
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 20, 2017

Vapor–Liquid–Liquid Equilibrium Measurements and Modeling of the Methanethiol +
Methane + Water Ternary System at 304, 334, and 364 K

Awan, Javeed; Tsivintzelis, Ioannis; Valtz, Alain; Coquelet, Christophe; Kontogeorgis, Georgios

Published in:
Industrial & Engineering Chemistry Research

Link to article, DOI:
10.1021/ie300888d

Publication date:
2012

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Awan, J., Tsivintzelis, I., Valtz, A., Coquelet, C., & Kontogeorgis, G. (2012). Vapor–Liquid–Liquid Equilibrium
Measurements and Modeling of the Methanethiol + Methane + Water Ternary System at 304, 334, and 364 K.
Industrial & Engineering Chemistry Research, 51(35), 11561-11564. DOI: 10.1021/ie300888d

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Online Research Database In Technology

https://core.ac.uk/display/13797758?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1021/ie300888d
http://orbit.dtu.dk/en/publications/vaporliquidliquid-equilibrium-measurements-and-modeling-of-the-methanethiol--methane--water-ternary-system-at-304-334-and-364-k(ca5df5fa-0700-483b-8d4b-e591fb1059bd).html


Vapor−Liquid−Liquid Equilibrium Measurements and Modeling of
the Methanethiol + Methane + Water Ternary System at 304, 334,
and 364 K
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and Georgios M. Kontogeorgis*,†
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Technical University of Denmark, Building 229, DK-2800 Kgs. Lyngby, Denmark
‡Mines ParisTech, CEP/TEP-Centre Énerget́ique et Proced́eś, 35 Rue Saint Honore,́ 77305 Fontainebleau, France

ABSTRACT: New vapor−liquid−liquid equilibrium (VLLE) data for methanethiol (CH3SH) + methane (CH4) + water (H2O)
have been obtained at three temperatures (304, 334, and 364 K) and pressures up to 9 MPa. A “static-analytical” method was
used to perform all of the measurements. The objective was to provide experimental VLLE data for CH3SH with other natural
gas contents at its crude form for which limited or no data are available in the open literature. Such kinds of data are required for
the industrial modeling of sulfur emissions. It is observed from the experimental data that the solubility of CH4 in the aqueous
and organic phases increases with an increase of the total system pressure and decreases with an increase of the temperature.
However, the solubility of CH3SH in the aqueous and organic phases decreases slightly with an increase of the total system
pressure and increases significantly with an increase of the temperature. The new VLLE data of this ternary system were
compared with predictions of the cubic-plus-association equation of state. The model tends to underpredict the concentration of
CH3SH in all phases, particularly the vapor phase.

1. INTRODUCTION

Methanethiol (methyl mercaptan) is a common component
encountered in natural gas, synthesis gas, and various refinery
process streams. Its typical concentration in the host gas stream
can range from several parts per million to 50% by volume.1

Treatment processes need to be designed in order to remove
not only H2S and CO2 but also organic sulfur species like
methanethiol and other prohibited compounds. This is
necessary because regulations for environmental protection
force the petroleum industry to decrease the sulfur content in
various petroleum fluids. Furthermore, any thiols/mercaptans
(RSH), carbonyl sulfide (COS), and carbon disulfide (CS2) not
absorbed from the sour gas through the amine purification units
complicate the process scheme for downstream liquid treat-
ment units.2 Knowledge of the phase equilibrium behavior
and thermophysical properties of sulfur species mixtures with
hydrocarbons/water is important to both process design and
product specifications.
This work is a continuation of our previous work2−4 on the

phase equilibrium measurements of systems containing thiols
(mercaptans) with water and hydrocarbons. Such kinds of data
are highly important for the design of new separation processes
and the upgrade of existing processes. In this work, we provide
new vapor−liquid−liquid equilibrium (VLLE) data for methan-
ethiol (CH3SH) + methane (CH4) + water (H2O) at three
temperatures (304, 334, and 364 K) and pressures up to 9 MPa.
The new VLLE data of these ternary systems were modeled
with the cubic-plus-association (CPA) equation of state (EOS)
using no adjustable parameters optimized in the ternary sys-
tem data.

2. EXPERIMENTAL SECTION

Methanethiol (CH3SH, CAS Registry No. 74-93-1) was
obtained from Aldrich and has a purity of 0.99 mole fraction.
Methane (CH4, CAS Registry No. 74-82-8) was obtained from
Messer and has a purity of 0.998 mole fraction. Ultrapure water
(H2O) was produced in the laboratory using commercial equip-
ment (Millipore, model Direct-Q5). The electrical conductivity
of Direct-Q water (ultrapure H2O) is 5.495 × 10−6 S·m−1 at
298.15 K. No further purifications of the chemicals were made.
The experimental work was carried at Mines ParisTech, where
a “static-analytical” technique-based apparatus consisting of an
equilibrium cell equipped with one moveable rapid online
sampler injector was used. The equipment was the same as that
used by Zehioua et al.,5 and the procedure was identical with
that of Coquelet et al.6 The liquid and vapor samples were
analyzed using a gas chromatograph (Varian model CP-3800),
equipped with a thermal conductivity detector (TCD) and a
flame ionization detector (FID).
In all experiments at first, H2O was loaded into the equili-

brium cell in the absence of air followed by CH3SH. Then CH4
was added to reach the desired pressure. The required tem-
perature was obtained by putting the cell into a thermo-
regulated oil bath. Once equilibrium was achieved; the vapor,
aqueous (liquid), and organic (liquid) samples from the equili-
brium cell were directly introduced to the gas chromatograph
through an isothermally heated transfer line. Two 100 Ω platinum
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probes (Pt100) were used for temperature measurements: they
were inserted inside thermowells drilled into the body of the
equilibrium cell at two different levels and connected to an HP
data acquisition unit. They were periodically calibrated against a
25 Ω reference platinum resistance thermometer (Tinsley
Precision Instruments, France). The resulting accuracy in
the temperature measurements was estimated to be within
u(T, k = 2) = ±0.04 K. Pressures were measured by means of
a Druck pressure transducer at 0.1−10 MPa, which was
maintained at 353.15 K. The pressure transducer was calibrated
against a dead-weight pressure balance (Desgranges & Huot
5202S, CP 0.3−40 MPa, Aubervilliers, France). Accuracies in
the pressure measurements have been estimated to be within
u(P, k = 2) = ±0.003 MPa. The gas chromatograph detectors
were calibrated using chromatographic syringes with maximum
mole number uncertainties of 2% in the TCD and 1.5% in
the FID; thus, the maximum uncertainty as mole fraction is
umax = 0.006.
The gas chromatograph generated peaks of the individual

components [CH4 (FID), CH3SH (FID), and H2O (TCD)]
at specific retention times, which were recorded using one
RS-232 interface. The areas under such peaks correspond to the
number of moles of the individual components, which came
from the corresponding calibration. Each experimental data
point was analyzed more than five times, until we got consistent
values. The standard deviation on each experimental datum
(σA) was calculated and is presented along with experimental
data in Table 1. The method for calculation of the standard
deviation on experimental data (σA) is reported in our previous
article.2

3. MODELING SECTION
The experimental data were modeled using the CPA EOS. The
CPA EOS is given in terms of the pressure as a sum of the SRK
EOS and an associating contribution in eq 1. The association
term in this equation is a simpler but mathematically identical
version of the term used in statistical association fluid theory.
This form was proposed by Michelsen and Hendriks.7 The
CPA EOS proposed by Kontogeorgis et al.8,9 can be expressed
for mixtures in terms of pressure P as
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where Vm is the molar volume. The key element of the associa-
tion term is XAi

, which represents the fraction of sites (type A)
on molecule i not bonded with other active sites, while xi is the
mole fraction of component i. α(T) and b are the energy and
covolume parameters of the SRK term. XAi

is related to the
association strength ΔAiBj

between two sites belonging to two
different molecules, e.g., site A on molecule i and site B on
molecule j; more details were presented in previous studies.8,9

The CPA EOS for thiols (mercaptan-containing systems)
was described in our previous publications.3,4 The 4C associa-
tion scheme was used for H2O according to the terminology
from Huang and Radosz.10 Furthermore, CH3SH was
considered to be a non-self-associating fluid but capable of
cross associating with H2O (solvation). For this reason, one
negative association site was assumed on every CH3SH molec-
ule. The cross-association parameters were calculated using the T
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modified CR-1 rule.13 The CPA EOS pure-component para-
meters (b/L·mol−1, Γ/K, and c1) for CH3SH,

3 CH4,
12 and

H2O
13 are presented in Table 2. The a0 parameter is tabulated

as Γ = a0/Rb. The binary interaction parameters for CH4−
H2O,

12 CH4−CH3SH,
4 and CH3SH−H2O

3 are presented in
Table 3. The parameters were taken from the literature and
applied to predict the VLLE of CH3SH + CH4 + H2O.

4. RESULTS AND DISCUSSION
In our previous work,3 we performed CPA calculations for
Henry’s law constant of methanethiol (MM) in H2O

11 as a
function of the temperature. It has been observed that, by
taking into account the cross-associating effect in the CH3SH +
H2O system, the CPA results were improved. The CH3SH +
H2O system has also been studied and discussed in the litera-
ture by Gillespie and Wilson.11 The authors observed
a drastic change in the solubility of CH3SH at higher tem-
perature (523−673 K) compared to the lower temperature
(313−423 K) data. We did not find any further data in the
open literature for the ternary system investigated in this
work, so a direct comparison is not possible. It is observed
that the solubility of CH4 in the aqueous and organic phases
increases with an increase in the total system pressure and
decreases with an increase in the temperature. Furthermore,
the solubility of CH3SH in the aqueous and organic phases
decreases slightly with an increase of the pressure and
increases significantly with an increase of the temperature. It has
also been observed that the solubility of CH3SH is higher than
that of CH4 in the aqueous phase in some cases. The solubilities of
H2O in the organic and gas phases were not detected by gas
chromatography because they were under the limit of detection.
The detection limit of the gas chromatograph detectors in terms of
mole numbers are as follows: CH3SH = 9.78 × 10−8, H2O = 3.32
× 10−6, and CH4 = 4.51 × 10−8. However, Gillespie and Wilson11

showed that the solubility of H2O in the gas phase varies inversely
with the system pressure except at temperatures above 422 K.
These authors also conclude that the solubility of H2O in the
liquid phase is slightly lower than the solubility in the vapor phase
at three-phase saturation conditions.
The CPA EOS predictions for the VLLE of the CH3SH +

CH4 + H2O ternary system from 1 to 9 MPa pressure at 304,
334, and 364 K are shown in Figures 1−3, respectively. It is

observed that the deviation between the experimental data and
the CPA predictions is sometimes higher than 40%. Especially,
the CPA EOS predictions for the vapor-phase composition
are rather poor. However, one should keep in mind that the
CPA results are pure predictions because no parameters were
adjusted to the experimental data. From this point of view, the
CPA rather satisfactorily predicts the vapor−liquid and vapor−
liquid−liquid regions for the CH3SH + CH4 + H2O ternary
system at 363.68 K and 8.966 MPa, as plotted in Figure 4,
which shows that model can qualitatively predict the com-
plicated three-phase equilibria of this system.

Table 2. CPA Pure-Component Parameters Used in This Worka

component Tc/K b/L·mol−1 Γ/K c1 εAiBi
/bar·L−1·mol−1 βAiBi

% AAD in PSat % AAD in ρliq

CH3SH
3 469.95 0.0437 2266.2 0.8007 0.69 0.47

CH4
12 190.56 0.0291 959.1 0.4472 0.35 1.97

H2O
13 647.29 0.0145 1017.3 0.6736 166.55 0.0692 0.91 0.98

aAverage absolute deviation (AAD) is defined as % ADD = (1/n)∑i|(Xi
cal + Xi

exp)/Xi
exp| × 100, where X stands for PSat or ρliq and n is the number of

experimental data points, Γ is defined as a0/Rb where a0 is the part of energy parameter of the EOS, which is defined using a Soave-type temperature
dependency as: a = a0 (1 + C1 [1 − √(Tr])2. H2O is modeled using the 4C association scheme.

Table 3. CPA Binary Interaction Parameters Used in This
Work

mixture temperature range/K kij βcross

CH4−H2O
12 303.1−363.1 0.0098

CH4−CH3SH
4 303.1−363.2 0.079

CH3SH−H2O
3 303.1−363.3 0.0089 0.0246

aCross-association3 between CH3SH and H2O has been considered
using the modified CR-1 rule.13 Figure 1. VLLE of the CH3SH + CH4 + H2O ternary system from 1 to

9 MPa pressure at 304 K: (△) CH3SH in the organic phase; (○)
CH3SH in the vapor phase; (□) CH3SH in the aqueous phase. Solid
lines: CPA EOS predictions.

Figure 2. VLLE of the CH3SH + CH4 + H2O ternary system from 1 to
9 MPa pressure at 334 K: (△) CH3SH in the organic phase; (○)
CH3SH in the vapor phase; (□) CH3SH in the aqueous phase. Solid
lines: CPA EOS predictions.
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5. CONCLUSION
New VLLE data for CH3SH + CH4 + H2O were performed at
three temperatures (303, 334, and 364 K) in a pressure range
from 1 to 9 MPa. A “static-analytical” method was used suc-
cessfully to perform all of the measurements. It is concluded
that the gas solubility of CH3SH is higher than that of CH4 in
the aqueous phase under similar temperature and pressure
conditions. The CPA EOS has been applied for the repre-
sentation of ternary systems containing CH3SH. These model-
ing results for the ternary mixture of CH4 + CH3SH + H2O are
satisfactory considering that they are predictions without the
adjustment of any parameter to the ternary experimental data.
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Michelsen, M, L. Solvation phenomena in association theories with
applications to oil and gas and chemical industries. Rev. Inst. Fr. Pet.
2008, 63, 305−319.
(14) Kontogeorgis, G. M.; Yakoumis, I. V.; Meijer, H.; Hendriks, E.;
Moorwood, T. Multicomponent phase equilibrium calculations for
water−methanol−alkane mixtures. Fluid Phase Equilib. 1999, 201,
158−160.

Figure 3. VLLE of the CH3SH + CH4 + H2O ternary system from 1 to
9 MPa pressure at 364 K: (△) CH3SH in the organic phase; (○)
CH3SH in the vapor phase; (□) CH3SH in the aqueous phase. Solid
lines: CPA EOS predictions.

Figure 4. Phase diagram of the CH3SH + CH4 + H2O ternary system
at 363.68 K and 8.966 MPa: (■) experimental VLLE data points;
(red ■) CPA EOS predictions. Dashed lines: predicted VLLE with
CPA EOS. Solid lines: predicted VLE with CPA EOS. Dotted lines:
predicted VLE tie lines with CPA EOS. Bold line: predicted VLE or
LLE.
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