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Abstract: In this paper a method to detect asymmetric faults in a wind turbine rotor is
presented. The paper describes how fault diagnosis using an observer-based residual generator
approach is able to distinguish between the nominal and faulty case by the injection of e.g. a
sinusoidal excitation signal into the system. In the case of a wind turbine, an excitation signal
is automatically generated by the rotation of the rotor in a turbulent wind field. Using the
multi-blade coordinate transformation, the detection of asymmetries in the rotor of the wind
turbine is greatly improved.

Keywords: Fault Detection and Diagnosis; Mechanical and Aerospace

1. INTRODUCTION

In the pursuit of an improved wind turbine operation
economy, condition monitoring, fault diagnosis and fault
tolerant control are important tools that can be used to
detect faults and determine the prober action. E.g. stop
the wind turbine immediately and wait for maintenance
or continue operation with a reconfigured controller, which
accommodate the changes detected on the wind turbine.

The wind turbine can be subjected to various faults on var-
ious components: Using continuous wavelet transformation
(CWT) Tsai et al. [2006] looked at blade damage detection
and Watson et al. [2010] have investigated generator and
drive train faults with CWT analysis of the generator
power output sensor. Rotor condition monitoring for a
number of different blade-specific faults have been exam-
ined by Caselitz and Giebhardt [2005]. The works cited
above all share the direct use of sensor analysis to detect
faults. However, if the controller is able to suppress the
effect of the fault, sensor-based detection techniques fall
short and are not able to detect the fault.

Observer-based techniques for residual generation fault
detection Frank and Ding [1994], Frank [1996] on the other
hand, take both the sensors and control actions into ac-
count and are thus able to detect faults even in closed-loop
operation. To further enhance the fault diagnosis, active
measures can be taken. In e.g. Niemann [2006], Poulsen
and Niemann [2009a,b] an auxiliary signal is injected into
the system to aid the fault detection. In Niemann and
Poulsen [2008] both active and passive fault diagnosis is
discussed. In the passive fault diagnosis, partial or full
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knowledge about an uncontrolled disturbance is used for
fault diagnosis.

Observer-based fault detection techniques have previously
been applied on wind turbines e.g. Odgaard et al. [2009],
Odgaard and Stoustrup [2009, 2010] and Wei et al. [2008],
Wei and Verhaegen [2011]. However, the mentioned refer-
ences use a different evaluation method of the residuals
to determine if a fault is present and do not explicitly
exploit the auxiliary signal automatically generated by
the rotation of the rotor. For an overview of various fault
detection and condition monitoring algorithms applied to
wind turbines Hameed et al. [2009] can be consulted.

In this paper a wind turbine is subjected to fault diagnosis
and two cases are presented: A nominal case and fault
case where faults on the turbine rotor are included. These
faults are offset in pitch actuator, offset on edgewise
and flapwise strang gauge sensors for each blade. An
extended Kalman filter will be used as the observer-based
residual generator and the residuals will be analyzed by
a CUSUM test to detect faults. The rotation of the wind
turbine acts as a natural injection of a periodic signal,
which can be detected in the residuals in the faulty case.
In the presented example, the wind turbine operates in
partial load conditions and the rotor speed thus varies
as a function of wind speed to maximize power capture.
The varying rotor speed result in an injected signal with
varying frequency. The presented detection method is able
to handle the varying rotor speed and results show good
detection performance even in the presence of varying
rotor speed.

Simulations are performed in the multi-body aero-servo-
elastic software HAWC2 Larsen and Hansen [2007] de-
veloped by Risø DTU. The wind turbine used in the
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simulations is the 5 MW reference wind turbine defined in
Jonkman et al. [2009]. The extended Kalman filter bases
its estimations on a control design model, which does not
include all the degrees of freedom included in HAWC2.
A significant difference is blade flexibility resulting in
blade deformation giving steady state properties different
from those predicted by the control design model. This
difference leads to an offset in the estimated wind speed
compared to the wind speed in HAWC2. Accordingly, the
nominal case is not entirely nominal and residuals are
expected to have mean values different from zero even
in the nominal case. The task is then to determine the
nominal conditions and detect if the residuals differ from
the nominal values.

The multi-blade coordinate (MBC) transformation also
denoted the Coleman transformation Coleman and Fein-
gold [1958] enables a time-varying system to be trans-
formed to a time-invariant system, when the rotor of
the wind turbine, helicopter etc. is assumed isotropic, i.e.
symmetric. If asymmetries do occur, the MBC transformed
system will not be time-invariant. This property can be
exploited to ease the fault detection. By transforming the
wind turbine model coordinates to the multi-blade coordi-
nates, the nominal case will have zero-mean residuals and
the faulty case will have non-zero-mean residuals. Further-
more, the strength of MBC is that time-varying system
becomes time-invariant and that a individual pitching
controller is easily described. MBC for dynamical analysis
of the wind turbine is a strong tool and e.g. Hansen [2003]
and Bir [2008] discusses the subject in much greater depth.

The outline of this paper is as follows: The multi-blade co-
ordinate transformation and its application to state space
models is explained in Section 2. The wind turbine model
presented in Section 3 is used by the extended Kalman
filter in Section 4. In Section 5 implemented fault diagnosis
method is discussed and simulations demonstrating the
potential of the proposed method are shown in Section 6.
Finally conclusions are drawn in Section 7.

2. MULTI-BLADE COORDINATE
TRANSFORMATION

In this section the fundamentals of the multi-blade coor-
dinate (MBC) transformation are introduced in the first
subsection. Following is a subsection describing how the
MBC transformation is applied on the state space model.
Unfortunately, space constraints prevent more details to be
presented in this work and Henriksen et al. [2011a,b] can
be investigated for further details regarding the transfor-
mation from rotating frame to fixed frame. In Henriksen
et al. [2011a] a discussion, on how asymmetric rotating
frame signals result in time-varying fixed frame trans-
formed coordinates, is also presented.

2.1 MBC fundamentals

The MBC transformation enables the transformation from
a rotating frame of reference to a fixed frame of reference.
The azimuth angle φi of blades i = 1, . . . , nblades, assuming
constant rotor speed Ω and equal angular spacing between
the blades, is given by

φi = φ0 + Ωt− (i− 1)π/nblades (1)

and renders the MBC transformation a function of time
t rather than the azimuth angle φ. The azimuth angles
can be combined in a vector, which for a 3-bladed rotor
is φ = [φ1 φ2 φ3]T . The temporal argument of states and
transformation matrices in the following has been omitted
to simplify notation. The rotating frame coordinates q
and the fixed frame coordinates qf have the following
relationship

q = M−1qf (2)

where the element of q are denoted qi for blades i = 1,2

and 3. The elements of qf are denoted qfi for the fixed
frame coordinates i = 0, c and s, corresponding to the
mean, cosine and sine part of the fixed frame coordinates,
respectively. The MBC transformation matrices are

M =


1

3
1T

2

3
cosφT

2

3
sinφT

 , M−1 =

 1T

cosφT

sinφT

T ,
where 1 = [1 1 1]T and cosφ = [cosφ1 cosφ2 cosφ3]T etc.

2.2 The MBC transformation applied on a state space
model

A dynamic system in state space form can be expressed by
an nonlinear ordinary differential equation vector function
and a vector output function as

ẋ(t) = f(x(t),u(t), t) (3a)

y(t) = g(x(t),u(t), t) (3b)

where states x, inputs u, outputs y and the vector
functions f and g are all functions of time. In the following,
the temporal arguments of states, inputs and outputs and
vector functions have been omitted to simplify notation.

First order Taylor expansion around the linearization
(x̄, ū) yields

ẋ = f(x̄, ū) + A(x− x̄) + B(u− ū) (4a)

y = g(x̄, ū) + C(x− x̄) + D(u− ū) (4b)

where the system matrices (A,B,C,D) are functions of
time. The linearization can be rewritten to

ẋ = Ax+ Bu+ δ, δ = f(x̄, ū)−Ax̄−Bū (5a)

y = Cx+ Du+ γ, γ = g(x̄, ū)−Cx̄−Dū (5b)

for typical linear control theory the pair (x̄, ū) is chosen
to be an equilibrium point (such that 0 = f(x̄, ū)), but
the theory is also valid for other choices of (x̄, ū).

The time-varying combined fixed and rotating frame sys-
tem (3) can be transformed to a fixed frame time-invariant
system where the states, inputs and outputs are trans-
formed to the fixed frame of reference

xf = Mxx and uf = Muu and yf = Myy. (6)

The MBC transformations gives the fixed frame system
equations

ẋf = Afxf + Bfuf + δf (7a)

yf = Cfxf + Dfuf + γf (7b)

The system matrices (Af ,Bf ,Cf ,Df ) are time-invariant,
as are the residual vectors (δf ,γf ) when rotating frame
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variables q within the state vector x have been averaged
in the linearization point

q̄ = qf0 1

The nonlinear time discrete state progress equation

xf
k+1 = ff (xf

k ,u
f
k ) = xf

k +

∫ tk+1

tk

ẋf (τ)dτ (8)

used in Section 4 can be approximated by a linear descrip-
tion

xf
k+1 = Afxf

k + Bfuf
k + δf ,

δf = ff (x̄f , ūf )−Af x̄f −Bf ūf (9)

and Henriksen and Poulsen [2010] gives further details
regarding implementation.

3. WIND TURBINE MODEL

In this section the governing equations constituting the
wind turbine model used by the fault detection algorithm
is presented. Due to space constraint, the detailed de-
scription of the wind turbine model have been omitted
and Henriksen et al. [2011a,b] can be consulted for more
details regarding the wind turbine model. Instead, a small
introduction to the variables included in the model is given
in the following paragraphs.

The model for the aerodynamic forces affecting the blades
of the rotor are calculated using blade element momentum
(BEM) theory, where the free wind speed, the pitch angle
of the blades and the relative motion of the individual
blade elements are used to calculate the aerodynamic
forces based based on the aerodynamic profile data for
that particular element along the blade. Strain gauges on
blades i = 1,2 and 3, denoted QSGn,i and QSGt,i , are used
to measure the blade root bending moments normal to
and tangential to the rotor plane, respectively. The blades
block the free wind speed and induced wind speeds normal
to and tangential to the rotor plane are used in the BEM
calculations. The dynamics of the induced wind speed
normal to the rotor plane is modelled as a first order
dynamical system with an equivalent induced wind speed
v̄n,i for blades i = 1,2 and 3.

The drive-train is modelled as two inertial rotating masses
connected by a mass and spring. The blades of the rotor are
in one end of the drive-train and the electrical generator
is in the other end. The rotational speed of the rotor and
generator is denoted Ω and Ωg, respectively. The torsional
deflection in the drive-train is denoted φ∆. Inputs to the
drive-train is the aerodynamic torque in the rotor end and
the electro-mechanical torque of the generator in the other
end. The fore-aft displacement of the tower, denoted ψt,
is modelled as a mass, spring and damper system. The
fore-aft velocity of the tower results in a relative wind
speed, different from the free wind speed and through the
aerodynamic equations the drive-train and tower fore-aft
are coupled. The aerodynamic thrust is input to the fore-
aft tower displacement.

The generator torque actuator is modelled as a first order
dynamical system with generator torque reference Qg,ref
as input and generator torque Qg as output. The electrical
power output of the generator is denoted Pe. The pitch

angle actuators for blades i = 1,2 and 3 are modelled as
second order dynamical systems with pitch angle reference
θref,i as input and pitch angle θi as output.

The wind turbulence model is modelled in the fixed frame
and coupled to rest of the wind turbine model after it
too has been transformed to the fixed frame via the
multi-blade coordinate transformation. The wind speed in
rotating frame is denoted Vi for blades i = 1,2 and 3,
which is the sum of a rotor wide mean wind speed Vm
and the individual turbulent wind speeds Vt,i modelled
as a second order dynamic systems driven by Gaussian
distributed zero-mean noise. In the fixed frame the wind
speed is denoted V fi for the i = 0,c, and s components of
the fixed frame coordinates.

The ordinary differential equations of the submodels in
the rotating frame, are gathered in a state space ordinary
differential equation and an output function in the form of
(3) where x is the state vector, u is the input vector and
y is the measurement vector. The vectors are comprised
by the following variables

x = [φ∆ Ω Ωg ψt ψ̇t Vt,i V̇t,i v̄n,i θi θ̇i Qg]
T

u = [θref,i Qg,ref ]T

y = [Ω Ωg ψ̈t Q
SG
n,i Q

SG
t,i θi θ̇i θ̈i Qg Pe]

T

4. EXTENDED KALMAN FILTER

The extended Kalman filter (EKF) is used to estimate
the states and generate the residuals used by the fault
diagnosis algorithm.

The a posteriori estimate of the states with the time index
k|k, meaning estimate at time k given by the knowledge
available at time k, is given by

x̂f
k|k = x̂f

k|k−1+

LkMy,k(yi − g(M−1
x,kx̂

f
k|k−1,M

−1
u,ku

f
k )) (10)

Enabling an a priori estimate of the states with the time
index k + 1|k, meaning estimate at time k + 1 given
knowledge available at time k, given by

x̂f
k+1|k = ff (x̂f

k|k,u
f
k ) (11)

where the Kalman gain Lk and output error covariance
Ψk are given by

Lk = Pk|k−1C
fT
k|k−1Ψ

−1
k and (12)

Ψk = Cf
k|k−1Pk|k−1C

fT
k|k−1 + Ry, (13)

respectively. The Kalman gain and output error covariance
matrices are updated by the discrete time recursive Riccati
equation

Pk|k = Pk|k−1 − LkC
f
k|k−1Pk|k−1 (14)

Pk+1|k = Af
k|kPk|kA

fT
k|k + Rx (15)

The state estimate used by the full-state-feedback control
algorithm can either be the a posteriori x̂k|k or the a priori
x̂k|k−1.

5. FAULT DETECTION

In the following section, the theory for an active/passive
fault diagnosis (FD) method is presented. The method is
based on the passive fault diagnosis found in e.g. Frank

16th IFAC Symposium on System Identification
Brussels, Belgium. July 11-13, 2012

376



and Ding [1994], Niemann and Poulsen [2008] and on the
active fault diagnosis found in e.g. Niemann [2006].

A system consisting of the transfer functions Ged, Ged,
Ged and Ged is given by

ΣP :

{
e = Ged(p)d+ Geu(p)u
y = Gyd(p)d+ Gyu(p)u

(16)

where the output vectors e and y are control objectives
and measurements, respectively. The input signals d and u
are input disturbance and control signal, respectively. The
transfer functions are functions of the parameter vector
p = [p1, . . .]

T , where p = 0 is the nominal case. Further,
let the system be controlled by a stabilizing controller

ΣC : {u = Ky (17)

The nominal system given by Gyu(0) and the stabilizing
controller K can be subjected to a co-prime factorization

Gyu(0) = NM−1 = M̃−1Ñ (18)

K = UV−1 = Ṽ−1Ũ (19)

where N, M, Ñ, M̃, U, V, Ũ and Ṽ ∈ RH∞ must satisfy
the double Bezout equation Tay et al. [1997][

I 0
0 I

]
=

[
Ṽ −Ũ

−Ñ M̃

] [
M U
N V

]
=

[
M U
N V

] [
Ṽ −Ũ

−Ñ M̃

]
.

(20)

5.1 Fault diagnosis setup

The residual ε for ΣP is given by

ε = M̃y − Ñu (21)

which is the same same residual generator used with
passive fault diagnosis Frank and Ding [1994]. A more
detailed discussion of the applied FD setup is given in
Niemann [2006]. The fault diagnosis system is given by

ΣFD :

{
e = Ped(p)d+ Peη(p)η
ε = Pεd(p)d+ Pεη(p)η

(22)

where for the nominal system the transfer function from η
to ε is zero and a zero-mean disturbance signal d will result
in a zero-mean residual signal ε. This can be exploited to
determine whether or not the observed system is in its
nominal state or if p 6= 0.

5.2 Evaluation of residual signals

The injection of a known signal into the system either the
auxiliary signal η via the control signal u = Ṽ−1(Ũy+η)
or if the disturbance signal d is known, can be used to
investigate the observer-based residual signal ε. If e.g. a
sinusoidal signal with the frequency ω is injected into the
system, two new signal can be formed from the residual
signal

c = ε cos(ωt) and s = ε sin(ωt) (23)

The signals c and s can then examined by various de-
tection algorithms. A simple detection algorithm is the
CUSUM test in a two-sided version

zk+1 = max

zk +
τk
σ

 c−cs
−s

− γ

2
, 0

 , (24)

where τk is a time step scaling factor to be explained in
the next subsection, σ is the standard deviation of c and
s and γ is a tuning parameter.

5.3 The wind turbine example

The wind turbine is already subjected to a disturbance
signal which can be used instead of an actively injected
signal. As the wind turbine rotates, the blades alternate
between high and low wind speeds, which are effects of
the spatially distributed turbulent wind field and by the
wind shear caused by the ground friction, making the wind
speeds nearer ground lower than wind speeds at higher
altitudes.

The rotor varies more or less with wind speed depending on
the mode of operation. At partial load, below rated wind
speed, the wind turbine controller attempts to maximize
the power capture by keeping the ratio between wind speed
and rotor speed at its optimum value. Thus the rotor speed
varies and the disturbance signal injected into the system
varies in frequency. The rotor azimuth angle φ can be used
as input to the two residual derived signals

c = ε cos(φ) and s = ε sin(φ) (25)

The variation of frequency can instead be considered as a
constant frequency with time steps of varying length and
the CUSUM detection algorithm should be corrected by a
time step correction factor

τ = Ωnom/Ω. (26)

6. RESULTS

Simulations have been performed in the multi-body aero-
servo-elastic software HAWC2 Larsen and Hansen [2007]
developed by Risø DTU. The presented simulation is
performed with a mean wind speed of 8 m/s and the wind
turbine operate thus only in partial load conditions. A
power law wind shear with coefficient of 0.14 and a Mann
(see Mann [1998]) turbulence with turbulence intensity
of 0.14 as well as a potential flow tower shadow model
are used in the simulation. The wind turbine used in the
simulation is the 5 MW reference wind turbine defined in
Jonkman et al. [2009].

Two simulations are presented: A nominal simulation
and faulty simulation. In the faulty simulation, blade 1
have been mounted with an 1 degree offset. This fault
can also be seen as an example of changed aerodynamic
properties of blade 1 caused by e.g. surface pollution, icing,
aerodynamic profile production tolerances etc.

The extended Kalman filter presented in Section 4 is
used as the residual generator and several options for
selecting the residual to investigate exists. The output
error or innovation vk = yk − ŷk of appropriate sensors,
e.g. blade root moment sensors. Another option, and the
one presented in this section, is the estimated state noise
wk = Lkvk. In particular the wind speed estimate is
investigated.

Fig. 1 depicts the wind speed estimates in the nominal and
faulty case compared to point wind speeds measured at 70
percent of the blade radii, which is typically considered
to representative for the wind speeds felt by the entire
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blade. It can be seen that the wind speed estimates follow
the trends of the real wind speed, but have a small offset
due to the fact, that control design model used by the
extended Kalman filter does not accurately describe the
wind turbine model implemented in HAWC2, a significant
difference is blade flexibility not included in the control
design model.

In Fig. 2, the residuals of wind speed estimates in fixed
frame coordinates multiplied with cosφ and sinφ, respec-
tively, can be seen. It can be seen that in the first coor-
dinate V0 (Fig. 2(a)) it is hard to distinguish the nominal
case from the faulty case. The fact that the rotor speed
frequency is not a significant component in the signal,
suggests that the perturbation caused by the fault is more
of an additive than multiplicative nature. In the two other
signals (Fig. 2(b) and 2(c)) the nominal and faulty case
are easier to distinguish and those two signals should be
used for fault detection.

Fig. 3 shows the results of a CUSUM test applied to the
signals seen in Fig. 2 and shows that the two signals seen
in Fig 3(b) and 3(c) are clearly good candidates for fault
detection signals.

At last, it should be pointed out that other types of rotor
faults could be considered. It is possible to detect all
different rotor faults mentioned in Section 1.

7. CONCLUSION

The presented method, based on an observer-based resid-
ual generator, is able to detect asymmetries in a wind
turbine rotor. The multi-blade coordinate transformation
has been shown to render the nominal case residuals as
zero-mean signals when multiplied examined with regards
to the frequency of the injected signal. Future work en-
tails investigating other faults and possibly development
of fault tolerant controllers.
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Fig. 1. Wind speed estimation in the nominal and faulty case, compared to point wind speeds at 70 percent radius of
blades, with the effect of tower shadow included in the signal.

- Nominal - Fault

c

s

-0.05 0 0.05
-0.05

0

0.05

(a) V̂0

- Nominal - Fault

c

s

-0.1-0.1 00 0.1
-0.1

-0.05

0

0.05

0.1

(b) V̂c

- Nominal - Fault

c

s

-0.1-0.1 00 0.1
-0.1

-0.05

0

0.05

0.1

(c) V̂s

Fig. 2. Residuals of wind speed estimates in fixed frame coordinate multiplied with cosφ and sinφ, respectively.
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