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Resumé (in Danish)

Teoretisk og eksperimentel analyse af adsorption

i overfladebaserede biosensorer

Denne Ph.D. afhandling vedrører anvendelse af overflade-plasmon-resonans (SPR)
spektroskopi, som er en overfladebaseret biosensorteknologi, til studier af ad-
sorptionsdynamik. Afhandlingen indeholder eksperimentelt og teoretisk arbejde.
I den teoretiske del udvikles teorien for konvektion, diffusion, og adsorption i
overfladebaserede biosensorer generelt. Vi studerer transportdynamikken i en
modelgeometri af en Biacore SPR sensor. Vi præsenterer en gennemgang samt
en analytisk løsning til en approksimativ kvasi-stationær teori, som bliver taget
hyppigt i brug i SPR litteraturen for at indfange konvektiv og diffusiv masse-
transport. Det dimensionsløse Damköhler tal, som naturligt parameteriserer den
kvasi-stationære teori, udledes i termer af den dimensionsløse adsorptionskon-
stant (Biot tallet), den dimensionsløse strømningshastighed (Peclet tallet), samt
modelgeometrien. Derudover udvikles og præsenteres en teoretisk to-komponent
model, som er designet til at indfange kompetitiv adsorptionsdynamik af to slags
adsorberende specier. Vi foretager en numerisk undersøgelse af transient dy-
namik, hvor vi kvantificerer fejlen ved at bruge den kvasi-stationære teori til
eksperimentel datafitting, i b̊ade det kinetisk begrænsede og det konvektions-
diffusions-begrænsede regime. Resultaterne tydeliggør, under hvilke betingelser
den kvasi-stationære teori er p̊alidelig, og hvor den ikke er. Foruden det velk-
endte faktum at gyldighedsintervallet for teorien er begrænset under konvektions-
diffusions-begrænsede betingelser, vises det, hvorledes forholdet imellem indløbs-
koncentrationen og den maksimale overfladekapacitet er kritisk for p̊alidelig brug
af den kvasi-stationære teori. Vores teoretiske resultater tilvejebringer brugere
af overfladebaserede biosensorer et væktøj til at korrigere adsorptionskonstan-
ter opn̊aet ved at fitte den kvasi-stationære teori til eksperimenter. Endelig un-
dersøges konsekvensen af adsorption p̊a alle overfladerne, udover sensoroverfladen,
i biosensorens flowcelle. I den del af afhandlingen der vedrører eksperimentelt ar-
bejde bruger vi en Biacore SPR sensor til at studere adsorption af lipaser p̊a
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modeloverflader der imiterer substrat, samt at studere kompetitiv adsorption af
lipase og overfladeaktive molekyler (surfactant). En del af den eksperimentelle
data målt under projektperioden præsenteres og diskuteres. Denne del tilveje-
bringer tilsyneladende kinetiske adsorptions- og desorptionkonstanter, og forsøger
at give et overblik over de vigtigste elementer der udfordrer brugen af den eksper-
imentelle data til datadrevet teoretisk modellering. Vi fremhæver nogle vigtige
betingelser som skal være opfyldt for at opn̊a en udførlig forbindelse mellem
eksperimental data og teoretisk modellering.

iv
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Abstract

The present Ph.D. dissertation concerns the application of surface plasmon reso-
nance (SPR) spectroscopy, which is a surface-based biosensor technology, for stud-
ies of adsorption dynamics. The thesis contains both experimental and theoretical
work. In the theoretical part we develop the theory for convection, diffusion, and
adsorption in surface-based biosensors in general. In particular, we study the
transport dynamics in a model geometry of a Biacore SPR sensor. An approxi-
mate quasi-steady theory, which has been widely adopted in the SPR literature
to capture convective and diffusive mass transport, is reviewed, and an analytical
solution is provided. The important nondimensional Damköhler number, inherent
in the quasi-steady theory, is derived in terms of the nondimensional adsorption
coefficient (Biot number), the nondimensional flow rate (Péclet number), and the
model geometry. Also, a two-component theoretical model, designed to capture
competitive adsorption dynamics of two adsorbing species, is developed and pre-
sented. Transient dynamics is investigated numerically, and we quantify the error
of using the quasi-steady theory for experimental data fitting in both kinetically
limited and convection-diffusion-limited regimes. The results clarify the condi-
tions under which the quasi-steady theory is reliable or not. In extension to the
well known fact that the range of validity is limited under convection-diffusion-
limited conditions, we also show how the ratio of the inlet concentration to the
maximum surface capacity is critical for reliable use of the quasi-steady theory.
Our theoretical results provide users of surface-based biosensors with a tool of
correcting experimentally obtained adsorption rate constants, based on the quasi-
steady theory. Finally, the consequence of adsorption on all surfaces present in
the flow cell of the surface-based biosensor, in addition to the sensor surface, is
investigated. In the experimental part of the thesis we use a Biacore SPR sensor
to study lipase adsorption on model substrate surfaces, as well as competitive
adsorption of lipase and surfactants. A part of the experimental data obtained
during the project is presented and discussed. In particular, this part provides
apparent kinetic adsorption/desorption rate constants, and gives an overview of
the major challenges of basing theoretical modeling on this data. We emphasize
the importance of some conditions, which necessarily have to be fulfilled in order

v
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to attain a comprehensive link between the experimental data and the theoretical
modeling.
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Chapter 1

Introduction

1.1 Outline of the Ph.D. project

The present Ph.D. project was set up as a collaboration between the Technical
University of Denmark (DTU) and Novozymes. The theoretical developments
were primarily carried out at DTU under supervision of Professor Ole Hassager,
DTU Chemical Engineering, and Professor Henrik Bruus, DTU Nanotech. All
experiments analyzed during the project were designed in close collaboration
with Senior Manager Thomas H. Callisen, Novozymes A/S, and were carried out
with laboratory support from Lene Bjørg Cesar, and Diane Falk Rasmussen at
Novozymes.

The aim of the project was to develop theoretical models of molecular trans-
port to support interpretation of data from surface plasmon resonance (SPR)
biosensor experiments. In this way, the project has been primarily data driven,
and the effort put on interpreting data has been pronounced. In the majority of
the project the typical working procedure was to obtain SPR data, and thereafter
attempt to understand it by using theoretical calculations.

The aim of the Ph.D. project turned out to be challenging. As presented in
chapter 5 the SPR experiments and the corresponding experimental protocols,
albeit of good quality and at the level typically reported in peer-reviewed papers,
were found not to be sufficiently developed for the pupose of forming the basis
for rigorous theoretical analysis. Even though the experimental work has not
yet been submitted for publication, it has been a fruitful process to link exper-
iments and theory. The goal of combining rigorous theory with experiments on
biological matter is hard, but the process of approaching that goal has implied
experience and insight, which may be applied in future work. The theoretical
work has spawned a manuscript submitted for publication, which concerns the

1

13



1.2 Dissertation structure

capabilities, as well as shortcomings, of a widely used model in the SPR literature.

Moreover, in addition to the Ph.D. courses followed and the teaching assis-
tance done at DTU, I have co-authored two manuscripts written and published
during the project period. Both are outside the scope of the main project defined
in collaboration with Novozymes, and are therefore simply appended in the end
of the dissertation.

1.2 Dissertation structure

The objective of this thesis is to provide both a general overview of the work done
during the Ph.D. project period, as well as detailed descriptions of developed
methods and obtained results. The main part of the thesis is directly related
to the project scope of obtaining tools for better interpretation of data obtained
from surface plasmon resonance (SPR) spectroscopy, with the ultimate goal of
better utilization of the data in research and development.

Chapter 2: Introduction to SPR spectroscopy

This chapter provides background information related to the setup and appli-
cation of SPR spectroscopy in the field of biomolecular interactions. The main
principle of SPR spectroscopy and some fundamental physics related to its mode
of operation are described. The chapter also provides a brief review of the use of
SPR spectroscopy for interactions at lipid surfaces.

Chapter 3: Mathematical modeling of transport phenom-
ena in surface-based biosensors

This chapter is concerned with the theory of mass transport, i.e. convection, dif-
fusion, and adsorption in surface-based biosensors. A particular scope of the work
presented in this chapter is to form a theoretical basis for analysis of data obtained
from the Biacore apparatus. However, due to its fundamental and theoretical
nature, the work in this chapter can be somewhat generalized to surface-based
biosensors, and more broadly to similar transport problems in other technical
fields.

Chapter 4: Numerical analysis

The mathematical models developed in chapter 3 are investigated numerically in
a model geometry, designed to mimic the actual geometry used by Biacore in the

2
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1.3 Publications

experimental SPR setup. A basis for physical intuition is provided by visualizing
the evolution of the concentration field in the modeled geometry. This is followed
by quantitative analysis and comparison of the mathematical models. Focus
is on the typical quantifiers used in the application of SPR spectroscopy. The
main results of this chapter have been summed up in a manuscript submitted for
publication in Langmuir, see appendix [P1].

Chapter 5: SPR experiments of lipase adsorption

This chapter is concerned with SPR experiments. The experimental conditions
and the experimental results are presented. The challenges of using the data for
rigorous mathematical modeling are discussed.

Chapter 6: Concluding remarks

This chapter concludes the work. In addition to summing up the main theoretical
results, some focus is on the lessons learned in relation to the SPR experiments.
Some ideas for future work are presented in the end of this chapter.

1.3 Publications

Articles in peer reviewed journals written during the Ph.D.

• R. Hansen, H. Bruus, T. H. Callisen, and O. Hassager. Transient convec-
tion, diffusion, and adsorption in surface-based biosensors. Submitted to
Langmuir, January 2012.

• O. Hassager and R. Hansen. Constitutive equations for the Doi-Edwards
model without independent alignment. Rheologica Acta, 49(6):555-562,
March 2010.

• K. H. Jensen, E. Rio, R. Hansen, C. Clanet, and T. Bohr. Osmotically
driven pibe flows and their relation to sugar transport in plants. Journal
of Fluid Mechanics, 636:371-396, April 2009.

Popular articles

• R. Hansen, T. H. Callisen, and O. Hassager. Enzymer udnytter kaos til
grundig afsøgning af overflader. Dansk Kemi 5. 2009. (Danish).
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1.3 Publications

Conference contributions

• R. Hansen, H. Bruus, T. H. Callisen, and O. Hassager. Competitive ad-
sorption dynamics of lipase and surfactants. Annual Polymer Day. DTU,
Lyngby, Denmark, November 2011.

• R. Hansen, H. Bruus, T. H. Callisen, and O. Hassager. Adsorption dynam-
ics of enzymes on substrate surfaces. Molecular Processes at Solid Surfaces,
10th Annual Surface and Colloid Symposium. Lund University, Sweden,
November 2011.

• R. Hansen, H. Bruus, T. H. Callisen, and O. Hassager. Adsorption dynam-
ics of globular proteins in surface-based biosensors. Annual Polymer Day.
DTU, Lyngby, Denmark, November 2010.

• R. Hansen, H. Bruus, T. H. Callisen, and O. Hassager. Adsorption of pro-
teins on substrate surfaces. Annual Polymer Day. DTU, Lyngby, Denmark,
November 2009.

• R. Hansen, T. H. Callisen, and O. Hassager. Enzymer udnytter kaos til
grundig afsøgning af overflader. Novo Symposium. January, 2009, Bagsværd,
Denmark (Danish)
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Chapter 2

Introduction to SPR
spectroscopy

Surface plasmon resonance (SPR) spectroscopy is an advanced optical sensing
method that enables label free monitoring of macromolecular interactions. The
technique is now widely used in biomolecular research, medical diagnostics, food
analysis, and environmental monitoring (Homola, 2008). The experimental part
of this thesis investigates adsorption of a wild type and a mutant lipid-hydrolyzing
enzyme to a hydrophobic surface. This was carried out using a Biacore SPR
reader, which by far is the most common SPR platform (Besenicar et al., 2006).
This chapter provides a general introduction to the principle of SPR spectroscopy
and presents the main parts of SPR biosensors. Finally, the use of SPR for
analyzing interactions between proteins and lipid surfaces is reviewed.

2.1 The overall principle of SPR

SPR sensors are used to study macromolecular interactions at the surface of a
sensor chip, where so called ligand molecules have been immobilized. The overall
principle of SPR is that binding of analyte molecules to the immobilized ligand
changes the refractive index of the sensor chip surface, which is detected by an
optical reader. SPR sensors are based on the generation of surface plasmons (SP),
and a coupled light wave, at the interface between a metal surface and a dielectric
substance. SPs arise when light is directed through a highly refractive medium
at an incidence angle that establishes total internal reflection of the light at the
metal surface. SPs propagate along the metal surface, and the electromagnetic
field probes the adjacent medium, i.e. the sensor chip surface. Upon changes in
the refractive index of the surface in close proximity to the metal surface, the
velocity of surface plasmons changes. This change also alters the characteristics

5
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2.2 The optical reader

of the coupled light wave, which is registered by the optical reader. Thus, inter-
action between the immobilized ligand, and the analyte molecule in solution, is
monitored immediately and no tags are required.

Numerous different SPR readers are commercially available, but they all con-
sist of: (a) an optical reader, (b) a sample preparation and delivery system, and
(c) a biorecognition element (Piliarik et al., 2009), which are described in more
details in the following sections.

2.2 The optical reader

This section provides the fundamentals of surface plasmons, and the optical de-
tection, of SPR. Since design of SPR sensors varies considerably, focus is on the
general principles common for SPR sensors. Surface plasmons (SPs) are elec-
tromagnetic waves that arise at metal-dielectric interfaces. In principle, several
metals can generate SPs at optical frequencies, but the chemical stability of gold
makes it particularly favorable. SPs propagate along the metal surface, and can
be characterized by two parameters, the propagation constant and the electro-
magnetic field distribution. The propagation constant βSP is given by

βSP =
ω

c
neff =

ω

c

√
εMn2

D

εM + n2
D

, (2.1)

where ω and c are the angular frequency, and the speed of light in vacuum, re-
spectively. Thus, the propagation constant is determined by the permittivity of
the metal εM, and the refractive index of the dielectric nD. The effective refrac-
tive index of the surface plasmon is denoted neff. The electrical field of surface
plasmons is transverse magnetic polarized, mainly localized to the dielectric, and
decreases exponentially with a penetration depth of approximately 150−400 nm,
depending on the specific wavelength used.

Detection of SPR by optical readers in SPR sensors is based on coupling of
a light wave to the surface plasmon. Upon changes in the effective refractive
index of a surface plasmon, the characteristics of the coupled light wave changes,
and the optical reader detects these changes. Coupling of light waves can be es-
tablished several ways, most frequently by attenuation of total reflection (Piliarik
et al., 2009). Fig. 2.1 illustrates the widely used Kretschmann geometry of the at-
tenuated total reflection method (Homola, 2008). This method relies on a highly
refractive prism, which is coated with gold at its base. A light wave is directed
through the prism at an angle that ensures total reflection of the light wave at

6
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2.2 The optical reader

Figure 2.1: Excitation of surface plasmons in the Kretschmann geometry
of the attenuated total reflection method. - Figure taken from Piliarik et al.
(2009).

the prism base. The incoming light evanescently tunnels though the metal film.
If the incidence light wave is closely phase-matched to the SP, an SP is excited
on the outer surface of the gold. The coupling conditions that must be met can
be expressed as

np sin θ = neff, (2.2)

where the refractive index of the prism is denoted np, and θ is the incidence
angle. When coupling of SP and a light wave occurs, energy is transferred from
the light wave. Hence the characteristics of the reflected light are changed, which
is visible as a SPR dip in the reflected light spectrum or intensity. SPR sensors
can be classified based on the optical reader sensor output as seen in Fig. 2.2.
SPR sensors with modulation of angle of incidence use a fixed monochromatic
wavelength of the incidence light, and vary the angle of incidence in response to
changes in the reflected light. SPR readers based on modulation of wavelength
have a fixed angle of incidence and change the coupling wavelength, while read-
ers with intensity modulation have both wavelength and angle of incidence fixed,
and modulate the incidence light intensity. As evident from Eq. (2.2) a change in
the effective refractive index of the SP changes the coupling conditions (Raether,
1997). In SPR sensors with wavelength or angular modulation this is recorded as
a shift in the SPR dip of the angle (or wavelength)-dependent reflectance. In SPR
sensors with intensity modulation a change in reflected light intensity is recorded.

Adsorption of analyte molecules to the SPR sensor surface gives rise to a

7
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2.3 The sample preparation and delivery system

Figure 2.2: SPR sensors based on modulation of (a) wavelength, (b)
angle of incidence, and (c) light intensity. - Figure taken from Piliarik et al.
(2009).

change in the effective refractive index of the surface plasmon, hence the coupling
conditions changes, and adsorption of analyte is detected as a change in the
reflected light spectrum (wavelengths and angular modulating SPR sensors) or
in the reflected light intensity (intensity modulating SPR sensors). A change in
refractive index is commonly measured in resonance units (RU). The recorded
signal has been demonstrated to be proportional to the surface concentration of
macromolecules with 1 RU corresponding to approximately 1 pgmm−2 (Stenberg
et al., 1991). In this way, SPR sensors directly measure the mass concentration
of adsorbed analyte, without the need for labeling of interaction partners.

2.3 The sample preparation and delivery sys-

tem

The preparation and delivery system of SPR sensors ensure that the solubilized
analyte molecules are delivered to the SPR sensor chip. In general, SPR sensors
function either via a cuvette system or a flow cell system (Ward and Winzor,
2000). In cuvette-based SPR sensors, a fixed volume of sample is injected into a
cuvette, where the analyte interacts with the ligand on the sensor surface under
no-flow conditions. Stirring while measuring is typical to reduce the effect of
mass transport on the data. In flow cell based sensors, the sensor surface is
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placed in a flow cell unit, which is continuously perfused with sample at flow
rates ranging from 1 − 100μLmin−1. The analyte diffuses to the sensor surface
where it interacts with the ligand molecules. The latter setup is the focus point
of the present thesis.

2.4 The biorecognition element

The biorecognition element of SPR readers constitutes ligand molecules, which
have been immobilized on the solid surface of the SPR reader. The biorecognition
element is brought in contact with analyte molecules in solution via the delivery
system to allow complex formations. The choice of ligand molecule (or biorecog-
nition element), and the method of immobilization, have important consequences
for the sensitivity and detection limit of the SPR sensor (Piliarik et al., 2009).
They should be carefully chosen for the purpose of ones study, taking factors such
as affinity and specificity for the analyte, and stability of biological function, into
consideration. Antibodies are the most frequently used biorecognition element
(Robelek, 2009), but numerous biosensor chips are commercially available with
various immobilized ligands, including protein, low molecular weight molecules,
membrane-associated molecules, carbohydrates, virus particles, and nucleic acids.

2.5 Analysis of interactions at lipid surfaces by

use of SPR spectroscopy

Molecular interactions can be detected and analyzed by an array of techniques.
SPR sensors hold the advantage that labeling of the interaction partners is not
necessary. This is particularly important when studying proteins, where the at-
tachment of labels can interfere with protein function (Kodoyianni, 2011). More-
over, the technique allows one to analyze the kinetics of molecular interactions,
i.e. the association and dissociation (or similarly adsorption and desorption)
constants. Two major fields where SPR sensors are widely used are the detec-
tion and identification of biological analytes, and the biophysical characteriza-
tion of biomolecular interactions. The SPR technique has primarily been used
to study interactions between proteins (Besenicar et al., 2006), but advances
in preparation and commercialization of sensor chips now also allow studies of
protein-membrane, protein-nucleic acid, protein-carbohydrate, and protein-small
molecule interactions (Besenicar et al., 2006). This section focuses on presenting
the use of SPR sensors in studies of protein-lipid interactions, which is the focus
area of the experimental part of the thesis, presented in chapter 5. The quanti-
tative analysis of SPR data is presented in detail later in the thesis.
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2.5 Analysis of interactions at lipid surfaces by use of SPR
spectroscopy

Many biological processes, as well as technological applications, such as food
digestion and detergent activity of proteins take place at a lipid interfaces. Fur-
thermore, important biological interactions often involve receptors embedded in
membranes, and numerous important drug targets are in fact membrane proteins
(Cooper, 2004). Accordingly, there has been an increasing interest for apply-
ing SPR in studies of protein interactions with lipid surfaces. Lipid surfaces on
SPR sensor chips are generally made from one of three principles: 1) hybrid
bilayer membranes (HBM), which can be made by applying lipid vesicles to a hy-
drophobic coating of the sensor chip gold surface (Plant, 1993; Plant et al., 1995;
Terrettaz et al., 1993; Cooper et al., 1998). 2) Immobilization of lipid bilayers
(Lang et al., 1994; Bunjes et al., 1997). 3) Immobilization of liposomes (Cooper
et al., 2000; Granéli et al., 2004). The first commercially available sensor chip,
designed for studying interactions with lipids, was the HPA chip launched by Bi-
acore. The HPA chip design is based on depositing a monolayer of self-assembled
alkanethiols onto the gold surface of a sensor chip. The self-assembled monolayer
(SAM) enable HBM formation when the user applies lipid vesicles. The lipid vesi-
cles spontaneously adsorb to the SAM by hydrophobic interactions between the
SAM and the hydrophobic acyl chain. The polar head groups of the vesicle lipids
thereby comprise the membrane/solution interface. The HBM surface has some
desirable qualities, as it is very stable and homogenous with few defects in the
lipid monolayer, and resists nonspecific binding of proteins like BSA (Plant et al.,
1995; Terrettaz et al., 1993; Cooper et al., 1998). Cooper et al. (1998) thoroughly
investigated the formation of lipid monolayers on the HPA chip, using different
lipid vesicles preparation methods. They also demonstrated that the correlation
between deposited lipid, and the observed response (number of response units,
RU), was similar to that of proteins. A monolayer of lipids corresponds to a de-
posited mass of 2.0 ngmm−2, giving rise to a response of about 2200 RU. The HPA
sensor chip constitute a very simple and robust membrane model (Cooper, 2004),
but has some limitations in its membrane mimetic properties, as it only consists
of a supported monolayer. Membrane mimetic properties are particularly desired
in biological research, where understandings of protein interactions with (or in)
cellular membranes or micelles are sought. A significant advantage of sensor chips
with immobilized membrane bilayer or liposomes is that they allow reconstitu-
tion of functional transmembrane proteins within the lipid surface (Heyse et al.,
1998; Lang et al., 1994; Stora et al., 1999). This is particularly important for
studying interactions with membrane proteins, as they often require the lipid
environment to retain their functional and structural integrity Cooper (2004).
Various techniques for immobilization of membrane bilayers and liposomes have
been developed and are reviewed by Besenicar et al. (2006); Cooper (2002). At
present, the most frequently used sensor chip in protein-membrane studies is the
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L1 chip from Biacore, which is designed to immobilize liposomes or membrane
preparations from cell lysates (Besenicar and Anderluh, 2010). Studies of direct
interaction between a protein and a lipid surface often seek information about ei-
ther lipid specificity or about membrane binding motifs of the protein (Besenicar
et al., 2006). Lipid specificity can be addressed by modulation of the lipid compo-
sition of the biorecognition element, and has been studied for instance for toxins
(Bakrac et al., 2008; Kuziemko et al., 1996) and amyloid protein (Aguilar and
Small, 2005). Identification of amino acids involved in the binding process of
a protein to lipid surfaces has been identified for a number of proteins, using
mutagenesis to generate genetically modified protein variants, which are then
characterized using SPR sensors (Bakrac et al., 2008; Jones et al., 2005; Stahe-
lin and Cho, 2001). Thus, Stahelin and Cho (2001) investigated the importance
on ionic, aromatic, and aliphatic amino acids for the binding of phospholipase
A2 to immobilized liposomes. They proposed a general model for protein at-
tachment to membranes, where electrical interactions between aromatic amino
acids and a zwitterionic membrane initially bring the protein to the membrane
surface. Subsequent hydrophobic interactions between aromatic and aliphatic
residues, and the hydrophobic lipids of the membrane, are responsible for a firm
protein attachment. Other applications of SPR sensors within the field of protein-
membrane interactions include analysis of initial binding of pore-forming proteins
to membranes (Anderluh et al., 2003), binding of coagulation factor VIII to the
phospholipid surfaces (Saenko et al., 2001), membrane binding of amyloid pro-
tein and amylogenic peptides (Aguilar and Small, 2005; Mozsolits and Aguilar,
2002; Mozsolits et al., 2003). Finally, numerous interactions with reconstituted
transmembrane proteins have been studies with SPR sensors (Heyse et al., 1998;
Stora et al., 1999; Cooper, 2004; Salamon et al., 1999; Besenicar et al., 2006; Cho
et al., 2001).

2.6 SPR in the present thesis

In the experimental part of the present Ph.D. project surface plasmon resonance
SPR spectroscopy (Biacore) is applied to study adsorption dynamics of lipase,
and competitive adsorption dynamics of lipase and surfactants, on model hy-
drophobic surfaces established on the Biacore HPA chip (see chapter 5 for a more
detailed description). While the Biacore SPR apparatus is capable of capturing
qualitative adsorption behavior, quantitative studies of chemical rate constants
and equilibrium constants are more challenging. Inconsistencies in derived rate
constants have lead to both experimental and theoretical investigations of the
effect of convection and diffusion of the binders in the microfluidic flow cell, i.e.
mass transport, on the SPR signal (Schuck and Minton, 1996; Myszka et al.,
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2.6 SPR in the present thesis

1998 Aug). Significant progress was made by the application of a theoretical
quasi-steady-state approximation. This approximation has been richly adopted
for Biacore data analysis due to its simplicity (Schuck, 1996; Schuck and Minton,
1996; Mason et al., 1999; Noinville et al., 2010; Myszka et al., 1998 Aug; Gold-
stein et al., 1999 Sep-Oct). However, practice in the biochemical society still, to a
large degree, consists of empirical and qualitative studies (Rich and Myszka, 2010,
2008, 2007). The next chapter provides an in-depth description of the theoretical
modeling used for SPR data analysis.
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Chapter 3

Mathematical modeling of
transport phenomena in
surface-based biosensors

This chapter presents a theoretical and computational investigation of convection,
diffusion, and adsorption in surface-based biosensors. We study the transport
dynamics in a model geometry designed to mimic the actual geometry used in
the Biacore SPR apparatus. As a novel feature the finite distance from the inlet of
the microfluidic flow cell to the sensor surface is included. The evolution equations
are introduced, and subsequently made nondimensional, leading to a number of
nondimensional parameters, which will be subject to an in-depth parameter study
during the chapter. An approximate quasi-steady theory, which is widely adopted
in the surface-based biosensor community, is reviewed. Additionally, an analytical
solution, which to our knowledge has not been published before, is presented.
A nondimensional formulation of the quasi-steady theory reveals the important
nondimensional parameter, known as the Damköhler number, which is sometimes
referred to as the limit coefficient. An expression of the Damköhler number is
derived in terms of the Biot number, the Peclet number, and the model geometry.
The ability of the quasi-steady theory to capture convective and diffusive mass
transport in the surface-based biosensor is thoroughly tested, by comparison with
numerical simulations of the transient dynamics. In this way the consequences
of using the quasi-steady theory for experimental data fitting in both kinetically
limited and convection-diffusion limited regimes are properly quantified. The
results clarify the conditions under which the quasi-steady theory lack credibility.
In extension to the well known fact that credibility is altered under convection-
diffusion limited conditions, we also show how the ratio of the inlet concentration
to the maximum surface capacity is critical for reliable use of the quasi-steady
theory.

13

25



3.1 System geometry and two-dimensional approximation
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Figure 3.1: Microfluidic flow cell - (a) Rectangular flow cell of length l, height
h, and width w. The SPR chip of length lc, and width wc, is indicated as the square
in the middle of the flow cell. The buffer flow is represented by the velocity vector
v. (b) The two-dimensional approximation of the system in the vertical xy-plane.
The parabolic velocity profile is indicated at the inlet of the flow cell.

3.1 System geometry and two-dimensional ap-

proximation

We investigate the transport dynamics in a geometry designed to replicate the
actual geometry used by Biacore (Fig. 3.1). The length scales for this particular
geometry are l = 2.3mm, w = 0.5mm, and h = 0.05mm. Adsorption is probed
by the SPR chip, located on the surface in the middle of the flow cell. The SPR
chip has a length of lc = 0.6mm, and a width of wc = 0.16mm. The fluid flows in
the lengthwise direction (x), with a parabolic velocity profile along the direction
(y) of the height of the flow cell, i.e. vx(y) = 4vm(y/h)(1− y/h), where vm is the
maximum velocity (Batchelor, 1967). Based on the large geometric aspect ratio
w/h = 10, and the small Reynolds numbers often present in the system, we have
assumed total invariance in the direction (z) of the width of the flow cell (Brody
et al., 1996), essentially ending up with a two-dimensional consideration of the
transport. Hereby we do not take boundary effects from the side walls of the flow
cell at z = {0, w} into account.

3.2 Evolution equations

The main objective of the mathematical model is to describe the spatio-temporal
evolution of some molecular solute components, dissolved in a homogeneous
medium, such as water. In this perspective all molecular details of the solvent are
ignored altogether. The solvent simply acts as a medium, facilitating convective
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3.2 Evolution equations

and diffusive transport of the solute components. A continuum consideration
of some solute component i leads to the definition of two dependent field vari-
ables, namely the bulk concentration field ci = ci(x, y, t), and the corresponding
surface concentration field γi = γi(x, t), where t is time. We name the bulk do-
main Ω, and the surface domains {∂Ω, ∂Ωads}, referring to respectively insulating
non-adsorbing surfaces, and surfaces where adsorption takes place. The spatio-
temporal evolution of the bulk concentration field ci(x, y, t) is governed by the
convection-diffusion equation

∂ci
∂t

+ vx(y)
∂ci
∂x

= Di∇2ci, Ω (3.1)

where the Laplacian ∇2 = ∂2/∂x2+∂2/∂y2, and Di is the diffusion coefficient for
molecular component i. The boundary conditions for the bulk concentration are
given by

∂ci
∂y

= 0, ∂Ω (3.2a)

−Di
∂ci
∂y

= −Ai(γi, ci, . . .), ∂Ωads (3.2b)

The former is simply a no-flux condition, whereas the latter is a balance between
diffusive flux perpendicular to the surface and net adsorption rate, captured in the
adsorption term Ai(γi, ci, . . .) in Eq. (3.5). At the inlet of the flow cell, at x = 0,
the concentration is equal to the injection concentration, ci = ci,0. At the outlet
of the flow cell, x = l, we assume free convection, i.e. essentially ∂ci/∂x = 0.
The spatio-temporal evolution of the surface concentration field γi = γi(x, t) is
governed by the adsorption-diffusion equation

∂γi
∂t

− ∂

∂x

[
Di,s

∂γi
∂x

]
= Ai(γi, ci, . . .), ∂Ωads (3.3)

where Di,s is the surface diffusion coefficient of molecular component i, which in
general can be a function of both the independent variables, x and t, as well as
the dependent variables γi, ci, . . .. The adsorption term A(γi, ci, . . .) represents
the net rate of change of surface concentration due to adsorption and desorption.
A particular functionality of A(γi, ci, . . .) is determined by the kinetics of some
chosen adsorption-desorption scheme, and can in general include arbitrarily com-
plex surface kinetics. Particular functionalities of A(γi, ci, . . .) are provided for
unimolecular and bimolecular systems respectively in section 3.3.1 and section
3.4.1. Finally, no-flux boundary conditions for γi, i.e. ∂γi/∂x = 0 are imposed
at the end of the adsorbing domain, i.e. surface bound molecules only leave the
chip by desorption.
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Importantly, the total surface concentration Γ, which is the natural measure
of a surface-based biosensor, is given by the sum

Γ =
∑
i

γi. (3.4)

3.3 Unimolecular systems

In this section the general evolution equations introduced in chapter 3.2 are ana-
lyzed in considerable detail for a single molecular solute component. This case is
referred to as a unimolecular system. First, the adsorption kinetics is presented.
Then, nondimensional formulations of the unimolecular evolution equations are
presented. This is followed by an order of magnitude estimation of the nondimen-
sional parameters. The section ends with a presentation of the weak formulation
of the unimolecular evolution equations, which is used for implementation of the
finite element method in the ComSol/MatLab computational software.

3.3.1 Surface adsorption kinetics

The adsorption kinetics has to be modeled by a phenomenological model, which
ultimately captures experimental data and thereby provides reasonable and con-
sistent phenomenological parameters. The standard adsorption model that con-
tains the feature of a maximum surface capacity γm is the Langmuir adsorption
model. This model is essentially a first order scheme between bulk molecules at
the interface c|y=0 and free surface space (γm − γ), with adsorption rate constant
ka and desorption rate constant kd. For a single molecular component this first
order model may be written in the form

A(γ, c) = kac|y=0(γm − γ)− kdγ. (3.5)

When c|y=0 is independent of γ this is a linear relation between A(γ, c) and γ.
This particular adsorption model is a local theory in both space and time, i.e. the
evolution of γ at (x, t) depends only on the present state at (x, t). The ultimate
goal is often to obtain consistent values for the triplet (ka, kd, γm) of phenomeno-
logical parameters from experimental biosensor data. In this linear model the
adsorption and desorption rate constants, ka and kd respectively, are assumed
unaltered by the density on the surface. In reality on might expect interactions
between adsorbed particles at high densities. In spite of its simplicity, however,
it has been argued that this model is general enough to explain the majority of
adsorption/desorption processes in molecular biology (Gervais and Jensen, 2006).
Substituting Eq. (3.5) into Eq. (3.3) and Eq. (3.2b), these two equations together
with Eq. (3.1), and the remaining boundary conditions, form a nonlinear system

16

28
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of partial differential equations for the concentration fields ci(x, y, t) and γi(x, t).
The system is in general of such complexity that a numerical study is necessary
for detailed analysis.

3.3.2 Nondimensional parameterization

Nondimensional formulations are developed for a more comprehensible parame-
terization of the unimolecular evolution equations. Two different nondimensional
formulations are introduced and discussed.

Nondimensional parameterization: kinetic scaling

In order to put the evolution equations on nondimensional form, we introduce
the following spatial and temporal scales:

x =
x

h
, y =

y

h
, t = kac0t. (3.6)

Note in particular, that time has been made nondimensional by the adsorption
rate. For the dependent concentration variables we introduce the following scaled
dependent variables:

c =
c

c0
, γ =

γ

γm
. (3.7)

In terms of these nondimensional variables, and the definitions f(y) = 4y(1− y),

∇2
= ∂2/∂x2 + ∂2/∂y2 we obtain the nondimensional evolution equation for the

bulk concentration field

Bic0
∂c

∂t
+ Pef(y)

(
∂c

∂x

)
= ∇2

c, Ω (3.8)

with the boundary condition in Eq. (3.2b) given by

∂c

∂y

∣∣∣∣
y=0

= Bic|y=0(1− γ)−KBiγ, ∂Ωads (3.9)

The nondimensional evolution equation for the surface concentration field is given
by

∂γ

∂t
− ∂

∂x

[
ds
Bic0

∂γ

∂x

]
= c|y=0(1− γ)−Kγ, ∂Ωads (3.10)

The remaining boundary conditions are easily translated into the nondimensional
form. These nondimensional evolution equations are parameterized by the fol-
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lowing five nondimensional groups.

Pe = vmh/D, (3.11a)

Bi = kaγmh/D, (3.11b)

c0 = c0h/γm, (3.11c)

K = kd/kac0, (3.11d)

ds = Ds/D. (3.11e)

The Peclet number Pe measures the ratio of transport by convection to perpendic-
ular diffusion, and is essentially the nondimensional flow rate. The Biot number
Bi measures the ratio of adsorption rate to diffusion along the height of the flow
cell, and is essentially the nondimensional adsorption rate constant. c0 is a nondi-
mensional inlet concentration. In the limit of no flow, c0 is the reciprocal of the
fraction of the height h needed to fill the surface up to γ = γm. This interpreta-
tion explains the close relationship between c0 and the so called depletion depth
introduced by Alvarez et al. (2010). K is the kinetic equilibrium constant. ds is
the ratio of the surface and bulk diffusion coefficients, and if Ds < D, ds ∈ {0, 1}
measures the hindrance of diffusion caused by the presence of the surface. In-
terestingly, the magnitude of the transient term in Eq. (3.8) is weighed by the
product c0Bi = kac0h

2/D, essentially meaning that adsorption dynamics for large
inlet concentrations of molecules with a high affinity to the surface evolves in a
transient regime. This result is supported by Squires et al. (2008).

Dimensionless parameterization: diffusion scaling

Following a similar approach as above, but with the difference of scaling time
with a diffusion time, i.e. t = Dt/h2, the dimensionless evolution equation for
the bulk concentration field takes the form

∂c

∂t
+ Pef(y)

(
∂c

∂x

)
= ∇2

c, Ω (3.12)

while the boundary condition in Eq. (3.2b) is now given by

∂c

∂y

∣∣∣∣
y=0

= Bic|y=0(1− γ)−KBiγ, ∂Ωads (3.13)

The dimensionless evolution equation for the surface concentration field becomes

∂γ

∂t
− ∂

∂x

[
ds
∂γ

∂x

]
= Bic0c|y=0(1− γ)−KBic0γ, ∂Ωads (3.14)

The correspondence between the time scales for kinetic scaling (ks) and diffusion
scaling (ds) is

t
ks
= t

ds
kac0h

2/D = Bic0t
ds
. (3.15)
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Kinetic scaling or diffusion scaling?

The kinetic scaling of time leads to a dimensionless formulation which is par-
ticularly advantageous in the regime of kinetically limited dynamics. Generally
speaking, kinetically limited dynamics is obtained for small Bi numbers (Bi � 1)
and/or large Peclet numbers (Pe � 1). Kinetically limited dynamics is, opposed
to convection-diffusion limited dynamics, characterized by an independence of
the flow rate, i.e. the Peclet number, and a scaling of the dynamics with the
Biot number. This dynamical behavior is referred to as a kinetic scaling, which is
therefore also the terminology used for this particular dimensionless formulation.
If, on the other hand, the adsorbing molecules have a very high affinity to the
surface, such as in the case of hydrophobic proteins in aqueous solution, Bi � 1.
In this limit the dynamics is convection-diffusion limited, which is characterized
by an independence of adsorption rate, i.e. Biot number, and a scaling of the
dynamics with the Peclet number. In this limit it is advantageous to use the
diffusion scaling of time.

Disregarding the dynamical limit of the system, there are other pros and cons
for applying the two different time scales. As seen below, an approximation of
quasi-steady-state in the bulk transport dynamics leads to a theory, which adopts
a minimal number of dimensionless parameters using kinetic scaling. Hence ki-
netic scaling is advantageous when working with the quasi-steady theory. This is
consistent with the fact that the quasi-steady-state approximation is only theo-
retically supported for kinetically limited dynamics. This is further elaborated on
in section 3.5. However, concerning practical use of the theory for experimental
data fitting, we remark that ka is usually a parameter one wishes to determine
from an adsorption experiment, and is thereby unknown a priori. Hence, kinetic
scaling is not practical for experimental data fitting - an issue avoided by us-
ing diffusion scaling. Dependent on the experimental regime it might as well be
preferable to present and fit experimental data unscaled.

3.3.3 Estimates of nondimensional parameters

In this section we estimate some reasonable values for the dimensionless num-
bers. Concerning typical operating conditions, flow rates are in the range Q =
1 − 100μLmin−1, which amounts to maximum velocities of vm = 3Q/2hw =
10−3 − 10−1 ms−1. Injection concentrations typically range from c0 = 10−1 −
102 μM. To proceed we need to consider a model binder. We take as an ex-
ample a globular protein with a diameter of 2R = 5nm, and molecular weight
Mw = 30 kDa = 3 × 104 gmol−1. A simple estimate of the maximum surface
capacity γm is simply the weight of one molecule divided by its diameter squared.
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Viz, γm = Mw/4NAR
2 ≈ 2 × 103 μgm−2, where NA is the Avogadro number.

However, in biochemical studies the surface of the chip, or the dextran layer, is
sometimes prepared with a relatively low number of binding sites, with the aim
of reducing rebinding probability and neighbor interactions among the adsorb-
ing binders. This implies that the above estimate for γm, which is based on a
packing occurring for e.g. self-assembled monolayers, represents an upper limit.
In several applications the maximum surface capacity can be significantly lower.
The diffusion coefficient can be estimated from the Stokes-Einstein relation. In
aqueous solution at room temperature the dynamic viscosity is μ ≈ 10−3 Nsm−2,
and T ≈ 300K, hence D = kBT/6πμR ≈ 10−10 m2s−1.

Based on the above values we can estimate the regime of the dimensionless num-
bers. By choosing c0 ≈ 1μM, we obtain c0 = coh/γm ≈ 1, in the case of close
packing on the surface. For surfaces prepared with a lower number of binding
sites c0 > 1. For the Peclet number we obtain Pe = vmh/D ≈ 5× 102 − 5× 104.

3.3.4 The weak formulation

The weak formulation of the unimolecular evolution equations is derived using
the diffusion scaling. The kinetic scaling can later be obtained by a straightfor-

ward rescaling of time t
ks
= Bic0t

ds
. The overline notation for the dimensionless

variables is skipped for clarity. The first step of obtaining the weak form is by
multiplication with a test function and integrating over the domain on which the
function is defined. For the bulk field we get∫

Ω

ĉ
∂c

∂t
dA+

∫
Ω

Pef(y)ĉ

(
∂c

∂x

)
dA =

∫
Ω

ĉ∇×∇c dA

The second step is to reduce the order of the differential equation by integration
by parts of the highest order derivative and using Gauss’ theorem. In this way the
second order derivative is removed, such that the function c can be approximated
by linear shape functions, whose first order derivatives have jump discontinuities.
The partial integration yields∫

Ω

ĉ∇×∇c dA =

∫
∂Ω

ĉ∇c× n ds−
∫
Ω

∇ĉ×∇c dA

Finally, the terms involving temporal respectively spatial derivatives are collected
on the left respectively right hand side of the equation, viz∫

Ω

ĉ
∂c

∂t
dA =

∫
∂Ω

ĉ∇c× n ds−
∫
Ω

[
∇ĉ×∇c+ Pef(y)ĉ

(
∂c

∂x

)]
dA (3.16)
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The boundary integral, i.e. the first term on the right hand side, essentially
contains the boundary conditions for the bulk field. So far nothing has been said
about the test functions ĉ. The test functions ĉ is chosen to vanish at boundaries
where the function c satifies Dirichlet conditions, but not elsewhere. Hence

ĉ = 0, at x = 0.

Also, for the insulating surfaces, as well as for the outlet with convective flux,
the homogeneous Neumann boundary conditions ∇c × n = 0 translate into a
vanishing contribution to the boundary integral. Clearly, the integrand in the
boundary integral is non-zero only at adsorbing surfaces where

∂c

∂y

∣∣∣∣
y=0

= Bic|y=0(1− γ)−KBiγ ∂Ωads (3.17)

For the sake of completeness the weak formulation of the bulk field is summarized
in∫

Ω

ĉ
∂c

∂t
dA =

∫
∂Ωads

[
Bic|y=0(1−γ)−KBiγ

]
dx−

∫
Ω

[
∇ĉ×∇c+Pef(y)ĉ

(
∂c

∂x

)]
dA

(3.18)
The weak formulation for the surface field is obtained in a similar way, however
since the equation is naturally first order, it is simply∫

∂Ωads

γ̂
∂γ

∂t
dx =

∫
∂Ωads

γ̂

[
∂

∂x
ds
∂γ

∂x
+ Bic0c|y=0(1− γ)−KBic0γ

]
dx (3.19)

Eqs. (3.18) and (3.19) constitute the weak formulation of the unimolecular evo-
lution equations. The mathematical goal is to find a set of functions (c, γ) that
satisfies Eqs. (3.18) and (3.19), as well as c = 1 at x = 0, for all sufficiently
smooth functions (ĉ, γ̂), where ĉ has the property that it vanishes at x = 0. This
task is performed by an implementation of the weak formulation of the evolution
equations in the ComSol/MatLab computational software. More details on
the finite element method is outside the scope of the present thesis. Numerical
analysis based on an implementation of the weak form is presented in chapter 4.

3.4 Bimolecular systems

In this section the general evolution equations, introduced in chapter 3.2, are
developed for a bimolecular system, i.e. two molecular solute components. The
solute components in the bulk phase are assumed to be dissolved to a dilute
state, such that intermolecular interactions of the solutes can be ignored. On the
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surface the solute particles are close together, i.e. molecular length scales, for an
extended period of time, hence interactions on the surface have to be taken into
account. In this way, the introduction of an additional component only alters the
adsorption kinetics. Following a presentation and discussion of the adsorption
kinetics, nondimensional formulations of the bimolecular evolution equations are
presented along with an order of magnitude estimation of the nondimensional
parameters.

3.4.1 Surface adsorption kinetics

The main scope of the bimolecular system is to model competitive adsorption of
two species. The model is motivated by experiments on the competitive adsorp-
tion of lipase enzymes and surfactants, which is explained in detail in chapter 5,
and in particular section 5.4. Like for the unimolecular system the adsorption
kinetics is modeled by a phenomenological model, designed as an attempt to con-
sistently capture experimental data and provide reasonable and consistent phe-
nomenological parameters. For the sake of clarity the kinetic rate equations for
the two-component competitive adsorption/desorption dynamics are developed,
with no convective-diffusive transport in mind, and then subsequently integrated
into the full theoretical spatio-temporal framework.

When two different species are present on the surface together, it has to be
taken into account that they will give different response in the SPR measurement
per unit area. This is actually the only way to distinguish between different
adsorbed species on the surface, as SPR spectroscopy is a label-free method as
described in chapter 2. A simple approach to cope with this challenge is simply to
develop the kinetic rate equations in terms of the relative surface areas exerted by
the different species. Defining the surface area fractions for enzyme and surfactant
as respectively θe and θs, the kinetic rate equations can be written generally as

dθe
dt

= fe(θe, θs, ce, cs; ke,i) (3.20a)

dθs
dt

= fs(θe, θs, ce, cs; ks,i) (3.20b)

where the functions fe and fs are the rate of change of the area-based surface con-
centrations due to adsorption and desorption kinetics. These terms, in general,
depend on the concentration field variables and are constrained by some para-
meters ke,i, ks,i that include adsorption and desorption rate constants, maximum
surface capacities, and other possible constraints.
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Integrating the kinetics with bulk transport

The source term Ai in Eq. (3.3) is simply the rate of change of mass-based sur-
face concentration due to adsorption and desorption kinetics, hence in order to
integrate the two-component kinetic rate equations into the full spatio-temporal
framework we simply put

Ai = γm,idθi/dt, (3.21)

where γm,i is maximum surface capacity of the particular specie i. Under purely
kinetically limited conditions, with no account of convective-diffusive transport,
the surface concentrations are only functions of time, and Eqs. (3.20) are simply
two coupled ordinary differential equations (ODE’s) for the temporal evolution
of the surface concentrations. The general framework is written as

Ae = γm,efe(θe, θs, ce, cs; ke,i) (3.22a)

As = γm,sfs(θe, θs, ce, cs; ks,i) (3.22b)

Kernel of the two-component model

Motivated by experimental results the surfactant system is modeled by the simple
Langmuir adsorption/desorption model presented in section 3.3.1. Also, the lipase
enzymes are known to adsorb irreversibly in the absence of surfactants. Taking
into account that free surface space is given by (1 − θs − θe) the dynamics is
modeled by the following system of adsorption rate equations

dθe
dt

= ka,ece(1− θs − θe) (3.23a)

dθs
dt

= ka,scs(1− θs − θe)− kd,sθs (3.23b)

In terms of the mass-based concentration fields we obtain

Ae = ka,ece(γm,e − γe − γm,e

γm,s

γs) (3.24a)

As = ka,scs(γm,s − γs − γm,s

γm,e

γe)− kd,sγs (3.24b)

An important aspect, which however deserves attention at this point, is that
the surfactant forms micelles in solution above the critical micelle concentration
(cmc). The micelles, being multimolecular aggregates, diffuse slower, and can be
expected to exhibit a different intrinsic adsorption behavior than that of the single
surfactant molecules. From this perspective the definition of the bulk surfactant
concentration, and a corresponding adsorption rate constant ka,s, seems dubious.
A more thorough theoretical model would take into account the dynamics of
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micelle formation, and the adsorption/desorption dynamics of single surfactant
molecules and micelles, separately. To keep the complexity level reasonable this
approach is however avoided in the present work. This decision is actually data-
driven. For the experiments done in the present work the pure surfactant system
is reasonably well captured by the Langmuir model as shown in section 5.4. A
two-component model like Eqs. (3.24), without any displacement of one specie
by the other, has been analyzed by Fu and Santore (1998).

First order displacement model

In the presence of surfactants, enzyme desorption is observed. Different mech-
anisms, some of which are discussed in chapter 5, have been proposed in order
to explain how surfactants displace enzyme on the surface in a competitive pro-
cess. In regards to modeling surface kinetics a mathematical term is needed to
capture this competitive displacement process. The most plain way of modeling
the competitive displacement process is by a first order reaction between surface
bound surfactant and enzyme, in which case a negative term −kcθsθe is added to
Eq. (3.26a), such that

dθe
dt

= ka,ece(1− θs − θe)− kcθsθe (3.25a)

dθe
dt

= ka,scs(1− θs − θe)− kd,sθs (3.25b)

In terms of the mass-based concentration fields we obtain

Ae = ka,ece(γm,e − γe − γm,e

γm,s

γs)− kc
γs
γm,s

γe (3.26a)

As = ka,scs(γm,s − γs − γm,s

γm,e

γe)− kd,sγs (3.26b)

This model, albeit simple, captures the essence of the competitive adsorption of
two species, including displacement of one specie by the other.

Coorporative displacement model

The above form of the displacement term, being of first order in both surfactant
and enzyme, takes no coorporative behavior of the surfactant into account. In
reality it is well known (see section 5.4) that the surfactant has properties of self-
assembly and enhanced surface activity above a certain concentration threshold.
It is therefore probable that the displacement is better captured by some higher
order model. One displacement model that has many of the wanted properties
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Figure 3.2: Coorporative displacement model - Parameters: θs,c = 1, θs,p =
{0.01, 0.1, 0.3}

is build from the inverse tangent function. Choosing again a first order form for
the enzyme leads to a competitive term −kcf(θs)θe, where

f(θs) =
1

π

[
arctan

(
θs − θs,c
θs,p

)
+ arctan

(
θs,c
θs,p

)]
(3.27)

This form, in principle, introduces two additional parameters: θs,c, measuring
the surface concentration of surfactant at which the coorporativity enhances its
competitive properties, as well as θs,p that measures how dramatic the change
in competitive properties is. Increasing the value of θs,p leads to a less dramatic
change and vice versa. The functionality of the model is presented in Fig. 3.2. The
model is chosen such that it goes to zero for vanishing surfactant concentrations,
and to unity for large surfactant concentrations. The latter property implies that
kc is a normalized measure of the strength of the displacement.

3.4.2 Nondimensional parameterization

The nondimensional parameterization is done for the first order competitive ad-
sorption model, and to keep the number of free parameters to a reasonable mini-
mum surface diffusion is neglected. The mathematical formulation of the spatio-
temporal problem for the bimolecular system consists of two independent ver-
sions of Eq. (3.1) for the two molecular components, respectively. The coupling
of the two fields arises from the two versions of the surface evolution equations
(Eq. (3.3)), and the boundary flux balance conditions (Eq. (3.2b)). The following
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3.4 Bimolecular systems

spatial and temporal scales are applied:

x =
x

h
, y =

y

h
, t =

Dst

h2
(3.28)

Time has been made nondimensional by the surfactant diffusion time across the
height of the flow cell. For the dependent concentration variables we introduce
the following scaled variables:

ce =
ce
ce,0

, cs =
cs
cs,0

, γe =
γe
γm,e

, γs =
γs
γm,s

(3.29)

where ce,0 and cs,0 are the bulk concentrations injected at the inlet of the flow
cell (x = 0). The following dimensionless parameters are defined:

Pes =
vmh

Ds

: Peclet number based on surfactant diffusion (3.30a)

Bie =
ka,eγm,eh

De

: enzyme Biot number (3.30b)

Bis =
ka,sγm,sh

Ds

: surfactant Biot number (3.30c)

d =
De

Ds

: ratio of enzyme and surfactant diffusion coefficients (3.30d)

kc =
kcγm,eh

Dece,0
: Nondimensional competition constant (3.30e)

Ks =
kd,s

ka,scs,0
: surfactant kinetic equilibrium constant (3.30f)

ce,0 =
ce,0h

γm,e

: Nondimensional inlet enzyme concentration (3.30g)

cs,0 =
cs,0h

γm,s

: Nondimensional inlet surfactant concentration (3.30h)

In terms of these nondimensional variables and parameters, and the definitions

f(y) = 4y(1− y), ∇2
= ∂2/∂x2+ ∂2/∂y2 we obtain the nondimensional evolution

equations. For the bulk concentration fields (Eq. (3.1)):

∂ce
∂t

+ Pesf(y)
∂ce
∂x

= d∇2
ce, Ω (3.31a)

∂cs
∂t

+ Pesf(y)
∂cs
∂x

= ∇2
cs, Ω (3.31b)
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3.5 The quasi-steady theory

The boundary conditions (Eq. (3.2b)) become

∂ce
∂y

∣∣∣∣
y=0

= Biece|y=0(1− γs − γe)− kcγsγe, ∂Ωads (3.32a)

∂cs
∂y

∣∣∣∣
y=0

= Biscs|y=0(1− γs − γe)−KsBisγs, ∂Ωads (3.32b)

The nondimensional evolution equations for the surface concentration fields are
finally given by

∂γe

∂t
= Biedce,0ce|y=0(1− γs − γe)− kcdce,0γsγe, ∂Ωads (3.33a)

∂γs

∂t
= Biscs,0cs|y=0(1− γs − γe)−KsBiscs,0γs, ∂Ωads (3.33b)

Again, the remaining no-flux boundary conditions are trivially translated into the
nondimensional form for both molecular components.

3.4.3 Estimates of nondimensional parameters

In this section we estimate some reasonable values for the nondimensional para-
meters for the bimolecular system. As for the unimolecular system, flow rates
are in the range Q = 1 − 100μLmin−1, amounting to maximum velocities of
vm = 3Q/2hw = 10−3 − 10−1 ms−1. A diffusion coefficient for the enzyme was
estimated in section 3.3.3, using the Stokes-Einstein relation D = kBT/6πμR ≈
10−10 m2s−1. The smaller surfactant molecules diffuse faster. Considering for ex-
ample surfactant molecules of linear size 5× 10−10 m, which is one order of mag-
nitude smaller than the enzyme, leads to a diffusion coefficient of approximately
10−9 m2s−1. This leads to Peclet numbers, based on the surfactant diffusion coef-
ficient, of order Pes ≈ 5×102−5×104, and d = De/Ds ≈ 10−1. Also, from section
3.3.3, ce,0 ≈ 1μM, and hence ce,0 = ce,0h/γm,e ≈ 1. The injection concentration of
surfactant is typically two orders of magnitude higher, dependent on the cmc for
the particular surfactant. In addition, the maximum surface capacity γm,s is typ-
ically a few times smaller. A rough estimate may be that cs,0 = cs,0h/γm,s ≈ 100.

The set of parameters (Bie,Bis, kc, Ks) characterizes adsorption, desorption
and competition, and would typically be the quantitative objective of adsorption
experiments.

3.5 The quasi-steady theory

The theoretical models developed in the earlier sections 3.2, 3.3, and 3.4 all entail
numerical simulations. The models have the mathematical structure of nonlin-
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3.5 The quasi-steady theory

ear systems of partial differential equations, which require somewhat demanding
numerical techniques. Analytical studies of these models are few, hence they are
unfit for use in experimental data analysis, and this kind of modeling have there-
fore not been widely embraced by the SPR community. This section is concerned
with a widely adopted approximate theory, which we refer to as the quasi-steady
theory.

Ideally one would like to interpret SPR data by assuming simply that the
concentration near the sensor cy=0 is identical to the injection concentration c0.
That is, by assuming that there is no resistance to mass transfer. To account
for the corrections due to some mass transfer resistance, it has been suggested to
interpret data by means of a mass transport model, saying that the overall flux
of solute J to the surface is proportional to the difference between the far field
concentration c0, usually taken as the injection concentration, and the concentra-
tion close to the surface of the sensor c|y=0, i.e. J = kL(c0 − c|y=0). In fact, this
suggestion is based on a solution to the stationary diffusion-convection equation
for the concentration field c = c(x, y) on a semi-infinite domain x, y ≥ 0

vx
∂c

∂x
= D

∂2c

∂y2
, y > 0. (3.34)

The velocity vx = vx(y) is linearized close to the surface, i.e. vx(y) = γ̇wy,
γ̇w being the shear rate at the surface, and the boundary conditions for the
concentration field are c(x, y)|y=0 = const, c(x, y)|x,y→∞ = 0, and c(x, y)|x=0 = c0.
The solution consists of a concentration boundary layer close to the surface y = 0,
and a flux of solute to the surface J = kL(c0 − c|y=0), where the mass transport
parameter kL is given by

kL =
2D

Γ(7
3
)

(
γ̇w
9Dl

)1/3

. (3.35)

This mass transport parameter is often chosen as a free fitting parameter in
the SPR community, although it may in fact be predicted from the operating
conditions. Given a flow rate Q, the shear rate at the wall is

γ̇w =
6Q

h2w
(3.36)

The coupling of this stationary convection-diffusion solution with the adsorption
kinetics on the surface is performed by loosening up the Dirichlet boundary con-
dition c(x, y)|y=0 = const. Letting these bulk particles c|y=0 adsorb, they are
converted into surface particles γ, and a simple mass balance on the surface dic-
tates J = dγ/dt = A(γ, c). The critical assumption here is that the adsorption is
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so slow, that the bulk concentration on the surface c|y=0 is practically constant,
and use of the steady-state flux J = kL(c0 − c|y=0), with kL given by Eq. (3.35),
is still reasonable.

Inserting the steady-state flux into the mass balance on the surface yields
kL(c0 − c|y=0) = A(γ, c). In the case of linear kinetics (Eq. (3.5)) this becomes
an algebraic equation for c|y=0, with the solution

c|y=0 =
kLc0 + kdγ

ka(γm − γ) + kL
(3.37)

Substituting this into Eq. (3.5) gives the following nonlinear ordinary differential
equation for the evolution of the surface concentration γ(t)

dγ

dt
=

kakLc0(γm − γ)− kdkLγ

ka(γm − γ) + kL
(3.38)

Using the kinetic scaling from section 3.3, we can write Eq. (3.38) as

dγ

dt

ks

=
1− (1 +K)γ

1 + Da(1− γ)
(3.39)

with the additional introduction of the important dimensionless Damköhler num-
ber

Da = kaγm/kL, (3.40)

which is the ratio of the adsorption rate and the rate of mass transport to the sur-
face, i.e. it measures the limiting effect of convection-diffusion on the adsorption
process. If Da � 1 the system is kinetically limited, and if Da � 1 the system is
convection-diffusion limited. Note in particular when Da � 1 Eq. (3.39) becomes

dγ

dt

ks

= 1− (1 +K)γ, Da � 1 (3.41)

which is simply the dimensionless form of Eq. (3.5), i.e. a purely adsorption-
limited, linear, first order kinetic process. Also, the initial rate of adsorption,
starting from the initial condition of zero surface concentration, γ = 0, is pre-
dicted to be

dγ

dt
(0)ks =

1

1 + Da
or

dγ

dt
(0)ks = c0kL

Da

1 + Da
(3.42)

Using diffusion scaling the formulation of the quasi-steady theory involves the
two additional parameters, Bi and c0, viz

dγ

dt

ds

=
Bic0(1− γ)−Kγ

Da(1− γ)− 1
(3.43)
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By combining Eq. (3.39) with Eq. (3.35) we obtain the scaling of the maximum
rate of adsorption with Peclet number in the convection-diffusion-limited regime
(Da � 1),

max

(
dγ

dt

)
∼ Pe1/3. (3.44)

3.5.1 Correspondence between the Damköhler, Biot, and
Peclet number

The kinetic scaling of the evolution equations (Eqs. (3.8),(3.9),(3.10)) clarifies the
assumptions in the quasi-steady theory. By setting Bi = 0 we essentially obtain
the conditions for the solution in Eq. (3.35), i.e. time dependency drops out of
the bulk convection-diffusion equation, which is consistent with an instantaneous
build-up of the concentration boundary layer above the adsorbing surface in the
quasi-steady theory. In addition, the quasi-steady theory approximates reality by
a semi-infinite bulk domain, a linear velocity profile, and equally important, by
no inlet distance to the sensor surface. With the exception of the last difference,
we expect that the quasi-steady theory can be obtained from a boundary layer
perturbation theory. This work has however not been further pursued.

The kinetically scaled quasi-steady theory in Eq. (3.39) is parameterized only
by the Damköhler number Da, and the equilibrium constant K. As the quasi-
steady theory combines steady-state convection-diffusion with adsorption in the
Damköhler number, through the mass transport coefficient kL, it is naturally
possible to express the Damköhler number in terms of the Peclet number and the
Biot number. First, from Eq. (3.36), γ̇w = 4vm/h. By defining the number α =
2(4/9)1/3/Γ(7/3) ≈ 1.2819, the mass transport coefficient kL can be expressed as

kL = α

(
vmh

D

)1/3
D

l1/3h2/3

Hence the Damköhler number is given by

Da =
kaγm
kL

= α−1(l/h)1/3 BiPe−1/3 (3.45)

Note that the quasi-steady theory is parameterized by the Damköhler number,
and at the same time is based on the assumption Da = 0. It is clear from
Eq. (3.45) that the Damköhler number increases linearly with the Biot number,
and decreases with the cubic root of the Peclet number. Practically speaking,
if the binders are strongly attracted to the surface (large Biot number), it may
be impossible to reduce the Damköhler number significantly by simply increasing
the flow rate, i.e. Peclet number.
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3.5.2 Analytical solution of the quasi-steady theory

Eq. (3.39) can be solved analytically in implicit form, i.e. t = t(γ) instead of the
explicit form γ = γ(t). It is determined simply by separation of variables and
integration, with initially γ(t = 0) = 0:

t =
Daκγ − (

κ+Da(κ− 1)
)
ln(1− κγ)

κ2
(3.46)

where κ ≡ 1+K. For irreversible adsorptionK = 0, κ = 1, the solution condenses
into

t = Daγ − ln(1− γ) (3.47)

This solution may not be so useful for physical insight, but has its practical ad-
vantage when performing nonlinear least squares data fitting in the time domain.
Data fitting in the time domain involves a numerical solution of the ordinary dif-
ferential equation (Eq. (3.39)) at every parameter space iteration, which can be
avoided with the implicit solution above. Another option is simply fitting data
in the phase plane (Goren et al., 2006 Jan 31). This method does not involve
the solution of Eq. (3.39), is explicit, but as a trade off involves differentiation of
data.

3.5.3 Note on two-compartment model

The quasi-steady theory captures the qualitative essence of the mass transport
problem in the microfluidic system of surface-based biosensors. In this respect the
theory includes the coupling of convective and diffusive bulk mass transport with
adsorption/desorption surface kinetics. To increase the quantitative accuracy of
the model in the context of fitting data from surface-based biosensor experiments,
a two-compartment model has been suggested (Schuck and Minton, 1996; Myszka
et al., 1997 Feb 28, 1998 Aug). In this model the flow cell is divided into two
compartments, an inner compartment directly adjacent to the sensor surface, and
an outer compartment spanning the rest of the flow cell. The outer compartment
is modeled with a uniform concentration equal to the injection concentration.
Mass transport from the outer to the inner compartment is then modeled by a
flux, linear in the concentration difference between the two compartments, like
the quasi-steady flux, with the mass transport coefficient kL. This mass trans-
port coefficient is usually chosen as a free fitting parameter. The mass transport
between the inner compartment and the surface is finally modeled by a first order
kinetic adsorption/desorption scheme like in Eq. (3.5).

The two compartment model shows increased capabilities of fitting experi-
mental data (Myszka et al., 1998 Aug). What happens is that the introduc-
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tion of the two compartments renders the adsorption process second order, i.e.
dγ/dt(t = 0) = 0. The inner compartment needs to receive solute binders from
the outer compartment before being able to support adsorption onto the sur-
face. This second order behavior is consistent with real adsorption experiments,
where the concentration boundary adjacent to the SPR surface initially needs
to build up by a time-dependent transient transport process. The drawback of
the two-compartment model is the somewhat arbitrary specification of the inner
compartment height, and thereby the definition of the compartments, altogether.
Choosing the inner compartment height to zero leads back to the quasi-steady
theory. The shortcomings of the quasi-steady theory, especially in the initial
process of an adsorption experiment, is analyzed in detail in chapter 4.
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Chapter 4

Numerical Analysis

This chapter presents some of the main results from numerical analysis of the
mathematical models, introduced in chapter 3. From a theoretical point of view,
much knowledge has been build up in this field (Bird et al., 2002). The aim of
this first section is by no means to review this knowledge, but simply to build
up some intuition about the transport physics in the surface-based biosensor, by
visualization of the spatio-temporal evolution of the concentration fields. This
part also serves to introduce the most important terminology used in this and
related transport problems. The following section quantifies and compares tran-
sient convection, diffusion, and adsorption, obtained by numerical solutions of the
evolution equations from chapter 3, with the quasi-steady theory. A major part
of the results in this section is included in the paper, submitted for publication
in the appendix [P1]. This is followed by a brief investigation of the case where
the solute adsorbs equally well to all the surfaces in the flow cell. This could
hypothetically occur for non-specific binding of highly surface active solutes, e.g.
the experiments described in the following chapter.

4.1 Numerical method

All numerical simulations are performed with the ComSol/MatLab finite ele-
ment method software. The method is implemented in MatLab 7, which calls
a set of functions running in ComSol 3 that perform the numerical simulations
of the given problem. The implementation is based on the weak formulation de-
rived in section 3.3.4. The time stepping procedure is an implicit backward Euler
method, which uses a variable order differentiation formula. The level of meshing
is increased until the solver converges, and the concentrationen fields, as well as
derived functions such as the mean value of surface concentration, appear smooth.
A convergence test is performed automatically by the program. An additional

33

45



4.2 Evolution of the concentration fields

(a) tds=0.025 (b) tds=0.075

(c) tds=0.125 (d) tds=0.175

(e) tds=0.225 (f ) tds=0.275

Figure 4.1: Evolution of the bulk concentration field in the flow cell -
The plots (a)-(f) correspond to equidistant times. Time is made nondimensional
by diffusion scaling: tds = tD/h2. Parameters: c0 = 1, Pe = 500, Bi = 1

test for convergence is done by comparing the solutions with the quasi-steady
theory in the limit where this is known to be a good approximation. Aditional
details on the numerical technique are not within the scope of the present thesis.

4.2 Evolution of the concentration fields

We take offset in the estimated regime for the nondimensional parameters in sec-
tion 3.3.3, and, to simplify matters, choose to consider the case of irreversible
adsorption of binders, which are immobile on the surface, hence K = ds = 0.
In nondimensional variables the height of the flow cell is 1, while the length is
46, and the chip length is 12. Fig. 4.1 presents the bulk concentration field in
the flow cell for six equidistant times, made nondimensional by diffusion scaling:
tds = tD/h2. The parameters are c0 = 1, Pe = 500, Bi = 1. In Fig. 4.1 (a)-(b)
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4.2 Evolution of the concentration fields

Figure 4.2: Evolution of the surface concentration field at the SPR chip
- The curves correspond to the equidistant times from Fig. 4.1 (a)-(f). The abscissa
xc is the measure along the x-axis starting at the chip. Parameters: c0 = 1, Pe =
500, Bi = 1

we clearly see how the solute is convected by the parabolic velocity flow profile,
while diffusion evens out the concentration field at the border to the buffer ini-
tially present in the flow cell. As time progresses further, going from Fig. 4.1 (b)
to (f), we observe a transient formation of a concentration boundary layer above
the surface of the adsorbing SPR chip. The adsorption causes a depletion locally
above the chip. The system approaches a steady-state, where this depletion of
the solute above the chip is balanced by the convection of fresh solute from the
inlet of the flow cell. The physics of this steady-state boundary layer is theoreti-
cally well understood (Bird et al., 2002), and forms the basis for the quasi-steady
theory of adsorption, as described in the preceding chapter in section 3.5. The
steady-state is reached after the surface concentration has saturated, such that
γ = γ/γm = 1. Fig. 4.2 shows the evolution of the surface concentration field
γ, corresponding to the equidistant times from Fig. 4.1 (a)-(f). For (a) and (b)
only a minor amount of solute has adsorbed. From (c) to (f) the surface con-
centration increases almost linearly with time, while the surface is still far from
saturation. The concentration decreases with downstream distance due to the
earlier encounter with bulk solute in the beginning of the chip, and the thinner
boundary layer in this region.

Fig. 4.3 compares the bulk concentration field for different parameters at the
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4.2 Evolution of the concentration fields

(a) c0=1, Bi=1, Pe=500 (b) c0=1, Bi=1, Pe=2500

(c) c0=10, Bi=1, Pe=500 (d) c0=1, Bi=100, Pe=500

Figure 4.3: Bulk concentration field in the flow cell at the time tds = 0.275
- Parameters are indicated above each plot.

fixed time tds = 0.275.

Effect of Peclet number

The effect of increasing the Peclet number from 500 to 2500, with fixed para-
meters c0 = 1 and Bi = 1, is seen by comparing Fig. 4.3 (a) and (b). The
process of developing the boundary layer is speeded up by the increase in Peclet
number, which is followed by a faster adsorption process, as long as the system
is convection-diffusion-limited. The boundary layer is qualitatively preserved,
but undergoes a quantitative change, under the increase in Peclet number. In
accordance with theory, the height of the boundary layer decreases with Peclet
number. Steady-state theory for large Peclet numbers (Pe � 1) predicts that the
height of the boundary layer scales with Pe−1/3 (Bird et al., 2002). Additionally,
the nondimensional concentration c within the boundary layer has increased with
Peclet number. In this way, increasing the Peclet number leads to conditions,
which are closer to those assumed in a rapid mixing model, where the bulk con-
centration field just above the chip is put equal to the injection concentration.
Also, the conditions get closer to those assumed assumed in the quasi-steady the-
ory. However, the relative increase in the boundary layer concentration is only in
the order of 10−1, or 10 percent, which should be seen in the light of the 5-fold
increase in Peclet number.
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Effect of inlet concentration

The effect of increasing the nondimensional inlet concentration c0 from 1 to 10,
with fixed parameters Bi = 1 and Pe = 500, is seen by comparing Fig. 4.3 (a) and
(c). The most notable effect is a decrease in the nondimensional concentration
gradients across the boundary layer.

Effect of Biot number

The effect of increasing the Biot number from 1 to 100, with fixed parameters
c0 = 1 and Pe = 500, is seen by comparing Fig. 4.3 (a) and (d). In this case the
most notable effect is a more pronounced depletion of the bulk concentration field
above the adsorbing chip. This leads to increased nondimensional concentration
gradients across the boundary layer.

4.3 Transient transport in surface-based biosen-

sors

This section is concerned with a numerical investigation of the nonlinear sys-
tem of partial differential equations, governing the evolution of the concentra-
tion fields. The intention is to simulate the dynamics of real adsorption experi-
ments in surface-based biosensors, whereby we use the mean surface concentration
Γ ≡ (1/lc)

∫
sensor

γ dx as the central quantifier. Numerical solutions to Eqs. (3.8),
(3.9), and (3.10), or similarly Eqs. (3.12), (3.13), and (3.14), are collectively
referred to as the simulations. We take offset in the estimated regime for the
nondimensional parameters, and to simplify matters choose to consider the case
of irreversible adsorption of binders, which are immobile on the surface, hence
K = ds = 0. A particular aim of the investigation is to evaluate the quality of
the quasi-steady theory by comparison with the simulations. Deviations between
the simulations and the quasi-steady theory reveal the effects of the transient
dynamics in the simulations, which of course are also present in real adsorption
experiments. To mimic the case of real adsorption experiments, being fitted by
the quasi-steady theory to reveal an adsorption rate constant ka, we fit the quasi-
steady theory to the simulation with Bi as the free fitting parameter, using a least
squares method. The quasi-steady theory has no chance of fitting initial data,
hence the simulation time from the origin of the phase plane to the extremum
(highest adsorption rate) is cut off in the fitting procedure, corresponding to typ-
ical practice of representing SPR data in the phase plane (Goren et al., 2006
Jan 31). The error of the quasi-steady theory is then quantified by the relative
difference between the fitted Bi number and the real Bi number used for the simu-
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lation. Strictly speaking, we define the error as (Bifit−Bi)/Bi. Being interested in
the kinetics of adsorption the results are most naturally presented and analyzed
in the phase plane, spanned by the mean surface concentration Γ, and its time
derivative Γ̇ ≡ (1/lc)

∫
sensor

∂γ/∂t dx. This representation clearly illustrates the
transient regime, and is the most straightforward approach to analyze deviations
from linear adsorption kinetics due to mass transport. The choice of parameters
span both kinetically limited and convection-diffusion limited dynamics. Results
are presented using both kinetic and diffusion scaling of time, the former leading
to universality for kinetically limited dynamics, and the latter leading to univer-
sality for convection-diffusion limited dynamics. Note in particular that purely
kinetically limited dynamics, i.e. the linear kinetics in 3.5, is represented by a
linear curve in the phase plane. For kinetic scaling this linear curve is the di-
agonal from the point (0, 1) on the ordinate to the point (1, 0) on the abscissa.
The universality characteristic obtained with kinetic scaling is that this curve
represents the dynamics independent of c0 and Pe for large enough Bi.

4.3.1 Kinetic scaling

Fig. 4.4 contains a representative collection of phase plane curves using kinetic

scaling, i.e. t
ks
= kac0t. Four different simulations for the combinations of concen-

trations c0 ∈ {1, 20}, Bi ∈ {1, 10}, and Pe = 500 are presented (full black line),
each in a separate plot, along with the prediction of the quasi-steady theory for
identical parameters (dashed black line), as well as a fit of the quasi-steady theory
to the simulations (dashed gray line). Importantly, the quasi-steady theory scales
linearly with c0, taken into account in the kinetic scaling of time in 3.39. Hence
the quasi-steady theory does not explicitly include the c0 - degree of freedom,
whereby essentially only two distinctive predictions occur in Fig. 4.4. In other
words, the dashed curves denoted (QST) are identical in Fig. 4.4 (a) and (b), re-
spectively, Fig. 4.4 (c) and (d). Several points are immediately apparent from the
simulations. The simulation curves start at the origin of the phase plane, whereas
the quasi-steady theory has the finite initial adsorption rate given in 3.42. It is
important to note that the kinetic scaling of time implicitly includes a linear
scaling of the adsorption rate with both Bi and c0. The decrease in adsorption
rate for both increasing Bi and increasing c0 in Fig. 4.4, amounts to a sublin-
ear increase with both Bi and c0 in dimensional variables. The sublinear scaling
naturally arises from convection-diffusion limitation in the nonlinear dynamics
of the system. Apart from in the initial phase, predictions of the quasi-steady
theory practically coincides with the simulations, and thereby also the fits, for
c0 = 1. Increasing the concentration to c0 = 20 leads to significant alteration of
the simulation curves. Since there are no knobs to turn for the kinetically scaled
quasi-steady theory, regarding changes in concentration c0, this leads to equally
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Figure 4.4: Phase plane dynamics using kinetic scaling - Simulation: Nu-
merical solution of Eqs. (3.8), (3.9), and (3.10) for c0 ∈ {1, 20}, Bi ∈ {1, 10}, and
Pe = 500. QST: Quasi-steady theory (3.39) for corresponding values of Da through
Eq. (3.45). QST Fit: Fits of the quasi-steady theory to simulations.

significant deviations between the simulations and predictions of the quasi-steady
theory. The observed dependency of c0 is expected since c0 parameterizes time
dependency in 3.8, and hence transient behavior in the system dynamics, which
is not taken into account in the quasi-steady theory. Physically speaking, the
surface simply saturates faster than a steady-state can be achieved in the bulk.
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4.3 Transient transport in surface-based biosensors

4.3.2 Diffusion scaling

Fig. 4.5 contains a representative collection of phase plane curves using diffusion

scaling, i.e. t
ds
= Dt/h2. Four different simulations for the combination of para-

meters c0 ∈ {20}, Bi = {1, 10, 50, 100}, and Pe = 2500 are presented, each in
a separate plot, along with the prediction of the quasi-steady theory for iden-
tical parameters, as well as a fit of the quasi-steady theory to the simulations.
The universality characteristic obtained with diffusion scaling of time is that the
simulations approach a limiting curve, representing predominantly convection-
diffusion limited dynamics, for large Biot numbers. This curve is observed to
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Figure 4.5: Phase plane dynamics using diffusion scaling - Simulation:
Numerical solution of Eqs. (3.12), (3.13), and (3.14) for c0 ∈ {1, 20}, Bi = {1, 10},
and Pe = 500. QST: Quasi-steady theory (3.43) for corresponding values of Da
through Eq. (3.45). QST Fit: Fits of the quasi-steady theory to simulations.
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4.3 Transient transport in surface-based biosensors

have a very symmetric, parabolic-like, characteristic form. Inconsistent with the
simulations, quasi-steady theory predicts a linear scaling of adsorption rate with
concentration, which is explicit when using diffusion scaling as in Fig. 4.5. This
naturally leads to an increasing deviation between quasi-steady theory and sim-
ulations for increasing Bi.
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Figure 4.6: Phase plane dynamics showing effect of the flow rate (Pe
number) - Simulation: Numerical solution of Eqs. (3.8), (3.9), and (3.10) for c0 =
10, Bi = {1, 100}, and Pe = {500, 10000}. QST: Quasi-steady theory (Eq. (3.43))
for corresponding values of Da though Eq. (3.45). QST Fit: Fits of the quasi-steady
theory to simulations.
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4.3.3 Flow rate dependency

The nature of the Peclet number dependency is presented in Fig. 4.6, con-
taining four different simulations for the combination of parameters c0 = 10,
Bi = {1, 100}, and Pe = {500, 10000}. Again, the simulations are presented,
each in a separate plot, along with the prediction of the quasi-steady theory for
identical parameters, as well as a fit of the quasi-steady theory to the simula-

tions. Kinetic scaling, i.e. t
ks

= kac0t is applied. Clearly the increase of the
Peclet number leads to less convection-diffusion limitation. Thereby the simula-
tions approach the diagonal in Fig. 4.6, representing purely adsorption limited
linear kinetics, for increasing Pe. This behavior is very clear for Bi = 1, where the
dynamics is predominantly kinetically limited. For Bi = 100, where the dynamics
is much more convection-diffusion limited, we again observe increased agreement
between quasi-steady theory and simulations as the Peclet number is increased.
The agreement is, however, not as good as for Bi = 1. Note that the ordinate
axis are different in the two lower plots for Bi = 100. The specific case in the
lower left plot (c0 = 10, Bi = 100, Pe = 500) is clearly in a regime where the
quasi-steady theory has little value, and little ability to fit data as well. The
approach to adsorption limited dynamics in Fig. 4.6 is consistent with a decrease
in the Damköhler number as Da ∼ Pe−1/3. Fig. 4.6 also serves to show that, due
to this slow cubic root dependency, experimental practicalities often preclude to
cope with convection-diffusion limitation, by simply increasing the flow rate for
systems with a high Biot number.

In summary, Figs 4.4, 4.5, and 4.6 stress some nonlinearities present in the real
system dynamics, which are not well captured in the approximate quasi-steady
theory.

4.3.4 Error of the quasi-steady theory

The numerical investigation concludes with a quantification of the error of the
quasi-steady theory, measured as the relative difference between the Biot number
used to fit the quasi-steady theory to simulations, and the Biot number used
for the simulation itself. The nondimensional parameter space is spanned by
Bi ∈ {1, . . . , 100}, Pe ∈ {500, . . . , 10000}, for c0 = {1, 10, 20}. Fig. 4.7 presents
the relative errors (Bifit−Bi)/Bi by contour lines in the nondimensional parameter
space (Pe,Bi). Every contour is labelled with the matching error. Equal for all
values of c0 is that the error is largest for slow flows of strong binders, i.e. small Pe
and large Bi numbers. For c0 = 1 only relatively minor errors, up to around 0.2
(20%), are observed in the spanned parameter space. However, the quantitative
increase of the error with c0 is significant. For c0 = 20 the errors increase to above
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Figure 4.7: Error of quasi-steady theory - Contour lines of the relative error
(Bifit − Bi)/Bi for c0 ∈ {1, 10, 20} in the parameter space (Pe,Bi). The errors
increase with increasing Bi, increasing c0, and decreasing Pe.
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2.5 (250%), which amounts to a factor of 3-4, in the spanned parameter space.

4.3.5 Effect of preadsorption

For highly surface active molecules undergoing nonspecific adsorption one could
expect that solute adsorbs equally well to all surfaces in the microfluidic flow cell.
This final investigation for the unimolecular system concerns the characteristic
effects of such dynamics on the SPR signal. We refer to this as preadsorption, even
though adsorption is modeled both upstream, downstream, and on the surface
opposite the sensor. Fig. 4.8 compares the phase plane dynamics, with and
without preadsorption, for the parameters; c0 = 1, Bi = {1, 100}, and Pe =
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Figure 4.8: Effect of preadsorption on phase plane dynamics. - Parameters
are indicated above each plot. c0 = 1 for all plots.

44

56



4.3 Transient transport in surface-based biosensors

{500, 2500}. In the regime of low Bi and high Pe (Bi = 1, Pe = 2500) the effect
of preadsorption is vanishing. For high Bi (Bi = 100) the effect is much more
pronounced, even under a increase in the flow rate from Pe = 500 to Pe = 2500.
Also, for high Bi and low Pe, the phase plane curve has a characteristic shape
with a convex region for intermediate values of Γ. This essentially means that
the adsorption rate initially increases, and then starts decreasing, as usual, but
then starts increasing again as the surfaces surrounding the sensor surface get
saturated.

4.3.6 Summary of results

The nondimensional Damköhler number Da = kaγm/kL, inherent in the quasi-
steady theory, was expressed in terms of the Biot number Bi = kaγmh/D, the
Péclet number Pe = vmh/D, and the model geometry. In addition, an analytical
solution to the quasi-steady theory was derived. The results provided the regimes
of both reliable and unreliable use of the quasi-steady theory for experimental
data analysis, by quantifying the error of the quasi-steady theory in the space
of parameters. This can be used as a tool to correct adsorption rate constants,
obtained by fitting the quasi-steady theory to experimental data. We deduced a
critical importance of the inlet concentration, and the maximum surface capacity,
combined in the nondimensional inlet concentration. Finally, inclusion of adsorp-
tion on all the surfaces lead to a pronounced effect on the dynamics of adsorption
for large Biot numbers.
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Chapter 5

SPR experiments of lipase
adsorption

This chapter presents some of the main experimental results obtained during the
thesis. After a short review of lipase, the experimental method and protocol is
introduced. This is followed by a presentation and discussion of data obtained
for lipase adsorption in the absence, as well as presence, of surfactant.

5.1 Introduction

Enzymes are true workhorses as chemical catalysts in living matter. Most en-
zymes are very specific in the sense of catalyzing chemical reactions of particu-
lar reactant molecules called substrates. Using genetic engineering the chemical
composition of an enzyme can be altered by mutations, creating different mutant
variants. This has been widely adopted by the chemical and biotechnological
industry to achieve high performance mutant variants of naturally occurring wild
type enzymes.

Lipases are enzymes that facilitate degradation of lipids and fats, a process re-
ferred to as lipolysis. They are ubiquitous in nature, playing many essential roles
in e.g. the digestive system, remodeling of membranes, and in forming the perme-
ability barrier of the skin (Mouritsen, 2005). More technically, the degradation
of lipids and fats by lipases is executed by catalysis of hydrolysis of ester bonds
in triglycerides. This important property is naturally utilized in industrial deter-
gent formulations, where lipases play a key role in removing fatty soils. As lipases
are water soluble, whereas their lipid substrate is water insoluble, the catalytic
reaction occurs on a water-oil interface. Upon adsorption to the lipid substrate
the majority of known lipases undergoes an interfacial activation, composed of
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conformational rearrangements on the lipid substrate (Cygler and Schrag, 1997;
Reis et al., 2009). As a part of this interfacial activation a hydrophobic active site
of the lipase gets exposed to the substrate (Brzozowski et al., 2000). In compari-
son with enzymatic catalysis in homogenous solutions, the complicated interfacial
environment, in which lipolysis occurs, introduces challenges for understanding
the regulation of lipolysis. One complicating factor is lipase adsorption and sub-
strate availability (Reis et al., 2009). Another important aspect that complicates
the physical system is the frequent presence of surfactants, which influences the
lipase activity. For example, bile acids function as unconventional surfactants in
the digestive system, where they are critical for reducing lipase product inhibition
by promoting the solubilization of lipolytic products. In addition, they prepare
the interface for lipase adsorption (Wilde and Chu, 2011; Maldonado-Valderrama
et al., 2011). Surfactants are also an important ingredient in detergent formula-
tions for solubilizing lipolytic products (Gennes et al., 2004).

Surfactants interact with both proteins and the lipid interface. Concordantly,
the presence of surfactants has been demonstrated to influence the adsorption of
lipase molecules to solid lipid interfaces (Sonesson et al., 2006, 2008), and the
conformational stability of the enzyme (Mogensen et al., 2005). The effect of
surfactant, however, is highly dependent on its concentration. At high concentra-
tions surfactants tend to displace lipase molecules, either by replacement, or by
binding to and solubilizing the lipase (Wahlgren and Arnebrant, 1991). Hence,
the interactions between surfactants and lipase at the interface is important for
regulation of lipid catalysis. The step of adsorption of lipase to the lipid substrate
constitutes a potential target for modification to regulate lipolysis, and thereby
take full advantage of these enzymes.

Thermomyces lanuginusos lipases (TLL, see Fig. 5.1) is a well-studied lipase,
which has found technological application in detergent formulations (Schmid and
Verger, 1998). Adsorption and mobility of TLL at interfaces has been investi-
gated in a number of previous studies, addressing the influence of ionic strength
and pH (Duinhoven et al., 1995), glycosylation (Pinholt et al., 2010; Schmid and
Verger, 1998), and surface hydrophobicity (Wannerberger and Arnebrant, 1996;
Wannerberger et al., 1996). Studies on how surfactants affect TLL adsorption
dynamics revealed that surfactants can displace TLL from the interface, and that
the mobility of TLL on a hydrophobic interface increase substantially in the pres-
ence of surfactants at concentrations above the cmc Sonesson et al. (2006, 2008).

To achieve more high performance enzymes, several TLL mutant variants
have been designed using molecular genetics (communication with Novozymes).
The present study compares the adsorbing properties of a high performance TLL
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cys a 107 

glu a 56    AA

Open conformation 1 Open conformation 2

Closed conformation 1 Closed conformation 2

Figure 5.1: Thermomyces lanuginosus lipase (TLL) - Pictures are taken
from the Protein Data Base. The crystal structure is obtained by x-ray diffraction.
The lipase is shown in both its open (interfacial activated) and closed (bulk state)
conformation at two different angles. In the open conformation a lipid molecule is
indicated at the location of the catalytic active site of the lipase.

variant (MUT) with the wild type (WT) protein. We apply surface plasmon res-
onance (SPR) spectroscopy to investigate the adsorption dynamics onto a model
hydrophobic surface both in the absence, and in the presence, of surfactant. The
hydrophobic surface is established on the Biacore HPA chip and is designed to
mimic the surface properties of naturally occurring lipid assemblies. In particu-
lar, we study the influence of the concentrations of lipase and surfactants, and
the relative rates of arrival to the surface, by changing the injection flow rate.
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5.2 Materials and methods

5.2.1 Lipases and solvent

Novozymes A/S (Bagsværd, Denmark) provided the wild type (WT) Thermomyces
lanuginosus lipase (TLL), and a high performance mutant variant (MUT) of this
wild type. Both variants have a molecular weight of about M l

w = 30×103 gmol−1.
The buffer used throughout all experiments was Hepes pH 7.0 (50 mM Hepes, 10
mM NaCl, 1 mM NaN3). All water used was of Milli-Q grade.

5.2.2 Surfactant

In the competitive study presented in section 5.4, we apply a Polyoxyethylene
(20) sorbitan monolaurate (C58H114O26), also known as Tween 20, surfactant. It
has a molecular weight of M s

w = 1227.54 gmol−1, and a cmc of approximately
80μM at 21◦C. It is a highly water soluble surfactants, with a HLB value of 16.7.
The lipase variants were thawed at room temperature, and diluted in buffer,
together with the surfactant, to appropriate concentrations immediately prior to
the experiments.

5.2.3 Experimental protocol

The adsorption dynamics is measured using the SPR apparatus Biacore 3000
(Biacore, Uppsala, Sweden), on the surface of a C18-modified gold sensor SPR
chip (HPA, purchased from Biacore). All experiments were done at room tem-
perature. The Biacore 3000 has four SPR flow cells in series, with the possibility
of directing the flow through only a subgroup of the flow cells. This is utilized
immediately before an actual experiment to precondition the Biacore flow system.
We inject the actual solution used for the experiment through a single flow cell,
before the flow is redirected into two other flow cells, from where we then collect
the experimental data. This protocol was introduced in response to some incon-
sistent results, which were hypothesized to be unwanted effects from adsorption
upstream of the SPR flow cell.

5.3 Adsorption of lipase on hydrophobic sur-

faces

The first set of results presented are for the adsorption of lipase in the absence
of surfactant.

50

62
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5.3.1 Presentation and discussion of data

The first set of experiments presented is an investigation of the adsorption dy-
namics of the two lipase variants introduced in section 5.2, in the absence of sur-
factants. The main purposes of these experiments were to get data on adsorption
dynamics, upon which theoretical analysis could be based, and to qualitatively
compare the two lipase variants under different conditions. The experiments were
done under variation of injection flow rate and lipase concentration. The total
volume of the injected solution was conserved at 150μL across all the experi-
ments. Data is presented for two different flow rates, namely 5μLmin−1 and
10μLmin−1, amounting to a total contact time of respectively 30min = 1800 s
and 15min = 900 s. The two flow rates correspond to Peclet numbers (see sec-
tion 3.3.2) of respectively Pe = 2500 and Pe = 5000. The six different injection
concentrations were chosen as c0 ∈ {100, 150, 200, 300, 400, 500} nM. Two repeti-
tions were done for a particular combination of parameters, and the mean value
is presented along with error bars based on the standard deviation of the two rep-
etitions. Error bars are only showed at a subset of the times of recorded data to
achieve a more clear presentation. Fig. 5.2 presents timeseries of the adsorption
process, i.e. the adsorbed amount Γ in [μgm−2] as a function of time. Fig. 5.3
presents the data in the phase plane spanned by the adsorbed amount Γ and its
temporal rate of change dΓ/dt.

A universal behavior for all the data is that the adsorption rate, as well
as the saturation level, increases with injection concentration c0. The data is
smooth and generally shows a monotone dependence of concentration and flow
rate. In addition, the error bars are relatively small, indicating robust results at
least within the experimental run of all the parameter combinations. The phase
plane provides the clearest picture of the qualitative nature of the adsorption
dynamics. The adsorption dynamics of the wild type lipase, at the low Peclet
number Pe = 2500 (Fig. 5.3 (a)), is close to linear for all concentrations. As
the flow rate is increased (Fig. 5.3 (b)) the adsorption rates are increased much
more drastically than expected from both quasi-steady theory and simulations
as presented in the preceding chapters. Quasi-steady theory predicts that the
maximum adsorption rate scales with Pe1/3 (see Eq. (3.44)), in the convection-
diffusion-limited regime, which is where the largest effect of flow rate occurs. The
much more pronounced effect of flow rate in the experimental data asks for other
explanations than those provided in the theoretical and numerical section of this
thesis. The wild type data at the high flow rate in Fig. 5.3 (b) also shows a more
convex form, especially at high concentrations. This amounts to a prolonged
adsorption to higher saturation levels than expected from a linear extrapolation
of data at intermediate times. The phase plane dynamics of the mutant lipase in
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Figure 5.2: Timeseries obtained from SPR spectroscopy - wild type (a,b)
and mutant (c,d) lipase for the flow rates 5μLmin−1 and 10μLmin−1.

Fig. 5.3 (c) and (d) has a more concave form for both flow rates. However, close
to saturation a small convex tail is also observed for the mutant. The increase
in adsorption rate going from low to high flow rate is equally pronounced for the
mutant.

5.3.2 Inconsistency with expected behavior

Prior investigation of the lipase adsorption shows that the binding is irreversible,
such that kd = 0. Therefore it is unexpected that the saturation levels depend
on injection concentration. In other words, for irreversible adsorption the ex-
pectation is an adsorption process up to some saturation level, which is ideally
independent of bulk concentration, as long as there are enough bulk particles
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Figure 5.3: Phase plane representation of data from Fig. 5.2 - wild type
(a,b) and mutant (c,d) lipase for the flow rates 5μLmin−1 and 10μLmin−1.

available for adsorption. This suggests that the injection plug, in some way, runs
out of lipase as time progresses in the adsorption experiment. This inconsistency
was investigated further by running experiments with two consecutive injections
of the mutant lipase. The concentration for the two consecutive injections was
fixed at values c0 ∈ {100, 200, 400} nM, and the flow rate was varied between
25μLmin−1 and 100μLmin−1. The results of these experiments are presented in
Fig. 5.4. An increased adsorption is observed as the second injection is provided,
which is more pronounced the lower the concentration gets. This suggests that
the spatio-temporal profile of the injected concentration in the inlet of the flow
cell, usually referred to as the injection plug, has a different nature than expected
from the interface with the Biacore SPR apparatus.
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Figure 5.4: Two consecutive injections of lipase into the flow cell - The two
flow rates used for the injections are indicated above each plot. The experiments
were done for mutant lipase at fixed concentrations c0 ∈ {100, 200, 400} nM.

5.3.3 Head to head comparison of wild type and mutant
lipase

In spite of the unexpected behavior described above, a qualitative comparison
between the two lipase variants shows marked differences. Fig. 5.5 presents the
data from Fig. 5.3, plotted together for the same flow rate. The wild type lipase
shows very linear adsorption processes, especially for the slow flow rate (Pe =
2500). The mutant lipase has more nonlinear characteristics, overlapping the wild
type data initially, but then turn into more concave curves, with both a higher
adsorption rate and saturation level. From this behavior the mutant lipase is
regarded as, loosely speaking, a stronger binder than the wild type lipase.
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Figure 5.5: Head to head comparison of wild type and mutant lipase -
Same data as in Fig. 5.2 and Fig. 5.3. (a) Flow rate: 5μLmin−1. (b) Flow rate:
10μLmin−1. The concentrations are c0 ∈ {100, 150, 200, 300, 400, 500}nM.

5.3.4 Lipase adsorption rate constants

A crude estimation of the adsorption rate constants for the lipase data are ob-
tained from the initial data. The convection-diffusion limitation is initially ne-
glected such that, according to Eq. (3.5), the initial SPR response is given by

Γ̇(t = 0)model = kac0γm (5.1)

This model predicts a finite initial adsorption rate, in contrast with the experi-
ments. However, in the limit of kinetically limited dynamics, we know from the
results in chapter 4, that the finite initial adsorption rate is close to the maximum
adsorption rate in the experiment. Hence, setting Γ̇(t = 0)model = max(Γ̇)data,
and using the maximum SPR response for the surface capacity for lipase γm, we
obtain

ka =
max(Γ̇)data
c0max(Γ)

(5.2)

The adsorption rate constants for the wild type and mutant lipase, based on
Eq. (5.2), are presented in Fig. 5.6 and table 5.1. Interestingly, the estimated
adsorption rate constant are quite independent of the injection concentration.
The estimated adsorption rate constants for the wild type are larger than for the
mutant for both Peclet numbers. Also, the estimated adsorption rate constants
increase substantially with Peclet number, which is of course undesirable. This
behavior is consistent with the dramatic increase in adsorption rate under increase
in flow rate mentioned above. Further theoretical analysis of the data, including
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Figure 5.6: Lipase adsorption rate constants for the six concentrations
- obtained from the initial data in Fig. 5.6 using Eq. (5.2)

Table 5.1: Lipase adsorption rate constants obtained from the initial data in
Fig. 5.6 using Eq. (5.2), given as mean values and standard deviation across the
six concentrations.

Pe = 2500 Pe = 5000
kwt
a × 10−4 [M−1s−1] 1.1± 0.1 4.9± 0.6

kmut
a × 10−4 [M−1s−1] 0.7± 0.2 3.2± 0.6

mass transport modeling, is not pursued, due to the apparent shortcoming of
information about the injection and operating conditions.

5.4 Competitive adsorption of lipase and sur-

factant

This section is concerned with competitive adsorption of lipase and surfactant.
The study is in an early stage, and the scope of this section is merely to outline
our approach to the subject.

5.4.1 Identification of competitive regime

The outcome of the competitive process of lipase and surfactant adsorption de-
pends on the relative concentrations of the two interacting species. Loosely speak-
ing, if one of the species is overly outnumbered by the other, it gets no foothold
on the surface. The primary scope of the study is the competitive adsorption
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Figure 5.7: Maximum SPR response levels as a function of surfac-
tant concentration - Consecutive values of the surfactant concentration cs =
{0, 5, 10, 25, 50, 75, 150, 300}μM. Lipase concentrations cl = {600, 900}nM. Flow
rate set to 5μLmin−1 amounting to Pe = 2500.

dynamics in a relative concentration regime of equal competitiveness. In other
words, the number of lipase and surfactant molecules is chosen such that a fair
competition is observed. In order to identify a regime, where such dynamics is
obtained, a sweep of surfactant concentration for a fixed lipase concentration is
performed. From such experiments the maximum SPR response is deduced as
a function of surfactant concentration. Fig. 5.7 presents such data for two con-
centrations of both the wild type and mutant lipase variant. First note for the
pure surfactant system, that the maximum SPR response level initially increases
as a function of concentration, whereafter it saturates at roughly 1000μgm−2.
The qualitative form of the curve looks like a classical Langmuir isotherm. (The
first order Langmuir adsorption model in Eq. (3.5) is later successfully applied
for the pure surfactant system). At zero surfactant concentration we observe
the maximum response levels for the pure lipase systems. The levels, which are
roughly 1500μgm−2 respectively 2000μgm−2 for the wild type respectively mu-
tant variant, are not strongly dependent on the lipase concentration, essentially
meaning that the surface is nearly saturated. The larger SPR response for pure
lipase saturation in comparison with pure surfactant saturation is the only way
to distinguish between lipase and surfactant on the surface, since we have no way
to label the two species. For increasing surfactant concentrations small fluctua-
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tions in the maximum response are observed first. There is, however, a trend of
a minor increase in the SPR response as a function of surfactant concentration,
which suggests that surfactant and lipase are present on the surface together in
some kind of optimal mixed state. This regime is followed by a steep decrease in
the response towards the pure surfactant response. Importantly, this steep de-
crease is displaced towards higher surfactant concentrations for increasing lipase
concentration, supporting that the desired competitive regime is determined. At
high surfactant concentration, i.e. above 150μM the surfactant system is totally
dominant in the competitive process. The regime where the surfactant begins
to dominate is closely related to the cmc of the surfactant, which for aqueous
solution at ambient temperature is around 80μM. This value, however, naturally
depends on the solvent medium and the presence of other solutes. The data shows
a rather smooth concentration dependency, i.e. no abrupt or singular behavior
is observed. One could therefore conclude from the regime at around surfactant
concentrations of 0−100μM, that increasing the surfactant concentration simply
leads to larger fraction of the surface it occupies in equilibrium. One must, how-
ever, keep in mind that the data in Fig. 5.7 are maximum response levels, and not
equilibrium levels. As seen below the dynamical adsorption process shows first a
quick increase, and then a slow decrease, in the SPR signal as a function of time,
supporting that maximum response levels in Fig. 5.7 are not isotherms, and not
a measure of equilibrium. As seen below the process is also greatly influenced
by the flow rate, which was set to 5μLmin−1 amounting to Pe = 2500 for the
experiments in Fig. 5.7. This experiment primarily serves to identify some lipase
and surfactant concentrations, at which we then put focus on the underlying
dynamical adsorption process.

5.4.2 The competitive adsorption dynamics of lipase and
surfactant

Based on the preliminary experimental results, presented above in Fig. 5.7, we
move on to study the competitive adsorption dynamics of lipase and surfactant
for both wild type and mutant lipase. The lipase concentration was chosen as
cl = 800 nM, and the surfactant concentration was chosen as cs = 50μM. The
dynamical adsorption process was then obtained, using both wild type and mu-
tant lipase. The adsorption experiments were run at two different flow rates,
5μLmin−1 and 20μLmin−1. The two flow rates amounts to Pe = {2500, 10000}.
The total volume of solution injected in the association phase was 150μL for both
flow rates, which implies that the duration of the association phase was 30min and
7.5min, respectively. An association phase was directly followed by a dissociation
phase of pure buffer injection to obtain ideal conditions for probing desorption
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Figure 5.8: The competitive adsorption dynamics of lipase and surfac-
tant - 150μL of solution is injected at two different flow rates {5, 20}μLmin−1

(Pe = {2500, 10000}), followed by a dissociation phase of pure buffer injection.
Meaning of labels: (mut+s) mutant lipase and surfactant mixture. (wt+s) wild
type lipase and surfactant mixture. (s) pure surfactant, no lipase. Lipase concen-
tration cl = 800 nM. Surfactant concentration cs = 50μM.

from the surface. For use as reference the experiment was also done for the pure
surfactant system, with no lipase in the solution. All experiments were repeated
twice. The results are shown in Fig. 5.8 as mean values, with superimposed error
bars, obtained from the standard deviation, of the two repetitions. Several points
are immediately apparent from the data. The pure surfactant solution rapidly
reaches equilibrium in the association phase and desorbs almost entirely within
the experimental time in the dissociation phase. In this way the pure surfac-
tant system qualitatively shows straightforward reversible adsorption/desorption
behavior for both flow rates. For the mixed lipase/surfactant systems we gener-
ally observe a rapid initial increase in the SPR response up to a maximum value
above the saturation value of the pure surfactant. Consistent with the data in
Fig. 5.7 these maximum response levels are also higher than than those for the
pure lipase solution. We therefore expect that the state of the surface at the
maximum response is a mixture of the two species. This phase is followed by
another phase where the SPR response decreases with time. Immediately after
the transition to the dissociation phase we observed a rapid decrease in the SPR
response. For 5μLmin−1 the binding curves for the two lipases are qualitatively
similar, with a higher SPR response for the mutant than for the wildtype lipase.
Increasing the flow rate to 20μLmin−1 causes no significant changes for the mu-
tant lipase, but leads to a remarkably different binding process for the wildtype.
Following the initial adsorption the response falls off rapidly to coincide with
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the response for the pure surfactant solution. For all lipase/surfactant data, but
the wild type at Pe = 10000, the decrease following the maximum response is
relatively slow, and the following desorption in the dissociation phase is limited
(partly irreversible). For the wild type lipase/surfactant system at Pe = 10000
the decrease in the signal, after the maximum response, is so rapid that the data
essentially follows those for the pure surfactant system from an early time before
the dissociation phase. In the dissociation phase we observe reversible desorption.

We do not know if a longer association phase would lead to data for the mixed
systems, which would eventually coincide with the data for the pure surfactant
system, for all the experiments. From the data shown in Fig. 5.8, we can only
hypothesize about the potential progress of the dynamics if the dissociation phase
was shifted to a later start. A head to head comparison of the two lipase variants
shows that the mutant adsorbs to higher response levels. This is expected to
be caused by a closer packing on the surface, stemming from a lesser degree of
intermolecular repulsion between the lipases. Also, the mutant seems stronger
in relation to the competition with surfactant, especially at the higher flow rate
(Pe = 10000), where the wild type lipase gets almost no foothold in the compe-
tition whatsoever.

With the goal of getting a better comparison between the two different flow
rates in Fig. 5.8, we plot the SPR response as a function of injected amount,
instead of as a function of time. In this way, all the data can be combined
into a single plot. The error bars are omitted, and the mean values are pre-
sented in Fig. 5.9. The general shape of the pure surfactant data, as well as
the mutant/surfactant data, is conserved across change in flow rate. The wild
type/surfactant data, however, clearly shows that the increase in flow rate dras-
tically favors the surfactant above the lipase competitiveness. This suggests that
the rate of arrival, which is increased by an increased flow rate, is critical in the
competitive process. A direct hydrodynamic effect is not expected to be impor-
tant, due to the very low flow rates close to the surface, and around particles
with sizes in the order of nanometers. Fig. 5.9 also shows a small decrease in
the initial SPR response, as a function of injected amount, when the flow rate is
increased. This is a characteristic of a kinetically limited process, where a faster
injection implies that more solution flows past the sensor surface, without getting
adsorbed.

5.4.3 Surfactant dynamics from Langmuir adsorption model

As a first quantitative approach to the data, we fit the first order Langmuir
model in Eq. 3.5 to the pure surfactant dynamics. In this way we initially neglect
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Figure 5.9: The data from Fig 5.8 combined into a single plot as a func-
tion of injected amount. - Association phase consisting of a 150μL injection,
followed by dissociation phase of pure buffer injection. Meaning of labels: (mut+s)
mutant lipase and surfactant mixture. (wt+s) wild type lipase and surfactant mix-
ture. (s) pure surfactant, no lipase. Lipase concentration cl = 800 nM. Surfactant
concentration cs = 50μM.

convection-diffusion limitation. The bulk concentration is set to cs = 50μM. The
results of nonlinear least squares fitting, for both 5μLmin−1 and 20μLmin−1,
are presented in Fig. 5.10, and the obtained fitting parameters are presented
in Table 5.2. The overall quality of both fits looks reasonably good. The ob-
tained adsorption rate constant ka,s slightly increases with Peclet number, but
with a minor difference of about 6 percent. The desorption rate constant kd,s
increases more substantially with Peclet number, and since the saturation value
is almost the same for the two Peclet numbers, the larger desorption rate con-
stant is compensated for by a larger value of the maximum surface capacity γm,s.
Corresponding Damköhler and Biot numbers are also given in Table 5.2. The
numerically low values support that the dynamics is in the regime of kinetic
limitation, such that convection-diffusion limitation can be neglected, without
imposing significant errors on the result.
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Figure 5.10: Fit of the Langmuir model (Eq. 3.5) to surfactant data -
The obtained parameters are presented in table 5.2.

Table 5.2: Surfactant parameters obtained from the fit shown in Fig. 5.10.

Pe = 2500 Pe = 10000
ka,s [M

−1s−1] 772 823
kd,s [s

−1] 0.00386 0.00867
γm,s [μgm

−2] 821 980
Da 3.00× 10−4 2.40× 10−4

Bi 0.0023 0.0029

5.4.4 Lipase adsorption rate constants

A crude estimation of the adsorption rate constants for the lipase data can be
done from the initial data. Again, the convection-diffusion limitation is initially
neglected. According to Eqs. (3.24) and Eq. (3.4) this assumption implies an
initial SPR response given by

Γ̇(t = 0)model = ka,eceγm,e + ka,scsγm,s (5.3)

This model predicts a finite initial adsorption rate, in contrast with the experi-
ments. However, in the limit of kinetically limited dynamics, we know from the
results in chapter 4, that the finite initial adsorption rate is close to the maximum
adsorption rate in the experiment. Hence, setting Γ̇(t = 0)model = max(Γ̇)data,
using the surfactant parameters from table 5.2, and estimating the maximum
surface capacity for lipase γm,e from the maximum SPR response, we put

ka,e =
max(Γ̇)data − ka,scsγm,s

cemax(Γ)
(5.4)
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Table 5.3: Lipase adsorption rate constants obtained from the initial data in
Fig. 5.8 using Eq. (5.4).

Pe = 2500 Pe = 10000
kwt
a,l × 10−4 [M−1s−1] 10.2 9.3

kmut
a,l × 10−4 [M−1s−1] 8.2 13.2

Estimates for the adsorption rate constants for the wild type and mutant lipase,
based on the competitive data in Fig. 5.8 and Eq. (5.4), are presented in table 5.3.
The lipase adsorption rate constants in the presence of surfactants are about one
order of magnitude larger than those obtained in the absence of surfactants in
table 5.1. One hypothesis to explain this increase is that surfactant molecules
screen lipase adsorption downstream of the SPR chip, which could lead to a higher
actual lipase concentration available at the location of the SPR measurement.

5.4.5 Problems with reproducibility

The presented data on competitive adsorption of lipase and surfactants hints
at some rich dynamics, as well as intriguing flow rate dependencies. However,
following the measurements presented above, we encountered problems with re-
producibility of the data. New data showed different, and less dramatic, behavior.
The observations included a lesser degree of apparent displacement of lipase by
surfactant, as well as a much less dramatic flow rate dependency. However, the
response obtained for the pure surfactant system was substantially lower than for
the data presented above, questioning the quality of the data. The collection of
disconcerting results was continued until the Biacore SPR apparatus developed a
failure so severe that the system shut down, and subsequent assistance from GE
Healthcare (producers of Biacore) was required. This is the current status of the
work, and further experimental investigations are therefore beyond the scope of
the present dissertation. By the same token, further theoretical investigations,
including an attempt of applying the bimolecular theory from section 3.4 to the
data, needs stronger experimental support. Possible future work is discussed in
chapter 6.
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Chapter 6

Concluding remarks

6.1 Conclusions

The thesis brought different aspects of surface-based biosensors, and in particu-
lar SPR spectroscopy, into focus. Following a somewhat general review of SPR
spectroscopy, including relevant applications, the theoretical framework for mass
transport dynamics was developed in detail. Kinetic and diffusion scalings of
time lead to nondimensional formulations that provide users of the surface-based
biosensor technologies with a correct set of parameters to characterize the operat-
ing regime for their experiments. The widely adopted quasi-steady theory, which
users of the technologies often employ in order to avoid cumbersome numerical
solutions of the entire transport problem, was analyzed in detail. In this respect,
the parameterization of the quasi-steady theory was related to the more compre-
hensive parameterization of the entire transport problem. The numerical results
in the thesis yielded a way to correct experimentally obtained adsorption rate
constants, based on fitting data with the quasi-steady theory. The problem of
solute adsorption to all surfaces in the biosensor flow cell, besides the sensor sur-
face, was briefly investigated numerically. Adsorption of a wild type and mutant
lipase to a model hydrophobic surface, as well as competitive adsorption of lipase
and surfactant, was investigated by a Biacore SPR reader. Qualitative compari-
son of the wild type and the mutant lipase showed higher saturation levels, and
stronger competitiveness against surfactant, for the mutant. Adsorption and des-
orption rate constants for the studied species were estimated from the data. We
emphasized some experimental conditions, which should be met in order for the
experiments to form basis for rigorous theoretical modeling.

65

77



6.2 Future perspective

6.2 Future perspective

In this section some of the most natural future work is discussed. Surely, there
are other possibilities, since the suggestions are naturally biased towards some
of the issues which have had primary focus during the project. The section
is divided into suggestions of a purely theoretical nature, then suggestions of
a purely experimental nature, and finally, possible future work in the interface
between theory and experiments.

6.2.1 Future theoretical work

• From a theoretical viewpoint a boundary layer theory, for which the quasi-
steady theory is a first order approximation, is an interesting goal. Such
a theoretical development could deepen the fundamental understanding of
the quasi-steady theory, and furthermore suggest corrections to the model
to better capture the convection-diffusion-limited regime. Such work could
perhaps even be developed for other geometries encountered in other kinds
of surface-based biosensors, as well as technological and natural systems
more generally.

• Another issue, which could be analyzed in more detail than done in this the-
sis, is the effect of adsorption to surfaces besides the sensor surface. This
work asks for a more thorough parameter study. A similar study for the
bimolecular system, which encompass an even larger undiscovered parame-
ter space, could be done. This study forms an interesting theoretical model
basis for investigations of the possibility of screening unwanted adsorption
of one specie by adsorption of another specie in the same solution.

• The theoretical framework developed for the bimolecular system can be
used to determine parameter regimes where a two-component quasi-steady
theory, and even just pure kinetic models, have sufficient accuracy for data
fitting. This work could follow the progress of the manuscript [P1], but
naturally involves a more extensive parameter investigation.

6.2.2 Future experimental work

• The previous suggestion of a model system for studying the possibility of
screening unwanted adsorption is connected to a hypothesis on the exper-
imental system. Namely, that the larger lipase adsorption rate constants,
obtained for the experimental system including surfactant, can be explained
by a larger bulk concentration of lipase due to screening of unwanted up-
stream adsorption of lipase by the surfactant. Support for this interpre-
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tation could be searched for by experimental investigations using different
relative concentrations of lipase and surfactants, and also different molecu-
lar species.

• More importantly, a major milestone is to obtain adsorption profiles for
pure lipase solutions with concentration independent saturation. This goal
should be theoretically possible for the concentrations used in this thesis,
yet we observe steady-state at surface coverage levels below saturation. The
experimental study with two consecutive injections of lipase suggest that the
injection conditions are practically unknown. An experimental resolution
of this issue should have top priority.

6.2.3 Future work in the interface between theory and
experiments

• A more thorough link between theoretical models and experiments is a
natural goal for the future. The simple first order model, as well as the
suggested competitive model in section 3.4 can be applied to a more com-
prehensive set of data, and the competition parameters could be estimated.
The competition parameters would then characterize a given system, and
they could be used as quantifiers across different flow rates and relative
concentrations. Concerning the competitive adsorption study outlined in
the thesis, a theoretical model that takes into account the dynamics of mi-
celle formation, and the adsorption/desorption dynamics of single surfac-
tant molecules and micelles separately, could be a future goal. This would
be an interesting model system for theoretical investigations, and brought
to a higher impact level by combining it with supporting experiments.
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Abstract

This paper presents a theoretical and computational investigation of convection, diffusion,

and adsorption in surface-based biosensors. In particular, we study the transport dynamics

in a model geometry of a Biacore surface plasmon resonance (SPR) sensor. The work, how-

ever, is equally relevant for other microfluidic surface-based biosensors, operating under flow

conditions. A widely adopted approximate quasi-steady theory to capture convective and dif-

fusive mass transport is reviewed, and an analytical solution is presented. An expression of

the Damköhler number is derived in terms of the nondimensional adsorption coefficient (Biot

number), the nondimensional flow rate (Péclet number), and the model geometry. Transient

dynamics is investigated and we quantify the error of using the quasi-steady-state assump-

tion for experimental data fitting in both kinetically limited and convection-diffusion-limited
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regimes. The results clarify the conditions under which the quasi-steady theory is reliable or

not. In extension to the well known fact that the range of validity is altered under convection-

diffusion-limited conditions, we show how also the ratio of the inlet concentration to the max-

imum surface capacity is critical for reliable use of the quasi-steady theory. Finally, our results

provide users of surface-based biosensors with a tool of correcting experimentally obtained

adsorption rate constants.

Introduction

Surface-based biosensors are increasingly used to investigate adsorption dynamics of molecular

systems. Surface plasmon resonance (SPR) spectroscopy is a particular technique that is well es-

tablished as a surface-based biosensor, allowing label-free, real time monitoring of adsorption of

biological macromolecules, such as proteins. For a detailed description of the principles behind

SPR spectroscopy see Stenberg et al.,1 and for more recent reviews of SPR sensors see Homola

et al. 2 and Homola.3

While the SPR technique, developed and commercialized by e.g. Biacore, is well capable of

capturing qualitative behavior, quantitative studies of chemical rate constants and equilibrium con-

stants are more challenging. Inconsistencies in derived rate constants has lead to both experimental

and theoretical investigations of the effect of convection and diffusion on the SPR signal.4,5 Signifi-

cant progress was made by the application of a quasi-steady-state approximation, i.e. a steady-state

bulk mass transport coupled to a dynamic adsorption scheme (explained in details below). This

approximation has been widely adopted for Biacore data analysis.5–10 However, practice in the

biochemical society still, to a large degree, consists of empirical and qualitative studies.11–14

The quasi-steady-state approximation leads to a nondimensional number called the Damköhler

number, which is sometimes referred to as the limit coefficient. An expression of the Damköhler

number is derived in terms of the nondimensional adsorption coefficient (Biot number), the nondi-
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mensional flow rate (Péclet number), and the model geometry. The ability of the quasi-steady

theory to capture mass transport is thoroughly tested, by comparison with numerical simulations

of the transient dynamics. In this way the consequences of using the quasi-steady theory for experi-

mental data fitting in both kinetically limited and convection-diffusion limited regimes are properly

quantified.

Theory

This section provides a theoretical treatment of mass transport, i.e. convection, diffusion, and

adsorption, in a microfluidic device with a surface-based biosensor. We consider only unimolecular

systems, i.e. a single solute in solution. First, the system geometry is presented, along with the

evolution equations governing the system dynamics. We present results of using two different

time scales, namely a kinetic time and a diffusion time, the former proving useful if adsorption

kinetics is slow compared to bulk mass transport to the surface, and the latter proving useful in the

opposite case. The nondimensional parameters are discussed, and estimates of numerical values

are provided. The section ends with a thorough description and analysis of the quasi-steady theory,

including a discussion of its inherent parameter - the Damköhler number. The analysis contains an

analytical solution of the quasi-steady theory.

x

y

h

w
l

v

2D model

SPR chip

v(y)

x

y z
lc

wc

lc

(a)

(b)

Figure 1: (a) Rectangular flow cell of length l, height h, and width w. The SPR chip of length

lc, and width wc, is indicated as the square in the middle of the flow cell. The buffer flow is

represented by the velocity vector v. (b) The two-dimensional approximation of the system in the

vertical xy-plane. The parabolic velocity profile is indicated at the inlet of the flow cell.
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System geometry & 2D Approximation

We investigate transport dynamics in a model geometry of a Biacore surface plasmon resonance

(SPR) sensor, which by far is the most common SPR platform used.15 The finite distance from

the inlet of the microfluidic flow cell to the sensor surface is included, as shown in Figure 1. The

length scales are l = 2.3mm, w = 0.5mm, and h = 0.05mm. Adsorption is probed by the SPR chip

located on the surface in the middle of the flow cell. The SPR chip has a length of lc = 0.6mm, and

a width of wc = 0.16mm. The fluid flows in the lengthwise direction (x), with a parabolic velocity

profile along the direction (y) of the height of the flow cell, i.e. vx(y) = 4vm(y/h)(1− y/h), where

vm is the maximum velocity. Based on the large geometric aspect ratio w/h = 10, and the small

Reynolds numbers often present in the system, we have assumed total invariance in the direction

(z) of the width of the flow cell,16 essentially ending up with a two-dimensional consideration

of the transport. Hereby we do not take boundary effects from the side walls of the flow cell at

z = {0,w} into account.

Evolution equations

We define two dependent variables, namely the bulk concentration field c = c(x,y, t), and the sur-

face concentration field γ = γ(x, t), where t is time. We name the bulk domain Ω, and the surface

domains {∂Ω,∂Ωads}, referring to insulating, non-adsorbing surfaces, respectively surfaces where

adsorption takes place. The spatio-temporal evolution of the bulk concentration field c = c(x,y, t)

is governed by the convection-diffusion equation

∂c
∂ t

+ vx(y)
∂c
∂x

= D∇2c, (x,y) ∈ Ω, (1)

where the Laplacian ∇2 = ∂ 2/∂x2 + ∂ 2/∂y2, and D is the diffusion coefficient. The boundary

conditions for the bulk concentration are given by

∂c
∂y

= 0, y ∈ ∂Ω, (2)
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−D
∂c
∂y

=−A (γ,c), y ∈ ∂Ωads. (3)

The former is simply a no-flux condition, whereas the latter is a balance between diffusive flux

perpendicular to the surface and net adsorption rate, captured in the adsorption term A (γ,c) in

Eq. (5). At the inlet of the flow cell, at x = 0, the concentration is equal to the injection con-

centration, c = c0. At the outlet of the flow cell, x = l, we assume free convection, i.e. essentially

∂c/∂x = 0. The spatio-temporal evolution of the surface concentration field γ = γ(x, t) is governed

by the adsorption-diffusion equation

∂γ
∂ t

− ∂
∂x

[
Ds

∂γ
∂x

]
= A (γ,c), ∂Ωads, (4)

where Ds is the surface diffusion coefficient, which in general can be a function of both the inde-

pendent variables, x and t, as well as the dependent variables γ and c. The adsorption term A (γ,c)

represents the net rate of change of surface concentration due to adsorption and desorption. A par-

ticular functionality of A (γ,c) is determined by the kinetics of some chosen adsorption-desorption

scheme, and can in general include arbitrarily complex surface kinetics. No-flux boundary condi-

tions for γ , i.e. ∂γ/∂x = 0, are imposed at the end of the adsorbing domain, i.e. surface bound

molecules only leave the chip by desorption.

Adsorption kinetics

The adsorption kinetics is modeled by a phenomenological model, which ultimately captures ex-

perimental data and thereby provide reasonable and consistent phenomenological parameters. The

standard adsorption model that still contains the feature of a maximum surface capacity γm is the

Langmuir adsorption model. This model is essentially a first order scheme between bulk molecules

at the interface c|y=0 and free surface sites (γm−γ), with adsorption rate constant ka and desorption

rate constant kd. This first order model may be written in the form

A (γ,c) = kac|y=0(γm − γ)− kdγ. (5)
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When c|y=0 is independent of γ this is a linear relation between A (γ,c) and γ . This particular

adsorption model is a local theory in both space and time, i.e. the evolution of γ at (x, t) depends

only on the present state at (x, t). The ultimate goal is often to obtain consistent values for the

triplet (ka,kd,γm) of phenomenological parameters from experimental biosensor data. In this linear

model the adsorption and desorption rate constants, ka and kd respectively, are assumed unaltered

by the density on the surface. In reality, one might expect interactions between adsorbed particles

at high densities. However, in spite of its simplicity, it has been argued that this model is general

enough to explain the majority of adsorption/desorption processes in molecular biology.17 Substi-

tuting Eq. (5) into Eq. (4) and Eq. (3), these two equations together with Eq. (1), and the remaining

boundary conditions, form a nonlinear system of partial differential equations for the two concen-

tration fields c = c(x,y, t) and γ = γ(x, t). The system is of such complexity that a numerical study

is necessary for detailed analysis.

Nondimensional parameterization

Nondimensional formulations are developed for a more comprehensible parameterization of the

evolution equations. Two different nondimensional formulations are introduced and discussed.

Nondimensional parameterization: kinetic scaling

In order to put the evolution equations on nondimensional form, we introduce the following spatial

and temporal scales:

x =
x
h
, y =

y
h
, t = kac0t. (6)

Note in particular that time has been made nondimensional by the adsorption rate. For the depen-

dent concentration variables we introduce the following scaled dependent variables:

c =
c
c0
, γ =

γ
γm

. (7)
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In terms of these nondimensional variables, and the definitions f (y) = 4y(1− y), ∇2
= ∂ 2/∂x2 +

∂ 2/∂y2 we obtain the nondimensional evolution equation for the bulk concentration field

Bic0
∂c
∂ t

+Pe f (y)
(

∂c
∂x

)
= ∇2

c, Ω, (8)

with the boundary condition (Eq. (3)) given by

∂c
∂y

∣∣∣∣
y=0

= Bic|y=0(1− γ)−KBiγ, ∂Ωads. (9)

The nondimensional evolution equation for the surface concentration field is given by

∂γ
∂ t

− ∂
∂x

ds

Bic0

∂γ
∂x

= c|y=0(1− γ)−Kγ, ∂Ωads. (10)

The remaining boundary conditions are trivially translated into the nondimensional form. These

nondimensional evolution equations are parameterized by the following five nondimensional groups.

Pe = vmh/D, (11)

Bi = kaγmh/D, (12)

c0 = c0h/γm, (13)

K = kd/kac0, (14)

ds = Ds/D. (15)

The Péclet number Pe measures the ratio of transport by convection to perpendicular diffusion, and

is essentially the nondimensional flow rate. The Biot number Bi measures the ratio of adsorption

rate to diffusion along the height of the flow cell, and is essentially the nondimensional adsorption

rate constant. c0 is a nondimensional inlet concentration. In the limit of no flow, c0 is the reciprocal

of the fraction of the height h needed to fill the surface up to γ = γm. This interpretation explains

the close relationship between c0 and the so called depletion depth introduced by.18 K is the kinetic
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equilibrium constant. ds is the ratio of the surface and bulk diffusion coefficients, and if Ds < D,

ds ∈ {0,1} measures the hindrance of diffusion caused by the presence of the surface. Interestingly,

the magnitude of the transient term in Eq. (8) is weighed by the product c0Bi = kac0h2/D, meaning

essentially that adsorption dynamics for large inlet concentrations of molecules with a high affinity

to the surface evolves in a transient regime. This result is supported by Squires et al. 19 in their

Eq. (21).

Nondimensional parameterization: diffusion scaling

Following a similar approach as above, but with the difference of scaling time with a diffusion

time, i.e. t = Dt/h2, the nondimensional evolution equation for the bulk concentration field takes

the form

∂c
∂ t

+Pe f (y)
(

∂c
∂x

)
= ∇2

c, Ω (16)

while the boundary condition (Eq. (3)) is now given by

∂c
∂y

∣∣∣∣
y=0

= Bic|y=0(1− γ)−KBiγ, ∂Ωads (17)

The nondimensional evolution equation for the surface concentration field becomes

∂γ
∂ t

− ∂
∂x

ds
∂γ
∂x

= Bic0c|y=0(1− γ)−KBic0γ, ∂Ωads (18)

The correspondence between the time scales for kinetic scaling (ks) and diffusion scaling (ds) are

tks = tdskac0h2/D = Bic0tds. (19)

Kinetic scaling or diffusion scaling?

The kinetic scaling of time leads to a nondimensional formulation which is particularly advan-

tageous in the regime of kinetically limited dynamics. Generally speaking, kinetically limited
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dynamics is obtained for small Bi numbers (Bi � 1) and/or large Péclet numbers (Pe � 1). Ki-

netically limited dynamics is, opposed to convection-diffusion limited dynamics, characterized by

an independence of the flow rate, i.e. Péclet number, and a scaling of the dynamics with the Biot

number. This dynamical behavior is referred to as a kinetic scaling, which is therefore also the ter-

minology used for this particular nondimensional formulation. If, on the other hand, the adsorbing

molecules have a very high affinity to the surface, Bi � 1. In this limit the dynamics is convection-

diffusion limited, which is characterized by an independence of adsorption rate, i.e. Biot number,

and a scaling of the dynamics with the Péclet number. In this limit it is advantageous to use the

diffusion scaling of time.

Disregarding the dynamical limit of the system, there are other pros and cons for applying the

two different time scales. As seen below, the quasi-steady theory adopts a minimal number of

nondimensional parameters by using kinetic scaling. Hence kinetic scaling is advantageous when

working with the quasi-steady theory. This is consistent with the fact that the quasi-steady-state

approximation is only theoretically supported for kinetically limited dynamics. This is further

elaborated on in the latter section on the quasi-steady theory. However, concerning practical use

of the theory for experimental data fitting, we remark that ka is usually a parameter one wish to

determine from an adsorption experiment, and thereby unknown a priori. Hence, kinetic scaling is

not practical for experimental data fitting - an issue avoided by using diffusion scaling. Dependent

on the experimental regime it might as well be preferable to present and fit experimental data

unscaled.

Estimates of nondimensional numbers

In this section we estimate some reasonable values for the nondimensional numbers. Concerning

typical operating conditions, flow rates are in the range Q = 1− 100 μLmin−1, which amounts

to maximum velocities of vm = 3Q/2hw = 10−3 − 10−1 ms−1. Injection concentrations typically

range from c0 = 10−1 − 102 μM. To proceed we need to consider a model binder. We take as an
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example a globular protein with a diameter of 2R = 5nm, and molecular weight Mw = 30kDa =

3× 104 gmol−1. A simple estimate of the maximum surface capacity γm is simply the weight of

one molecule divided by its diameter squared. Viz, γm = Mw/4NAR2 ≈ 2×103 μgm−2, where NA

is the Avogadro number. However, in biochemical studies the surface of the chip, or the dextran

layer, is sometimes prepared with a relatively low number of binding sites, with the aim of reducing

rebinding probability and neighbor interactions among the adsorbing binders. This implies that the

above estimate for γm, which is based on a packing occurring for e.g. self-assembled monolayers,

represents an upper limit. In several applications the maximum surface capacity can be signif-

icantly lower. The diffusion coefficient can be estimated from the Stokes-Einstein relation. In

aqueous solution at room temperature, the dynamic viscosity is μ ≈ 10−3 Nsm−2, and T ≈ 300K,

hence D = kBT/6πμR ≈ 10−10 m2s−1.

Based on the above values we can estimate the regime of the nondimensional numbers. By

choosing c0 ≈ 1 μM, we obtain c0 = coh/γm ≈ 1, in the case of close packing on the surface. For

surfaces prepared with a lower number of binding sites c0 > 1. For the Péclet number we obtain

Pe = vmh/D ≈ 5×102 −5×104.

The quasi-steady theory

Ideally one would like to interpret SPR data by assuming simply that the concentration near the

sensor cy=0 is identical to the injection concentration c0, that is by assuming that there is no re-

sistance to mass transfer. To account for the corrections due to some mass transfer resistance, it

has been suggested to interpret data by means of a mass transport model, saying that the overall

flux of solute J to the surface is proportional to the difference between the far field concentration

c0, usually taken as the injection concentration, and the concentration close to the surface of the

sensor c|y=0, i.e. J = kL(c0 − c|y=0). In fact, this is based on a solution to the stationary diffusion-
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convection equation for the concentration field c = c(x,y) on a semi-infinite domain x,y ≥ 0.

vx
∂c
∂x

= D
∂ 2c
∂y2

, y > 0. (20)

The velocity vx = vx(y) is linearized close to the surface, i.e. vx(y) = γ̇wy, γ̇w being the shear

rate at the surface, and the boundary conditions for the concentration field are c(x,y)|y=0 = const,

c(x,y)|x,y→∞ = 0, and c(x,y)|x=0 = c0. The solution consists of a concentration boundary layer

close to the surface y = 0, and a flux of solute to the surface J = kL(c0 − c|y=0), where the mass

transport parameter kL is given by

kL =
2D

Γ(7
3)

(
γ̇w

9Dl

)1/3

(21)

This mass transport parameter is often chosen as a free fitting parameter, although it may in fact be

predicted from the operating conditions. Given a flow rate Q the shear rate at the wall is

γ̇w =
6Q
h2w

(22)

The coupling of this stationary convection-diffusion solution with the adsorption kinetics on the

surface is performed by loosening up the Dirichlet boundary condition c(x,y)|y=0 = const. Letting

these bulk particles c|y=0 adsorb, they are converted into surface particles γ , and a simple mass

balance on the surface dictates J = dγ/dt = A (γ,c). The critical assumption here is that the

adsorption is so slow, that the bulk concentration on the surface c|y=0 is practically constant, and

use of the steady-state flux J = kL(c0 − c|y=0), with kL given by Eq. (21), is still reasonable.

Inserting the steady-state flux into the mass balance on the surface we obtain kL(c0 − c|y=0) =

A (γ,c). In the case of linear kinetics (Eq. (5)) this becomes an algebraic equation for c|y=0, with

the solution

c|y=0 =
kLc0 + kdγ

ka(γm − γ)+ kL
. (23)
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Substituting this into Eq. (5) gives the following nonlinear ordinary differential equation for the

evolution of the surface concentration γ = γ(t)

dγ
dt

=
kakLc0(γm − γ)− kdkLγ

ka(γm − γ)+ kL
. (24)

Using kinetic scaling, we can write Eq. (24) as

dγ
dt

ks

=
1− (1+K)γ
1+Da(1− γ)

, (25)

with the additional introduction of the important nondimensional Damköhler number

Da = kaγm/kL, (26)

which is the ratio of the adsorption rate and the rate of mass transport to the surface. The Damköh-

ler number measures the limiting effect of convection-diffusion on the adsorption process. If

Da � 1 the system is kinetically limited, and if Da � 1 the system is diffusion limited. Note

in particular when Da � 1 Eq. (25) becomes

dγ
dt

ks

= 1− (1+K)γ, Da � 1, (27)

which is simply the nondimensional form of Eq. (5), i.e. a purely adsorption-limited, linear, kinetic

process. Also, the initial rate of adsorption, starting from the initial condition of zero surface

concentration, γ = 0, is predicted to be

dγ
dt

(0)ks =
1

1+Da
or

dγ
dt

(0)ks = c0kL
Da

1+Da
. (28)

Using diffusion scaling the formulation of the quasi-steady theory involves the two additional

parameters, Bi and c0, viz

dγ
dt

ds

=
Bic0(1− γ)−Kγ

Da(1− γ)−1
. (29)
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Correspondence between the Damköhler, Biot and Péclet Number

The kinetic scaling of the evolution equations (Eqs. (8) to (10)) clarifies the assumptions in the

quasi-steady theory. By setting Bi = 0 we essentially obtain the conditions for the solution in

Eq. (21), i.e. time dependency drops out of the bulk convection-diffusion equation, consistent with

an instantaneous build-up of the concentration boundary layer above the adsorbing surface in the

quasi-steady theory. In addition, the quasi-steady theory approximates reality by a semi-infinite

bulk domain, a linear velocity profile, and equally important, by no inlet distance to the sensor

surface.

The kinetically scaled quasi-steady theory in Eq. (25) is parameterized only by the Damköh-

ler number Da, and the equilibrium constant K. As the quasi-steady theory combines steady-

state convection-diffusion with adsorption in the Damköhler number, through the mass trans-

port coefficient kL, it is naturally possible to express the Damköhler number in terms of the Pé-

clet number and the Biot number. First, from Eq. (22), γ̇w = 4vm/h. By defining the number

α = 2(4/9)1/3/Γ(7/3)≈ 1.2819, the mass transport coefficient kL can be expressed as

kL = α
(

vmh
D

)1/3 D
l1/3h2/3

Hence the Damköhler number is given by

Da =
kaγm

kL
= α−1(l/h)1/3 BiPe−1/3 (30)

Note that the quasi-steady theory is parameterized by the Damköhler number, and at the same

time is based on the assumption Da = 0. It is clear from Eq. (30) that the Damköhler number

increases linearly with the Biot number, and decreases with the cubic root of the Péclet number.

Practically speaking, if the binders are strongly attracted to the surface (large Biot number), it may

be impossible to reduce the Damköhler number significantly by simply increasing the flow rate,

i.e. Péclet number.
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Analytical solution of the quasi-steady theory

Eq. (25) can be solved analytically in implicit form, i.e. t = t(γ) instead of the explicit form γ =

γ(t). It is determined simply by separation of variables and integration, with initially γ(t = 0) = 0:

t =
Daκγ − (

κ +Da(κ −1)
)

ln(1−κγ)
κ2

(31)

where κ ≡ 1+K. For irreversible adsorption K = 0, κ = 1, the solution condenses into

t = Daγ − ln(1− γ) (32)

This solution may not be so useful for physical insight, but has its practical advantage when per-

forming nonlinear least squares data fitting in the time domain. Data fitting in the time domain

involves a numerical solution of the ordinary differential equation (Eq. (25)) at every parameter

space iteration, which can be avoided with the implicit solution above. Another option is simply

fitting data in the phase plane.20 This method also does not involve the solution of Eq. (25), is

explicit, but as a trade off involves differentiation of data.

Numerical results and discussions

This section is concerned with a numerical investigation of the nonlinear system of partial differ-

ential equations, governing the evolution of the concentration fields. The intention is to simulate

the dynamics of real adsorption experiments in surface-based biosensors. Numerical solutions to

Eqs. (8) to (10), or similarly Eqs. (16) to (18), are collectively referred to as the simulations. We

take offset in the estimated regime for the nondimensional parameters, and to simplify matters

choose to consider the case of irreversible adsorption of binders, which are immobile on the sur-

face, hence K = ds = 0. A particular aim of the investigation is to evaluate the quality of the quasi-

steady theory by comparison with the simulations. Deviations between the simulations and the

quasi-steady theory reveal the effects of the transient dynamics in the simulations, which of course
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are also present in real adsorption experiments. To mimic the case of real adsorption experiments,

being fitted by the quasi-steady theory to reveal an adsorption rate constant ka, we fit the quasi-

steady theory to the simulation with Bi as the free fitting parameter, using a least squares method.

The quasi-steady theory has no chance of fitting initial data, hence the simulation time from the ori-

gin of the phase plane to the extremum (highest adsorption rate) is cut off in the fitting procedure,

corresponding to typical practice of representing SPR data in the phase plane.20 The error of the

quasi-steady theory is then quantified by the relative difference between the fitted Bi number and

the real Bi number used for the simulation. Strictly speaking, we define the error as (Bifit−Bi)/Bi.

Being interested in the kinetics of adsorption the results are most naturally presented and analyzed

in the phase plane, spanned by the mean surface concentration Γ ≡ (1/lc)
∫

sensor γ dx, and its time

derivative Γ̇ ≡ (1/lc)
∫

sensor ∂γ/∂ t dx. This representation clearly illustrates the transient regime,

and is the most straightforward approach to analyze deviations from linear adsorption kinetics due

to mass transport. The choice of parameters span both kinetically limited and convection-diffusion

limited dynamics. Results are presented using both kinetic and diffusion scaling of time, the for-

mer leading to universality for kinetically limited dynamics, and the latter leading to universality

for convection-diffusion limited dynamics. Note in particular that purely kinetically limited dy-

namics, i.e. the linear kinetics in Eq. (5), is represented by a linear curve in the phase plane. For

kinetic scaling this linear curve is the diagonal from the point (0,1) on the ordinate to the point

(1,0) on the abscissa. The universality characteristic obtained with kinetic scaling is that this curve

represents the dynamics independent of c0 and Pe for large enough Bi.

Kinetic scaling

Figure 2 contains a representative collection of phase plane curves using kinetic scaling, i.e. tks =

kac0t. Four different simulations for the combinations of concentrations c0 ∈ {1,20}, Bi ∈ {1,10},

and Pe= 500 are presented (full black line), each in a separate plot, along with the prediction of the

quasi-steady theory for identical parameters (dashed black line), as well as a fit of the quasi-steady

theory to the simulations (dashed gray line). Importantly, the quasi-steady theory scales linearly
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with c0, taken into account in the kinetic scaling of time in Eq. (25). Hence the quasi-steady theory

does not explicitly include the c0 - degree of freedom, whereby essentially only two distinctive

predictions occur in Figure 2. In this way, the dashed black curves denoted (QST) are identical

in Figure 2 (a) and (b) respectively (c) and (d). Several points are immediately apparent from the

simulations. The simulation curves start at the origin of the phase plane, whereas the quasi-steady

theory has the finite initial adsorption rate given in Eq. (28). It is important to note that the kinetic
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Figure 2: Phase plane dynamics using kinetic scaling. Simulation (full black line): numerical

solution of Eqs. (8) to (10). QST (dashed black line): quasi-steady theory (Eq. (25)) for corre-

sponding value of Da through Eq. (30). QST Fit (dashed gray line): fit of the quasi-steady theory

to simulation with Da as free fitting parameter. Parameters: c0 ∈ {1,20}, Bi = {1,10}, Pe = 500.
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scaling of time implicitly includes a linear scaling of the adsorption rate with both Bi and c0. The

decrease in adsorption rate for both increasing Bi and increasing c0 in Figure 2, amounts to a

sublinear increase with both Bi and c0 in dimensional variables. The sublinear scaling naturally

arises from convection-diffusion limitation in the nonlinear dynamics of the system. Apart from in

the initial phase, predictions of the quasi-steady theory practically coincides with the simulations,

and thereby also the fits, for c0 = 1. Increasing the concentration to c0 = 20 leads to significant

alteration of the simulation curves. Since there are no knobs to turn for the kinetically scaled quasi-

steady theory, regarding changes in concentration c0, this leads to equally significant deviations

between the simulations and predictions of the quasi-steady theory. The observed dependency of

c0 is expected since c0 parameterizes time dependency in Eq. (8), and hence transient behavior

in the system dynamics, which is not taken into account in the quasi-steady theory. Physically

speaking, the surface simply saturates faster than a steady-state can be achieved in the bulk.

Diffusion scaling

Figure 3 contains a representative collection of phase plane curves using diffusion scaling, i.e. tds =

Dt/h2. Four different simulations for the combination of parameters c0 ∈{20}, Bi= {1,10,50,100},

and Pe = 2500 are presented, each in a separate plot, along with the prediction of the quasi-steady

theory for identical parameters, as well as a fit of the quasi-steady theory to the simulations. The

universality characteristic obtained with diffusion scaling of time is that the simulations approach

a limiting curve, representing predominantly convection-diffusion limited dynamics, for large Biot

numbers. This limiting curve in Figure 3 (d) is observed to have a very symmetric, parabolic-like,

characteristic form. Inconsistent with the simulations, quasi-steady theory predicts a linear scaling

of adsorption rate with concentration, which is explicit when using diffusion scaling as in Fig-

ure 3. This naturally leads to an increasing deviation between quasi-steady theory and simulations

for increasing Bi.
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Figure 3: Phase plane dynamics using diffusion scaling. Simulation (full black line): numerical

solution of Eqs. (8) to (10). QST (dashed black line): quasi-steady theory (Eq. (25)) for cor-

responding value of Da through Eq. (30). QST Fit (dashed gray line): fit of the quasi-steady

theory to simulation with Da as free fitting parameter. Parameters: c0 = 20, Bi = {1,10,50,100},

Pe = 2500.

Flow rate dependency

The nature of the Péclet number dependency is presented in Figure 4, containing four different

simulations for the combination of parameters c0 = 10, Bi = {1,100}, and Pe = {500,10000}.

Again, the simulations are presented, each in a separate plot, along with the prediction of the

quasi-steady theory for identical parameters, as well as a fit of the quasi-steady theory to the sim-
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ulations. Kinetic scaling, i.e. tks = kac0t is applied. Clearly the increase of Péclet number leads to

less convection-diffusion limitation. Thereby the simulations approach the diagonal in Figure 4,

representing purely adsorption limited linear kinetics, for increasing Pe. This behavior is very

clear for Bi = 1, where the dynamics is predominantly kinetically limited. For Bi = 100, where

the dynamics is much more convection-diffusion limited, we again observe increased agreement

between quasi-steady theory and simulations as the Péclet number is increased. The agreement is
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Figure 4: Phase plane dynamics using kinetic scaling. Simulation (full black line): numerical solu-

tion of Eqs. (8) to (10). QST (dashed black line): quasi-steady theory (Eq. (25)) for corresponding

value of Da through Eq. (30). QST Fit (dashed gray line): fit of the quasi-steady theory to simula-

tion with Da as free fitting parameter. Parameters: c0 = 10, Bi = {1,100}, Pe = {500,10000}.
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however not as good as for Bi = 1. Note that the ordinate axis are different in Figure 4 (c) and (d)

where Bi = 100. The specific case in Figure 4 (c), where c0 = 10, Bi = 100, Pe = 500, is clearly

in a regime where the quasi-steady theory has little value, and little ability to fit data well. The

approach to adsorption limited dynamics is consistent with a decrease in the Damköhler number

as Da ∼ Pe−1/3 from Eq. (30). Figure 4 also serves to show that, due to this slow cubic root de-

pendency, experimental practicalities often precludes to cope with convection-diffusion limitation

by simply increasing the flow rate for systems with a high Biot number.

In summary, Figures 2 to 4 stress some nonlinearities present in the real system dynamics,

which are not well captured in the approximate quasi-steady theory.

Error of the quasi-steady theory

The numerical investigation concludes with a quantification of the error of the quasi-steady theory,

measured as the relative difference between the Biot number used to fit the quasi-steady theory

to simulations, and the Biot number used for the simulation itself. The nondimensional parameter

space is spanned by Bi∈ {1, . . . ,100}, Pe∈ {500, . . . ,10000}, for c0 = {1,10,20}. Figure 5 (a)-(c)

present the relative error (Bifit −Bi)/Bi, by contour lines in the nondimensional parameter space

(Pe,Bi), for c0 = {1,10,20} respectively. Every contour is labelled with the matching error. Equal

for all values of c0 is that the error is largest for slow flows of strong binders, i.e. small Pe and large

Bi numbers. For c0 = 1 only relatively minor errors, up to around 0.2 (20%), are observed in the

spanned parameter space. However, the quantitative increase of the error with c0 is significant. For

c0 = 20 the errors increase to above 2.5 (250%), which amounts to a factor of 3-4, in the spanned

parameter space. Importantly, the quasi-steady theory consequently overestimates the Biot number,

and thereby the adsorption rate constant, as long as the error is over a few percent. (Below errors

of a few percent the fit and the prediction are so close that this is not always the case.) Hence,

the parameter planes showed in Figure 5 provide a tool to quantitatively correct experimentally

obtained adsorption rate constants, which are derived by fitting data with the quasi-steady theory.
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Figure 5: Contour lines of the relative error (Bifit −Bi)/Bi, in the parameter space (Pe,Bi), for

c0 ∈ {1,10,20}. The errors increase with increasing Bi, increasing c0, and decreasing Pe.
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Conclusion

This paper presented theoretical and computational investigations of convection, diffusion, and

adsorption dynamics in microfluidic surface-based biosensors. The nondimensional Damköhler

number Da = kaγm/kL, inherent in the quasi-steady theory, was expressed in terms of the Biot

number Bi = kaγmh/D, the Péclet number Pe = vmh/D, and the model geometry. In addition, an

analytical solution to the quasi-steady theory was derived. The results provided the regimes of both

reliable and unreliable use of the quasi-steady theory for experimental data analysis, by quantifying

the error of the quasi-steady theory in the space of parameters. This can be used as a tool to

correct adsorption rate constants obtained by fitting the quasi-steady theory to experimental data.

We deduced a critical importance of the inlet concentration, and the maximum surface capacity,

combined in the nondimensional inlet concentration.

References

(1) Stenberg, E.; Persson, B.; Roos, H.; Urbaniczky, C. Journal of Colloid and Interface Science

1991, 143, 513 – 526.

(2) Homola, J.; Yee, S.; Gauglitz, G. SENSORS AND ACTUATORS B-CHEMICAL 1999, 54,

3–15.

(3) Homola, J. Chem Rev 2008, 108, 462–93.

(4) Schuck, P.; Minton, A. ANALYTICAL BIOCHEMISTRY 1996, 240, 262–272.

(5) Myszka, D. G.; He, X.; Dembo, M.; Morton, T. A.; Goldstein, B. Biophys J 1998 Aug, 75,

583–594.

(6) Schuck, P. Biophys J 1996, 70, 1230–49.

(7) Schuck, P.; Minton, A. P. Anal Biochem 1996, 240, 262–72.

(8) Mason, T.; Pineda, A. R.; Wofsy, C.; Goldstein, B. Math Biosci 1999, 159, 123–44.

22

110



(9) Noinville, S.; Vidic, J.; Déjardin, P. Colloids Surf B Biointerfaces 2010, 76, 112–6.

(10) Goldstein, B.; Coombs, D.; He, X.; Pineda, A. R.; Wofsy, C. J Mol Recognit 1999 Sep-Oct,

12, 293–299.

(11) Rich, R. L.; Myszka, D. G. J Mol Recognit 2011, 24, 892–914.

(12) Rich, R. L.; Myszka, D. G. J Mol Recognit 2010, 23, 1–64.

(13) Rich, R. L.; Myszka, D. G. J Mol Recognit 2008, 21, 355–400.

(14) Rich, R. L.; Myszka, D. G. J Mol Recognit 2007, 20, 300–66.

(15) Besenicar, M.; Macek, P.; Lakey, J. H.; Anderluh, G. Chem Phys Lipids 2006, 141, 169–78.

(16) Brody, J. P.; Yager, P.; Goldstein, R. E.; Austin, R. H. Biophys J 1996, 71, 3430–41.

(17) Gervais, T.; Jensen, K. F. Chemical Engineering Science 2006, 61, 1102 – 1121.

(18) Alvarez, N. J.; Walker, L. M.; Anna, S. L. Phys. Rev. E 2010, 82, 011604.

(19) Squires, T. M.; Messinger, R. J.; Manalis, S. R. Nat Biotechnol 2008, 26, 417–26.

(20) Goren, M.; Galley, N.; Lennox, R. B. Langmuir 2006 Jan 31, 22, 1048–1054.

23

111



112



[P2]

113



114



Rheol Acta (2010) 49:555–562
DOI 10.1007/s00397-010-0434-0

ORIGINAL CONTRIBUTION

Constitutive equations for the Doi–Edwards model
without independent alignment

Ole Hassager · Rasmus Hansen

Received: 25 October 2009 / Accepted: 12 January 2010 / Published online: 6 March 2010
© Springer-Verlag 2010

Abstract We present two representations of the Doi–
Edwards model without Independent Alignment ex-
plicitly expressed in terms of the Finger strain tensor,
its inverse and its invariants. The two representations
provide explicit expressions for the stress prior to and
after Rouse relaxation of chain stretch, respectively.
The maximum deviations from the exact representa-
tions in simple shear, biaxial extension and uniaxial
extension are of order 2%. Based on these two repre-
sentations, we propose a framework for Doi–Edwards
models including chain stretch in the memory integral
form.

Keywords Constitutive equation · Nonlinear
viscoelasticity ·Orientation tensor · Strain energy
density · Second normal stress difference · Tube model

Introduction

Representing a landmark in our understanding of the
dynamics of entangled polymeric systems, the Doi–
Edwards model (DE) model (Doi and Edwards 1986)
is based on a set of remarkably simple model assump-
tions (Doi 1995). The basic DEmodel for the nonlinear

Paper presented at the 5th Annual European Rheology
Conference, April 15–17, 2009, Cardiff, United Kingdom.

O. Hassager (B) · R. Hansen
Danish Polymer Center, Department of Chemical and
Biochemical Engineering, Technical University of Denmark,
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viscoelastic properties contains two key assumptions
about how the central axis of the tube deforms under
a macroscopic deformation. It is assumed that the tube
axis deforms affinely with the deformation, and that
after a time τR, the tube length returns to its equilibrium
value.
The basic DE model is found in two versions, one

with the so-called Independent Alignment (IA) ap-
proximation and one without this approximation (Doi
and Edwards 1978). Both models require the calcu-
lation of an integral over the unit sphere for each
stress evaluation. Methods for fast stress evaluation
are therefore interesting (Mead et al. 1995). Especially
convenient expressions have been presented by Currie
(1982a, b), who formulated BKZmemory integral mod-
els (Bird et al. 1987) intended to approximate the con-
stitutive equation for the DE model both with (Currie
1982a) and without (Currie 1982b) IA invoked.
The Currie equation with IA has been used and

tested extensively in modeling and simulation of poly-
mer flow (Marin and Rasmussen 2009; Wapperom
and Keunings 2001; Blackwell et al. 2000; Olley 2005;
Mead 2007; Peters et al. 2000; Olley and Wagner 2006;
Wagner 1990). The Currie equation without IA has
received much less attention, nor does the accuracy
of approximation seem to have been systematically
tested, possibly because Currie states that it “differs
little in its predictions” from the approximation to the
IA version. This latter statement, however does seem
in contrast to the observations that the nonlinear rhe-
ological properties of the DE model with and without
IA differ markedly in specific flow situations. Thus, the
DE model with IA predicts a negative Weissenberg
effect (Hassager 1985) while the version without IA
predicts a positive Weissenberg effect as pointed out by
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Marrucci and Grizzuti (1986) who performed a careful
comparison of the two versions at second order.
The purpose of this work is to derive constitutive

equations for the DE model without IA both prior to
and after Rouse relaxation (Doi and Edwards 1986)
and to evaluate the accuracy of the approximations in
simple shear, biaxial extension and uniaxial extension.
To fix ideas and notation we briefly recapitulate the
derivation of the relevant equations starting from the
expression for the free energy of deformation of an
entanglement network (Doi 1995; Hansen et al. 2008)

A = 3

2
nc Z kT〈|E · u|〉2

u (1)

Here nc is the number density of chains, Z the number
of entanglements per chain, k Boltzmanns constant,
and T the absolute temperature. Furthermore, E is the
deformation gradient (Bird et al. 1987) from the stress-
free state to the current state, u is a unit vector, and
〈· · · 〉u denotes an average over the orientation of the 3-
dimensional unit vector u, i.e., an isotropic distribution.
From this expression, it is straightforward to derive
(e.g. Hansen et al. 2008) the corresponding expression
for the macroscopic stress tensor,

σ net
ij = G0

15

4
〈|E · u|〉u

〈 Eimum E jnun

|E · u|
〉
u

(2)

where the elastic modulusG0 = (4/5)nc Z kT. The com-
bination of factors after the modulus is sometimes
referred to as a strain tensor, since it reduces to the
infinitesimal strain tensor in the small strain limit. The
decoration “net” signifies that the expression relates
to an entanglement network without relaxation of the
overall chain length.
Consider now an entangled polymer melt subject

to a single fast deformation given by the deformation
gradient E. For time t > τR when the tube has relaxed
to its equilibrium value, the stress is reduced by the
square of the initial chain stretch to obtain,

σij = GN
0

15

4
〈|E · u|〉−1

u

〈
Eimum E jnun

|E · u|
〉

u
(3)

where the plateau modules GN
0 = (4/5)nc Z kT is un-

changed since the average stretch is unity in the small
strain limit. To simplify further, Doi and Edwards
introduced the Independent Alignment Assumption,
which effectively replaces the ratio of averages with the
average of the ratio. Such a replacement is problematic
as Doi and Edwards were well aware (Doi and Edwards
1986). Thus for small deformations, the ratio of the

averages and the average of the ratio are expanded in
the infinitesimal strain tensor εij respectively as follows:

〈|E · u|〉−1
u

〈
Eimum E jnun

|E · u|
〉

u
= δij + 4

15
εij + O

(
ε2

ij

)
(4)

〈
Eimum E jnun

|E · u||E · u|
〉

u
= δij + 1

5
εij + O

(
ε2

ij

)
(5)

In other words, the only term correctly reproduced in
the IA approximation is the unit tensor. But the unit
tensor has no rheological significance. The linear term
in εij is under-predicted by a factor of 3/4. This factor
is not a problem in practical applications, since one can
simply scale the modulus accordingly (Mead 2007). But
the difference between the O(ε2

ij) terms in Eqs. 4 and 5
is at the heart of the difference between negative and
positive Weissenberg effects (Marrucci and Grizzuti
1986).
From the above it appears that we need to approxi-

mate 〈|E · u|〉2
u in terms of the invariants of the Finger

and Cauchy strain tensors of nonlinear elasticity. Fol-
lowing Currie, we consider in turn an exact expression,
an asymptotic form, and the small strain expansion.
The final approximation is arrived at by matching the
asymptotic form with the small strain expansion.

Evaluation of potential function

For uniaxial and biaxial deformation one may utilize
the axial symmetry to obtain the simple analytical
expressions for the desired integral (Urakawa et al.
1995). We list the expressions for future reference. For
uniaxial extension λ1 = λ and λ2 = λ3 = λ−1/2 the exact
expression is

〈|E · u|〉 = 1

2
λ + 1

4

λ−1

√
λ2 − λ−1

log
λ + √

λ2 − λ−1

λ − √
λ2 − λ−1

(6)

For biaxial extension λ1 = λ2 = λ and λ3 = λ−2 the ex-
act expression is

〈|E · u|〉 = 1

2

(
λ−2 + λ√

1 − λ−6
sin−1

√
1 − λ−6

)
(7)

For general deformations we need to compute

〈|E · u|〉 =
〈√

B̄ijuiu j

〉
(8)

where B̄ij = Emi Emj is not the same as the Finger
strain tensor Bij = Eim E jm but the two matrices have
the same eigenvalues λ2

i for i = 1, 2, 3. Without loss of
generality we can order the eigenvalues λ2

1 ≥ λ2
2 ≥ λ2

3.
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Then

〈|E · u|〉 = 1

4π

∫ π

θ=0

∫ 2π

φ=0

×
√

λ2
1 cos2 θ + (λ2

2 cos2 φ + λ2
3 sin2 φ) sin2 θ sin θdθdφ

(9)

The integration on θ can be performed to obtain the
exact forms

〈|E · u|〉 = 1

2
λ1 + 1

2π

∫ π/2

0

a2

b
log

λ1 + b
λ1 − b

dφ (10)

= 1

2
λ1 + 1

π

∫ π/2

0

a2

b
sinh−1 Bdφ (11)

where a2 = λ2
2 cos2 φ + λ2

3 sin2 φ and b 2 = λ2
1 − a2. The

notation B = b/a is the same as introduced by Currie.

Asymptotic behavior

We now follow Currie and let λ1 → ∞ while assuming
that λ2 stays finite. This covers simple shear flow (λ2 =
1) and uniaxial extension (λ2 → 0). Since sinh−1 x ∼
log(2x) for x → ∞ we have that

〈|E · u|〉 ∼ 1

2
λ1 + 1

4

λ2
2 + λ2

3

λ1
(log 2 + log λ1) (12)

Secondly, we consider the situation in which λ2 = αλ1

for α ∈ ]0; 1] as λ1 → ∞. The corresponding asymp-
totic form is now

〈|E · u|〉 ∼ 1

2
λ1 + λ2

2

λ1
F(α) (13)

where

F(α)= 1

2π

∫ π/2

0

cos2 φ√
1−α2 cos2 φ

log
1+√

1−α2 cos2 φ

1−√
1−α2 cos2 φ

dφ

(14)

The function F(α) may be closely approximated by a
function of the form 1

4 (0.87 + 0.28α − log α) as shown
in Fig. 1.
This suggests therefore an asymptotic behavior of

the form,

〈|E · u|〉 ∼ 1

2
λ1 + 1

4

λ2
2

λ1

(
c0 + c1α + log

λ1

λ2

)
(15)

where c0 and c1 are adjustable constants related to the
asymptotic behavior.
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α

F
(α

)

Fig. 1 Comparison of exact integral F(α) from Eq. 14 (full line)
with approximation (0.87 + 0.28α − log α)/4 (dashed line). The
two functions are practically indistinguishable

The leading term in Eq. 15 will always be the largest
one. This suggests that we may approximate the asymp-
totic behavior of the square by

〈|E · u|〉2 ∼ 1

4
λ2

1 + 1

4
λ2

2

(
c0 + c1

λ2

λ1
+ log

λ1

λ2

)
(16)

The three eigenvalues are not independent since they
are tied by the incompressibility relation λ1λ2λ3 = 1.
We therefore need to convert the expression to a
function of the strain invariants I1 = λ2

1 + λ2
2 + λ2

3 and
I2 = λ−2

1 + λ−2
2 + λ−2

3 . For λ1 → ∞ we use λ2
1 + λ2

2 ∼ I1

and λ2
1λ

2
2 ∼ I2. Hence we substitute for the eigenvalues

λ2
1 = I1 − I2/I1 and λ2

2 = I2/I1 to obtain

〈|E·u|〉2 ∼ 1

4
I1+ 1

4

I2

I1

(
c0−1+c1

I1/2
2

I1
+log I1− 1

2
log I2

)

(17)

We retain the value of c0 from the comparison in Fig. 1
but keep the value of c1 as an adjustable constant.
Following Currie, however we use rational fractions
leading to c0 − 1 = − 1

8 . The asymptotic behavior in
uniaxial extension and shear is unaffected by c1. In
biaxial extension, we note from Eq. 7 that 〈|E · u|〉2 ∼
(πλ/4)2 as λ → ∞. This behavior is closely matched by
c1 = 3/4.

Small strain expansion

For small strains it is convenient to rewrite the stretch
factor in the form

|E · u| = √
1 + ε : uu (18)
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where ε = diag(λ2
1 − 1, λ2

2 − 1, λ2
3 − 1) = diag(ε1, ε2, ε3).

The εi are not independent due to the incompressibility
condition. But we may choose ε1 and ε2 as free parame-
ters. Then to third order,

ε3 = −ε1 − ε2 + ε2
1 + ε2

2 + ε1ε2 − ε3
1

−ε2
1ε2 − ε1ε

2
2 − ε3

2 + O(ε4) (19)

where O(ε4) indicates terms εi
1ε

j
2 with i + j ≥ 4. Like-

wise the two strain invariants need to be expanded

I1 − 3 = ε2
1 + ε2

2 + ε1ε2 − ε3
1 − ε2

1ε2 − ε1ε
2
2 − ε3

2 + O(ε4)

(20)

I2 − 3 = ε2
1 + ε2

2 + ε1ε2 − ε3
1 − ε3

2 + O(ε4) (21)

By expansion of Eq. 18 for small strains one obtains

|E · u| = 1 + 1

2
εijuiu j − 1

8
εijεkluiu jukul

+ 3

48
εijεklεmnuiu jukulumun + · · · (22)

It is now straightforward but somewhat tedious to ob-
tain the expansion for 〈|E · u|〉 to third order in the εi

by utilizing the expression for averages of products of
unit vectors over the unit sphere. Explicit expression to
sixth order in the ui as needed here may be found in
Bird et al. (1977). By matching the resulting expression
with Eqs. 20 and 21 one obtains to first order in the
strain invariants,

〈|E · u|〉 = 1 + 2

105
(6(I1 − 3) + (I2 − 3)) + · · · (23)

Hence the potential becomes

〈|E · u|〉2 = 1 + 4

105
(6(I1 − 3) + (I2 − 3)) + · · · (24)

Matching expression

We now wish to construct a function U(I1, I2) that
matches the asymptotic behavior of 〈|E · u|〉2 in Eq. 17
with the small strain behavior in Eq. 24. In particular
we propose

U(I1, I2) = 1

4
I1+ 1

4

I2

I1

(
−1

8
+ 3

4

I1/2
2

I1
+log I1− 1

2
log I2

)

+a1

I1
+ a2

I2
+ a3 (25)

for some constants ai (i = 1, 2, 3) that are determined
by the requirements

U(3, 3) = 1 (26)

∂U
∂ I1

(3, 3) = 8

35
(27)

∂U
∂ I2

(3, 3) = 4

105
(28)

The following results are obtained,

a1 = +1161

1120
− 3

√
3

8
− 3

8
log 3

.= −0.0249 (29)

a2 = − 909

1120
+ 9

√
3

32
+ 3

8
log 3

.= +0.0875 (30)

a3 = + 33

160
− 1

32

√
3 − 1

8
log 3

.= +0.0148 (31)

The small numerical values of the constants ai indicates
that the asymptotic form is already a reasonable good
approximation to the potential. We may check the
function U(I1, I2) along the two types of deformation
that span the available invariant space, namely uniaxial
(Fig. 2) and biaxial (Fig. 3) extension.
It appears that the potential in Eq. 25 approximates

the exact potential to better than 2.5% in uniaxial and
biaxial deformations. Since these two types of defor-
mation bound the available space for the invariants I1

and I2 we use it as approximation in the entire invariant
space.

1 1.5 2 2.5 3 3.5 4 4.5 5
1

2

3

4

5

6

7
Exact
Approximate

Fig. 2 Plot of approximate potential U from Eq. 25 and exact
potential Eq. 6 in uniaxial deformation as function of λ. The
two curves practically overlap. The maximum relative deviation
(2.3%) occurs at intermediate λ values
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Fig. 3 Plot of approximate potential U from Eq. 25 with exact
potential Eq. 7 in biaxial deformation. The two curves practically
overlap. The maximum relative deviation (2.3%) occurs at inter-
mediate λ values

DE Constitutive equations

To arrive at the corresponding constitutive equation
one substitutes Eq. 25 into Eq. 1 to arrive at the free
energy,

A = 3

2
nc Z kTU(I1, I2) (32)

From this one arrives by standard procedure (Bird
et al. 1987) at the constitutive relation for the unrelaxed
entanglement network prior to Rouse relaxation,

σ net
ij = G0

(
f1 Bij − f2 B−1

ij

)
(33)

f1 = 15

16

(
1− 3

2

I3/2
2

I3
1

+ I2

I2
1

(
9

8
−log I1+ 1

2
log I2

)
− 4a1

I2
1

)

(34)

f2 = 15

16

(
9

8

I1/2
2

I2
1

+ 1

I1

(
−5

8
+log I1− 1

2
log I2

)
− 4a2

I2
2

)

(35)

where Bij = Ein E jn are the components of the Fin-
ger strain tensor and B−1

ij are the components of the
Cauchy strain tensor. The expression for the modulus is
G0 = (4/5)nc Z kT as in the exact DE model. It is now
also simple to construct a memory integral expansion
that approximates the Doi-Edwards model with instan-

taneous chain retraction (that is after Rouse relaxation)
but without the Independent Alignment Assumption.

σij =
∫ t

t′=−∞
M(t − t′)

(
φ1 Bij − φ2 B−1

ij

)
dt′ (36)

where M is the memory function, φi = fi/U and U is
the square of the average stretch.

Simple shear

Uniaxial and biaxial stretching form the bounding
curves for the available part of the invariant space
(I1, I2) (Bird et al. 1987). As a final test we consider
simple shear of shear magnitude γ so that x1 = x′

1 +
γ x′

2, where the primed and unprimed coordinates are
before respectively after deformation. Now for simple
shear I1 = I2 = 3 + γ 2 so the deformations lie in the
middle of the available invariant space. We compute
the damping function h(γ ) and the normal stress ratio
−N2/N1 defined below

h(γ ) = σ12

γ GN
0

= φ1 + φ2 (37)

− N2

N1
= −σ22 − σ33

σ11 − σ22
= φ2

φ1 + φ2
(38)

Exact values for the two functions were reported by
Osaki and coworkers in Osaki et al. (1982) and Osaki
et al. (1981). In Figs. 4 and 5 we compare the predictions
from Eqs. 37 and 38 with the exact values computed
from Eq. 3. It may be shown that Eqs. 37 has the

10–1 100 101
10–2

10–1

100

Exact
Approximate

Fig. 4 Plot of the damping function in simple shear for the DE
model without IA. Predictions from the approximate constitutive
equation and exact values are identical in the limits of large and
small strain. The maximum relative deviation (2.2%) occurs at
intermediate λ values
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Fig. 5 Plot of the normal stress ratio in simple shear for the DE
model without IA. Predictions from the approximate constitutive
equation and exact values are identical in the limits of large and
small strain. The maximum relative deviation (1.8%) occurs at
intermediate λ values

behavior h(γ ) ∼ (15/4)γ −2 as γ → ∞ which is exactly
the same asymptotic behavior as for the exact equation
in 3. For comparison, the IA version has the asymptotic
behavior h(γ ) ∼ 5γ −2 as γ → ∞ which departs from
the correct behavior by 33%. Also the asymptotic form
of the normal stress ratio from Eq. 38 is −N2/N1 ∼
γ −2 log γ which is identical to the asymptotic behavior
of the exact expression (as shown in the Appendix). By
contrast the IA approximation changes the asymptotic
behavior to −N2/N1 ∼ γ −1. Thus the IA approxima-
tion results in marked changes in the normal stress
ratio, not just in the low shear limit, but more drastically
in the asymptotic behavior.
In closing we note that Currie approximation for

the DE model without independent alignment (Currie
1982b) approximates the damping function and the
small shear behavior of −N2/N1 closely but fails to ap-
proximate the asymptotic behavior of the normal stress
ratio. The Currie approximation yields −N2/N1 ∼
(2

√
3γ )−1 for γ → ∞, which apart from the numerical

factor is the same as the behavior for the IA version,
but not the correct behavior.

Constitutive equations with stretch relaxation

The DE melt model in form Eq. 36 contains the as-
sumption of instantaneous relaxation of the chains to
their equilibrium length. However it was recognized
early that chain stretching in uncrosslinked entangled
polymer systems will occur at deformation rates faster
than the inverse Rouse time (Maruucci and Grizzutti
1988; Pearson et al. 1989). The concept of chain stretch-

ing is now standard in reptation-based models (Fang
et al. 2000;Mead et al. 1998; Schieber et al. 2003). Given
the stretch function U(I1, I2) it is straightforward to
formulate models with Rouse dynamics for the chain
stretch. For example assuming that stretch relaxation is
dominated by a single Rouse relaxation time, a possible
description (Lyhne et al. 2009) would be:

λ2(t, t′) =
[
1 + (

√
U(t, t′) − 1) exp(−(t − t′)/τR)

]2
(39)

where the stretch relaxation time τR is the Rouse time.
The corresponding constitutive equation is then,

σij =
∫ t

t′=−∞
λ2(t, t′)M(t − t′)

(
φ1 Bij − φ2 B−1

ij

)
dt′. (40)

Conclusions

The key to the constitutive equations is the develop-
ment of an accurate representation of the unrelaxed
entanglement network in terms of the invariants of the
Finger strain tensor. Based on this representation it has
been possible to formulate constitutive equations for
the unrelaxed network and for the completely relaxed
network both without the independent alignment ap-
proximation. The representations have the exact be-
havior for small strain and show the correct asymp-
totic behavior in simple shear, biaxial and uniaxial
deformations. In the intermediate range, the maximum
deviations from the exact behavior in the deformations
investigated is of order 2%. In closing, a model is
proposed for a network with partial relaxation, corre-
sponding to a DE model with chain stretch. It is formu-
lated in a form with a single stretch relaxation time, but
may easily be generalized to multiple relaxation times.
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Appendix on asymptotic normal stress ratio in shear

Given a shear deformation of magnitude γ , the length
of the deformed unit vector may be written in the form

|E · u| = (
1 + sin2 θ f (φ)

)1/2
(41)

where f (φ) is given by

f (φ) = 1

2

(
1 + γ 2

)
(1 − cos 2φ) + γ sin 2φ (42)
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It follows that f (φ) has a minimum at

φm = −1

2
tan−1 2γ

1 + γ 2
∼ −γ −1 for γ → ∞ (43)

It may be shown that f (φ) has the Taylor expansion

f (φ) = (−1 + 2γ −2) + (
φ + γ −1)2

γ 2 + · · · (44)

around φ = −γ −1. It follows that in this region we may
approximate

|E · u| = γ sin θ
(
a2 + x2

)1/2
(45)

where

a2 = γ −2 (
cot2 θ + 2γ −2)

and x = φ + γ −1.
The negative of the second normal stress is com-

puted from

(σzz − σyy)/G0 = I = 1

4π

∫ π

θ=0

∫ 2π

φ=0

×
(
cos2 θ−sin2 θ sin2 φ

)
sin θdθdφ

|E · u| (46)

The periodicity of the harmonic functions may be uti-
lized to show that

I = 1

π

∫ π/2

θ=0

∫ π

φ=0

(
cos2 θ − sin2 θ sin2 φ

)
sin θdθdφ

|E · u| (47)

= 1

π

∫ π/2

θ=0

∫ π−γ −1

φ=−γ −1

(
cos2 θ − sin2 θ sin2 φ

)
sin θdθdφ

|E · u|
(48)

≈ 2

πγ

∫ π/2

θ=0

∫ A

x=0

(
cos2 θ − sin2 θ sin2

(
x − γ −1

))
dθdx(

a2 + x2
)1/2

(49)

In going from Eqs. 48 to 49 we have used that the major
contribution to the integral will occur near x = 0 and
that the maximum becomes symmetric around x = 0.
We therefore integrate up to some limit A ∈ [0; π/2],
the exact value of which does not influence the asymp-
totic behavior. Moreover sin2(x − γ −1))will be of order
γ −2 near x = 0 so the term with sin2 θ in the numerator
of Eq. 49 may be neglected in the limiting process. We
now use that∫ A

0

dx(
a2 + x2

)1/2 = log |x +
√

a2 + x2|A
0

Examination of the leading terms shows that eventually

(σzz − σyy)/G0 ∼ 1

2
γ −1(C + log γ ) (50)

where the constant C is included to indicate the order
of the terms neglected.
The first normal stress difference is much easier to

compute with the result

(σxx − σyy)/G0 ∼ 1

2
γ for γ → ∞ (51)

The combined result is

− N2

N1
∼ γ −2 (log γ + C) for γ → ∞ (52)

Numerical computations show that C ≈ −0.6.
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In plants, osmotically driven flows are believed to be responsible for translocation of
sugar in the pipe-like phloem cell network, spanning the entire length of the plant – the
so-called Münch mechanism. In this paper, we present an experimental and theoretical
study of transient osmotically driven flows through pipes with semi-permeable walls.
Our aim is to understand the dynamics and structure of a ‘sugar front’, i.e. the
transport and decay of a sudden loading of sugar in a water-filled pipe which is
closed in both ends. In the limit of low axial resistance (valid in our experiments
as well as in many cases in plants) we show that the equations of motion for the
sugar concentration and the water velocity can be solved exactly by the method of
characteristics, yielding the entire flow and concentration profile along the tube. The
concentration front decays exponentially in agreement with the results of Eschrich,
Evert & Young (Planta (Berl.), vol. 107, 1972, p. 279). In the opposite case of very
narrow channels, we obtain an asymptotic solution for intermediate times showing
a decay of the front velocity as M−1/3t−2/3 with time t and dimensionless number
M ∼ ηκL2r−3 for tubes of length L, radius r , permeability κ and fluid viscosity η. The
experiments (which are in the small M regime) are in good quantitative agreement
with the theory. The applicability of our results to plants is discussed and it is shown
that it is probable that the Münch mechanism can account only for the short distance
transport of sugar in plants.

1. Introduction

The translocation of sugar in plants, which takes place in the phloem sieve tubes, is
not well understood on the quantitative level. The current belief, called the pressure-
flow hypothesis (Nobel 1999), is based on the pioneering work of Ernst Münch in the
1920s (Münch 1930). It states, that the motion in the phloem is purely passive, due to
the osmotic pressures that build up relative to the neighbouring xylem in response to

† Email address for correspondence: tbohr@fysik.dtu.dk
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Sinks
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Semi-permeable
cell wall

Phloem Xylem
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Sources

Phloem

(a)
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Figure 1. In plants, two separate pipe-like systems are responsible for the transport of water
and sugar. The xylem conducts water from the roots to the shoot while the phloem conducts
sugar and other nutrients from places of production to places of growth and storage. The
mechanism believed to be responsible for sugar translocation in the phloem, called the Münch
mechanism or the pressure-flow hypothesis (Nobel 1999), states the following: As sugar is
produced via photosynthesis in sources it is actively loaded into the tubular phloem cells. As
it enters the phloem, the chemical potential of the water inside is lowered compared to the
surrounding tissue, thereby creating a net flux of water into the phloem cells. This influx of
water in turn creates a bulk flow of sugar and water towards the sugar sink shown in (b),
where active unloading takes place. As the sugar is removed, the chemical potential of the
water inside the phloem is raised resulting in a flow of water out of the sieve element.

loading and unloading of sugar in different parts of the plant, as shown in figure 1.
This mechanism is much more effective than diffusion, since the osmotic pressure
differences caused by different sugar concentrations in the phloem create a bulk flow
directed from large concentrations to small concentrations, in accordance with the
basic need of the plant. Such flows are often called osmotically driven pressure flows
(Thompson & Holbrook 2003), or osmotically driven volume flows (Eschrich, Evert &
Young 1972).

To study the osmotically driven flows, Eschrich et al. (1972) conducted simple model
experiments. Their set-up consisted of a semi-permeable membrane tube submerged
in a water reservoir, modelling a phloem sieve element and the surrounding water-
filled tissue. At one end of the tube a solution of sugar, water and dye was introduced
to mimic the sudden loading of sugar into a phloem sieve element. In the case of
the closed tube, they found that the sugar front velocity decayed exponentially in
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time as it approached the far end of the tube. Also, they found the initial velocity of
the sugar front to be proportional to concentration of the sugar solution. Through
simple conservation arguments, they showed that for a flow driven according to the
pressure-flow hypothesis, the velocity of the sugar front is given by

uf =
L

t0
exp

(
− t

t0

)
where t0 =

r

2κΠ
, (1.1)

where t is time, L is the length of the sieve element and r its radius, κ is the
permeability of the membrane and Π is the osmotic pressure of the sugar solution.
For dilute solutions, Π ≈ RT c (Landau & Lifshitz 1980), where R is the gas constant,
T the absolute temperature and c the concentration in moles per volume. The
conservation argument for (1.1) is the following: for incompressible flow in a wide
rigid semi-permeable tube of length L imbedded in water, we imagine part of the tube
initially filled with sugar solution and the rest with pure water. For a wide tube with
slow flow, viscous effects and thus the pressure gradient along the tube is negligible
and the pressure is simply equal to the osmotic pressure Π averaged over the tube,
i.e. RT c̄ where c̄ is the constant average sugar concentration. The water (volume)
flux through the part of the tube ahead of the sugar front xf (where there is no
osmosis) is −2πrκRT c̄(L − xf ), where κ is the permeability of the tube and the flow
is negative since water flows out. This will be equal to the rate of change of volume
ahead of xf and thus, due to incompressibility, is equal to −πr2dxf /dt . Putting these
two expressions together we get

dxf

dt
=

2LpRT c̄

r
(L − xf ) =

1

t0
(L − xf ) (1.2)

leading to uf = dxf /dt given by (1.1).
In the experiments performed by Eschrich et al. (1972) good qualitative agreement

with (1.1) was obtained, but on the quantitative level the agreement was rather poor.
We thus chose to perform independent experiments along the same lines. Eschrich et
al. (1972) used dye to track the sugar, and in one of our set-ups we can check this
method by directly following the sugar without using dye. Also, we make independent
measurements of the membrane properties, which then allow detailed comparison with
the predictions showing good quantitative agreement.

Simultaneously with the experiments, we develop the theory for osmotic flows. The
above derivation of the front propagation is simplified by the lack of viscosity and
diffusion and, indeed, by the very assumption that a well-defined sugar front exists. To
go beyond this we must use the coupled equations for the velocity and concentration
fields as they vary along the tubes and in time. Here we follow the footsteps of a large
number of authors, as discussed later. Our main contribution is the analysis of the
decay of an initially localized sugar concentration in a channel closed in both ends
described by (4.9) and (4.10). Here we point out that the main dimensionless number
(termed as Münch number) can be chosen as

M =
16ηL2κ

r3
, (1.3)

where η is the fluid viscosity. We show how to simplify the equations and obtain exact
solutions in the regimes M � 1 (the regime of the experiments in this paper and of
those of Eschrich et al.) and asymptotic solutions for M � 1. Both regimes are found
in plants and we propose an effective way for numerical integration of the equations
in the general case using Green’s functions. In the regime M � 1 the solubility of the
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Quantity Magnitude Reference

Radius (μm) 4.5 (Fava bean), 4 (Winter Knoblauch & van Bel (1998),
squash), 6–25 Taiz & Zeiger (2002),

Nobel (1999)
Length (mm) 0.09 (Fava bean), 0.1–3 Knoblauch & van Bel (1998),

Nobel (1999)
Flow velocity (m h−1) 0.5–1, 0.2–2 Knoblauch & van Bel (1998),

Nobel (1999)
Elastic modulus (MPa) 17, 5.6–7.4 (Ash) Thompson & Holbrook (2003a),

Niklas (1992)
Permeability (10−11 m s−1 Pa−1) 5,1.1 (Zitella translucence) Thompson & Holbrook (2003a),

Eschrich et al. (1972)
Sucrose concentration (M)] 0.3–0.9 Taiz & Zeiger (2002)

Table 1. Characteristic properties of phloem sieve elements.

equations is shown by mapping them to a damped Burgers equation (5.6), which can
be solved by the method of characteristics. An analogous relation was pointed out
earlier by Frisch (1976), but for a different boundary condition (open in one end)
where the damping term disappears. Some results for M � 1 were also given by Weir
(1981), but the lack of generality of his approach to the time-dependent problem
makes his results hard to extend.

In table 1 we show characteristic data for single sieve elements, which build up the
phloem conducts in plants. If one naively applies these results to the flow inside such
sieve elements, taking L =1 mm, r =10 μm, κ = 10−11 m s−1 Pa−1 and concentration
c̄ =0.5 M, one gets a characteristic velocity from (1.1) of 9 mh−1, almost an order
of magnitude larger than the range of velocities given in the table. Here one has
to remember that the characteristic velocity from (1.1) is valid for a transient flow
caused by an initial sudden sugar loading, whereas the velocities quoted in the
table are characteristic for the normal steady-state operation of the plants. For large
distances (e.g. those occurring in tall trees), the viscous effects embodied in (1.3)
become large. Thus the value of M for the single sieve element considered above
is M ≈ 1.6 × 10−4 whereas the value for a phloem tube spanning a distance of 10 m
would be greater by a factor 108, i.e. M ≈ 1.6 × 104 (see also table 3 for characteristic
values for M). In this regime (1.1) is no longer valid and, in fact, as seen in § 5.2 (5.46),
the characteristic velocity will be reduced by a factor M−1/3, now making it an order
of magnitude smaller than the velocities quoted in the table. This seems to indicate
that large distance transport in trees cannot rely solely on the Münch mechanism
and indeed the sieve elements are living cells and active transport may play a key role
(see, e.g. Taiz & Zeiger 2002). For future studies in this direction it is important to
be able to separate these effects clearly and thus to understand the passive osmotic
component as clearly and simply as possible, which is the aim of the present paper.

The layout of the paper is as follows: §§ 2 and 3 describe our experimental set-ups
and the experimental results obtained. In § 4, the flow equations are developed and
in § 5 we present solutions for the cases M � 1 and M � 1. Finally, § 6 contains
a detailed comparison between theory and experiments. After the conclusions (§ 7),
two appendices follow. Appendix A provides information about the experimental
materials used and appendix B discusses the numerical methods (based on Green’s
functions) used for solving the flow equations in the general case.
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Figure 2. Set-up I used to observe the movement of a sugar–dye solution (ss) inside a
semi-permeable membrane tube (spm). L: length of membrane tube; l: initial sugar front
height; ds: disposable syringe; gt: glass tube; rs: rubber stopper; sc: stopcock; wr: water
reservoir; bc: brass cylinder; pt: pressure transducer.

2. First experimental set-up

2.1. Set-up and methods

Set-up I is presented in figure 2. It is based on the design by Eschrich et al. with
the addition of a pressure transducer that allows us to measure the gauge pressure
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1 2 3 4 5

Mean sugar concentration, c̄ (mM) 1.5 ± 0.3 2.10 ± 0.03 2.4 ± 0.2 4.2 ± 0.7 6.8 ± 0.1
Osmotic pressure, Π (bar) 0.14 ± 0.02 0.15 ± 0.01 0.31 ± 0.03 0.39 ± 0.01 0.68 ± 0.02
Membrane tube length, L (cm) 28.5 20.8 28.5 28.5 20.6
Initial front height, l (cm) 4.9 3.7 6.6 6.5 4.8

Table 2. Data for the experimental runs shown in figure 3.

(which is what we from now on will refer to as ‘pressure’) inside the membrane tube
continuously. More precisely, it consisted of a 30 cm long, 30 mm wide glass tube in
which a semi-permeable membrane tube of equal length and a diameter of 10 mm was
inserted. At one end, the membrane tube was fitted over a glass stopcock equipped
with a rubber stopper. On the other end, the membrane tube was fitted over a brass
cylinder equipped with a holder to accommodate a pressure transducer for measuring
the pressure inside the membrane tube.

After filling the 30 mm wide glass tube with water, water was pressed into the
semi-permeable tube with a syringe. Care was taken so that no air bubbles were
stuck inside the tube. For introducing the sugar solution into the tube, a syringe was
filled with the solution and then attached to the lower end of the stopcock which was
kept closed. After fitting the syringe, the stopcock was opened and the syringe piston
was very slowly pressed in, until a suitable part of the tube had been filled with the
solution. Care was also taken to avoid any mixing between the sugar solution and
the water already present in the semi-permeable tube. The physical characteristics of
the membranes and of the sugar we used are discussed in appendix A. To track the
movement of the sugar solution it was mixed with a red dye and data was recorded
by taking pictures of the membrane tube at intervals of 15 min using a digital
camera.

2.2. Experimental results obtained with set-up I

An example of a set of data is shown in figure 3. In figure 3(a) are the raw images,
which after processing give figure 3(b) showing the position of the sugar front, xf ,
as a function of time. The error bars on xf are estimated to be ±1 mm, but are too
small to be seen. Finally, figure 3(c) shows the pressure inside the tube as a function
of time. At first, a linear motion of the front is observed with a front velocity of
∼ 1 cmh−1. This is then followed by a decrease in the front velocity as the front
approaches the end of the tube. The pressure is seen to rise rapidly during the first
hour before settling to a constant value, indicated by the dashed line. This constant
value is taken to be the osmotic pressure Π of the sugar solution. Looking at figure
3(a), one observes that diffusion has the effect of dispersing the front slightly as
time passes. Below the front, the concentration seems to be uniform throughout the
cross-section of the tube, and there is no indication of large boundary layers forming
near the membrane walls.

Similar experiments with different sugar concentrations were made and a plot of the
results can be seen in figure 3(d,e). The experimental conditions for the five different
sets of experiments are given in table 2. Qualitatively the motion of the front and the
pressure increase follows the same pattern. One notices that the speed with which the
fronts move is related to the mean sugar concentration inside the membrane tube,
with the high-concentration solutions moving faster than the low-concentration ones.
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Figure 3. Experimental results from set-up I. (a) Time series of pictures taken in experiment
5. Time increases from left to right in steps of 30 min. See details of the sugar solutions used
in table 2. (b) Plot of the front position versus time obtained from the images above. (c) Plot
of the gauge pressure inside the tube versus time. The dashed line is the osmotic pressure of
the solution, taken to be the average value of the pressure from t = 2 h until the end of the
experiment. (d ) Plots of the sugar front position versus time for different sugar concentrations,
as indicated in table 2. (e) Plots of the pressure inside the membrane tube for different sugar
concentrations.
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Figure 4. Set-up II dedicated to the tracking of the sugar front via index of refraction changes.
It consists of a hollow isosceles glass prism and a Plexiglas cuboid in osmotic contact through
a membrane. A pressure transducer was attached to the top of the glass prism to measure the
pressure inside.

The reason why 2 is moving slower than 1 is that experiment 2 was conducted in a
slightly shorter membrane tube than the one used in experiment 1, thereby decreasing
the characteristic velocity as we shall see later.

3. Second experimental set-up

3.1. Set-up and methods

Set-up II is presented in figure 4. This set-up allows us to track the real front location,
without the use of colorant, directly via the variation of the index of refraction.
It consisted of a hollow isosceles glass prism and a Plexiglas cuboid in osmotic
contact through a membrane. To track the time evolution of the sugar front inside
the prism, we used the refraction of a laser sheet passing through it. The laser sheet
was generated by shining a laser beam, generated by a Melles Griot 3.1 mW laser,
through a glass rod. When passing through the prism, light would deviate depending
on the local index of refraction, producing a typical S shape as shown in figure 4.
The index of refraction varies linearly with sugar concentration and thus by looking
at the refracted laser sheet projected onto a screen, we were able to reconstruct the
concentration profile inside the prism. A camera recorded images of the screen at
regular intervals to track the moving concentration profile.
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Figure 5. Results from set-up II. In (a) the raw data images are shown. In (b) the
concentration profile extracted from (a) is shown. (c) shows the front position extracted
from (b) by finding the maximum of the concentration gradient, shown in (d ). Finally, (e, f )
show the pressure inside the prism.

3.2. Experimental results obtained with set-up II

3.2.1. Effect of osmosis

Figure 5 shows the data collected using set-up II. In figure 5(a), a time series of
pictures is depicted showing the refracted laser-light projected onto a screen, the time
gap between each image being 1 day. Comparing the upper and lower parts of each
picture, one generally observes a deflection to the right at the bottom, corresponding
to a high sugar concentration at the bottom of the prism. In the intermediate region
one sees a dip in the refracted light, corresponding to a strong concentration gradient.
The dip gradually flattens while it advances upwards, representing a sugar front
which advances while it broadens. This process can be seen directly in figure 5(b),
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Figure 6. Results from a control experiment with set-up II, where concentration varies only
due to diffusion. (a) Time evolution of the concentration profile, (b) time evolution of the
profile of concentration gradient and (c) time evolution of the sugar front location.

which shows the time evolution of the sugar concentration obtained from the images.
Starting from a steep concentration profile, we see that the front moves upwards
while it flattens. In figure 5(d ) the time evolution of the concentration gradient is
depicted, clearly showing a peak which broadens while it moves forward. Finally, in
figure 5(e, f ), the position of the sugar front and the pressure inside the prism is
plotted as a function of time. The error bars on xf are ±1 mm, as discussed below.

3.2.2. Effect of diffusion

To study the effect of diffusion on the dynamics of the sugar front separately, an
experiment was made with set-up II, in which the water reservoir was not filled. The
experiment was then conducted in the usual way, and the motion of the front was
recorded. The results of this are shown in figure 6. Starting from a steep concentration
gradient, we observe that the front flattens but otherwise does not move much.

Comparing figures 5 and 6 we observe, that while the front moves 2 cm due to
osmosis in 6 days, it does not seem to move at all in 6 days due to diffusion. Thus,
while diffusion has a flattening effect, it plays little role in the forward motion of the
front.

Since the front did not move due to diffusion, the fluctuations in the front position
seen in figure 6(c) gives a measure of the uncertainty of a single measurement of the
front position. Taking the standard deviation of the fluctuations gives an uncertainty
of ±1 mm, shown as error bars in figure 5(c).

More details on this second experiment can be found in Jensen (2007).
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4. Theoretical analysis

4.1. Front propagation via flow equations

The equations of motion for osmotically driven flows have been derived and analysed
thoroughly several times in the literature (Weir 1981) and have been studied carefully
numerically (Henton 2002; Thompson & Holbrook 2003a, b). For the sake of
completeness, we shall include a short derivation of these.

We consider a tube of length L and radius r , as shown in figure 7. The tube
has a constant cross-section of area A= πr2 and circumference S = 2πr and its walls
are made of a semi-permeable membrane with permeability κ . Inside the tube is a
solution of sugar in water with concentration c(x) = c(x, t). Throughout this paper,
we study the transient dynamics generated by an asymmetrical initial concentration
distribution, where the sugar is initially localized to one end of the tube with a
concentration level c0. The tube is surrounded by a water reservoir, modelling the
water surrounding the membrane tube in set-up I.

We shall assume that L � r and that the radial component of the flow velocity
inside the tube is much smaller than the axial component, as is indeed the case
in the experiments. With these assumptions, we will model the flow in the spirit of
lubrication theory and consider only a single average axial velocity component u(x, t).
Also, we will assume that the concentration c is independent of the radial position ρ

an assumption that can be verified experimentally in set-up II.
Let us now consider the equation for volume conservation by looking at a small

section of the tube between xi−1 and xi . The volume flux into the section due to
advection is

A(ui−1 − ui), (4.1)

where the axial flow velocities are taken to be ui−1 and ui at xi−1 and xi , respectively.
The volume flux inwards across the membrane due to osmosis (Schultz 1980) is

S�xκ(RT c(x, t) − p(x, t)), (4.2)

where p is the local difference of pressure across the membrane and c is the local
concentration. For clarity we use the van’t Hoff value Π = RT c for the osmotic
pressure, which is valid only for dilute (ideal) solutions. In appendix A.3, we show that
the linear relation between Π and c is verified experimentally as Π = (0.1 ± 0.01 bar
mM−1)c. Assuming conservation of volume, we get

A(ui−1 − ui) + S�xκ(RT c − p) = 0. (4.3)
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Letting �x → 0 and using that the cross-section to perimeter ratio reduces to r/2, this
becomes

r

2

∂u

∂x
= κ(RT c − p). (4.4)

For these very slow and slowly varying flows, the time dependence of the Navier–
Stokes equation can be neglected and the velocity field is determined by the
instantaneous pressure gradient through the Poiseuille or Darcy relation (for a circular
tube)

u = − r2

8η

∂p

∂x
, (4.5)

where η is the dynamic viscosity of the solution, typically ∼ 1.5 × 10−3 Pa s in our
experiments.

Differentiating (4.4) with respect to x and inserting the result from (4.5) we get for
the conservation of water that

RT
∂c

∂x
=

r

2κ

∂2u

∂x2
− 8η

r2
u. (4.6)

The final equation expresses the conservation of sugar advected with velocity u and
diffusing with molecular diffusivity D

∂c

∂t
+

∂uc

∂x
= D

∂2c

∂x2
. (4.7)

The set of equations (4.6) and (4.7) is equivalent to those of Thompson & Holbrook
(2003b) except for the fact that we have removed the pressure by substitution, and
that we do not consider elastic deformations of the tube.

4.1.1. Non-dimensionalization of the flow equations

To non-dimensionalize (4.6) and (4.7), we introduce the following scaling

c = c0C, u = u0U, x = LX, t = t0τ,

L has been chosen such that the spatial domain is now of the unit interval X ∈ [0, 1],
u0 = L/t0 and c0 is the initial concentration level in one end of the tube. Choosing
further

t0 =
r

2κRT c0

, M =
16ηL2κ

r3
and D̄ =

D

u0L
=

Dr

2RT c0L2κ
, (4.8)

and inserting in (4.6) and (4.7), we get the non-dimensional flow equations

∂2U

∂X2
− MU =

∂C

∂X
, (4.9)

∂C

∂τ
+

∂UC

∂X
= D̄

∂2C

∂X2
. (4.10)

The parameter M corresponds to the ratio of axial to membrane flow resistance,
which we shall refer to as the Münch number. This is identical to the parameter F̂ in
Thompson & Holbrook (2003b). The second parameter D̄ is the Peclet number. Thus,
the longer the tube the less important the diffusion becomes and the more important
the pressure gradient due to viscous effects becomes.

Values of the parameters M and D̄ in different situations can be seen in table 3.
The typical magnitude of the parameters M and D̄ in plants are found from the
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M D̄

Set-up I 2 × 10−8 6 × 10−5

Set-up II 10−9 2 × 10−2

Single sieve element (L= 1 mm) 5 × 10−4 5 × 10−4

Leaf (L= 1 cm) 5 × 10−2 5 × 10−5

Branch (L = 1 m) 5 × 102 5 × 10−7

Small tree (L = 10 m) 5 × 104 5 × 10−8

Table 3. Values of the parameters M and D̄ in various situations.

following values (also given in table 3):

r = 10 μm, η = 1.5 × 10−3 Pa s, u0 = 2 m h−1, κ = 2 × 10−11 m (Pa s)−1.

We observe, that M and D̄ are small in both experiments, and that for short distance
transport in plants this is also the case. However, over length scales comparable to a
branch (L = 1 m) or a small tree (L = 10 m) M is large, so in this case the pressure
gradient is not negligible.

When deriving the equations for osmotically driven flows, we have assumed that
the concentration inside the tube was a function of x and t only. However, the real
concentration inside the tube will also depend on the radial position ρ in the form
of a concentration boundary layer near the membrane, in the literature called an
unstirred layer (Pedley 1983). Close to the membrane, the concentration cm is lowered
compared to the bulk value cb because sugar is advected away from the membrane
by the influx of water. This, in turn, results in a lower influx of water, ultimately
causing the axial flow inside the tube to be slower than expected. In our experiments
we see no signs of such boundary layers and apparently their width and their effect
on the bulk flow are very small.

5. Solutions of the flow equations

We will now analyse (4.9) and (4.10). We will show that they can be solved quite
generally for M = D̄ = 0 by the method of characteristics. For an arbitrary initial
condition, this method will generally yield an implicit solution.

For arbitrary values of M and D̄, we cannot solve the equations of motion
analytically and thus have to incorporate numerical methods. This topic has been the
focus of much work both in the steady-state case (Thompson & Holbrook 2003a)
and in the transient case (Henton 2002). However, no formulation fully exploiting the
partially linear character of the equations capable of handling all different boundary
conditions has so far been presented. Therefore, we show that using Green’s functions,
the equations of motion can be transformed into a single integro-differential equation,
which can be solved using standard numerical methods with very high precision. This
technical numerical part is detailed in appendix B.

5.1. Results for small Münch number

In the limit M = D̄ =0 the equations become

∂2U

∂X2
=

∂C

∂X
, (5.1)

∂C

∂τ
+

∂UC

∂X
= 0. (5.2)
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By integrating (5.1) with respect to X, we get

∂U

∂X
= C + F (τ ). (5.3)

If we choose U (0) = U (1) = 0, F (τ ) becomes

F (τ ) = −
∫ 1

0

C dX ≡ −C̄(τ ). (5.4)

Using (5.3) in (5.2) gives

∂

∂X

[
∂U

∂τ
+ U

(
∂U

∂X
+ C̄

)]
= −dC̄

dτ
= 0, (5.5)

where the last equality follows from integrating X from 0 to 1, observing that all
terms in the square bracket vanish at the end points due to the boundary condition
u(X =0, τ ) = u(X = 1, τ ) = 0. Thus C̄ is a constant in time since the tube is closed.
Integrating with respect to X and using the boundary conditions on U , this becomes

∂U

∂τ
+ U

∂U

∂X
= −C̄U. (5.6)

Equation (5.6) is a damped Burgers equation (Gurbatov, Malakhov & Saichev 1991),
which can be solved using Riemann’s method of characteristics. The characteristic
equations are

dU

dτ
= −C̄U (5.7)

dX

dτ
= U. (5.8)

Equation (5.7) has the solution

U = U0(ξ ) exp(−C̄τ ), (5.9)

where the parametrization ξ (X, τ ) of the initial velocity has to be found from

X = ξ +
1

C̄
U0(ξ )(1 − exp(−C̄τ )), (5.10)

where ξ = X at τ =0.

5.1.1. Exact solutions for simple initial conditions

An experimental condition close to that of our experiments is to use a Heaviside
step function as initial condition on C, making C initially constant in some interval
[0, λ]

C(X, τ = 0) = CIH (λ − X) =

{
CI for 0 � X � λ.

0 for λ < X � 1.
(5.11)

Equation (5.3) now enables us to find the initial condition on the velocity

U (X, τ = 0) =

∫ X

0

(C(X′, 0) − C̄) dX′ =

∫ X

0

(C(X′, 0) − λCI ) dX′ (5.12)

=

{
(CI − C̄)X for 0 � X � λ.

C̄(1 − X) for λ < X � 1.
(5.13)
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From (5.13), we have

U0(ξ ) =

{
(CI − C̄)ξ for 0 � ξ � λ.

C̄(1 − ξ ) for λ < ξ � 1.
(5.14)

Then, solving for ξ (X, τ ) in (5.10) gives

ξ (X, τ ) =

⎧⎪⎪⎨
⎪⎪⎩

X

1 + (1/λ)(1 − λ)(1 − exp(−C̄τ )
for X ∈ I1,

X − 1 + exp(−C̄τ )

exp(−C̄τ )
for X ∈ I2,

(5.15)

where the intervals I1 and I2 are defined by

I1 = [0, 1 − (1 − λ) exp(−C̄τ )], (5.16)

I2 = [1 − (1 − λ) exp(−C̄τ ), 1]. (5.17)

Finally, U (X, τ ) is calculated from (5.9)

U (X, τ ) =

⎧⎪⎨
⎪⎩

(CI − C̄) exp(−C̄τ )X

(1/λ)(1 − λ)(1 − exp(−C̄τ ))
for X ∈ I1,

C̄(1 − X) for X ∈ I2,

(5.18)

which is equivalent to the result obtained by Weir (1981). The solution is plotted in
figure 8(a, b). We can now calculate the instantaneous sugar front position Xf and
velocity Uf using the right boundary of I1 from (5.16)

Xf (τ ) = 1 − (1 − λ) exp(−C̄τ ), (5.19)

Uf (τ ) =
dXf

dτ
= C̄(1 − λ) exp(−C̄τ ). (5.20)

Similarly, C(X, τ ) is given by

C(X, τ ) =
C̄

1 − (1 − λ) exp(−C̄τ )
H (Xf − X). (5.21)

Going back to dimensional variables, (5.19) and (5.20) become

xf (t) = L − (L − l) exp
(

− t

t 0

)
and (5.22)

uf (t) =
L

t0
exp

(
− t

t0

)
, (5.23)

where L is the length of the membrane tube, l is the initial front position and the
decay time t0 is in accordance with the simple argument given in § 1.

As noted earlier we can use the method of characteristics on arbitrary initial
conditions, including the more realistic case, where the initial jump in concentration
is replaced by a continuous variation, say, a linear decrease from CI to 0 taking place
between λ1 and λ2, i.e.

C(X, τ = 0) =

⎧⎪⎪⎨
⎪⎪⎩

CI for 0 � X � λ1.

CI

λ2 − X

λ2 − λ1

for λ1 � X � λ2.

0 for λ2 < X � 1.

(5.24)
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Figure 8. (a, b) Plot of the analytical solution for a piecewise constant initial concentration.
λ=0.1, CI = 1 and C̄ = 0.1. (c, d) Plot of the analytical solution for a piecewise linear initial
concentration. λ1 = 0.05, λ2 = 0.15, CI = 1 and C̄ = 0.1. Time increases from black to gray in
steps of one unit of time.

Using (5.3) yields the initial velocity

U (X, τ = 0) =

⎧⎪⎨
⎪⎩

(CI − C̄)X for 0 � X � λ1,

A1X
2 + B1X + C1 for λ1 � X � λ2,

C̄(1 − X) for λ2 < X � 1,

(5.25)

where C̄ = CI (λ1 + λ2)/2, and the constants are given by

A1 = − CI

2(λ2 − λ1)
, B1 =

CIλ2

λ2 − λ1

− C̄, C1 = CIλ1 +
CI

λ2 − λ1

(
λ1λ2 + λ2

1/2
)
. (5.26)

Finding ξ (X, τ ) from (5.10) now gives

ξ (X, τ ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

X

1 + (1/λ)(1 − λ)(1 − exp(−C̄τ )
for X ∈ I1,

A2ξ
2
2 + B2ξ

2
2 + C2 for X ∈ I2,

X − 1 + exp(−C̄τ )

exp(−C̄τ )
for X ∈ I3,

(5.27)

where

A2 =
A1

C̄
(1 − exp(−C̄τ )), B2 = 1 +

B1

C̄
(1 − exp(−C̄τ )), C2 =

C1

C̄
(1 − exp(−C̄τ )).

(5.28)
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Here

ξ2 =
−B2 +

√
B2

2 − 4A2(C2 − X)

2A2

, (5.29)

where the plus solution has been chosen to ensure that ξ → X as τ → 0. Finally,

I1 =

[
0, λ1 +

λ1

C̄
(CI − C̄)(1 − exp(−C̄τ ))

]
, (5.30)

I2 =

[
λ1 +

λ1

C̄
(CI − C̄)(1 − exp(−C̄τ )), 1 + (λ2 − 1) exp(−C̄τ )

]
, (5.31)

I3 =
[
1 + (λ2 − 1) exp(−C̄τ ), 1

]
. (5.32)

Plugging into (5.9) gives U (X, τ ) as

U (X, τ ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(CI − C̄) exp(−C̄)X

1 + (1/λ)(1 − λ)(1 − exp(−C̄τ )
for X ∈ I1,(

A1ξ
2
2 + B1ξ

2
2 + C1

)
exp(−C̄τ ) for X ∈ I2,

C̄ (1 − X) for X ∈ I3,

(5.33)

as shown in figure 8 along with C found from (5.3), i.e.

C =
∂U

∂X
+ C̄. (5.34)

Note that the interval I2 does not shrink to 0 in time (I2 → [λ1C1/C̄, 1] for τ → ∞),
but the curvature around the right-hand end point grows without bound so that the
limiting shape of the concentration profile again becomes a discontinuous Heaviside
function.

5.2. Results for large Münch number

In the limit of large M � 1 we cannot neglect the pressure gradient along the channel
and this term dominates the advective term in (4.9), i.e. the second derivative in U .
Thus

∂C

∂X
= −MU (5.35)

∂C

∂τ
+

∂CU

∂X
= D̄

∂2C

∂X2
(5.36)

giving the nonlinear diffusion equation

∂C

∂τ
= M−1 ∂

∂X

[
C

∂C

∂X

]
+ D̄

∂2C

∂X2
. (5.37)

If we neglect molecular diffusion the resulting universal nonlinear diffusion equation
can be written as

∂C

∂τ
= M−1 ∂

∂X

[
C

∂C

∂X

]
. (5.38)

This can be done as long as M−1C � D̄ ≈ 10−5. If M becomes even larger normal
diffusion will take over. Equation (5.38) belongs to a class of equations which have
been studied, e.g. in the context of intense thermal waves by Zeldovich et al. and flow
through porous media by Barenblatt (1996) in the 1950s. The Münch number M can
be removed by rescaling the time according to τ = Mt , so when M is large we get
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very slow motion with a time scale growing linearly with M . Equation (5.38) admits
scaling solutions of the form

C(X, τ ) =
( τ

M

)α

Φ(ξ ) with ξ = X
( τ

M

)β

(5.39)

as long as α + 2β + 1 = 0. The total amount of sugar is, however, conserved. In our
rescaled units ∫ 1

0

C(X, τ ) dX = λ, (5.40)

where, as before, λ is the fraction of the tube initially containing the sugar. We can
only hope to find a scaling solution in the intermediate time regime, where the precise
initial condition has been forgotten, but the far end (X = 1) is not yet felt. Thus we
can replace integral (5.40) with ∫ ∞

0

C(X, τ ) dX = λ (5.41)

which implies that α = β = − 1/3 and

C(X, τ ) =
( τ

M

)−1/3

Φ(ξ ) with ξ = X
( τ

M

)−1/3

. (5.42)

Inserting this form into (5.38), we obtain the differential equation for Φ

1

2

d2Φ2

dξ 2
+

1

3

d(ξΦ)

dξ
= 0 (5.43)

which can be integrated once to

Φ
dΦ

dξ
+

1

3
ξΦ = constant. (5.44)

Due to the boundary condition ∂C/∂X = 0 in the origin, the constant has to vanish
and we find the solution

Φ(ξ ) =
1

6
(b2 − ξ 2) (5.45)

which is valid only for ξ smaller than the constant b. For ξ > b, Φ is identically 0.
The fact that the solution – in contrast to the linear diffusion equation – has compact
support, is an interesting characteristic of a large class of nonlinear diffusion equations
(Barenblatt 1996). The value of b is determined by conservation integral (5.41) giving∫ ∞

0
Φ dξ = 1, and thus b = (9λ)1/3.

The final solution thus has the form

C(X, τ ) =

⎧⎨
⎩

M

6τ
((Xf (τ ))2 − X2) for X < Xf (τ ) =

(
9λ

τ

M

)1/3

0 for X > Xf (τ )

(5.46)

which shows that the sugar front moves as Xf (τ ) ∼ τ 1/3 and the concentration at the
origin decays as C(0, τ ) ∼ τ−1/3. To check the validity of this solution, also when the
initial condition has support in a finite region near the origin, we plot (τ/M)1/3C(X, τ )
against ξ =X(τ/M)−1/3 in figure 9(c). The corresponding solution for U is found from
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Figure 9. (a) Numerical simulation of (5.38) compared with (b) scaling solution (5.46) and
(c) (5.45), which is shown as a dashed line. The initial condition has the form C(X, 0) =
1 − [1 + exp(−(X − λ)/ε)]−1, where λ= 0.1 and ε = 2 × 10−2 and the curves are equidistant in
time. When λ controlling the size of the region of non-zero initial sugar concentration becomes
larger, a more accurate scaling solution is found by letting τ → τ + τ0 and treating τ0 as an
unknown parameter. In (c), we have omitted the first curve (the initial condition).

(5.35) as

U (X, τ ) =

⎧⎨
⎩

X

3τ
for X < Xf (τ )

0 for X > Xf (τ )

(5.47)

and ∂2U/∂X2 = 0 justifying the neglect of ∂2U/∂X2 in going from (4.9) to (5.35) for
large M . It is seen that the velocity of the sugar front X′

f (τ ) = (λ/(3M))1/3τ−2/3 is
identical to U (Xf (τ ), τ ) from (5.47).

6. Comparison between theory and experiment

In §§ 2.2 and 3.2, we have presented experiments demonstrating the movement of a
sugar solution inside a membrane tube surrounded by a reservoir of water. We now
wish to consider whether the theory is in agreement with the experimental results.

6.1. Set-up I

The plot in figure 10 shows the relative front position, (L − xf )/(L − l), plotted
against time for five different experiments conducted with set-up I. The numbers 1–5
indicate the sugar concentrations used (cf. table 2). One clearly sees, that the relative
front position approaches zero faster for high concentrations than for low. Typical
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Figure 10. (a) Experimental (black dots) and fits to (5.22) for the relative front position
versus time, shown as dashed lines. (b) Semi-logarithmic version of (a).
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Figure 11. Our experimentally obtained values of t0 plotted together with the results found
by Eschrich et al. (1972). Data points marked with an ‘a’ represent results from closed tube
experiments and points marked with a ‘b’ represent results from semi-closed experiments taken
from figures 8 and 9 of the original paper.

values of M and D̄ are M ∼ 10−8 and D̄ ∼ 10−5, so it is reasonable to assume that
we are in the domain where the analytical solution for M = D̄ = 0 is valid. To test
the result from (5.19) against the experimental data, the plot in figure 10 shows the
logarithm of the relative front position plotted against time. For long stretches of
time the curves are seen to approximately follow straight lines in good qualitative
agreement with theory. The dashed lines are fits to (5.19), and we interpret the
slopes as − 1

t0
, the different values plotted in figure 11 against the theoretical values.

The theoretically and experimentally obtained values of t0 are in good quantitative
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(black dots) as a function of time. (b) Lin–log plot of the experimental data shown on the left.
The solid line is a fit to (5.22) with t0 = 1.6 × 106 s.

agreement, within 10 %–30 %. Generally, theory predicts somewhat smaller values
of t0 than observed, implying that the observed motion of the sugar front is a little
slower than expected from the pressure-flow hypothesis. Nevertheless, as can be
seen in figure 11 these results are a considerable improvement to the previous results
obtained by Eschrich et al. as we find much better agreement between experiment and
theory.

6.2. Set-up II

The plot in figure 12 shows the relative front position, (L − xf )/(L − l), plotted
against time for the experiment conducted with set-up I. On the semi-logarithmic
plot, the curves are seen to follow straight lines in good qualitative agreement with
the simple theory for M = D̄ = 0. As can be seen in figure 11, we also found very
good quantitative agreement between the experiment and theory for set-up II.

To test how well the motion of the sugar front observed in the experiments with set-
up II was reproduced by our model, we solved the equations of motion numerically
starting with the initial conditions from figure 5. For M = D̄ = 0, the results are shown
in figure 13(b). While the front positions are reproduced relatively well, the shape
of the front is not, so diffusion must play a role. This can be seen in figure 13(c)
which shows the result of simulation with M = 10−9, D = 6.9 × 10−11 m2 s−1. Clearly,
the model which includes diffusion reproduces the experimental data significantly
better.

To study the shape of the front in greater detail, consider the plots in figure 13(d–f ).
Here the gradient of the concentration curves on the left in figure 13 is shown. In
figure 13(d ) we clearly see a peak moving from left to right while it gradually broadens
and flattens. In figure 13(e) also we see the peak advancing, but the flattening and
broadening is much less pronounced. In figure 13(f ) we see that the model which
includes diffusion reproduces the gradual broadening and flattening of the front very
well.

7. Conclusion

In this paper we have studied osmotically driven transient pipe flows. The flows
are generated by concentration differences of sugar in closed tubes, fully or partly
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Figure 13. Results from set-up II showing the experimental data (a, d ) and the numerical
model for M = D = 0 (b, e) and for M = 10−9, D = 6.9 × 10−11 m2 s−1 (c, f ).

enclosed by semi-permeable membranes surrounded by pure water. The flows are
initiated by a large concentration in one end of the tube and we study the approach
to equilibrium, where the sugar is distributed evenly within the tube. Experimentally,
we have used two configurations: the first is an updated version of the set-up of
Eschrich et al. where the flow takes place in a dialysis tube and the sugar is followed
by introducing a dye. The advantage is the relatively rapid motion, due to the large
surface area. The disadvantage is that the sugar concentration cannot be inferred
accurately by this method and for this reason we have introduced our second set-up,
where the sugar concentration can be followed directly by refraction measurements.

On the theoretical side, we first re-derive the governing flow equations and introduce
the dimensionless Münch number M . We then show that analytical solutions can be
obtained in the two important limits of very large and very small M . In the general
case we show how numerical methods based on Green’s functions are very effective.
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Finally, we compare theory and experiment with very good agreement. In particular
the results or the velocity of the front (as proposed by Eschrich et al.) can be verified
rather accurately.

Concerning the application to sap flow, the quantitative study we performed leads
to the following conclusions: for a large tree it seems improbable that sugar transport,
e.g. from leaf to root by this sole passive mechanism would be sufficiently efficient. In
this case active transport processes might play an important role. On the other hand,
transport over short distances, e.g. locally in leaves or from a leaf to a nearby shoot
might be more convincingly described by the pressure-flow hypothesis.
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Putkaradze for many useful discussions. Much appreciated technical assistance was
provided by Erik Hansen. This work was supported by the Danish National Research
Foundation, Grant No. 74.

Appendix A. Materials: sugar and membrane

A.1. Sugar

The sugar used was a dextran (Sigma-Aldrich, St Louis, MO, USA, type D4624)
with an average molecular weight of 17.5 kDa. The dye used was a red fruit dye
(Flachsmann Scandinavia, Rød Frugtfarve, type 123000) consisting of an aqueous
mixture of the food additives E-124 and E-131 with molecular weights of 539 Da
and 1159 Da, respectively (PubChem-Database 2007). Even though the molecular
weights are below the MWCO of the membrane, the red dye was not observed to
leak through the membrane. This, however, was observed when using another type of
dye, Methylene blue, which has a molecular weight of 320 Da.

A.2. Membrane

The membrane used in both set-ups was a semi-permeable dialysis membrane tube
(Spectra/Por Biotech cellulose ester dialysis membrane) with a radius of 5 mm,
a thickness of 60 μm and a MWCO (molecular weight cut off) of 3.5 kDa. The
permeability Lp was determined by applying a pressure and measuring the flow rate
across the membrane

Lp = (1.8 ± 0.2) × 10−12 m (Pa s)−1. (A 1)

A.3. Osmotic strength of dextran

Figure 14(left) shows the relation between dextran concentration and osmotic pressure
found from the experiments shown in figure 3. A linear fit gives

Π = (0.1 ± 0.01 bar mM−1)c (A 2)

where Π has unit bar, and c is measured in mM. This is in good agreement with
values given by Jonsson (1986).

Appendix B. Numerical methods for non-zero M and D̄

For non-zero values of M and D̄, the equations of motion,

∂2U

∂X2
− MU =

∂C

∂X
(B 1)
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Figure 14. van’t Hoff relation for 17.5 kDa dextran.

and

∂C

∂τ
+

∂CU

∂X
= D̄

∂2C

∂X2
(B 2)

cannot be solved analytically. However, they can be written as a single integro-
differential equation, which is straightforward to solve on a computer. If we choose
a set of linear boundary conditions, BX[U ] = ai , for (B 1), the solution can be written
as

U =

∫ 1

0

G(X, ξ )
∂C

∂ξ
dξ + U2. (B 3)

Here, G(X, ξ ) is the Green’s function for the differential operator ∂2/∂X2 − M with
boundary conditions BX[U ] = 0 and U2 fulfils the homogeneous version of (B 1) with
BX[U ] = ai . Plugging this into (B 2) yields

∂C

∂τ
+

∂

∂X

(
C

(∫ 1

0

G(X, ξ )
∂C

∂ξ
dξ + U2

))
= D̄

∂2C

∂X2
. (B 4)

For the closed tube, i.e. for the boundary conditions U (0, τ ) = U (1, τ ) = 0, G(X, ξ ) is
given by

G(X, ξ ) =

⎧⎪⎪⎨
⎪⎪⎩

−sinh(a(1 − X))

a sinh a
sinh aξ for ξ < X,

−sinh aX

a sinh a
sinh(a(1 − ξ )) for ξ > X,

(B 5)

and U2 = 0. To increase numerical accuracy, it is convenient to transform (B 4) by
defining

∂f

∂X
= C − C̄ (B 6)

and choosing f (0) = f (1) = 0 such that f (X) =
∫ X

0
(C − C̄)dξ . Inserting in (B 4), we

get

∂f

∂t
= D̄

∂2f

∂X2
−

(
f (X) −

∫ 1

0

∂K(X, ξ )

∂ξ
f (ξ )dξ

)(
∂f

∂X
+ C̄

)
, (B 7)
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Figure 15. Results of numerical simulation of (B 4) using the boundary conditions U (0, τ ) =
U (1, τ ) = 0 for different values of M . D̄ is kept constant at 10−5. The initial condition was
C(X, 0) = 1 − 1/(1 + exp(−(X − λ)/ε)) where λ= 0.2 and ε = 2 × 102.

where

∂K(X, ξ )

∂ξ
=

⎧⎪⎨
⎪⎩

−a
sinh(a(1 − X))

sinh a
sinh aξ for ξ < X,

−a
sinh aX

sinh a
sinh(a(1 − ξ )) for ξ > X.

(B 8)

To solve (B 7) we used Matlab’s built-in time solver ode23t which is based on an
explicit Runge–Kutta formula along with standard second-order schemes for the first-
and second-order derivatives. For the spatial integration, the trapezoidal rule was
used (Press 2001). Results of a numerical simulation for different values of M are
shown in figure 15.
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