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 Abstract 
Due to the significant vertical elevation and complexity of the structural system, high rise 
buildings may suffer from the effects of fire more than other structures. 
For this reason, in addition to evacuation strategies and active fire protection, a careful 
consideration of structural response to fire is also very important. 
In this context, it is of interest to investigate the characteristics of the structural system 
that could possibly reduce local damages or mitigate the progression of failures in case of 
fire. In this paper, a steel high rise building is taken as case study and the response of the 
building is investigated up to the crisis of the structure with respect to a standard fire in a 
lower and in a higher storey: the comparison of the fire induced failures at the different 
height allows highlighting the role played in the resulting collapse mechanisms by the 
beam-column stiffness ratio and by the loading condition. 

Keywords: Structural fire safety; high-rise buildings; collapse mechanisms; hindered 
thermal expansion; thermal buckling; material degradation. 

INTRODUCTION 
In comparison with other structure, high rise buildings can be more endangered by fires as a 
consequence of their vertical elevation, which not only may hinder a prompt extinguishment of fire 
and a fast evacuation of peoples, but may also promote a vertical fire spread and a progression of 
failures, as witnessed by several cases of multi-storey building fires. 

The First Interstate Bank fire in Los Angeles in 1998, the Parque Central Tower fire in Caracas in 
2004, and The Mandarin Oriental Hotel fire in Beijing in 2009 are three examples of high rise 
buildings where structural fires developed and involved several floors [1]. Both in the First Interstate 
Bank and Parque Central Tower, active fire safety systems had been foreseen in the buildings, despite 
not enforced by the regulations at the time; however sprinklers did not activate, due to faulty 
maintenance or impaired installation, and the fires spread upwards involving a number of floors and 
lasting several hours. In the Mandarin Oriental Hotel, a sprinkler system has not yet been installed, 
since the construction of the building was not complete when a firework hit the structure and triggered 
the fire. The fire lasted 5 hours and spread downwards from the roof to the bottom of the building. In 
the last two cases, the fires caused significant damages of the structural system, which however 
withstood the damages and did not collapse. 

The Architecture Faculty Building of Delft in 2009 (concrete) , the Windsor Tower of Madrid in 
2005 (steel and concrete), and the World Trade Centre (WTC) of New York in 2001 (steel)  [2], [3], 
[4] are instead three examples of buildings, where initial damages caused by the fire triggered a 
progressive failures of structural elements and resulted in major structural collapses. At least for the 
last two cases, some structural behaviour patterns have been identified, which could have played an 
important role in the collapse mechanisms as well as in the standstill or in the propagation of the 
failures. 



Filippo Gentili, Luisa Giuliani, Franco Bontempi 
 

 
Volume X, Number X, YEAR 

 

In the Winsor Tower [5], an initial loss of vertical load bearing members seems to be responsible of 
the separation of the first horizontal slab, which impacted on the slab below, causing its failure in turn. 
The pancake-type progressive collapse [5] seems to have come to a halt in correspondence of two 
technical floors, which represented a localized stiffening of the system. 

In the case of the WTC instead, the progressive collapse could have been initiated by the failure of 
a horizontal member. According to [6], the presence of stiff columns hindered the thermal expansion 
of the floors directly heated by the fires and determined their buckling failure. When the fire involves 
a number of floors, the loss of several horizontal restrains could be responsible of the buckling of the 
columns at relatively low temperatures and the progression of the collapse to the rest of the structure. 

The lessons learned from all above mentioned building fires show that, in addition to other fire 
safety measures such as evacuation strategies and active fire protection, a careful investigation of the 
response to fire of the structural system is essential for high rise buildings,. The consequences of a 
fire-induced collapse are enormous in term of safety of people and integrity of the structure and the 
risk associated to the event can be significant, even if the occurrence of a structural fire is very low. 
Therefore, in case active measures cannot prevent the development of a structural fire (such in case of 
arson or of a fire during a construction stage or a faulty maintenance of the sprinkler system), 
structural damages should be avoided or limited to a localized area. 

Both in the Windsor Tower and in WTC, the organization of the structural system and in particular 
the ratio of strength and stiffness of adjacent elements seem to have influenced the progressive 
collapse susceptibility of the system. Another consideration concerning the propagation of failures is 
offered by the two collapse cases: in the Windsor Tower, a peculiarity of the failure mechanism is 
represented by the fact that the collapse was limited to a smaller number of floors than those involved 
in the fire; on the contrary, in the WTC the collapse involved the whole structure, while the fire was 
limited to a number of floors. It appears clear that a particularly dangerous situation is represented by a 
possible spread of failures to elements not directly involved in the fire, i.e. element that due to their 
location or because of greater insulation have still a relatively low temperature at the time of failure. 

The aim of this paper is to highlight the above mentioned aspects in the study of the structural 
response to fire of a high rise building. To this purpose, simplified fire design and verification methods 
on isolated elements are not sufficient and the response of the structural system as a whole [7] has to 
be investigated. This is a quite difficult task, which in case of complex structures such as a high rise 
building [8], necessarily requires some simplifying assumptions in the modelling of the action and of 
the structure. 

In this paper, a steel high rise building is taken as case study and the structural response is 
investigated with respect to a standard fire in a lower and in a higher storey: the comparison of the fire 
induced failures at the different heights allows highlighting the role played in the collapse by the 
beam-column stiffness ratio and a possible propagation of the initial failures to zones of the structure 
not directly involved in the fire. It has to be pointed out that, as better explained in the following, the 
interest of this study is focused on the behaviour of the steel components. If this situation can be partly 
representative of a construction stage on one side, it is of greater interest in order to highlight some 
basic mechanisms of failure in steel framed structures. 

The investigations take into account a full nonlinear response of the structure, influenced by 
material degradation at high temperatures, possibility of buckling, large displacements and 
deformations and exploitation of plastic reserve of the elements. Investigations are carried out on 
substructures, particularly two 3D floor models (FM), which refer to the 5th and 35th storey, and a 3D 
sectional model (SM) of a vertical frame of the building, where all the stories are represented and a 
possible vertical propagation of the damages can be evidenced. 

In the presentation of the performed investigations and in the discussion of the outcomes, a focus is 
done on methodological aspects concerning the definition of fire scenarios and collapse criteria, the 
modelling of the substructures and the identification of failure modalities. 

CASE STUDY 
The building considered as case study is a steel high-rise building, whose premises are devoted to 
offices and residential use. The building has been designed on the basis of the geometry of a building 
recently built up in Latina, Italy (Fig. 1). The building is composed of 40 storeys and has a framed 
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structural system. A vertical bracing system provides stiffness against horizontal actions, while no 
horizontal bracing system is present within the floor planes, since a bidirectional concrete floor slabs 
should provide the necessary in-plane stiffness. 

The inclusion of hollow spheres in the concrete floor slab, together with the biaxial symmetry of 
the slabs, allowed for the presence of beams with relatively small profiles spanning long distances 

On the contrary, the sections of the columns are quite big, as the resistance against horizontal loads 
is totally entrusted to the columns. As a result, the difference in the section dimensions of the 
horizontal and vertical elements is quite high in this type of structural system and becomes particularly 
significant in the bottom floors, where the column sections are the biggest. This characteristic may 
influence the structural response in case of fire, as better highlighted in the following. 

 
Fig. 1: Rendering and FEM of the investigated high-rise building 

Methodology 
When attention is devoted at identifying collapse mechanisms that can possibly be triggered  by fire in 
complex structures, prescriptive rules and simplified design procedures, mostly aimed at preventing 
the failures on isolated elements, cannot be used. In order to follow the progression of the failures, a 
more advanced investigation needs to be carried out on the structure, which generally requires the 
avail of Finite Element Method (FEM) programs and some design experience for modelling both the 
fire action and the structural response. 

The flowchart of Fig. 2 represents the general procedure to be followed in those cases. In the 
following sections, each step of the flowchart will be described and applied to the case study 
considered. The most relevant assumptions and modelling aspects will be presented and discussed, 
with the intention of exemplifying a general methodology for the advanced fire design of complex 
structures such as a high rise building. 



Filippo Gentili, Luisa Giuliani, Franco Bontempi 
 

 
Volume X, Number X, YEAR 

 

 
Fig. 2: Procedure for advanced investigation of the response of a complex structure to fire. 

Fire scenarios 

The identification of relevant fire scenarios plays a key role for evaluating the response and a possible 
progressive collapse susceptibility of the structure in case of fire. In literature, the identification of 
design scenarios is often obtained by means of a risk analysis [9] [10], which is however a relatively 
onerous procedure. Furthermore, in case of Low Probability - High Consequence (LP-HC) events the 
risk assessment is complicated by the fact that most probable scenarios are not necessarily the most 
severe ones in term of consequences and costs. 

Therefore, in practice, a number of fire scenarios is often identified on the building [11] on the 
basis of engineering experience and qualitative considerations or preliminary simplified investigations. 

In this study, fire is considered in two different areas of a floor. Furthermore, two reference storeys, 
specifically the 5th and 35th storey, have been considered for the triggering of the fire. As a result, a set 
of four different fire scenarios has been investigated on the floor models (Fig. 3). With respect to the 
sectional model, the fire has been considered to affect either the beams only or both the beams and the 
columns. In addition to that, a possible loss of vertical compartmentalization has been considered and 
the fire has been assumed both to be localized within a single storey and to have spread along two 
subsequent storeys. These assumptions led to the investigations of six additional fire scenarios on the 
sectional model. All considered fire scenarios highlighted in Fig. 5. 

The choice of considering the triggering of the fire at two distinct heights is motivated by the 
different column profiles present at the bottom and top of the building, which can lead to a different 
structural response of the steel substructures. The comparison of the outcomes provides an insight of 
the structural characteristics that play a role in the time and type of failures in a steel framed building 
and may suggest target modifications for improving the structural performances. 

Since the identification of collapse mechanisms is the main interest of this study, the consideration 
of compartment fires did not seem to be the most appropriate choice, as realistic compartment 
properties would not be available and damage conditions lower than those assumed would have been 
required in a realistic design. For this reason the use of a nominal monotonic fire has been preferred to 
a natural fire model, in order to be able to trace the progression of failures up to the crisis of the 
building. The use of a conventional fire however could also be preferred for the consideration in the 
design of unexpected circumstances, which could lead to fires more severe than what expected. 
Examples of that can be arsons or fires triggered by malevolent explosions or by the impact of a plane. 
Also less critical events may determine higher element temperatures, such as a refurbishment of the 
building, which leads to a lower the thermal inertia of the walls or a decrement of the ventilation 
surfaces, as well as a change of occupancy of the premises, which determines a fuel load increment. 
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Fig. 3: Fire scenarios considered in the building. 

Thermal action 

Once the fire scenarios have been identified, the fire action and the heat transfer to the elements have 
to be modelled. In the flowchart of Fig. 2 both aspects of fire model and heat transfer model [12] are 
considered in the 2nd step named “Thermal action”. With reference to the fire model, more or less 
realistic temperature-time curves can be considered for the fire, namely natural or nominal fire curves. 

As mentioned above, in the study presented here a nominal fire has been assumed for the sake of 
simplicity in the form of the standard ISO 834 curve.  

The heating curves of steel members have been calculated under the assumption of uniform 
temperature along the sections, according to the Eurocode formula for the heating of uninsulated steel 
profiles steel [13] and using a convective coefficient α = 25 W/(m2⋅K) and a total emissivity ε = 0.5 
(the shadow effect of the profiles is neglected on the safe side). The resulting temperatures have been 
applied as thermal load to all nodes of the elements in the tributary area of the fire scenario considered 
in each investigation. 

Structural system 

Modelling in detail such a big and complex structure can be quite onerous in term of analysis time, but 
also in term of difficulties in the interpretation of results, which is the main goal of each investigation: 
in order to understand properly the structural behaviour and also be able to check the validity of the 
outcomes, it’s important to simplify the models as much as possible, provided that aspects that are of 
interest in the structural response will be duly represented. 

In this respect, a central point of fire-induced investigations concerns the identification of a 
possible spread of the local damages from the heated members to elements not directly involved in the 
fire. In a 3D building, the collapse propagation can occur both within the floor plan where the fire has 
triggered and along the building elevation. Two different type of substructures have therefore been 
considered (Fig. 4): i) a floor model, where the direct effect of fire on heated beams can be evaluated 
(vulnerability to fire) and then the consequence of a possible failure of the heated beams on the rest of 
the floor system can be investigated (structural robustness of the system); and ii) a sectional model, 
where a possible overloading and collapse of the columns consequent to beam failure can be identified 
and a vertical propagation of the collapse can be identified. Here the term vulnerability is intended as 
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sensibility to accidental actions [14] and the term robustness is referred to the sensibility to local 
failures [5]. Concerning the floor substructure, it is important to point out that the floor slabs have not 
been modelled, since, as mentioned before, this study is mostly aimed at highlighting the role of the 
steel components in the failure mechanisms of framed tall structural systems. Concerning the sectional 
substructure, a spatial model has been implemented, capable of highlighting possible out of plane 
displacements of the elements,. In order to simulate the presence of beams perpendicular to the frame, 
transversal restraints have been applied to the sectional model in the 3rd dimension. 

A commercial finite element code has been used for the investigations [15], which takes into 
account thermo-plastic material and geometric nonlinearities. Either the sectional and the floor models 
have been implemented by using beam elements, which has been properly meshed in order to have 
sufficient accuracy in: i) the application of thermal loads; ii) the calculation of displacements and 
forces; iii) the representation of the deformed shape and other output variables.   With respect to the 
application of the thermal loads in particular, a sensitivity analysis of the displacement to the mesh 
size has been performed, which has led to the choice of an optimal discretization of the elements. 
Dead and live loads have been applied as line loads along the axis of the beams and considered 
together with the self-weight in a first load step. In a second load step the heating curves calculated for 
the steel profiles have been applied to the nodes of the elements pertinent to the area of the fire 
scenario considered, while other elements have been assumed to remain cold throughout the 
investigation. An explicit dynamic solver has been used in order to overcome convergence problems 
due to the formation of local mechanisms, thus enabling to trace down the propagation of failures. 

 
Fig. 4: Different models considered for the investigations 

Collapse condition 

The last step of the investigation procedure concerns the interpretation of the results and the 
identification of collapse modes and collapse conditions for each fire scenario. For this purpose, a 
collapse criterion has to be chosen on the basis of the safety objectives defined for the structures. As 
explained in the first paragraph, the investigations presented here have two main different goals: it is 
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of interest either i) to identify the time and type of failures, and ii) to outline a possible propagation of 
the collapse. 

To the first aim, a limit on the displacement of significant points of the structure can be used and 
calibrated on the basis of the performance required to the structure. If the functionality of the structure 
should be maintained, a collapse condition, which is representative of the failure of one element, is the 
runaway of a significant point of the structure, with this term meaning the accelerating and irreversible 
downward displacement of the considered point [6]. Conventional limit values for the maximum 
displacement of members are also found in literature and regulations with respect to steel elements in 
bending [16] [17]. In the discussion of the results, the displacement limit indicated in Eq.1b will be 
considered and compared with the runaway criterion, as identifiable from the qualitative observation 
of the monitored displacements. 

To the second aim, the collapse condition is represented by a well-identifiable circumstance, 
namely the failure of elements not directly involved in the fire, which are assumed to remain cold in 
the investigations performed. 

Main results  
The most relevant results of the analyses are presented and discussed in the following. These results 
refer to both the floor (behaviour of beams) and the sectional model (behaviour of beams and 
columns). An overview of the investigations performed is given in Fig. 5.  

 
Fig. 5: Overview of models and scenarios considered and summary of the investigation performed 

The abbreviations used for identifying the different investigations are formed by a set of two letters 
followed by two numbers separated by a dash, and have the following meaning: 
­ the first two letters of the abbreviation refer to the model studied (FM and SM stays for sectional 

model and floor model respectively); 
­ the first number refers to the area of the floor where the fire is assumed (scenario 1 or scenario 2) 
­ the second number refer to the story number (5th or 35th storey); 
­ in the investigation on the sectional model, a last letter is specified too, which refers to the 

extension of the fire; specifically the letter: 
a indicates that the fire has been considered in a single floor and only on beam elements; 
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b indicates that fire is limited to a single floor but affects the beams and the related column; 
c indicates that the fire is assumed to have spread upwards and the beams and columns of two 

consecutive floors have been considered to be affected by the fire.  

Floor model – Scenario 1 – Fire on beams of only on e floor (FM-1-5 & FM-1-35) 

The results of the analysis on the first scenario for the 5th floor highlight the following sequence of 
failures in the area involved in the fire (Fig. 6): 

1. After 2 min of fire, an out of plane buckling mechanism triggers, involving three beams that 
converge in the middle external column (i.e. the two external transversal beams, beam 18 and beam 
32, and the longitudinal beam between them, beam 25). Almost contemporarily, the most internal 
beam on the left (beam 34) buckles out of plane too. The early failure of those beams is only due to 
the eigenstresses induced by the hindered thermal expansion of the beams, consequent to the strong 
column - slender beam frame type: specifically, all four beams have an IPE270 profile, while the 
columns adjacent to them have HEM1000* profiles. As a consequence, the beam failures trigger 
when the temperatures are still very low (around 100°C) and the degradation of the mechanical 
properties, which typically plays a determinant role in fire-induced collapses, has not occurred yet. 

2. Shortly after the first four beams, the two transversal beams in the middle (beam 33 and beam 19), 
buckle out of plane too. The slightly higher resistance of these beams in comparison to the previous 
one can be imputed to the bigger sections of these beams, which have an IPE300 profile. 

3. At about 10 and 15 minutes of fire respectively, also the last two beams directly involved in the fire 
(beam 34 and beam 26) buckle out of plane. The higher resistance of those beams is due to the 
different profile of the sections, which is a HEA240. 

4. At this point the temperatures are quite high (ca. 600°C) and the internal beams, which carry higher 
load than the external ones, experience a vertical runaway and exceed the maximum acceptable 
displacement considered as nominal collapse criterion (Eq.1b). The material degradation is 
responsible for the runaway and determines the overcoming of the collapse condition. 

 
Fig. 6: Fire scenario 1 for the 5th floor: section of heated elements (top left), progression of collapse (top 

right), deformed configuration after 14 min (bottom left) and after 20 min (bottom right). 
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The results of the investigations carried out at the 5th floor are represented in Fig. 6 in term of 
deformed configurations and in Fig. 7 in term of displacements vs. temperature and of axial force vs. 
temperature curves. In the first row of Fig. 6 the name (left) and the sections (right) of heated elements 
are reported. The second row of Fig. 6 shows on the left the deformed configurations at 14 min . Here 
the progression of beam failures is indicated by numbers from 1 to 4, which correspond to the steps 
illustrated above; on the right instead the deformed configuration at 20 min of fire is reported, where 
the in-plane buckling of beams is visible and significant vertical displacements of beams can be 
observed. 

It seems relevant to highlight the fact that the same design characteristic that is responsible for the 
early failure of the beams, i.e. the strong column – slender beam system, ensures on the other side a 
compartmentalization of the collapsing sections of the structure and avoid the propagation of the 
collapse to the vertical elements, which are only slightly overloaded by the stress redistribution 
consequent to the beam failures and  therefore could hardly be involved in the collapse mechanism. 

 
Fig. 7: Results of fire scenario 1, in term displacement of beams mid-span (first row), forces of the 

beam (second row) and displacement of the columns adjacent to the monitored beam (third row). 
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The results of the investigation carried out at the 35th floor are reported in Fig. 7 in term of 
displacement vs. temperature (first row) and axial force vs. temperature (second row). From the 
observation of the displacements, it can be seen that the collapse mechanism at the 35th floor is similar 
to that one at the 5th floor, but it is slightly delayed. 

This delay can be entirely ascribed to the different column profiles present at the 35th floor 
(HEM400), which offer less resistance to the thermal expansion beams: this is confirmed by the fact 
that the columns at the 35th floor are slightly displaced by the thrust of the beam, contrarily to what 
happen to the column at the 5th floor (third row of Fig. 7). 

Floor model - Scenario 2 - Fire in one storey on be ams (FM-2-5 & FM-2-35) 

The outcomes for fire scenario 2 are shown with respect to a fire at the 5th floor and a fire at the 35th 
floor in term of deformed configurations (Fig. 8) and of trend of displacement and axial force of 
members (Fig. 9). 

At both the 5th and 35th floor a buckling mechanism occurs, which involves three of the heated 
beams and specifically beam 65 (whose mid-span is referred to as point F in Fig. 8), beam 68 and 
beam 58. 

As occurred for fire scenario 1, the mechanism at the 35th floor is delayed with respect to the 
mechanism at the 5th floor. However in fire scenario 2, the buckling mechanism is different for the two 
floors: the beams at the 5th floor buckle out of the plane, while the same beams at the 35th floor have 
time for developing a significant vertical displacement before failing and the buckle occurs therefore 
along the vertical direction. Furthermore, a propagation of the failures of two beams not directly 
involved in the fire and specifically of beam 57 and beam 59 (whose mid-span is reported as point G 
in Fig. 8) can be evidenced at 35th floor. This mechanism is observable in the right bottom part of Fig. 
8. 

The higher buckling resistance at the 35th floor is again a consequence of the lower horizontal 
restrain provided by the tapering of the column profiles along the building height. However in this 
scenario this characteristic of the system leads to the occurrence of a different and less local buckling 
mechanism, which involves all heated beams and 2 beams that fall outside the fire scenario as well. 

 
Fig. 8: Deformed shape of the 5th floor (left column) and of the 35th floor (right column) in case of fire 

scenario 2. 



Fire-induced collapse of steel high-rise buildings 
 

 
Volume X, Number X, YEAR 
 

It has been previously said that a high vulnerability of the system could be ascribed to the very stiff 
columns (as at the 5th floor), which led to an early buckling mechanism due to the highly constrained 
thermal expansion of the beams; the presence of slender columns (as at the 35th floor) may lead instead 
to a delayed buckling and have therefore a positive effect on the overall resistance. Nevertheless, this 
example highlight that this delayed failure can also be detrimental, as the higher resistance of the 
beams to a local buckling determines the triggering of a larger buckling mechanism, which involves 
also elements not directly affected by the fire. 

 
Fig. 9: Results of scenario 2: displacements of point F, representing the mid-span of beam 65 (top left) 

and in term of axial force of beam 65 (top right); outwards displacements of point G, representing the 
mid-span of the cold beam (bottom left) and of point H, which gives indication on the restrain provided to 

the beam by the adjacent column. 

Sectional model – Scenario 1 - One storey fire on b eams (SM-1-5-a & SM-1-35-a) 

In this investigation the sectional model of the building is considered and the fire is assumed to heat 
only the beams pertinent to the area considered for the fire scenario 1. The results of the sectional 
model are consistent with those obtained by the investigation of scenario 1 in the floor model (FM-1-
5) and are characterized by an early failure of the heated beams, which buckle out of plane just after 
few minutes of fire.  

At the 5th floor, as evidenced also in the floor model, the failure of the heated beams occurs at 
relatively low temperatures and is almost exclusively due to hindered thermal expansion, since the 
material degradation has not become significant at those temperatures. 

It seems relevant to highlight the fact that the very early beam failure prevents the redistribution of 
high stresses on the columns; therefore, the high vulnerability to fire of horizontal elements is 
accompanied by a robust behaviour of the vertical load carrying system. When the horizontal restrain 
provided by the beam is lost, the buckling length suddenly increases, possibly leading to the column 
failure [6]. In this specific case however, a possible buckling of the vertical elements doesn’t seem a 
concern, due to the low loading condition and the very high stiffness of the column at the 5th floor. 
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In Fig. 10 the differences between the displacements at the 5th and 35th floor of the mid-span of a 
heated beam are reported and a delay in the out-of-plane buckling of the beam at the 35th floor with 
respect to the beam at the 5th floor is observable. This type of crisis remains however a local 
phenomenon, as it involves exclusively the heated elements and is limited to an area of about 100 m2, 
which represent around the 8% of the whole floor area. It may be interesting to compare this value 
with the limit of 15% (corresponding to 180 m2 in this case) indicated by the old US guidelines [18] 
for defining a local collapse in case of accidental failure of a column. 

 
Fig. 10: Results of SM-1-5-a and SM-1-35-a: vertical (bottom left) and out of plane (bottom right) 

displacement of the mid-span of a heated beam (point I) at the 5th (top left) and 35th floor (top right). 

Sectional model - Scenario 1 - One storey fire on b eams and columns (SM-1-5-b & SM-1-35-b) 

In this section the outcomes of the investigation performed on the sectional model are presented with 
respect to a fire affecting both horizontal and vertical elements pertinent to the area of scenario 1. The 
fire is considered to be localized within one storey, first at the 5th floor and then at the 35th floor. The 
consideration of the fire on the columns allows highlighting some differences in the evolution of 
collapse with respect to the previous case, where only beams were considered to be heated by the fire. 

The results of the investigations are reported in Fig. 11 in the first row the deformed configurations 
of the structure at 90 min of fire are represented for both the case of a fire at the 5th floor (left column) 
and at the 35th floor (right column), while in the second and third rows the displacements of some 
significant points are shown in the two cases. 

At the 35th floor the column experiences a crisis when the critical temperature (around 800°C) is 
reached after 45 min of fire. In correspondence of these values, the displacement of mid-point of 
column (indicated with point L in Fig. 11) increases greatly. The crisis occurs because the plastic limit 
is achieved, as observable in the top left graph of Fig. 11. 

The collapse occurs at very high temperatures, due to the combination of a low initial value and a 
low increment of axial forces. 
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With respect to the first aspect, the low load to resistance ratio of the column can be only partly 
ascribed to the fact that the column segment considered is just below the tapering of the profile. A 
more significant consideration concerns the low loading conditions that are assumed in case of fire. In 
this respect, it has to be highlighted that the building has been designed in compliance with the load 
combination (Eq. 2a) for the Ultimate Limit States (ULS), where wind, seism, snow and service loads 
have been considered as variable actions. The coefficients for permanent and live loads are compliant 
to those indicated in the Italian regulations: in particular, the most severe combination for the 
dimensioning of the columns is the one where wind is considered as leading variable action and in this 
case a safety factor γQ1 = 1.5 is foreseen by the code [19]. 

A different combination (Eq. 2b) has to be considered instead in case of fire, where loads are 
strongly reduced [20] and in particular almost permanent values of variable actions are assumed. This 
results in neglecting the presence of wind for fire design, since the coefficient ψ2i associated to the 
wind action is 0 in the above mentioned code.  

a) ULS: γG1⋅G1 + γG2⋅G2 + γP⋅P + γQ1⋅Qk1 + Σi=2,..n (γQi⋅ψ0i⋅Qki) (1) 

b) ALS:       G1 +       G2 +     P +        Ad +  Σi=1,..n   (ψ2i ⋅Qki)  

where symbols have the following meaning: 

 G1 : permanent loads of all structural elements 

 G2 : permanent load of all non-structural elements 

 P   : prestressing loads 

 Qk1: characteristic value of the leading variable action 

 Qki: characteristic value of the accompanying variable action 

 γG1: partial safety factor for structural permanent loads 

 γG2: partial safety factor for non-structural permanent loads 

 γQi: partial safety factor for live loads 

 ψ0i: combination factor for the rare value of actions 

 Ad : exceptional action 

 ψ2i: combination factor for the almost permanent value of actions 

As a result, the columns have a quite low load-resistance ratio, which is consistent with the high 
distance between the starting points of the curves representing the axial force and the yielding 
condition, which are shown in Fig. 11. 

With respect to the second aspect, a very low inclination of the curve representing the axial force is 
visible in Fig. 11, which can be ascribed to the very low constraint provided by the slender beam to the 
thermal expansion of the column. This is the main reason why the resistance of the column to fire is 
much greater that the resistance of the beam system. 

The resistance of the column is of course a central aspect in the structural response of a high-rise 
building to fire, since a crisis of the columns could lead to a disproportionate collapse involving the 
upper floors. The displacements of the top of the building, specifically the horizontal displacement at 
the top of the last external column (point N) and the vertical displacement at the top of the last column 
directly above the heated one (point M) are reported at the bottom of Fig. 11. These displacements can 
be takes as indices of the crisis of the whole structure , consequent to the buckling of the heated 
column, which is instead visible by observing the horizontal displacement of the mid-span of the 
column (point L) reported in the top part of Fig. 11. 

The results discussed above refer to the case of a fire at the 35th floor. In case the fire is assumed at 
the 5th floor, the considerations concerning the low increment of the axial force in the column are still 
valid. However a crisis of the column at the 5th floor cannot be evidenced, since the bigger profiles of 
the columns ensure a greater buckling resistance with respect to  the 35th floor. Therefore, while a fire 
at 35th floor causes the runaway of the head of the external column (point N - 35th) after about 90 
minutes, this is not the case if the fire triggers at the 5th floor (point N - 5th). 
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Fig. 11: Results of SM-1-5-b and SM-1-35-b: deformed configurations after 90 min of fire at the 5th 

(top left) and 35th floor (top right); evolution of the axial force in the heated column (column 15) and yield 
crisis (centre left); displacements of the mid-span of the heated column (point L) at the 5th and 35th floor 

(centre right); horizontal displacement (bottom left) of the top of the external column (point N) and 
vertical displacement (bottom right) of the top node of the heated column (point M) 

Sectional model, Scenario 1, Two storeys fire on be ams and columns (SM-1-5-c & SM-1-35-c)  

As mentioned above, a particular dangerous situation for high-rise building is represented by the fire 
spread on a number of adjacent storeys, as a consequence of external fire propagation throughout 
windows or ducts or of the loss of vertical compartmentalization in the building. 

This situation has been contemplated by assuming that the fire heats both horizontal and vertical 
elements pertinent to the area of fire scenario 1on two adjacent floors and at two different heights in 
the buildings, namely the 5th and 6th floor, as well as the 35th and 36th floor. Both in case a lower or 
higher height is assumed for the triggering of the fire, the first failures are represented by the crisis of 
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the beams, which fail out of buckling in both cases. As a consequence, the heated column adjacent to 
the failed beams loose horizontal restrains in two points, with a considerable increment of the column 
buckling length. 

In case of a fire at the 35th and 36th floor, a change in the failure mode of the column occurs and the 
column becomes slender as a consequence of the increased buckling length: the column is designed to 
have a plastic failure and, when the designed buckling length is preserved, the yielding resistance stays 
always under the Euler buckling load, as visible in the top left graph of in , which refers to the same 
column profile; when two horizontal restrained are lost however, the limit of the Euler buckling drops 
under the yielding limit, as observable in the graph on the left of Fig. 12. For what above said, the 
axial force in the column does not increase significantly; therefore this abrupt drop in the resistance 
doesn’t determine an immediate buckling failure of the column, which resists up to about 650°C 
before failing and triggering the collapse of the upper part of the building. As expected, the behaviour 
of the structure in case of a fire in two adjacent storeys is worse either in term of critical temperature 
and in term of resistance time than in case the fire is limited to one floor only (SM-1-35-b). 

 
Fig. 12: Results of SM-1-35-c: deformed configurations after 50 min of fire at the 35th floor (right); 

evolution of the axial force in the heated column (column 15) and buckling crisis (left); 

CONCLUSIONS 
In this paper the behaviour of a high rise building in fire is investigated, with the aim of highlighting 
basic failure mechanisms and comparing the response of the building to fires at different heights. 

The assumptions taken and the problems faced in the modelling have been discussed and some 
significant aspects concerning the definition of collapse condition and the interpretation of the 
outcomes have been highlighted. With specific reference to the case study considered, some outcomes 
are worth of being summarised in the following: 

1. The structure is characterized by a stiff column -slender beams framed system. This characteristic 
is responsible of a high vulnerability to fire of the floor system, where early buckling failures of 
beams are triggered as a consequence of the fact that the beam thermal expansion is almost 
completely hindered by the stiff columns. 

2. To the high vulnerability of the floor system counterpoises a relative high robustness of the 
building as a whole, due to the fact that, as a consequence of the high critical temperature of the 
columns, the vertical bearing system remains stable much longer. 

3. The building system seems more sensible to a fire in the upper part of the building, as shown by the 
comparison of the investigations carried on at the 5th and 35th floor: when a fire triggers at lower 
floor levels, where the stiffness difference between beams and columns is more pronounced, a 
vertical or horizontal propagation of the collapse seems unlikely, due to the very modest 
redistribution of stresses on the column; however, in case of a fire at higher floors, both horizontal 
vertical propagation of the collapse seem possible. 



Filippo Gentili, Luisa Giuliani, Franco Bontempi 
 

 
Volume X, Number X, YEAR 

 

From the results presented above for the considered case study, more general considerations can be 
derived. In particular, the failure mechanism of a steel framed beam-column system seems to be 
driven by: 

1. the starting loading conditions of the structure 

2. the raise of eigenstresses as a consequence of hindered thermal expansion 

3. the possible loss of lateral restraints, which can induce a buckling failure in non slender 
compressed elements 

It has to be noted that the consideration of the first two aspects is influenced by the current European 
regulations, which allow a significant reduction of the design loads in case of fire [21] and permit to 
neglect the effects of hindered thermal expansion in the verification of isolated elements, provided that 
the standard fire is used [13]. 

The third aspect can only be evaluated by means of an advanced investigation where the behaviour 
of the structure as a whole is considered and the response of the system after the first element failures 
is followed. This aspect is particularly meaningful in the framework of ensuring a proportionate 
response also in case of unexpected circumstances, such as design errors or as a consequence of arson 
or other critical events not explicitly considered in the usual fire design. Even if it seems sensible to 
accept some local damages in case of such rare and severe events, the occurrence of major structural 
collapse should be avoided under all circumstances, as explicitly required nowadays by most codes 
and regulations [22] [23]. 

In particular, with respect to fire-induced collapses [24], it seems important to avoid the 
propagation of failures to elements not directly affected by the fire, i.e. elements where the 
temperatures do not play a significant role in the failure. 
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