Real-Time Computing Systems and Applications (International
Conference on Real-Time Computing Systems and Applications. Proceedings).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13798004?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/flexibility-driven-scheduling-and-mapping-for-distributed-realtime-systems(a95715c4-2285-40b0-add2-2faeb55f6dae).html

Flexibility Driven Scheduling and Mapping for
Distributed Real-Time Systems

Paul Pop, Petru Eles, Zebo Peng
Dept. of Computer and Information Science, Linköping University, Sweden

{paupo, petel, zebpe}@ida.liu.se

Abstract
In this paper we present an approach to mapping and

scheduling of distributed hard real-time systems, aiming at
improving the flexibility of the design process. We consider an
incremental design process that starts from an already
existing system running a set of applications, with preemptive
priority based scheduling at the process level, and time
triggered static scheduling at the communication level. We are
interested to implement new functionality so that the already
running applications are disturbed as little as possible and
there is a good chance that, later, new functionality can easily
be added to the resulted system. The mapping and scheduling
problems are considered in the context of a realistic
communication model based on a TDMA protocol. Extensive
experiments as well as a real life example demonstrate the
relevance of this problem and the efficiency of our solutions.

1. Introduction
In this paper we concentrate on scheduling and mapping of
hard real-time systems which are implemented on distribut-
ed architectures. Process scheduling is based on a static pri-
ority preemptive approach while the bus communication is
statically scheduled.

Preemptive scheduling of independent processes with
static priorities running on single processor architectures
has its roots in [7]. The approach has later been extended to
accommodate more general computational models and has
also been applied to distributed systems [17]. The reader is
referred to [1, 2, 13] for surveys on this topic. In many of the
previous scheduling approaches researchers have assumed
that processes are scheduled independently. However, this is
not the case in reality, where process sets can exhibit both
data and control dependencies. One way of dealing with
data dependencies between processes with static priority
based scheduling has been indirectly addressed by the ex-
tensions proposed for the schedulability analysis of distrib-
uted systems through the use ofrelease jitter [17].

Currently, more and more real-time systems are used in
physically distributed environments and have to be implement-
ed on distributed architectures in order to meet reliability, func-
tional, and performance constraints. We have to mention here
some results obtained in extending real-time schedulability
analysis so that network communication aspects can be han-
dled. In [16], for example, the CAN protocol is investigated
while the work reported in [4] considers systems based on the
ATM protocol. Analysis for a simple TDMA protocol is pro-
vided in [17], which integrates processor and communication
schedulability and provides a “holistic” schedulability analysis
in the context of distributed real-time systems. The problem of
how to allocate priorities to a set of distributed tasks is dis-

cussed in [5], based on the schedulability analysis from [17].
Another characteristic of research efforts concerning the

codesign of real-time systems is that researchers concentrate
on the design, from scratch, of a new system optimized for a
particular application. For many application areas, however,
such a situation is extremely uncommon and only rarely ap-
pears in design practice. It is much more likely that one has to
start from an already existing system running a certain appli-
cation and the design problem is to implement new function-
ality (including also upgrades to the existing one) on this
system [3]. In such a context it is very important to make as
few as possible modifications to the already running applica-
tions. The main reason for this is to avoid unnecessarily large
design and testing times. Performing modifications on the
(potentially large) existing applications increases design time
and, even more, testing time (instead of only testing the newly
implemented functionality, the old application, or at least a
part of it, has also to be retested). However, this is not the only
aspect to be considered. Such an incremental design process,
in which a design is periodically upgraded with new features,
is going through several iterations. Therefore, after new func-
tionality has been implemented, the resulting system has to
be structured such that additional functionality, later to be
mapped, can easily be accommodated.

We consider mapping and scheduling for hard real-time
systems in the context of a realistic communication model.
Because our focus is on hard real-time safety critical sys-
tems, communication is based on a time division multiple
access (TDMA) protocol, the time-triggered protocol
(TTP), as recommended for applications in areas like, for
example, automotive electronics [6].

In this paper, we have considered the design of distribut-
ed embedded systems in the context of an incremental de-
sign process as outlined above. This implies that we
perform mapping and scheduling of new functionality so
that certain design constraints are satisfied and:

a) the existing applications are disturbed as little as possible;
b) there is a good chance that new functionality can, lat-

er, be easily mapped on the resulted system.
In [11] we have discussed an incremental design strategy

addressed to systems whereboth processes and messages
are statically scheduled. However, considering preemptive
priority based scheduling at the process level, with time
triggered static scheduling at the communication level, can
be the right solution under certain circumstances [8]. A
communication protocol like TTP provides a global time
base, improves fault-tolerance and predictability. At the
same time, certain particularities of the application or of the
underlying real-time operating system can impose a priority
based scheduling policy at the process level.

In this paper we extend our approach to hard real-time sys-
tems where process scheduling is based on a static priority pre-
emptive approach while the bus communication is statically
scheduled. We accurately take into consideration overheads due
to communication and consider, during the mapping and sched-
uling process, the particular requirements of the communication
protocol. We propose a new heuristic, together with the corre-
sponding design criteria, which finds the set of old applications
which have to be remapped at the same time with the new one
such that the disturbance on the running system (expressed as
the total cost implied by the modifications) is minimized. Once
this set of applications has been determined, mapping and
scheduling is performed according to the requirements a) and b)
stated above. Supporting such a design process is of critical im-
portance for current and future industrial practice, as the time in-
terval between successive generations of a product is
continuously decreasing, while the complexity due to increased
sophistication of new functionality is growing rapidly.

The paper is divided into 6 sections. The next section
presents the architectures considered for system implemen-
tation, the computational model assumed together with the
schedulability analysis employed, and the process alloca-
tion problem. Section 3 introduces the detailed problem for-
mulation and the quality metrics we have defined. The
mapping and scheduling strategy is presented in section 4,
and the approaches are evaluated in section 5. The last sec-
tion presents our conclusions.
2. Preliminaries
2.1 System Architecture
We consider architectures consisting of nodes connected by
a broadcast communication channel. Every node consists of
a TTP controller, a CPU, a RAM, a ROM and an I/Ointerface
to sensors and actuators.

Communication between nodes is based on the TTP [6].
TTP was designed for distributed real-time applications that
require predictability and reliability (e.g., drive-by-wire). The
communication channel is a broadcast channel, so a message
sent by a node is received by all the other nodes. The bus ac-
cess scheme is time-division multiple-access (TDMA) (Figu-
re 1). Each nodeNi can transmit only during a predetermined
time interval, the so called TDMA slotSi. In such a slot a
node can send several messages packaged in a frame. A se-
quence of slots corresponding to all the nodes in the architec-
ture is called a TDMA round. A node can have only one slot
in a TDMA round. Several TDMA rounds can be combined
together in a cycle that is repeated periodically. The sequence
and length of the slots are the same for all TDMA rounds.
However, the length and contents of the frames may differ.

Every node has a TTP controller that implements the pro-
tocol services and runs independently of the node’s CPU.
The TDMA access scheme is imposed by a so called mes-
sage descriptor list (MEDL) that is located in every TTP con-
troller. MEDL serves as a schedule table for the TTP

controller which has to know when to send or receive a frame
to or from the communication channel. The TTP controller
provides each CPU with a timer interrupt based on a local
clock synchronized with the local clocks of the other nodes.

We have designed a software architecture which runs on
the CPU in each node and which has a real-time kernel as
its main component. For the exact details of the software ar-
chitecture and how it is taken into account by the schedula-
bility analysis the reader is directed to [10].
2.2 Computational Model and Schedulability Analysis
We model an application as a set of processes. A processPi
has a periodTi, a deadlineDi, and a uniquely assigned prior-
ity. Each processPi can potentially be mapped on several
nodes. LetNPi be the set of nodes to whichPi can potentially
be mapped. For eachNi∈NPi, we know the worst case execu-
tion timeCPi

Ni of processPi, when executed onNi. We con-
sider a preemptive execution environment, which means that
higher priority processes can interrupt the execution of lower
priority processes. In this paper we use a deadline monotonic
priority assignment scheme, but any other more advanced
priority schemes like the ones in [5, 14] could as well be used.
A lower priority process can block a higher priority process
(e.g., it is in its critical section), and the blocking time is com-
puted according to the priority ceiling protocol [13]. Process-
es exchange messages, and for each messagemi we know its
sizeSmi. A message is sent once in everynm invocations of
the sending process, with a periodTm = nmTi inherited from
the sender processPi, and has a unique destination process.

For a given mapping of processes to processors, Tindell
et al. integrate in [17] processor and communication sched-
uling and provide a “holistic” schedulability analysis in the
context of distributed real-time systems with communication
based on a simple TDMA protocol. The basic idea in [17] is
that the release jitter of a destination process depends on the
communication delay between sending and receiving a mes-
sage. The release jitter of a process is the worst case delay
between the arrival of the process and its release (when it is
placed in the run-queue for the processor). The communica-
tion delay is the worst case time spent between sending a
message and the message arriving at the destination process.

Although there are many similarities with the general
TDMA protocol, the analysis in the case of TTP is different
in several aspects and also differs to a large degree depend-
ing on the policy chosen for message scheduling. In [10] we
have proposed four approaches for scheduling of messages
using TTP that differ in the way the messages are allocated
to the communication channel (either statically or dynami-
cally) and whether they are split or not into packets for
transmission. For each of these approaches, we have also
developed the corresponding schedulability analysis [10].

The first approach, called Static Single Message Alloca-
tion (SM), is to statically (off-line) schedule each of the mes-
sages into a slot of the TDMA cycle, corresponding to the
node sending the message. We also consider that the slots can
hold each at maximum one single message. The second ap-
proach, called Static Multiple Message Allocation (MM), is
an extension of the first one. In this approach we allow more
than one message to be statically assigned to a slot and all the

TDMA Round Cycle of two rounds
Slot

S0 S1 S2 S3 S0 S1 S2 S3

Frames

Figure 1. Bus Access Scheme

messages transmitted in the same slot are packaged together
in a frame. While the previous two approaches have statically
allocated one or more messages to their corresponding slots,
the third approach, called Dynamic Message Allocation
(DM), considers that the messages are dynamically allocated
to frames, as they are produced. Finally, the last approach,
called Dynamic Packets Allocation (DP), is an extension of
the previous one, and allows the messages to be split into
packets before they are transmitted on the communication
channel. By splitting messages into packets we can obtain a
higher utilization of the bus and reduce the release jitter.

Comparing these four approaches, in [10] we conclude
that while the DP approach is generally the most performant
since the dynamic scheduling of messages is able to reduce
release jitter because no space is waisted in the slots if the
packet size is properly selected, by using the MM approach
we can obtain almost the same result if the messages are
carefully allocated to slots. Moreover, in the case of larger
process sets MM outperforms DP, as DP suffers from large
overhead due to its dynamic nature. Also, DM performs
worse than DP and MM because it does not split the messag-
es into packets, and this results in a mismatch between the
size of the messages dynamically queued and the slot size,
leading to unused slot space that increases the jitter. SM per-
forms the worst as it does not permit much room for im-
provement, leading to large amounts of unused slot space.

Therefore, for the purpose of this paper, we consider that the
messages are scheduled using the MM approach, and for the de-
tails of the corresponding schedulability analysis the reader is
referred to [10]. The discussion can easily be extended to any of
the other three message passing approaches presented before.
2.3 Application Mapping and Scheduling
In order to implement an application, represented as a set of
processes, the designer has to map the processes to the system
nodes and generate the schedule table for the messages
(MEDL) such that all deadlines are satisfied. But producing a
mapping and scheduling so that the system is schedulable is not
enough if we are to support an incremental design process as
discussed in the introduction. In this case, starting from a sched-
ulable system, we have to improve the mapping of processes
and scheduling of messages so that not only the design con-
straints are satisfied, but there is also a good chance that, later,
new functionality can easily be mapped on the resulted system.

To illustrate the role of mapping and scheduling in the
context of an incremental design process, let us consider the
example in Figure 2, where we have two processors with the
same speed connected by a TTP bus. With black we represent
the set of already running applicationsψ while the current ap-
plicationΓcurrent to be mapped and scheduled is represented
in grey and consists of two processes and three messages. To
simplify the discussion, for this particular example we con-
sider that the system is not schedulable if theutilization factor
of any node is greater than one.We say that the processor can
be “filled up” with processes until it reaches an utilization
factor of one (the square depicting the processor is full). The
utilization factorUi of a processPi is the ratio between the
worst case execution timeCPi

of that process and its period
Ti: Ui=CPi / Ti. The utilization factor of a node is the sum of

the utilization factors of all processes mapped on that node.
The processes and messages that are to be mapped on the pro-
cessors are depicted as blocks. The height of a process block
is equal with its utilization factor, while the length of a mes-
sage block gives the size of the message. White space on a
processor represents available utilization, while white space
on the bus represents available slack in the schedule table.

Now, let us suppose that in the future another application,
Γfuture, has to be mapped on the system.Γfutureconsists of two
processes and two messages represented as hashed blocks.

We can observe that the new application can be sched-
uled only in the third case, presented in Figure 2c. IfΓcurrent
has been implemented as in Figure 2b, we are not able to
schedule processP2 and messagem2 of Γfuture. The way our
current application is mapped and scheduled will influence
the likelihood of successfully mapping additional function-
ality on the system without being forced to modify the im-
plementation of already running applications.
3. Problem Formulation
We model an applicationΓcurrent as a set of processes as
outlined in section 2.2. Thus, for each processPi we know
the setNPi of potential nodes on which it could be mapped
and its worst case execution time on each of these nodes.
The underlying architecture is as presented in section 2.1.
We consider fixed priority preemptive scheduling for pro-
cesses and a time-triggered message passing policy, as im-
posed by the TTP protocol (section 2.1).

Our goal is to map and schedule an applicationΓcurrent
on a system that already implements a setψ of applications,
considering the following requirements:
Requirementa: constraints onΓcurrentare satisfied and minimal
modifications are performed to the applications inψ.
Requirementb: new applicationsΓfuturecan be mapped on
the resulting system.

If it is not possible to map and scheduleΓcurrentwithout
modifying the already running applications, we have to
change the mapping and scheduling of some applications in
ψ. However, even with serious modifications performed on
ψ, it is still possible that certain constraints are not satisfied.
In this case the hardware architecture has to be changed by,
for example, adding a new processor. In this paper we will
not discuss this last case, but will concentrate on the situa-
tion where a possible mapping and scheduling which satis-
fies requirement a) can be found, and this solution has to be
further improved by considering requirement b).

In order to achieve our goals we need certain information
to be available concerning the set of applicationsψ as well as
the possible future applicationsΓfuture. We consider that
Γcurrent can interact with the previously mapped applications
ψ by reading messages generated on the bus by processes inψ.

Γfuture:

Figure 2. Incremental Mapping and Scheduling Example
m1 (2 bytes) m2 (6 bytes)P1 P2

a) b) c)

0.3
0.45
0.25

0.5
0.2
0.3

Slack, Available utilizationψ
Γcurrent: Process utilizations message sizes

3.1 Characterizing Existing Applications
To perform the mapping and scheduling ofΓcurrent, the mini-
mum information needed on the existing applicationsψ con-
sists of the worst case execution time, period and deadline for
each process on its node. As for messages, their length as well
as their place in the particular TDMA frame have to be known.

If the initial attempt to schedule and mapΓcurrent does
not succeed, we have to modify the mapping of processes
and schedule of messages belonging toψ, in the hope to
find a valid solution forΓcurrent. One of the goals in this pa-
per is to find that minimal modification to the existing sys-
tem which leads to a correct implementation ofΓcurrent. In
our context, such a minimal modification means remapping
and rescheduling a subset of old applicationsΩ ⊆ ψ so that
the total cost of reimplementingΩ is minimized. We repre-
sent a set of applications as a directed acyclic graphG(V, E),
where each nodeΓi ∈ V represents an application. An edge
eij ∈ E from Γi to Γj indicates that any modification toΓi
would trigger the need to also remap and scheduleΓj. Such
a relation can be imposed by certain interactions between
applications. In Figure 3 we present the graph correspond-
ing to a set of ten applications. ApplicationsΓ6, Γ8, Γ9 and
Γ10, depicted in black, are frozen: no modifications are al-
lowed to them. The rest of the applications have the remap-
ping costRi depicted on their left.Γ7 can be remapped with
a cost of 20. IfΓ4 is to be reimplemented, this also requires
the modification ofΓ7, with a total cost of 90. In the case of
Γ5, although not frozen, no remapping is possible as it
would trigger the need to remapΓ6 which is frozen. Given
a subset of applicationsΩ ⊆ ψ, the total cost of modifying
the applications inΩ is R(Ω)= .

To each applicationΓi ∈ V the designer has associated a
costRi of reimplementingΓi. Such a cost can typically be
expressed in hours needed to perform retesting ofΓi and
other tasks connected to the remapping of the application
(moving processes between nodes).
3.2 Characterizing Future Applications
What do we suppose to know about the familyΓfutureof appli-
cations which do not exist yet? Given a certain limited appli-
cation area (e.g. automotive electronics), it is not unreasonable
to assume that, based on the designers’ previous experience,
the nature of expected future functions to be implemented,
profiling of previous applications, available incomplete de-
signs for future versions of the product, etc., it is possible to
characterize the family of applications which would be added
to the current implementation. This is an assumption which is
basic for the concept of incremental design.

Thus, we consider that, concerning the future applica-
tions, we know the setSU={ Umin,...Ui,...Umax} of possible
processor utilization factorsfor processes, and the set
Sb={ bmin,...bi,...bmax} of possible message sizes. The pro-
cessor utilization factorUi provides a measure of the com-
putational load due to the a processPi, and is expressed as
Ui=CPi/Ti. The utilization factors inSU are considered rela-

tive to the slowest node in the system. All the other nodes
are characterized by a speed-up factor relative to this slow-
est node, which is used to calculate the actual utilization
factor due to a processPi if mapped on a nodeNj. The utili-
zation factor for an entire process set is given byU= .

We also assume that over these sets we know the distribu-
tions of probabilityfSU(U) for U∈SU andfSb(b) for b∈Sb. For
example, we might have possible utilization factors
SU={0.02, 0.05, 0.1, 0.2} for the future application. If almost
half of the processes are assumed to have an utilization factor
of 0.1, and there is a lower probability of having processes
with utilization factors of 0.2 and 0.02, then our distribution
function fSU(U) could look like this: fSU(0.02)=0.15,
fSU(0.05)=0.25, fSU(0.1)=0.45,fSU(0.2)=0.15.

Another information is related to the period of future ap-
plications. In particular, the smallest expected periodTmin is
assumed to be given, together with the expected necessary
bus bandwidthbneedinside such a periodTmin. As will be
shown later, this information is used in order to provide a
fair distribution of slacks on the bus.

For thesakeofsimplifying thediscussion,wewill notaddress
here the memory constraints during process mapping and the im-
plications of memory space in the incremental design process.
3.3 Quality Metrics
A designer will be able to map and schedule aΓfutureapplica-
tion on top of a system implementingψ andΓcurrentonly if
there are sufficient resources available. In our case, the resourc-
es are the processor time and the bandwidth on the bus. In the
context where processes are scheduled according to a fixed pri-
ority preemptive policy and messages are scheduled statically,
having free resources translates into having enough processor
capacity, and having space left for messages in the bus slots.
We measure the processor capacity using theavailable utiliza-
tion, while the available resources on the bus are calledslack.

It is to be noted that the total quantity of computation and
communication power available on our system after we have
mapped and scheduledΓcurrenton top ofψ is the same regard-
less of the mapping and scheduling policies used. What de-
pends on the mapping and scheduling strategy is the
distribution of the available utilization on each processor, the
size of the individual slacks on the bus, and the distribution of
slacks along the time line. It is the distribution of available
utilization and the size and distribution of the slacks that char-
acterizes the quality of a certain design alternative. In this
section we introduce the design criteria which reflect the de-
gree to which one design alternative meets the requirement b)
presented in section 3. For each criterion we provide metrics
which quantify the degree to which the criterion is met. Rel-
ative to processes we have introduced one criterion which re-
flects how well the resulted available utilization on the nodes
fits the requirements of a future application. For messages,
there are two criteria. The first one reflects how well the re-
sulted slack sizes fit a future application, and the second cri-
terion expresses how well the slack is distributed over time.
3.3.1 Processes Related Criterion
The distribution of available utilization on the nodes, result-
ed after implementation ofΓcurrenton top ofψ, should be

Figure 3. Characterizing the Set of Existing Applications

Γ1 Γ2 Γ3

Γ4

Γ5 Γ6
Γ7Γ8 Γ9 Γ10

150 70
50

70
50

20

Ri
Γi Ω∈

∑

Ui
i 1=

n

∑

such that it best accommodates a given family of applica-
tionsΓfuture, characterized by the setSU and the probability
distributionfSU as outlined before.

Let us consider the example in Figure 2, where we have
two processors and the applicationsψ and Γcurrent are al-
ready mapped. Suppose that applicationΓfuture consists of
the two processesP1 andP2. If we scheduleΓcurrent like in
Figure 2b it is impossible to fitΓfuture because there is not
enough available utilization on any of the processors that can
accommodate processP2. A situation as the one depicted in
Figure 2c is desirable, where the resulted available utiliza-
tion is such that the future application can be accommodated.

In order to measure the degree to which the available utili-
zation in a given design alternative fits the future applications,
we provide a metric,C1

P, which captures to what extent the
largest future application (considering the sum of available
process utilization) could be mapped on top of the current de-
sign. This potentially largest application is determined know-
ing the total size of the available utilization, and the
characteristics of the application:SU andfSU. For example, if
our total available utilization onall the processors is of 1.81
then we have to distribute this utilization according to the
probabilities infSU. Considering the numerical example for
processes given in section 3.2, the largest application will re-
sult as having a total of 20 processes: 3 processes of utilization
0.02, 5 of 0.05, 9 processes (almost half,fSU(0.1)=0.45) of uti-
lization 0.1, and 3 of 0.2. If the number of processes for a par-
ticular dimension is not an integer, then we use the ceiling.
After we have determined the largestΓfuture we apply abin-
packingalgorithm [9] using thebest-fitpolicy in which we
consider processes as the objects to be packed, and the avail-
able utilization as containers. The total utilization of unpacked
processes relative to the total utilization of the process set gives
theC1

P metric. In the case presented in Figure 2bU1=0.3 and
U2=0.25, andP2 represents 45% of the largest possible future
application. In this caseC1

P=45. However, in Figure 2c were
we were able to completely map the future applicationC1

P=0.
3.3.2 Criteria Related to Messages
The first criterionfor messages is similar to the one defined for
processes. Thus, the slack sizes in the message schedule table
MEDL (see section 2.1) resulted after implementation ofΓcur-

renton top ofψ should be such that they best accommodate a
given family of applicationsΓfuture, characterized by the setSb
and the probability distributionfSb for messages.

Let us consider the example in Figure 2, where we have
two processors and the applicationsψ andΓcurrentare already
mapped. ApplicationΓfuture has two messagesm1 andm2. It
can be observed that the best configuration, taking in consid-
eration only slack sizes, is to have a contiguous slack. Howev-
er, in reality, it is almost impossible to map and schedule the
current application such that a contiguous slack is obtained.
Not only is it impossible, but it is also undesirable from the
point of view of the second design criterion, discussed below.
On the other side, as we can see from Figure 2b, if we sched-
uleΓcurrentso that it fragments too much the slack, it is impos-
sible to fit Γfuture because there is no slack that can
accommodate messagem2. A situation as the one depicted in
Figure 2c is desirable, where the resulted slack sizes can ac-

commodate the characteristics of theΓfuture application.
In order to measure the degree to which the slack sizes in

a given design alternative fit the future applications, we pro-
vide the metricC1

m. C1
m captures how much of the commu-

nications of the largest future application which
theoretically could be mapped on the system if the slacks on
the bus would be summed, can be mapped on the current de-
sign alternative. The messages accounting for the largest
amount of communication are determined, as shown above
for processes, knowing the total size of the available slack,
and the characteristics of the application:Sb and fb.

C1
m is calculated similarly to the metricC1

P but, instead
of packing the processes as objects, we try to pack the mes-
sages into the available slack on the bus.C1

m is then the to-
tal size of unpacked messages, relative to the total size of
messages in the largest future application. For Figure 2b,
wherem2 could not be scheduled,C1

m is 75% becausem2
of 6 bytes represents 75% of the total message sizes of 8
bytes. For the design alternative in Figure 2cC1

m is 0% be-
cause all the messages have been scheduled.

We have just discussed a metric for how well the sizes of
the slacks fit a possible future application. A similar metric
is needed to characterize the distribution of slacks over time.

During implementation ofΓcurrentwe aim for a slack distri-
bution such that the future application with the smallest expect-
ed periodTmin and with the expected necessary bandwidth
bneedinside the periodTmin, can be accommodated. The mini-
mum over the slacks inside eachTminperiod, which is available
periodically to the messages ofΓfuture, is theC2

m metric.
In Figure 4 we present a message schedule table. We

consider a situation withTmin=120 ms andbneed=40 ms.
The length of the schedule table is 360 ms, and the already
scheduled messages ofψ andΓcurrentare depicted in black.
Let us consider the situation in Figure 4a. In the first period
Tmin, Period 0, there are 40 ms of slack available on the bus,
in the second period 80 ms, and in the third period no slack
is available. Thus, the total slack a future application with a
period Tmin can use on the bus in each period isC2

m=
min(40, 80, 0)=0 ms. In this case, the messages cannot be
scheduled. However, if we movem1 to the left in the sched-
ule table, we are able to create, in Figure 4b, 40 ms of slack
in each period, resulting aC2

m= 40 ms =bneed.
3.4 Cost Function and Exact Problem Formulation
In order to capture how well a certain design alternative meets
the requirement b) stated at the beginning section 3, the met-
rics discussed before are combined in a cost function, as fol-
lows: C= , where the
metric values are weighted by the constantswi. Our mapping
and scheduling strategy will try to minimize this function.

The first two terms measure how well a future application
fits to the available utilization on the processors and slack
sizes on the bus, respectively. In order to obtain a balanced
solution, that favours a good fitting both on the processors

CP
2 = min(40, 80, 0) = 0ms

Periodic slack

Bus
Period 0

Tmin

Period 1 Period 2

360 ms

Figure 4. Example for the 2 nd Message Design Criterion
Slack

Bus a)

m1

b)CP
2 = min(40, 40, 40) = 40ms

ψ andΓcurrent

w1
P

C1
P()

2
w1

m
C1

m()
2

w2
m

max 0 bneed, C2
m

–()+ +

and on the bus, we have used the squares of the metrics.
A design alternative that does not meet the second design

criterion for messages is not considered a valid solution. Thus,
using the last term, we strongly penalize the cost function if
bneed is not satisfied, by using high values for thew2 weight.

At this point, we can give an exact formulation to our
problem. Given an existing set of applicationsψ which are
already mapped and scheduled, and an applicationΓcurrent
to be mapped on top ofψ, we are interested to find a map-
ping and scheduling ofΓcurrentwhich satisfies all deadlines
such that the existing applications are disturbed as little as
possible. At the same time, the solution should minimize the
cost functionC, considering a family of future applications
characterized by the setsSU andSb, the functionsfSU andfSb
as well as the parametersTmin andbneed.
4. Mapping and Scheduling Strategy
As shown in Figure 5, our mapping and scheduling strategy
(MH) has two steps. In the first step we try to obtain a valid
solution forΓcurrent ∪ Ω so that the total modification cost
R(Ω) is minimized (Ω ⊆ ψ is the subset of existing applica-
tions that have to be modified to accommodateΓcurrent).
Starting from such a solution, a second step iteratively im-
proves on the design in order to minimize the cost functionC.
We iteratively improve the design using a transformational
approach. A new design is obtained from the current one by
performing a transformation calledmove. We consider the
following moves: moving a process to a different node, and
moving a message to a different slack on the bus. Only those
moves are valid moves that result in a schedulable system.
The intelligence of the Mapping Heuristic lies in how the po-
tential moves are selected. For each iteration a set of potential
moves is generated by thePotentialMove functions.SelectMove

functions then evaluate these moves with regard to the respec-
tive metrics and selects the best one to be performed.
4.1 The Initial Mapping and Scheduling
The first step of MH consists of an iteration that tries subsets
Ω ⊆ ψ with the intention to find that subsetΩ=Ωminwhich
produces a valid solution forΓcurrent∪ Ω such thatR(Ω) is
minimized.

Given a subsetΩ, the InitialMappingScheduling function (IMS)
constructs a mapping and schedule forΓcurrent∪ Ω that meets
the deadlines (both for processes inΓcurrent and those inΩ),
without worrying about the design criteria in section 3.3. For
IMS we used as a starting point the mapping algorithm intro-
duced in [15], based on a simulated annealing strategy. We have
modified the mapping algorithm in [15] to consider during
mapping a set of previous applications that have already been
mapped, and to schedule the messages according to the TDMA
protocol, using the MM approach [12]. The schedulability test
that checks a particular mapping alternative is performed ac-
cording to our schedulability analysis presented in [10].

If IMS succeeds in finding a mapping and a schedule
which meet the deadlines, this is not yet a valid solution. In
order to produce a valid solution we iteratively try to satisfy
the second design criterion for messages. In terms of our
metrics, that means a mapping and scheduling such thatC2

m

≥ bneed. Potential moves can be the shifting of messages in-

side their worst case (largest) [ASAP, ALAP] interval in or-
der to improve the periodic slack. InPotentialMoveC2

m , we also
consider movement of processes, trying to place the sender
and receiver of a message on the same processor and, thus,
reducing the bus load.SelectMoveC2

m evaluates these moves
with regard to the second design criterion and selects the best
one to be performed. Consider Figure 4a. InPeriod 2 on
nodeN1 there is no available slack. However, if we move
messagem1 with 40 ms to the left intoPeriod 1, as depicted
in Figure 4b, we create a slack inPeriod 2, thus the periodic
slack on the bus will be min(40, 40, 40)=40, instead of 0.
4.2 Incremental Mapping and Scheduling Strategy
If Step 1 of the MH algorithm (Figure 5) has succeeded, a
mapping and scheduling ofΓcurrent∪ Ω has been produced
which corresponds to a valid solution. In addition,Ω is such
that the total modification cost is as small as possible (mini-
mization of the modification cost is detailed in section 4.3).
Starting from this valid solution, the second step of the MH
strategy tries to improve on the design in order to minimize
the cost functionC. In a similar way as during Step 1, we it-
eratively improve the design by successive moves, without
invalidating the second criterion achieved in the first loop.

The loop ends when there is no improvement achieved on
the first two terms of the cost function, or a limit imposed on the
number of iterations has been reached. For each iteration, those
moves are performed which have the highest chance to im-
prove the cost function. The moves are generated in thePoten-

tialMove functions, and are evaluated and selected based on the
respective metrics in theSelectMove functions. We now briefly
discuss thePotentialMoveC1

P andPotentialMoveC1
m functions (Poten-

tialMoveC2
m has been discussed in the previous section).

PotentialMoveC 1
P Let Uf be the total utilization factor of

the largest future applicationΓfmax, andU0 the utilization of
that part which cannot be mapped in the current design al-
ternative. This function is responsible for selecting moves

Figure 5. Mapping and Scheduling Strategy (MH)

MappingSchedulingStrategy (MH)
Ω=∅ -- Step 1: try to find a valid schedule forΓcurrent that minimizesR(Ω)
repeat

succeeded=IMS(ψ \ Ω, Γcurrent∪Ω) -- initial mapping and scheduling
ASAP(Gcurrent∪Ω); ALAP(Gcurrent∪Ω)
-- compute worst case ASAP-ALAP intervals for messages
if succeeded then

repeat -- try to satisfy the second message related design criterion
-- find moves with highest potential to maximizeC2

m

move_set=PotentialMoveC2
m (Gcurrent∪Ω)

-- select and perform move which improves mostC2
m

move = SelectMoveC2
m (move_set); Perform(move)

succeeded = C2
m bneed

until succeeded or limit reached
end if
if succeeded and R(Ω) smallest so far then

Ωvalid=Ω; solutionvalid=solutioncurrent
end if
Ω=NextSubset(Ω) -- try another subset

until termination condition
if not succeeded then modify architecture; go to step 1; end if
-- Step 2: try to improve the cost functionC
solutioncurrent=solutionvalid; Ωmin=Ωvalid
repeat -- find moves with highest potential to minimizeC

move_set=PotentialMoveC1
P (Gcurrent∪Ωmin)

∪ PotentialMoveC1
m (Gcurrent∪Ωmin)

-- select move which improvesC
-- and does not invalidate the second message related design criterion
move = SelectMoveC1(move_set); Perform(move)

until C1 has not changed or limit reached
end MappingSchedulingStrategy

of processes from one node to another so thatC1
P = is

reduced. Moving a processPi with the utilization factorUi
from a nodeNj where it is currently mapped to a nodeNk
will increase the available utilization on nodeNj to UNj+Ui
and decrease the available utilization onNk to UNk-Ui. To
find outU0 in this new case would mean executing the bin-
packing with the processes of the future application as ob-
jects and the new available utilization configuration as con-
tainers. This can take significant execution time, however,
since it has to be done for each potential move.

In section 3.3 we have explained how we can determine
the processes that make up the largest future application,
Γfmax, based on the total available utilization and the
characterization of future applications. Let us assume that
Γfmaxconsists of the setPfmax={ Pf1, Pf2,...Pfn} of processes,
and thatP0={ Pfi, Pfi+1,...,Pfm} are the ones that cannot be
mapped in the current design alternative. The total
utilization requested by the unmapped processes isU0=Ufi
+ Ufi+1 + ... + Ufm. For the potential move ofPi from Nj to
Nk we have to recalculateC1

P which means determiningU0.
In order to reduce the execution time needed by the bin-

packing algorithm, we do not consider all the processes of
Γfmaxas objects to be packed. We consider for repacking only
those processes belonging toΓfmax that had to be removed
from Nk to make room forPi, together with those that were
already left outside. Our heuristic considers that to make room
for Pi on nodeNk we remove those processesPi

Nk ⊂ Γfmax
mapped onNk which have the smallest utilization factor, since
they are the ones that should be easiest to fit on other nodes.
The metric used bySelectMove to rank this move is the sum of
the utilization factors of processes which are left out after
trying to repack theP0 ∪ Pi

Nk set.
Out of the best moves according the previous metric, we

encourage those that have the smallest impact on the sched-
ulability analysis, since we would like to keep the system
schedulable. This means moving processes that have low
priority (do not have a large impact on other processes) and
have a response time that is considerably smaller than their
deadline (Di - Ri is large).

PotentialMoveC 1
m In order to avoid excessive fragmentation

of the slack on the bus we will consider moving a message to a
position that “snaps” to another existing message. A message
is selected for potential move if it has the smallest “snapping
distance”, i.e. in order to attach it to other message it has to
travel the smallest distance inside the schedule table. We also
consider moves that try to increase the individual slacks sizes.
Therefore, we first eliminate slack that is unusable: it is too
small to hold the smallest message of the future application.
Then, the slacks are sorted in ascending order and the smallest
one is considered for improvement. Such improvement of a
slack is performed through moving a nearby message, but
avoiding to create as a result an even smaller individual slack.
4.3 Minimizing the Modification Cost
In the first step of our mapping strategy, described in Figure 5,
we iterate on subsetsΩ searching for a valid solution which al-
so minimizes the total modification costR(Ω). As a first at-
tempt, the algorithm searches for a valid implementation of
Γcurrent without disturbing the existing applications(Ω=∅). If

no valid solution is found successive subsetsΩ produced by the
functionNextSubset are considered, until a terminating condition
is met. The performance of the algorithm, in terms of runtime
and quality of the solutions produced, is strongly influenced by
the implementation of the functionNextSubset and the termina-
tion condition. They determine how the design space is ex-
plored while testing different subsetsΩ of applications.
4.3.1 Exhaustive Search (ES)
In order to findΩmin, the simplest solution is to try succes-
sively all the possible subsetsΩ ⊆ ψ. These subsets are gen-
erated in the ascending order of the total modification cost,
starting from∅. The termination condition is fulfilled when
the first valid solution is generated. Since the subsets are
generated in ascending order, according to their cost, the
subsetΩ that first produces a valid solution is also the subset
with the minimum modification cost.

The generation of subsets is performed according to the
graphG that characterizes the existing applications (see sec-
tion 3.1). Finding the next subsetΩ, starting from the cur-
rent one, is achieved by a branch and bound algorithm that
in the worst case grows exponentially in time with the num-
ber of applications. For the example in Figure 2, the call to
NextSubset(∅) will generate {Γ7} which has the smallest non-
zero modification cost. The next generated subsets, in order,
together with their corresponding total modification cost
are:R({ Γ3})=50,R({ Γ3, Γ7})=70,R({ Γ4, Γ7})=90 (the in-
clusion ofΓ4 triggers the inclusion ofΓ7), R({ Γ2, Γ3})=120,
R({ Γ3, Γ4, Γ7})=140, R({ Γ1})=150, and so on. The total
number of possible subsets according to the graphG is 16.

This approach, while finding the optimal subsetΩ, re-
quires a large amount of computation time and can be used
only with a small number of applications.
4.3.2 Ad-hoc Subset Selection (AS)
If the number of applications is large, a possible ad-hoc solu-
tion could be based on a greedy strategy which, starting from
Ω=∅, progressively enlarges the subset until a valid solution
is produced. The algorithm looks at all the non-frozen appli-
cations and picks that one which, together with its dependen-
cies, has the smallest modification cost. If the new subset
does not produce a valid solution, it is enlarged by including,
in the same fashion, the next application with its dependen-
cies. This greedy expansion of the subset is continued until
the set is large enough to lead to a valid solution or no appli-
cation is left. For the example in Figure 2 the call toNextSub-

set(∅) will produce R({ Γ7})=20, and will be successively
enlarged toR({ Γ7, Γ3})=70,R({ Γ7, Γ3, Γ2})=140 (Γ4 could
have been picked as well in this step because it has the same
modification cost of 70 asΓ2 and its dependenceΓ7 is already
in the subset),R({ Γ7, Γ3, Γ2, Γ4})=210, and so on.

While this approach finds very quickly a valid solution,
if one exists, it is possible that the total modification cost is
much higher than the optimal one.
4.3.3 Subset Selection Heuristic (SH)
An intelligent heuristic should be able to identify the reasons
due to which a valid solution has not been found and use this
information when selecting applications to be included inΩ.
There can be two possible causes for not finding a valid solu-
tion: an initial mapping which meets the deadlines has not

U0

U f
-------100

been produced, or the second criterion is not satisfied.
Let us investigate the first reason. If an applicationΓi is

schedulable, this means that all its processes meet their dead-
lines. If IMS determines that the application is not schedula-
ble this means that at least one of the processesPi missed its
deadline:Ri > Di. Besides the intrinsic properties of the appli-
cation that can lead to this situation, processPi can miss its
deadline also because of the interference of higher priority
processes that are mapped on the same node withPi, process-
es that can also belong to other applications. In this situation
we say that there is aconflictwith processes belonging to oth-
er applications. We are interested to find out which applica-
tions are responsible for conflicts encountered by ourΓcurrent,
and not only that, but also which ones areflexibleenough to
move away in order to avoid these conflicts (Di - Ri is large).

IMS determines a metric∆i that characterizes the degree of
conflict and the flexibility of applicationΓi in relation toΓcur-

rent. A set of applicationsΩ will be characterized, in relation to
Γcurrent, by ∆(Ω)= . The metric∆(Ω) will be used by
our subset selection heuristic if IMS has failed to produce a so-
lution which satisfies the deadlines. An application with a larg-
er∆i is more likely to lead to a valid schedule if included inΩ.

Basically,∆i is the total amount ofinterferencecaused by
higher priority processes ofΓi to processes inΓcurrent. For a
processPi, the interferenceIji from a higher priority process
Pj mapped on the same node, is the time thatPj delays the

execution ofPi, and is given byIji= whereJj is the

release jitter of processPj and a detailed description of how
it is calculated in the context of the MM approach for mes-
sage scheduling over TTP is given in [10]. Figure 6 presents
in more detail how∆i is calculated.

If the initial mapping was successful, the first step of MH
could fail during the attempt to satisfy the second design cri-
terion for messages. In this case, the metric∆i is computed
in a different way. It will capture the potential of an applica-
tion Γi to improve the metricC2

m if remapped together with
Γcurrent. Thus, for the improvement ofC2

m we consider a to-
tal number of moves from all the non-frozen applications
(determined usingPotentialMoveC2

m (y), see section 4.1). For
each move that has as subjectmj∈Γi, we increment the met-
ric ∆i with the predicted improvement onC2

m .
MH starts by trying an implementation ofΓcurrent with

Ω=∅. If this attempt fails, because of one of the two reasons
mentioned above, the corresponding metrics∆i are computed
for all Γi∈ψ. Our heuristic SH will then start by finding the
ad-hoc solutionΩAH produced by the AS algorithm (this will
succeed if there exists any solution) with a corresponding cost
RAH=R(ΩAH) and a∆AH=∆(ΩAH). SH now continues by try-

ing to find a solution with a more favourableΩ (a smaller total
costR). Therefore, the thresholdsRmax=RAH and∆min=∆AH/
n (for our experiments we consideredn=2) are set. For gener-
ating new subsetsΩ, the functionNextSubset now follows a
similar approach like ES but in a reverse direction, towards
smaller subsets, and it will consider only subsets with a small-
er total cost thanRmax and a larger∆ than∆min (a small∆
means a reduced potential to eliminate the cause of the initial
failure). Each time a valid solution is found, the current values
of Rmax and∆min are updated in order to further restrict the
search space. The heuristic stops when no subset can be found
with ∆>∆min, or a certain imposed limit has been reached
(e.g. on the total number of attempts to find new sets).
5. Experimental Results
For the evaluation of our mapping strategies we first used pro-
cess sets of 40, 80, 160, 240 and 320 processes representing
the Γcurrentapplication generated for experimental purpose.
30 applications were generated for each set dimension, thus a
total of 150 applications were used for experimental evalua-
tion. We considered an architecture consisting of 10 nodes of
different speeds. For the communication channel we consid-
ered a transmission speed of 256 kbps and a length below 20
meters. The maximum length of the data field in a bus slot
was 8 bytes. All experiments were run on a SUN Ultra 10.

The first result concerns the quality of the designs ob-
tained with our mapping strategy MH using the search heu-
ristic SH compared to the case when the ad-hoc approach AS
and the exhaustive search ES are used for subset selection.
For each of the five application dimensions generated we
have considered a set of existing applicationsψ consisting of
160, 240, 320, 400 and 480 processes, respectively. The sets
contained 4, 6, 8, 10 and 12 applications, each application
with an associated modification cost assigned manually in
the range 10 to 100. The dependencies between applications
were such that the total number of subsets resulted for each
setψ were 8, 32, 128, 256, and 1024. We have considered that
the future applicationsΓfutureconsist of a process set of 80
processes, randomly generated according to the following
specifications:SU={0.02, 0.05, 0.1, 0.15, 0.2},fSU(SU)={10,
25, 45, 15, 5%},Sb={2, 4, 6, 8 bytes},fSb(Sb)={20, 50, 20,
10%}, Tmin=250 ms andbneed=20 ms.

MH has been used to produce a valid solution for each of
the 150 process sets representingΓcurrenton top of the exist-
ing applicationsψ using the ES, AS and SH approaches to
subset selection. For each of the resulted valid solutions, there
corresponds a minimum modification costR(Ωmin). Figure 7a
compares the three approaches to subset selection based on
the modification cost needed in order to obtain a valid solu-
tion. The exhaustive approach ES is able to obtain valid solu-
tions at the optimum (smallest) modification cost, (e.g. less
than 400, in average, for systems with 12 applications con-
sisting of a total of 480 processes), while the ad-hoc approach
AS needs in average 3.11 times more costly modifications in
order to obtain valid solutions (e.g. more than 1100 for 480
processes in Figure 7a). However, in order to find the optimal
remapping the ES approach needs large computation times.
For example, it can take more than 35 minutes, in average, in
order to find the smallest cost subset to be remapped that

DeltaMetrics(Γcurrent, Ω)
for each non frozen Γi∈Ω ∆i = 0 end for
for each Pi∈Γcurrent

if Ri > Di
for each non frozen Γk∈Ω

-- hp(Pi) is the set of processes with higher priority thanPi
for each Pj ∈Γk ∩ hp(Pi): ∆k = ∆k + Cj*(Jj+Ri)/Tj end for

end for
end if

end for
return ∆
end DeltaMetrics

Figure 6. Determinig the ∆ metrics

∆iΓi Ω∈
∑

J j R+ i

T j
---------------- Cj

leads to a valid solution in the case we have 12 applications.
From Figure 7a we can see that the proposed heuristic SH
performs quite well, needing only 1.84 times larger costs, in
average, in order to obtain a valid schedule, and this is
achieved at a computation cost comparable with the fast ad-
hoc approach AS. For the results in Figure 7a we have elimi-
nated those situations in which a valid solution has not been
produced by MH (which means that there is no solution re-
gardless of the modification cost).

Next, we were interested to investigate the quality of the
mapping heuristic MH compared to a so calledad-hoc map-
ping approach(AM). To concentrate on this, we have consid-
ered thatno modificationsare allowed to the applications in
ψ. The AM approach is a simple, straight-forward solution to
produce designs which, to a certain degree, support an incre-
mental process. AM tries to evenly balance the available uti-
lization remaining after mapping the current application. The
quality of the designs obtained with MH and AM were com-
pared with a near-optimal mapping and schedule obtained
with a Simulated Annealing strategy (SA) strategy [12], that
minimizes the cost function C (section 3.4). One of the draw-
backs of the SA strategy is that in order to find near-optimal
solutions it needs very large computation times. Such a strat-
egy, although useful for the final stages of the system synthe-
sis, cannot be used inside a design space exploration cycle.

MH, SA and AM have been used to map each of the 150
process sets representingΓcurrent on the existing applications
ψ. For each of the resulted designs, the objective functionChas
been computed. Very long and expensive runs have been per-
formed with the SA algorithm for each process set and the best
ever solution produced has been considered as the near-opti-
mum for that process set. We have compared the cost function
obtained for the 150 process sets considering each of the three
mapping algorithms. Figure 7b presents the average percent-
age deviation of the cost function obtained with the MH and
AH from the value of the cost function obtained with the near-
optimal scheme. We have excluded from the results in Figure
7b, 28 solutions obtained with AH for which the second design
criterion for messages has not been met, and thus the objective
function has been strongly penalized. The SA approach per-
forms best in terms of quality at the expense of a large execu-
tion time, which can be up to 40 minutes for large sets of 320
processes. MH performs very well, and is able to obtain good
quality solutions in a very short time, e.g., 6.5 seconds for 320
processes. AH is very fast, but since it does not address explic-

itly the design criteria presented in Section 3 it has the worst
quality of solutions, according to the cost function.

The most important aspect of the experiments is determin-
ing to which extent the mapping strategies proposed in the pa-
per really facilitate the implementation of future applications.
To find this out, we have mapped process sets of 40, 80, 160
and 240 processes representing theΓcurrentapplication on top
of the previously generated existing applicationsψ. After
mapping and scheduling each of these applications we have
tried to add a new applicationΓfuture to the resulted system.
Γfuture consists of a process set of 80 processes, randomly
generated according to the same specifications presented be-
fore. The experiments have been performed two times, using
first MH*1 and then AM for mappingΓcurrent. In both cases
we were interested if it is possible to find a valid implemen-
tation forΓfuture on top ofΓcurrent using the initial mapping
algorithm IMS. Figure 8a shows the number of successful
implementations in the two cases. In the caseΓcurrent has
been mapped with MH*, this means using the design criteria
and metrics proposed in the paper, we were able to find a val-
id schedule for 56% of the total mapping attempts with IMS
usingΓfuture. However, using AH to mapΓcurrenthas led to a
situation where IMS is able to find valid schedules in only
31% of the cases. Another observation from Figure 8 is that
when the available utilization is large, as in the caseΓcurrent
has only 40 processes, it is easy for both MH* and AM to find
a mapping that allows adding future applications. However,
asΓcurrentgrows to 80, only MH* is able to find a mapping of
Γcurrent that supports an incremental design process, accom-
modating more than 60% of the future applications, while us-
ing AM only less than 25% are accommodated. If the
remaining utilization is very small, after we map aΓcurrentof
240, it becomes practically impossible to map new applica-
tions without modifying the current system.

However, in the case the mapping heuristic isallowed to
modifythe existing system as discussed in this paper then we
are able to increase the number of successfully mappedΓfu-

ture applications to 73% from the total instead of only 56%.
The percentage of accommodatedΓfutureapplications, for dif-
ferent dimensions ofΓcurrent, if modifications are allowed on
the existing system, is shown by the diagram MH in Figure
8b. After mapping aΓcurrentwith 80 processes using MH we

1. MH* is the same mapping heuristic as in Figure 5, but in
which we do not allow modifications to the existing applications.

0

200

400

600

800

1000

1200

160 240 320 400 480

AS

SH

ES

Number of processes (applications)

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e

[m
in

]

A
ve

ra
ge

 M
od

ifi
ca

tio
n

C
os

tR
(Ω

m
in
)

(4) (6) (8) (10) (12)

0

20

40

60

80

100

120

140

160

40 80 160 240 320

AM

MH

SA

Number of processes inψ

A
ve

ra
ge

 P
er

ce
nt

ag
e

D
ev

ia
tio

n
[%

]

Figure 7. a) Average Modification Costs for AS, SH, ES and b) Percentage Deviations for AH, MH, SA

a) b)

are able to accommodate 88% of the future applications,
compared to only 61% in the case we do not allow modifica-
tions to the existing system (MH*). Such an increase is, of
course, expected. The important aspect, however, is that it is
obtained not by randomly selecting old applications to be
remapped, but by performing this selection such that the total
modification cost is minimized.

Finally, we considered an example implementing a vehicle
cruise controller (CC) modelled as a process set. The CC has
32 processes and it was to be mapped on an architecture con-
sisting of 4 nodes, namely: Anti Blocking System, Transmis-
sion Control Module, Engine Control Module and Electronic
Throttle Module. The systemψ consists of 80 processes gener-
ated randomly. The CC is theΓcurrent application to be
mapped. We have also generated 30 future applications of 40
processes each with the characteristics of the CC, which are
typical for automotive applications. By mapping the CC using
MH* we were able to later map 18 of the future applications,
while using AH only 6 of the future applications could be
mapped. MH* and AH do not consider modifications to the ex-
isting system. When modifications are allowed, using the MH
approach, we are able to map 26 of the 30 future applications.
6. Conclusions
We have presented an approach to the incremental design of
distributed hard real-time systems. Such a design process sat-
isfies two main requirements when adding new functionality:
the already running functionality is disturbed as little as pos-
sible, and there is a good chance that, later, new functionality
can easily be mapped on the resulted system. Our approach
was considered in the context of a fixed priority scheduling
policy for processes and a static cyclic scheduling policy for
messages. Scheduling of messages has been done using a re-
alistic communication model based on a TDMA scheme.

We have introduced several design criteria with their corre-
sponding metrics, that drive our mapping strategies to solutions
supporting an incremental design process. For constructing an
initial valid solution, we have shown that it is needed to take
into account the features of the communication protocol.

Three algorithms have been proposed to produce a min-
imal subset of applications which have to be remapped and
scheduled in order to implement the new functionality. ES
is based on a, potentially slow, branch and bound strategy
which finds an optimal solution. AS is very fast but produc-
es solutions that could be of too high cost, while SH is able
to quickly produce good quality results. The approaches
have been validated through several experiments.

References
[1] Audsley, N.C., Burns, A., Davis, R.I., Tindell, K., Wellings,

A.J. 1995. Fixed Priority Preemptive Scheduling: An
Historical Perspective. Real-Time Systems, 8(2/3), 173-198.

[2] Balarin, F., Lavagno, L., Murthy, P., Sangiovanni-Vincentelli,
A. 1998. Scheduling for Embedded Real-Time Systems.
IEEE Design and Test of Computers, 71-82, January-March.

[3] Dobrin R., Özdemir, Y., Fohler, G. Task Attribute Assignment
of Fixed Priority Scheduled Tasks to Reenact Off-Line
Schedules, In Proc. of RTCSA 2000 Korea , December 2000.

[4] Ermedahl, H., Hansson, H., Sjödin, M. 1997. Response-Time
Guarantees in ATM Networks. Proceedings of the 18th IEEE
Real-Time Systems Symposium, 274-284.

[5] Gutiérrez García, J.J., González Harbour, M. 1995.
Optimized Priority Assignment for Tasks and Messages in
Distributed Hard Real-Time Systems, Proc. 3d Workshop on
Parallel and Distributed Real-Time Systems, 124-132.

[6] Kopetz, H., Grünsteidl, G. 1994. TTP-A Protocol for Fault-
Tolerant Real-Time Systems. IEEE Computer, 27(1), 14-23.

[7] Liu, C.L., Layland, J.W. 1973. Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment.
Journal of the ACM, 20(1), 46-61.

[8] Lonn, H., Axelsson, J. 1999. A Comparison of Fixed-Priority
and Static Cyclic Scheduling for Distributed Automotive
Control Applications. Proceedings of the 11th Euromicro
Conference on Real-Time Systems, 142-149.

[9] Martello, S., Toth, P. 1990. Kanpsack Problems: Algorithms
and Computer Implementations. Wiley.

[10] Pop P., Eles P., Peng Z. 1999. Schedulability-Driven
Communication Synthesis for Time Triggered Embedded
Systems. Proc. of the 6th International Conference on Real-
Time Computing Systems and Applications, 287-294.

[11] Pop P., Eles P., Pop T., Peng Z. 2001. Minimizing System
Modification in an Incremental Design Approach. Proceedings
of the 9th Int. Symp. on Hardware/Soft. Codesign, 183-188.

[12] Reevs, C.R. 1993. Modern Heuristic Techniques for
Combinatorial Problems. Blackwell Scientific Publications.

[13] Stankovic, J. A., Ramamritham, K. 1993. Advances in Real-
Time Systems. IEEE Computer Society Press.

[14] Sha, L., Rajkumar, R., Lehoczky, J. 1990. Priority Inheritance
Protocols: An Approach to Real-Time Synchronization. IEEE
Transactions on Computers, 39(9), 1175-1185.

[15] Tindell, K., Burns, A., Wellings, A.J. 1992. Allocating Real-
Time Tasks (An NP-Hard Problem made Easy). Real-Time
Systems, 4(2), 145-165.

[16] Tindell, K., Burns, A., Wellings, A.J. 1995. Calculating
Controller Area Network (CAN) Message Response Times.
Control Eng. Practice, 3(8), 1163-1169.

[17] Tindell, K., Clark, J. 1994. Holistic Schedulability Analysis
for Distributed Hard Real-Time Systems, Microprocessing
and Microprogramming, 40, 117-134.

0

20

40

60

80

100

40 80 160 240

MH

AM

0

20

40

60

80

100

40 80 160 240

MS

MH

AM

Number of processes inΓcurrent

P
er

ce
nt

ag
e

ofΓ
fu

tu
re
 [%

]

Figure 8. Percentage of Γfuture Apps. Successfully Mapped: a) No modifications b) Modifications Allowed

P
er

ce
nt

ag
e

ofΓ
fu

tu
re
 [%

]

Number of processes inΓcurrent

AM

MH*

AM

MH*
MH

a) b)

	Figure 7. a) Average Modification Costs for AS, SH, ES and b) Percentage Deviations for AH, MH, SA
	Figure 8. Percentage of Gfuture Apps. Successfully Mapped: a) No modifications b) Modifications A...
	Abstract
	In this paper we present an approach to mapping and scheduling of distributed hard real-time syst...
	1. Introduction
	Figure 1. Bus Access Scheme

	2. Preliminaries
	2.1 System Architecture
	2.2 Computational Model and Schedulability Analysis
	2.3 Application Mapping and Scheduling
	Figure 2. Incremental Mapping and Scheduling Example

	3. Problem Formulation
	3.1 Characterizing Existing Applications
	Figure 3. Characterizing the Set of Existing Applications

	3.2 Characterizing Future Applications
	3.3 Quality Metrics
	3.3.1 Processes Related Criterion
	3.3.2 Criteria Related to Messages
	Figure 4. Example for the 2nd Message Design Criterion

	3.4 Cost Function and Exact Problem Formulation

	4. Mapping and Scheduling Strategy
	4.1 The Initial Mapping and Scheduling
	Figure 5. Mapping and Scheduling Strategy (MH)

	4.2 Incremental Mapping and Scheduling Strategy
	4.3 Minimizing the Modification Cost
	4.3.1 Exhaustive Search (ES)
	4.3.2 Ad-hoc Subset Selection (AS)
	4.3.3 Subset Selection Heuristic (SH)
	Figure 6. Determinig the D metrics

	5. Experimental Results
	6. Conclusions
	References
	[1] Audsley, N.C., Burns, A., Davis, R.I., Tindell, K., Wellings, A.J. 1995. Fixed Priority Preem...
	[2] Balarin, F., Lavagno, L., Murthy, P., Sangiovanni-Vincentelli, A. 1998. Scheduling for Embedd...
	[3] Dobrin R., Özdemir, Y., Fohler, G. Task Attribute Assignment of Fixed Priority Scheduled Task...
	[4] Ermedahl, H., Hansson, H., Sjödin, M. 1997. Response-Time Guarantees in ATM Networks. Proceed...
	[5] Gutiérrez García, J.J., González Harbour, M. 1995. Optimized Priority Assignment for Tasks an...
	[6] Kopetz, H., Grünsteidl, G. 1994. TTP-A Protocol for Fault- Tolerant Real-Time Systems. IEEE C...
	[7] Liu, C.L., Layland, J.W. 1973. Scheduling Algorithms for Multiprogramming in a Hard-Real-Time...
	[8] Lonn, H., Axelsson, J. 1999. A Comparison of Fixed-Priority and Static Cyclic Scheduling for ...
	[9] Martello, S., Toth, P. 1990. Kanpsack Problems: Algorithms and Computer Implementations. Wiley.
	[10] Pop P., Eles P., Peng Z. 1999. Schedulability-Driven Communication Synthesis for Time Trigge...
	[11] Pop P., Eles P., Pop T., Peng Z. 2001. Minimizing System Modification in an Incremental Desi...
	[12] Reevs, C.R. 1993. Modern Heuristic Techniques for Combinatorial Problems. Blackwell Scientif...
	[13] Stankovic, J. A., Ramamritham, K. 1993. Advances in Real- Time Systems. IEEE Computer Societ...
	[14] Sha, L., Rajkumar, R., Lehoczky, J. 1990. Priority Inheritance Protocols: An Approach to Rea...
	[15] Tindell, K., Burns, A., Wellings, A.J. 1992. Allocating Real- Time Tasks (An NP-Hard Problem...
	[16] Tindell, K., Burns, A., Wellings, A.J. 1995. Calculating Controller Area Network (CAN) Messa...
	[17] Tindell, K., Clark, J. 1994. Holistic Schedulability Analysis for Distributed Hard Real-Time...

	Flexibility Driven Scheduling and Mapping for Distributed Real-Time Systems
	Paul Pop, Petru Eles, Zebo Peng Dept. of Computer and Information Science, Linköping University, ...

