

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 20, 2017

Evolutional development of controlling software for agricultural vehicles and robots

Nakanishi, Tsuneo; Jæger, Claes Lund Dühring; Griepentrog, Hans-Werner

Publication date:
2012

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Nakanishi, T., Jæger-Hansen, C. L., & Griepentrog, H-W. (2012). Evolutional development of controlling
software for agricultural vehicles and robots. Paper presented at 3rd International Conference on Machine
Control & Guidance, Stuttgart, Germany.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13797993?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/evolutional-development-of-controlling-software-for-agricultural-vehicles-and-robots(13c868e9-7222-4e50-86bf-f7c5a65816d6).html

3rd International Conference on Machine Control & Guidance, March 27-29, 2012

Evolutional Development of Controlling Software
for Agricultural Vehicles and Robots

Tsuneo Nakanishi1, Claes Jæger-Hansen2, and Hans-Werner Griepentrog2

1Faculty of Information Science and Electrical Engineering, Kyushu University, Japan
2Institute of Agricultural Engineering, University of Hohenheim, Germany

Abstract
Agricultural vehicles and robots expand their controlling software in size and complexity for their
increasing functions. Due to repeated, ad hoc addition and modification, software gets structurally
corrupted and becomes low performing, resource consuming and unreliable. This paper presents an
evolutional development process combining Software Product Line (SPL) and eXtreme Derivation
Development Process (XDDP). While SPL is a promising paradigm for successful reuse of software
artefacts, it requires understanding of the whole system, a global and future view of the system, and
preparation of well managed core assets. By contrast, while XDDP is a less burden process which
focuses only on the portion to be changed in the new system, it never prevents software structure from
corrupting due to absence of the global view of the system. The paper describes an adoption process
for SPL, with an example of the autonomous tractor, that applies XDDP initially for addition and
modification of functions, accumulates core assets and cultivates a global view of the system through
iterated development with XDDP, and finally shifts to SPL development.

Keywords
Software Evolution, Software Development Process, Software Product Line, Derivative Development

1 INTRODUCTION
The agricultural vehicle has been getting to provide more operator friendly services. Its evolution

toward the unmanned vehicle is a definite trend and its final goal should be the autonomous robot with
intelligence. In this forecasted evolution, embedded software controlling agricultural vehicles and
robots will play an important role more than before. Most of intelligent and attractive functions to
automate agricultural tasks are implemented mainly by software. These functions must analyse data
from various sources including on-board sensors, GPS, other vehicles or robots, base stations,
databases etc.; make sophisticated decisions; and drive multiple mechanical devices such as engine,
brake, various implements, etc. in a coordinated manner through networks such as CAN, ISOBUS etc.
Software implementing these functions grows quite easily in size and complexity. In fact, for the
decade and more, automotive industry has experienced steep increase in size and complexity of
software brought by integrated functions. According to Broy, 2006, in the general passenger vehicle,
more than 2,000 functions were controlled by software; the size of the source code was over ten
million lines; and 50 to 70% of development cost was dedicated for software. It is almost impossible
to construct correctly working software of such large scale by code centric development without well-
defined sound process.
 Besides size and complexity, variability can be a big issue in agricultural vehicles and robots.
Agricultural vehicles and robots perform different tasks for different crops under different
geographical, climatic, and economic environments. They employ different technologies, namely
hardware and mechanical devices, and the technologies themselves will evolve. These diversities in
agriculture and technology finally result in a huge amount of variability in software.
 Basically, repeated additions and modifications are applied to the existing software in evolution of
software. As ad hoc additions and modifications are repeated, software is structurally corrupted and
become low performing, resource consuming and unreliable.
 This paper discusses evolutional development of software. The authors propose to introduce
software product line (SPL) [Clements & Northrop, 2001; Pohl et al., 2005], a paradigm of software

3rd International Conference on Machine Control & Guidance, March 27-29, 2012

reuse for different products, for steady evolution without corruption of software structure. However, it
is often difficult to adopt SPL without preparation even for development sites having concrete
development processes for single product development. Moreover, SPL requires a global view of the
current and future agricultural vehicles and robots, which is difficult to foresee for a long term.
Therefore, the authors also propose to perform some iterations of the extreme derivative development
process (or XDDP for short) [AFFORD] until SPL development gets applicable.
 This paper is organized as follows: Section 2 gives some fundamental concepts on SPL. Section 3
describes XDDP in comparison with SPL. Section 4 shows our ideas on evolutional development
starting from XDDP and shifting toward SPL. Finally, Section 5 concludes the paper.

2 PARADIGM OF SOFTWARE PRODUCT LINE
SPL development enables production of various software systems with different functionality and

quality, namely software product line, in a strategic and planned manner by optimally constructing and
reusing core assets shared among the systems.

SPL is absolutely not a development method to produce different products by using libraries, which
store codes reusable in other products, in an ad hoc, code centric, individual skill dependent manner.
SPL development is driven by business and technical plans of the product line. Essential plans are the
scope and the road map of the product line that define which products are in and out of the product
line at a certain time. Artefacts steadily reused in the products in the plans are constructed and
maintained as the core assets of the product line. The core assets include not only codes but also
artefacts in upper sub-processes such as requirements, specifications and designs. They are reused to
construct each product by a prescribed manner, not by an individual manner.

SPL is a paradigm of software reuse among different products, rather than a certain software
development methodology. A lot of methodologies and case studies based on the SPL paradigm have
been presented and reported by academic researchers and industrial practitioners for the last ten to
fifteen years. Some fundamental concepts in the SPL paradigm, which are described below, are
introduced in these works:

Separation of domain engineering and application engineering: Domain engineering is a set of
activities to construct and maintain core assets for the whole product line. Application engineering is
a set of activities to develop each product by reusing core assets. These are clearly distinguished in
SPL development. Moreover, management to coordinate domain engineering and application
engineering is also essential. Figure 1 shows an instance of the SPL development process.

Separation of commonality and variability: Commonality and variability among products are
analysed in SPL development. Commonality and variability are often described in terms of features,
which can be defined as any prominent and distinctive concepts or characteristics that are visible to
various stakeholders of the system [Kang et al., 1990; Lee et al., 2002]. Analysed features are
categorized in terms of constraint of its selection in each product and organized as a feature model
[Kang et al., 1990]. Each product is distinguished by its equipping features.

Figure 2 shows an illustrative example feature model of an imaginary autonomous tractor product
line. Each node of the feature model represents a feature. A node without any decoration represents a
mandatory feature, which should be equipped by all the products. A node with circular decoration
represents an optional feature, which may or may not be equipped by each product. A set of nodes
bundled by an arc represents alternative features such that one of them is alternatively equipped by
each product. Regardless of its category on selection constraint, the feature is not equipped by a
product if its parent feature is not equipped in the product. The edge between nodes represents
semantic relationship between corresponding features. Consists-of relationship means that the parent
feature consists of the child feature; that is, the child feature forms a part of the parent feature.
Generalization relationship means that the parent feature is a generalized concept of the child feature.
Implemented-by relationship means that the parent feature is realized by the child feature. Consistent
selection of features on the feature model specifies a product.

3rd International Conference on Machine Control & Guidance, March 27-29, 2012

Figure 1: SPL development process

GyroOdometory

Route

Following

Global

Positioning

GPS

Steering

Control

Driving

Control

3P Hitch

Control

Ultrasonic

Route

Planning

Obstacle

Detection

Laser

Scanner

Image

Recognition

Avoidance

Tactics

Stop
Get

Around

Obstacle

Avoidance

Autonomous

Tractor

Autonomous

Running
Pulughing Seeding

... ...

consists-of

generalization

implemented-by

Figure 2: Feature Model

Architecture centric development: In SPL development, software architecture is established with
considering the results of commonality and variability analysis to enable comprehensive and
disciplined product derivation in application engineering. Core assets are also constructed to be
applicable to the architecture. Application engineering is allowed to reuse core asset components at
predefined points, referred to as variation points, in the software architecture in a prescribed manner.

Separation of problem and solution spaces: The problem space is a space storing variability models
of the product line. The feature model is a representative artefact in this space. On the other hand, the
solution space is a space storing other artefacts across various abstraction levels including
requirements, specifications, designs, implementations, and testing. Traceability from the problem
space to the solution space is somehow kept in SPL development. For example, requirement,
specification, design, implementation and testing artefacts in the solution space are tagged by a feature
at the portions in where the feature is realized. This traceability eases product derivation based on
feature selection in application engineering.

Inherently, SPL is a development paradigm which requires a global and future view of the product
line and definition of software architecture comprehending the whole product line. Most of
development sites already have some working systems before introducing SPL. It is essential to

3rd International Conference on Machine Control & Guidance, March 27-29, 2012

understand the whole system to define the software architecture of the product line. However, that
makes introduction of SPL prohibitive for large and complicated systems due to excessively growing
cost of domain engineering, time limitation, human resource limitation, lack of reliable documents etc.
Moreover, it is often too difficult to foresee future evolution of the product line for innovative
products such as agricultural robots.

Another adoption problem of SPL is the maturity level of the development site. At least, it is
hopeless for development sites continuing code centric development to introduce SPL successfully. It
requires a sound development process and documents in enough quality and quantity to perform
domain engineering.

To alleviate these adoption barriers, the authors propose to introduce a derivative development
process and then shift to SPL development.

3 XDDP: A DERIVATIVE DEVELOPMENT PROCESS
XDDP, which stands for eXtreme Derivative Development Process [AFFORD], is a derivative

development process introduced to development sites in Japanese industries [Kobata, 2010]. XDDP is
a development method to produce new products by adding and modifying an existing product. XDDP
can be used as a development process to produce different products with commonality and variability
likewise for SPL. However, XDDP is established independently from SPL and, in fact, it does not
have fundamental concepts of SPL described in Section 2. For example, XDDP does not have the
concept of the core asset. XDDP modifies the base product to construct a new product, instead of
combining core assets. Figure 3 shows the overview of XDDP. Each circular node in the figure
represents a sub process of XDDP. Due to page limitation, the details of each sub process are omitted.

Realiaze change

reqs.

Realize reqs on

additional

functionalities.

Update test

cases

Integrate

programs and

perform testing.

test cases

change reqs

source codes of

the new product

source codes of

the base product

reqs on additional

functionalities

design docs for

additional

functionalities

module design

docs for additional

functionalities

source codes for

additional

functionalities

modified source

codes

reqs & specs for

additional

functionalities

change reqs &

specs

change design

docs

existing docs &

references

reverse

engineered docs

Figure 3: Overview of XDDP

XDDP starts development of a new product from describing change requirements and specifications
to the base product as well as requirements and specifications for additional functions. Change
requirements and specifications are different from commonly known requirements and specifications
in that they regard desired changes, not desired functionality and quality, for the new product as
requirements and specifications. Change requirements are description on what the stakeholder of the
new product wants to be changed from the base product. Change specifications are description

3rd International Conference on Machine Control & Guidance, March 27-29, 2012

specifying, namely describing without any ambiguity, how the base product should be modified to
satisfy the change requirements. On the other hand, requirements and specifications for additional
functions are same as commonly known requirements and specifications except they are only for
additional functionalities. Note that change requirements and specifications can also include all the
modifications to the base product caused by additional functions.

Table 1 shows an example of change requirements and specifications. The example is error
correction in longitude and latitude observed by GPS due to tilt of the tractor. (See [Eriksen &
Jæger-Hansen, 2010] for the details.) Change requirements and specifications are described with
keeping their correspondence. A change requirement is followed by the change specifications
satisfying it. Moreover, the change requirement is annotated by its reason to make the context of the
requirement explicit.

Table 1: Change requirements and specifications

TiltComp Change Req Want to correct the error in longitude and latitude observed by
GPS due to tilt of the tractor.

 Reason Errors non-negligible for precise agricultural tasks are
produced depending on tilt of the tractor, because the GPS
antenna is attached at a distant and higher position from the
reference point in the tractor.

TiltComp.1 Change Spec Add a task to interface the inclination sensor, get the roll and
pitch angles of the tractor and apply LPFs to the observed roll
and pitch angles for noise reduction.

TiltComp.2 Change Spec Let the Kalman filter in the global positioning task, which is
used for better estimation of the position, use compensated
longitude and latitude for its input, instead of raw longitude and
latitude from GPS. Let ℎant be the height of the antenna,
�Kalman the angle of the tractor coordinate system to the global
coordinate system estimated by the Kalman filter, and �roll and
�pitch the filtered roll and pitch angles respectively. The errors
to real latitude and longitude due to tilt of the tractor, denoted
by �long and �lat respectively, are expressed as follows:

�long = ℎ cos(�Kalman + �P-R) �lat = ℎ	 sin(�Kalman + �P-R)
where ℎ = ℎant�sin� �pitch + sin� �roll and �P-R =
tan�� �� !roll

�� !pitch. These errors are added to longitude and latitude

observed by GPS for compensation.

Change design documents describes necessary modification to the existing design to satisfy the
change specifications, namely how the modules of the base product should be modified. The
traceability matrix makes the change design documents traceable from the change requirements and
specifications. Table 2 is an example of the traceability matrix after module design for the change is
finished. The traceability matrix shows which module corresponding to a column should be modified
to realize each change requirement or specification corresponding to a row by the check mark “X”.

It will be necessary to engineer the current implementation reversely to describe change
specifications and the traceability matrix, if the documents on the current implementation are not
available. The results of reverse engineering are documented and referenced to describe change
designs.

In the final stage, existing source codes of the base product are modified with referencing
traceability matrix and change design documents to satisfy change requirements and specifications.
Ad hoc modification of existing codes often causes newly introduced bugs. Objective of this lazy and

3rd International Conference on Machine Control & Guidance, March 27-29, 2012

planned code modification strategy is to avoid unnecessary waste of time for repeated correction due
to the bugs newly introduced by modification.

Table 2: Traceability matrix

Req/Spec ID G
etG

lobalP
os

G
etO

dom
etry

G
etT

ilt [N
ew

]

G
etIm

provedG
lobalP

os

C
alcS

teeringA
ngle.

D
riveS

teering

…

TiltComp X X
TiltComp.1 X X
TiltComp.2 X

While SPL is plan driven as described in Section 2, XDDP is basically change driven. XDDP

focuses only on changes to the base product. Documents are produced only for the changes. It can
safely state that, although XDDP has less adoption barriers than SPL, XDDP will not prevent software
structure from corrupting if it is repeatedly applied without any global and future view of the product
line.

4 EVOLUTIONAL DEVELOPMENT TOWARD SPL
XDDP assumes existence of neither core assets nor software architecture. It accepts the current

software architecture of the base product and modifies only the portions of the base product to be
changed for the new product. Naïve derivation of new products by XDDP does not accumulate core
assets, recover the software architecture, and bring reform to SPL development. For steady and
affordable shift toward SPL development, the authors tailor XDDP to facilitate mining of core assets
from existing artefacts and cultivate the global view through its iterations. The tailored XDDP, which
is named as XDDP4SPL here, follows the process described below.

Describing requirements and specifications before and after changes: The original XDDP describes
change requirements and specifications for derivation of a new product. XDDP4SPL additionally
describes requirements and specifications before and after changes in separate. The before-
requirements and specifications are imported from existing ones of the base product, or engineered
reversely from the source codes of the base product if no document on requirements and specifications
is available. The after- requirements and specifications are newly described based on change
requirements and specifications.

Although readers may think that change requirements and specifications are no longer necessary,
they should be kept with before- and after- requirements and specifications for some reasons.

One reason is that desire for succeeding products is often described as changes to the proceeding
products at first. Moreover, the changes are described in various abstraction levels by various
stakeholders of the product line. Some changes may be described by users at the abstraction level of
requirement as additional or improved functions. Other changes may be described by engineers at the
abstraction level of specification without explaining why the changes are needed.

Another reason is that change requirements and specifications describe why one function is newly
introduced and record evolution of the product line. These documents are helpful for engineers newly
involved in the project to understand the product line better than each function is explained solely.

3rd International Conference on Machine Control & Guidance, March 27-29, 2012

Before- and after- requirements and specifications should be traceable from their corresponding
change requirements and specifications. Table 3 shows a possible description. Before- and after-
requirements and specifications are traceable by requirement and specification IDs in this description.

Table 3: before- and after- requirements and specifications

TiltComp Before Req Want to know the current position of the tractor without taking
account of tilt of the tractor.

TiltComp After Req Want to know the current position of the tractor with taking
account of tilt of the tractor.

TiltComp.1 Before Spec
TiltComp.1 After Spec Get the roll and pitch angles of the tractor periodically and apply

LPFs to the observed roll and pitch angles for noise reduction.
TiltComp.2 Before Spec The Kalman filter in the global positioning task uses raw

longitude and latitude from GPS for its input.
TiltComp.2 After Spec The Kalman filter in the global positioning task use

compensated longitude and latitude for its input. (See Table 2
for the details of the compensation.)

Performing local variability modelling: XDDP4SPL performs local variability modelling for the
limited portion of the system to be changed for a new product. With comparing before- and after-
requirements and specifications, it becomes easier to identify common and different aspects such as
structures, behaviours, and properties among products and define features. Different description
between before- and after- requirements and specifications, which are in bold and underlined texts in
Table 3, is a basis to identify features. Features indirectly related to the changes do not appear in
before- and after- requirements and specifications. Instead, they may found in reverse engineered
documents. Variability possibly introduced in future should be identified during local variability
modelling.

The primary object of this partial feature modelling is better separation of variability, which will
bring better modularization and interface design for reuse among products. Features should be
identified such that commonality and variability are cleanly separated. A common feature must not
include variable aspects and vice versa. Moreover, variable features should be orthogonally separated.
A variable feature should not include multiple aspects which are in different concepts or abstraction
levels. Guidelines on feature modelling [Lee, 2002] are also helpful for good feature modelling.
Other objectives of local variability modelling are better understanding and intuitive representation of
the portion directly and indirectly related to the changes.

Figure 4 shows an example of the local feature model. The features identified from before- and
after- requirements and specifications are Tilt Compensation and Inclination Sensing. Global
Positioning is identified as the parent feature of Tilt Compensation in consists-of relationship, since
Tilt Compensation is for Global Positioning. Kalman Filtering is a feature identified in reverse
engineered documents. It is also a sub feature of Global Positioning in consists-of relationship. Both
Kalman Filtering and Tilt Compensation are modelled as optional features to enable core assets to be
reused for tractors without gyro, odometory, and inclination sensors.

Figure 4: Local Feature Model

3rd International Conference on Machine Control & Guidance, March 27-29, 2012

Describing partial requirements and specifications for the product line: Based on the before- and
after- requirements and specifications, the local feature model, and reverse engineered documents,
partial requirements and specifications for the product line are described. Local variability modelling
and description of partial requirements and specifications can be performed iteratively. The partial
requirements and specifications become core assets of the product line.

Table 4 shows an example of partial requirements and specifications. The conditional expression
written in the brackets ([]) is a guard expression representing a feature selection such that the
specification is activated. The term in the expression becomes true if and only if the feature of the
same name is selected in the product.

Table 4: Partial requirements and specifications

GlobalPos Req Want to know the current position of the reference point.
GlobalPos.1 Spec Get the current position, namely longitude and latitude, of the

tractor from the GPS receiver.
GlobalPos.2 Spec Get the roll and pitch angles of the tractor from the inclination

sensor and apply LPFs to the observed angles for noise
reduction. [Inclination]

GlobalPos.3 Spec Compute errors in longitude and latitude observed by GPS to the
reference point due to tilt of the tractor (See Table 2 for the
details of the compensation.) and add them to the current
position of the tractor from the GPS receiver for compensation.
[Tilt Compensation]

GlobalPos.4 Spec Get the direction of the tractor from the gyro sensor and apply
LPFs to the observed direction for noise reduction. [Gyro]

GlobalPos.5 Spec Get the odometory data of the tractor from the odometory sensor
and apply LPFs to the observed data for noise reduction.
[Odometory]

GlobalPos.6a Spec Input the raw or tilt compensated current position, the direction,
and the odometory data of the tractor into the Kalman filter for
better estimation and output the results as the current position of
the reference point. [Kalman Filtering]

GlobalPos.6b Spec Output the results as the current position of the reference point.
[!Kalman Filtering]

Performing additional design and implementation and refactoring existing artifacts: Design and
implementation for partial requirements and specifications should be performed. Design and
implementation for additional functionalities are constructed newly because there is no asset for them.
Existing design artefacts relating to the changes are refactored if they are available, or engineered
reversely from the codes otherwise. Existing codes relating to the changes are also refactored. It is
essential to introduce variation mechanism, which enables product derivation by combination of core
assets depending on feature selection, such as parameters, conditional compilation, common interface,
inheritance, etc. [Anastasopoulos & Gacek, 2001; Gomaa & Webber, 2004]

Figure 5 shows the overview of XDDP4SPL. Iteration of XDDP4SPL, which is driven by changes,
accumulates core assets including partial feature models, partial requirements and specifications,
refactored design artefacts and codes, and reverse engineered documents. These locally mined or
produced core assets should be sooner or later integrated in a global framework of the product line.

To guide this integration of core assets and facilitate shift toward SPL development, the authors
present a status model of the feature. The status model defines visible and invisible features. The
visible feature is one that the modeller has recognized (and thus the visible feature can be modelled in
the feature model). Invisible features, which the modeller has not recognized yet, are concealed in the
explored portion of the existing system. The invisible feature becomes a visible feature, when it is
exposed by reverse engineering work, expert knowledge etc.

3rd International Conference on Machine Control & Guidance, March 27-29, 2012

Figure 5: Overview of XDDP4SPL

Moreover, for the visible feature, the status model has two dimensions: scope of feature
identification and traceability to core assets. In terms of scope of feature identification, the feature is
categorized into locally identified feature or globally identified feature. The locally identified feature
is one identified in a limited scope of the product line. The globally identified feature is one identified
in the full scope of the product line. In terms of traceability to core assets, the feature is categorized
into core asset traceable feature or core asset untraceable feature. The core asset traceable feature is
one that is traceable to its related core assets. The core asset untraceable feature is one that is not
traceable to its related core assets. Thus, each visible feature has four kinds of status in our model.

The feature identified in XDDP4SPL becomes a locally identified & core asset traceable feature,
since its related artefacts are incorporated in core assets in a traceable manner. The locally identified
& core asset traceable feature promotes to a globally identified & core asset traceable feature, when
its position in the global feature model is determined with understanding of the whole product line.

The feature identified in the top-down manner based on expert knowledge initially becomes a
globally or locally identified & core asset untraceable feature depending on the scope of the expert
knowledge, since its related artefacts are not clear at all. The globally or locally identified & core
asset untraceable feature promotes to a globally or locally identified & core asset traceable feature,
when its related artefacts are incorporated in core assets in a traceable manner after XDDP4SPL
iteration or reverse engineering work.

This categorization of the feature is used to separate the portion to where SPL development is
applied and the portion to where derivative development is applied in the system. Shift to perfect SPL
development is achieved when i) all the visible features are globally identified & core asset traceable
and ii) invisible features are believed to be wiped out.

5 CONCLUSION
This paper presented an evolutional development process combining SPL and XDDP, which the

authors referred to as XDDP4SPL. The process is as follows: i) Change requirements and
specifications are described with focusing on changes to the base system as XDDP does. ii) Based on
the change requirements and specifications, before- and after- requirements and specifications are
described to make commonality and variability between the base system and the new system. iii)
Local variability modelling, which constructs a local feature model, is performed for better separation

3rd International Conference on Machine Control & Guidance, March 27-29, 2012

of variability and better understanding and intuitive representation of the portion related to the changes.
iv) Partial requirements and specifications, which are incorporated in core assets, are described with
establishing traceability from features. v) Existing design artefacts and codes are refactored with
introducing variability mechanisms to enable product derivation by combination of core assets.

Core assets accumulated through some iterations of XDDP cultivates global view of the system and
enables shift to SPL development. To guide integration of core assets and facilitate shift toward SPL
development, the paper presented a status model of the feature in the existing system. The feature is
categorized into invisible and visible features. The visible features is categorized into four classes,
namely { locally-identified, globally-identified } × { core asset traceable, core asset untraceable }.

The future works include application and evaluation of XDDP4SPL to develop additional functions
for the autonomous tractor.

ACKNOWLEDGMENT

This work was supported by Grant-in-Aid for Young Scientist (B), KAKENHI (No. 21700035).

REFERENCES

Books:
Clements, P. and Northrop, L.: Software Product Lines: Practice and Patterns, Addison-Wesley, 2001.
Pohl, K., Böckle G., and Linden, F. v. d.: Software Product Line Engineering: Foundations, Principles
and Techniques, Springer, 2005.

Conference papers:
Anastasopoulos, M. and Gacek, C.: Implementing Product Line Variabilities, Proc. Symp. on Software
Reusability (SSR) ’01, pp.109–117, 2001.
Broy, M.: Challenges in Automotive Software Engineering, Proc. 28th Int. Conf. on Software
Engineering, pp.33–42, 2006.
Gomaa, H. and Webber, D. L.: Modeling Adaptive and Evolvable Software Product Lines Using the
Variation Point Model, Proc. 37th Hawaii Int. Conf. on System Sciences, 2004.
Lee, K., Kang, K., and Lee, J.: Concepts and Guidelines of Feature Modeling for Product Line
Software Engineering, Proc. 7th Int. Conf. on Software Reuse, pp.62–77, 2002.
Kobata, K., Nakai, E., and Tsuda, T.: Process Improvement Using XDDP: Application of XDDP to the
Car Navigation System, Proc. 5th World Congress for Software Quality, Nov. 2011.

Technical reports:
Kang, K., Cohen, S. G., Hess, J. A., Novak, W. E., and Peterson, A. S.: Feature-Oriented Domain
Analysis (FODA): Feasibility Study, Software Engineering Institute, Carnegie Mellon University,
CMU/SEI-90-TR-222, Nov. 1990.

Thesis:
Eriksen, J. and Jæger-Hansen, C.: GPS-Styring af Malerobot (GPS Control of Painting Robot, in
English), Department of Electrical Engineering, Technical University of Denmark, Aug. 2010. (in
Danish)

Links:
AFFORDD: Association for Facilitation of Rational Derivational Development, http://www.xddp.jp,
last accessed on October 10, 2011. (in Japanese)

