
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 20, 2017

Model Checking as Static Analysis

Zhang, Fuyuan; Nielson, Flemming; Nielson, Hanne Riis

Publication date:
2012

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Zhang, F., Nielson, F., & Nielson, H. R. (2012). Model Checking as Static Analysis. Kgs. Lyngby: Technical
University of Denmark (DTU).  (IMM-PHD-2012; No. 280).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13797728?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/model-checking-as-static-analysis(08cb56bf-4317-4b2c-8c11-6525e19e921c).html


Model Checking as Static
Analysis

Fuyuan Zhang

Kongens Lyngby 2012

IMM-PhD-2012-280



Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Kongens Lyngby, Denmark

Phone +45 45253351, Fax +45 45882673

reception@imm.dtu.dk

www.imm.dtu.dk IMM-PhD-2012-280



Summary (English)

Both model checking and static analysis are prominent approaches to detecting
software errors. Model Checking is a successful formal method for verifying
properties speci�ed in temporal logics with respect to transition systems. Static
analysis is also a powerful method for validating program properties which can
predict safe approximations to program behaviors. In this thesis, we have devel-
oped several static analysis based techniques to solve model checking problems,
aiming at showing the link between static analysis and model checking.

We focus on logical approaches to static analysis. Alternation-free Least Fixed
Point Logic (ALFP), an extension of Datalog, has been used as the speci�cation
language in most of our research results.

We have �rst considered the CTL model checking and developed an ALFP-based
technique to solve the CTL model checking problem. We have shown that the
set of states satisfying a CTL formula can be characterized as the least model
of ALFP clauses specifying this CTL formula. The existence of the least model
of ALFP clauses is ensured by the Moore Family property of ALFP. Then, we
take fairness assumptions in CTL into consideration and have shown that CTL
fairness problems can be encoded into ALFP as well.

To deal with multi-valued model checking problems, we have proposed multi-
valued ALFP. A Moore Family result for multi-valued ALFP is also established,
which ensures the existence and uniqueness of the least model. When the truth



ii

values in multi-valued ALFP constitute a �nite distributive complete lattice,
multi-valued ALFP can be reduced to two-valued ALFP. This result enables to
implement a solver for multi-valued ALFP by reusing existing solvers for two-
valued ALFP. Our ALFP-based technique developed for the two-valued CTL
naturally generalizes to a multi-valued setting, and we therefore obtain a multi-
valued analysis for temporal properties speci�ed by CTL formulas. In particular,
we have shown that the three-valued CTL model checking problem over Kripke
modal transition systems can be exactly encoded in three-valued ALFP.

Last, we come back to two-valued settings and have considered the model check-
ing for the modal µ-calculus. Our results have shown that ALFP su�ces to deal
with the model checking problem for the alternation-free µ-calculus. However,
to deal with the full fragment of the µ-calculus, we need to go beyond ALFP.
Therefore, we proposed Succinct Fixed Point Logic (SFP), as an extension of
ALFP. We have established a Moore Family result for SFP, which ensures the
existence and uniqueness of the intended model of SFP. We have shown that
SFP is well suited to specify nested �xed points in the µ-calculus and the model
checking problem for the µ-calculus can be encoded as the intended model of
SFP.

Our research results have strengthened the link between model checking and
static analysis. This provides a theoretical foundation for developing a uni�ed
tool for both model checking and static analysis techniques.



Summary (Danish)

Både model tjek og statisk analyse kan med succes bruges til at �nde fejl i
software. Model tjek er en formel metode til at validere egenskaber speci�ceret
i en modal logik mod en model i form af et transitionssystem. Statisk analyse
er en udbredt metode til sikkert at approksimere programmers opførsel. I denne
afhandling udvikles en række statiske analyser til at foretage model tjek, for
herigennem at demonstrere den kraftige forbindelse mellem model tjek og statisk
analyse.

Udviklingen baserer sig på logiske tilgangsvinkler til statisk analyse og tager
konkret udgangspunkt i �Alternation-free Least Fixed Point Logic (ALFP)",
der er en udvidelse af Datalog.

Vi studerer først model tjek af den modale logik �Computation Tree Logic
(CTL)"og udvikler en ALFP-baseret løsning af dette. Vi viser at mængden
af tilstande, der opfylder en CTL formel, kan karakteriseres som den mindste
model for de ALFP formler, der modsvarer CTL formlen. Den såkaldte �Moore
Family"egenskab ved ALFP formler sikrer eksistensen af en mindste model.
Dernæst betragter vi CTL formler under antagelse af fairness og viser at også
denne problemstilling kan kodes i ALFP.

Vi udvikler derefter en version af ALFP med mange logiske værdier kaldet
�multi-valued ALFP". Vi beviser at �Moore Family"egenskaben også holder for
denne udvidelse og der dermed �ndes præcis én mindste model. Når de logiske
værdier udgør et endeligt gitter med passende egenskaber kan model tjek for
�multi-valued ALFP"reduceres til sædvanlig model tjek af ALFP. Dermed kan vi
udnytte eksisterende implementationer af ALFP model tjek til også at håndtere



iv

�multi-valued ALFP". Ydermere kan vi generalisere vore ALFP-baserede løsning
af CTL model tjek til at give model tjek af en version af CTL med mange logiske
værdier og det omfatter tre-værdi CTL model tjek over såkaldte Kripke modale
transitionssystemer.

Sidst ser vi på model tjek af den såkaldte �modale µ-kalkule"med de sædvanlige
to logiske værdier. Her er der positive resultater for et fragment of den �modale
µ-kalkule", hvor de logiske kvantorer ikke må alternere. Men der er negative
resultater for den fulde �modale µ-kalkule", og det leder frem til at udvikle
�Succinct Fixed Point Logic (SFP)"som en ægte udvidelse af ALFP. Vi beviser
et �Moore Family"resultat for denne udvidelse og sikrer derved at der altid er
præcis én mindste model. Endeligt viser vi at model tjek af den fulde �modale
µ-kalkule"kan kodes i SFP.

Samlet set styrker vore resultater vores viden om samspillet mellem model tjek
og statisk analyse. Vi har dermed skabt det teoretiske grundlag for udviklingen
af et fælles værktøj for statisk analyse og model tjek.



Preface

This thesis was prepared at the Department of Informatics and Mathematical
Modelling at the Technical University of Denmark in ful�lment of the require-
ments for acquiring a PhD degree in Informatics.

The PhD study has been supervised by Professor Flemming Nielson and Profes-
sor Hanne Riis Nielson from September 2009 to August 2012. The PhD project
has been funded by MT-LAB, A VKR Center of Excellence in the Modelling of
Information Technology, the FIRST PhD School and the DTU Informatics.

Most of the work behind this thesis has been carried out independently and I
take full responsibility for its contents. Chapter 4 is based on my work [67]
under submission. Chapter 5 and 6 are based on my published work [68, 69],
coauthored by my supervisors.

Lyngby, 31-August-2012

Fuyuan Zhang



vi



Acknowledgements

I would like to thank my supervisors Professor Flemming Nielson and Professor
Hanne Riis Nielson for providing me with the opportunity to work on such an
exciting research topic, for their patience and excellent guidance. I have learned
a lot by working with them.

I would like to thank the rest of the LBT group and its former members: Jose
Nuno Carvalho Quaresma, Piotr Filipiuk, Alejandro Mario Hernandez, Sebas-
tian Alexander Modersheim, Christian W. Probst, Carroline Dewi Puspa Ken-
cana Ramli, Michal Tomasz Terepeta, Kebin Zeng, Lijun Zhang, Roberto Vigo,
Fan Yang, Ender Yuksel, Nataliya Skrypnyuk, Han Gao, Matthieu Queva. I
have had a good time in LBT with them.

I would like to thank Professor Edmund M. Clarke for hosting my external
research stay in Carnegie Mellon University. I have spent an impressive and
fruitful stay there.

I would like to thank the evaluation committee: Michael R.A. Huth, Mads Dam
and Christian W. Probst.

Last, I would like to thank my parents for their support and encouragement.



viii



Contents

Summary (English) i

Summary (Danish) iii

Preface v

Acknowledgements vii

1 Introduction 1

2 Preliminaries 5
2.1 Partially Ordered Set . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Alternation-free Least Fixed Point Logic . . . . . . . . . . . . . . 7
2.3 Computation Tree Logic . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Kripke Structures . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 Syntax and Semantics of CTL . . . . . . . . . . . . . . . . 11
2.3.3 Fixpoint Representations of CTL . . . . . . . . . . . . . . 13
2.3.4 CTL with Fairness Assumptions . . . . . . . . . . . . . . 15

2.4 The Modal µ-calculus . . . . . . . . . . . . . . . . . . . . . . . . 19

3 CTL in Alternation-free Least Fixed Point Logic 23
3.1 CTL in ALFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 Flow Logic . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.2 Encoding CTL in ALFP . . . . . . . . . . . . . . . . . . . 25

3.2 CTL with Fairness Constraints in ALFP . . . . . . . . . . . . . . 30
3.2.1 Unconditional Fairness and Weak Fairness . . . . . . . . . 33
3.2.2 Strong Fairness . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.3 Fairness in Succinct Fixed Point Logic . . . . . . . . . . . 42

3.3 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43



x CONTENTS

4 Multi-valued Alternation-free Least Fixed Point Logic 45
4.1 Two-valued Static Analysis . . . . . . . . . . . . . . . . . . . . . 47

4.1.1 Two-valued ALFP . . . . . . . . . . . . . . . . . . . . . . 47
4.1.2 Two-valued Transition Systems . . . . . . . . . . . . . . . 48

4.2 Multi-valued Static Analysis . . . . . . . . . . . . . . . . . . . . . 49
4.2.1 Multi-valued ALFP . . . . . . . . . . . . . . . . . . . . . 49
4.2.2 Multi-valued Transition Systems . . . . . . . . . . . . . . 52

4.3 Reducing Multi-valued ALFP to Two-valued ALFP . . . . . . . . 53
4.4 Static Analysis of Multi-valued Transition Systems . . . . . . . . 56
4.5 Application to Modal Transition Systems . . . . . . . . . . . . . 59

4.5.1 Modal Transition Systems . . . . . . . . . . . . . . . . . . 60
4.5.2 Three-valued ALFP . . . . . . . . . . . . . . . . . . . . . 61
4.5.3 Three-valued CTL . . . . . . . . . . . . . . . . . . . . . . 63
4.5.4 Three-valued CTL in Three-valued ALFP . . . . . . . . . 68

4.6 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Alternation-free µ-calculus in Alternation-free Least Fixed Point
Logic 73
5.1 The Alternation-free Fragment of the Modal µ-calculus . . . . . . 74

5.1.1 The Alternation Depth of the µ-calculus . . . . . . . . . . 74
5.1.2 Alternation-free Normal Form . . . . . . . . . . . . . . . . 75

5.2 The Alternation-free Fragment of the µ-Calculus in ALFP . . . . 79
5.3 Strati�cation Fails to Capture Syntactic Monotonicity . . . . . . 84
5.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6 The Modal µ-calculus in Succinct Fixed Point Logic 87
6.1 Succinct Fixed Point Logic . . . . . . . . . . . . . . . . . . . . . 88

6.1.1 Logical Approach to Static Analysis . . . . . . . . . . . . 88
6.1.2 Succinct Fixed Point Logic . . . . . . . . . . . . . . . . . 90

6.2 Modal µ-calculus in SFP . . . . . . . . . . . . . . . . . . . . . . . 96
6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7 Conclusion 101

A Appendix for Chapter 3 103

B Appendix for Chapter 4 119

C Appendix for Chapter 5 141

D Appendix for Chapter 6 149

Bibliography 167



Chapter 1

Introduction

Model Checking [2, 10] is a successful formal method in verifying properties of
systems, and intensive researches have been made since its advent. In the model-
checking framework, system properties, speci�ed in temporal logics, are checked
automatically by exhaustively exploring all execution paths of the modeled sys-
tem. Hence, model checking, when an counterexample is witnessed, can detect
very intricate and deep violations that are hard for other techniques to �nd.
Computation Tree Logic (CTL) [2, 4, 3, 5] and Linear Temporal Logic (LTL) [1]
are two useful temporal logics in model checking. Signi�cant progress has been
made on conquering the state explosion problem. This includes Symbolic Model
Checking [83, 85, 84] and Partial Order Reduction [86, 87, 88]. Other basic ba-
sic approaches to the state explosion problem include Compositional Reasoning
[89, 90, 91, 92], Abstraction [93, 94, 95], Symmetry Reduction [96, 97, 98] and
Induction [100, 99, 101].

Static analysis [11] is also a powerful method in validation of program proper-
ties. In static analysis technique, information is combined from di�erent parts
of the program and safe approximations to program behaviors are predicted.
Originally used in the development of compilers, it now has been applied to
program validation, program understanding and process calculi as well. Typi-
cal static analysis approaches include Data Flow Analysis [70, 71, 102], Control
Flow Analysis [72, 73, 103], Abstract Interpretation [62, 63, 104], and Type and
E�ect Systems [74, 75, 105].



2 Introduction

Early works [16, 17, 19, 20] have taken the view that static analysis problems
can be reduced to model checking. It is shown in [16, 17] that data �ow analysis
can be speci�ed in a sublanguage of the modal µ-calculus [14] so that data �ow
equations can be implemented by evaluating a speci�c model checker. The re-
sults in [19, 20] show that data �ow analysis can be reduced to model checking
of a variant of Computation Tree Logic.

In the other direction, recent research [21] presents a �ow logic approach [15]
to static analysis which encodes the model checking problem for Action Com-
putation Tree Logic [28] formulas in Alternation-free Least Fixed Point Logic
(ALFP [29]). ALFP is more expressive than Datalog [32, 33] and has been used
in a number of papers for specifying static analysis and there are a number of
solvers available [51].

Continuing the line of work in [21], we develop static analysis techniques to solve
model checking problems. We still focus on logical approaches to specifying the
analysis constraints that constitute the static analysis and ALFP has been used
as the speci�cation language in most of our work.

We provide some knowledge background of our work in Chapter 2, where we in-
troduce partially ordered set and complete lattices, Alternation-free Least Fixed
Point Logic, Computation Tree Logic, and the modal µ-calculus. Chapter 3 to
Chapter 6 explain our main research results. Chapter 7 gives our conclusion.

In Chapter 3, we develop ALFP-based techniques to solve model checking prob-
lems for CTL. Similar to the work in [21], we develop a �ow logic approach
to static analysis and encode CTL formulas into ALFP. We �rst consider the
CTL semantics without fairness assumptions. We encode CTL formulas into
ALFP formulas and show that the set of states satisfying a CTL formula can
be exactly characterized by the least solution to the ALFP formulas encoding
this CTL formula. Then, we take one step further and consider the CTL se-
mantics with fairness assumptions. Model checking algorithms in [10] provide
a good insight for understanding the fairness problems in CTL, where calcu-
lating strongly connected components in transition systems plays an important
role. We have considered unconditional, weak and strong fairness constraints
introduced in [10] and give corresponding ALFP speci�cations for each of these
problems.



3

In Chapter 4, we show that it is possible to generalize our ALFP-base techniques
to a multi-valued setting. We �rst develop multi-valued ALFP. In multi-valued
ALFP, we introduce more than two truth values and require that these truth
values constitute a complete lattice. We establish a Moore family property for
multi-valued ALFP as well. We show that multi-valued ALFP can be reduced
to two-valued ALFP when the truth values constitute a �nite distributive com-
plete lattice. This enables us to implement a solver for multi-valued ALFP by
reusing existing solvers for two-valued ALFP.

The two-valued analysis developed for CTL model checking problem naturally
generalizes to a multi-valued analysis for CTL over multi-valued transition sys-
tems when we interpret those ALFP clauses using multi-valued semantics. Many
of the equivalences of CTL formulas in the two-valued setting are preserved in
our multi-valued setting. To give an application of our multi-valued analysis,
we consider the three-valued CTL model checking problem over Kripke modal
transition systems [40, 41, 56]. Our result shows that three-valued ALFP-based
analysis can exactly characterize the three-valued CTL model checking problem.
Therefore, this also generalizes the work in Chapter 3 and [21].

In Chapter 5 and Chapter 6, we come back to two-valued logics and consider
the model checking problem for the modal µ-calculus [2, 14]. This is a more
expressive logic than CTL and could encode fairness assumptions of CTL as well
[6]. Our research results show that ALFP su�ces to encode the alternation-free
fragment of the µ-calculus. However, to specify mutually dependent least and
greatest �xed points, we propose Succinct Fixed Point Logic (SFP) which goes
beyond ALFP. A Moore family result for SFP is also established and this shows
its link to abstract interpretation.

In Chapter 5, we consider the alternation-free fragment of the µ-calculus. We
�rst propose an Alternation-free Normal Form (AFNF), where negations are
only applied to closed subformulas. The expressive power of closed formulas in
AFNF is equivalent to the alternation-free fragment of the µ-calculus. It is then
shown that model checking for the alternation-free µ-calculus can be encoded
in ALFP with the usual notion of strati�cation.

When negations are applied to open µ-calculus subformulas, our ALFP-based
encoding method fails. We establish a negative result to show that the least
�xed point semantics of some µ-calculus formulas of alternation depth greater
and equal to 2 cannot be characterized as a Moore Family property with respect
to any notion of ranking. The negative result suggests us to look for a more



4 Introduction

expressive logic than ALFP.

In Chapter 6, we focus on the full fragment of the µ-calculus. There, we pro-
pose Succinct Fixed Point Logic (SFP) as an extension of ALFP. To specify
nested �xed points, we go beyond the notion of strati�cation used in ALFP and
propose the notion of weak strati�cation. This notion allows us to use a larger
fragment of clause sequences to specify analysis constraints. The idea behind it
is to characterize the requirement of syntactic monotonicity in the syntax of the
µ-calculus. To facilitate our development, we explicitly introduce a least �xed
point operator in SFP.

The main purpose of SFP is to characterize the �xed point semantics of the
µ-calculus. In our setting, this amounts to establish the intended model of SFP
clause sequences. This is done by de�ning the semantics of the least �xed point
operator that we have introduced. Our result shows that the intended model
of an SFP clause sequence specifying a µ-calculus formula exactly characterizes
the set of states which satisfy this µ-calculus formula over Kripke structures.

Our work, together with results in [16, 19], has improved our understanding
of the link between model checking and static analysis. Our research results
provide a theoretical foundation for developing a uni�ed tool for both model
checking and static analysis techniques.

Related Topics: The link between model checking and abstract interpretation
has been shown in [109]. The relationship between model checking and con-
straint solving has been studied in [107, 108]. Researches in [34, 35, 36, 37, 38, 39]
are good references where the link between model checking and logic program-
ming has been investigated.



Chapter 2

Preliminaries

This chapter covers background knowledge for this thesis. Section 2.1 gives a
basic introduction to partially ordered set and complete lattices. Section 2.2
introduces Alternation-free Least Fixed Point Logic. Section 2.3 covers Compu-
tation Tree Logic and Section 2.4 gives basics about the modal µ-calculus.

2.1 Partially Ordered Set

Let L be a set. A partial ordering is a binary relation v on L that is:

1. re�ective: ∀l ∈ L : l v l,

2. transitive: ∀l1, l2, l3 ∈ L : l1 v l2 and l2 v l3 imply l1 v l3, and

3. anti-symmetric ∀l1, l2 ∈ L : l1 v l2 and l2 v l1 imply l1 = l2.

We also write l2 w l1 when l1 v l2.



6 Preliminaries

Definition 2.1 (Partially Ordered Set) A partially ordered set
(L,v) is a set L equipped with a partial ordering v.

Let L be a partially ordered set and Y ⊆ L. An element l ∈ L is an upper bound
of Y if ∀l′ ∈ Y : l′ v l and is a lower bound of Y if ∀l′ ∈ Y : l v l′. A least
upper bound of Y , denoted as

⊔
Y , is an upper bound of Y such that

⊔
Y v l

whenever l is an upper bound of Y . A greatest lower bound of Y , denoted asd
Y , is a lower bound of Y such that l v

⊔
Y whenever l is a lower bound of

Y . Since v is anti-symmetric,
⊔
Y and

d
Y are unique whenever they exist.

Definition 2.2 (Complete Lattices) A complete lattice L = (L,v) =
(L,v,

⊔
,
d
,⊥,>) is a partially ordered set (L,v) such that all subsets have

least upper bounds and greatest lower bounds. Moreover, ⊥ =
⊔
∅ =

d
L is the

bottom element and > =
d
∅ =

⊔
L is the top element.

Example 2.1 Let S be a set. Then L = (P(S),⊆,
⋃
,
⋂
, ∅, S) is a complete

lattice, where P(S) is the powerset of S.

Definition 2.3 (Moore family) AMoore family is a subset Y of a com-
plete lattice L = (L,v) that is closed under greatest lower bounds: ∀Y ′ ⊆ Y :d
Y ′ ∈ Y .

A Moore family is never empty. It always contains a greatest element
d
∅, which

equals the top element > in L, and a least element
d
Y .

A function f : L1 → L2 between partially ordered sets L1 = (L1,v1) and
L2 = (L2,v2) is monotone if

∀l, l′ ∈ L1 : l v1 l
′ ⇒ f(l) v2 f(l′)

It is a distributive function if

∀l1, l2 ∈ L1 : f(l1 t l2) = f(l1) t f(l2)

Definition 2.4 (Isomorphism) An isomorphism from a partially ordered
set (L1,v1) to a partially ordered set L2 = (L2,v2) is a monotone function
θ : L1 → L2 such that there exists a monotone function θ−1 : L2 → L1 with
θ◦θ−1 = id2 and θ

−1◦θ = id1, where idi is the identity function over Li, i = 1, 2.

Let f : L → L be a monotone function on a complete lattice L = (L,v
,
⊔
,
d
,⊥,>). A �xed point of f is an element l ∈ L such that f(l) = l and



2.2 Alternation-free Least Fixed Point Logic 7

we use
Fix(f) = {l|f(l) = l}

to denote the set of �xed points of f . The function f is reductive at l i� f(l) v l
and we use

Red(f) = {l|f(l) v l}

to denote the set of elements where f is reductive. The function is extensive at
l i� f(l) w l and we use

Ext(f) = {l|f(l) w l}

to denote the set of elements where f is extensive.

In a complete lattice L. A monotone function f always has a least �xed point
denoted as

lfp(f) =
l
Fix(f)

as well as a greatest �xed point denoted as

gfp(f) =
⊔
Fix(f)

The following proposition gives a result of a property of �xed points.

Proposition 2.5 (Taski's Fixed Point Theorem) [81] Let L = (L,v
) = (L,v,

⊔
,
d
,⊥,>) be a complete lattice and f : L→ L be a monotone func-

tion on L. Then we have:

lfp(f) =
l
Red(f) ∈ Fix(f)

gfp(f) =
⊔
Ext(f) ∈ Fix(f)

More introductions on topics covered in this section can be found in [59] and
[11].

2.2 Alternation-free Least Fixed Point Logic

Alternation-free Least Fixed Point Logic is more expressive than Datalog [32, 33]
and has been used in a number of papers for specifying static analysis. A simple
control �ow analysis for Discretionary Ambients [66], which is a variant of the
Mobile Ambients [65], is provided in [29] to illustrate the use of ALFP for pro-
gram analysis. The work in [61] shows an example of using ALFP to perform
Reaching De�nition Analysis [11]. ALFP [29] has proved to be very useful for



8 Preliminaries

expressing static analyses in a general form that can easily be implemented.

Given a �xed countable set X of variables and a �nite alphabet R of predicate
symbols, we de�ne the syntax of ALFP as follows.

v ::= c | x
pre ::= R(v1, ..., vn) | ¬R(v1, ..., vn) | pre1 ∧ pre2

| pre1 ∨ pre2 | ∀x : pre | ∃x : pre
cl ::= R(v1, ..., vn) | true | cl1 ∧ cl2 | pre⇒ cl | ∀x : cl

The preconditions and clauses are interpreted over a �nite and non-empty uni-
verse U . The constant c is an element of U , the variable x ∈ X ranges over U ,
and the n-ary relation R ∈ R denotes a subset of Un.

An occurrence of a relation R in a clause is a subformula of the form R(v1, ..., vn).
If it occurs in a precondition and is not negated, it is a positive use. If it occurs
in a precondition and is negated, i.e. has the form ¬R(v1, ..., vn), it is a nega-
tive use. All other occurrences are de�nitions and often occur to the right of
an implication. To ensure the existence of a least model, we shall pay special
attention to the negative uses of relations. We restrict ourselves to the strati�ed
fragment of clauses. The notion of strati�cation is given as follows.

A clause cl is strati�ed if there is a number r, an assignment of numbers called
ranks rankR ∈ {0, ..., r} to each relation R, and a way to write the clause cl in
the form

∧
0≤i≤r cli such that the following holds for all clauses:

• if cli contains a de�nition of R then rankR = i;

• if cli contains a positive use of R then rankR ≤ i; and

• if cli contains a negative use of R then rankR < i.

Example 2.2 The following clause is not in ALFP since it is ruled out by
the notion of strati�cation:

(∀x : R1(x)⇒ R2(x)) ∧ (∀x : ¬R2(x)⇒ R1(x))



2.2 Alternation-free Least Fixed Point Logic 9

This is because it is not possible that we have both rankR1 ≤ rankR2 and
rankR2

< rankR1
.

The interpretation of ALFP is given in Table 2.1 in terms of satisfaction relations

(%, σ) sat pre and (%, σ) sat cl

where % is the interpretation of relations and σ is the interpretation of variables.
We write %(R) for the set of k-tuples (a1, ...ak) from U associated with the k-ary
predicate R, we use σ(x) to denote the atom of U bound to x and σ[x 7→ a]
stands for the mapping that is σ except that x is mapped to a. We also treat a
constant c as a variable by setting σ(c) = c.

(%, σ) sat R(v1, ..., vn) iff (σ(v1), ..., σ(vn)) ∈ %(R)
(%, σ) sat ¬R(v1, ..., vn) iff (σ(v1), ..., σ(vn)) 6∈ %(R)
(%, σ) sat pre1 ∧ pre2 iff (%, σ) sat pre1 and (%, σ) sat pre2
(%, σ) sat pre1 ∨ pre2 iff (%, σ) sat pre1 or (%, σ) sat pre2
(%, σ) sat ∀x : pre iff (%, σ[x 7→ a]) sat pre for all a ∈ U
(%, σ) sat ∃x : pre iff (%, σ[x 7→ a]) sat pre for some a ∈ U
(%, σ) sat R(v1, ..., vn) iff (σ(v1), ..., σ(vn)) ∈ %(R)
(%, σ) sat true iff true
(%, σ) sat cl1 ∧ cl2 iff (%, σ) sat cl1 and (%, σ) sat cl2
(%, σ) sat pre⇒ cl iff (%, σ) sat cl whenever (%, σ) sat pre
(%, σ) sat ∀x : cl iff (%, σ[x 7→ a]) sat cl for all a ∈ U

Table 2.1: Interpretation of ALFP

A clause with no free variables is called closed, and in closed clauses the inter-
pretation σ is of no importance. For a �xed interpretation σ0, when cl is closed,
we have that (%, σ) sat cl agrees with (%, σ0) sat cl.

According to the choice of ranks we have made, we de�ne a lexicographic order-
ing, v, for the interpretations of relations, %, as follows: %1 v %2 if there exists
a rank i ∈ {0, ..., r} such that

1. %1(R) = %2(R) whenever rank(R) < i,



10 Preliminaries

2. %1(R) ⊆ %2(R) whenever rank(R) = i, and

3. either i = r or %1(R) ⊂ %2(R) for some R with rank(R) = i.

We de�ne %1 ⊆ %2 to mean %1(R) ⊆ %2(R) for all R ∈ R.

The set of interpretations of relations constitutes a complete lattice with respect
to v. Moreover, we know from [29] that the set of solutions to an ALFP clause
constitutes a Moore Family. The Moore Family result of ALFP is given as
follows:

Proposition 2.6 The set {%|(%, σ0) sat cl} is a Moore Family, i.e. is closed
under greatest lower bounds, whenever cl is closed and strati�ed; the greatest
lower bound u {%|(%, σ0) sat cl} is the least model of cl.

More generally, given %0 the set {%|(%, σ0) sat cl ∧ %0 ⊆ %} is a Moore Family
and u {%|(%, σ0) sat cl ∧ %0 ⊆ %} is the least model.

2.3 Computation Tree Logic

2.3.1 Kripke Structures

A Kripke structure over atomic propositions set P is a tuple M = (S, T, L)
where S is a �nite set of states, T ⊆ S × S is a total transition relation, and
L : S → 2P labels each state s with the set of true atomic propositions on it.

We also write s → s′ when T (s, s′). Since the transition relation is total, for
each state s, there is always a successor s′ such that T (s, s′). A path π = s0, s1...
where si → si+1(0 ≤ i) is always in�nite and we use π[k](0 ≤ k) to denote the
(k+1)th state sk of π. We use πfin = s0, s1...sn where si → si+1(0 ≤ i ≤ n−1)
to denote a �nite path fragment and the length |πfin| of πfin = s0, s1...sn is n+1.

Kripke structures can be used to describe the behaviors of �nite-state systems.
The set of states S captures all possible interesting snapshots of the system.
Transition relation characterizes the evolving of system computations and the



2.3 Computation Tree Logic 11

Figure 2.1: Graph Representation of a Kripke structure

function L records some related system properties, described by atomic propo-
sitions, when the system is in certain snapshot. A path in a Kripke structure
therefore mimics the computations of the system.

Kripke structures can also be represented as graphs. Consider the graph rep-
resentation of the Kripke structure M = (S, T, L), over atomic propositions set
P, in Figure 2.1. We know from the �gure that P = {p, q} and S = {s1, s2, s3}.
Transition relation T is represented by the edges between states. Function L is
represented by the propositions in the circle of each state. For example, neither
p nor q is true on state s3.

2.3.2 Syntax and Semantics of CTL

Computation Tree Logic (CTL) [10, 2] is a branching-time logic. By describing
sequences of transitions between states, CTL can be used to specify temporal
logic properties about system behaviors without explicitly mentioning time.

We consider the following fragment of CTL where formulas φ over a set of
propositions P is de�ned as follows:

φ ::= true | p | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | EXφ | E[φ1Uφ2] | AFφ

where p ∈ P. This fragment su�ces for de�ning the �remaining operators" using
the following equivalences [50]:



12 Preliminaries

AXφ ≡ ¬EX¬φ
EFφ ≡ E[trueUφ]
A[φ1Uφ2] ≡ ¬E[¬φ2U(¬φ1 ∧ ¬φ2)] ∧AFφ2
EGφ ≡ ¬AF¬φ
AGφ ≡ ¬E[trueU¬φ]

Symbols A and E are path quanti�ers which mean �for all paths" and �there
exists at least one path", respectively. Symbols X, F, U and G are temporal
operators which mean �next state", �some following state", �Until" and "all fol-
lowing states" respectively.

The semantics of CTL with respect to a Kripke structure is given in Table 2.2.
We also write s |= φ for (M, s) |= φ when the Kripke structure M is clear from
the context.

(M, s) |= true iff true
(M, s) |= p iff p ∈ L(s)
(M, s) |= ¬φ iff (M, s) 2 φ
(M, s) |= φ1 ∧ φ2 iff (M, s) |= φ1 and (M, s) |= φ2
(M, s) |= EXφ iff there exists a path π from s such that

(M,π[1]) |= φ
(M, s) |= E[φ1Uφ2] iff there exists a path π from s such that

∃0 ≤ k : (M,π[k]) |= φ2 and ∀ 0 ≤ j < k :
(M,π[j]) |= φ1

(M, s) |= AFφ iff for all paths π from s, ∃ 0 ≤ k : (M,π[k]) |= φ

Table 2.2: Semantics for CTL

Model Checking: The problem of Model Checking is to �nd the set of states,
on a Kripke structure M , that satisfy a temporal logic formula φ ({s | (M, s) |=
φ}) [2]. CTL model checking problem, in which case the temporal logic em-
ployed is CTL, can be solved in a syntax directed way. To put it simply, we can
calculate the set of states that satisfy each of the subformula of a CTL formula
φ in a bottom-up manner. We start by handling propositions in the formula φ,
using the L function in a given Kripke structure. If a state s is labeled with a
proposition p, s satis�es p. When handling subformula ϕ of φ, all subformulas
of ϕ should have already been handled. The boolean cases are easy to deal with.
For example, assume that we have already computed the set of states Sφ1

and
Sφ2 which satisfy φ1 and φ2 respectively. To compute the set of states Sφ1∨φ2



2.3 Computation Tree Logic 13

which satisfy φ1 ∨φ2, we have that Sφ1∨φ2 = Sφ1 ∪Sφ2 . The cases for temporal
operators are a bit complex and can be found in [2, 10]. Finally we will get the
set of states Sφ which satisfy our target formula φ.

Example 2.3 Let's consider the problem of �nding the set of states which
satisfy the CTL formula AF(p∨q) on the Kripke structure given in the diagram
to the left. For each subformula of AF(p ∨ q), we calculate the sets of states
which satisfy them respectively and list the solutions as follows.

ϕ {s|s |= ϕ}
p {s1}
q {s2}

p ∨ q {s1, s2}
AF(p ∨ q) {s1, s2, s3}

The worst case time complexity of CTL model checking is O((|T |+ |S|)|φ|) [2],
where |φ| is the size of CTL formula, |T | and |S| are the sizes of transition
relation and state space of a given Kripke structure respectively.

2.3.3 Fixpoint Representations of CTL

The idea of CTL model checking [79] has been deeply in�uenced by �xpoint
theory such as Tarski's Fixpoint Lemma [81] and Kleene's First Recursion The-
orem [82]. Fixpoint representations of CTL can be found in [2, 50]. We �rst
explain the cases of temporal operators EU and AF brie�y in the following.
The semantics of each of the two operators can be characterized as the least
�xed point of a corresponding monotone function.

For a CTL formula φ, we will use [[φ]] in the following to denote the set of states
which satisfy φ over Kripke structures.



14 Preliminaries

Case E[φ1Uφ2]: For a CTL formula E[φ1Uφ2], we have the following equiva-
lence according to the semantics of CTL

E[φ1Uφ2] ≡ φ2 ∨ (φ1 ∧EXE[φ1Uφ2]).

From the semantics of the EX operator, we have that

[[EXφ]] = {s|∃s′ : s→ s′ ∧ s′ ∈ [[φ]]}.

From above, we have the following equation

[[E[φ1Uφ2]]] = [[φ2]] ∪ ([[φ1]] ∩ {s|∃s′ : s→ s′ ∧ s′ ∈ [[E[φ1Uφ2]]]}).

Hence, we can see that [[E[φ1Uφ2]]] is a �xed point of the function FE[φ1Uφ2] :
P(S)→ P(S) de�ned as follows:

FE[φ1Uφ2](X) = [[φ2]] ∪ ([[φ1]] ∩ {s|∃s′ : s→ s′ ∧ s′ ∈ X}).

It is easy to verify that the function FE[φ1Uφ2] is monotone. Actually, [[E[φ1Uφ2]]]
is the least �xed point of this function.

Case AFφ: For a CTL formula AFφ, we have the following equivalence ac-
cording to the semantics of CTL

AFφ ≡ φ ∨AXAFφ.

From the equivalence AXφ ≡ ¬EX¬φ, we have that

[[AXφ]] = {s|∀s′ : s→ s′ implies s′ ∈ [[φ]]}.

From above, we have the following equation

[[AFφ]] = [[φ]] ∪ {s|∀s′ : s→ s′ implies s′ ∈ [[AFφ]]}.

Therefore, we know that [[AFφ]] is a �xed point of the function FAFφ : P(S)→
P(S) de�ned by

FAFφ(X) = [[φ]] ∪ {s|∀s′ : s→ s′ implies s′ ∈ X}.

It is easy to see that the function FAFφ is a monotone function. In fact, [[AFφ]]
is its least �xed point.



2.3 Computation Tree Logic 15

Then, let us take a look at the EG operator. We can derive the semantics of
the EG operator from the equivalence EGφ ≡ ¬AF¬φ. Therefore, we have the
following:

(M, s) |= EGφ iff there exists a path π from s such that

∀ 0 ≤ k : (M,π[k]) |= φ

The semantics of the EGφ operator can be characterized as the greatest �xed
point of a corresponding monotone function. We explain it as follows.

Case EGφ: For a CTL formula EGφ, we have the following equivalence ac-
cording to the semantics of CTL

EGφ ≡ φ ∧EXEGφ.

This leads to the following equation

[[EGφ]] = [[φ]] ∩ {s|∃s′ : s→ s′ ∧ s′ ∈ [[EGφ]]}.

Therefore, we know that [[EGφ]] is a �xed point of the function FEGφ : P(S)→
P(S) de�ned by

FEGφ(X) = [[φ]] ∩ {s|∃s′ : s→ s′ ∧ s′ ∈ X}.

It is easy to see that the function FEGφ is a monotone function. Actually, [[EGφ]]
is the greatest �xed point of this function.

2.3.4 CTL with Fairness Assumptions

Fairness assumptions specify fair behaviors over a single computation path and
can be used to rule out unrealistic behaviors of the systems modeled by Kripke
structures. CTL fairness assumptions are similar to LTL [1] formulas except
that CTL state formulas, instead of atomic propositions, are used. A CTL
fairness assumption is a conjunction of strong, weak and unconditional CTL
fairness constraints [10].

We can check whether a CTL fairness assumption is satis�ed on a path in Kripke
structures. Let π be an in�nite path in a given Kripke structure and fair be a



16 Preliminaries

�xed CTL fairness assumption. The path π is called a fair path if π satis�es
fair. We use notation π |= fair to denote this.

An unconditional CTL fairness constraint (over P) is a term of the form

ufair =
∧

1≤i≤k

GFψi

where ψi is a CTL formula over P. As has been introduced before, the symbol
G means �always" and the symbol F means �in future". Formally, we have
the following, where φ is a CTL formula and we use notation π |= Fφ (resp.
π |= Gφ) to mean that φ is satis�ed on some future states (resp. all of the
states) along a path π.

π |= Fφ iff ∃0 ≤ i : (M,π[i]) |= φ
π |= Gφ iff ∀0 ≤ i : (M,π[i]) |= φ

Therefore, GF means �It is always possible that in future", which can be un-
derstood as �in�nitely often". Therefore, the constraint

∧
1≤i≤kGFψi speci�es

such a path that for each 1 ≤ i ≤ k, the property ψi is satis�ed on in�nitely
many states over this path. The formula ψi shall be interpreted over states with
standard CTL semantics. Formally, we have the following:

π |=
∧

1≤i≤kGFψi iff ∀ 1 ≤ i ≤ k : ∀0 ≤ j : ∃j ≤ j′ : (M,π[j′]) |= ψi

A strong CTL fairness constraint (over P) is a term of the form

sfair =
∧

1≤i≤k

(GFφi ⇒ GFψi)

where φi and ψi are CTL formulas over P. The constraint
∧

1≤i≤k(GFφi ⇒
GFψi) speci�es such a path that for each 1 ≤ i ≤ k if the property φi is satis�ed
on in�nitely many states over the path, then the property ψi shall be satis�ed
on in�nitely many states as well. Formally, we have the following:

π |=
∧

1≤i≤k(GFφi ⇒ GFψi) iff ∀ 1 ≤ i ≤ k : if ∀0 ≤ j : ∃j ≤ j′ :

(M,π[j′]) |= φi then ∀0 ≤ l : ∃l ≤ l′ :
(M,π[l′]) |= ψi



2.3 Computation Tree Logic 17

Similarly, a weak CTL fairness constraint (over P) is a term of the form

wfair =
∧

1≤i≤k

(FGφi ⇒ GFψi)

where FG means ��nally, it is always the case that". This means the system
shall become stable at some point. The constraint

∧
1≤i≤k(FGφi ⇒ GFψi)

means that for each 1 ≤ i ≤ k if beyond a certain point, the property φi is
satis�ed on all the following states, then ψi shall be satis�ed on in�nitely many
states along this path. Formally, we have the following:

π |=
∧

1≤i≤k(FGφi ⇒ GFψi) iff ∀ 1 ≤ i ≤ k : if ∃0 ≤ j : ∀j ≤ j′ :

(M,π[j′]) |= φi then ∀0 ≤ l : ∃l ≤ l′ :
(M,π[l′]) |= ψi

In the following, we introduce Existential Normal Form (ENF) for CTL. Each
CTL formula can be translated to an equivalent (with respect to |=) CTL for-
mula in ENF [10]. We will de�ne the semantics for CTL with fairness assump-
tions using the syntax of ENF.

Definition 2.7 (Existential Normal Form for CTL) Given p ∈
P, the set of CTL state formulas in existential normal form is de�ned as follows:

φ ::= true | p | ¬φ | φ1 ∧ φ2 | EXφ | E[φ1Uφ2] | EGφ

In the semantics of CTL with fairness assumptions, path quanti�cations range
over all fair paths rather than over all paths. The semantics of CTL with fair-
ness assumptions are given in Table 2.3. It is actually pointed out in [10] that
each CTL formula can be translated to an equivalent CTL formula in ENF with
respect to |=fair.

The formulas φi and ψi in fairness assumptions are CTL formulas. They are
interpreted according to standard CTL semantics without taking into consider-
ation any fairness assumptions. We can use CTL model checking algorithm to
determine the set of states which satisfy φi and ψi respectively. Therefore, φi
and ψi can be replaced by atomic propositions ai and bi. For example, a strong
fairness assumption now has this form fair =

∧
1≤i≤k(GFai ⇒ GFbi).



18 Preliminaries

(M, s) |=fair true iff true
(M, s) |=fair p iff p ∈ L(s)
(M, s) |=fair ¬φ iff (M, s) 2fair φ
(M, s) |=fair φ1 ∧ φ2 iff (M, s) |=fair φ1 and (M, s) |=fair φ2
(M, s) |=fair EXφ iff there exists a fair path π from s such

that (M,π[1]) |=fair φ
(M, s) |=fair E[φ1Uφ2] iff there exists a fair path π from s such

that ∃0 ≤ k : (M,π[k]) |=fair φ2 and

∀ 0 ≤ j < k : (M,π[j]) |=fair φ1
(M, s) |=fair EGφ iff there exists a fair path π from s such

that ∀ 0 ≤ k : (M,π[k]) |=fair φ

Table 2.3: Semantics for CTL in ENF with Fairness Assumptions

Useful observations are made in [10] to simplify the model checking problem for
CTL with fairness constraints. We summarize some of them in the following.

Given a Kripke structure M = (S, T, L). If we remove all the transitions s→ s′

for which either (M, s) 2fair φ or (M, s′) 2fair φ, we can get a new transition
relation Tφ. Therefore, we have that (s, s′) ∈ Tφ if and only if (s, s′) ∈ T and
(M, s) |=fair φ and (M, s′) |=fair φ. We use Mφ = (S, Tφ, L) to denote the new
Kripke structure. Notice that Mtrue = M . We have the following fact.

Fact 2.3.1 Let π be a path inM . It's easy to see that ∀ 0 ≤ k : (M,π[k]) |=fair

φ i� π is a path in Mφ.

When considering fair paths, we have the following fact, which means a path is
fair i� one of its su�x is fair i� all of its su�xes are fair.

Fact 2.3.2 For any fairness assumption fair, we have that π |= fair i�
π[j..] |= fair for some j ≥ 0 i� π[j..] |= fair for all j ≥ 0, where π[j..] is the
su�x of π starting from π[j].

Let fair be a �xed CTL fairness assumption. We de�ne Pathφfair(s) as the set

of fair paths in Mφ starting from state s. Therefore, Pathφfair(s) = {π| π is a
path in Mφ and π |= fair ∧ π[0] = s}.



2.4 The Modal µ-calculus 19

CTLmodel checking under fairness assumptions can also be handled in a bottom-
up manner. When dealing with a formula φ, we assume that all the subformulas
of φ have already been processed and we replaced them with atomic proposi-
tions. Boolean fragment of formulas are easy to deal with. Following properties
provide useful insight to handle formulas of the forms EXp, E[p1Up2] and EGp,
where p, p1 and p2 are atomic propositions. The proofs for the cases of EXp
and E[p1Up2] can be found in [10]. The case of EGp is straightforward.

(M, s) |=fair EXp iff there exists a state s′ such that s→ s′,
(M, s′) |= p and Pathtruefair(s

′) 6= ∅
(M, s) |=fair E[p1Up2] iff there exists a finite path fragment

πfin = s0, ..., sk such that s = s0,
(M, sk) |= p2,∀ 0 ≤ j < k : (M, sj) |= p1,
and Pathtruefair(sk) 6= ∅

(M, s) |=fair EGp iff Pathpfair(s) 6= ∅

Table 2.4: Properties for EX, EU and EG operators under fairness assump-
tions

It's pointed out in [10] that the model checking problem for CTL with fairness
constraints can be reduced to the model checking problem for CTL without
fairness and the problem of calculating the set of states {s|(M, s) |=fair EGp}
where p is an atomic proposition.

2.4 The Modal µ-calculus

This section introduces basics about the modal µ-calculus [2, 14]. The syntax
of the modal µ-calculus is de�ned as follows.

Definition 2.8 (Syntax of the Modal µ-calculus) Let V ar be a
set of variables, and P be a set of atomic propositions. The syntax of the modal
µ-calculus formulas is de�ned as follows:

φ ::= p | Q | ¬φ | φ1 ∨ φ2 | φ1 ∧ φ2 | 〈a〉φ | [a]φ | µQ.φ |νQ.φ



20 Preliminaries

Here p ∈ P, Q ∈ V ar and a ∈ T . The µ (resp. ν) operator is the least (resp.
greatest) �xed point operator. For µQ.φ and νQ.φ, it is required that all oc-
currences of Q in φ are under an even number of negations within φ. In this
case, φ is said to be syntactically monotone in Q. If a variable is not bound by
any �xed point operator in a formula, the variable is called a free variable. A
formula is closed if there are no free variables in it.

A formula φ is interpreted as the set of states, on a given Kripke structure, that
make it true and this set of states is denoted [[φ]]e, where e : V ar → 2S is an
environment. Here, the de�nition of Kripke structure is modi�ed slightly in com-
parison with the one we give in Section 2.3 to distinguish di�erent transitions in
a system. Formally, a Kripke structure over a set P of atomic propositions is a
tuple M = (S, T, L), where S is a set of states, T is a set of transition relations,
and L : S → 2P labels each state with the set of true atomic propositions. Each
element a in T is a transition relation and a ⊆ S × S. We also assume that
the Kripke structure is total, although this is not necessary for our development.

We use e[Q 7→ W ] to denote the new environment updated from e by binding
the relational variable Q to the set of states W ⊆ S. The semantics of the
µ-calculus formulas are de�ned as follows.

• [[p]]e = {s|p ∈ L(s) }

• [[Q]]e = e(Q)

• [[¬φ]]e = S \ [[φ]]e

• [[φ1 ∨ φ2]]e = [[φ1]]e ∪ [[φ2]]e

• [[φ1 ∧ φ2]]e = [[φ1]]e ∩ [[φ2]]e

• [[〈a〉φ]]e = {s|∃s′ : (s, s′) ∈ a and s′ ∈ [[φ]]e}

• [[[a]φ]]e = {s|∀s′ : (s, s′) ∈ a implies s′ ∈ [[φ]]e}

• [[µQ.φ]]e is the least �xpoint of the function τ : 2S → 2S de�ned by
τ(W ) = [[φ]]e[Q7→W ]

• [[νQ.φ]]e is the greatest �xpoint of the function τ : 2S → 2S de�ned by
τ(W ) = [[φ]]e[Q7→W ]

The boolean operators have the usual meanings. If (s, s′) ∈ a, we call s′ an
a-derivative of s. A state s satis�es 〈a〉φ if some of the a-derivatives of it satisfy



2.4 The Modal µ-calculus 21

φ. A state s satis�es [a]φ if all a-derivatives of it satisfy φ. Notice that if s has
no a-derivatives, s satis�es [a]φ trivially. Due to the restricted use of negations
in φ, monotonicity is guaranteed [2] for the function τ(W ) = [[φ]]e[Q 7→W ].

A formula is in Positive Normal Form (PNF) [6] if all negations are only applied
to atomic propositions and no variable is quanti�ed twice. We give the syntax
of the µ-calculus in Negation-free PNF as follows.

Definition 2.9 (Negation-free PNF for the µ-calculus) Let
V ar be a set of variables, P be a set of atomic propositions that is closed under
negations. The syntax of the µ-calculus in Negation-free PNF is de�ned as
follows:

φ ::= p | Q | φ1 ∨ φ2 | φ1 ∧ φ2 | 〈a〉φ | [a]φ | µQ.φ | νQ.φ

where no variable is quanti�ed twice.

It is easy to see that every closed µ-calculus formula can be transformed to
its Negation-free PNF provided that the set P of atomic propositions is closed
under negation. To do this, we can push negations as deep as possible using
De Morgan's law and the dualities ¬[a]φ ≡ 〈a〉¬φ, ¬〈a〉φ ≡ [a]¬φ, ¬µQ.φ ≡
νQ.¬φ[¬Q/Q], and ¬νQ.φ ≡ µQ.¬φ[¬Q/Q] and then substitute each negated
occurrence ¬p of atomic proposition p with a new atomic proposition p′.

Model checking for the µ-calculus is to �nd the set of states, on a given Kripke
structure, that satisfy the µ-calculus formula φ according to the semantics
([[φ]]e). E�cient algorithms for the µ-calculus model checking problems have
been proposed in [6, 110, 8, 9, 7]. Researchers have also proposed local model
checking algorithms, which are designed to check whether a speci�c state of a
Kripke structure satis�es a given formula. E�cient local model checking algo-
rithms for the µ-calculus can be found in [8, 12, 13, 18].



22 Preliminaries



Chapter 3

CTL in Alternation-free
Least Fixed Point Logic

In this chapter, we encode the model checking problem for CTL into ALFP.
Along the line of work in [21], we use the �ow logic approach to static analysis,
where ALFP is used as the speci�cation language. Unlike in [21], we exempt
ourself from the heavy labeling skill when developing the �ow logic for CTL.

Moreover, we also consider the fairness assumptions for CTL model checking
problems. We show that fairness assumptions for CTL can be encoded by ALFP
as well. We notice that an exponential blow up occurs when dealing with strong
fairness constraints. We mentioned brie�y that the exponential blow up could
be avoided if we encode it in SFP, introduced in Chapter 6, instead.

The structure of this chapter is as follows. In Section 3.1, we brie�y introduce
the �ow logic and then develop a �ow logic approach to encode the CTL model
checking problem (without fairness assumptions) into ALFP. Section 3.2 takes
CTL fairness assumptions into consideration and shows that we can deal with
fairness problems in ALFP as well.



24 CTL in Alternation-free Least Fixed Point Logic

3.1 CTL in ALFP

3.1.1 Flow Logic

Static analysis predicts safe approximations of program behaviors by analyz-
ing information collected from di�erent parts of the program or system. The
information is usually represented as elements of complete lattices. Flow logic
[15, 31, 22, 23, 24, 25, 26, 27] is an approach to static analysis which is rooted
upon existing classical static analysis techniques such as Data Flow Analysis,
Constraint Based Analysis, and Abstract Interpretation. It separates the spec-
i�cation and implementation of static analysis and has been applied to the
analysis of functional, imperative, and object-oriented programming languages
as well as process calculi.

In �ow logic approach, for each syntactic category of a program, we de�ne a
logical judgement expressing the acceptability of the analysis information for
that syntactic entity. It requires that our analysis estimate correctly captures
the information we have collected from the program. The judgement itself
is de�ned by several constraints expressed in certain languages, i.e �rst order
logic. We must make sure these judgements are well-de�ned. In general, the
judgements are interpreted co-inductively and in syntax-directed de�nitions it
coincides with inductive interpretations. For each syntactic entity, we will use
the following clause to specify our static analysis approach.

~R ` P i� Ψ

The judgment ~R ` P de�ned above consists of two elements, the analysis infor-
mation ~R and the syntactic entity P . ~R usually consists of elements of several
complete lattices that are related to the properties we are interested in. In model
checking cases, we are interested in the set of states that satisfy a formula on
a given Kripke structure. Therefore, when we develop a �ow logic approach
to solve model checking problems, ~R consists of sets of states. P is one of the
syntactic entities of our program. When analyzing CTL, P will be one of those
formulas de�ned in the syntax of CTL. The judgement expresses the validity of
our analysis estimates. Constraints Ψ is used to specify the judgment and it con-
strains the values of the elements of ~R. It can be expressed in several languages.
In this thesis, we choose to express the constraints in ALFP, which has been in-
troduced before. The clause (~R ` P i� Ψ) means our static analysis estimate ~R
is acceptable for the syntactic entity P if and only if the constraint Ψ is satis�ed.



3.1 CTL in ALFP 25

When using �ow logic approach to analyze a program, we start by de�ning all
the judgements we need. Then, according to the �ow logic approach we have
developed, we replace all the judgements by the constraints de�ning them and
thus generate all the equivalent constraints which guarantee the correctness of
our analysis estimate. This works well in syntax-directed �ow logic de�nitions
and all the judgements can be substituted by constraints. Finally, we calculate
the least model of our constraints, which is the best analysis results ensured by
our Moore Family result. ALFP serves to provide an e�cient way of calculating
the analysis estimate we need.

3.1.2 Encoding CTL in ALFP

In this section, we consider how to use �ow logic to encode CTL formulas into
ALFP. Section 2.3.3 has provided semantic insights into CTL temporal opera-
tors. Our encoding is directly based on those insights. The syntax of CTL we
consider here is the one given in Section 2.3.2. There are mainly two reasons
why we choose this fragment of CTL. First, this is a fragment that su�ces to
de�ne all remaining operators in CTL. Second, in this fragment the semantics
of both EU and AF operators can be represented as least �xed points of corre-
sponding monotone functions. ALFP is a type of least �xed point logic and it
is more convenient to specify least �xed points.

From Section 2.3.3, we know that characterizing the semantics of the EG opera-
tor amounts to calculating the greatest �xed point of a corresponding monotone
function. We shall be careful if we want to specify EG in ALFP.

Assume that Rφ is a relation which speci�es the set of states in a Kripke struc-
tureM that satisfy the formula φ and T is a binary relation which characterizes
the transition relation of M . Let REGφ be a relation which intends to specify
the set of states (in M) that satisfy the formula EGφ. We cannot de�ne the
relation REGφ using the following clause

∀s : [Rφ(s) ∧ ∃s′ : T (s, s′) ∧REGφ(s)]⇒ REGφ(s),

since calculating the least model of the above clause amounts to calculating the



26 CTL in Alternation-free Least Fixed Point Logic

least �xed point of the function

FEGφ(X) ≡ [[φ]] ∩ {s|∃s′ : s→ s′ ∧ s′ ∈ X}.

However, [[EGφ]] is the greatest �xed point of this function.

In the following, we start to explain our encoding. We �rst encode a Kripke
structure M = (S, T, L) into ALFP by de�ning corresponding relations in %0 as
follows. Assume that the universe is U = S,

• for each atomic proposition p we de�ne a predicate Pp such that %0(Pp)(s)
if and only if p ∈ L(s), and

• we de�ne a binary relation T such that %0(T )(s, t) if and only if (s, t) ∈ T .

Much as the way to solve CTL model checking problem introduced in Section
2.3.2, our �ow logic approach also proceeds along the syntax directed way. For
each formula φ we de�ne a corresponding relation Rφ characterizing those states
which satisfy the formula φ. For each syntactic category φ in CTL, we de�ne a
judgement of the form ~R ` φ. The ALFP clauses de�ning the judgement impose
the constraints between the relation Rφ and other relevant relations or judge-
ments. They encode the CTL semantics in an inductive way. The intention is
that (M, s) |= φ holds whenever %(Rφ)(s) holds in the least model % satisfying
~R ` φ ∧ %0 ⊆ %.

For the several occurrences of the same subformula in φ, we decompose them
to their constituent subformulas in the same way. This guarantees that all oc-
currences of the same subformula are handled in the same way in the �ow logic.
The de�nition is given in Table 3.1.

The relation Rtrue corresponds to CTL formula true and therefore we use the
ALFP clause ∀s : Rtrue(s) to de�ne it. For atomic proposition p, we need to
use prede�ned relation Pp. The clause ∀s : Pp(s) ⇒ Rp(s) makes sure that if

Pp(s) holds, then Rp(s) also holds. For ¬φ, the conjunct ~R ` φ ensures that
the relation Rφ correctly records the set of states which satisfy φ. The clause
∀s : ¬Rφ(s)⇒ R¬φ(s) makes sure that if Rφ(s) does not hold, then R¬φ(s).

For φ1 ∨ φ2, the conjuncts ~R ` φ1 and ~R ` φ2 ensures that the relation Rφi
correctly approximate the set of states which satisfy φi (i = 1, 2). The third



3.1 CTL in ALFP 27

~R ` true iff [∀s : Rtrue(s)]
~R ` p iff [∀s : Pp(s)⇒ Rp(s)]
~R ` φ1 ∨ φ2 iff ~R ` φ1 ∧ ~R ` φ2∧

[∀s : Rφ1
(s) ∨Rφ2

(s)⇒ Rφ1∨φ2
(s)]

~R ` ¬φ iff ~R ` φ∧
[∀s : ¬Rφ(s)⇒ R¬φ(s)]

~R ` EXφ iff ~R ` φ∧
[∀s : [∃s′ : T (s, s′) ∧Rφ(s′)]⇒ REXφ(s)]

~R ` E[φ1Uφ2] iff ~R ` φ1 ∧ ~R ` φ2∧
[∀s : Rφ2

(s)⇒ RE[φ1Uφ2](s)]∧
[∀s : [∃s′ : T (s, s′) ∧Rφ1(s) ∧RE[φ1Uφ2](s

′)]
⇒ RE[φ1Uφ2](s)]

~R ` AFφ iff ~R ` φ∧
[∀s : Rφ(s)⇒ RAFφ(s)]∧
[∀s : [∀s′ : ¬T (s, s′) ∨RAFφ(s′)]⇒ RAFφ(s)]

Table 3.1: CTL in ALFP

part caters for the relation Rφ1∨φ2 and captures the semantics of disjunction.

For EXφ, the �rst conjunct ensures that the subformula φ is handled correctly.
The second conjunct tells that for any state s, if there exists a state s′ such that
both T (s, s′) and Rφ(s′) hold, then REXφ(s) also holds. This is exactly what
the semantics for the EX operator tells us.

The clause for E[φ1Uφ2] also captures the semantics for the EU operator and
is based on the fact that [[E[φ1Uφ2]]] is the least �xed point of the function

FE[φ1Uφ2](X) = [[φ2]] ∪ ([[φ1]] ∩ {s|∃s′ : s→ s′ ∧ s′ ∈ X}).

For any state s such that Rφ2
(s) holds, we require that RE[φ1Uφ2](s) also holds.

Alternatively if Rφ1
(s) holds and there exists a state s′ such that both T (s, s′)

and RE[φ1Uφ2](s
′) hold, then RE[φ1Uφ2](s) also holds.

The clause for AFφ is also quite straightforward and is based on the fact that
[[AFφ]] is the least �xed point of the function

FAFφ(X) = [[φ]] ∪ {s|∀s′ : s→ s′ implies s′ ∈ X}.

For any state s such that Rφ(s) holds, RAFφ(s) also holds. Alternatively for



28 CTL in Alternation-free Least Fixed Point Logic

states s and s′, if T (s, s′) implies RAFφ(s′), then RAFφ(s) also holds.

Ranking of ALFP formulas: It is easy to see that clauses for ~R ` φ de�ned in
Table 3.1 are indeed closed for any CTL formula φ. To show that the clauses are
strati�ed we shall introduce our ranking method for the ALFP clauses de�ning
the judgements in Table 3.1. We introduce the de�nition of depth of CTL
formulas �rst. The depth of CTL formulas is de�ned as follows:

depth(true) = 0
depth(p) = 0
depth(¬φ) = 1 + depth(φ)
depth(φ1 ∨ φ2) = 1 +max{depth(φ1), depth(φ2)}
depth(EXφ) = 1 + depth(φ)
depth(E[φ1Uφ2]) = 1 +max{depth(φ1), depth(φ2)}
depth(AFφ) = 1 + depth(φ)

We assign the transition relation T and the relation Pp the rank 0. For each
CTL formula φ and the corresponding relation Rφ, we require that the rank of
the relation Rφ equals to the depth of the formula φ. That is

rankRφ = depth(φ)

Example 3.1 Let φ = E[(p1 ∨ ¬p2)Up3] be a CTL formula. According to
our ranking method, we require that rankRp1 = 0, rankRp2 = 0, rankR¬p2

= 1,
rankRp1∨¬p2

= 1, rankRp3 = 0, and rankRE[(p1∨¬p2)Up3]
= 1. It is easy to see

that the clauses for ~R ` E[(p1 ∨ ¬p2)Up3] is strati�ed.

We have the following lemma which guarantees strati�cation for all clauses gen-
erated for judgements de�ned in Table 3.1.

Lemma 3.1 The ALFP clauses generated for judgements ~R ` φ de�ned in
Table 3.1 are closed and strati�ed.

Proof. In Appendix A. �

Example 3.2 Let's go back to Example 2.3 and show how to use �ow logic
approach to solve the same problem. For each subformula of AF(p ∨ q), we de-
�ne a relation for it to record the set of states which satisfy the subformula. We
use the judgement ~R ` AF(p ∨ q) to specify our static analysis for AF(p ∨ q).



3.1 CTL in ALFP 29

The judgement will generate new judgements and ALFP clauses, according to
Table 3.1, listed as follows:

~R ` (p ∨ q)∧
[∀s : R(p∨q)(s)⇒ RAF(p∨q)(s)]∧
[∀s : [∀s′ : ¬T (s, s′) ∨RAF(p∨q)(s′)]⇒ RAF(p∨q)(s)]

We can also generate new clauses for the newly created judgement ~R ` (p ∨ q),
and the process will continue until we generate all the clauses. Since our �ow
logic table is syntax directed and well-de�ned, the process will terminate and we
list all the clauses we get in the example as follows:

[∀s : Pp(s)⇒ Rp(s)]∧
[∀s : Pq(s)⇒ Rq(s)]∧
[∀s : Rp(s) ∨Rq(s)⇒ R(p∨q)(s)]∧
[∀s : R(p∨q)(s)⇒ RAF(p∨q)(s)]∧
[∀s : [∀s′ : ¬T (s, s′) ∨RAF(p∨q)(s′)]⇒ RAF(p∨q)(s)]

According to the Moore family property, there exists a best analysis result in our
example, that is the least model for the above generated ALFP clauses. The in-
terpretation for each relation in the least model is listed below and if we compare
it with the solution for CTL model checking given in Example 2.3, we will see
that they are exactly the same.

Rφ {s| Rφ(s)}
Rp {s1}
Rq {s2}

R(p∨q) {s1, s2}
RAF(p∨q) {s1, s2, s3}

In the following, we introduce our main theorem in this section.

Theorem 3.2 Given a CTL formula φ and an initial interpretation %0 which
de�nes T and Pp. Assume that % is the least solution to ~R ` φ ∧ % ⊇ %0, we
have (M, s) |= φ i� s ∈ %(Rφ).



30 CTL in Alternation-free Least Fixed Point Logic

Proof. In Appendix A. �

Continuing the discussion in the beginning of this section, let's look at how to
specify the EG operator in ALFP. We can de�ne the relation REGφ as follows
which is based on the equivalence EGφ ≡ ¬AF¬φ:

~R ` EGφ iff ~R ` AF¬φ∧
[∀s : ¬RAF¬φ(s)⇒ REGφ(s)]

Strati�cation is guaranteed in the above speci�cation. In the next section, we
will show another way of specifying the EG operator in ALFP. There, the fair-
ness problems in CTL is also taken into consideration.

3.2 CTL with Fairness Constraints in ALFP

In this section, we show how to use �ow logic to encode CTL with fairness
assumptions in ALFP. Here, we express CTL formulas in Existential Normal
Form given in De�nition 2.7.

Table 2.4 in Section 2.3.4 has introduced properties for formulas of the forms
EXp, E[p1Up2] and EGp, where p, p1 and p2 are atomic propositions, under
fairness assumptions. These insights are very useful when developing model
checking algorithms [10]. More generally, to consider formulas of the forms
EXφ, E[φ1Uφ2] and EGφ, we need to modify Table 2.4 properly. We give the
following properties for the EX, EU and EG operators under fairness assump-
tions in Table 3.2. This also helps to give semantic insights into these operators.

It is very easy to verify the correctness of Table 3.2. Let's take the EX operator
as an example to explain the di�erence between Table 2.4 and Table 3.2. In
Table 2.4, we know that the following holds:

(M, s) |=fair EXp iff there exists a state s′ such that s→ s′,
(M, s′) |= p and Pathtruefair(s

′) 6= ∅

There, we only require (M, s′) |= p instead of (M, s′) |=fair p. This simpli�ca-
tion is due to the fact that (M, s) |= p i� (M, s) |=fair p. However, when we con-
sider the semantics of EXφ in Table 3.2, we must require that (M, s′) |=fair φ.



3.2 CTL with Fairness Constraints in ALFP 31

(M, s) |=fair EXφ iff there exists a state s′ such that s→ s′,
(M, s′) |=fair φ and Pathtruefair(s

′) 6= ∅
(M, s) |=fair E[φ1Uφ2] iff there exists a finite path fragment

πfin = s0, ..., sk such that s = s0,
(M, sk) |=fair φ2,∀ 0 ≤ j < k : (M, sj) |=fair φ1,
and Pathtruefair(sk) 6= ∅

(M, s) |=fair EGφ iff Pathφfair(s) 6= ∅

Table 3.2: Properties for EX, EU and EG operators under fairness assump-
tions

Otherwise, this would be inconsistent with the semantics of CTL with fairness
assumptions. The di�erence for the case of the EU operator is similar.

In the following, we shall develop an ALFP-based static analysis technique to en-
code CTL with fairness assumptions. We �rst introduce a notation PATHfair,S
in the following.

Definition 3.3 Given a Kripke structure M = (S, T, L) and a �xed CTL
fairness assumption fair, we de�ne that PATHfair,S = {s|∃π : π[0] = s ∧ π |=
fair ∧ ∀0 ≤ i : π[i] ∈ S} where S ⊆ S.

Recall that we have de�ned that Pathφfair(s) = {π| π is a path in Mφ and
π |= fair ∧ π[0] = s} in Section 2.3.4. Following lemma shows the relation

between PATHfair,S and Pathφfair(s).

Lemma 3.4 Assume that %(Rφ) = {s|(M, s) |=fair φ}. We have that

PATHfair,%(Rφ) = {s|∃π : π ∈ Pathφfair(s)}.

Proof. It follows directly from the de�nition of Mφ and Pathφfair(s) and
De�nition 3.3. �

To characterize the semantics of CTL with fairness assumptions, we also need to
de�ne an extra relation Pathfair,φ to approximate the set of states from which

there exists fair paths in Mφ. We introduce the notation ~R  Pathfair,φ in the



32 CTL in Alternation-free Least Fixed Point Logic

following to denote a set of ALFP clauses which de�ne Pathfair,φ. The details

of ~R  Pathfair,φ are postponed to the following sections, where we will de�ne
~R  Pathufair,φ and ~R  Pathsfair,φ corresponding to unconditional fairness
and strong fairness respectively. Weak fairness can be considered as a special
case of unconditional fairness problems.

Definition 3.5 Given a �xed CTL fairness assumption fair and a CTL
formula φ, we use ~R  Pathfair,φ to denote a set of ALFP clauses which de�ne
the relation Pathfair,φ.

We encode a Kripke structureM = (S, T, L) into ALFP by de�ning correspond-
ing relations in %0 in the same way as we have done in the previous section. We
give our �ow logic approach to the analysis of CTL with fairness assumptions
in Table 3.3. There, Pathfair,φ(s) (resp. Pathfair,true(s)) intends to mean that

Pathφfair(s) 6= ∅ (resp. Pathtruefair(s) 6= ∅). Our analysis for EX, EU and EG
operators are based on the properties of these operators listed in Table 3.2.

~R `fair true iff [∀s : Rtrue(s)]
~R `fair p iff [∀s : Pp(s)⇒ Rp(s)]
~R `fair ¬φ iff ~R `fair φ∧

[∀s : (¬Rφ(s))⇒ R¬φ(s)]
~R `fair φ1 ∧ φ2 iff ~R `fair φ1 ∧ ~R `fair φ2∧

[∀s : Rφ1(s) ∧Rφ2(s)⇒ Rφ1∧φ2(s)]
~R `fair EXφ iff ~R `fair φ ∧ ~R  Pathfair,true

[∀s : [∃s′ : T (s, s′) ∧Rφ(s′) ∧ Pathfair,true(s′)]
⇒ REXφ(s)]

~R `fair E[φ1Uφ2] iff ~R `fair φ1 ∧ ~R `fair φ2 ∧ ~R  Pathfair,true
[∀s : Rφ2(s) ∧ Pathfair,true(s)⇒ RE[φ1Uφ2](s)]∧
[∀s : [∃s′ : T (s, s′) ∧Rφ1(s) ∧RE[φ1Uφ2](s

′)]
⇒ RE[φ1Uφ2](s)]

~R `fair EGφ iff ~R `fair φ ∧ ~R  Pathfair,φ
[∀s : Pathfair,φ(s)⇒ REGφ(s)]

Table 3.3: CTL with Fairness Assumptions in ALFP

The encoding in Table 3.3 is not complicated. We explain brie�y the case of
EXφ and EGφ in the following.



3.2 CTL with Fairness Constraints in ALFP 33

For EXφ, the �rst conjunct ensures that we analyze the subformula φ correctly.
The second conjunct guarantees that the relation Pathfair,true is de�ned cor-
rectly. Here, Pathfair,true intends to characterize the set of states from which
there exist fair paths inM . The third conjunct tells that for any state s, if there
exists a state s′ such that both T (s, s′) and Rφ(s′) hold and Pathfair,true(s

′),
then REXφ(s) also holds. This matches the property of the EX operator given
in Table 3.2.

For EGφ, the �rst conjunct also ensures that we handle the subformula φ as
intended. The conjunct ~R  Pathfair,φ ensures that the relation Pathfair,φ,
which intends to characterize the set of states from which there exist fair paths
in Mφ, is de�ned correctly. The third conjunct tells that for any state s, if
there exists a fair path in Mφ from s, then REGφ(s) holds. As to how to de�ne
the relation Pathfair,φ, we explain it in the next two sections in the setting of
unconditional fairness and strong fairness. In both setting, we will be essentially
calculating nontrivial strongly connected components in a Kripke structureMφ.

Following is the main theorem of this section. There, we have made an assump-
tion that %(Pathfair,ϕ) = PATHfair,%(Rϕ). When %(Rφ) = {s|(M, s) |=fair φ}
holds, we know from Lemma 3.4 that %(Pathfair,ϕ) = {s|∃π : π ∈ Pathφfair(s)}.

Theorem 3.6 Given a CTL formula φ, a �xed CTL fairness assumption
fair, and an initial interpretation %0 which de�nes T and Pp. Assume that

% is the least solution to ~R `fair φ ∧ % ⊇ %0 and that %(Pathfair,ϕ) =
PATHfair,%(Rϕ) whenever ϕ is true or a subformula of φ, we have that
(M, s) |=fair φ i� s ∈ %(Rφ).

Proof. In Appendix A. �

3.2.1 Unconditional Fairness and Weak Fairness

In this section, we discus unconditional fairness and weak fairness problems. We
will �rst show how to de�ne ~R  Pathufair,φ, which is a set of ALFP clauses
that de�ne the relation Pathufair,φ. Recall that Pathufair,φ intends to charac-
terize the set of states (inMφ) from which there exist unconditional fair paths in
Mφ. Then we point out that weak fairness is a special case of unconditional fair-



34 CTL in Alternation-free Least Fixed Point Logic

ness so that our result for unconditional fairness applies to weak fairness as well.

Calculating nontrivial strongly connected set plays an important role here as
well as in the next section. We de�ne it as follows.

Definition 3.7 Let M be a �nite state Kripke structure. A set of states C
in M is strongly connected if for any pair of states s and s′ in C there is a �nite
path fragment πfin = s0, s1...sn(n ≥ 0,∀0 ≤ i ≤ n : si ∈ C) in M such that
s0 = s and sn = s′.

A strongly connected set C is trivial if C only contains one state s and there is
no self-loop on s. In the rest of the thesis, we are mainly interested in calculat-
ing nontrivial strongly connected sets. The following fact gives the relationship
between nontrivial strongly connected sets and in�nite paths in a �nite state
Kripke structure.

Fact 3.2.1 Let M be a �nite state Kripke structure. There is an in�nite path
from a state s i� there exists a nontrivial strongly connected set C in M such
that C is reachable from s.

We explain Fact 3.2.1 brie�y. We �rst explain one direction. Assume that M
has n states. Let π = s0, s1... be an in�nite path in M such that s0 = s. In
the pre�x πfin = s0, ..., sn of π, we know that at least one state has been vis-
ited twice since there are only n states in M . Assume that s′ has been visited
twice in πfin. Then, the �nite path fragment π′fin = si, ..., sj in πfin such that
si = sj = s′ (0 ≤ i, j ≤ n) forms a cycle. We can thus construct a nontrivial
strongly connected set C = {s|s occurs in π′fin} that is reachable from s.

The other direction is obvious. Assume that a nontrivial strongly connected set
C is reachable from s. Then, there exists a �nite path fragment πfin = s0, ..., si
such that s0 = s and si ∈ C (0 ≤ i). We can easily extend πfin to an in�nite
path. Assume that C has more than one state. In this case, let sj (0 ≤ j) be a
state in C such that si 6= sj . We can �nd a �nite path fragment π′fin from si to
sj and another path fragment π′′fin from sj to si. The two path fragments form
a cycle. Therefore, starting from s we could �rst go to si and then go back and
forth between si and sj in�nitely many times. This forms an in�nite path from
s. Assume that C has only one state. Since C is nontrivial. si has a self-loop.
Therefore, starting from s we could �rst go to si and then self loop on state si.



3.2 CTL with Fairness Constraints in ALFP 35

This forms an in�nite path from s as well.

Since we have required that a Kripke structure M is total, from a state s there
is always an in�nite path in M . However, it is not guaranteed that a Kripke
structure Mφ is total. Fact 3.2.1 is useful when we want to know whether there
is an in�nite path from a state s in Mφ.

Unconditional fairness constraints have the form ufair =
∧

1≤i≤kGFbi, where
bi is an atomic proposition. We focus on a Kripke structure Mφ. Due to the
following lemma, we say that the constraint GFbi is realizable in a nontrivial
strongly connected set C if C ∩ {s|(Mφ, s) |= bi} 6= ∅.

Lemma 3.8 Assume that ufair =
∧

1≤i≤kGFbi. Let C be a nontrivial strongly
connected set in Mφ such that C ∩ {s|(Mφ, s) |= bi} 6= ∅ for all 1 ≤ i ≤ k. For
each state s ∈ C, there exists a path π in Mφ from s such that π |= ufair.

Proof. In Appendix A. �

Let uFairSCSsφ denote the set union of all nontrivial strongly connected sets
C in Mφ such that C ∩ {s|(Mφ, s) |= bi} 6= ∅ for all 1 ≤ i ≤ k. Fact 2.3.2 and
3.2.1 and Lemma 3.8 lead to the following lemma.

Lemma 3.9 Assume that ufair =
∧

1≤i≤kGFbi. There exists an uncondi-
tional fair path in Mφ from s if and only if there exists a �nite path fragment
πfin (in Mφ) from s to a state s′ in uFairSCSsφ.

Proof. In Appendix A. �

Based on Lemma 3.9, we de�ne ~R  Pathufair,φ as follows, where we de�ne
relations Tφ, T

+
φ , SCφ, SCufair,φ and Pathufair,φ:

[∀s : ∀s′ : [T (s, s′) ∧Rφ(s) ∧Rφ(s′)⇒ Tφ(s, s′)]]

[∀s : ∀s′ : [Tφ(s, s′)⇒ T+
φ (s, s′)]]

[∀s : ∀s′′ : [∃s′ : T+
φ (s, s′) ∧ T+

φ (s′, s′′)⇒ T+
φ (s, s′′)]]

[∀s : ∀s′ : [T+
φ (s, s′) ∧ T+

φ (s′, s)⇒ SCφ(s, s′)]]



36 CTL in Alternation-free Least Fixed Point Logic

[∀s :
∧

1≤i≤k

[∃si : SCφ(s, si) ∧ Pbi(si)]⇒ SCufair,φ(s)]

[∀s : [∃s′ : T+
φ (s, s′) ∧ SCufair,φ(s′)]⇒ Pathufair,φ(s)]

The following lemma shows the correctness of our de�nition for ~R  Pathufair,φ.

Lemma 3.10 Let %0 be an initial interpretation which de�nes T , Pp and Rφ.

Assume that %0(Rφ) = {s|(M, s) |=ufair φ}. For the least solution % to ~R 
Pathufair,φ ∧ % ⊇ %0, we have the following:

• %(Tφ) equals the transition relation in Mφ,

• (s, s′) ∈ %(T+
φ ) i� there exists a �nite path fragment πfin = s0, s1...sn in

Mφ where s0 = s and sn = s′,

• (s, s′) ∈ %(SCφ) i� s and s′ belong to a nontrivial strongly connected set
in Mφ,

• %(SCufair,φ) = uFairSCSsφ, and

• %(Pathufair,φ) = {s|∃π : π ∈ Pathφufair(s)}.

Proof. In Appendix A. �

The following corollary shows that when fairness assumptions take the form of
ufair, the assumption that %(Pathufair,φ) = PATHufair,%0(Rφ), which is made
in Theorem 3.6, holds.

Corollary 3.11 Let %0 be an initial interpretation which de�nes T , Pp and

Rφ. Assume that %0(Rφ) = {s|(M, s) |=ufair φ}. The least solution % to ~R 
Pathufair,φ ∧ % ⊇ %0 satis�es %(Pathufair,φ) = PATHufair,%0(Rφ).

Proof. It's obvious from Lemma 3.4 and Lemma 3.10. �

Weak fairness constraints take the form wfair =
∧

1≤i≤k(FGai ⇒ GFbi). The
following equivalences hold for weak fairness constraints:



3.2 CTL with Fairness Constraints in ALFP 37

wfair =
∧

1≤i≤k

(FGai ⇒ GFbi) ≡
∧

1≤i≤k

¬FGai ∨GFbi

≡
∧

1≤i≤k

G¬Gai ∨GFbi

≡
∧

1≤i≤k

GF¬ai ∨GFbi

≡
∧

1≤i≤k

GF(¬ai ∨ bi)

Therefore, weak fairness constraints is a special case of unconditional fairness
and can be encoded in ALFP in a similar way.

Remark: In this section, we have actually provided another way to specify
the semantics of the EG operator (without fairness assumptions) in compari-
son with the way we developed in the previous section. This is done by taking
a special form of unconditional fairness constraints ufair = GFtrue. Since
it is obvious that true always holds, each in�nite path in a Kripke structure
is an unconditional fair path. Therefore, we know that (M, s) |=ufair φ i�
(M, s) |= φ. In this case, for Mφ = (S, Tφ, L), we know that (s, s′) ∈ Tφ if and
only if (s, s′) ∈ T and (M, s) |= φ and (M, s′) |= φ.

The clauses we have used to de�ne ~R  Pathufair,φ specialize to the following:

[∀s : ∀s′ : [T (s, s′) ∧Rφ(s) ∧Rφ(s′)⇒ Tφ(s, s′)]]

[∀s : ∀s′ : [Tφ(s, s′)⇒ T+
φ (s, s′)]]

[∀s : ∀s′′ : [∃s′ : T+
φ (s, s′) ∧ T+

φ (s′, s′′)⇒ T+
φ (s, s′′)]]

[∀s : ∀s′ : [T+
φ (s, s′) ∧ T+

φ (s′, s)⇒ SCφ(s, s′)]]

[∀s : ∃s′ : SCφ(s, s′)⇒ SCufair,φ(s)]

[∀s : [∃s′ : T+
φ (s, s′) ∧ SCufair,φ(s′)]⇒ Pathufair,φ(s)]

From Lemma 3.10, for the least solution % to the above clauses, we know that
%(SCufair,φ) equals to the set union of all nontrivial strongly connected set in
Mφ and %(Pathufair,φ) = {s| there exists an in�nite path from s inMφ }. From
Fact 2.3.1, we know that the semantics of the EG operator (without fairness)



38 CTL in Alternation-free Least Fixed Point Logic

can be speci�ed by [∀s : Pathufair,φ(s)⇒ REGφ(s)], where ufair = GFtrue.

Actually, it has been pointed out in [2] that (M, s) |= EGφ i� there exists a
path in Mφ that leads from the state s to some state s′ in a nontrivial strongly
connected component in Mφ. This provides some semantic insights into our
encoding.

3.2.2 Strong Fairness

In this section, we consider how to de�ne ~R  Pathsfair,φ, which denotes a set
of ALFP clauses that de�ne the relation Pathsfair,φ. Recall that Pathsfair,φ
intends to characterize the set of states (in Mφ) from which there exist strong
fair paths in Mφ.

Strong fairness constraints have the form sfair =
∧

1≤i≤k(GFai ⇒ GFbi),
where ai and bi are atomic propositions. Let us �rst consider the case k = 1
and now sfair has the form sfair = GFa⇒ GFb.

The constraint sfair is realizable in a nontrivial strongly connected set C if
either C ∩{s|(Mφ, s) |= b} 6= ∅ or ∀s ∈ C : {s|(Mφ, s) 2 a} holds. The condition
C ∩ {s|(Mφ, s) |= b} 6= ∅ ensures that from each state in C, there exists an
in�nite path π on which the proposition b is satis�ed in�nitely often. Therefore,
GFb is satis�ed on π, which means π is a strong fair path. The other condition
∀s ∈ C : {s|(Mφ, s) 2 a} makes sure that there is no state in C that satis�es the
proposition a. In this case, on any in�nite path π starting from a state in C, we
know that a is not satis�ed in�nitely often, which means GFa is not satis�ed on
π. This also means that π is a strong fair path. We formalize this observation
in the following lemma.

Lemma 3.12 Assume that sfair = GFa ⇒ GFb. Let C be a nontrivial
strongly connected set in Mφ such that either C ∩ {s|(Mφ, s) |= b} 6= ∅ or
∀s ∈ C : {s|(Mφ, s) 2 a}. For each state s ∈ C, there exists a path π in Mφ

from s such that π |= sfair.

Proof. In Appendix A. �



3.2 CTL with Fairness Constraints in ALFP 39

Let sFairSCSsφ denote the set union of all nontrivial strongly connected sets C
in Mφ which satisfy either C ∩ {s|(Mφ, s) |= b} 6= ∅ or ∀s ∈ C : {s|(Mφ, s) 2 a}.
Fact 2.3.2 and 3.2.1 and Lemma 3.12 lead to the following lemma.

Lemma 3.13 Assume that sfair = GFa ⇒ GFb. There exists a strong fair
path in Mφ from s if and only if there exists a �nite path fragment πfin, in Mφ,
from s to a state s′ in sFairSCSsφ.

Proof. In Appendix A. �

Based on Lemma 3.13, we de�ne ~R  Pathsfair,φ in the following:

[∀s : ∀s′ : [T (s, s′) ∧Rφ(s) ∧Rφ(s′)⇒ Tφ(s, s′)]]

[∀s : ∀s′ : [Tφ(s, s′)⇒ T+
φ (s, s′)]]

[∀s : ∀s′ : ∀s′′ : [T+
φ (s, s′) ∧ T+

φ (s′, s′′)⇒ T+
φ (s, s′′)]]

[∀s : ∀s′ : [T+
φ (s, s′) ∧ T+

φ (s′, s)⇒ SCφ(s, s′)]]

[∀s : ∀s′ : [Tφ(s, s′) ∧R¬a(s) ∧R¬a(s′)⇒ Tφ∧¬a(s, s′)]]

[∀s : ∀s′ : [Tφ∧¬a(s, s′)⇒ T+
φ∧¬a(s, s′)]]

[∀s : ∀s′ : ∀s′′ : [T+
φ∧¬a(s, s′) ∧ T+

φ∧¬a(s′, s′′)⇒ T+
φ∧¬a(s, s′′)]]

[∀s : ∀s′ : [T+
φ∧¬a(s, s′) ∧ T+

φ∧¬a(s′, s)⇒ SCφ∧¬a(s, s′)]]

[∀s : [∃s′ : SCφ(s, s′) ∧Rb(s′)]⇒ SCsfair,φ(s)]

[∀s : [∃s′ : SCφ∧¬a(s, s′)]⇒ SCsfair,φ(s)]

[∀s : [∃s′ : T+
φ (s, s′) ∧ SCsfair,φ(s′)]⇒ Pathsfair,φ(s)]

The following lemma shows the correctness of our de�nition of ~R  Pathsfair,φ.

Lemma 3.14 Let %0 be an initial interpretation which de�nes T , Pp, R¬a and
Rφ. Assume that %0(Rφ) = {s|(M, s) |=sfair φ} and %0(R¬a) = {s|(M, s) 2 a}.
For the least solution % to ~R  Pathsfair,φ ∧ % ⊇ %0, we have the following:

• %(Tφ) (resp. %(Tφ∧¬a)) equals the transition relation inMφ (resp. Mφ∧¬a),



40 CTL in Alternation-free Least Fixed Point Logic

• (s, s′) ∈ %(T+
φ ) (resp. (s, s′) ∈ %(T+

φ∧¬a)) i� there exists a �nite path
fragment πfin = s0, s1...sn in Mφ (resp. Mφ∧¬a) where s0 = s and sn =
s′,

• (s, s′) ∈ %(SCφ) (resp. (s, s′) ∈ %(SCφ∧¬a)) i� s and s′ belong to a non-
trivial strongly connected set in Mφ (resp. Mφ∧¬a),

• %(SCsfair,φ) = sFairSCSsφ, and

• %(Pathsfair,φ) = {s|∃π : π ∈ Pathφsfair(s)}.

Proof. In Appendix A. �

The following corollary shows that when fairness assumptions take the form of
sfair = GFa⇒ GFb, the assumption that %(Pathsfair,φ) = PATHsfair,%0(Rφ),
which is made in Theorem 3.6, holds.

Corollary 3.15 Let %0 be an initial interpretation which de�nes T , Pp, R¬a
and Rφ. Assume that %0(Rφ) = {s|(M, s) |=sfair φ} and %0(R¬a) = {s|(M, s) 2
a}. The least solution % to ~R  Pathsfair,φ ∧ % ⊇ %0 satis�es %(Pathsfair,φ) =
PATHsfair,%0(Rφ).

Proof. It's obvious from Lemma 3.4 and Lemma 3.14. �

Let us now consider the case k > 1 and now sfair has the form sfair =∧
1≤i≤k(GFai ⇒ GFbi). The constraint sfair is realizable in a nontrivial

strongly connected set C if for each constraint GFai ⇒ GFbi (1 ≤ i ≤ k),
either C ∩ {s|(Mφ, s) |= bi} 6= ∅ or ∀s ∈ C : {s|(Mφ, s) 2 ai} holds. Notice that
there are 2k di�erent combinations such that sfair is realizable in C. This leads
to an exponential blow up, which can be seen from the following equivalence as
well.

Let B = {0, 1} and e ∈ Bk. We use e[i] to denote the i-th boolean value in e.
We have the following equivalences for strong fairness constraints:

sfair =
∧

1≤i≤k

(GFai ⇒ GFbi) ≡
∧

1≤i≤k

(FG¬ai ∨GFbi)



3.2 CTL with Fairness Constraints in ALFP 41

≡
∨
e∈Bk

((
∧

1≤i≤k
e[i]=0

FG¬ai) ∧ (
∧

1≤j≤k
e[j]=1

GFbj))

≡
∨
e∈Bk

(FG(
∧

1≤i≤k
e[i]=0

¬ai) ∧ (
∧

1≤j≤k
e[j]=1

GFbj))

We have the following corollary.

Corollary 3.16 Assume that sfair =
∧

1≤i≤k(GFai ⇒ GFbi). Let
sFairSCSsφ denote the set union of all nontrivial strongly connected sets C in
Mφ such that for all 1 ≤ i ≤ k, C satisfy either C ∩ {s|(Mφ, s) |= bi} 6= ∅ or
∀s ∈ C : {s|(Mφ, s) 2 ai}. There exists a strong fair path in Mφ from s if and
only if there exists a �nite path fragment πfin (in Mφ) from s to a state s′ in
sFairSCSsφ.

Proof. It is straightforward based on Lemma 3.13. �

We show how to de�ne ~R  Pathsfair,φ when k > 1. We de�ne relations T+
φ

and SCφ in the following clauses:

[∀s : ∀s′ : [T (s, s′) ∧Rφ(s) ∧Rφ(s′)⇒ Tφ(s, s′)]]

[∀s : ∀s′ : [Tφ(s, s′)⇒ T+
φ (s, s′)]]

[∀s : ∀s′ : ∀s′′ : [T+
φ (s, s′) ∧ T+

φ (s′, s′′)⇒ T+
φ (s, s′′)]]

[∀s : ∀s′ : [T+
φ (s, s′) ∧ T+

φ (s′, s)⇒ SCφ(s, s′)]]

Let e ∈ Bk, we de�ne αe =
∧
e[i]=0 ¬ai. For each e ∈ Bk, we de�ne relations

T+
φ∧αe and SCφ∧αe in the following clauses:

[∀s : ∀s′ : [Tφ(s, s′) ∧Rαe(s) ∧Rαe(s′)⇒ Tφ∧αe(s, s
′)]]

[∀s : ∀s′ : [Tφ∧αe(s, s
′)⇒ T+

φ∧αe(s, s
′)]]



42 CTL in Alternation-free Least Fixed Point Logic

[∀s : ∀s′ : ∀s′′ : [T+
φ∧αe(s, s

′) ∧ T+
φ∧αe(s

′, s′′)⇒ T+
φ∧αe(s, s

′′)]]

[∀s : ∀s′ : [T+
φ∧αe(s, s

′) ∧ T+
φ∧αe(s

′, s)⇒ SCφ∧αe(s, s
′)]]

We de�ne Pathsfair,φ in the following clauses:

[∀s : [
∨
e∈Bk

[
∧

1≤i≤k
e(i)=1

∃s′ : SCφ∧αe(s, s
′) ∧Rbi(s′)]⇒ SCsfair,φ(s)]

[∀s : [∃s′ : T+
φ (s, s′) ∧ SCsfair,φ(s′)]⇒ Pathsfair,φ(s)]

Corollary 3.15 can be generalized to the case of k > 1 easily. In the next sec-
tion, we brie�y mention that fairness assumptions can be encoded in SFP as
well. There, the exponential blow up does not occur.

3.2.3 Fairness in Succinct Fixed Point Logic

It is pointed out in [60] that almost all practical types of fairness constraints

can be expressed using the canonical form
∧

1≤i≤k(
∞
F pi∨

∞
G qi), where

∞
F means

�in�nitely often" and
∞
G means �almost always". It's shown in [6] that the canon-

ical form can be characterized in µ-calculus formulas of alternation depth 2.

We reformulate their results using notations proposed in our setting. The canon-
ical form mentioned above can be written as fair =

∧
1≤k≤n(GFφi ∨ FGψi).

We express unconditional, strong, and weak fairness constraints in the canonical
form as follows:

Unconditional fairness ufair =
∧

1≤i≤kGFφi is already in canonical form.

Strong fairness constraints:

sfair =
∧

1≤i≤k

(GFφi ⇒ GFψi) ≡
∧

1≤i≤k

(FG¬φi ∨GFψi)

Weak fairness constraints:



3.3 Discussions 43

wfair =
∧

1≤i≤k

(FGφi ⇒ GFψi) ≡
∧

1≤i≤k

GF(¬φi ∨ ψi)

The canonical form can be encoded to the µ-calculus [6] by E
∧

1≤k≤n(GFφi ∨
FGψi) = µQ1.(νQ2.τ(Q2) ∨ 〈a〉Q1) where τ(Q2) =

∧
1≤i≤k((〈a〉µQ3.τ(Q3)) ∨

(ψi ∧ 〈a〉Q2)) and τ(Q3) = ((φi ∧Q2) ∨ (Q2 ∧ 〈a〉Q3)).

According to the results in Chapter 6, we can encode this µ-calculus formula in
Succinct Fixed Point Logic.

3.3 Discussions

Tarjan's algorithm can be used to calculate strongly connected components in
time complexity O(|S| + |T |) [76] for a �nite Kripke structure M = (S, T, L).
Our speci�cation for the set union of all nontrivial strongly connected sets in-
volves calculating the transitive closure of transition relations, which yields a
cubic time worse case complexity. It is worth considering how to derive a linear
time worse case complexity speci�cation for nontrivial strongly connected com-
ponents.

It is shown in [77] that LTL model checking can be reduced to CTL model
checking with fairness constraints. Actually, only unconditional fairness con-
straints are used there. Based on their reduction, an e�cient symbolic LTL
model checker has been developed. Our ALFP-based encoding works well for
CTL model checking with unconditional fairness constraints. Hence, LTL model
checking problem can also be properly expressed using ALFP constraints.



44 CTL in Alternation-free Least Fixed Point Logic



Chapter 4

Multi-valued
Alternation-free Least Fixed

Point Logic

Research work in [21] and the results in the previous chapter are two cases where
ALFP has been used to analyze temporal properties of transition systems. In
a more general point of view, ALFP can be used to perform two-valued static
analysis for transition systems.

In this chapter, we show that it is possible to generalize this point of view
from a 2-valued setting to a multi-valued setting. This means that the transi-
tion systems become multi-valued transition systems. Multi-valued transition
systems can model uncertainty and inconsistency. Take modal transition sys-
tems (MTSs [52, 53]) as an example, where there are two transition relations;
a may transition relation indicating the transitions that might be possible and
a must transition relation indicating those transitions that must be possible.
This is a form of multi-valued transition systems that has proved very useful
for speci�cations of concurrent systems. We de�ne the syntax and semantics of
multi-valued ALFP based on a multi-valued structure which consists of a com-
plete lattice and a total function de�ned over the complete lattice. We prove
that the Moore family result carries over to this setting.



46 Multi-valued Alternation-free Least Fixed Point Logic

Rather than considering how to develop directly new solvers for multi-valued
ALFP, we show that an analysis problem in multi-valued ALFP over a �nite
distributive multi-valued structure can be translated to a set of analysis prob-
lems in 2-valued ALFP. We give a time complexity result of Multi-valued ALFP
based on our reduction method.

We point out that the 2-valued ALPF-based analysis for 2-valued CTL devel-
oped in Chapter 3 can be generalized to a multi-valued analysis by interpreting
those analysis constraints in multi-valued ALFP. Many properties of 2-valued
CTL are also preserved in our multi-valued analysis. Therefore, we also gen-
eralize the work in the previous chapter to the multi-valued setting. To show
an application of this insight, we perform a three-valued ALFP-based analysis
for the three-valued CTL model checking problem over Kripke modal transition
systems.

The structure of this chapter is as follows. In Section 4.1, we �rst rephrase
ALFP in two-valued setting and introduce the formal de�nition of two-valued
transition systems. We show that two-valued transition systems can be encoded
in ALFP naturally. The main consideration for this section is to set a scene, for
example using new notations to de�ne the semantics of ALFP, that can be later
generalized to a multi-valued setting. Section 4.2 gives details of multi-valued
ALFP and de�nes multi-valued transition systems. We reduce multi-valued
ALFP into two-valued ALFP in Section 4.3. In Section 4.4, we interpret the
ALFP-based analysis for two-valued CTL, developed in the previous chapter,
using multi-valued ALFP. Section 4.5 is an application of multi-valued ALFP,
where we focus on a three-valued setting. We introduce modal transition sys-
tems in Section 4.5.1. Section 4.5.2 introduces three-valued ALFP. Section 4.5.3
introduces three-valued CTL. We show in Section 4.5.4 that our three-valued
ALFP-based analysis exactly characterizes the three-valued model checking for
CTL over Kripke modal transition systems.



4.1 Two-valued Static Analysis 47

4.1 Two-valued Static Analysis

4.1.1 Two-valued ALFP

Two-valued ALFP is a special case of multi-valued ALFP. In the following, we
brie�y rephrase the syntax and semantics of two-valued ALFP using notations
that is suited for the multi-valued setting.

The syntax of two-valued ALFP is given as follows. We use pre⇒ R(v1, ..., vn)
instead of pre ⇒ cl which is used in Section 2.2 to simplify our development,
but this does not restrict the expressiveness (merely the succinctness) of ALFP.

v ::= c | x
pre ::= R(v1, ..., vn) | ¬R(v1, ..., vn) | pre1 ∧ pre2

| pre1 ∨ pre2 | ∀x : pre | ∃x : pre
cl ::= R(v1, ..., vn) | true | cl1 ∧ cl2 | pre⇒ R(v1, ..., vn) | ∀x : cl

Let Int2 :
∏
k Relk → Uk → {true, false} be a mapping where Relk is a �nite

alphabet of k-ary predicate symbols. The interpretation of ALFP is given in
Table 4.1 in terms of satisfaction relations

(%, σ) sat2 pre and (%, σ) sat2 cl

where % ∈ Int2 maps each k-ary predicate symbol R to a 2-valued function and
σ is an interpretation of variables.

Let us consider the mappings S, S1, S2 : Uk → {true, false}. We de�ne that
S1 ≤2 S2 i� ∀x ∈ Uk : ¬S1(x) ∨ S2(x). Given an index set I, the greatest lower

bound is de�ned as S =
∧2
i∈I Si i� ∀x ∈ Uk : S(x) = ∧2i∈ISi(x). We write <2

for the irre�exive part of ≤2.

The lexicographic ordering ≤2
] for the interpretations of relations can be de�ned

as follows: %1 ≤2
] %2 if there exists a rank i ∈ {0, ..., r} such that



48 Multi-valued Alternation-free Least Fixed Point Logic

[(%, σ) sat2 R(v1, ..., vn)] = %(R)(σ(v1), ..., σ(vn))
[(%, σ) sat2 ¬R(v1, ..., vn)] = ¬%(R)(σ(v1), ..., σ(vn))
[(%, σ) sat2 pre1 ∧ pre2] = [(%, σ) sat2 pre1] ∧ [(%, σ) sat2 pre2]
[(%, σ) sat2 pre1 ∨ pre2] = [(%, σ) sat2 pre1] ∨ [(%, σ) sat2 pre2]
[(%, σ) sat2 ∀x : pre] = ∀a ∈ U : [(%, σ[x 7→ a]) sat2 pre] = true
[(%, σ) sat2 ∃x : pre] = ∃a ∈ U : [(%, σ[x 7→ a]) sat2 pre] = true
[(%, σ) sat2 R(v1, ..., vn)] = %(R)(σ(v1), ..., σ(vn))
[(%, σ) sat2 true] = true
[(%, σ) sat2 cl1 ∧ cl2] = [(%, σ) sat2 cl1] ∧ [(%, σ) sat2 cl2]
[(%, σ) sat2 pre⇒ R(v1, ..., vn)] = ¬[(%, σ) sat2 pre] ∨ [(%, σ) sat2

R(v1, ..., vn)]
[(%, σ) sat2 ∀x : cl] = ∀a ∈ U : [(%, σ[x 7→ a]) sat2 cl] = true

Table 4.1: Interpretation of Two-valued ALFP

• %1(R) = %2(R) whenever rankR < i,

• %1(R) ≤2 %2(R) whenever rankR = i,

• either i = r or %1(R) <2 %2(R) for some R with rankR = i.

We de�ne %1 ≤2 %2 to mean %1(R) ≤2 %2(R) for all R ∈ R.

The set of interpretations of relations constitutes a complete lattice(Int2,≤2
] ).

Proposition 2.6 is rephrased as follows:

Proposition 2.6 The set {%|[(%, σ0) sat2 cl] = true} is a Moore Family, i.e.
is closed under greatest lower bounds, whenever cl is closed and strati�ed; the
greatest lower bound ∧2] {%|[(%, σ0) sat2 cl] = true} is the least model of cl.

More generally, given %0 the set {%|[(%, σ0) sat2 cl] = true∧%0 ≤2 %} is a Moore
Family and ∧2] {%|[(%, σ0) sat2 cl] = true ∧ %0 ≤2 %} is the least model.

4.1.2 Two-valued Transition Systems

A transition system (TS [10]) has the form (S, S0,A,→, P, V ) where S is a set
of states, S0 ⊆ S is a set of initial states, A is a set of actions, →⊆ S ×A× S



4.2 Multi-valued Static Analysis 49

is a transition relation, P is a set of atomic propositions and V : S × P →
{true, false} is an interpretation that associates a truth value in {true, false}
with each atomic proposition in P for each state in S.

When A is non-empty and P is empty, a TS specializes to a labeled transition
system (LTS) (S,A,→) . When A is a singleton and P is �nite and non-empty,
a TS specializes to a Kripke structure (S,→, P, V ) except that we did not de-
mand the transition relation to be total as is usually required.

To encode a TS (S, S0,A,→, P, V ) into 2-valued ALFP, we assume that the
universe U = S ∪ A and de�ne corresponding predicates in %0 as follows:

• for each atomic proposition p over P , we de�ne a predicate Pp such that
%0(Pp)(s) = V (s, p),

• for each subset Ω of A, we de�ne a relation Ω such that %0(Ω)(a) = true
i� a ∈ Ω,

• we de�ne a ternary transition relation T such that %0(T )(s, a, s′) = true
i� (s, a, s′) ∈→, and

• we de�ne a relation I such that %0(I)(s) = true i� s ∈ S0.

Example 4.1 Let T and I, de�ned in %0, be the ternary transition relation
and the set of initial states in a TS where S is �nite, we can de�ne a relation
Reach to characterize the set of reachable states from S0 by the following clause:

(∀s : I(s)⇒ Reach(s)) ∧ (∀s : ∀a : ∀s′ : Reach(s) ∧ T (s, a, s′)⇒ Reach(s′))

The intention is that in the least solution % to the above clause such that %0 ≤2 %,
we know that %(Reach)(s) = true i� s is reachable from S0. The above clause
is obviously strati�ed by requiring rankT = 0, rankI = 0 and rankReach = 0.

4.2 Multi-valued Static Analysis

4.2.1 Multi-valued ALFP

The syntax of multi-valued ALFP is de�ned as follows. We still restrict our-
selves to the strati�ed fragment of clauses. The notion of strati�cation remains



50 Multi-valued Alternation-free Least Fixed Point Logic

the same in the multi-valued case.

v ::= c | x
pre ::= R(v1, ..., vn) | ¬R(v1, ..., vn) | pre1 ∧ pre2

| pre1 ∨ pre2 | ∀x : pre | ∃x : pre
cl ::= true | cl1 ∧ cl2 | pre⇒ R(v1, ..., vn) | ∀x : cl

In two-valued case, we have only two truth values, namely true and false, and
({true, false},≤2) constitutes a complete lattice. To generalize ALFP to a
multi-valued setting, we introduce more than two truth values and require that
these truth values constitute a complete lattice as well. Each complete lattice
is equipped with two binary operators, namely least upper bound and greatest
lower bound. These two operators can be used to interpret ∨ and ∧ in the
syntax of multi-valued ALFP, respectively. To interpret negation, we require
that the complete lattice we considered is also equipped with a total function.
We formalize this as multi-valued structure de�ned as follows.

Definition 4.1 A multi-valued structure is de�ned as M = (L,∼), where
L = (L,v) = (L,v,

⊔
,
d
,⊥,>) is a complete lattice and ∼: L → L is a total

function.

The function ∼ intends to be interpreted over L as complement which maps
each element in L to its unique complement. However, we point out that to
prove the Moore family result of multi-valued ALFP, we only need to assume
that ∼ is a total function in De�nition 4.1 due to the notion of strati�cation.

Example 4.2 LetM = (L,∼) be a multi-valued structure. Assume that L =
(L,v) is a De Morgan lattice [58]. Then, ∼ maps each element l ∈ L to its
unique complement ∼ l such that the following conditions hold: ∼ (l1 t l2) =∼
l1u ∼ l2, ∼ (l1 u l2) =∼ l1t ∼ l2, ∼∼ l = l and l1 v l2 i� ∼ l1 w l2.

Let M = (L,∼) be a multi-valued structure and Int :
∏
k Relk → Uk → L

be a mapping. We de�ne the multi-valued interpretation of ALFP over M in
Table 4.2 where % ∈ Int maps each k-ary predicate symbol R to a multi-valued
function and σ is an interpretation of variables. Given σ0 and a clause cl, a
mapping % satis�es cl if and only if [(%, σ0) sat cl] = true.



4.2 Multi-valued Static Analysis 51

Notice that the truth value of [(%, σ) sat pre] is multi-valued, but the truth
value of [(%, σ) sat cl] still remains two valued. Static analysis constraints are
speci�ed by cl. We are only interested in those interpretations which satisfy cl.
As to whether % satis�es cl or not, this is obviously a two valued problem. In
the case of pre⇒ R(v1, ..., vn), we think that % correctly interprets R(v1, ..., vn)
as long as [(%, σ) sat pre] v [(%, σ) sat R(v1, ..., vn)] holds.

[(%, σ) sat R(v1, ..., vn)] = %(R)(σ(v1), ..., σ(vn))
[(%, σ) sat ¬R(v1, ..., vn)] = ∼ ([(%, σ) sat R(v1, ..., vn)])
[(%, σ) sat pre1 ∧ pre2] = [(%, σ) sat pre1] u [(%, σ) sat pre2]
[(%, σ) sat pre1 ∨ pre2] = [(%, σ) sat pre1] t [(%, σ) sat pre2]
[(%, σ) sat ∀x : pre] =

d
a∈U{[(%, σ[x 7→ a]) sat pre]}

[(%, σ) sat ∃x : pre] =
⊔
a∈U{[(%, σ[x 7→ a]) sat pre]}

[(%, σ) sat true] = true
[(%, σ) sat cl1 ∧ cl2] = [(%, σ) sat cl1] ∧ [(%, σ) sat cl2]

[(%, σ) sat pre⇒ R(v1, ..., vn)] =

 true [(%, σ) sat pre] v [(%, σ) sat
R(v1, ..., vn)]

false otherwise

[(%, σ) sat ∀x : cl] = ∀a ∈ U : [(%, σ[x 7→ a]) sat cl] = true

Table 4.2: Multi-Valued Interpretation of ALFP

Let us consider the mappings S, S1, S2 : Uk → L. For the ordering v, we have
the following de�nitions. We de�ne that S1 v S2 i� ∀x ∈ Uk : S1(x) v S2(x).
Given an index set I, the greatest lower bound is de�ned as S =

d
i∈I Si i�

∀x ∈ Uk : S(x) = ui∈ISi(x). We write < for the irre�exive part of v.

The lexicographic ordering v] for the interpretations of relations is de�ned as
follows: %1 v] %2 if there exists a rank i ∈ {0, ..., r} for a strati�ed clause
cl =

∧
0≤i≤r cli such that

• %1(R) = %2(R) whenever rankR < i,

• %1(R) v %2(R) whenever rankR = i,

• either i = r or %1(R) < %2(R) for some R with rankR = i.

We also de�ne %1 v %2 to mean that %1(R) v %2(R) for all R ∈ R.



52 Multi-valued Alternation-free Least Fixed Point Logic

The existence of the least model of multi-valued interpretations is guaranteed
by the following theorem.

Theorem 4.2 {%|[(%, σ0) sat cl] = true} is a Moore Family with respect to
v], i.e. is closed under greatest lower bounds, whenever cl is closed and strati-
�ed; the greatest lower bound u] {%|[(%, σ0) sat cl] = true} is the least model of
cl.

More generally, given %0 the set {%|[(%, σ0) sat cl] = true ∧ %0 v %} is a Moore
Family with respect to v] and u] {%|[(%, σ0) sat cl] = true∧%0 v %} is the least
model.

Proof. In Appendix B. �

4.2.2 Multi-valued Transition Systems

Amulti-valued transition system has the form (S, S0,A,→, P, V ) where S is a set
of states, S0 ⊆ S is a set of initial states, A is a set of actions,→: S×A×S → L
is a multi-valued transition function, P is a set of atomic propositions and
V : S×P → L is a multi-valued interpretation that associates a value in L with
each atomic proposition in P for each state in S.

To encode a multi-valued TS (S, S0,A,→, P, V ) into multi-valued ALFP, we
assume that the universe U = S ∪ A and de�ne corresponding predicates in %0
as follows:

• for each atomic proposition p over P , we de�ne a predicate Pp such that
%0(Pp)(s) = V (s, p),

• for each subset Ω of A, we de�ne a relation Ω such that %0(Ω)(a) = > i�
a ∈ Ω,

• we de�ne a ternary transition relation T such that %0(T )(s, a, s′) =→
(s, a, s′), and

• we de�ne a relation I such that %0(I)(s) = > i� s ∈ S0.

Example 4.3 LetM = (S, S0,A,→, P, V ) be a multi-valued transition system
where S is �nite , A = {a} is a singleton and → (s, a, s′) denote the reliability



4.3 Reducing Multi-valued ALFP to Two-valued ALFP 53

of the connection between s and s′. Let T , de�ned in %0, be the binary transition
relation of M such that %0(T )(s, s′) =→ (s, a, s′). Assume that st is a target
state in M . We specify a relation Reliability by the following clause and de�ne
that %0(Reliability)(s) = > i� s = st:

∀s : [∃s′ : T (s, s′) ∧Reliability(s′)]⇒ Reliability(s)

For the least solution % to the above clause such that %0 v %, we know that
%(Reliability)(s) can approximate the reliability of going from s to st. The above
clause is also obviously strati�ed by requiring rankT = 0 and rankReliability = 0.

4.3 Reducing Multi-valued ALFP to Two-valued

ALFP

In this section, we show that multi-valued ALFP over a �nite distributive multi-
valued structure can be reduced to two-valued ALFP. Recall that a lattice is
distributive i� l1t(l2ul3) = (l1tl2)u(l1tl3) and l1u(l2tl3) = (l1ul2)t(l1ul3).
We de�ne a �nite distributive multi-valued structure as follows:

Definition 4.3 A �nite distributive multi-valued structure is a multi-valued
structureM = (L,∼), where L = (L,v) is a �nite distributive lattice.

Let us �rst explain the link between ALFP and negation-free ALFP.

Assume that cl =
∧

0≤i≤r cli is a strati�ed clause. From the notion of strati�-
cation, we know that in the clause cli all negatively used relations are de�ned
either in an initial model %0 or by

∧
0≤j≤i−1 clj . We use %(i) to denote the

interpretation of relations of rank i (0 ≤ i ≤ n) in %, and we de�ne %i by
%i = %(0) ∪ %(1) ∪ ... ∪ %(i). Let %i−1 be the least model to

∧
0≤j≤i−1 clj sub-

jected to %0 v %i−1 and %negi−1 be a new interpretation. For each relation R
de�ned in %i−1, we de�ne a new relation R¬ in %negi−1 by %negi−1(R¬) =∼ %i−1(R).

We translate cli to a negation-free clause cl+i by substituting each negative use
of a relation R in cli, i.e of the form ¬R(v1, ..., vn), with R¬(v1, ..., vn). Let %i =
u{%i|[(%i, σ) sat cli] = true∧%i−1 v %i} and %′i = u{%′i|[(%

neg
i−1∪%′i, σ) sat cl+i ] =



54 Multi-valued Alternation-free Least Fixed Point Logic

true ∧ %i−1 v %′i}. It is easy to see that %i = %′i. Therefore, the problem of cal-
culating the least model of cl =

∧
0≤i≤r cli reduces to evaluating corresponding

negation-free ALFP clauses cl =
∧

0≤i≤r cl
+
i (0 ≤ i ≤ r).

From above, we know that reducing multi-valued ALFP to 2-valued ALFP boils
down to reducing negation-free multi-valued ALFP to 2-valued ALFP. We now
consider the negation-free fragment of multi-valued ALFP clauses. When cl is
negation-free, we can use ∧2 (resp. u) instead of ∧2] (resp. u]) to denote the
same meaning.

First, we intend to establish the link between a multi-valued interpretation % and
a set of two-valued interpretations (%x1 , ..., %xn), where xi ∈ L (1 ≤ i ≤ n). The
intention is that ∀s ∈ Uk,∀R ∈ R,∀1 ≤ i ≤ n : xi v %(R)(s) i� %xi(R)(s) = true
and that %(R)(s) =

⊔
{xi|%xi(R)(s) = true∧1 ≤ i ≤ n}. To this end, we choose

join-irreducible elements of L as x1, ..., xn. The de�nition of join-irreducible
elements [59] is given as follows.

Definition 4.4 Let L = (L,v) be a lattice. An element x ∈ L is a join-
irreducible element if x is not bottom (in case L has a bottom) and x = y t z
implies x = y or x = z for all y, z ∈ L. We use J (L) to denote the set of
join-irreducible elements of L.

We introduce the following de�nition to impose a constraint on (%x1 , ..., %xn).
The idea is that we need to make sure those interpretations do not contain con-
tradictory information.

Definition 4.5 A tuple (%x1 , ..., %xn) where %xi ∈ Int2(1 ≤ i ≤ n) is called
consistent, denoted by C((%x1 , ..., %xn)), i� xi w xj implies %xi v %xj (1 ≤ i, j ≤
n).

Given a �nite distributive multi-valued structure M = (L,∼) and J (L) =
{x1, ..., xn}. We now construct two isomorphic posets (I,v) and (I2,≤2), where
I = Int, I2 = {(%x1 , ..., %xn)|∀1 ≤ i ≤ n : %xi ∈ Int2 ∧ C((%x1 , ..., %xn))} and ≤2

also denotes its pointwise extension. The isomorphism is guaranteed by Lemma
4.7 and Corollary 4.8 below.

Definition 4.6 We de�ne the function f : I → I2 by f(%) = (%x1 , ..., %xn)
where ∀s ∈ Uk,∀R ∈ R,∀1 ≤ i ≤ n : %xi(R)(s) = true i� xi v %(R)(s) . We



4.3 Reducing Multi-valued ALFP to Two-valued ALFP 55

de�ne the function b : I2 → I by b((%x1 , ..., %xn)) = % where ∀s ∈ Uk,∀R ∈ R :
%(R)(s) =

⊔
{xi|%xi(R)(s) = true ∧ 1 ≤ i ≤ n}.

Lemma 4.7 The functions f and b are monotone, b◦ f = idI and f ◦b = idI2
where idI and idI2 are the identity functions over I and I2 respectively.

Proof. In Appendix B. �

Corollary 4.8 The posets (I,v) and (I2,≤2) are isomorphic.

Proof. It follows directly from Lemma 4.7 and De�nition 2.4 given in Section
2.1. �

Second, we consider the link between a multi-valued model % of a negation-free
multi-valued ALFP clause cl and a tuple of two-valued models (%x1 , ..., %xn) of
cl. Given %0 and σ0. Let Icl,%0,σ0 = {%|[(%, σ0) sat cl] = true ∧ %0 v %} and
I2cl,%0,σ0

= {(%x1 , ..., %xn)|∀1 ≤ i ≤ n : [(%xi , σ0) sat2 cl] = true ∧ f(%0) ≤2

(%x1 , ..., %xn) ∧ C((%x1 , ..., %xn))}. We de�ne f(Icl,%0,σ0
) = {f(%)|% ∈ Icl,%0,σ0

}
and b(I2cl,%0,σ0

) = {b((%x1 , ..., %xn))|(%x1 , ..., %xn) ∈ I2cl,%0,σ0
}. Now we focus on

the posets (Icl,%0,σ0 ,v) and (I2cl,%0,σ0
,≤2). It's obvious that Icl,%0,σ0 ⊆ I and

I2cl,%0,σ0
⊆ I2. We can also prove that f(Icl,%0,σ0

) ⊆ I2cl,%0,σ0
and b(I2cl,%0,σ0

) ⊆
Icl,%0,σ0

. Then, from Corollary 4.8, we have the following theorem.

Theorem 4.9 Given %0 and a negation-free multi-valued ALFP clause cl.
The two posets (Icl,%0,σ0 ,v) and (I2cl,%0,σ0

,≤2) are isomorphic.

Proof. In Appendix B. �

The following lemma tells that if (%x1 , ..., %xn) = ∧2{(%x1 , ..., %xn)|∀1 ≤ i ≤
n : [(%xi , σ0) sat2 cl] = true ∧ f(%0) ≤2 (%x1 , ..., %xn)}, we then know that
C((%x1 , ..., %xn)) holds.

Lemma 4.10 Let M = (L,∼) be a �nite distributive multi-valued structure.
Then ∧2I2cl,%0,σ0

= ∧2{(%x1 , ..., %xn)|∀1 ≤ i ≤ n : [(%xi , σ0) sat2 cl] = true ∧
f(%0) ≤2 (%x1 , ..., %xn)}.



56 Multi-valued Alternation-free Least Fixed Point Logic

Proof. In Appendix B. �

From Theorem 4.9 and Lemma 4.10, we have the following theorem which is the
main theorem of this section.

Theorem 4.11 LetM = (L,∼) be a �nite distributive multi-valued structure,
J (L) = {x1, ..., xn}, %0 ∈ I and cl be a negation-free multi-valued ALFP clause.
Let % = uIcl,%0,σ0 , %

xi = ∧2{%xi |[(%xi , σ0) sat2 cl] = true ∧ %xi0 ≤2 %xi} where
1 ≤ i ≤ n and f(%0) = (%x1

0 , ..., %
xn
0 ). We then have % = b((%x1 , ..., %xn)).

Proof. It's obvious from Theorem 4.9 and Lemma 4.10. �

Complexity of Multi-valued ALFP: According to [29], the least solution %
of a two-valued ALFP clause cl such that %0 ≤2 %, where %0 is an initial inter-
pretation, can be computed in time O(]% + Nr · n) where N is the size of the
universe, n is the size of cl, r is the maximal nesting depth of quanti�ers in cl
and ]% is the sum of cardinalities of predicates %(R).

A multi-valued ALFP clause cl is also a two-valued ALFP clause. Assume that
we evaluate cl over a �nite distributive multi-valued structure M = (L,∼),
where L = (L,v) and J (L) is the join-irreducible elements of L. The least
solution % of cl such that %0 v %, where %0 is an initial interpretation, can be
computed in time O((]%+Nr · n) · |J (L)|), where |J (L)| is the number of ele-
ments in J (L). This means multi-valued ALFP can be evaluated in time linear
to |J (L)|. We only need to run the 2-valued succinct solver |J (L)| times. The
worst running time seems occurs when L is a linear order. In that case, we can
check the elements in the middle of the lattice and then recursively check the
upper or lower half according to the analysis result by using binary search. In
this way, we only need to run the succinct solver O(log(|J (L)|)) times.

4.4 Static Analysis of Multi-valued Transition Sys-

tems

The analysis developed in Table 3.1 naturally generalizes to a multi-valued anal-
ysis of CTL over a multi-valued TS when using multi-valued ALFP to interpret
those ALFP clauses. Notice that we need to modify the analysis for the case



4.4 Static Analysis of Multi-valued Transition Systems 57

of the CTL formula true. This is because to make sure that clauses are two
valued in multi-valued ALFP, assertions of relations are not allowed in the syn-
tax. However, we can always assert a relation in an initial interpretation %0.
Therefore, this does not limit the expressiveness of multi-valued ALFP.

We list our multi-valued analysis for CTL formulas in Table 4.3. In the case of
~R ` true, True is a prede�ned relation in %0 such that %0(True)(s) = > for all
states s.

~R ` true iff [∀s : True(s)⇒ Rtrue(s)]
~R ` p iff [∀s : Pp(s)⇒ Rp(s)]
~R ` φ1 ∨ φ2 iff ~R ` φ1 ∧ ~R ` φ2∧

[∀s : Rφ1
(s) ∨Rφ2

(s)⇒ Rφ1∨φ2
(s)]

~R ` ¬φ iff ~R ` φ∧
[∀s : ¬Rφ(s)⇒ R¬φ(s)]

~R ` EXφ iff ~R ` φ∧
[∀s : [∃s′ : T (s, s′) ∧Rφ(s′)]⇒ REXφ(s)]

~R ` E[φ1Uφ2] iff ~R ` φ1 ∧ ~R ` φ2∧
[∀s : Rφ2(s)⇒ RE[φ1Uφ2](s)]∧
[∀s : [∃s′ : T (s, s′) ∧Rφ1

(s) ∧RE[φ1Uφ2](s
′)]

⇒ RE[φ1Uφ2](s)]
~R ` AFφ iff ~R ` φ∧

[∀s : Rφ(s)⇒ RAFφ(s)]∧
[∀s : [∀s′ : ¬T (s, s′) ∨RAFφ(s′)]⇒ RAFφ(s)]

Table 4.3: CTL in Multi-valued ALFP

Let N = (S, S0,→, P, V ) be multi-valued TS, where S is �nite and P is �nite
and non-empty. We assume that N is �total� by requiring that ∀s ∈ S,∃s′ :→
(s, s′) 6= ⊥. As is introduced in Section 4.2.2, N can be encoded into multi-
valued ALFP and we de�ne corresponding predicates in %0.

We choose to evaluate multi-valued ALFP over a �nite distributive multi-valued
structuresM = (L,∼), where the negation ∼ is de�ned the same as in Example
4.2 such that ∼ is anti-monotonic, preserves De Morgan laws and ∼∼ l = l
(l ∈ L). The purpose of restricting ourselves to such a multi-valued structure is
that: (1) we can reduce our multi-valued analysis to two-valued analysis using
the method explained in Section 4.3; (2) many properties in two-valued CTL,
i.e. equivalences and dualities of CTL formulas, can be preserved in our multi-
valued analysis.



58 Multi-valued Alternation-free Least Fixed Point Logic

For a multi-valued interpretation %, %(Rφ) maps a state s to a lattice element

in L. In the following, we assume that % is the least solution to ~R ` φ subject
to %0 v % and explain Table 4.3 in multi-valued setting brie�y.

In the case of true, it's obvious that %(Rtrue) maps each state s to > according
to the semantics of multi-valued ALFP. For the atomic proposition p, we know
from the constraint ∀s : Pp(s) ⇒ Rp(s) that %(Pp) = %(Rp). The clauses for
boolean operators ∨,∧ and ¬ follow the same pattern so we just explain one
of them, namely disjunction φ1 ∨ φ2. The judgements ~R ` φ1 and ~R ` φ2
ensure that for a relation Rφ′ corresponding to a subformula φ′ of φ1 or φ2,
%(Rφ′) maps states to corresponding elements in L as intended. The clause
∀s : Rφ1

(s) ∨ Rφ2
(s) ⇒ Rφ1∨φ2

(s) ensures that %(Rφ1
) t %(Rφ2

) = %(Rφ1∨φ2
).

We can easily prove that De Morgan's law for boolean formulas are preserved
in our multi-value analysis.

In the case of EXφ, the �rst conjunct ensures that for a relation Rφ′ correspond-
ing to a subformula φ′ of φ, %(Rφ′) carries the intended analysis result for φ′.
The second conjunct ensures that ts′∈S(%(T )(s, s′) u %(Rφ)(s′)) = %(REXφ)(s)
hold for any state s. As can been seen in the following, this helps to preserve
properties in two-valued CTL in our analysis.

In the case of E[φ1Uφ2], the judgements ~R ` φ1 and ~R ` φ2 play the same
role as in the case of φ1 ∨ φ2. From the other two conjuncts and the de�ni-
tion of ~R ` EXφ, we know that for any state s we have %(RE[φ1Uφ2])(s) =
%(Rφ2

)(s) t (
⊔
s′∈S(%(T )(s, s′) u %(Rφ1

)(s) u %(RE[φ1Uφ2])(s
′))) = %(Rφ2

)(s) t
(
⊔
s′∈S %(Rφ1

)(s))u
⊔
s′∈S(%(T )(s, s′)u%(RE[φ1Uφ2])(s

′)) = %(Rφ2
)(s)t(%(Rφ1

)(s)
u %(REXE[φ1Uφ2])(s)). This means the equivalence E[φ1Uφ2] ≡ φ2 ∨ (φ1 ∧
EXE[φ1Uφ2]) in two-valued CTL is preserved in our analysis.

To explain the case of AFφ, we �rst give the de�nition of ~R ` AXφ as follows,
which ensures that %(RAXφ) =∼ %(REX¬φ).

~R ` AXφ iff ~R ` EX¬φ∧
[∀s : ¬REX¬φ(s)⇒ RAXφ(s)]

In the case of AFφ, the �rst conjunct plays the same role as in the case of



4.5 Application to Modal Transition Systems 59

EXφ. From the other two conjuncts, the de�nition of ~R ` ¬φ and the de�ni-
tion of ~R ` AXφ, we see that for any state s we have %(RAFφ)(s) = %(Rφ)(s)t
(
d
s′∈S(∼ %(T )(s, s′) t %(RAFφ)(s′))) = %(Rφ)(s) t (∼

⊔
s′∈S(%(T )(s, s′)u ∼

%(RAFφ)(s′))) = %(Rφ)(s) t (∼
⊔
s′∈S(%(T )(s, s′) u %(R¬AFφ)(s′))) = %(Rφ)(s)

t ∼ %(REX¬AFφ)(s) = %(Rφ)(s) t %(RAXAFφ)(s). This means the equivalence
AFφ ≡ φ ∨AXAFφ in two-valued CTL is preserved in our analysis.

We de�ne our analysis for the case of EFφ,A[φ1Uφ2],EGφ and AGφ as fol-
lows. One can verify that the equivalences introduced in Section 2.3.2 is also
preserved in our analysis.

~R ` EFφ iff ~R ` E[trueUφ]
~R ` A[φ1Uφ2] iff ~R ` E[¬φ2U(¬φ1 ∧ ¬φ2)] ∧ ~R ` AFφ2∧

[∀s : ¬RE[¬φ2U(¬φ1∧¬φ2](s) ∧RAFφ2(s)⇒ RA[φ1Uφ2](s)]
~R ` EGφ iff ~R ` AF¬φ∧

[∀s : ¬RAF¬φ(s)⇒ REGφ(s)]
~R ` AGφ iff ~R ` E[trueU¬φ]∧

[∀s : ¬RE[trueU¬φ](s)⇒ RAGφ(s)]

Remark: In this section, we have generalized our work on the analysis of
2-valued CTL to a multi-valued setting by evaluating those clauses using the se-
mantics of multi-valued ALFP. We have shown that many properties of 2-valued
CTL can be preserved in our multi-valued analysis so that our multi-valued anal-
ysis for CTL is a satisfactory analysis approach. A multi-valued semantics for
CTL has been proposed in [43]. It would be an interesting work to compare our
multi-valued analysis result with their semantics of multi-valued CTL.

On the other hand, we also want to point out that we do not intend to, in
general, obtain a multi-valued analysis by interpreting 2-valued ALFP clauses
using multi-valued semantics of ALFP. However, this could be a �rst try.

4.5 Application to Modal Transition Systems

This section is an application of multi-valued ALFP. We still focus on analyzing
temporal properties of transition systems. We show that the three-valued CTL



60 Multi-valued Alternation-free Least Fixed Point Logic

model checking problem over Kripke modal transition systems can be encoded
into three-valued ALFP. This also concretizes the insight proposed in the previ-
ous section that our static analysis developed for two-valued CTL can be lifted
to multi-valued settings.

4.5.1 Modal Transition Systems

Three-valued modeling formalisms are useful techniques in reasoning about sys-
tem properties. Partial Kripke structures [49] support the modeling of incom-
plete state space of a system. Modal transition systems (MTSs [52, 53]) provide
speci�cations of necessary behaviors and possible behaviors, which explicitly
characterizes uncertainties of systems, and allow for the validation as well as
refutation of system properties. Kripke modal transition systems (Kripke MTSs
) [40, 41, 56] is a generalization of MTSs.

Research in [78] has compared the above three types of three-valued modeling
formalisms and shown that they have the same expressiveness. We give the
de�nition of Kripke MTSs as follows.

Definition 4.12 (Kripke Modal Transition System) A Kripke
Modal Transition System (KMTS) over a �nite atomic propositions set P is a tu-

ple M = (S, S0,
must−→ ,

may−→, L), where S is a nonempty �nite set of states, S0 ⊆ S
is a set of initial states,

may−→⊆ S×S and
must−→⊆ S×S are transition relations such

that the relation
may−→ is total and

must−→⊆may−→, and L : S × P → {true,⊥, false}
is an interpretation that associates a truth value in {true,⊥, false} with each
atomic proposition in P for each state in S.

Transitions in
must−→ and

may−→ are must transitions and may transitions respec-

tively. We write s
must−→ s′ (resp. s

may−→ s′) when (s, s′) ∈must−→ (resp. (s, s′) ∈may−→).
A must (resp. may) path from state s is a maximal sequence of states π =
s0, s1... such that s = s0 and for each pair of consecutive states si, si+1 in π,

we have si
must−→ si+1 (resp. si

may−→ si+1). Since
may−→ is total, every may path is

in�nite. A must path can be �nite since
must−→ is not necessarily total. By maxi-

mality we mean that it's not possible to extend the path by any other transition
of the same type. We use |π| to denote the length of the path π. If π is an
in�nite path, then |π| =∞. If π = s0, s1...sn, then |π| = n+1. For a �nite path
π = s0, s1...sn, we use π[k](0 ≤ k ≤ n) to denote the (k+1)th state sk of π. For



4.5 Application to Modal Transition Systems 61

an in�nite path π = s0, s1..., we use π[k](0 ≤ k) to denote the (k + 1)th state

sk of π as well. We say that s′ is a must (resp. may) successor of s if s
must−→ s′

(resp. s
may−→ s′).

Reasoning about Kripke MTSs requires 3-valued logical formalisms. The work in
[41] de�nes a game-based three-valued CTL model checking over Kripke MTSs.
In the next section, we introduce 3-valued ALFP as an application of multi-
valued ALFP. In 3-valued setting, we can characterize uncertainties of system
behaviors as unknown information. The application of the 3-valued ALFP to
the analysis of Kripke MTSs is introduced in Section 4.5.4.

4.5.2 Three-valued ALFP

In this section, we de�ne three-valued ALFP. The idea here is that we reuse the
syntax of multi-valued ALFP de�ned in Section 4.2.1 and de�ne three-valued
semantics based on Kleene's three-valued proposition logic [48].

The syntax of 3-valued ALFP is de�ned in the following. As in multi-valued
ALFP, we also restrict ourselves to its strati�ed fragment.

v ::= c | x
pre ::= R(v1, ..., vn) | ¬R(v1, ..., vn) | pre1 ∧ pre2

| pre1 ∨ pre2 | ∀x : pre | ∃x : pre
cl ::= true | cl1 ∧ cl2 | pre⇒ R(v1, ..., vn) | ∀x : cl

It remains to de�ne the semantics of 3-valued ALFP. We brie�y recall Kleene's
3-valued propositional logic in the following.

In Kleene's 3-valued propositional logic [48], ⊥ is understood as �unknown".
Conjunction ∧3 and disjunction ∨3 are de�ned as the minimum and maximum
of its arguments according to the truth ordering, false ≤3 ⊥ ≤3 true (see

Figure 4.1). Also we have
∧3
i∈∅ fi = true and

∨3
i∈∅ fi = false. Negation

¬3 maps true to false, false to true, and ⊥ to ⊥. We use x <3 y (for all
x, y ∈ {true,⊥, false}) to mean that x ≤3 y and x 6= y.



62 Multi-valued Alternation-free Least Fixed Point Logic

Figure 4.1: Truth Ordering ≤3

From above, we can see thatM = (L,¬3), where L = ({true, false,⊥},≤3) =
({true, false,⊥},≤3,∨3,∧3, false, true), is a multi-valued structure. There-
fore, by interpreting the syntax of 3-valued ALFP overM, we can derive the se-
mantics of 3-valued ALFP and all theoretical results developed for multi-valued
ALFP in Section 4.2.1 are preserved in the 3-valued setting. Since M here is
also �nite and distributive, we know from Section 4.3 that 3-valued ALFP can
be reduced to 2-valued ALFP as well.

Let Int3 :
∏
k Relk → Uk → {true,⊥, false} be a mapping. We de�ne the

3-valued interpretation of ALFP in Table 4.4 where % ∈ Int3 maps each k-ary
predicate symbol R to a 3-valued function and σ is an interpretation of vari-
ables. Notice that the truth value of [(%, σ) sat3 pre] is three valued, but the
truth value of [(%, σ) sat3 cl] still remains two valued. Given σ0 and a clause
cl, a mapping % satis�es cl if and only if [(%, σ0) sat3 cl] = true.

[(%, σ) sat3 R(v1, ..., vn)] = %(R)(σ(v1), ..., σ(vn))
[(%, σ) sat3 ¬R(v1, ..., vn)] = ¬3[(%, σ) sat3 R(v1, ..., vn)]
[(%, σ) sat3 pre1 ∧ pre2] = [(%, σ) sat3 pre1] ∧3 [(%, σ) sat3 pre2]
[(%, σ) sat3 pre1 ∨ pre2] = [(%, σ) sat3 pre1] ∨3 [(%, σ) sat3 pre2]
[(%, σ) sat3 ∀x : pre] = mina∈U{[(%, σ[x 7→ a]) sat3 pre]}
[(%, σ) sat3 ∃x : pre] = maxa∈U{[(%, σ[x 7→ a]) sat3 pre]}
[(%, σ) sat3 true] = true
[(%, σ) sat3 cl1 ∧ cl2] = [(%, σ) sat3 cl1] ∧ [(%, σ) sat3 cl2]

[(%, σ) sat3 pre⇒ R(v1, ..., vn)] =

 true [(%, σ) sat3 pre] ≤3 [(%, σ)
sat3 R(v1, ..., vn)]

false otherwise

[(%, σ) sat3 ∀x : cl] = ∀a ∈ U : [(%, σ[x 7→ a]) sat3 cl] = true

Table 4.4: Three-valued Interpretation of ALFP



4.5 Application to Modal Transition Systems 63

Let us consider the mappings S, S1, S2 : Uk → {true,⊥, false}. For the truth
ordering ≤3, we have the following de�nitions. We de�ne that S1 ≤3 S2 i�
∀x ∈ Uk : S1(x) ≤3 S2(x). Given an index set I, the greatest lower bound is

de�ned as S =
∧3
i∈I Si i� ∀x ∈ Uk : S(x) = ∧3i∈ISi(x). We write <3 for the

irre�exive part of ≤3.

The lexicographic ordering ≤3
] for the interpretations of relations is de�ned as

follows: %1 ≤3
] %2 if there exists a rank i ∈ {0, ..., r} for a strati�ed clause

cl =
∧

0≤i≤r cli such that

• %1(R) = %2(R) whenever rankR < i,

• %1(R) ≤3 %2(R) whenever rankR = i,

• either i = r or %1(R) <3 %2(R) for some R with rankR = i.

We also de�ne %1 ≤3 %2 to mean that %1(R) ≤3 %2(R) for all R ∈ R.

The existence of the least model of 3-valued interpretations is guaranteed by
the following corollary.

Corollary 4.13 {%|[(%, σ0) sat3 cl] = true} is a Moore Family with respect
to truth ordering, i.e. is closed under greatest lower bounds, whenever cl is
closed and strati�ed; the greatest lower bound ∧3] {%|[(%, σ0) sat3 cl] = true} is
the least model of cl.

More generally, given %0 the set {%|[(%, σ0) sat3 cl] = true∧%0 ≤3 %} is a Moore
Family with respect to truth ordering and ∧3] {%|[(%, σ0) sat3 cl] = true∧%0 ≤3 %}
is the least model.

Proof. It's obvious from Theorem 4.2. �

4.5.3 Three-valued CTL

In this section, we introduce 3-valued CTL brie�y. We consider the following
fragment of CTL where formulas φ over a set of propositions P is de�ned as
follows:



64 Multi-valued Alternation-free Least Fixed Point Logic

φ ::= true | p | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | EXφ | E[φ1Uφ2] | AFφ

where p ∈ P.

The semantics for 3-valued CTL formulas with respect to Kripke MTSs is de-
�ned in Table 4.5. This de�nition is obtained from the one in [41] by using the
equivalence AFφ ≡ A[trueUφ] to obtain the semantics of the AF operator.
One can check that the above equivalence and those listed in the following hold
according to [41].

AXφ ≡ ¬EX¬φ
EFφ ≡ E[trueUφ]
A[φ1Uφ2] ≡ ¬E[¬φ2U(¬φ1 ∧ ¬φ2)] ∧AFφ2

An equivalent semantics for the temporal operators EX, EU and AF is given
in Table 4.6, where we focus on the following two cases. One case is when a
temporal formula φ evaluates to true and the other is when the formula φ eval-
uates to either true or ⊥ according to Table 4.5. The semantics de�ned in Table
4.6 helps to better understand the �ow logic approach to the analysis of Kripke
MTSs which will be developed in the next section. It is easy to verify that the
3-valued semantics of the temporal operators EX, EU and AF given in Table
4.5 and Table 4.6 are equivalent.

Remark: To help better understand the three-valued CTL, we provide a fur-
ther explanation brie�y. Due to the state explosion problem when modeling
systems with concrete models, abstraction techniques have been used to build
abstract models of systems which result in much smaller sizes. A Kripke MTS
itself is a formalism of abstract models. The three-valued CTL introduced here
can be used to reason Kripke MTSs. Assume that a Kripke MTS MA is an
abstraction of a (concrete) Kripke structure MC and that MA satis�es a CTL
formula (which means all the initial states of MA satisfy this formula). A nat-
ural question that arises is whether MC satis�es this formula (which means all
the initial states ofMC satisfy this formula) as well. The three-valued semantics
of CTL introduced in this section guarantees that if MA satis�es (resp. does
not satis�es) a CTL formula φ, then MC also satis�es (resp. does not satis�es)
the formula φ. We explain this formally in the following.

We rephrase the de�nition of mixed simulation introduced in [41, 52, 40, 106]



4.5 Application to Modal Transition Systems 65

[(M, s) |=3 true] = true

[(M, s) |=3 p] =

 true L(s, p) = true
false L(s, p) = false
⊥ L(s, p) = ⊥

[(M, s) |=3 ¬φ] = ¬3[(M, s) |=3 φ]
[(M, s) |=3 φ1 ∨ φ2] = [(M, s) |=3 φ1] ∨3 [(M, s) |=3 φ2]
[(M, s) |=3 φ1 ∧ φ2] = [(M, s) |=3 φ1] ∧3 [(M, s) |=3 φ2]

[(M, s) |=3 EXφ] =



true there exists a must path π from

s such that |π| > 1 and

[(M,π[1]) |=3 φ] = true
false if for each may path π from s,

we have [(M,π[1]) |=3 φ] = false
⊥ otherwise

[(M, s) |=3 E[φ1Uφ2]] =



true there exists a must path π from

s such that ∃ 0 ≤ k < |π| :
[([(M,π[k]) |=3 φ2] = true)
∧ (∀ 0 ≤ j < k : [(M,π[j]) |=3 φ1] =
true)]

false if for each may path π from s,
we know that (∀ 0 ≤ k < |π| :
[(∀ 0 ≤ j < k : [(M,π[j]) |=3 φ1] 6=
false)⇒ ([(M,π[k]) |=3 φ2] =
false)]) ∧ ((∀ 0 ≤ k < |π| :
[(M,π[k]) |=3 φ1] 6= false)⇒ |π| =∞)

⊥ otherwise

[(M, s) |=3 AFφ] =



true if for each may path π from s,
we know that ∃ 0 ≤ k < |π| :
[(M,π[k]) |=3 φ] = true

false if there exists a must path π
from s such that ∀ 0 ≤ k < |π| :
[(M,π[k]) |=3 φ] = false ∧ |π| =∞

⊥ otherwise

Table 4.5: Three-valued Semantics for CTL

in the following.

Definition 4.14 Let MC = (SC , S0C , T, LC) be a Kripke structure over



66 Multi-valued Alternation-free Least Fixed Point Logic

[(M, s) |=3 EXφ] =



true there exists a must path π
from s such that |π| > 1 and

[(M,π[1]) |=3 φ] = true
true or ⊥ there exists a may path π

from s such that

[(M,π[1]) |=3 φ] 6= false
false otherwise

[(M, s) |=3 E[φ1Uφ2]] =



true there exists a must path π
from s such that ∃ 0 ≤ k < |π| :
[([(M,π[k]) |=3 φ2] = true)
∧ (∀ 0 ≤ j < k : [(M,π[j]) |=3 φ1]
= true)]

true or ⊥ there exists a may path π
from s such that ∃ 0 ≤ k < |π| :
[([(M,π[k]) |=3 φ2] 6= false)
∧ (∀ 0 ≤ j < k : [(M,π[j]) |=3 φ1]
6= false)]

false otherwise

[(M, s) |=3 AFφ] =



true if for each may path π from

s, we know that ∃ 0 ≤ k < |π| :
[(M,π[k]) |=3 φ] = true

true or ⊥ if for each must path π from

s, we know either |π| 6=∞ or

∃ 0 ≤ k < |π| : [(M,π[k]) |=3 φ]
6= false

false otherwise

Table 4.6: Three-valued Semantics for Temporal Operators in CTL

atomic propositions set P , and let MA = (SA, S0A ,
must−→ ,

may−→, LA) be an ab-
stract Kripke MTS over P . We say that H ⊆ SC × SA is a mixed simulation
from MC to MA if (sc, sa) ∈ H implies the following:

1. ∀p ∈ P : if p ∈ LA(sa) (resp. p 6∈ LA(sa)), then LC(sc, p) = true (resp.
LC(sc, p) = false).

2. if sc → s′c, then there is some s′a ∈ SA such that sa
may−→ s′a and (s′c, s

′
a) ∈ H.

3. if sa
must−→ s′a, then there is some s′c ∈ SC such that sc → s′c and (s′c, s

′
a) ∈

H.



4.5 Application to Modal Transition Systems 67

We say thatMA is an abstraction ofMC (orMC is represented byMA), denoted
MC � MA, if we have a mixed simulation H such that ∀sc ∈ S0C ,∃sa ∈ S0A :
(sc, sa) ∈ H and ∀sa ∈ S0A ,∃sc ∈ S0C : (sc, sa) ∈ H.

We de�ne [M |=3 φ] = true (resp. [M |=3 φ] = false) to mean that ∀s0 ∈
S0 : [(M, s0) |=3 φ] = true (resp. [(M, s0) |=3 φ] = false). Otherwise,
[M |=3 φ] = ⊥. We de�ne that [M |= φ] = true i� (M, s) |= φ and that
[M |= φ] = false i� (M, s) 2 φ.

Information ordering v3, depicted in Figure 4.2 on truth values is de�ned by
⊥ v3 true, ⊥ v3 false, x v3 x (for all x ∈ {true,⊥, false}), and x 6v y other-
wise.

Figure 4.2: Information Ordering v3

The following theorem guarantees that if a Kripke MTSMA satis�es (resp. does
not satis�es) a CTL formula φ, then for a Kripke structure MC represented by
MA, we have that MC also satis�es (resp. does not satis�es) the formula φ.
This helps to understand the three-valued semantics of CTL introduced in this
section.

Theorem 4.15 [41, 40] Let H ⊆ SC × SA be a mixed simulation relation
from a concrete Kripke structure MC to a Kripke MTS MA. Then, for each
sc ∈ SC and sa ∈ SA such that (sc, sa) ∈ H and every CTL formula φ, we have
that [(MA, sa) |=3 φ] v3 [(MC , sc) |= φ]. Moreover, when MC � MA, for every
CTL formula φ, we have [MA |=3 φ] v3 [MC |= φ].

Example 4.4 Let MC = (SC , S0C , T, LC) be a concrete Kripke structure

atomic propositions set P and MA = (SA, S0A ,
must−→ ,

may−→, LA) be an abstract



68 Multi-valued Alternation-free Least Fixed Point Logic

Kripke MTS over P . Let EXp be a CTL formula, where p is an atomic propo-
sition. Assume that sc ∈ SC and sa ∈ SA such that (sc, sa) ∈ H, where H is a
mixed simulation relation from MC to MA.

Assume that [(MA, sa) |=3 EXp] = true. According to the semantics of three-

valued CTL, we know that ∃s′a ∈ SA : sa
must−→ s′a ∧ [(MA, s

′
a) |=3 p] = true.

From De�nition 4.14, we know that there is some s′c ∈ SC such that sc → s′c and
(s′c, s

′
a) ∈ H. Since LA(s′a, p) v3 LC(s′c, p), we know that [(MC , s

′
c) |= p] = true.

Therefore, from two-valued CTL semantics, we know that [(MC , sc) |= EXp] =
true.

Assume that [(MA, sa) |=3 EXp] = false. According to the semantics of three-

valued CTL, we know that ∀s′a ∈ SA such that sa
may−→ s′a, [(MA, s

′
a) |=3 p] =

false. Let s′c be a state in SC such that sc → s′c. From De�nition 4.14, we

know that there is some s′a ∈ SA such that sa
may−→ s′a and (s′c, s

′
a) ∈ H. Since

LA(s′a, p) v3 LC(s′c, p), we know that [(MC , s
′
c) |= p] = false. Therefore, from

two-valued CTL semantics, we know that [(MC , sc) |= EXp] = false.

From above, we know that [MA |=3 EXp] v3 [MC |= EXp].

4.5.4 Three-valued CTL in Three-valued ALFP

In this section, we use three-valued ALFP to analyze Kripke MTSs. It has been
pointed out in Section 4.4 that the �ow logic approach developed in Table 3.1
naturally generalizes to a multi-valued analysis of CTL over a multi-valued TS
when using multi-valued ALFP to interpret those ALFP clauses. (Our multi-
valued analysis for CTL has been listed in Table 4.3, where we have also made a
necessary modi�cation in order to analyze the formula true using multi-valued
ALFP.) As an application of this observation, we focus on the 3-valued setting.
By interpreting those ALFP constraints over 3-valued ALFP semantics, we get
a 3-valued analysis for 3-valued CTL over a Kripke MTSs. Moreover, a stronger
result is provided in this section, that is 3-valued ALFP could encode 3-valued
CTL model checking over Kripke MTSs.

To encode a Kripke MTS (S, S0,
must−→ ,

may−→, L) into 3-valued ALFP, we can de�ne
corresponding predicates in %0 as follows. The universe U = S.

• for each atomic proposition p over P, we de�ne a predicate Pp such that



4.5 Application to Modal Transition Systems 69

%0(Pp)(s) = L(s, p),

• we de�ne a transition relation T such that %0(T )(s, s′) = true if (s, s′) ∈must−→ ,

%0(T )(s, s′) = ⊥ if (s, s′) ∈may−→ but (s, s′) 6∈must−→ , and %0(T )(s, s′) = false
otherwise.

We explain Table 4.3 in three-valued setting in the following. For each CTL
formula φ, there is a judgement of the form ~R ` φ to de�ne a relation Rφ. The
intention is that [(M, s) |=3 φ] = %(Rφ)(s) holds in the least model % satisfying
~R ` φ ∧ %0 ≤3 %.

For the relation Rtrue corresponding to the CTL formula true, %(Rtrue) should
map each state s to true and this is guaranteed by the ALFP clause ∀s :
True(s) ⇒ Rtrue(s). For the atomic proposition p we make use of the pre-
de�ned predicate Pp and impose the constraint ∀s : Pp(s) ⇒ Rp(s) such that
%(Rp) maps a state s to the same truth value as %(Pp) does. The clauses for
boolean operators ∨,∧ and ¬ follow the same pattern so we just explain one of
them, namely disjunction φ1 ∨ φ2. The judgements ~R ` φ1 and ~R ` φ2 ensure
that for the relations Rφ′ corresponding to subformulas of φ1 or φ2, %(Rφ′) map
states to truth values correctly. The clause ∀s : Rφ1

(s) ∨ Rφ2
(s) ⇒ Rφ1∨φ2

(s)
requires that Rφ1∨φ2(s) is mapped to true (resp. true or ⊥) if Rφ1(s) or Rφ2(s)
is mapped to true (resp. true or ⊥).

In the case of EXφ, the �rst conjunct ensures that for the relations Rφ′ corre-
sponding to subformulas of φ, %(Rφ′) map states to truth values correctly. The
second conjunct requires that if there is a must (resp. may) transition from s
to s′, i.e. %(T )(s, s′) equals to true (resp. true or ⊥), and Rφ(s′) is mapped to
true (resp. true or ⊥), then REXφ(s) is mapped to true (resp. true or ⊥). The
above case corresponds to the true (resp. true or ⊥) case in the semantics of
the EX operator in Table 4.6.

The clause for E[φ1Uφ2] captures two possibilities. If Rφ2(s) is mapped to true
(resp. true or ⊥), then %(RE[φ1Uφ2]) should map s to true (resp. true or ⊥).
Alternatively if Rφ1

(s) is mapped to true (resp. true or ⊥) and there is a must
(resp. may) transition from s to s′, i.e. %(T )(s, s′) equals to true (resp. true or
⊥), and RE[φ1Uφ2](s

′) is mapped to true (resp. true or ⊥), then %(RE[φ1Uφ2])
should also map s to true (resp. true or ⊥).

We pay slightly more attention to the clause for AFφ due to the existence of



70 Multi-valued Alternation-free Least Fixed Point Logic

stuck states with respect to must transitions. If Rφ(s) is mapped to true (resp.
true or ⊥), then %(RAFφ) should map s to true (resp. true or ⊥). If %(RAFφ)
maps all may (resp. must) successors s′ of s, i.e. %(T )(s, s′) equals to true or ⊥
(resp. true), to true (resp. true or ⊥), then we impose that RAFφ(s) is mapped
to true (resp. true or ⊥). Notice that if there are no outgoing must transitions
from s, then ¬%(T )(s, s′) = true or ⊥ for any state s′. In this case, the third
conjunct requires %(RAFφ) to map s to true or ⊥.

We have the following theorem saying that the best analysis result of our �ow
logic approach to the analysis of Kripke MTSs coincides with the solutions for
the model checking problem for 3-valued CTL with respect to Kripke MTSs.

Theorem 4.16 For a CTL formula φ and the least model % of ~R ` φ such
that % = ∧3]{% | [(%, σ) sat3 (~R ` φ)] = true, %0 ≤3 %}, where %0 de�nes Pp, T

and True, we know that [(M, s) |=3 φ] = %(Rφ)(s).

Proof. In Appendix B. �

Example 4.5 Consider a Kripke MTS, given by the diagram to the left, with
S = {s1, s2, s3}, S0 = {s1}, L(s1, p) = L(s2, p) = false and L(s3, p) = true.

Solid lines represent transitions in
must−→ and dashed lines denote transitions in

may−→ \ must−→ .

s %(RAFp)(s) [(M, s) |=3
AFp]

s1 ⊥ ⊥
s2 ⊥ ⊥
s3 true true

We evaluate the CTL formula AFp over the above Kripke MTS using the 3-
valued ALFP and the 3-valued semantics of CTL respectively. The results are
given in the table to the right. We can see that model checking and our static
analysis give the same result.



4.6 Future Work 71

Using our static analysis approach, we �rst encode the above Kripke MTS in %0
and then specify our analysis with the judgement ~R ` AFp. According to Table
4.3, the following clause cl

[∀s : Pp(s)⇒ Rp(s)]∧
[∀s : Rp(s)⇒ RAFp(s)]∧
[∀s : [∀s′ : ¬T (s, s′) ∨RAFp(s′)]⇒ RAFp(s)]

will be generated and the least solution % to cl subject to %0 ≤3 % can then be
calculated according to the 3-valued semantics of ALFP.

4.6 Future Work

In this chapter, we have developed a multi-valued analysis for CTL (without
fairness). In our future work, we are interested in comparing our multi-valued
analysis result with the semantics of multi-valued CTL proposed in [43]. In
two-valued model checking, fairness assumptions have been used to rule out
unrealistic computation paths. We are also interested in introducing fairness
assumptions into the multi-valued setting and developing a multi-valued analysis
for CTL with fairness assumptions.



72 Multi-valued Alternation-free Least Fixed Point Logic



Chapter 5

Alternation-free µ-calculus
in Alternation-free Least

Fixed Point Logic

Chapter 3 presents a �ow logic approach to static analysis which encodes model
checking of CTL formulas in ALFP. In this chapter, we continue the line of work
there and focus on a larger fragment of temporal logic, namely the Alternation-
free fragment of the µ-calculus, and show that this fragment of logic can be
characterised in a similar way. To do this, we �rst propose an Alternation-free
Normal Form (AFNF), where negations are only applied to closed subformulas;
the expressive power of closed formulas in AFNF is equivalent to the alternation-
free fragment of the µ-calculus. Then, we show that model checking for the
alternation-free µ-calculus can be encoded in ALFP with the usual notion of
strati�cation, i.e. the Moore family result makes use of a lexicographic order-
ing imposed by a suitable choice of ranking of the relations in the ALFP formula.

When negations are applied to open µ-calculus subformulas, our encoding method
fails. We therefore establish a negative result showing that there exists a µ-
calculus formula of alternation depth 2 whose least �xed point semantics can-
not be characterized as a Moore Family property in ALFP with respect to any
notion of ranking.



74 Alternation-free µ-calculus in Alternation-free Least Fixed Point Logic

The structure of this chapter is as follows. In Section 5.1, we introduce the
alternation-free fragment of the modal µ-calculus. First, we give the de�ni-
tion of alternation depth of the µ-calculus and de�ne the alternation-free µ-
calculus. Then we propose Alternation-free Normal Form. The encoding of the
alternation-free µ-calculus into ALFP is introduced in Section 5.2. Section 5.3
explains our negative result.

5.1 The Alternation-free Fragment of the Modal

µ-calculus

5.1.1 The Alternation Depth of the µ-calculus

De�nitions of the alternation depth for modal µ-calculus formulas can be found
in [6, 7, 8]. Based on [8], where the de�nition of the alternation depth is given
for a version of the modal µ-calculus with simultaneous �xpoints, we give our
de�nition for the modal µ-calculus with just unary �xpoints.

We say that a formula ϕ is a proper subformula of formula φ i� ϕ is a subformula
of φ but is not φ itself. A formula is called a µ-formula i� its main connective is µ.
A subformula ϕ of φ is called a µ-subformula of it i� the main connective of ϕ is
µ. The notions of ν-formula and ν-subformula can be de�ned similarly. Both µ-
formula and ν-formula are called �xpoint formula, and similarly µ-subformula
and ν-subformula are called �xpoint subformula. A µ-subformula ϕ of φ is
called a top-level µ-subformula of it i� ϕ is not a µ-subformula of any other
µ-subformula of φ. A µ-subformula ϕ of φ is called a top µ-subformula of it i�
ϕ is not a µ-subformula of any other �xpoint subformula of φ. The notions of
top-level ν-subformula and top ν-subformula can be de�ned similarly. Given a
set of µ-calculus formulas, a formula in the set is called a maximal formula of
the set i� it is not a proper subformula of any other formulas in this set.

Definition 5.1 (The Alternation Depth of Formulas) For a
closed µ-calculus formula φ given in Negation-free PNF, the alternation depth,
ad(φ), is de�ned inductively as follows (assuming that max{∅} = 0).

1. If φ contains closed proper �xpoint subformulas, and φ1,...,φn are the
maximal formulas of the set of closed proper �xpoint subformulas of φ,



5.1 The Alternation-free Fragment of the Modal µ-calculus 75

then

ad(φ) = max{ad(φ′), ad(φ1), ..., ad(φn)}

where φ′ is obtained from φ by substituting new atomic propositions
p1,...,pn for φ1,...,φn.

2. If φ contains no closed proper �xpoint subformulas then ad(φ) is de�ned
as follows.

- ad(p) = 0, for any atomic proposition p.

- ad(φ1 ∨ φ2) = ad(φ1 ∧ φ2) = max(ad(φ1), ad(φ2)).

- ad([a]ϕ) = ad(〈a〉ϕ) = ad(ϕ), for any transition relation a.

- ad(µQ.ϕ) = 1 +max{ad(ϕ′1), ..., ad(ϕ′n)} where ϕi(1 ≤ i ≤ n) is top-
level ν-subformula of ϕ and ϕ′i(1 ≤ i ≤ n) is constructed from ϕi by
substituting all free variables with any new propositions.

- ad(νQ.ϕ) = 1 +max{ad(ϕ′1), ..., ad(ϕ′n)} where ϕi(1 ≤ i ≤ n) is top-
level µ-subformula of ϕ and ϕ′i(1 ≤ i ≤ n) is constructed from ϕi by
substituting all free variables with any new propositions.

As in [7], we de�ne the alternation-free fragment of the µ-calculus formulas as
those formulas whose alternation depth are zero or one.

Example 5.1 Let φ = νQ1.((p ∧ 〈a〉Q1) ∨ µQ2.(q ∧ 〈a〉Q2)) be a µ-calculus
formula. We can see that φ contains a closed proper �xpoint subformula φ1 =
µQ2.(q ∧ 〈a〉Q2). We substitute the subformula φ1 in φ with p1 and we get
φ′ = νQ1.((p∧ 〈a〉Q1)∨ p1). According to De�nition 5.1, we know that ad(φ) =
max{ad(φ′), ad(φ1)}. Since φ′ contains no closed proper �xpoint subformulas
and it contains no top-level µ-subformulas, we know that ad(φ′) = 1. Since
φ1 contains no closed proper �xpoint subformulas and it contains no top-level
ν-subformulas, we know that ad(φ1) = 1. Therefore, ad(φ) = max{1, 1} = 1.
Hence, φ is an alternation-free formula.

5.1.2 Alternation-free Normal Form

In this section, we propose an Alternation-free Normal Form (AFNF) and show
that closed formulas in AFNF exactly characterize the alternation-free fragment
of the modal µ-calculus. This will facilitate our subsequent development.



76 Alternation-free µ-calculus in Alternation-free Least Fixed Point Logic

Definition 5.2 (Syntax of Alternation-Free Normal Form)
Let V ar be a set of variables, P be a set of atomic propositions that is closed
under negation. The syntax of Alternation-free Normal Form is de�ned as fol-
lows:

φ ::= p | Q | φ1 ∨ φ2 | φ1 ∧ φ2 | 〈a〉φ | [a]φ | µQ.φ | ¬µQ.φ

where no variable is quanti�ed twice and ¬µQ.φ is a closed formula.

We focus on closed formulas in AFNF. In the following, we brie�y show that
close formulas in AFNF has the same expressive power as the alternation-free
fragment of the modal µ-calculus. First we will show that all alternation-free
µ-calculus formulas can be put in AFNF and the resulting formulas in AFNF
are closed. Second we will show that all closed formulas in AFNF are indeed
alternation-free.

We �rst have the following lemma about the alternation-free µ-calculus, which
gives us some useful insights when proving Lemma 5.4.

Lemma 5.3 For any alternation-free µ-calculus formula φ in Negation-free
PNF, we have the following:

1. For any µ-subformula ϕ of φ, all top-level ν-subformulas of ϕ are closed.

2. For any ν-subformula ϕ of φ, all top-level µ-subformulas of ϕ are closed.

Proof. We prove by contradiction. Assume that there exists an open top-
level ν-subformula ϕ1 for a µ-subformula ϕ of φ. According to De�nition 5.1,
ad(φ) ≥ 1 + ad(ϕ′1) ≥ 1 + 1 +max{...} ≥ 2. Therefore φ is not alternation-free
and this contradicts our assumption. The proof for any ν-subformula of φ is
similar. �

Translating Alternation-free µ-calculus to its Alternation-free Nor-

mal Form: Informally, we can use the following three steps to translate an
alternation-free µ-calculus formula in Negation-free PNF to its Alternation-free
Normal Form.



5.1 The Alternation-free Fragment of the Modal µ-calculus 77

1. First, we use the duality νQ.φ ≡ ¬µQ.¬φ[¬Q/Q] to eliminate all ν oper-
ators in the formula.

2. Second, we use De Morgan's law and the dualities ¬[a]φ ≡ 〈a〉¬φ and
¬〈a〉φ ≡ [a]¬φ to push negations as deep as possible. When a negation
is pushed to a positive occurrence of an atomic proposition, it cannot be
pushed any deeper. Negated occurrences of atomic propositions might
appear when this step is �nished.

3. Finally, we substitute each negated occurrence ¬p of atomic proposition p
with a new atomic proposition p′ to eliminate negations in front of atomic
propositions.

Based on the above mentioned translation method, we have the following lemma.

Lemma 5.4 Let φ be an alternation-free µ-calculus formula in Negation-free
PNF and assume that we translate φ to its Alternation-free Normal Form φ′

using our translation method. Then, each subformula of the form ¬µQ.ϕ in the
formula φ′ is indeed closed and no negations are applied to variables in φ′.

Proof. In Appendix C. �

Hence, we have the following, which �nishes our proofs for one direction.

Lemma 5.5 Every alternation-free µ-calculus formula φ in Negation-free PNF
can be translated to its Alternation-free Normal Form φ′ while preserving the
semantics. The resulting formula φ′ is closed.

Proof. From Lemma 5.4, we know that after translating an alternation-free
µ-calculus formula φ in negation-free PNF using our three-steps transformation,
the formula φ′ is indeed in Alternation-free Normal Form. It's obvious that φ′

is closed. �

Example 5.2 Let φ = µQ1.((p∧〈a〉Q1)∨νQ2.(q∧〈a〉Q2)) be an alternation-
free µ-calculus formula in Negation-free PNF. We can translate φ to its equiva-
lent Alternation-free Normal Form φ′ = µQ1.((p ∧ 〈a〉Q1) ∨ ¬µQ2.(q

′ ∨ [a]Q2))
where q′ ≡ ¬q. We can see that φ′ is closed.



78 Alternation-free µ-calculus in Alternation-free Least Fixed Point Logic

We now start to show the other direction.

Translating Alternation-free Normal Form to Negation-free PNF: By
using the following three steps repeatedly, we can translate a formula φ in AFNF
to its Negation-free PNF φ′.

1. First, we eliminate all maximal subformulas of the form ¬µQ.ϕ in φ by
duality ¬µQ.ϕ ≡ νQ.¬ϕ[¬Q/Q].

2. Second, we use De Morgan's law and dualities ¬[a]ϕ ≡ 〈a〉¬ϕ and ¬〈a〉ϕ ≡
[a]¬ϕ to push negations as deep as possible. Negated occurrences of atomic
propositions might appear when this step is �nished.

3. Third, we substitute each negated occurrence ¬p of atomic proposition p
with a new atomic proposition p′ to eliminate negations in front of atomic
propositions.

Notice that after we eliminate a subformula ¬µQ.ϕ using the �rst step above,
negations might be pushed to some positive occurrences of µ-subformulas of ϕ
in the second step. Therefore, new negative occurrences of µ operators appear.
We can go back and start from the �rst step again to eliminate newly occurred
negative µ operators. Since each formula only has �nite number of subformu-
las, only �nite number of new negative occurrences of µ operators can appear.
Therefore, this repetition will terminate and �nally we can get the formula φ′

in Negation-free PNF. The translation clearly preserves the semantics.

We have the following lemmas, which �nishes the proof for the other direction.

Lemma 5.6 Given a µ-calculus formula φ′ in Negation-free PNF which is
translated from a closed formula φ in Alternation-free Normal Form. Assume
that φ′1,...,φ

′
n are the maximal formulas of the set of closed proper �xpoint subfor-

mulas of φ′, the alternation depth of φ′′, which is obtained from φ′ by substituting
new atomic propositions p1,...,pn for φ′1,...,φ

′
n, is strict less than 2.

Proof. In Appendix C. �

Lemma 5.7 Every µ-calculus formula φ′ in Negation-free PNF translated from
a closed formula φ in Alternation-free Normal Form is alternation-free.



5.2 The Alternation-free Fragment of the µ-Calculus in ALFP 79

Proof. In Appendix C. �

Example 5.3 Let φ = µQ1.((p ∧ 〈a〉Q1) ∨ ¬µQ2.(q ∨ 〈a〉Q2)) be a closed
formula in Alternation-free Normal Form. We can translate φ to its equivalent
Negation-free PNF φ′ = µQ1.((p∧〈a〉Q1)∨νQ2.(q

′∧ [a]Q2)) where q′ ≡ ¬q. We
can see that φ′ is alternation free according to De�nition 5.1.

From above, we have the following proposition, which is the main result of this
section.

Proposition 5.8 Closed formulas de�ned in Alternation-free Normal Form
exactly characterize the alternation-free fragment of modal µ-calculus formulas.

Proof. It is obvious from Lemma 5.5 and Lemma 5.7. �

5.2 The Alternation-free Fragment of the µ-Calculus

in ALFP

We encode the model checking problem for the alternation-free µ-calculus into
ALFP. According to Proposition 5.8, we use closed formulas de�ned in Alternation-
free Normal Form to characterize the alternation-free fragment of the µ-calculus.

We �rst encode a Kripke structure M = (S, T, L) into ALFP by de�ning corre-
sponding relations as follows. Recall that in the model checking problem for the
µ-calculus, the de�nition of Kripke structure is slighted di�erent with the one
given in Section 2.3. Here, T is a set of transition relations, and each element a
in T is a transition relation and a ⊆ S ×S. Assume that the universe is U = S,

• for each atomic proposition p we de�ne a predicate Pp such that %0(Pp)(s)
if and only if p ∈ L(s), and

• for each element a in T , we de�ne a binary relation a such that %0(Ta)(s, t)
if and only if (s, t) ∈ a.



80 Alternation-free µ-calculus in Alternation-free Least Fixed Point Logic

We are most interested in variables in a µ-calculus formula. Therefore, we de�ne
only relations for all variables that occur in a given formula. We �rst introduce
the idea of Strongly Benign Translation as follows.

Definition 5.9 A Strongly Benign Translation is a translation from a µ-
calculus formula φ to an ALFP clause cl such that we de�ne a relation RQ in
cl i� Q is a variable in φ.

To develop a Strongly Benign Translation for the alternation-free fragment of
the µ-calculus, for each µ-calculus formula φ, we map it to a pair 〈clφ, preφ〉,
where clφ is an ALFP clause and preφ is a precondition in ALFP. We use
preφ[s′/s] to denote a precondition resulting from preφ by substituting the
free variable s in preφ with s′. Assume % is the least model of clφ subject
to %(RQ1

) ⊇ S1, ..., %(RQn) ⊇ Sn, % ⊇ %0, where %0 de�nes Pp and Ta and
Q1, ..., Qn are all the free variables in φ. The intention of our development is
that s′ ∈ [[φ]]e[Q1 7→S1,...,Qn 7→Sn] i� (%, σ[s 7→ s′]) sat preφ, and that when φ
takes the form µQ.φ, we have that [[µQ.φ]]e[Q1 7→S1,...,Qn 7→Sn] equals %(RQ). The
Strongly Benign Translation we have developed is given in Table 5.1.

p 7−→ 〈true, Pp(s)〉
Q 7−→ 〈true, RQ(s)〉
φ1 ∨ φ2 7−→ 〈clφ1

∧ clφ2
, preφ1

∨ preφ2
〉

whenever φ1 7−→ 〈clφ1
, preφ1

〉 and φ2 7−→ 〈clφ2
, preφ2

〉
φ1 ∧ φ2 7−→ 〈clφ1 ∧ clφ2 , preφ1 ∧ preφ2〉

whenever φ1 7−→ 〈clφ1 , preφ1〉 and φ2 7−→ 〈clφ2 , preφ2〉
〈a〉φ 7−→ 〈clφ, ∃s′ : Ta(s, s′) ∧ preφ[s′/s]〉

whenever φ 7−→ 〈clφ, preφ〉
[a]φ 7−→ 〈clφ, ∀s′ : ¬Ta(s, s′) ∨ preφ[s′/s]〉

whenever φ 7−→ 〈clφ, preφ〉
µQ.φ 7−→ 〈[∀s : preφ ⇒ RQ(s)] ∧ clφ, RQ(s)〉

whenever φ 7−→ 〈clφ, preφ〉
¬µQ.φ 7−→ 〈clµQ.φ, ¬RQ(s)〉

whenever µQ.φ 7−→ 〈clµQ.φ, preµQ.φ〉

Table 5.1: Strongly Benign Translation of the Alternation-free µ-calculus in
ALFP

For atomic proposition p, we simply de�ne clp as true since there are no bounded
variables in p. We make use of the prede�ned predicate Pp and de�ne prep as
Pp(s). For a variable Q, we also de�ne clQ as true since the Q is a free variable



5.2 The Alternation-free Fragment of the µ-Calculus in ALFP 81

here. We de�ne preQ as RQ(s).

For φ1 ∨ φ2, we assume that φ1 7−→ 〈clφ1 , preφ1〉 and φ2 7−→ 〈clφ2 , preφ2〉.
This means that for each subformula µQ.φ in φ1 (or φ2), the relation RQ is
de�ned correctly in clφ1

(or clφ2
) and that preφ1

and preφ2
are also de�ned as

expected. We de�ne clφ1∨φ2
as clφ1

∧ clφ2
. This ensures that for each subfor-

mula µQ.φ in φ1 ∨ φ2, RQ is de�ned correctly in clφ1 ∧ clφ2 . It's also natural
to de�ne preφ1∨φ2 as preφ1∨preφ2 . The case for φ1∧φ2 follows the same pattern.

For 〈a〉φ, we assume that φ 7−→ 〈clφ, preφ〉. This means that for each subfor-
mula µQ.ϕ in φ, the relation RQ is de�ned correctly in clφ and that preφ is also
de�ned in an intended way. We simply de�ne cl〈a〉φ to be the same as clφ since
this su�ces to guarantee that for each subformula µQ.ϕ in 〈a〉φ, the relation
RQ is de�ned correctly in cl〈a〉φ. We de�ne pre〈a〉φ as ∃s′ : Ta(s, s′)∧preφ[s′/s].
This means for any state s if preφ[s′/s] holds on any of the a-derivative s′ of s,
then pre〈a〉φ holds on state s. This matches the semantics for 〈a〉φ.

For [a]φ, we also assume that φ 7−→ 〈clφ, preφ〉. For a similar reason as in
the case for 〈a〉φ, we de�ne cl[a]φ to be the same as clφ. We de�ne pre[a]φ as
∀s′ : ¬Ta(s, s′)∨ preφ[s′/s]. This means for any state s if preφ[s′/s] holds on all
of the a-derivatives s′ of s, then pre[a]φ holds on state s. Notice here that if s has
no a-derivatives, pre[a]φ still holds on s. This also matches the semantics for [a]φ.

For µQ.φ, we assume that φ 7−→ 〈clφ, preφ〉 as well. We de�ne clµQ.φ as
[∀s : preφ ⇒ RQ(s)] ∧ clφ. The �rst conjunct [∀s : preφ ⇒ RQ(s)] de�nes the
relation RQ and the second conjunct clφ ensures that for each proper subformula
µQ′.ϕ in φ, the relation RQ′ is also de�ned correctly in clφ. The mapping here
matches the semantics for the least �xed point operator µ. We de�ne preµQ.φ
as RQ(s).

For ¬µQ.φ, we assume that µQ.φ 7−→ 〈clµQ.φ, preµQ.φ〉. We de�ne cl¬µQ.φ to
be the same as clµQ.φ. This guarantees that for each subformula µQ′.ϕ in µQ.φ,
the relation RQ′ is also de�ned correctly in cl¬µQ.φ. We simple de�ne pre¬µQ.φ
as ¬RQ(s).

For a closed formula φ in AFNF, to show that the clause clφ is strati�ed, where
φ 7−→ 〈clφ, preφ〉, we introduce a ranking method for clφ.



82 Alternation-free µ-calculus in Alternation-free Least Fixed Point Logic

Assume that there are N variables in φ. For each variable Q that occurs in φ,
the rank rankRQ can be calculated according to the following steps.

1. If φ contains closed µ-subformulas and assume that µQ1.φ1, ..., µQn.φn are
the maximal formulas of the set of closed µ-subformulas of φ, we require
that rankRQi = N where 1 ≤ i ≤ n. We add all these µ-subformulas
µQ1.φ1, ..., µQn.φn to a set Set, which is used to keep those unprocessed
µ-subformulas.

2. For each of the µ-subformula µQi.φi in Set, assume that µQ′i.φ
′
i is a proper

top µ-subformula of µQi.φi. If µQ′i is a negative occurrence (negation is
applied to µQ′i.φ

′
i), then we require that rankRQ′

i
= rankRQi − 1. If µQ′i

is a positive occurrence (no negation is applied to µQ′i.φ
′
i), we require

that rankRQ′
i

= rankRQi . We add all proper top µ-subformulas µQ′i.φ
′
i of

µQi.φi to Set and remove µQi.φi from Set. We repeat the second step
until Set becomes empty.

3. Assume that N ′ is the lowest rank of all the ranks that have been assigned
to relations RQs when Set becomes empty. For each variable Q in φ, we
modify rankRQ by rankRQ = rankRQ − (N ′ − 1). This makes sure that
the lowest rank becomes 1.

We assign the predicate Pp and Ta the rank 0. The following lemma ensures
strati�cation of our encoding.

Lemma 5.10 Given a closed µ-calculus formula φ in AFNF and assume that
φ 7−→ 〈clφ, preφ〉 according to Table 5.1, the clause clφ is closed and strati�ed.

Proof. It's obvious from the above ranking method and Table 5.1. �

Example 5.4 Let φ = µQ1.(µQ2.((〈a〉Q1∨〈a〉Q2)∧p)∨¬µQ3.(q∨〈a〉Q3)) be
a closed µ-calculus formula in AFNF. Assume that φ 7−→ 〈clφ, preφ〉 according
to Table 5.1. According to our ranking method, we require that rankRQ1

=
rankRQ2

= 2, rankRQ2
= 1 and rankPp = rankPq = 0. It is easy to see that clφ

is strati�ed.



5.2 The Alternation-free Fragment of the µ-Calculus in ALFP 83

The following theorem shows that the precondition preφ in our mapping φ 7−→
〈clφ, preφ〉 correctly characterizes the semantics of φ.

Theorem 5.11 Let φ be a µ-calculus formula in Alternation-free Normal
Form with Q1, ..., Qn being all the free variables in it. Assume that φ 7−→
〈clφ, preφ〉. For the least solution % of clφ such that % = u{% | (%, σ) sat clφ ∧
%(RQ1) ⊇ S1, ...,∧ %(RQn) ⊇ Sn∧% ⊇ %0}, where %0 de�nes Pp and Ta, we have
s′ ∈ [[φ]]e[Q1 7→S1,...,Qn 7→Sn] i� (%, σ[s 7→ s′]) sat preφ.

Proof. In Appendix C. �

We focus on alternation-free µ-calculus formulas of the form µQ.φ. This is not a
restriction since [[φ]] = [[µQ.φ]] when Q is not a free variable in φ. From Theorem
5.11, we have the following corollary saying that the best analysis result of our
approach for the alternation-free µ-calculus coincides with the solution for the
corresponding model checking problem.

Corollary 5.12 Let µQ.φ be a closed µ-calculus formula in Alternation-free
Normal Form. Assume that µQ.φ 7−→ 〈clµQ.φ, preµQ.φ〉. For the least model %
of clµQ.φ such that % = u{%|(%, σ) sat clµQ.φ, % ⊇ %0}, where %0 de�nes Pp and
Ta, we have [[µQ.φ]] = %(RQ).

Proof. It follows directly from Theorem 5.11. �

Example 5.5 Consider a Kripke structure, given by the diagram to the left,
where S = {s1, s2, s3}, the transition relation T = {a} is represented by edges
labeled with a between states, and L labels s1 with proposition p.

%(RQ) [[µQ.[a](p ∨Q)]]
{s1, s3} {s1, s3}



84 Alternation-free µ-calculus in Alternation-free Least Fixed Point Logic

We evaluate the formula µQ.[a](p ∨ Q) over the above Kripke structure using
ALFP and the semantics of the µ-calculus respectively. The results are given in
the table to the right.

In our static analysis approach, we will �rst encode the above Kripke structure
in %0 and then generate the clause clµQ.[a](p∨Q) for the formula µQ.[a](p ∨ Q)
according to Table 5.1. We list this process as follows, where ALFP clauses of
the form true∧ cl has been simpli�ed to cl. The least solution % to clµQ.[a](p∨Q)

subject to %0 ⊆ % can be calculated by succinct solver [29].

φ clφ preφ
p true Pp(s)

Q true RQ(s)

p ∨Q true Pp(s) ∨RQ(s)
[a](p ∨Q) true ∀s′ : ¬Ta(s, s′) ∨ Pp(s′) ∨RQ(s′)

µQ.[a](p ∨Q) ∀s : pre[a](p∨Q) ⇒ RQ(s) RQ(s)

5.3 Strati�cation Fails to Capture Syntactic Mono-

tonicity

In this section, we analyze µ-calculus formulas of alternation depth 2 with the
model checking approach and the approach we developed in Section 5.2 respec-
tively. The main result of this section is that the solution to the model checking
problem for µ-calculus formulas of alternation depth 2 cannot be characterised
by a Moore Family result in ALFP.

To encode a closed µ-calculus formula φ into ALFP, we shall assume there must
exist a clause de�ning the relation RQ for each variable Q in φ. We focus on
the rank of RQ. We explain our negative result as follows in a more general way
where we assign a rank to each variable Q in φ.

Given a formula φ of the µ-calculus and let the list of subformulas
−→
φ be some

ordering of all �xpoint subformulas of φ, i.e.
−−−−−−−−−−−→
µQ.µR.(Q ∨R) = (µQ.µR.(Q ∨

R), µR.(Q ∨ R)). The model checking semantics of φ easily extends to
−→
φ , i.e.

[[
−−−−−−−−−−−→
µQ.µR.(Q ∨R)]] = ([[µQ.µR.(Q ∨R)]], [[µR.(Q ∨R)]][Q 7→[[µQ.µR.(Q∨R)]]]).



5.3 Strati�cation Fails to Capture Syntactic Monotonicity 85

Let φ be a closed formula of the µ-calculus. Assume that σQi.φi (σ is either
µ or ν) is a �xpoint subformula of φ (1 ≤ i ≤ n). We de�ne the function

F : P(S)n → P(S)n by F (S1, ..., Sn) = ([[φ̃1]]e, ..., [[φ̃n]]e), where e(Qi) = Si,

φ̃i = φi[Qj/σQj .φj ] (1 ≤ j ≤ n), and σQj .φj is a top �xpoint subformula of φi.
The notation φi[Qj/σQj .φj ] refers to a formula resulting from φi by substitut-
ing σQj .φj with Qj . We have the following theorem.

Theorem 5.13 There exists a µ-calculus formula φ of alternation depth 2,

where Q1, ..., Qn is some ordering of all the variables in φ, such that [[
−→
φ ]] =

(S1, ..., Sn) is not the least solution to the equation F (S1, ..., Sn) = (S1, ..., Sn)
with respect to v for any choice of ranking.

Proof. LetM = (S, T, L) be a Kripke structure , where S = {s1, s2}, T = {a},
a = {(s1, s2), (s2, s2)}, and L labels s2 with proposition p. Consider the formula
φ = µQ.(¬µR.(R ∨ (¬Q ∧ p))). We can see that ad(φ) = 2 once we translate φ
to its Negation-free PNF.

We de�ne F (S1, S2) = ([[¬R]]e, [[R∨(¬Q∧p)]]e), where e(Q) = S1 and e(R) = S2.
Let's consider solutions to the equation F (S1, S2) = (S1, S2). In the following,
we use %(i) to denote the ith (i = 1, 2) component in %.

Let
−→
φ = (µQ.(¬µR.(R ∨ (¬Q ∧ p))), µR.(R ∨ (¬Q ∧ p))). According to the

model checking semantics, we know that %1 = [[
−→
φ ]] = ([[µQ.(¬µR.(R ∨ (¬Q ∧

p)))]], [[µR.(R∨(¬Q∧p))]]e[Q 7→[[µQ.(¬µR.(R∨(¬Q∧p)))]]]) = ({s1}, {s2}). It's obvious
that %1 is a solution to the equationF (S1, S2) = (S1, S2). We also have another
two solutions %2 = (∅, {s1, s2}) and %3 = ({s1, s2}, ∅) to it as well.

Since both %2(1) ⊂ %1(1) and %3(2) ⊂ %1(2) hold, it's obvious that %1 is not the
least solution to the equation F (S1, S2) = (S1, S2) with respect to v for any
choice of ranking. �

Theorem 5.13 can be extended to the case of a µ-calculus formula φ of alter-
nation depth n (n > 2). Whenever we develop a strongly benign translation
to encode µ-calculus formulas to ALFP clauses, we implicitly de�ne a function
F above. Therefore, encoding the full µ-calculus formulas into ALFP using



86 Alternation-free µ-calculus in Alternation-free Least Fixed Point Logic

strongly benign translation is not feasible.

The negative result in the section suggests that we have to go beyond ALFP to
characterize the full fragment of the µ-calculus. We continue this work in the
next chapter and propose SFP which su�ces to deal with the µ-calculus.

5.4 Future Work

In our future work, we are interesting in identifying fragments of the modal
µ-calculus that reside properly between alternation depth 2 and alternation free
for which the ALFP-based techniques might still work, i.e. for which the least
�xed point can be described as a Moore family result in ALFP.



Chapter 6

The Modal µ-calculus in
Succinct Fixed Point Logic

In Chapter 5, we have shown how to encode the model checking problem for the
alternation-free µ-calculus in ALFP. However, as is suggested in the negative
result there, ALFP is not well-suited for the encoding of the full fragment of
the µ-calculus, where least and greatest �xed points are allowed to be mutually
dependent on each other.

In this chapter, we continue the work of the previous chapter. We propose
Succinct Fixed Point Logic (SFP) as an extension of ALFP and show that the
model checking problem of the µ-calculus [2, 14] can be encoded in SFP. We
�rst propose the notion of weak strati�cation which allows a convenient speci�-
cation of nested �xed points in the µ-calculus. Then, we give the de�nition of
the intended model of SFP clause sequences. We show through an example that
we cannot take the greatest lower bound of the set of models of an SFP clause
sequence as the intended model, since this does not match the �xed point se-
mantics of the µ-calculus. Unlike in ALFP, we explicitly introduce a least �xed
point operator in SFP to facilitate our development. Last, we explain our ap-
proach to the analysis of the µ-calculus and show that the intended model of an
SFP clause sequence specifying a µ-calculus formula exactly characterizes the
set of states which satisfy this µ-calculus formula over Kripke structures.



88 The Modal µ-calculus in Succinct Fixed Point Logic

The structure of this chapter is as follows. We develop SFP in Section 6.1. Sec-
tion 6.1.1 gives the framework of our logical approach to static analysis. This
section mainly serves to provide a setting which makes the introduction of SFP
more natural. When developing logic within this framework, we �rst need to
consider a fragment of clause sequences and then establish an intended model
for the fragment of clause sequences chosen. Section 6.1.2 gives the details of
SFP. Section 6.2 shows the way to encode the model checking problem of the
µ-calculus in SFP.

6.1 Succinct Fixed Point Logic

6.1.1 Logical Approach to Static Analysis

In our logical approach to static analysis, we specify analysis constraints in
clause sequences. Assume that we are given a �xed countable set X of variables
and a �nite alphabet R of predicate symbols. We de�ne the syntax of clause
sequences cls, together with basic values v, pre-conditions pre and clauses cl as
follows:

v ::= c | x
pre ::= R(v1, ..., vn) | ¬R(v1, ..., vn) | pre1 ∧ pre2

| pre1 ∨ pre2 | ∀x : pre | ∃x : pre
cl ::= R(v1, ..., vn) | true | cl1 ∧ cl2 | pre⇒ R(v1, ..., vn) | ∀x : cl
cls ::= cl1, ..., cln

The pre-conditions, clauses and clause sequences are interpreted over a �nite and
non-empty universe U . A constant c is an element of U , a variable x ∈ X ranges
over U , and the n-ary relation R ∈ R denotes a subset of Un. Occurrences of
R(v1, ..., vn) and ¬R(v1, ..., vn) in pre-conditions are called positive queries and
negative queries, respectively. All other occurrences of relations are de�nitions
and often occur to the right of an implication.

Let Int :
∏
k Relk → P(Uk) be a mapping where Relk is a �nite alphabet

of k-ary predicate symbols and P(Uk) is the powerset of Uk. We de�ne the
satisfaction relations for pre-conditions, clauses and clause sequences



6.1 Succinct Fixed Point Logic 89

(ρ, σ) sat pre and (ρ, σ) sat cl and (ρ, σ) sat cls

in Table 6.1, where ρ ∈ Int is an interpretation of relations which maps each
k-ary predicate symbol R to a subset of Uk and σ is an interpretation of vari-
ables. We write ρ(R) for the set of k-tuples (a1, ...ak) from U associated with
the k-ary predicate R, we use σ(x) to denote the atom of U bound to x and
σ[x 7→ a] stands for the mapping that is σ except that x is mapped to a. We
also treat a constant c as a variable by setting σ(c) = c.

(ρ, σ) sat R(v1, ..., vn) iff (σ(v1), ..., σ(vn)) ∈ ρ(R)
(ρ, σ) sat ¬R(v1, ..., vn) iff (σ(v1), ..., σ(vn)) 6∈ ρ(R)
(ρ, σ) sat pre1 ∧ pre2 iff (ρ, σ) sat pre1 and (ρ, σ) sat pre2
(ρ, σ) sat pre1 ∨ pre2 iff (ρ, σ) sat pre1 or (ρ, σ) sat pre2
(ρ, σ) sat ∀x : pre iff (ρ, σ[x 7→ a]) sat pre for all a ∈ U
(ρ, σ) sat ∃x : pre iff (ρ, σ[x 7→ a]) sat pre for some a ∈ U
(ρ, σ) sat R(v1, ..., vn) iff (σ(v1), ..., σ(vn)) ∈ ρ(R)
(ρ, σ) sat true iff true
(ρ, σ) sat cl1 ∧ cl2 iff (ρ, σ) sat cl1 and (ρ, σ) sat cl2
(ρ, σ) sat pre⇒ R(v1, ..., vn) iff (ρ, σ) sat R(v1, ..., vn) whenever

(ρ, σ) sat pre
(ρ, σ) sat ∀x : cl iff (ρ, σ[x 7→ a]) sat cl for all a ∈ U
(ρ, σ) sat cl1, ..., cln iff (ρ, σ) sat cli for all i where 1 ≤ i ≤ n

Table 6.1: Semantics of Pre-conditions, Clauses and Clause Sequences

A clause sequence with no free variables is called closed, and in closed clause
sequences the interpretation σ is of no importance. For a �xed interpretation
σ0, when cls is closed, we have that (ρ, σ) sat cls agrees with (ρ, σ0) sat cls.
We call an interpretation ρ a solution, or a model, of cls whenever (ρ, σ0) sat cls
holds.

Central to our approach to static analysis is the establishment of an intended
model of cls. We often consider the least model of cls as a candidate, since
that is the most precise analysis result. To deal with negations conveniently, we
are often interested in some subsets of clause sequences de�ned by the above
grammar. As can be seen from Chapter 2, ALFP actually restricts itself to
the strati�ed fragment of clause sequences. The intended model of an ALFP
formula is de�ned by the least model characterized by Moore Family properties.
We propose Succinct Fixed Point Logic in the next section. SFP restricts itself



90 The Modal µ-calculus in Succinct Fixed Point Logic

to the weakly strati�ed fragment of clause sequences. The Moore Family result
of SPF is established in a slightly di�erent way and the model of an SFP formula
is de�ned as the least model characterized by Moore Family properties as well.

6.1.2 Succinct Fixed Point Logic

The condition of strati�cation in ALFP requires that the de�nition of a relation
R in cls only depends on relations with ranks less or equal to R. In particular,
the requirement that a relation must be de�ned before they can be negatively
queried is essential. This makes it inconvenient for ALFP to specify nested �xed
points in the µ-calculus, where least and greatest �xed points are mutually de-
pendent on each other.

In this section, we propose Succinct Fixed Point Logic (SFP) to encode nested
�xed points in the µ-calculus. We �rst de�ne the syntax of SFP, which include
basic values v, pre-conditions pre, clauses cl, clause sequences cls and formulas
f , as follows:

Definition 6.1 (Syntax of Succinct Fixed Point Logic)

v ::= c | x
pre ::= R(v1, ..., vn) | ¬R(v1, ..., vn) | pre1 ∧ pre2

| pre1 ∨ pre2 | ∀x : pre | ∃x : pre
cl ::= R(v1, ..., vn) | true | cl1 ∧ cl2 | pre⇒ R(v1, ..., vn) | ∀x : cl
cls ::= cl1, ..., cln
f ::= LFP(cls)

where cls is weakly strati�ed.

Here, we require that clause sequences are weakly strati�ed. The de�nition of
weak strati�cation will be given later. We introduce a least �xed point operator
LFP and f = LFP(cls) is de�ned as SFP formulas. This is mainly to facili-
tate the de�nition of the intended model of weakly strati�ed clause sequences.
Our intention is that ρ is the intended model of cls i� ρ satis�es the formula
LFP(cls).

To formalize the notion of weak strati�cation, we �rst give the de�nition of De-
pendency Graph as follows.



6.1 Succinct Fixed Point Logic 91

Definition 6.2 (Dependency Graph) The dependency graph DGcls
of cls = cl1, ..., cln is a directed graph where each edge is labeled with a sign.
The nodes of DGcls are cl1,...,cln. We de�ne a positive (resp. negative) edge
from cli to clj i� a relation de�ned in cli is positively (resp. negatively) queried
in clj , where 1 ≤ i, j ≤ n.

We say that clj depends positively (resp. negatively) on cli i� there exists a path
in DGcls from cli to clj with even (resp. odd) number of negative edges.

Definition 6.3 (Weak Stratification) A clause sequence cls = cl1,
..., cln is weakly strati�ed i� the following conditions hold, where 1 ≤ i, j ≤ n,
i 6= j and R ∈ R:

• if R is de�ned in cli, then R is not de�ned in clj , and

• cli does not depend negatively on itself.

• if cli depends positively (resp. negatively) on clj , then cli does not depend
negatively (resp. positively) on clj .

The �rst condition in the above de�nition simply says that we use only one
clause to de�ne each relation. The second condition imposes syntactic mono-
tonicity to the clause sequence. The last condition is actually used to facilitate
the establishment of a Moore Family result for SFP.

Example 6.1 The following clause sequence satis�es the condition of weak
strati�cation.

cls = (∀x : ¬R2(x)⇒ R1(x)), (∀x : ¬R1(x)⇒ R2(x))

Example 6.2 The following clause sequence is ruled out by the notion of
weak strati�cation. We can see that the clause (∀x : R2(x) ⇒ R1(x)) depends
negatively on itself.

cls = (∀x : R2(x)⇒ R1(x)), (∀x : ¬R1(x)⇒ R2(x))

Let's consider the following example where we specify a µ-calculus formula of
nested �xed points with a weakly strati�ed clause sequence.



92 The Modal µ-calculus in Succinct Fixed Point Logic

Example 6.3 Consider the µ-calculus formula φ = µQ1.(¬µQ2.(Q2∨ (¬Q1∧
p))), which is semantically equivalent to µQ1.(νQ2.(Q2 ∧ (Q1 ∨¬p))) and there-
fore consists of nested �xed points. This is actually an alternation depth 2
formula. We can see that the least �xed point µQ1 and the greatest �xed point
νQ2 are mutually dependent on each other. The formula φ can be speci�ed by
the following clause sequence cls.

cls = [∀s : ¬RQ2
(s)⇒ RQ1

(s)], [∀s : [RQ2
(s) ∨ (¬RQ1

(s) ∧ Pp(s))]⇒ RQ2
(s)]

The clause sequence cls is weakly strati�ed. The relation Pp intends to specify
the set of states, in a given Kripke structure, on which the atomic proposi-
tion p holds. The relation RQ1

(resp. RQ2
) intends to characterize [[φ]][] (resp.

[[µQ2.(Q2 ∨ (¬Q1 ∧ p))]][Q1 7→[[φ]][]]).

The next step is to de�ne an intended model ρ of cls. In our setting, this
amounts to de�ne the semantics of formulas f = LFP(cls). Our intention is
to use ρ to encode the �xed point semantics in the µ-calculus. Our �rst try is
to de�ne it in a similar way as we do in ALFP. Let's assume that all relations
de�ned in a clause cli have the same rank and that all prede�ned relations have
rank 0. However, we show through the following example that we cannot de�ne
the intended model ρ of cls as u{ρ|(ρ, σ0) sat cls ∧ ρ0 ⊆ ρ}, where ρ0 de�nes
all prede�ned relations, with respect to v, since it does not capture the �xed
point semantics.

Example 6.4 Consider the Kripke structure M = (S, T, L), given by the
diagram to the left, where S = {s1, s2}, T = {a}, a = {(s1, s2), (s2, s2)},
and L labels s2 with the proposition p. We encode the µ-calculus formula
φ = µQ1.(¬µQ2.(Q2 ∨ (¬Q1 ∧ p))) in the same clause sequence cls = [∀s :
¬RQ2

(s) ⇒ RQ1
(s)], [∀s : [RQ2

(s) ∨ (¬RQ1
(s) ∧ Pp(s))] ⇒ RQ2

(s)] as we do
in Example 6.3. We evaluate φ over M using SFP and the semantics of the
µ-calculus respectively.



6.1 Succinct Fixed Point Logic 93

ρ1 ρ2 ρ3
RQ2

{s1, s2} ∅ {s2}
RQ1

∅ {s1, s2} {s1}
Pp {s2} {s2} {s2}

Assume we have an initial interpretation ρ0, where ρ0(Pp) = {s2} and ρ0(RQ1) =
ρ0(RQ2) = ∅. We now consider the set of interpretations I = {ρ|(ρ, σ0) sat cls∧
ρ0 ⊆ ρ} according to the semantics in Table 6.1. There are at least three solu-
tions ρ1, ρ2 and ρ3, given in the table to the right, in the set I.

We can take at most three essentially di�erent ranking functions rank1, rank2
and rank3. The function rank1 is de�ned by rank1(Pp) = 0, rank1(RQ1) =
1 and rank1(RQ2

) = 2. The function rank2 is de�ned by rank2(Pp) = 0,
rank2(RQ1

) = 2 and rank2(RQ2
) = 1. The function rank3 is de�ned by

rank3(Pp) = 0, rank3(RQ1
) = 1 and rank3(RQ2

) = 1.

Let e = [Q1 7→ [[φ]][], Q2 7→ [[µQ2.(Q2 ∨ (¬Q1 ∧ p))]][Q1 7→[[φ]][]]]. According to
the semantics of the µ-calculus, we know that [[Q1]]e = {s1} and [[Q2]]e = {s2}.
We can see that ρ3 exactly characterizes the semantics of the µ-calculus in our
example. However, due to the existence of ρ1 and ρ2, the solution ρ3 is not the
least model in I for either rank1 or rank2 or rank3.

The method of establishing an intended model of cls in the above example can
be summarized as follows. First, we calculate all the models that satisfy cls.
Second, we make a choice of ranks for all those relations de�ned in cls. Last,
we choose the least model as the intended model of cls, according to the lexico-
graphic ordering with respect to the choice of ranks we have made. This method
applies well when we approximate an analysis where analysis information only
�ows from the lowest rank to the highest rank. Therefore, ALFP successfully
characterizes the semantics of the alternation-free µ-calculus (see the previous
chapter for details).

In the following, we de�ne the semantics of formulas f . We assume that cls =
cl1, ..., cln and write ρ = %0, %1, ..., %n to mean that %0 is an interpretation for



94 The Modal µ-calculus in Succinct Fixed Point Logic

some prede�ned relations and %i (1 ≤ i ≤ n) is an interpretation of relations
de�ned in cli. We use ρ[%′i/%i] to denote a new interpretation updated from ρ by
substituting %i with %

′
i. Let %i and %

′
i be two interpretations of relations de�ned

in cli. We de�ne that %i ⊆ %′i i� for all relations R de�ned in cli, %i(R) ⊆ %′i(R)
holds. The set of interpretations of relations de�ned in cli constitute a complete
lattice with respect to ⊆. The satisfaction relation (ρ, σ) sat LFP(cl1, ..., cln)
is de�ned in the following.

Definition 6.4 (Semantics of SFP formulas) Let ρ = %0, ..., %n be
an interpretation and cls = cl1, ..., cln a weakly strati�ed clause sequence. The
satisfaction relation (ρ, σ) sat LFP(cl1, ..., cln) is de�ned inductively as follows:

• (ρ, σ) sat LFP(cln) i� %n = u{%′n | (ρ[%′n/%n], σ) sat cln}

• (ρ, σ) sat LFP(cli, ..., cln) i�

1. (ρ, σ) sat LFP(cli+1, ..., cln), and

2. %i = u{%′i | ∃%′i+1, ..., %
′
n : (ρ[%′i/%i, ..., %

′
n/%n], σ) sat cli ∧

(ρ[%′i/%i, ..., %
′
n/%n], σ) sat LFP(cli+1, ..., cln)}

The Moore Family properties for weakly strati�ed clause sequence cls = cl1, ..., cln
is established as follows.

Theorem 6.5 Let ρ = %0, ..., %n be an interpretation, cls = cl1, ..., cln a
weakly strati�ed clause sequence and 1 ≤ i ≤ n. Then, we have the follow-
ings:

• The set of interpretations {%′n | (ρ[%′n/%n], σ) sat cln} is a Moore Family

• The set of interpretations {%′i | ∃%′i+1, ..., %
′
n : (ρ[%′i/%i, ..., %

′
n/%n], σ) sat cli∧

(ρ[%′i/%i, ..., %
′
n/%n], σ) sat LFP(cli+1, ..., cln)} is a Moore Family.

Proof. In Appendix D. �

We de�ne the intended model of a weakly strati�ed clause sequence below.

Definition 6.6 Assume that cls = cl1, ..., cln is a weakly strati�ed clause
sequence. The model ρ is an intended model of cls i� (ρ, σ) sat LFP(cl1, ..., cln).



6.1 Succinct Fixed Point Logic 95

The Moore Family properties of SFP leads to the following theorem which guar-
antees the existence and the uniqueness of the intended model of cls.

Theorem 6.7 Let cls = cl1, ..., cln be a weakly strati�ed clause sequence. The
model ρ such that (ρ, σ) sat LFP(cl1, ..., cln) exists and is unique.

Proof. Based on Theorem 6.5, the proof is a simple induction on the number
of clauses in cls = cl1, ..., cln. �

Example 6.5 Let's reconsider the problem in Example 6.4 again and show
how to �nd the model ρ = %0, %1, %2 to the formula LFP(cls). Let's write
cls = cl1, cl2 where cl1 = [∀s : ¬RQ2

(s) ⇒ RQ1
(s)] and cl2 = [∀s : [RQ2

(s) ∨
(¬RQ1

(s) ∧ Pp(s))] ⇒ RQ2
(s)]. From De�nition 6.4, (ρ, σ) satLFP(cl1, cl2)

i� (ρ, σ) sat LFP(cl2) and %1 = u{%′1 | ∃%′2 : (ρ[%′1/%1, %
′
2/%2], σ) sat cl1 ∧

(ρ[%′1/%1, %
′
2/%2], σ) sat LFP(cl2)}.

We �rst calculate the set of interpretations such that (ρ, σ) sat LFP(cl2). To
this end, we �rst list all the interpretations such that (ρ, σ) sat cl2 in Table 6.2.
In this case, relations Pp and RQ1

are prede�ned relations for the clause cl2.

ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ7 ρ8 ρ9
RQ2

{s2} {s1, s2} {s2} {s1, s2} ∅ {s1 {s2} {s1, s2} ∅
RQ1

∅ ∅ {s1} {s1} {s2} {s2} {s2} {s2} {s1, s2}
Pp {s2} {s2} {s2} {s2} {s2} {s2} {s2} {s2} {s2}

ρ10 ρ11 ρ12
{s1} {s2} {s1, s2}
{s1, s2} {s1, s2} {s1, s2}
{s2} {s2} {s2}

Table 6.2: (ρ, σ) sat cl2

The next step is to select those interpretations which satisfy LFP(cl2) from Ta-
ble 6.2. From all those interpretations which coincide on prede�ned relations, we
choose the one with the best analysis result for RQ2

. Let's take ρ1 and ρ2 as an
example. The models ρ1 and ρ2 coincide on their interpretations for Pp and RQ1

.
However, ρ1(RQ2) = u{ρ1(RQ2), ρ2(RQ2)}. Therefore, (ρ1, σ) sat LFP(cl2).
The result of our selection are {ρ1, ρ3, ρ5, ρ9}. These are the interpretations



96 The Modal µ-calculus in Succinct Fixed Point Logic

which satisfy LFP(cl2).

We now select those interpretations which satisfy cl1 from {ρ1, ρ3, ρ5, ρ9} and
see that only ρ3 and ρ9 do. The last step is to select from ρ3 and ρ9 the one
which satis�es LFP(cl1, cl2). Since ρ3(RQ1

) = u{ρ3(RQ1
), ρ9(RQ1

)}, we know
that (ρ3, σ) sat LFP(cl1, cl2). Notice that ρ3 exactly characterized the �xed
point semantics here.

6.2 Modal µ-calculus in SFP

We �rst give another syntax of the µ-calculus using only the µ operator as
follows, which will facilitate our static analysis approach to the analysis of the
µ-calculus.

Definition 6.8 Let V ar be a set of variables, P be a set of atomic proposi-
tions that is closed under negation. The syntax of the µ-calculus is de�ned as
follows:

φ ::= p | Q | ¬Q| φ1 ∨ φ2 | φ1 ∧ φ2 | 〈a〉φ | [a]φ | µQ.φ | ¬µQ.φ

where no variable is quanti�ed twice and φ is syntactically monotone in Q in
the cases of µQ.φ and ¬µQ.φ.

Here, we use De�nition 6.8 to give the syntax of the µ-calculus. Given a µ-
calculus formula φ, for each variable Q in φ, a relation RQ is de�ned. We
specify our analysis with a pair 〈clsφ, preφ〉, where clsφ is a weakly strati�ed
clause sequence and preφ is a pre-condition.

Assume that ρ = %0, ..., %n such that (ρ, σ) sat LFP(clsφ), where %0 is an ini-
tial interpretation which encodes a given Kripke structure and de�nes relations
RQ1

, ..., RQn , where Q1, ..., Qn are all the free variables in φ. The intention of
our development is that s′ ∈ [[φ]]e[Q1 7→S1,...,Qn 7→Sn] i� (ρ, σ[s 7→ s′]) sat preφ,
and that when φ takes the form µQ.φ, we have that [[µQ.φ]]e[Q1 7→S1,...,Qn 7→Sn]
equals ρ(RQ).



6.2 Modal µ-calculus in SFP 97

We encode a Kripke structure M = (S, T, L) into SFP by de�ning the corre-
sponding relations in %0 as follows. Assume that the universe is U = S,

• for each atomic proposition p we de�ne a predicate Pp such that s ∈ %0(Pp)
if and only if p ∈ L(s),

• for each element a in T , we de�ne a binary relation Ta such that (s, t) ∈
%0(Ta) if and only if (s, t) ∈ a.

The mapping rules for φ 7−→ 〈clsφ, preφ〉 is given in Table 6.3. The clause
sequence clsφ is used to de�ne all the relations RQ where Q is a bounded vari-
able in φ. We use preφ[s′/s] to denote a pre-condition resulting from preφ by
substituting the free variable s in preφ with s′.

In Table 6.3, the choice of the ordering of clauses in clsφ is essential in our
approach. Assume that clsφ = cl1, ..., cln. We de�ne only one relation in each
clause cli (1 ≤ i ≤ n). Assume that we are given a µ-calculus formula φ. We
call a subformula of φ a µ-subformula i� its main connective is µ. Assume
that µQi.ϕ1 and µQj .ϕ2 are two µ-subformulas in φ and we de�ne RQi (resp.
RQj ) in cli (resp. clj), our intention is to ensure that i < j if µQj .ϕ2 is a
proper subformula of µQi.ϕ1. Therefore, in the case of µQ.φ 7−→ 〈clsφ, preφ〉,
for example, we have that clsµQ.φ = ([∀s : preφ ⇒ RQ(s)], clsφ) instead of
clsµQ.φ = (clsφ, [∀s : preφ ⇒ RQ(s)]).

We �rst explain the case of µQ.φ. Here, Q is a bounded variable. Under the
assumption that φ 7−→ 〈clsφ, preφ〉 holds, we de�ne clsµQ.φ as ([∀s : preφ ⇒
RQ(s)], clsφ). The clause [∀s : preφ ⇒ RQ(s)] de�nes the relation RQ and the
clause sequence clsφ de�nes all those relations RQ′s where Q′ is a bounded vari-
able in φ. We de�ne preµQ.φ as RQ(s).

For atomic proposition p, we simply de�ne clsp as true since there are no
bounded variables in p. We make use of the prede�ned predicate Pp and de�ne
prep as Pp(s). For a variable Q, we also de�ne clsQ as true since the Q is a
free variable here. We de�ne preQ as RQ(s). For ¬Q, we de�ne cls¬Q as true
and de�ne pre¬Q as ¬RQ(s).

For φ1 ∨ φ2, we assume that φ1 7−→ 〈clsφ1 , preφ1〉 and φ2 7−→ 〈clsφ2 , preφ2〉.
This means that for each subformula µQ.φ in φ1 (resp. φ2), the relation RQ is



98 The Modal µ-calculus in Succinct Fixed Point Logic

p 7−→ 〈true, Pp(s)〉
Q 7−→ 〈true, RQ(s)〉
¬Q 7−→ 〈true, ¬RQ(s)〉
φ1 ∨ φ2 7−→ 〈(clsφ1

, clsφ2
), preφ1

∨ preφ2
〉

whenever φ1 7−→ 〈clsφ1
, preφ1

〉 and φ2 7−→ 〈clsφ2
, preφ2

〉
φ1 ∧ φ2 7−→ 〈(clsφ1 , clsφ2), preφ1 ∧ preφ2〉

whenever φ1 7−→ 〈clsφ1 , preφ1〉 and φ2 7−→ 〈clsφ2 , preφ2〉
〈a〉φ 7−→ 〈clsφ, ∃s′ : Ta(s, s′) ∧ preφ[s′/s]〉

whenever φ 7−→ 〈clsφ, preφ〉
[a]φ 7−→ 〈clsφ, ∀s′ : ¬Ta(s, s′) ∨ preφ[s′/s]〉

whenever φ 7−→ 〈clsφ, preφ〉
µQ.φ 7−→ 〈([∀s : preφ ⇒ RQ(s)], clsφ), RQ(s)〉

whenever φ 7−→ 〈clsφ, preφ〉
¬µQ.φ 7−→ 〈clsµQ.φ, ¬RQ(s)〉

whenever µQ.φ 7−→ 〈clsµQ.φ, preµQ.φ〉

Table 6.3: µ-calculus in Succinct Fixed Point Logic

de�ned in clsφ1 (resp. clsφ2) and that preφ1 and preφ2 are also de�ned as ex-
pected. We de�ne clsφ1∨φ2 as (clsφ1 , clsφ2). This ensures that for each bounded
variable Q in φ1 ∨ φ2, RQ is de�ned in (clsφ1

, clsφ2
). It's natural to de�ne

preφ1∨φ2
as preφ1

∨ preφ2
. The case for φ1 ∧ φ2 follows the same pattern.

For 〈a〉φ, we assume that φ 7−→ 〈clsφ, preφ〉. We simply de�ne that cls〈a〉φ =
clsφ and this su�ces to guarantee that for each bounded variable Q in 〈a〉φ, the
relation RQ is de�ned in cls〈a〉φ. We de�ne pre〈a〉φ as ∃s′ : Ta(s, s′)∧preφ[s′/s].
This means for any state s if preφ[s′/s] holds on any of the a-derivative s′ of s,
then pre〈a〉φ holds on state s. This matches the semantics for 〈a〉φ.

For [a]φ, we also assume that φ 7−→ 〈clsφ, preφ〉. For a similar reason as
in the case for 〈a〉φ, we de�ne that cls[a]φ = clsφ. We de�ne pre[a]φ by
∀s′ : ¬Ta(s, s′) ∨ preφ[s′/s]. This means for any state s if preφ[s′/s] holds
on all of the a-derivatives s′ of s, then pre[a]φ holds on state s.

For ¬µQ.φ, we assume that µQ.φ 7−→ 〈clsµQ.φ, preµQ.φ〉. We de�ne that
cls¬µQ.φ = clsµQ.φ. We simply de�ne pre¬µQ.φ as ¬RQ(s).



6.2 Modal µ-calculus in SFP 99

We have the following lemma which ensures that our speci�cation of the µ-
calculus formulas is within SFP.

Lemma 6.9 Given a closed µ-calculus formula φ, assume that φ 7−→ 〈clsφ, preφ〉
holds according to Table 6.3, the clause sequence clsφ is closed and weakly strat-
i�ed.

Proof. In Appendix D. �

The following theorem shows that the pre-condition preφ in our mapping φ 7−→
〈clsφ, preφ〉 correctly characterizes the semantics of φ.

Theorem 6.10 Let φ be a µ-calculus formula with Q1, ..., Qn being all the free
variables in it. Assume that φ 7−→ 〈clsφ, preφ〉. Let ρ = %0, ..., %n be an inter-
pretation such that (ρ, σ) sat LFP(clsφ), where %0(RQ1

) = S1, ..., %0(RQn) =
Sn and %0 de�nes Pp and Ta. Then, s′ ∈ [[φ]]e[Q1 7→S1,...,Qn 7→Sn] i� (ρ, σ[s 7→
s′]) sat preφ.

Proof. In Appendix D. �

We focus on closed µ-calculus formulas of the form µQ.φ. As is mentioned in
the previous chapter, this is not a restriction since [[φ]] = [[µQ.φ]] when Q is not a
free variable in φ. From Theorem 6.10, we have the following corollaries saying
that the model of SFP formulas for the analysis of the µ-calculus coincides with
the solution for the corresponding model checking problem.

Corollary 6.11 Let µQ.φ be a closed µ-calculus formula. Assume that
µQ.φ 7−→ 〈clµQ.φ, preµQ.φ〉 holds. Let ρ = %0, ..., %n be an interpretation such
that (ρ, σ) sat LFP(clsµQ.φ), where %0 de�nes Pp and Ta. Then, we have that
[[µQ.φ]] = ρ(RQ).

Proof. It follows directly from Theorem 6.10. �



100 The Modal µ-calculus in Succinct Fixed Point Logic

6.3 Future Work

We have proposed Succinct Fixed Point Logic in this chapter. In our future
work, we are interested in developing e�cient solvers for SFP so that model
checkers for the µ-calculus are implicitly implemented as well.



Chapter 7

Conclusion

In this thesis, we have developed several static analysis techniques to deal with
model checking problems.

A number of papers (surveyed in [15, 31]) have developed �ow logic as a uni-
form approach to static analysis using in particular 2-valued Alternation-free
Least Fixed Point Logic (ALFP) as the speci�cation language; on top of the
many theoretical results established for this approach also a number of solvers
have been developed [51] that make it easy to obtain prototype implementations.

Based on the work of [21], we �rst developed a �ow logic approach to static
analysis and encoded CTL model checking without fairness assumptions into
2-valued ALFP. Then, we start to deal with the fairness assumptions in CTL
model checking. It is shown in [10] that computing nontrivial strongly con-
nected components of transition systems plays an important role in solving dif-
ferent types of fairness constraints in CTL. ALFP is a type of least �xed point
logic which is able to calculate the transitive closure of a relation. Our ideas of
calculating nontrivial strongly connected sets are mainly based on calculating
transitive closure of the transition relations of Kripke structures. Our encoding
works well for unconditional and weak fairness constraints. However, an expo-
nential blow up occurs when we deal with strong fairness constraints. Therefore,



102 Conclusion

our ALFP-based is not well suited for solving a large number of strong fairness
constraints.

In two-valued setting, we also considered the model checking problem for the
alternation-free µ-calculus, which is more expressive than CTL [6]. Our positive
result there has shown that ALFP su�ces to encode the model checking prob-
lem for the alternation-free µ-calculus. However, our negative result is that the
full µ-calculus cannot be encoded in a similar way regardless of the choice of
ranking. It would be interesting to identify fragments of the modal µ-calculus
that reside properly between alternation depth 2 and alternation free for which
the ALFP-based development might still work, i.e. for which the least �xed
point can be described as a Moore family result in ALFP.

In many approaches to analyzing systems it has been realized that it is useful to
consider multi-valued logics; in model checking this includes the developments
of [40, 49, 56, 41, 64, 42, 43, 44, 45] and in static analysis a notable contribution
is [54, 55, 57, 46, 47]. To generalize our ALFP-based static analysis approach
to a multi-valued setting, we proposed multi-valued ALFP. We established a
Moore family result ensuring the existence of best solutions even in the case
of negation as long as a notion of strati�cation is adhered to. We also showed
that existing solvers can be used also for the generalized case since multi-valued
ALFP, when interpreted over a �nite distributive multi-valued structure, can
be �translated� into 2-valued ALFP. Finally, we showed that our approach can
be used to analyze Computation Tree Logic (CTL) in the multi-valued setting
thereby generalizing the work in Chapter 3 and [21]. In our future work, we are
interested in comparing our multi-valued analysis result with the semantics of
multi-valued CTL proposed in [43]. We are also motivated in introducing fair-
ness assumptions into the multi-valued setting and developing a multi-valued
analysis for CTL with di�erent fairness constraints.

To encode the full fragment of the µ-calculus, we proposed SFP as an extension
of ALFP. ALFP can be encoded in SFP by showing that the least model of an
ALFP formula can be characterized as the model of a corresponding SFP for-
mula. This encoding is conceptually obvious and is not given in this thesis. We
showed that µ-calculus formulas of nested �xed points can be characterized as
the intended model of SFP clause sequences. Currently, SFP is not supported
by any solvers. In our future work, we are interested in developing an e�cient
solver to calculate the model for SFP formulas so that a model checker for the
µ-calculus is also implicitly implemented.



Appendix A

Appendix for Chapter 3

Lemma 3.1 The ALFP clauses generated for judgements ~R ` φ de�ned in Table
3.1 are closed and strati�ed.

Proof. It is easy to see that clauses ~R ` φ de�ned in Table 3.1 are indeed
closed for any CTL formula φ. It is also straightforward that the ALFP clauses
for ~R ` φ only contain de�nitions of relations of ranks in {0, ..., depth(φ)} and it
only use relations of ranks in {0, ..., depth(φ)}. All negative uses of relations in
ALFP clauses generated for judgement ~R ` ¬ϕ only involve relations of ranks
{0, ..., depth(¬ϕ) − 1}. This gives us the intuition to proceed our proof. To

prove that the ALFP clauses generated for the judgement ~R ` φ are strati�ed,
we prove by structural induction on φ.

Base cases:

Case φ = true: The clause we get is ∀s : Rtrue(s). Since rankRtrue = depth(true)
= 0, it's obvious that strati�cation is guaranteed.

Case φ = p: The clause we get is ∀s : Pp(s) ⇒ Rp(s). Since rankPp = 0 and



104 Appendix for Chapter 3

rankRp = depth(p) = 0, strati�cation is also guaranteed.

For boolean connectives:

Case φ = ¬φ′: The clause we get consists of two parts, namely the clause
generated for ~R ` φ′ and ∀s : (¬Rφ′(s)) ⇒ R¬φ′(s). According to the induc-

tion hypothesis, the clause generated for ~R ` φ′ is strati�ed. Since rankR¬φ′ =
depth(¬φ′) = 1+depth(φ′) = 1+rankRφ′ > rankRφ′ , therefore according to the

de�nition of strati�cation, we know that the clause for ~R ` ¬φ′ is also strati�ed.

Case φ = φ1 ∨ φ2: The clause we get also consists of two parts, namely the
clause generated for ~R ` φ1 ∧ ~R ` φ2 and ∀s : Rφ1

(s) ∨ Rφ2
(s) ⇒ Rφ1∨φ2

(s).

According to the induction hypothesis, the clause for ~R ` φ1 ∧ ~R ` φ2 is strat-
i�ed. Since rankRφ1∨φ2

= depth(φ1 ∨ φ2) = 1 + max{depth(φ1), depth(φ2)} =
1+max{rankRφ1 , rankRφ2}, we have rankRφ1∨φ2

> rankRφ1 and rankRφ1∨φ2
>

rankRφ2 . According to the de�nition of strati�cation, we know that the clause

for ~R ` φ1 ∨ φ2 is also strati�ed.

For modal operators:

Case φ = EXφ′: The clause we get consists of two parts, namely the clause
generated for ~R ` φ′ and ∀s : [∃s′ : T (s, s′) ∧ Rφ′(s′)] ⇒ REXφ′(s). Accord-

ing to the induction hypothesis, the clause generated for ~R ` φ′ is strati�ed.
Since rankR

EXφ′ = depth(EXφ′) = 1 + depth(φ′) = 1 + rankRφ′ > rankRφ′ and
rankT = 0, therefore according to the de�nition of strati�cation, we know that
the clause for ~R ` EXφ′ is strati�ed.

Case φ = E[φ1Uφ2]: The clause we get consists of two parts, namely the

clause generated for ~R ` φ1 ∧ ~R ` φ2 and [∀s : Rφ2
(s) ⇒ RE[φ1Uφ2](s)] ∧ [∀s :

[∃s′ : T (s, s′) ∧ Rφ1
(s) ∧ RE[φ1Uφ2](s

′)] ⇒ RE[φ1Uφ2](s)]. According to the

induction hypothesis, the clause for ~R ` φ1 ∧ ~R ` φ2 is strati�ed. Since
rankRE[φ1Uφ2]

= depth(E[φ1Uφ2]) = 1 + max{depth(φ1), depth(φ2)} = 1 +
max{rankRφ1 , rankRφ2}, we have rankRE[φ1Uφ2]

> rankRφ1 and rankRE[φ1Uφ2]
>

rankRφ2 . According to the de�nition of strati�cation, we know that the clause

for ~R ` E[φ1Uφ2] is also strati�ed.



105

Case φ = AFφ′: The clause we get consists of two parts, namely the clause
generated for ~R ` φ′ and [∀s : Rφ′(s) ⇒ RAFφ′(s)] ∧ [∀s : [∀s′ : ¬T (s, s′) ∨
RAFφ′(s′)] ⇒ RAFφ′(s)]. According to the induction hypothesis, the clause

generated for ~R ` φ′ is strati�ed. Since rankR
AFφ′ = depth(AFφ′) = 1 +

depth(φ′) = 1 + rankRφ′ > rankRφ′ and rankT = 0, therefore according to the

de�nition of strati�cation, we know that the clause for ~R ` AFφ′ is strati�ed.
�

Theorem 3.2 Given a CTL formula φ and an initial interpretation %0 which
de�nes T and Pp. Assume that % is the least solution to ~R ` φ ∧ % ⊇ %0, we
have (M, s) |= φ i� s ∈ %(Rφ).

Proof. By Proposition 2.6 we have

% = u{%|(%, σ0) |= ~R ` φ ∧ % ⊇ %0}.

We proceed by structural induction on φ:

Base cases:

Case φ = true: According to the semantics of CTL, we know that (M, s) |= true
for all s ∈ S. From the semantics of ALFP, we know that ∀s ∈ S : s ∈ %(Rtrue).
Therefore, (M, s) |= true i� s ∈ %(Rtrue).

Case φ = p: According to the semantics of CTL, we know that (M, s) |= p i�
p ∈ L(s). From the semantics of ALFP and our assumptions, we know that
s ∈ %(Rp) i� s ∈ %(Pp) i� p ∈ L(s). Therefore, (M, s) |= p i� s ∈ %(Rp).

For boolean connectives:

Case φ = ¬φ′: Notice that %(Rφ′) coincides with %′(Rφ′) for the least solution

%′ to ~R ` φ′ ∧ %′ ⊇ %0. According to the induction hypothesis and our assump-
tions, we know that (M, s) |= φ′ i� s ∈ %(Rφ′).



106 Appendix for Chapter 3

From the semantics of ALFP, we know that s ∈ %(Rφ) i� s 6∈ %(Rφ′). From
the semantics of CTL, we know that (M, s) |= φ i� (M, s) 2 φ′. Therefore,
s ∈ %(Rφ) i� (M, s) |= φ.

Case φ = φ1 ∨ φ2: In this case, it is possible that φ1 and φ2 have a same
subformula. We claim that clauses generated for same judgement are the same.
Therefore, the same subformula in φ1 and φ2 are dealt with in the same way
by �ow logic. In the clauses for ~R ` φ, we only keep one copy of the clauses
for same subformulas in φ1 and φ2. Also notice that %(Rφ1) (resp. %(Rφ2))

coincides with %′(Rφ1
) (resp. %′(Rφ2

)) in the least model %′ of ~R ` φ1 ∧ %′ ⊇ %0
(resp. ~R ` φ2 ∧ %′ ⊇ %0). According to the induction hypothesis, we know that
s ∈ %(Rφ1

) (resp. s ∈ %(Rφ2
)) i� (M, s) |= φ1 (resp. (M, s) |= φ2).

According the the semantics of CTL, we know that (M, s) |= φ1∨φ2 i� (M, s) |=
φ1 or (M, s) |= φ2. According to the semantics of ALFP, we have s ∈ %(Rφ1∨φ2

)
i� s ∈ %(Rφ1

) or s ∈ %(Rφ2
). Therefore, according to the induction hypothesis

and our assumptions, we know that (M, s) |= φ1 ∨ φ2 i� s ∈ %(Rφ1∨φ2
).

For modal operators:

Case φ = EXφ′: Notice that %(Rφ′) coincides with %′(Rφ′) in the least model

%′ of ~R ` φ′ ∧ %′ ⊇ %0. According to the induction hypothesis, we know that
(M, s) |= φ′ i� s ∈ %(Rφ′).

Since in Kripke structures each state has a successor state, we can extend a �-
nite path fragment πfin = s0 → s1 → ...→ sk to an in�nite path by appending
a path starting from sk to πfin. Similarly, for any path, s0 → s1 → ..., its �rst
k+1 states forms a �nite path fragment of length k. Therefore, according to the
semantics of CTL, it is easy to show that (M, s) |= EXφ i� there exists a path
π from s such that (M,π[1]) |= φ i� ∃s′ : s→ s′ ∧ s′ |= φ′. From the semantics
of ALFP, we have s ∈ %(REXφ′) i� ∃s′ : %(T )(s, s′) ∧ s′ ∈ %(Rφ′). According to
the induction hypothesis and our assumptions, we know that (M, s) |= EXφ′ i�
s ∈ %(REXφ′).

Case φ = E[φ1Uφ2]: In this case, it is also possible that φ1 and φ2 have a
same subformula. Similarly, we generate same clauses for the same judgement.
Therefore, the same subformula in φ1 and φ2 are dealt with in the same way by



107

�ow logic. In the clauses for E[φ1Uφ2], we only keep one copy of the clauses
for same subformulae in φ1 and φ2. Also notice that %(Rφ1

) (resp. %(Rφ2
))

coincides with %′(Rφ1) (resp. %′(Rφ2)) in the least model %′ of ~R ` φ1 ∧ %′ ⊇ %0
(resp. ~R ` φ2 ∧ %′ ⊇ %0).

From the semantics of ALFP, we know that %(Rφ) =
⋃
K R

K , where R0 =
%(Rφ2

) and RK = {s|∃s′ : %(T )(s, s′)∧%(Rφ1
)(s)∧ s′ ∈ RK−1}(K > 0). Accord-

ing to our assumptions and the induction hypothesis we get R0 = {s|s |= φ2}
and RK = {s|∃s′ : s→ s′ ∧ s |= φ1 ∧ s′ ∈ RK−1}.

Since in Kripke structures each state has a successor state, we can extend a �nite
path fragment πfin = s0 → s1 → ... → sk to an in�nite path by appending a
path starting from sk to πfin. Similarly, for any path, s0 → s1 → ..., its �rst k+1
states forms a �nite path fragment of length k. Therefore, according to the se-
mantics of CTL, it is easy to show that (M, s) |= E[φ1Uφ2] i� there exists a path
π from s such that ∃0 ≤ k : (M,π[k]) |= φ2 and ∀ 0 ≤ j < k : (M,π[j]) |= φ1 i�
there exists a �nite path fragment s0 → s1 → ...→ sk, where s0 = s and k ≥ 0
such that M, sk |= φ2 and for all 0 ≤ i < k,M, si |= φ1. Therefore,we can also
write {s|s |= φ} =

⋃
K S

K , where SK = {s| there exists a �nite path fragment
s0 → s1 → ...→ sK , where s0 = s, such that sK |= φ2 and

∧
0≤i<K si |= φ1}.

We prove RK = SK by induction on K.

When K = 0, obviously R0 = S0.

Let's consider K + 1. RK+1 = {s|∃s′ : s → s′ ∧ s |= φ1 ∧ s′ ∈ RK}. Ac-
cording to the induction hypothesis, RK+1 = {s|∃s′ : s → s′ ∧ s |= φ1 and
there exists a �nite path fragment s1 → s2 → ... → sK+1, where s1 = s′, such
that sK+1 |= φ2 and

∧
1≤i<K+1 si |= φ1}. Combining s → s′ with the �nite

path fragment s1 → s2 → ... → sK+1, we get another �nite path fragment
s0 → s1 → s2 → ... → sK+1, where s0 = s and s1 = s′. Therefore, we can also
have RK+1 = {s| there exists a �nite path fragment s0 → s1 → ... → sK+1,
where s0 = s and s1 = s′, such that sK+1 |= φ2 and

∧
0≤i<K+1 si |= φ1}. This

is exactly SK+1.

Therefore, we have s ∈ %(Rφ) i� (M, s) |= φ.



108 Appendix for Chapter 3

Case φ = AFφ′: Notice that %(Rφ′) coincides with %′(Rφ′) in the least model

%′ of ~R ` φ′ ∧ %′ ⊇ %0. According to the induction hypothesis, we know that
(M, s) |= φ′ i� s ∈ %(Rφ′).

From the semantics of ALFP, we know that %(Rφ) =
⋃
K R

K , where R0 =
%(Rφ′) and RK+1 = {s|∀s′ : ¬%(T )(s, s′) ∨ s′ ∈

⋃
k≤K R

k} ∪R0(K ≥ 0).

According to our assumptions and the induction hypothesis we get R0 = {s|s |=
φ′}. The rest of the proof goes in two steps. We �rst prove that {s|s |= φ} =⋃
K S

K , where SK = {s| for all �nite path fragments s0 → s1 → ... → sK ,
where s0 = s, ∃k : 0 ≤ k ≤ K, sk |= φ′}. Then we will prove by induction on K
that RK = SK .

Now let's proof the �rst step, that is {s|s |= φ} =
⋃
K S

K . Let's consider the
set T = {s|s |= φ} \

⋃
K S

K and we shall prove that it is empty. We pro-
ceed by contradiction. Suppose T 6= ∅ and choose s0 ∈ T . It is obvious that
s0 |= φ but s0 2 φ′ since otherwise s0 ∈ S0 (contradicting s0 6∈

⋃
K S

K). The
transition system we consider here is �nitely branching, and now we claim that
for all successors s1 of s0, we have s1 |= φ. Suppose one successor s1 of s0
doesn't satisfy φ (s1 2 φ). Then there exists an in�nite path starting from s1
(s1 → s2 → ...) such that for all states along the path, we have si 2 φ′(i ≥ 1).
Combining s0 → s1 with the in�nite path s1 → s2 → ..., we get a new in�nite
path s0 → s1 → s2 → ... such that for all states along the new path, we have
si 2 φ′(i ≥ 0). This means s0 2 φ and contradicts the fact that s0 ∈ T . On
the other hand, it can't be the case that for all successors s1 of s0, we have
s1 |= φ′ since otherwise s0 ∈ S1 (contradicting s0 6∈

⋃
K S

K). We now choose
one successor s1 of s0 such that s1 |= φ but s1 2 φ′. Similarly, we can also show
that for all successors s2 of s1, we have s2 |= φ. It can't be the case that for
all successors s2 of s1, we have s2 |= φ′ since otherwise s0 ∈ S2 (contradicting
s0 6∈

⋃
K S

K). We can choose one successor s2 of s1 such that s2 |= φ but
s2 2 φ′. This process can continue arbitrarily often and produce an in�nite
path starting from s0 (s0 → s1 → s2 → ...) such that for all the states along the
path, we have si 2 φ′(i ≥ 0). This contradicts the assumption s0 |= φ. Hence
T = ∅.

For the second step, we prove RK = SK by induction on K.

When K = 0, obviously R0 = S0.



109

Let's consider K + 1. RK+1 = {s|∀s′ : ¬%(T )(s, s′) ∨ s′ ∈
⋃
k≤K R

k} ∪R0. Ac-

cording to the induction hypothesis, RK+1 = {s|∀s′ : ¬T (s, s′)∨s′ ∈
⋃
k≤K S

k}∪
S0. Clearly, SK+1 = {s| for all �nite path fragments s0 → s1 → ... → sK+1,
where s0 = s, ∃k : 0 ≤ k ≤ K + 1, sk |= φ′} = {s| for all �nite path frag-
ments s0 → s1 → ... → sK+1, where s0 = s, ∃k : 1 ≤ k ≤ K + 1, sk |=
φ′}∪{s|s |= φ′} = {s| for all s1 on a �nite path fragment s0 → s1 → ...→ sK+1,
where s0 = s, we know that for all �nite path fragments s1 → ... → sK+1,
∀k : 1 ≤ k ≤ K + 1, sk |= φ′} ∪ {s|s |= φ′} = {s| for all successor s′ of
s, s′ ∈

⋃
k≤K S

k} ∪ S0.

Therefore, we have s ∈ %(Rφ) i� (M, s) |= φ. �

Theorem 3.6 Given a CTL formula φ, a �xed CTL fairness assumption fair,
and an initial interpretation %0 which de�nes T and Pp. Assume that % is the

least solution to ~R `fair φ ∧ % ⊇ %0 and that %(Pathfair,ϕ) = PATHfair,%(Rϕ)

whenever ϕ is true or a subformula of φ, we have that (M, s) |=fair φ i�
s ∈ %(Rφ).

Proof. We proceed by structural induction on φ.

Case φ = true: According to the semantics of CTL with fairness, we have
{s|(M, s) |=fair true} = S. According to the semantics of ALFP, we know that
%(Rtrue) = S. Therefore, we know that (M, s) |=fair true i� s ∈ %(Rtrue).

Case φ = p: According to the semantics of CTL with fairness, we have that
{s|(M, s) |=fair p} = {s|p ∈ L(s)}. From the semantics of ALFP and our as-
sumptions, we know that %(Rp) = %(Pp) = {s|p ∈ L(s)}. Therefore, we know
that (M, s) |=fair p i� s ∈ %(Rp).

Case φ = ¬φ′: Notice that %(Rφ′) coincides with %′(Rφ′) for the least solution

%′ to ~R `fair φ′ ∧ %′ ⊇ %0. According to the induction hypothesis and our
assumptions, we know that (M, s) |=fair φ

′ i� s ∈ %(Rφ′).

From the semantics of ALFP, we know that s ∈ %(Rφ) i� s 6∈ %(Rφ′). From the



110 Appendix for Chapter 3

semantics of CTL with fairness, we know that (M, s) |=fair φ i� (M, s) 2fair φ′.
Therefore, s ∈ %(Rφ) i� (M, s) |= φ.

Case φ = φ1 ∧ φ2: In this case, it is possible that φ1 and φ2 have a same sub-
formula. We claim that clauses generated for a same judgement are the same.
Therefore, the same subformula in φ1 and φ2 are dealt with in the same way by
the �ow logic. In the clauses for ~R `fair φ, we only keep one copy of the clauses
for same subformulae in φ1 and φ2. Also notice that %(Rφ1

) (resp. %(Rφ2
)) co-

incides with %′(Rφ1) (resp. %′(Rφ2)) in the least model %′ of ~R `fair φ1∧%′ ⊇ %0
(resp. ~R `fair φ2 ∧ %′ ⊇ %0). According to the induction hypothesis, we know
that s ∈ %(Rφ1) (resp. s ∈ %(Rφ2)) i� (M, s) |=fair φ1 (resp. (M, s) |=fair φ2).

For the relation %(Rφ1∧φ2), it is given by %(Rφ1∧φ2) = %(Rφ1)∩%(Rφ2) according
to the semantics of ALFP. According to the semantics for CTL with fairness,
we know that {s|(M, s) |=fair φ1} ∩ {s|(M, s) |=fair φ2} = {s|(M, s) |=fair

φ1 and (M, s) |=fair φ2} = {s|(M, s) |=fair φ1 ∧ φ2}. Therefore, we have
(M, s) |=fair φ1 ∧ φ2 i� s ∈ %(Rφ1∧φ2).

Case φ = EXφ′: Notice that %(Rφ′) coincides with %′(Rφ′) in the least model

%′ of ~R `fair φ′ ∧ %′ ⊇ %0. According to the induction hypothesis, we know that
(M, s) |=fair φ

′ i� s ∈ %(Rφ′).

For the relation %(REXφ′), it is given by %(REXφ′) = {s|∃s′ : %(T )(s, s′) ∧
%(Rφ′)(s′) ∧ %(Pathfair,true)(s

′)}. Notice that, according to our assumptions,
%(Pathfair,true) = PATHfair,%(Rtrue) holds and we have proved above that
%(Rtrue) = {s|(M, s) |=fair true}. From Lemma 3.4, we have %(Pathfair,true) =
{s|∃π ∈ Pathtruefair(s)}. According to the assumptions, we know that %(REXφ′) =

{s|∃s′ : s→ s′ ∧ (M, s′) |=fair φ
′ ∧ ∃π ∈ Pathtruefair(s

′)}. We now begin to prove
that %(REXφ′) = {s| (M, s) |=fair EXφ

′}.

According to Fact 2.3.2 and the semantics of CTL with fairness, it's obvious
that {s| (M, s) |=fair EXφ

′} ⊆ %(REXφ′). Assume that there exists a tran-
sition s → s′ such that (M, s′) |=fair φ′ and ∃π′ ∈ Pathtruefair(s

′). We can
extend s → s′ to a path π such that π[0] = s and π[i] = π′[i − 1](i ≥ 1).
According to Fact 2.3.2, π is a fair path. Therefore, ∃π ∈ Pathtruefair(s) such
that (M,π[1]) |=fair φ′, which means (M, s) |=fair EXφ′. This proves the
other inclusion %(REXφ′) ⊆ {s| (M, s) |=fair EXφ′}. Therefore, we have
(M, s) |=fair EXφ

′ i� s ∈ %(REXφ′).



111

Case φ = E[φ1Uφ2]: In this case, it is also possible that φ1 and φ2 have a
same subformula. Similarly, we generate same clauses for the same judgement.
Therefore, the same subformula in φ1 and φ2 are dealt with in the same way by
�ow logic. In the clauses for E[φ1Uφ2], we only keep one copy of the clauses for
same subformulae in φ1 and φ2. Also notice that %(Rφ1

) (resp. %(Rφ2
)) coin-

cides with %′(Rφ1) (resp. %′(Rφ2)) in the least model %′ of ~R `fair φ1 ∧ %′ ⊇ %0
(resp. ~R `fair φ2 ∧ %′ ⊇ %0).

For the relation %(RE[φ1Uφ2]), it is given by %(RE[φ1Uφ2]) =
⋃
K R

K , where
R0 = %(Rφ2

) ∩ %(Pathfair,true) and R
K = {s|∃s′ : %(T )(s, s′) ∧ %(Rφ1

)(s) ∧ s′ ∈
RK−1}(K > 0). Notice that according to our assumptions %(Pathfair,true) =
PATHfair,%(Rtrue) holds and we have proved above that %(Rtrue) = {s|
(M, s) |=fair true}. From Lemma 3.4, we have %(Pathfair,true) = {s|∃π ∈
Pathtruefair(s)}. According to the assumptions and the induction hypothesis, we

get R0 = {s|(M, s) |=fair φ2 ∧ ∃π ∈ Pathtruefair(s)} and RK = {s|∃s′ : s →
s′ ∧ (M, s) |=fair φ1 ∧ s′ ∈ RK−1}. Similarly, we can also write {s|(M, s) |=fair

E[φ1Uφ2]} =
⋃
K S

K , where SK = {s| ∃π ∈ Pathtruefair(s) : (M,π[K]) |=fair

φ2 ∧ ∀ 0 ≤ j < K : (M,π[j]) |=fair φ1}.

We prove RK = SK by induction on K.

The base case is when K = 0. It is obvious that S0 ⊆ R0. Assume that for
a state s, we have (M, s) |=fair φ2 and ∃π ∈ Pathtruefair(s). It's obvious that

(M,π[0]) |=fair φ2. This proves R
0 ⊆ S0.

Let's consider K + 1. RK+1 = {s|∃s′ : s → s′ ∧ (M, s) |=fair φ1 ∧ s′ ∈ RK}.
According to the induction hypothesis, we know that RK+1 = {s|∃s′ : s →
s′ ∧ (M, s) |=fair φ1 ∧ s′ ∈ SK} = {s|∃s′ : s → s′ ∧ (M, s) |=fair φ1 ∧ ∃π ∈
Pathtruefair(s

′) : (M,π[K]) |=fair φ2 ∧ ∀ 0 ≤ j < K : (M,π[j]) |=fair φ1}. As-
sume that s ∈ RK+1, we can extend the transition s → s′ to a path π′ by
appending the path π to s → s′ such that π′[0] = s and π′[k + 1] = π[k](0 ≤
k ≤ K). According to Fact 2.3.2, we know that π′ |= fair. Now we know
that ∃π′ ∈ Pathtruefair(s) such that (M,π′[K + 1]) |=fair φ2 ∧ ∀ 0 ≤ j < K + 1 :

(M,π′[j]) |=fair φ1. Therefore, s ∈ SK+1. This proves RK+1 ⊆ SK+1.

For the other direction, assume that s ∈ SK+1. Then ∃π ∈ Pathtruefair(s) such



112 Appendix for Chapter 3

that (M,π[K + 1]) |=fair φ2 ∧ ∀ 0 ≤ j < K + 1 : (M,π[j]) |=fair φ1. Consider
the su�x π′ of the path π such that π′[k] = π[k + 1](0 ≤ k ≤ K). Accord-
ing to Fact 2.3.2, π′ is a fair path and (M,π′[K]) |=fair φ2 ∧ ∀ 0 ≤ j < K :
(M,π′[j]) |=fair φ1. This means π′[0] ∈ SK and according to the induction hy-
pothesis we have π′[0] ∈ RK . Therefore, we know that there exists s′(s′ = π′[0])
such that s→ s′∧(M, s) |=fair φ1∧s′ ∈ RK . This means s ∈ RK+1. Therefore,
we have SK+1 ⊆ RK+1.

Therefore, we have (M, s) |=fair E[φ1Uφ2] i� s ∈ %(RE[φ1Uφ2]).

Case φ = EGφ′: Notice that %(Rφ′) coincides with %′(Rφ′) in the least model

%′ of ~R `fair φ′ ∧ %′ ⊇ %0. According to the induction hypothesis, we know that
(M, s) |=fair φ

′ i� s ∈ %(Rφ′). According to our assumptions, %(Pathfair,φ′) =
PATHfair,%(Rφ′ )

holds. From Lemma 3.4, we have %(Pathfair,φ′) = {s|∃π ∈
Pathφ

′

fair(s)}.

The relation %(REGφ′) is given by %(REGφ′) = %(Pathfair,φ′). It is obvious
that %(Pathfair,φ′) = {s|∃π : π[0] = s ∧ π |= fair ∧ ∀0 ≤ i : (M,π[i]) |=fair

φ′} = {s|(M, s) |=fair EGφ
′}. Therefore, we know that (M, s) |=fair EGφ

′ i�
s ∈ %(REGφ′). �

Lemma 3.8 Assume that ufair =
∧

1≤i≤kGFbi. Let C be a nontrivial strongly
connected set in Mφ such that C ∩ {s|(Mφ, s) |= bi} 6= ∅ for all 1 ≤ i ≤ k. For
each state s ∈ C, there exists a path π in Mφ from s such that π |= ufair.

Proof. For each bi (1 ≤ i ≤ k), there exists a state si in C such that (Mφ, si) |=
bi. Since states s1, s2, ..., sk are mutually reachable from each other, we can
construct a cycle in C such that each si is visited in this cycle. For example,
we can start from s1 and then visit s2, s3 until sk and �nally go back to s1.
Therefore, we can construct an in�nite path π from s by �rst going from s to
s1 and then going around the cycle we have constructed in�nitely many times.
It is easy to see that π |= ufair. �

Lemma 3.9 Assume that ufair =
∧

1≤i≤kGFbi. There exists an unconditional
fair path in Mφ from s if and only if there exists a �nite path fragment πfin (in
Mφ) from s to a state s′ in uFairSCSsφ.



113

Proof. Assume that we have a �nite path fragment πfin from s to a state s′

in uFairSCSsφ. From Lemma 3.8, we know that there exists a path π from s′

such that π |= ufair. Therefore, we can construct an unconditional fair path
π′ by appending π to the end of πfin. From Fact 2.3.2, we know that π′ |= ufair.

Assume that we have an uncondition fair path π from s and that Mφ has n
states. Since each bi (1 ≤ i ≤ k) is satis�ed on in�nitely many states along π,
we can construct a nontrivial strongly connected set C reachable from s such
that C ∩ {s|(Mφ, s) |= bi} 6= ∅ for all 1 ≤ i ≤ k. We explain it brie�y as follows.

The idea is that we want to �nd a path fragment πfragment = πfragment[0], ...,
πfragment[j] (0 ≤ j) of π which satis�es the two conditions: 1)πfragment[0] =
πfragment[j] and (Mφ, πfragment[0]) |= b1 and 2) for each 2 ≤ i ≤ k there exists
a state s′′ in πfragment such that (Mφ, s

′′) |= bi. If we can �nd such a frag-
ment, we can see that πfragment forms a cycle and we can construct a nontrivial
strongly connected set C = {s|s occurs in πfragment} that is reachable from s.

We will show that it is possible to �nd such a path fragment. Let's traverse
along π from state s. We will �rst visit a state s11 such that (Mφ, s

1
1) |= b1.

Then, we continue along π and will visit a state s12 such that (Mφ, s
1
2) |= b2.

We continue this process and will visit a state s1k such that (Mφ, s
1
k) |= bk. Fi-

nally, we continue from s1k and will visit a state s21 such that (Mφ, s
2
1) |= b1.

The path fragment πfragment1 = s11, ..., s
2
1 satis�es the following two conditions:

1) (Mφ, s
1
1) |= b1 and (Mφ, s

2
1) |= b1 and 2) for each 2 ≤ i ≤ k there exists a

state s′′ in πfragment1 such that (Mφ, s
′′) |= bi. If s21 = s11, we know that we

have found the path fragment we need. Otherwise, we can continue traversing
along the path π from s21. We can repeat the above process and �nd a path
fragment πfragment2 = s21, ..., s

3
1 which satis�es the following two conditions: 1)

(Mφ, s
2
1) |= b1 and (Mφ, s

3
1) |= b1 and 2) for each 2 ≤ i ≤ k there exists a state

s′′ in πfragment2 such that (Mφ, s
′′) |= bi. If s

2
1 = s31 or s11 = s31, we know that

we already �nd the path fragment we need. Otherwise, we can repeat the above
process again.

Assume that there are n states in Mφ and we have done the above process
n times. Then, we have found n path fragments πfragment1 , ..., πfragmentn .
Since Mφ has only n states, at least one of the states s11, s

2
1, ..., s

n+1
1 has been

visited twice in π. Let si1 = sj1 (1 ≤ i, j ≤ n + 1). Then, the path fragment

πfragment = si1, ..., s
j
1 is exactly what we need. �



114 Appendix for Chapter 3

Lemma 3.10 Let %0 be an initial interpretation which de�nes T , Pp and Rφ.

Assume that %0(Rφ) = {s|(M, s) |=ufair φ}. For the least solution % to ~R 
Pathufair,φ ∧ % ⊇ %0, we have the following:

• %(Tφ) equals the transition relation in Mφ,

• (s, s′) ∈ %(T+
φ ) i� there exists a �nite path fragment πfin = s0, s1...sn in

Mφ where s0 = s and sn = s′,

• (s, s′) ∈ %(SCφ) i� s and s′ belong to a nontrivial strongly connected set
in Mφ,

• %(SCufair,φ) = uFairSCSsφ, and

• %(Pathufair,φ) = {s|∃π : π ∈ Pathφufair(s)}.

Proof. First, we want to prove that %(Tφ) equals the transition relation inMφ.
From the semantics of ALFP, we know that (s, s′) ∈ %(Tφ) if and only if (s, s′) ∈
%(T ) and s, s′ ∈ %(Rφ). Since %0 de�nes T and %0(Rφ) = {s|(M, s) |=ufair φ},
we know that (s, s′) ∈ %(Tφ) if and only if (s, s′) ∈ T and (M, s) |=ufair φ and
(M, s′) |=ufair φ. Therefore, according to the de�nition of Mφ, we know that
%(Tφ) equals the transition relation in Mφ.

The statement for the relation %(T+
φ ) is obvious since T+

φ is actually the transi-
tive closure of Tφ.

We now prove that (s, s′) ∈ %(SCφ) if and only if s and s′ belong to a nontriv-
ial strongly connected set in Mφ. The relation %(SCφ) is given by %(SCφ) =
{(s, s′)|%(T+

φ )(s, s′)∧%(T+
φ )(s′, s)}. From above, we know that %(SCφ) = {(s, s′)|

there is a �nite path πfin from s to s′ and a �nite path π′fin from s′ to s inMφ}.

Assume that s and s′ belong to a nontrivial strongly connected set in Mφ, then
we know that there is a �nite path πfin from s to s′ and a �nite path π′fin
from s′ to s in Mφ. Then we have (s, s′) ∈ %(SCφ). This proves one direction.
Assume that (s, s′) ∈ %(SCφ), then there is a �nite path πfin from s to s′ and a
�nite path π′fin from s′ to s in Mφ. Then, the set C

′ = {s| s is a state on πfin
or π′fin} is a nontrivial strongly connected set in Mφ. Since s, s

′ ∈ C ′, we know
that the other direction holds.



115

Let us prove that %(SCufair,φ) = uFairSCSsφ. The relation %(SCufair,φ) is
given by %(SCufair,φ) = {s|∀1 ≤ i ≤ k : ∃si : %(SCφ)(s, si) ∧ %(Pbi)(si)}. Since
%(Pbi) = {s|(M, s) |= bi}, we know that uFairSCSsφ is actually the set union
of all nontrivial strongly connected sets C, in Mφ, satisfying C ∩ %(Pbi) 6= ∅ for
all 1 ≤ i ≤ k.

Assume that s ∈ uFairSCSsφ, then s belongs to a nontrivial strongly con-
nected set C satisfying C ∩ %(Pbi) 6= ∅ for all 1 ≤ i ≤ k. Therefore, for each
1 ≤ i ≤ k, there exists a state si ∈ C such that si ∈ %(Pbi). Since s and si
are in the same nontrivial strongly connected set C, we have (s, si) ∈ %(SCφ).
Therefore, we know that ∀1 ≤ i ≤ k : ∃si : %(SCφ)(s, si) ∧ %(Pbi)(si). This
means s ∈ %(SCufair,φ). This proves one direction.

Assume that s ∈ %(SCufair,φ), then ∀1 ≤ i ≤ k : ∃si : %(SCφ)(s, si)∧%(Pbi)(si).
Since, for each 1 ≤ i ≤ k, (s, si) ∈ %(SCφ) holds, there exists a nontrivial
strongly connected set C such that, for all 1 ≤ i ≤ k, s and si belong to C.
Since si ∈ %(Pbi), we know that C ∩ %(Pbi) 6= ∅. Therefore, s ∈ uFairSCSsφ.
This proves the other direction.

We then prove that %(Pathufair,φ) = {s|∃π : π ∈ Pathφufair(s)}. We want
to show that s ∈ %(Pathufair,φ) i� there exists an unconditional fair path π
in Mφ from s. According to ALFP semantics, the relation %(Pathufair,φ) is
given by %(Pathufair,φ) = {s|∃s′ : %(T+

φ )(s, s′)∧%(SCufair,φ)(s′)}. From above,
we know that %(Pathufair,φ) = {s| there exists a �nite fragment πfin in Mφ

from s to a state s′ in uFairSCSsφ}. According to Lemma 3.9, we know that
s ∈ %(Pathufair,φ) i� there exists an unconditional fair path π in Mφ from s.

Therefore, we have %(Pathufair,φ) = {s|∃π : π ∈ Pathφufair(s)}. �

Lemma 3.12 Assume that sfair = GFa ⇒ GFb. Let C be a nontrivial
strongly connected set in Mφ such that either C ∩ {s|(Mφ, s) |= b} 6= ∅ or
∀s ∈ C : {s|(Mφ, s) 2 a}. For each state s ∈ C, there exists a path π in Mφ

from s such that π |= sfair.

Proof. Assume that C ∩ {s|(Mφ, s) |= b} 6= ∅ holds. Let s′ be a state in C
such that (Mφ, s

′) |= b. We can �nd a �nite path fragment πfin from s to s′ and
another path fragment π′fin from s′ to s. The two path fragments form a cycle.
Therefore, starting from s we could go around the cycle we have constructed in-
�nitely many times. This forms an in�nite path π from s such that b is satis�ed
on in�nitely many states in π. Therefore, π |= sfair.



116 Appendix for Chapter 3

Assume that ∀s ∈ C : {s|(Mφ, s) 2 a}. Let s′ be a state in C. We can �nd a
�nite path fragment πfin from s to s′ and another path fragment π′fin from s′

to s. The two path fragments form a cycle. Therefore, starting from s we could
go around the cycle we have constructed in�nitely many times. This forms an
in�nite path π from s such that a is not satis�ed on any of the states in π.
Therefore, π |= sfair. �

Lemma 3.13 Assume that sfair = GFa ⇒ GFb. There exists a strong fair
path in Mφ from s if and only if there exists a �nite path fragment πfin, in Mφ,
from s to a state s′ in sFairSCSsφ.

Proof. Assume that we have a �nite path fragment πfin from s to a state
s′ in sFairSCSsφ. From Lemma 3.12, we know that there exists a path π
from s′ such that π |= sfair. Therefore, we can construct a strong fair path
π′ by appending π to the end of πfin. From Fact 2.3.2, we know that π′ |= sfair.

Assume that π is a strong fair path from s and that Mφ has n states. There are
two cases such that sfair is satis�ed on π.

The �rst case is that a is satis�ed only on �nitely many states in π. In this
case, there exists a su�x π′ of π such that a is not satis�ed on any of the states
in π′. In the pre�x π′fin = s0, ..., sn of π′, we know that at least one state has
been visited twice since Mφ has only n states. Assume that s′ has been visited
twice in π′fin. Then, the �nite path fragment π′′fin = si, ..., sj in π

′
fin such that

si = sj = s′ (0 ≤ i, j ≤ n) forms a cycle. We can thus construct a nontrivial
strongly connected set C = {s|s occurs in π′′fin} that is reachable from s.

The second case is that b is satis�ed on in�nitely many states in π. Let πfragment
be a path fragment in π such that b is satis�ed on n+ 1 states in πfragment. We
know that at least one of these n+1 states has been visited twice (in πfragment)
since Mφ has only n states. Assume that s′ is one of these n+ 1 states that has
been visited twice in πfragment. Then, the �nite path fragment π′fin = si, ..., sj
in π′fin such that si = sj = s′ (0 ≤ i, j) forms a cycle. We can thus construct
a nontrivial strongly connected set C = {s|s occurs in π′fin} that is reachable
from s. �



117

Lemma 3.14 Let %0 be an initial interpretation which de�nes T , Pp, R¬a and
Rφ. Assume that %0(Rφ) = {s|(M, s) |=sfair φ} and %0(R¬a) = {s|(M, s) 2 a}.
For the least solution % to ~R  Pathsfair,φ ∧ % ⊇ %0, we have the following:

• %(Tφ) (resp. %(Tφ∧¬a)) equals the transition relation inMφ (resp. Mφ∧¬a),

• (s, s′) ∈ %(T+
φ ) (resp. (s, s′) ∈ %(T+

φ∧¬a)) i� there exists a �nite path
fragment πfin = s0, s1...sn inMφ (resp. Mφ∧¬a) where s0 = s and sn = s′,

• (s, s′) ∈ %(SCφ) (resp. (s, s′) ∈ %(SCφ∧¬a)) i� s and s′ belong to a
nontrivial strongly connected set in Mφ (resp. Mφ∧¬a),

• %(SCsfair,φ) = sFairSCSsφ, and

• %(Pathsfair,φ) = {s|∃π : π ∈ Pathφsfair(s)}.

Proof. Proofs for the cases of %(Tφ), %(T+
φ ) and %(SCφ) are the same as those

given in the proof of Lemma 3.10. We can proof the cases of %(Tφ∧¬a), %(T+
φ∧¬a)

and %(SCφ∧¬a) similarly.

Now we prove that %(SCsfair,φ) = sFairSCSsφ. Since %(Pa) = {s|(M, s) |= a}
and %(Pb) = {s|(M, s) |= b}, sFairSCSsφ is actually the set union of all non-
trivial strongly connected sets C, in Mφ, satisfying either C ∩ %(Pb) 6= ∅ or
∀s ∈ C : s 6∈ %(Pa).

According to the semantics of ALFP, the relation %(SCsfair,φ) is given by
%(SCsfair,φ) = {s|∃s′ : %(SCφ)(s, s′) ∧ %(Pb)(s

′)} ∪ {s|∃s′ : %(SCφ∧¬a)(s, s′)}.

Similar with the proof for Lemma 3.10, we know that the set {s|∃s′ : %(SCφ)(s, s′)
∧ %(Pb)(s

′)} equals the set union of all nontrivial strongly connected sets C, in
Mφ, satisfying C∩%(Pb) 6= ∅, and the set {s|∃s′ : %(SCφ∧¬a)(s, s′)} equals the set
union of all nontrivial strongly connected sets C, inMφ∧¬a. In the following, we
want to prove that the set {s|∃s′ : %(SCφ∧¬a)(s, s′)} equals the set union of all
nontrivial strongly connected sets C, inMφ, satisfying ∀s ∈ C : {s|(Mφ, s) 2 a}.

Notice that the transition graph in Mφ∧¬a is a subgraph of that in Mφ. There-
fore, a nontrivial strongly connected set C inMφ∧¬a is also a nontrivial strongly
connected set in Mφ satisfying ∀s ∈ C : {s|(Mφ, s) 2 a}. This proves one direc-
tion.



118 Appendix for Chapter 3

Assume C is a nontrivial strongly connected set in Mφ satisfying ∀s ∈ C :
{s|(Mφ, s) 2 a}. Notice that (Mφ, s) 2 a i� (Mφ, s) 2sfair a since a is a propo-
sition here. For any two states s and s′ in C, we know that there exists a �nite
path πfin in Mφ from s to s′ such that ∀0 ≤ i < |πfin| : (Mφ, πfin[i]) 2sfair a
and that there exists a �nite path π′fin in Mφ from s′ to s such that ∀0 ≤ i <
|π′fin| : (Mφ, π

′
fin[i]) 2sfair a. It's obvious that both πfin and π′fin are valid

paths in Mφ∧¬a. Therefore, s and s
′ belong to a nontrivial strongly connected

set in Mφ∧¬a. Therefore, C is a nontrivial strongly connected set in Mφ∧¬a.
This proves the other direction.

From above, we know that %(SCsfair,φ) equals the set union of all nontrivial
strongly connected sets C, in Mφ, satisfying either C ∩ {s|(M, s) |= b} 6= ∅
or ∀s ∈ C : {s|(Mφ, s) 2 a}. From the de�nition of sFairSCSsφ, we have
%(SCsfair,φ) = sFairSCSsφ.

We now prove %(Pathsfair,φ) = {s|∃π : π ∈ Pathφsfair(s)}. We prove this by
showing that s ∈ %(Pathsfair,φ) i� there exists a strong fair path π inMφ from s.
The relation %(Pathsfair,φ) is given by %(Pathsfair,φ) = {s|∃s′ : %(T+

φ )(s, s′) ∧
%(SCsfair,φ)(s′)}. From above, we know that %(Pathsfair,φ) = {s| there exists
a �nite fragment πfin inMφ from s to a state s′ in sFairSCSsφ}. According to
Lemma 3.13, we know that s ∈ %(Pathsfair,φ) i� there exists a strong fair path

π inMφ from s. Therefore, we have %(Pathsfair,φ) = {s|∃π : π ∈ Pathφsfair(s)}.
�



Appendix B

Appendix for Chapter 4

Theorem 4.2 {%|[(%, σ0) sat cl] = true} is a Moore Family with respect to v],
i.e. is closed under greatest lower bounds, whenever cl is closed and strati�ed;
the greatest lower bound u] {%|[(%, σ0) sat cl] = true} is the least model of cl.

More generally, given %0 the set {%|[(%, σ0) sat cl] = true ∧ %0 v %} is a Moore
Family with respect to v] and u] {%|[(%, σ0) sat cl] = true∧%0 v %} is the least
model.

Proof. Assume cl has the form cl1∧...∧cls where clj is the clause corresponding
to stratum j, and let Rj denote the set of all relation symbols R de�ned in
cl1 ∧ ... ∧ clj and %0. Let R0 denote the set of all relation symbols de�ned in
%0. Let M denote a set of assignments which maps relation symbols to a multi-
valued function. Then % = u]M is de�ned by the formula

%(R) =
l
{%′(R)|%′ ∈M ∧ ∀R′ ∈ Rrank(R)−1 : %(R′) = %′(R′)},

which is well-de�ned by induction on the value of rank(R).

The theorem holds from the fact that for all j, allM and all variable environment
σ Lemma B.1 and Lemma B.2 hold. �



120 Appendix for Chapter 4

Lemma B.1 Assume that % = u]M and pre occurs in clj. Let Mj = {%′ ∈
M |∀R′ ∈ Rj−1 : %(R′) = %′(R′)}. We know that [(%, σ) sat pre] v [(%′, σ) sat

pre] for all %′ ∈Mj.

Proof. We proceed by induction on j and in each case perform a structural
induction on pre occurring in clj .

Case pre = R(v1, ..., vn): Let %′ ∈ Mj . According to the semantics of ALFP,
we have [(%, σ) sat R(v1, ..., vn)] = %(R)(σ(v1), ..., σ(vn)) and [(%′, σ) sat
R(v1, ..., vn)] = %′(R)(σ(v1), ..., σ(vn)). According to the de�nition of % and %′,
we know that %(R) v %′(R). Hence, we know that [(%, σ) sat R(v1, ..., vn)] v
[(%′, σ) sat R(v1, ..., vn)]. Therefore, we know that [(%, σ) sat R(v1, ..., vn)] v
[(%′, σ) sat R(v1, ..., vn)] for all %′ ∈Mj .

Case pre = ¬R(v1, ..., vn): According to strati�cation, we know that rank(R) <
j and hence %′(R) = %(R) for all %′ ∈Mj . Therefore, the result holds.

Case pre = pre1 ∨ pre2: Let %′ ∈ Mj . According to the semantics of ALFP,
we have [(%, σ) sat pre1 ∨ pre2] = [(%, σ) sat pre1] t [(%, σ) sat pre2] and
[(%′, σ) sat pre1 ∨ pre2] = [(%′, σ) sat pre1] t [(%′, σ) sat pre2]. According to
the induction hypothesis, we know that [(%, σ) sat pre1] v [(%′, σ) sat pre1]
and [(%, σ) sat pre2] v [(%′, σ) sat pre2]. Therefore, we have the following:
[(%, σ) sat pre1∨pre2] = [(%, σ) sat pre1] t[(%, σ) sat pre2] v [(%′, σ) sat pre1] t
[(%′, σ) sat pre2] = [(%′, σ) sat pre1∨pre2]. Therefore, we know that [(%, σ) sat
pre1 ∨ pre2] v [(%′, σ) sat pre1 ∨ pre2] for all %′ ∈Mj .

Case pre = pre1 ∧ pre2: Let %′ ∈ Mj . According to the semantics of ALFP,
we have [(%, σ) sat pre1 ∧ pre2] = [(%, σ) sat pre1] u [(%, σ) sat pre2] and
[(%′, σ) sat pre1 ∧ pre2] = [(%′, σ) sat pre1] u [(%′, σ) sat pre2]. According to
the induction hypothesis, we know that [(%, σ) sat pre1] v [(%′, σ) sat pre1]
and [(%, σ) sat pre2] v [(%′, σ) sat pre2]. Therefore, we have the following:
[(%, σ) sat pre1∧pre2] = [(%, σ) sat pre1] u[(%, σ) sat pre2] v [(%′, σ) sat pre1] u
[(%′, σ) sat pre2] = [(%′, σ) sat pre1∧pre2]. Therefore, we know that [(%, σ) sat
pre1 ∧ pre2] v [(%′, σ) sat pre1 ∧ pre2] for all %′ ∈Mj .

Case pre = ∃x : pre′: Let %′ ∈ Mj . According to the semantics of ALFP, we
have [(%, σ) sat ∃x : pre′] =

⊔
a∈U{[(%, σ[x 7→ a]) sat pre′]} and [(%′, σ) sat ∃x :

pre′] =
⊔
a∈U{[(%′, σ[x 7→ a]) sat pre′]}. According to the induction hypothesis,



121

we know that ∀a ∈ U : [(%, σ[x 7→ a]) sat pre′] v [(%′, σ[x 7→ a]) sat pre′].
Therefore, we have the following: [(%, σ) sat ∃x : pre′] =

⊔
a∈U{[(%, σ[x 7→

a]) sat pre′]} v
⊔
a∈U{[(%′, σ[x 7→ a]) sat pre′]} = [(%′, σ) sat ∃x : pre′].

Therefore, we know that [(%, σ) sat ∃x : pre′] v [(%′, σ) sat ∃x : pre′] for all
%′ ∈Mj .

Case pre = ∀x : pre′: Let %′ ∈ Mj . According to the semantics of ALFP, we
have [(%, σ) sat ∀x : pre′] =

d
a∈U{[(%, σ[x 7→ a]) sat pre′]} and [(%′, σ) sat ∀x :

pre′] =
d
a∈U{[(%′, σ[x 7→ a]) sat pre′]}. According to the induction hypothesis,

we know that ∀a ∈ U : [(%, σ[x 7→ a]) sat pre′] v [(%′, σ[x 7→ a]) sat pre′].
Therefore, we have the following: [(%, σ) sat ∀x : pre′] =

d
a∈U{[(%, σ[x 7→

a]) sat pre′]} v
d
a∈U{[(%′, σ[x 7→ a]) sat pre′]} = [(%′, σ) sat ∀x : pre′].

Therefore, we know that [(%, σ) sat ∀x : pre′] v [(%′, σ) sat ∀x : pre′] for all
%′ ∈Mj . �

Lemma B.2 Assume that % = u]M and cl occurs in clj. If [(%′, σ) sat cl] =
true for all %′ ∈M , then [(%, σ) sat cl] = true.

Proof. We proof by induction on j and in each case distinguish between two
cases. The �rst case is when ∀x ∈ Uk : %(R)(x) = > for all relations R of rank
j and arity k. It is straightforward by induction on cl to show that our lemma
holds. The second case is when ∃x ∈ Uk : %(R)(x) 6= > for some relation R of
rank j and arity k. Then the set

Mj = {%′ ∈M |∀R′ ∈ Rj−1 : %(R′) = %′(R′)}

is not empty. Therefore, we have that %(R) = u{%′(R)|%′ ∈ Mj} if rankR = j
and that %(R) = %′(R) if rankR < j and %′ ∈ Mj . We proceed by structural
induction on cl occurring clj .

Case cl = true: It's obvious that [(%, σ) sat true] = true.

Case cl = cl1∧cl2: According to the semantics of ALFP, we have [(%, σ) sat cl1∧
cl2] = [(%, σ) sat cl1] ∧ [(%, σ) sat cl2]. If [(%′, σ) sat cl1 ∧ cl2] = true for all
%′ ∈Mj , we know that [(%′, σ) sat cl1] = true and [(%′, σ) sat cl2] = true for all
%′ ∈Mj . According to the induction hypothesis, we have [(%, σ) sat cl1] = true
and [(%, σ) sat cl2] = true. Therefore, [(%, σ) sat cl1 ∧ cl2] = true.



122 Appendix for Chapter 4

Case cl = ∀x : cl′: According to the semantics of ALFP, we know that
[(%, σ) sat ∀x : cl′] = true i� ∀a ∈ U : [(%, σ[x 7→ a]) sat cl′] = true.
If [(%′, σ) sat ∀x : cl′] = true for all %′ ∈ Mj , we must have ∀a ∈ U :
[(%′, σ[x 7→ a]) sat cl′] = true for all %′ ∈ Mj . According to the induction
hypothesis, we have ∀a ∈ U : [(%, σ[x 7→ a]) sat cl′] = true. Therefore,
[(%, σ) sat ∀x : cl′] = true.

Case cl = pre ⇒ R(v1, ..., vn): According to the semantics of ALFP, we know
that [(%, σ) sat pre⇒ R(v1, ..., vn)] = true i� [(%, σ) sat pre] v [(%, σ) sat
R(v1, ..., vn)]. If [(%′, σ) sat pre ⇒ R(v1, ..., vn)] = true for all %′ ∈ Mj , we
know that [(%′, σ) sat pre] v [(%′, σ) sat R(v1, ..., vn)] for all %′ ∈ Mj . There-
fore, u{[(%′, σ) sat pre]|%′ ∈Mj} v u{[(%′, σ) sat R(v1, ..., vn)]|%′ ∈Mj}.

From Lemma B.1, we know that [(%, σ) sat pre] v [(%′, σ) sat pre]. Therefore,
[(%, σ) sat pre] v u{[(%′, σ) sat pre]|%′ ∈Mj}. According to the de�nition of %
and %′, we know that [(%, σ) sat R(v1, ..., vn)] = u{[(%′, σ) sat R(v1, ..., vn)]|%′ ∈
Mj}. Therefore, [(%, σ) sat pre] v u{[(%′, σ) sat pre]|%′ ∈Mj} v u{[(%′, σ) sat
R(v1, ..., vn)]|%′ ∈Mj} = [(%, σ) sat R(v1, ..., vn)]. This means [(%, σ) sat pre⇒
R(v1, ..., vn)] = true. �

From [59] we have Proposition B.3 and Lemma B.4.

Proposition B.3 Let L = (L,v) be a �nite lattice. For all x ∈ L, we know
that x =

⊔
{y|y ∈ J (L), y v x}.

Lemma B.4 Let L = (L,v) be a distributive lattice and x ∈ J (L). We know
that for any 1 ≤ k, if y1, ..., yk ∈ L and x v y1 t ... t yk, then x v yi for some
1 ≤ i ≤ k.

Lemma B.5 Let M = (L,∼) be a �nite distributive multi-valued structure
and J (L) = {x1, ..., xn}. Then we have: C((%x1 , ..., %xn)) i� xj ∈ J (L) and
xj v

⊔
{xi|%xi(R)(s) = true ∧ 1 ≤ i ≤ n} implies %xj (R)(s) = true where

s ∈ Uk, R ∈ R and 1 ≤ j ≤ n.

Proof. Assume that xj ∈ J (L) and xj v
⊔
{xi|%xi(R)(s) = true ∧ 1 ≤ i ≤ n}

implies %xj (R)(s) = true where s ∈ Uk, R ∈ R and 1 ≤ j ≤ n. Assume
that xi w xj and that %xi(R)(s) = true. Therefore, we have xj v xi v⊔
{xi|%xi(R)(s) = true∧1 ≤ i ≤ n}. According to our assumption, we know that

%xj (R)(s) = true. Since s and R are arbitrarily chosen, we know that %xi v %xj .



123

Assume that C((%x1 , ..., %xn)) holds, which means xi w xj implies %xi v %xj . Let
s ∈ Uk and R ∈ R. Assume that xj v

⊔
{xi|%xi(R)(s) = true ∧ 1 ≤ i ≤ n}.

Since xj v
⊔
{xi|%xi(R)(s) = true ∧ 1 ≤ i ≤ n} i� xj = xj u

⊔
{xi|%xi(R)(s) =

true ∧ 1 ≤ i ≤ n}, we know that xj = xj u
⊔
{xi|%xi(R)(s) = true ∧ 1 ≤ i ≤

n} holds. Since L is distributive, we know that xj = xj u
⊔
{xi|%xi(R)(s) =

true ∧ 1 ≤ i ≤ n} =
⊔
{xj u xi|%xi(R)(s) = true ∧ 1 ≤ i ≤ n}. Therefore,

xj v
⊔
{xj u xi|%xi(R)(s) = true ∧ 1 ≤ i ≤ n}. From Lemma B.4, we know

that xj v xj u xi for some xi such that %xi(R)(s) = true. This means xj v xi.
From our assumption, we know that %xi v %xj . Therefore, %xj (R)(s) = true.
Hence, xj ∈ J (L) and xj v

⊔
{xi|%xi(R)(s) = true ∧ 1 ≤ i ≤ n} implies

%xj (R)(s) = true where s ∈ Uk, R ∈ R and 1 ≤ j ≤ n. �

Lemma 4.7 The functions f and b are monotone, b ◦ f = idI and f ◦ b = idI2
where idI and idI2 are the identity functions over I and I2 respectively.

Proof. We �rst prove that f is monotone. Assume that %1, %2 ∈ I, %1 v
%2, f(%1) = (%x1

1 , ..., %
xn
1 ) and f(%2) = (%x1

2 , ..., %
xn
2 ). We want to show that

(%x1
1 , ..., %

xn
1 ) ≤2 (%x1

2 , ..., %
xn
2 ). We prove by contradiction.

Assume that ∃s ∈ Uk,∃R ∈ R,∃1 ≤ i ≤ n : %xi2 (R)(s) < %xi1 (R)(s). This means
%xi2 (R)(s) = false and %xi1 (R)(s) = true. According to the de�nition of f and
%xi1 (R)(s) = true, we know that xi v %1(R)(s). From %1 v %2, we know that
%1(R)(s) v %2(R)(s). Therefore, xi v %2(R)(s). However, from the de�nition
of f and %xi2 (R)(s) = false, we know that xi 6v %2(R)(s). This is a contradiction.

We now prove that b is monotone. Assume that (%x1
1 , ..., %

xn
1 ), (%x1

2 , ..., %
xn
2 ) ∈ I2,

(%x1
1 , ..., %

xn
1 ) ≤2 (%x1

2 , ..., %
xn
2 ), b((%x1

1 , ..., %
xn
1 )) = %1 and b((%x1

2 , ..., %
xn
2 )) = %2.

We want to show that %1 v %2.

Given s ∈ Uk and R ∈ R, according to the de�nition of b, we know that
%1(R)(s) =

⊔
{xi|%xi1 (R)(s) = true∧1 ≤ i ≤ n} and %2(R)(s) =

⊔
{xi|%xi2 (R)(s) =

true∧1 ≤ i ≤ n}. Since (%x1
1 , ..., %

xn
1 ) ≤2 (%x1

2 , ..., %
xn
2 ), we know that {xi|%xi1 (R)(s)

= true ∧ 1 ≤ i ≤ n} ⊆ {xi|%xi2 (R)(s) = true ∧ 1 ≤ i ≤ n}. Therefore,
%1(R)(s) =

⊔
{xi|%xi1 (R)(s) = true ∧ 1 ≤ i ≤ n} v

⊔
{xi|%xi2 (R)(s) = true ∧ 1 ≤

i ≤ n} = %2(R)(s). Since s and R are chosen arbitrarily, we know that %1 v %2.

We now show that b◦f is an identity function over I. Given s ∈ Uk, R ∈ R and



124 Appendix for Chapter 4

% ∈ I. Let f(%) = (%x1 , ..., %xn) and b((%x1 , ..., %xn)) = %′. Therefore, (b◦f)(%) =
%′. From the de�nition of f , we know that %xi(R)(s) = true i� xi v %(R)(s).
From Proposition B.3, we know that %(R)(s) =

⊔
{x|x ∈ J (L) ∧ x v %(R)(s)}.

Therefore, we know that %(R)(s) =
⊔
{xi|%xi(R)(s) = true}. From the def-

inition of b , we know that %′(R)(s) =
⊔
{xi|%xi(R)(s) = true}. Therefore,

%(R)(s) = %′(R)(s) Since s and R are chosen arbitrarily, we know that % = %′.
This means b ◦ f is an identity function over I.

We now prove the case of f ◦b. Given s ∈ Uk, R ∈ R and (%x1 , ..., %xn) ∈ I2. Let
b((%x1 , ..., %xn)) = %′ and f(%′) = (%′x1 , ..., %′xn). Therefore, (f ◦b)((%x1 , ..., %xn))
= (%′x1 , ..., %′xn). From the de�nition of b, we know that %′(R)(s) =

⊔
{xi|

%xi(R)(s) = true}. From the de�nition of f and Proposition B.3, we know that
%′(R)(s) =

⊔
{x|x ∈ J (L) ∧ x v %′(R)(s)} =

⊔
{xi|%′xi(R)(s) = true}. There-

fore, we know that
⊔
{xi|%xi(R)(s) = true} =

⊔
{xi|%′xi(R)(s) = true}.

Since s and R are chosen arbitrarily, we can know that (%x1 , ..., %xn) = (%′x1 , ...,
%′xn) i� {xi|%xi(R)(s) = true} = {xi|%′xi(R)(s) = true}. Assume that xi ∈
{xi|%xi(R)(s) = true}. We know that xi v

⊔
{xi|%′xi(R)(s) = true}. From

C((%′x1 , ..., %′xn)) and Lemma B.5, we know that %′xi(R)(s) = true, which
means xi ∈ {xi|%′xi(R)(s) = true}. Therefore, {xi|%xi(R)(s) = true} ⊆
{xi|%′xi(R)(s) = true}. Assume that xi ∈ {xi|%′xi(R)(s) = true}. We know
that xi v

⊔
{xi|%xi(R)(s) = true}. From C((%x1 , ..., %xn)) and Lemma B.5, we

know that %xi(R)(s) = true, which means xi ∈ {xi|%xi(R)(s) = true}. There-
fore, {xi|%xi(R)(s) = true} ⊇ {xi|%′xi(R)(s) = true}. Therefore, {xi|%xi(R)(s)
= true} = {xi|%′xi(R)(s) = true}. This proves that (%x1 , ..., %xn) = (%′x1 , ...,
%′xn) and therefore f ◦ b is an identity function over I2. �

Lemma B.6 Let L be a �nite distributive lattice, % ∈ I, pre be a negation-free
precondition and J (L) = {x1, ..., xn}. We know that xi v [(%, σ) sat pre] i�
[(%xi , σ) sat2 pre] = true, where 1 ≤ i ≤ n and f(%) = (%x1 , ..., %xn).

Proof. Let (v1, ..., vm) ∈ Uk, R ∈ R and 1 ≤ i ≤ n. We proceed by structure
induction on pre.

Case pre = R(v1, ..., vm): From the de�nition of f , we know that %xi(R)(v1, ...,
vm) = true i� xi v %(R)(v1, ..., vm). Therefore, we have xi v [(%, σ) sat
R(v1, ..., vm)] i� [(%xi , σ) sat2 R(v1, ..., vm)].



125

Case pre = pre1 ∧ pre2: Assume that xi v [(%, σ) sat pre1 ∧ pre2]. According
to the semantics of multi-valued ALFP, we know that xi v [(%, σ) sat pre1] u
[(%, σ) sat pre2]. Therefore, xi v [(%, σ) sat pre1] and xi v [(%, σ) sat pre2].
According to the induction hypothesis, we know that [(%xi , σ) sat pre1] = true
and [(%xi , σ) sat pre2] = true. Therefore, according to the semantics of two-
valued and multi-valued ALFP, we know that [(%xi , σ) sat2 pre1∧pre2] = true.

Assume that [(%xi , σ) sat2 pre1 ∧ pre2] = true. According to the semantics of
two-valued ALFP, we know that [(%xi , σ) sat pre1] = true and [(%xi , σ) sat pre2]
= true. According to the induction hypothesis, we know that xi v [(%, σ) sat
pre1] and xi v [(%, σ) sat pre2]. Therefore, xi v [(%, σ) sat pre1] u [(%, σ) sat
pre2]. According to the semantics of multi-valued ALFP, we know that xi v
[(%, σ) sat pre1 ∧ pre2].

Case pre = pre1 ∨ pre2: Assume that xi v [(%, σ) sat pre1 ∨ pre2]. According
to the semantics of multi-valued ALFP, we know that xi v [(%, σ) sat pre1] t
[(%, σ) sat pre2]. From Lemma B.4, we know that xi v [(%, σ) sat pre1] or
xi v [(%, σ) sat pre2]. According to the induction hypothesis, we know that
[(%xi , σ) sat pre1] = true or [(%xi , σ) sat pre2] = true. Therefore, according to
the semantics of two-valued and multi-valued ALFP, we know that [(%xi , σ) sat2

pre1 ∨ pre2] = true.

Assume that [(%xi , σ) sat2 pre1 ∨ pre2] = true. According to the semantics of
two-valued ALFP, we know that [(%xi , σ) sat pre1] = true or [(%xi , σ) sat pre2]
= true. According to the induction hypothesis, we know that xi v [(%, σ) sat
pre1] or xi v [(%, σ) sat pre2]. Therefore, xi v [(%, σ) sat pre1] t [(%, σ) sat
pre2]. According to the semantics of multi-valued ALFP, we know that xi v
[(%, σ) sat pre1 ∨ pre2].

Case pre = ∀x : pre′: Assume that xi v [(%, σ) sat ∀x : pre′]. According
to the semantics of multi-valued ALFP, we know that xi v

d
a∈U{[(%, σ[x 7→

a]) sat pre′]}. Therefore, ∀a ∈ U : xi v [(%, σ[x 7→ a]) sat pre′]. According to
the induction hypothesis, we know that ∀a ∈ U : [(%xi , σ[x 7→ a]) sat pre′] =
true. Therefore, according to the semantics of two-valued and multi-valued
ALFP, we know that [(%xi , σ) sat2 ∀x : pre′] = true.

Assume that [(%xi , σ) sat2 ∀x : pre′] = true. According to the semantics of
two-valued ALFP, we know that ∀a ∈ U : [(%xi , σ[x 7→ a]) sat pre′] = true.
According to the induction hypothesis, we know that ∀a ∈ U : xi v [(%, σ[x 7→



126 Appendix for Chapter 4

a]) sat pre′]. Therefore, xi v
d
a∈U{[(%, σ[x 7→ a]) sat pre′]}. According to the

semantics of multi-valued ALFP, we know that xi v [(%, σ) sat ∀x : pre′].

Case pre = ∃x : pre′: Assume that xi v [(%, σ) sat ∃x : pre′]. According
to the semantics of multi-valued ALFP, we know that xi v

⊔
a∈U{[(%, σ[x 7→

a]) sat pre′]}. From Lemma B.4, we know that ∃a ∈ U : xi v [(%, σ[x 7→
a]) sat pre′]. According to the induction hypothesis, we know that ∃a ∈ U :
[(%xi , σ[x 7→ a]) sat pre′] = true. Therefore, according to the semantics of two-
valued and multi-valued ALFP, we know that [(%xi , σ) sat2 ∃x : pre′] = true.

Assume that [(%xi , σ) sat2 ∃x : pre′] = true. According to the semantics of
two-valued ALFP, we know that ∃a ∈ U : [(%xi , σ[x 7→ a]) sat pre′] = true.
According to the induction hypothesis, we know that ∃a ∈ U : xi v [(%, σ[x 7→
a]) sat pre′]. Therefore, xi v

⊔
a∈U{[(%, σ[x 7→ a]) sat pre′]}. According to the

semantics of multi-valued ALFP, we know that xi v [(%, σ) sat ∃x : pre′]. �

Lemma B.7 Let L be a �nite distributive lattice, pre be a negation-free precon-
dition, J (L) = {x1, ..., xn} and (%x1 , ..., %xn) ∈ I2. We have [(%, σ) sat pre] =⊔
{xi|[(%xi , σ) sat2 pre] = true}, where % = b((%x1 , ..., %xn)).

Proof. According to Proposition B.3, we know that [(%, σ) sat pre] =
⊔
{xi|xi

v [(%, σ) sat pre]}. Since f ◦ b is an identity function, we know that f(%) =
f(b((%x1 , ..., %xn))) = (%x1 , ..., %xn). According to Lemma B.6, we know that
xi v [(%, σ) sat pre] i� [(%xi , σ) sat2 pre] = true. Therefore, [(%, σ) sat pre] =⊔
{xi|[(%xi , σ) sat2 pre] = true}. �

Theorem 4.9 Given %0 and a negation-free multi-valued ALFP clause cl. The
two posets (Icl,%0,σ0

,v) and (I2cl,%0,σ0
,≤2) are isomorphic.

Proof. It's obvious that Icl,%0,σ0 ⊆ I and I2cl,%0,σ0
⊆ I2. From Corol-

lary 4.8, we know that we only need to show that f(Icl,%0,σ0
) ⊆ I2cl,%0,σ0

and

b(I2cl,%0,σ0
) ⊆ Icl,%0,σ0

.

We �rst prove that f(Icl,%0,σ0) ⊆ I2cl,%0,σ0
. Assume that % ∈ Icl,%0,σ0 and

f(%) = (%x1 , ..., %xn). To show (%x1 , ..., %xn) ∈ I2cl,%0,σ0
, we need to prove that

∀1 ≤ i ≤ n : [(%xi , σ0) sat2 cl] = true∧f(%0) ≤2 (%x1 , ..., %xn)∧C((%x1 , ..., %xn))}.



127

Notice that according to Lemma 4.7, f is monotone. Therefore, f(%0) ≤2 f(%),
which means f(%0) ≤2 (%x1 , ..., %xn) always holds. Also from the de�nition of f ,
we know that C((%x1 , ..., %xn)) holds. We proceed by structural induction on cl
to show that ∀1 ≤ i ≤ n : [(%xi , σ0) sat2 cl] = true.

Case cl = true: Assume that % ∈ Itrue,%0,σ0 . According to the semantics of
two-valued ALFP, we know that ∀1 ≤ i ≤ n : [(%xi , σ0) sat2 true] = true
holds. Since f(%0) ≤2 (%x1 , ..., %xn) and C((%x1 , ..., %xn)) always hold, we know
that f(%) ∈ I2true,%0,σ0

. Therefore, f(Itrue,%0,σ0
) ⊆ I2true,%0,σ0

.

Case cl = cl1 ∧ cl2: According to the semantics of two-valued and multi-valued
ALFP, we know that Icl1∧cl2,%0,σ0 = Icl1,%0,σ0 ∩ Icl2,%0,σ0 and I2cl1∧cl2,%0,σ0

=

I2cl1,%0,σ0
∩I2cl2,%0,σ0

. According to the induction hypothesis, we have f(Icl1,%0,σ0
)

⊆ I2cl1,%0,σ0
and f(Icl2,%0,σ0) ⊆ I2cl2,%0,σ0

. Therefore, f(Icl1∧cl2,%0,σ0
) = f(Icl1,%0,σ0

∩ Icl2,%0,σ0
) ⊆ f(Icl1,%0,σ0

) ∩ f(Icl2,%0,σ0
) ⊆ I2cl1,%0,σ0

∩ I2cl2,%0,σ0
= I2cl1∧cl2,%0,σ0

.

Case cl = ∀x : cl′: According to the semantics of two-valued and multi-valued
ALFP, we know that I∀x:cl′,%0,σ0 =

⋂
a∈U Icl′,%0,σ0[x 7→a] and I2∀x:cl′,%0,σ0

=⋂
a∈U I2cl′,%0,σ0[x 7→a]. According to the induction hypothesis, we know that ∀a ∈
U : f(Icl′,%0,σ0[x 7→a]) ⊆ I2cl′,%0,σ0[x 7→a]. Therefore, f(I∀x:cl′,%0,σ0

) =

f(
⋂
a∈U Icl′,%0,σ0[x 7→a]) ⊆

⋂
a∈U f(Icl′,%0,σ0[x 7→a]) ⊆

⋂
a∈U I2cl′,%0,σ0[x 7→a] =

I2∀x:cl′,%0,σ0
.

Case cl = pre ⇒ R(v1, ..., vn): Assume that % ∈ Ipre⇒R(v1,...,vn),%0,σ0
. Accord-

ing to the semantics of multi-valued ALFP, we know that [(%, σ) sat pre] v
[(%, σ) sat R(v1, ..., vn)]. Assume that [(%xi , σ) sat2 pre] = true. From Lemma
B.6, we know that xi v [(%, σ) sat pre]. Therefore, xi v [(%, σ) satR(v1, ..., vn)].
From the de�nition of f , we know that [(%xi , σ) sat2 R(v1, ..., vn)] = true.
Therefore, according to the semantics of two-valued ALFP, we know that
[(%xi , σ) sat2 pre⇒ R(v1, ..., vn)] = true. Hence, ∀1 ≤ i ≤ n : [(%xi , σ) sat2

pre ⇒ R(v1, ..., vn)] = true. Since f(%0) ≤2 (%x1 , ..., %xn) and C((%x1 , ..., %xn))
always hold, we know that f(%) ∈ I2pre⇒R(v1,...,vn),%0,σ0

. Therefore, we know

that f(Ipre⇒R(v1,...,vn),%0,σ0
) ⊆ I2pre⇒R(v1,...,vn),%0,σ0

.

We now show that b(I2cl,%0,σ0
) ⊆ Icl,%0,σ0

. Assume that (%x1 , ..., %xn) ∈ I2cl,%0,σ0

and b((%x1 , ..., %xn)) = %. Notice that according to Lemma 4.7, b is monotone
and b ◦ f is an identity function. Therefore, from f(%0) ≤2 (%x1 , ..., %xn), we



128 Appendix for Chapter 4

know that b(f(%0)) ≤2 b((%x1 , ..., %xn)), which means %0 v %. We proceed by
structural induction on cl to show that [(%, σ0) sat cl] = true.

Case cl = true: Assume that (%x1 , ..., %xn) ∈ I2true,%0,σ0
. According to the

multi-valued semantics of ALFP, we have [(%, σ0) sat true] = true. Since
%0 v %. Therefore, % ∈ Itrue,%0,σ0 holds. Hence, we have that b((%x1 , ..., %xn)) ∈
Itrue,%0,σ0Therefore, b(I2true,%0,σ0

) ⊆ Itrue,%0,σ0 .

Case cl = cl1 ∧ cl2: According to the semantics of two-valued and multi-valued
ALFP, we know that Icl1∧cl2,%0,σ0

= Icl1,%0,σ0
∩ Icl2,%0,σ0

and I2cl1∧cl2,%0,σ0
=

I2cl1,%0,σ0
∩I2cl2,%0,σ0

. According to the induction hypothesis, we have b(I2cl1,%0,σ0
)

⊆ Icl1,%0,σ0
and b(I2cl2,%0,σ0

) ⊆ Icl2,%0,σ0
. Therefore, b(I2cl1∧cl2,%0,σ0

) =

b(Icl1,%0,σ0
∩ Icl2,%0,σ0

) ⊆ b(I2cl1,%0,σ0
) ∩ b(I2cl2,%0,σ0

) ⊆ I2cl1,%0,σ0
∩ I2cl2,%0,σ0

=
Icl1∧cl2,%0,σ0 .

Case cl = ∀x : cl′: According to the semantics of two-valued and multi-valued
ALFP, we know that I∀x:cl′,%0,σ0

=
⋂
a∈U Icl′,%0,σ0[x 7→a] and I2∀x:cl′,%0,σ0

=⋂
a∈U I2cl′,%0,σ0[x 7→a]. According to the induction hypothesis, we know that ∀a ∈
U : b(I2cl′,%0,σ0[x 7→a]) ⊆ Icl′,%0,σ0[x7→a]. Therefore, we know that b(I2∀x:cl′,%0,σ0

) =

b(
⋂
a∈U Icl′,%0,σ0[x 7→a]) ⊆

⋂
a∈U b(Icl′,%0,σ0[x 7→a]) ⊆

⋂
a∈U Icl′,%0,σ0[x 7→a] =

I∀x:cl′,%0,σ0 .

Case cl = pre⇒ R(v1, ..., vn): Let's assume that (%x1 , ..., %xn) ∈
I2pre⇒R(v1,...,vn),%0,σ0

. From Lemma B.7, we know that [(%, σ) sat pre] =
⊔
{xi|

[(%xi , σ) sat2 pre] = true} and [(%, σ) sat R(v1, ..., vn)] =
⊔
{xi|[(%xi , σ) sat2

R(v1, ..., vn)] = true}. Since ∀1 ≤ i ≤ n : [(%xi , σ) sat2pre ⇒ R(v1, ..., vn)] =
true, we know that [(%xi , σ) sat2pre] = true implies [(%xi , σ) sat2R(v1, ..., vn)]
= true. Therefore, {xi|[(%xi , σ) sat2 pre] = true} ⊆ {xi|[(%xi , σ) sat2R(v1, ...,
vn)] = true}. Hence

⊔
{xi|[(%xi , σ) sat2pre] = true} v

⊔
{xi|[(%xi , σ) sat2

R(v1, ..., vn)] = true}. Therefore, [(%, σ) sat pre] v [(%, σ) sat R(v1, ..., vn)].
According to the semantics of multi-valued ALFP, we know that % ∈
Ipre⇒R(v1,...,vn),%0,σ0

. Hence, b(I2pre⇒R(v1,...,vn),%0,σ0
) ⊆ Ipre⇒R(v1,...,vn),%0,σ0

.�

Lemma B.8 Given a negation-free 2-valued ALFP clause cl. Assume that
%10 ≤2 %20. Let %1 = ∧2{%|[(%, σ0) sat2 cl] = true ∧ %10 ≤2 %} and %2 = ∧2{%|
[(%, σ0) sat2 cl] = true ∧ %20 ≤2 %}. We know that %1 ≤2 %2.



129

Proof. From Proposition 2.6, we know that [(%2, σ0) sat2 cl] = true∧%20 ≤2 %2.
From the assumption, we also know that %10 ≤2 %2. Therefore, %2 is an element
of the set {%|[(%, σ0) sat2 cl] = true ∧ %10 ≤2 %}. Since %1 is a lower bound of
this set, we have %1 ≤2 %2. �

Lemma 4.10 Let M = (L,∼) be a �nite distributive multi-valued structure.
Then ∧2I2cl,%0,σ0

= ∧2{(%x1 , ..., %xn)|∀1 ≤ i ≤ n : [(%xi , σ0) sat2 cl] = true ∧
f(%0) ≤2 (%x1 , ..., %xn)}.

Proof. Let (%x1 , ..., %xn) = ∧2{(%x1 , ..., %xn)|∀1 ≤ i ≤ n : [(%xi , σ0) sat2 cl] =
true ∧ f(%0) ≤2 (%x1 , ..., %xn)}. From the de�nition of f, we know that xi w xj
implies %xi0 v %

xj
0 . From Lemma B.8, we know that %xi0 v %

xj
0 implies %xi v %xj .

Therefore, xi w xj implies %xi v %xj . Therefore, C((%x1 , ..., %xn)) holds.

From Proposition 2.6 and above, we know that (%x1 , ..., %xn) ∈ I2cl,%0,σ0
. There-

fore, ∧2I2cl,%0,σ0
≤2 (%x1 , ..., %xn). Since it's clear that I2cl,%0,σ0

⊆ {(%x1 , ..., %xn)|
∀1 ≤ i ≤ n : [(%xi , σ0) sat2 cl] = true ∧ f(%0) ≤2 (%x1 , ..., %xn)}, we know that
(%x1 , ..., %xn) ≤2 ∧2I2cl,%0,σ0

. Since ≤2 is anti-symmetric, we have ∧2I2cl,%0,σ0
=

(%x1 , ..., %xn). �

Theorem 4.16 For a CTL formula φ and the least model % of ~R ` φ such that
% = ∧3]{% | [(%, σ) sat3 (~R ` φ)] = true, %0 ≤3 %}, where %0 de�nes Pp, T and

True, we know that [(M, s) |=3 φ] = %(Rφ)(s).

Proof. We actually only have to prove the following two statements: [(M, s) |=3

φ] = true i� %(Rφ)(s) = true and [(M, s) |=3 φ] ≥3 ⊥ i� %(Rφ)(s) ≥3 ⊥. This
is because if the above two statements hold, it's obvious that the following two
statements: [(M, s) |=3 φ] = ⊥ i� %(Rφ)(s) = ⊥ and [(M, s) |=3 φ] = false
i� %(Rφ)(s) = false also hold. Then, the statement [(M, s) |=3 φ] = %(Rφ)(s)
also holds. We proceed by structural induction on φ. For simplicity, when
we say that % is the least model of ~R ` φ in the following, we mean that
% = ∧3]{% | [(%, σ) sat3 (~R ` φ)] = true, %0 ≤3 %}.

Case φ = true: We have {s|[(M, s) |=3 true] = true} = S and {s|%(Rtrue)(s) =
true} = S. Therefore, we know that [(M, s) |=3 true] = %(Rtrue)(s).



130 Appendix for Chapter 4

Case φ = p: We have {s|[(M, s) |=3 p] = true} = {s|L(s, p) = true} and
{s|%(Rp)(s) = true} = {s|%(Pp)(s) = true} = {s|L(s, p) = true}. Therefore, we
know that [(M, s) |=3 p] = true i� %(Rp)(s) = true.

We also have {s|[(M, s) |=3 p] ≥3 ⊥} = {s|L(s, p) ≥3 ⊥} and {s|%(Rp)(s) ≥3

⊥} = {s|%(Pp)(s) ≥3 ⊥} = {s|L(s, p) ≥3 ⊥}. Therefore, we know that
[(M, s) |=3 p] ≥3 ⊥ i� %(Rp)(s) ≥3 ⊥.

Case φ = ¬φ′: Let's consider the least model % for ~R ` ¬φ′. Notice that %(Rφ′)

coincides with %′(Rφ′) in the least model %′ for ~R ` φ′.

According to the semantics of 3-valued CTL, we have {s|[(M, s) |=3 ¬φ′] =
true} = {s|¬3[(M, s) |=3 φ′] = true} = {s|[(M, s) |=3 φ′] = false}. Ac-
cording to the induction hypothesis and 3-valued semantics of ALFP, we have
{s|%(R¬φ′)(s) = true} = {s|¬3%(Rφ′)(s) = true} = {s|%(Rφ′)(s) = false} =
{s|[(M, s) |=3 φ′] = false}. Therefore, we know that [(M, s) |=3 ¬φ′] = true i�
%(R¬φ′)(s) = true.

According to the semantics of 3-valued CTL, we have {s|[(M, s) |=3 ¬φ′] ≥3

⊥} = {s|¬3[(M, s) |=3 φ′] ≥3 ⊥} = {s|[(M, s) |=3 φ′] ≤3 ⊥}. According
to the induction hypothesis and 3-valued semantics of ALFP, we also have
{s|%(R¬φ′)(s) ≥3 ⊥} = {s|¬3%(Rφ′)(s) ≥3 ⊥} = {s|%(Rφ′)(s) ≤3 ⊥}
= {s|[(M, s) |=3 φ′] ≤3 ⊥}. Therefore, we know that [(M, s) |=3 ¬φ′] ≥3 ⊥ i�
%(R¬φ′)(s) ≥3 ⊥.

Case φ = φ1 ∨ φ2: Let's consider the least model % for ~R ` φ. In this case,
it is possible that φ1 and φ2 have a same subformula. We claim that clauses
generated for a same judgement are the same. Therefore, the same subformula
in φ1 and φ2 are dealt with in the same way by the �ow logic. In the clauses
for ~R ` φ, we only keep one copy of the clauses for same subformulae in φ1 and
φ2. Also notice that %(Rφ1

) (or %(Rφ2
)) coincides with %′(Rφ1

) (or %′(Rφ2
)) in

the least model %′ of ~R ` φ1 (or ~R ` φ2).

According to the semantics of 3-valued CTL, we have {s|[(M, s) |=3 φ1 ∨ φ2] =
true} = {s|[(M, s) |=3 φ1]∨3 [(M, s) |=3 φ2] = true} = {s|[(M, s) |=3 φ1] = true
or [(M, s) |=3 φ2] = true}. According to the induction hypothesis and 3-valued
semantics of ALFP, we also have {s|%(Rφ1∨φ2)(s) = true} = {s|%(Rφ1)(s) ∨3



131

%(Rφ2)(s) = true} = {s|%(Rφ1)(s) = true or %(Rφ2)(s) = true} = {s|[(M, s) |=3

φ1] = true or [(M, s) |=3 φ2] = true}. Therefore, we know that [(M, s) |=3

φ1 ∨ φ2] = true i� %(Rφ1∨φ2
)(s) = true.

According to the semantics of 3-valued CTL, we have {s|[(M, s) |=3 φ1 ∨φ2] ≥3

⊥} = {s|[(M, s) |=3 φ1] ∨3 [(M, s) |=3 φ2] ≥3 ⊥} = {s|[(M, s) |=3 φ1] ≥3 ⊥
or [(M, s) |=3 φ2] ≥3 ⊥}. According to the induction hypothesis and 3-valued
semantics of ALFP, we also have {s|%(Rφ1∨φ2)(s) ≥3 ⊥} = {s|%(Rφ1)(s) ∨3
%(Rφ2)(s) ≥3 ⊥} = {s|%(Rφ1)(s) ≥3 ⊥ or %(Rφ2)(s) ≥3 ⊥} = {s|[(M, s) |=3

φ1] ≥3 ⊥ or [(M, s) |=3 φ2] ≥3 ⊥}. Therefore, we know that [(M, s) |=3

φ1 ∨ φ2] ≥3 ⊥ i� %(Rφ1∨φ2
)(s) ≥3 ⊥.

Case φ = EXφ′: Let's consider the least model % for ~R ` EXφ′. Notice that
%(Rφ′) coincides with %′(Rφ′) in the least model %′ of ~R ` φ′.

According to the semantics of 3-valued CTL, we have {s|[(M, s) |=3 EXφ′] =
true} = {s| there exists a must path π from s : |π| > 1 ∧ [(M,π[1]) |=3 φ′] =
true}. According to the assumptions and the induction hypothesis and 3-valued
semantics of ALFP, we have {s|%(REXφ′)(s) = true} = {s|∃s′ : %(T )(s, s′) ∧3
%(Rφ′)(s′) = true} = {s|∃s′ : %(T )(s, s′) = true and %(Rφ′)(s′) = true} =

{s|∃s′ : s
must−→ s′ such that [(M, s′) |=3 φ′] = true}. We now begin to prove that

{s|%(REXφ′)(s) = true} = {s| [(M, s) |=3 EXφ′] = true}.

It's obvious that {s| [(M, s) |=3 EXφ′] = true} ⊆ {s|%(REXφ′)(s) = true}. As-
sume that we have a must transition s

must−→ s′ such that [(M, s′) |=3 φ′] = true.

We can extend s
must−→ s′ to a must path π such that π[0] = s and π[1] = s′. This

proves the other inclusion {s|%(REXφ′)(s) = true} ⊆ {s| [(M, s) |=3 EXφ′] =
true}. Therefore, we have [(M, s) |=3 EXφ′] = true i� %(REXφ′)(s) = true.

According to the semantics of 3-valued CTL, we have {s|[(M, s) |=3 EXφ′] ≥3

⊥} = {s| there exists a may path π from s : [(M,π[1]) |=3 φ′] 6= false} = {s|
there exists a may path π from s : [(M,π[1]) |=3 φ′] ≥3 ⊥}. According to
the assumptions and the induction hypothesis and 3-valued semantics of ALFP,
we have {s|%(REXφ′)(s) ≥3 ⊥} = {s|∃s′ : %(T )(s, s′) ∧3 %(Rφ′)(s′) ≥3 ⊥} =

{s|∃s′ : %(T )(s, s′) ≥3 ⊥ and %(Rφ′)(s′) ≥3 ⊥} = {s|∃s′ : s
may−→ s′ such that

[(M, s′) |=3 φ′] ≥3 ⊥}. We now begin to prove that {s|%(REXφ′)(s) ≥3 ⊥} =
{s| [(M, s) |=3 EXφ′] ≥3 ⊥}.



132 Appendix for Chapter 4

It's obvious that {s| [(M, s) |=3 EXφ′] ≥3 ⊥} ⊆ {s|%(REXφ′)(s) ≥3 ⊥}. Assume

that we have a may transition s
may−→ s′ such that [(M, s′) |=3 φ′] ≥3 ⊥. We can

extend s
may−→ s′ to a may path π such that π[0] = s and π[1] = s′. This proves

the other inclusion {s|%(REXφ′)(s) ≥3 ⊥} ⊆ {s| [(M, s) |=3 EXφ′] ≥3 ⊥}.
Therefore, we have [(M, s) |=3 EXφ′] ≥3 ⊥ i� %(REXφ′)(s) ≥3 ⊥.

Case φ = E[φ1Uφ2]: Let's consider the least model for ~R ` E[φ1Uφ2]. In this
case, it is also possible that φ1 and φ2 have a same subformula. Similarly, we
generate same clauses for the same judgement. Therefore, the same subformula
in φ1 and φ2 are dealt with in the same way by �ow logic. In the clauses for
E[φ1Uφ2], we only keep one copy of the clauses for same subformulae in φ1 and
φ2. Also notice that %(Rφ1) (or %(Rφ2)) coincides with %′(Rφ1) (or %′(Rφ2)) in

the least model %′ of ~R ` φ1 (or ~R ` φ2).

According to the semantics of 3-valued CTL, we have {s|[(M, s) |=3 E[φ1Uφ2]] =
true} =

⋃
K S

K(K > 0), where SK = {s| there exists a must path π from
s : |π| ≥ K ∧ [(M,π[K]) |=3 φ2] = true and ∀ 0 ≤ j < K : [(M,π[j]) |=3 φ1] =
true}. According to the assumptions and the induction hypothesis and 3-valued
semantics of ALFP, we have {s|%(RE[φ1Uφ2])(s) = true} =

⋃
K R

K(K > 0),
where R0 = {s|%(Rφ2)(s) = true} = {s|[(M, s) |=3 φ2] = true} and RK =

{s|∃s′ : %(T )(s, s′) = true ∧ %(Rφ1)(s) = true ∧ s′ ∈ RK−1} = {s|∃s′ : s
must−→

s′ ∧ [(M, s) |=3 φ1] = true ∧ s′ ∈ RK−1}.

We prove RK = SK by induction on K.

The base case is when K = 0. It is obvious that S0 ⊆ R0. Assume that for state
s, we have [(M, s) |=3 φ2] = true. We can extend s to a must path π from s and
obviously we have |π| ≥ 0 and [(M,π[0]) |=3 φ2] = true. This proves R0 ⊆ S0.

Let's consider K + 1. RK+1 = {s|∃s′ : s
must−→ s′ ∧ [(M, s) |=3 φ1] = true ∧

s′ ∈ RK}. According to the induction hypothesis, we know that RK+1 =

{s|∃s′ : s
must−→ s′ ∧ [(M, s) |=3 φ1] = true ∧ s′ ∈ SK} = {s|∃s′ : s

must−→
s′ ∧ [(M, s) |=3 φ1] = true and there exists a must path π from s′ such that
|π| ≥ K ∧ [(M,π[K]) |=3 φ2] = true ∧ ∀ 0 ≤ j < K : [(M,π[j]) |=3 φ1] = true}.
Assume that s ∈ RK+1, we can extend the transition s

must−→ s′ to a path π′

by appending the path π starting from s′ to s
must−→ s′ such that π′[0] = s and

π′[k + 1] = π[k](0 ≤ k ≤ K). Now we know that there exists a must path π′



133

from s such that |π′| ≥ K+1∧ [(M,π′[K+1]) |=3 φ2] = true∧∀ 0 ≤ j < K+1 :
[(M,π′[j]) |=3 φ1] = true. Therefore, s ∈ SK+1. This proves RK+1 ⊆ SK+1.

For the other direction, assume that s ∈ SK+1. Then there exists a must path
π from s such that |π| ≥ K + 1 ∧ [(M,π[K + 1]) |=3 φ2] = true ∧ ∀ 0 ≤ j <
K + 1 : [(M,π[j]) |=3 φ1] = true. Consider the su�x π′ of the path π such
that π′[k] = π[k + 1](0 ≤ k ≤ K). It's obvious that π′ is a must path and
|π| ≥ K ∧ [(M,π′[K]) |=3 φ2] = true ∧ ∀ 0 ≤ j < K : [(M,π′[j]) |=3 φ1] = true.
This means π′[0] ∈ SK and according to the induction hypothesis we have
π′[0] ∈ RK . Therefore, we know that there exists s′(s′ = π′[0]) such that

s
must−→ s′ ∧ [(M, s) |=3 φ1] = true ∧ s′ ∈ RK . This means s ∈ RK+1. Therefore,

we have SK+1 ⊆ RK+1.

From above, we have [(M, s) |=3 E[φ1Uφ2]] = true i� %(RE[φ1Uφ2])(s) = true.

According to the semantics of 3-valued CTL, we have {s|[(M, s) |=3 E[φ1Uφ2]] ≥3

⊥} =
⋃
K S

K
tt|⊥(K > 0), where SKtt|⊥ = {s| there exists a may path π from

s : [(M,π[K]) |=3 φ2] 6= false ∧ ∀ 0 ≤ j < K : [(M,π[j]) |=3 φ1] 6= false} = {s|
there exists a may path π from s : [(M,π[K]) |=3 φ2] ≥3 ⊥ ∧ ∀ 0 ≤ j < K :
[(M,π[j]) |=3 φ1] ≥3 ⊥}. According to the assumptions and the induction hy-
pothesis and 3-valued semantics of ALFP, we have {s|%(RE[φ1Uφ2])(s) ≥3 ⊥} =⋃
K R

K
tt|⊥(K > 0), where R0

tt|⊥ = {s|%(Rφ2
)(s) ≥3 ⊥} = {s|[(M, s) |=3 φ2] ≥3

⊥} and RKtt|⊥ = {s|∃s′ : %(T )(s, s′) ≥3 ⊥ ∧ %(Rφ1
)(s) ≥3 ⊥ ∧ s′ ∈ RK−1tt|⊥ } =

{s|∃s′ : s
may−→ s′ ∧ [(M, s) |=3 φ1] ≥3 ⊥ ∧ s′ ∈ RK−1tt|⊥ }.

We prove RKtt|⊥ = SKtt|⊥ by induction on K.

The base case is when K = 0. It is obvious that S0
tt|⊥ ⊆ R0

tt|⊥. Assume that

for state s, we have [(M, s) |=3 φ2] ≥3 ⊥. We can extend s to a may path π
from s and obviously we have [(M,π[0]) |=3 φ2] ≥3 ⊥. This proves R0

tt|⊥ ⊆ S
0
tt|⊥.

Let's consider K + 1. RK+1 = {s|∃s′ : s
may−→ s′ ∧ [(M, s) |=3 φ1] ≥3 ⊥ ∧ s′ ∈

RKtt|⊥}. According to the induction hypothesis, we know that RK+1 = {s|∃s′ :

s
may−→ s′ ∧ [(M, s) |=3 φ1] ≥3 ⊥ ∧ s′ ∈ SKtt|⊥} = {s|∃s′ : s

may−→ s′ ∧ [(M, s) |=3

φ1] = true and there exists a may path π from s′ such that [(M,π[K]) |=3

φ2] ≥3 ⊥ ∧ ∀ 0 ≤ j < K : [(M,π[j]) |=3 φ1] ≥3 ⊥}. Assume that s ∈ RK+1
tt|⊥ , we



134 Appendix for Chapter 4

can extend the transition s
may−→ s′ to a path π′ by appending the path π starting

from s′ to s
may−→ s′ such that π′[0] = s and π′[k + 1] = π[k](0 ≤ k ≤ K). Now

we know that there exists a may path π′ from s such that [(M,π′[K + 1]) |=3

φ2] ≥3 ⊥ ∧ ∀ 0 ≤ j < K + 1 : [(M,π′[j]) |=3 φ1] ≥3 ⊥. Therefore, s ∈ SK+1
tt|⊥ .

This proves RK+1
tt|⊥ ⊆ S

K+1
tt|⊥ .

For the other direction, assume that s ∈ SK+1
tt|⊥ . Then there exists a may path π

from s such that [(M,π[K + 1]) |=3 φ2] ≥3 ⊥ ∧ ∀ 0 ≤ j < K + 1 : [(M,π[j]) |=3

φ1] ≥3 ⊥. Consider the su�x π′ of the path π such that π′[k] = π[k + 1](0 ≤
k ≤ K). It's obvious that π′ is a may path and [(M,π′[K]) |=3 φ2] ≥3 ⊥∧∀ 0 ≤
j < K : [(M,π′[j]) |=3 φ1] ≥3 ⊥. This means π′[0] ∈ SKtt|⊥ and according to

the induction hypothesis we have π′[0] ∈ RKtt|⊥. Therefore, we know that there

exists s′(s′ = π′[0]) such that s
may−→ s′ ∧ [(M, s) |=3 φ1] ≥3 ⊥ ∧ s′ ∈ RKtt|⊥. This

means s ∈ RK+1
tt|⊥ . Therefore, we have SK+1

tt|⊥ ⊆ R
K+1
tt|⊥ .

From above, we have [(M, s) |=3 E[φ1Uφ2]] ≥3 ⊥ i� %(RE[φ1Uφ2])(s) ≥3 ⊥.

Case φ = AFφ′: Let's consider the least model for ~R ` AFφ′. Notice that
%(Rφ′) coincides with %′(Rφ′) in the least model %′ of ~R ` φ′.

According to the assumptions and the induction hypothesis and 3-valued se-
mantics of ALFP, we have {s|%(RAFφ′)(s) = true} =

⋃
K R

K , where R0 =
{s|%(Rφ′)(s) = true} = {s|[(M, s) |=3 φ′] = true} and RK+1 = {s|∀s′ :
%(T )(s, s′) = false ∨ s′ ∈

⋃
k≤K R

k} ∪R0(K ≥ 0).

The rest of the proof goes in two steps. We �rst prove that {s|[(M, s) |=3

AFφ′] = true} =
⋃
K S

K , where SK = {s| for all may path π from s: ∃k : 0 ≤
k ≤ K such that [(M, sk) |=3 φ′] = true}. Then we will prove by induction on
K that RK = SK .

Now let's proof the �rst step, that is {s|[(M, s) |=3 AFφ′] = true} =
⋃
K S

K .
Let's consider the set T = {s|[(M, s) |=3 AFφ′] = true} \

⋃
K S

K and we shall
prove that it is empty. We proceed by contradiction. Suppose T 6= ∅ and choose
s0 ∈ T . It is obvious that [(M, s0) |=3 AFφ′] = true but [(M, s0) |=3 φ′] 6= true
since otherwise s0 ∈ S0(contradicting s0 6∈

⋃
K S

K).



135

The transition system we consider here is �nitely branching, and now we claim

that for all may successors s1 of s0(s0
may−→ s1), we have [(M, s1) |=3 AFφ′] =

true. Suppose for one may successor s1 of s0 we have [(M, s1) |=3 AFφ′] 6= true.

Then there exists an in�nite may path starting from s1 (s1
may−→ s2

may−→ ...) such
that for all states along the path, we have [(M, si) |=3 φ′] 6= true(i ≥ 1). Com-

bining s0
may−→ s1 with the in�nite may path s1

may−→ s2
may−→ ..., we get a new in�-

nite may path s0
may−→ s1

may−→ s2
may−→ ... such that for all states along the new path,

we have [(M, si) |=3 φ′] 6= true(i ≥ 0). This means [(M, s0) |=3 AFφ′] 6= true
and contradicts the fact that s0 ∈ T .

On the other hand, it can't be the case that for all may successors s1 of
s0, we have [(M, s1) |=3 φ′] = true since otherwise s0 ∈ S1 (contradicting
s0 6∈

⋃
K S

K).

We now choose one may successor s1 of s0 such that [(M, s1) |=3 AFφ′] = true
but [(M, s1) |=3 φ′] 6= true. Similarly, we can also show that for all may suc-
cessors s2 of s1, we have [(M, s2) |=3 AFφ′] = true. It can't be the case that
for all may successors s2 of s1, we have [(M, s2) |=3 φ′] = true since otherwise
s0 ∈ S2 (contradicting s0 6∈

⋃
K S

K). We can choose one may successor s2
of s1 such that [(M, s2) |=3 AFφ′] = true but [(M, s2) |=3 φ′] 6= true. This
process can continue arbitrarily often and produce an in�nite may path start-

ing from s0 (s0
may−→ s1

may−→ s2
may−→ ...) such that for all the states along the

path, we have [(M, si) |=3 φ′] 6= true(i ≥ 0). This contradicts the assumption
[(M, s0) |=3 AFφ′] = true. Hence T = ∅.

For the second step, we prove RK = SK by induction on K.

When K = 0, obviously R0 = S0.

Let's consider K + 1. RK+1 = {s|∀s′ : %(T )(s, s′) = false ∨ s′ ∈
⋃
k≤K R

k} ∪
R0(K ≥ 0). According to the induction hypothesis, RK+1 = {s|∀s′ : %(T )(s, s′) =
false∨s′ ∈

⋃
k≤K S

k}∪S0(K ≥ 0). It's obvious that Sk ⊆ Sk+1(0 ≤ k). There-

fore, SK =
⋃
k≤K S

k(K ≥ 0). Then we have RK+1 = {s|∀s′ : %(T )(s, s′) =

false ∨ s′ ∈ SK} ∪ S0 = {s|∀s′ : either %(T )(s, s′) = false or for all may path
π from s′: ∃k : 0 ≤ k ≤ K such that [(M,π[k]) |=3 φ′] = true} ∪ {s|[(M, s) |=3

φ′] = true}. According to the assumptions, we know that %(T )(s, s′) 6= false

i� s
may−→ s′. Assume that s ∈ RK+1, either we know that for all may succes-



136 Appendix for Chapter 4

sors s′ of s (s
may−→ s′) and for all may path π from s′: ∃k : 0 ≤ k ≤ K such

that [(M,π[k]) |=3 φ′] = true, or [(M, s) |=3 φ′] = true, or both. We have
two cases. The �rst case is when [(M, s) |=3 φ′] = true. Obviously we have
s ∈ SK+1. The second case is when [(M, s) |=3 φ′] 6= true. In this case, for all
may successors s′ of s and for all may path π from s′: ∃k : 0 ≤ k ≤ K such

that [(M,π[k]) |=3 φ′] = true. We can extend the transition s
may−→ s′ to a path

π′ by appending the path π starting from s′ to s
may−→ s′ such that π′[0] = s and

π′[k + 1] = π[k](0 ≤ k ≤ K). Therefore, we know that for all may path π′ from
s: ∃k : 0 ≤ k ≤ K + 1 such that [(M,π′[k]) |=3 φ′] = true. Therefore, s ∈ SK+1

as well. This proves RK+1 ⊆ SK+1.

For the other direction, assume that s ∈ SK+1. Then for all may path π from s
there exists a number k(0 ≤ k ≤ K + 1) such that [(M,π[k]) |=3 φ′] = true. We
have two cases. The �rst case is when [(M, s) |=3 φ′] = true. Obviously we have
s ∈ R0 and therefore s ∈ RK+1. The second case is when [(M, s) |=3 φ′] 6= true.
Consider the su�x π′ of the path π such that π′[k] = π[k + 1](0 ≤ k ≤ K). It's
obvious that π′ is a may path, and there exists a number k(0 ≤ k ≤ K) such that
[(M,π′[k]) |=3 φ′] = true. This means π′[0] ∈ SK . Therefore, π′[0] ∈

⋃
k≤K S

k

and according to the induction hypothesis we have π′[0] ∈
⋃
k≤K R

k. Therefore,

for all may successors s′(s′ = π′[0]) such that s
may−→ s′ we have s′ ∈

⋃
k≤K R

k.

This means s ∈ RK+1. Therefore, we have SK+1 ⊆ RK+1.

From above, we have [(M, s) |=3 AFφ′] = true i� %(RAFφ′)(s) = true.

According to the assumptions and the induction hypothesis and 3-valued se-
mantics of ALFP, we have {s|%(RAFφ′)(s) ≥3 ⊥} =

⋃
K R

K
tt|⊥, where R

0
tt|⊥ =

{s|%(Rφ′)(s) ≥3 ⊥ ∨ ∀s′ : %(T )(s, s′) ≤3 ⊥} = {s|[(M, s) |=3 φ′] ≥3 ⊥ or there
are no outgoing must transitions from s} and RK+1

tt|⊥ = {s|∀s′ : %(T )(s, s′) ≤3

⊥ ∨ s′ ∈
⋃
k≤K R

k
tt|⊥} ∪R

0
tt|⊥(K ≥ 0).

The rest of the proof goes in two steps. We �rst prove that {s|[(M, s) |=3

AFφ′] ≥3 ⊥} =
⋃
K S

K
tt|⊥, where S

K
tt|⊥ = {s| for all must path π from s: either

∃k : 0 ≤ k ≤ K such that [(M,π[k]) |=3 φ′] ≥3 ⊥ or there are no outgoing must
transitions from π[k]}. Then we will prove by induction onK that RKtt|⊥ = SKtt|⊥ .

Now let's proof the �rst step, that is {s|[(M, s) |=3 AFφ′] ≥3 ⊥} =
⋃
K S

K
tt|⊥.

Let's consider the set T = {s|[(M, s) |=3 AFφ′] ≥3 ⊥} \
⋃
K S

K
tt|⊥ and we shall



137

prove that it is empty. We proceed by contradiction. Suppose T 6= ∅ and
choose s0 ∈ T . It is obvious that [(M, s0) |=3 AFφ′] ≥3 ⊥ but [(M, s0) |=3

φ′] = false and there are some outgoing transitions from s0 since otherwise
s0 ∈ S0

tt|⊥(contradicting s0 6∈
⋃
K S

K
tt|⊥).

The transition system we consider here is �nitely branching, and now we claim

that for all must successors s1 of s0(s0
must−→ s1), we have [(M, s1) |=3 AFφ′] ≥3

⊥. Suppose for one must successor s1 of s0 we have [(M, s1) |=3 AFφ′] = false.

Then there exists an in�nite must path starting from s1 (s1
must−→ s2

must−→ ...)
such that for all states along the path, we have [(M, si) |=3 φ′] = false(i ≥ 1).

Combining s0
must−→ s1 with the in�nite may path s1

must−→ s2
must−→ ..., we get

a new in�nite may path s0
must−→ s1

must−→ s2
must−→ ... such that for all states

along the new path, we have [(M, si) |=3 φ′] = false(i ≥ 0). This means
[(M, s0) |=3 AFφ′] = false and contradicts the fact that s0 ∈ T .

On the other hand, it can't be the case that for all must successors s1 of s0, we
have [(M, s1) |=3 φ′] ≥3 ⊥ or there are no outgoing must transitions from s1
since otherwise s0 ∈ S1

tt|⊥ (contradicting s0 6∈
⋃
K S

K
tt|⊥).

We now choose one must successor s1 of s0 such that [(M, s1) |=3 AFφ′] ≥3 ⊥
but [(M, s1) |=3 φ′] = false and there are some outgoing must transitions from
s1. Similarly, we can also show that for all must successors s2 of s1, we have
[(M, s2) |=3 AFφ′] ≥3 ⊥. It can't be the case that for all must successors
s2 of s1, we have [(M, s2) |=3 φ′] ≥3 ⊥ or there are no outgoing must tran-
sitions from s2 since otherwise s0 ∈ S2

tt|⊥ (contradicting s0 6∈
⋃
K S

K
tt|⊥). We

can choose one must successor s2 of s1 such that [(M, s2) |=3 AFφ′] ≥3 ⊥ but
[(M, s2) |=3 φ′] = false and and there are some outgoing must transitions from
s2. This process can continue arbitrarily often and produce an in�nite must

path starting from s0 (s0
must−→ s1

must−→ s2
must−→ ...) such that for all the states

along the path, we have [(M, si) |=3 φ′] = false(i ≥ 0). This contradicts the
assumption [(M, s0) |=3 AFφ′] ≥3 ⊥. Hence T = ∅.

For the second step, we prove RKtt|⊥ = SKtt|⊥ by induction on K.

When K = 0, obviously R0
tt|⊥ = S0

tt|⊥.



138 Appendix for Chapter 4

Let's consider K + 1. RK+1
tt|⊥ = {s|∀s′ : %(T )(s, s′) ≤3 ⊥ ∨ s′ ∈

⋃
k≤K R

k
tt|⊥} ∪

R0
tt|⊥(K ≥ 0). According to the induction hypothesis, RK+1 = {s|∀s′ :

%(T )(s, s′) ≤3 ⊥ ∨ s′ ∈
⋃
k≤K S

k
tt|⊥} ∪ S

0
tt|⊥(K ≥ 0). It's obvious that Sktt|⊥ ⊆

Sk+1
tt|⊥(0 ≤ k). Therefore, SKtt|⊥ =

⋃
k≤K S

k
tt|⊥(K ≥ 0). Then we have RK+1 =

{s|∀s′ : %(T )(s, s′) ≤3 ⊥ ∨ s′ ∈ SKtt|⊥} ∪ S
0
tt|⊥ = {s|∀s′ : either %(T )(s, s′) ≤3 ⊥

or for all must path π from s′: ∃k : 0 ≤ k ≤ K such that [(M,π[k]) |=3 φ′] ≥3 ⊥
or there are no outgoing must transitions from π[k]} ∪ {s|[(M, s) |=3 φ′] ≥3 ⊥
or there are no outgoing must transitions from s}. According to the assump-

tions, we know that %(T )(s, s′) = true i� s
must−→ s′. Assume that s ∈ RK+1,

either we know that for all must successors s′ of s (s
must−→ s′) and for all must

path π from s′: ∃k : 0 ≤ k ≤ K such that [(M,π[k]) |=3 φ′] ≥3 ⊥ or there
are no outgoing transitions from π[k], or [(M, s) |=3 φ′] ≥3 ⊥ or there are no
outgoing transitions from s, or both. We have two cases. The �rst case is when
[(M, s) |=3 φ′] ≥3 ⊥ or there are no outgoing transitions from s. Obviously we
have s ∈ SK+1

tt|⊥ . The second case is when [(M, s) |=3 φ′] = false and there are

some outgoing transitions from s. In this case, for all must successors s′ of s and
for all must path π from s′: ∃k : 0 ≤ k ≤ K such that [(M,π[k]) |=3 φ′] ≥3 ⊥
or there are no outgoing transitions from π[k]. We can extend the transition

s
must−→ s′ to a path π′ by appending the path π starting from s′ to s

must−→ s′ such
that π′[0] = s and π′[k+ 1] = π[k](0 ≤ k ≤ K). Therefore, we know that for all
must path π′ from s: ∃k : 0 ≤ k ≤ K + 1 such that [(M,π′[k]) |=3 φ′] ≥3 ⊥ or
there are no outgoing transitions from π[k]. Therefore, s ∈ SK+1

tt|⊥ as well. This

proves RK+1
tt|⊥ ⊆ S

K+1
tt|⊥ .

For the other direction, assume that s ∈ SK+1
tt|⊥ . Then for all must path π from

s there exists a number k(0 ≤ k ≤ K + 1) such that [(M,π[k]) |=3 φ′] ≥3 ⊥
or there are no outgoing transitions from π[k]. We have two cases. The �rst
case is when [(M, s) |=3 φ′] ≥3 ⊥ or there are no outgoing transitions from s.
Obviously we have s ∈ R0

tt|⊥ and therefore s ∈ RK+1
tt|⊥ . The second case is when

[(M, s) |=3 φ′] = false and there are some outgoing transitions from s. Consider
the su�x π′ of the path π such that π′[k] = π[k + 1](0 ≤ k ≤ K). We know
that there exists a number k(0 ≤ k ≤ K) such that [(M,π′[k]) |=3 φ′] ≥3 ⊥ or
there are no outgoing transitions from π′[k]. This means π′[0] ∈ SKtt|⊥. There-
fore, π′[0] ∈

⋃
k≤K S

k
tt|⊥ and according to the induction hypothesis we have

π′[0] ∈
⋃
k≤K R

k
tt|⊥. Therefore, for all must successors s′(s′ = π′[0]) such that

s
must−→ s′ we have s′ ∈

⋃
k≤K R

k
tt|⊥. According to the assumptions, we know that

%(T )(s, s′) = true i� s
must−→ s′. Therefore, for all must successors s′(s′ = π′[0])

such that %(T )(s, s′) = true we have s′ ∈
⋃
k≤K R

k
tt|⊥. This means s ∈ RK+1

tt|⊥ .

Therefore, we have SK+1
tt|⊥ ⊆ R

K+1
tt|⊥ .



139

From above, we have [(M, s) |=3 AFφ′] ≥3 ⊥ i� %(RAFφ′)(s) ≥3 ⊥. �



140 Appendix for Chapter 4



Appendix C

Appendix for Chapter 5

Lemma 5.4 Let φ be an alternation-free µ-calculus formula in Negation-free
PNF and assume that we translate φ to its Alternation-free Normal Form φ′

using our translation method. Then, each subformula of the form ¬µQ.ϕ in the
formula φ′ is indeed closed and no negations are applied to variables in φ′.

Proof. We �rst point out the following fact that all negative occurrence of µ
operators in φ′ are generated only in the following three cases.

1. When using the duality to eliminate the ν operator for all top ν-subformulas
νQ′.ϕ of φ, the main connective (negation) of the resulting equivalent for-
mula ¬µQ′.¬ϕ[¬Q′/Q′] will remain there and can not be pushed deeper
any further.

2. When using the duality to eliminate the ν operator for all top-level ν-
subformulas νQ′.ϕ of any µ-subformula µQ′′.ϕ′ of φ, the main connective
(negation) of the resulting equivalent formula ¬µQ′.¬ϕ[¬Q′/Q′] will re-
main there and can not be pushed deeper any further.

3. When eliminating a ν operator for any ν-subformulas νQ′.ϕ of φ by du-
ality, a negation will be pushed to all the top µ-subformulas µQ′′.ϕ′ of
νQ′.ϕ by De Morgan's law and other dualities. The negation will remain
in front of µQ′′.ϕ′ and can not be pushed deeper any further.



142 Appendix for Chapter 5

It is straightforward to see from the above mentioned fact why any subformula
of the form ¬µQ.ϕ in formula φ′ are indeed closed. In the �rst case, if the
resulting equivalent formula ¬µQ′.¬ϕ[¬Q′/Q′] is not closed, the corresponding
top ν-subformulas νQ′.ϕ of φ cannot be closed either. This contradicts our
assumption that φ is closed. In the last two cases, the resulting equivalent for-
mulas should also be closed, otherwise it contradicts Lemma 5.3. Notice that a
top µ-subformula is also a top-level µ-subformula.

Let's go back to the third case in the fact mentioned above. Assume that
µQ′′.ϕ′ is a top µ-subformula of the ν-subformula νQ′.ϕ of φ. After using
duality νQ′.ϕ ≡ ¬µQ′.¬ϕ[¬Q′/Q′], negations are applied to all occurrence of
Q′ in ϕ now. If µQ′′.ϕ′ is not closed and contains Q′, the negations applied
to some of the occurrences of Q′ in ϕ′ can not be eliminated. Since we have
proved that in φ′ any subformula of the form ¬µQ.ϕ is closed, this avoids the
only possibility that a negation can be applied to variables. �

Lemma 5.6 Given a µ-calculus formula φ′ in Negation-free PNF which is trans-
lated from a closed formula φ in Alternation-free Normal Form. Assume that
φ′1,...,φ

′
n are the maximal formulas of the set of closed proper �xpoint subformu-

las of φ′, the alternation depth of φ′′, which is obtained from φ′ by substituting
new atomic propositions p1,...,pn for φ′1,...,φ

′
n, is strictly less than 2.

Proof. The most interesting cases are φ = µQ.ϕ and φ = ¬µQ.ϕ.

1. φ = µQ.ϕ: It is obvious that there are only µ-subformulas in φ′′. Accord-
ing to de�nition 5.1, ad(φ′′) < 2.

2. φ = ¬µQ.ϕ: It is not di�cult to see that after the translation there are
only ν-subformlas in φ′′. According to de�nition 5.1, ad(φ′′) < 2.

3. If φ does not belong to the above two cases, then φ′′ actually doesn't
contain any �xpoint subformulas. This trivially means ad(φ′′) < 2.

�

Lemma 5.7 Every µ-calculus formula φ′ in Negation-free PNF translated from
a closed formula φ in Alternation-free Normal Form is alternation-free.



143

Proof. We give an informal analysis of the process of calculating the alterna-
tion depth of φ′ below. Assume that φ′1,...,φ

′
n are the maximal formulas of the

set of closed proper �xpoint subformulas of φ′. According to De�nition 5.1, we
have the following:

ad(φ′) = max(ad(φ′′), ad(φ′1), ..., ad(φ′n))

where φ′′ is obtained from φ′ by substituting new atomic propositions p1,...,pn
for φ′1,...,φ

′
n.

From Lemma 5.6, we know that ad(φ′′) < 2. Whether the alternation depth
of φ′ is less than 2 or not now depends on ad(φ′i) where 0 ≤ i ≤ n. Actually,
for each subformula φ′i, there is a corresponding closed µ-subformula φi in φ
such that φ′i is either translated directly from φi or from ¬φi. Notice that both
φi and ¬φi are closed and are in Alternation-free Normal Form. Therefore,
the problem of calculating the alternation depth of φ′ has been "reduced" to a
simpler problem of calculating the alternation depth of each φ′i . This problem-
reduction process can continue again and again. Finally the problem will be
reduced to calculating the alternation depth of a closed �xpoint subformula ϕ′i
of φ′, where ϕ′i is translated from ϕi or ¬ϕi and ϕi is a closed µ-subformula
of φ without any closed proper �xpoint subformulas. It's obvious that ϕ′i has
no closed proper �xpoint subformulas. We can know from Lemma 5.6 that
ad(ϕ′i) < 2. Therefore we know that ad(φ′) < 2 which means φ′ is alternation-
free. �

Theorem 5.11 Given a µ-calculus formula φ in Alternation-free Normal Form
withQ1, ..., Qn being all the free variables in it and assume that φ 7−→ 〈clφ, preφ〉.
We know that s′ ∈ [[φ]]e[Q1 7→S1,...,Qn 7→Sn] i� (%, σ[s 7→ s′]) sat preφ for the
least solution % of clφ subject to %(RQ1

) ⊇ S1, ..., %(RQn) ⊇ Sn, % ⊇ %0 (% =
u{%′ | (%′, σ) sat clφ ∧ %′(RQ1

) ⊇ S1, ...,∧ %′(RQn) ⊇ Sn, % ⊇ %0}), where %0
de�nes Pp and Ta.

Proof. We proceed by structural induction on φ.

Case φ = p: According to the semantics of µ-calculus, we know that s′ ∈ [[p]]
i� p ∈ L(s′). We know from the least solution % of true subject to % ⊇ %0
that % = %0. Therefore, we know that (%, σ[s 7→ s′]) sat Pp(s) i� s

′ ∈ %(Pp) i�
s′ ∈ %0(Pp) i� p ∈ L(s′). This means s′ ∈ [[p]] i� (%, σ[s 7→ s′]) sat Pp(s) for the
least solution % of true subject to % ⊇ %0.



144 Appendix for Chapter 5

Case φ = Q: Let e′ = e[Q 7→ S]. According to the semantics of µ-calculus,
we know that s′ ∈ [[Q]]e′ i� s′ ∈ e′(Q) i� s′ ∈ S. From the least solution % of
true subject to %(RQ) ⊇ S, % ⊇ %0, we know that that %(RQ) = S. Therefore,
we know that (%, σ[s 7→ s′]) sat RQ(s) i� s′ ∈ %(RQ) i� s′ ∈ S. This means
s′ ∈ [[Q]]e′ i� (%, σ[s 7→ s′]) sat RQ(s) for the least solution % of true subject to
%(RQ) ⊇ S, % ⊇ %0.

Case φ = φ1 ∨ φ2: Assume that Q1, ..., Qn are all the free variables in φ1 ∨ φ2.
Let e′ = e[Q1 7→ S1, ..., Qn 7→ Sn]. Let's consider the least model % for clφ1

∧clφ2

subject to %(RQ1
) ⊇ S1, ..., %(RQn) ⊇ Sn, % ⊇ %0. It is possible that φ1 and φ2

have a same subformula. In this case, we map the same formula in φ1 and φ2
in the same way according to Table 5.1. Assume that RQ is de�ned in clφ1

(or clφ1
), where µQ.ϕ is a subformula of φ1 (or φ2), we know that the relation

%(RQ) coincides with the relation %′(RQ) in the least model %′ for clφ1
(or clφ2

)
subject to %′(RQ1

) ⊇ S1, ..., %
′(RQn) ⊇ Sn, %

′ ⊇ %0. Therefore, we know that
for a given s′, (%, σ[s 7→ s′]) sat preφ1

i� (%′, σ[s 7→ s′]) sat preφ1
and that

(%, σ[s 7→ s′]) sat preφ2 i� (%′, σ[s 7→ s′]) sat preφ2 .

According to the semantics of µ-calculus, s′ ∈ [[φ1 ∨ φ2]]e′ i� s
′ ∈ [[φ1]]e′ or s

′ ∈
[[φ2]]e′ holds. According to the induction hypothesis, we know that s′ ∈ [[φ1]]e′

i� (%′, σ[s 7→ s′]) sat preφ1
and that s′ ∈ [[φ2]]e′ i� (%′, σ[s 7→ s′]) sat preφ2

. Ac-
cording to the semantics of ALFP, we know that (%, σ[s 7→ s′]) sat preφ1 ∨preφ2

i� (%, σ[s 7→ s′]) sat preφ1 or (%, σ[s 7→ s′]) sat preφ2 holds. Therefore,
s′ ∈ [[φ1 ∨ φ2]]e′ i� (%, σ[s 7→ s′]) sat preφ1

∨ preφ2
in the least model % for

clφ1
∧ clφ2

subject to %(RQ1
) ⊇ S1, ..., %(RQn) ⊇ Sn, % ⊇ %0.

Case φ = φ1 ∧ φ2: This case is similar to φ = φ1 ∨ φ2.

Case φ = 〈a〉ϕ: Assume that Q1, ..., Qn are all the free variables in 〈a〉ϕ. Let
e′ = e[Q1 7→ S1, ..., Qn 7→ Sn]. Let's consider the least model % for cl〈a〉ϕ
subject to %(RQ1

) ⊇ S1, ..., %(RQn) ⊇ Sn, % ⊇ %0. Assume that RQ is de-
�ned in clϕ, where µQ.ϕ′ is a subformula of ϕ, we know that the relation
%(RQ) coincides with the relation %′(RQ) in the least model %′ for clϕ sub-
ject to %′(RQ1) ⊇ S1, ..., %

′(RQn) ⊇ Sn, %
′ ⊇ %0. Therefore, we know that for a

given s′, (%, σ[s 7→ s′]) sat preϕ i� (%′, σ[s 7→ s′]) sat preϕ.

According to the semantics of µ-calculus, s′′ ∈ [[〈a〉ϕ]]e′ i� ∃s′ : (s′′, s′) ∈ a∧s′ ∈
[[ϕ]]e′ holds. Notice that (s′′, s′) ∈ %(Ta) i� (s′′, s′) ∈ a. According to the induc-
tion hypothesis, we know that s′ ∈ [[ϕ]]e′ i� (%′, σ[s 7→ s′]) sat preϕ. According



145

to the semantics of ALFP, (%, σ[s 7→ s′′]) sat ∃s′ : Ta(s, s′) ∧ preφ[s′/s] i�
(%, σ[s 7→ s′′, s′ 7→ t]) sat Ta(s, s′) ∧ preφ[s′/s] holds for some t ∈ S. Therefore,
it's easy to see that s′′ ∈ [[〈a〉ϕ]]e′ i� (%, σ[s 7→ s′′]) sat ∃s′ : Ta(s, s′)∧preφ[s′/s]
in the least model % for cl〈a〉ϕ subject to %(RQ1

) ⊇ S1, ..., %(RQn) ⊇ Sn, % ⊇ %0.

Case φ = [a]ϕ: Assume that Q1, ..., Qn are all the free variables in [a]ϕ. Let
e′ = e[Q1 7→ S1, ..., Qn 7→ Sn]. Let's consider the least model % for cl[a]ϕ
subject to %(RQ1

) ⊇ S1, ..., %(RQn) ⊇ Sn, % ⊇ %0. Assume that RQ is de-
�ned in clϕ, where µQ.ϕ′ is a subformula of ϕ, we know that the relation
%(RQ) coincides with the relation %′(RQ) in the least model %′ for clϕ sub-
ject to %′(RQ1) ⊇ S1, ..., %

′(RQn) ⊇ Sn, %
′ ⊇ %0. Therefore, we know that for a

given s′, (%, σ[s 7→ s′]) sat preϕ i� (%′, σ[s 7→ s′]) sat preϕ.

According to the semantics of µ-calculus, s′′ ∈ [[[a]ϕ]]e′ i� ∀s′ : (s′′, s′) ∈ a im-
plies s′ ∈ [[ϕ]]e′ i� ∀s′ : (s′′, s′) 6∈ a ∨ s′ ∈ [[ϕ]]e′ . Notice that (s′′, s′) ∈ %(Ta)
i� (s′′, s′) ∈ a. According to the induction hypothesis, we know that s′ ∈ [[ϕ]]e′

i� (%′, σ[s 7→ s′]) sat preϕ. According to the semantics of ALFP, (%, σ[s 7→
s′′]) sat ∀s′ : ¬Ta(s, s′) ∨ preφ[s′/s] i� (%, σ[s 7→ s′′, s′ 7→ t]) sat ¬Ta(s, s′) ∨
preφ[s′/s] holds for all t ∈ S. Therefore, it's easy to see that s′′ ∈ [[[a]ϕ]]]e′ i�
(%, σ[s 7→ s′′]) sat ∀s′ : ¬Ta(s, s′) ∨ preφ[s′/s] in the least model % for cl[a]ϕ
subject to %(RQ1

) ⊇ S1, ..., %(RQn) ⊇ Sn, % ⊇ %0.

Case φ = ¬µQ.ϕ: Notice that in the syntax of Alternation-free Normal Form,
the formula ¬µQ.ϕ is closed. Let's consider the least model % for cl¬µQ.ϕ subject
to % ⊇ %0. We know that the relation %(RQ) coincides with the relation %′(RQ)
in the least model %′ for clµQ.ϕ subject to %′ ⊇ %0. Therefore, we know that
for a given s′, (%, σ[s 7→ s′]) sat RQ(s) i� (%′, σ[s 7→ s′]) sat RQ(s). That is
%(RQ) = %′(RQ).

According to the semantics of µ-calculus, s′ ∈ [[¬µQ.ϕ]] i� s′ 6∈ [[µQ.ϕ]]. Ac-
cording to the induction hypothesis, we know that s′ ∈ [[µQ.ϕ]] i� (%′, σ[s 7→
s′]) sat RQ(s) i� s′ ∈ %′(RQ). According to the semantics of ALFP, (%, σ[s 7→
s′]) sat ¬RQ(s) i� s′ 6∈ %(RQ). Therefore, s′ ∈ [[¬µQ.ϕ]] i� (%, σ[s 7→ s′]) sat
¬RQ(s) in the least model % for cl¬µQ.ϕ subject to % ⊇ %0.

Case φ = µQ.ϕ: Assume that Q1, ..., Qn are all the free variables in µQ.ϕ.
Let e′ = e[Q1 7→ S1, ..., Qn 7→ Sn]. The intuition of our proof is that we want
to show %1 = %2 where %1 is the least model for clµQ.ϕ subject to %1(RQ1

) ⊇
S1, ..., %1(RQn) ⊇ Sn, % ⊇ %0 and %2 is a least model constructed in a way



146 Appendix for Chapter 5

that mimics the µ-calculus semantics of µQ.ϕ. This will show that the anal-
ysis result of our approach matches the µ-calculus semantics in the case of
φ = µQ.ϕ, which means %1(RQ) = [[µQ.ϕ]] holds. Therefore, s′ ∈ [[µQ.ϕ]]e′ i�
(%, σ[s 7→ s′]) sat RQ(s) in the least model % for clµQ.ϕ subject to %(RQ1

) ⊇
S1, ..., %(RQn) ⊇ Sn, % ⊇ %0. The models %1 and %2 are de�ned as follows.

The model %1 is de�ned by %1 = uΨ1 where Ψ1 = {% | % |= clϕ ∧ {s′|(%, σ[s 7→
s′]) sat preϕ} ⊆ %(RQ) ∧ %(RQ1) ⊇ S1, ...,∧ %(RQn) ⊇ Sn ∧ % ⊇ %0}. The
model %2 is de�ned by %2 = uΨ2 where Ψ2 = {% | % = u{%′ | %′ |= clϕ ∧ S′ ⊆
%′(RQ) ∧ %′(RQ1

) ⊇ S1, ...,∧ %′(RQn) ⊇ Sn ∧ %′ ⊇ %0} ∧ {s′|(%, σ[s 7→
s′]) sat preϕ} ⊆ S′ ∧ S′ ⊆ U}. It's not di�cult to prove that Ψ1 is a Moore
Family and %2 ∈ Ψ2. Therefore, %1 is an element of Ψ1 and %2 is an element of
Ψ2.

Our main idea of proving that %1 = %2 holds is as follows. We �rst show that
%2 ∈ Ψ1. If this is true, then we know that %1 v %2 since %1 is a lower bound
of Ψ1. Second, we show that %1 ∈ Ψ2. If this holds, similarly we know that
%2 v %1 since %2 is a lower bound of Ψ2. Then, since v is anti-symmetric, we
have that %1 = %2.

First, we try to show that %2 ∈ Ψ1 holds. It is obvious that %2 |= clϕ ∧
{s′|(%2, σ[s 7→ s′]) sat preϕ} ⊆ %2(RQ) ∧ %2(RQ1

) ⊇ S1, ...,∧ %2(RQn) ⊇
Sn ∧ %2 ⊇ %0 holds. Therefore, we have %2 ∈ Ψ1.

Now, we try to show that %1 ∈ Ψ2 also holds. Restricting the S′ in the def-
inition of Ψ2 to the particular value {s′|(%1, σ[s 7→ s′]) sat preϕ}, we get the
subset Ψ′2 of Ψ2 where Ψ′2 = {% | % = u{%′ | %′ |= clϕ ∧ {s′|(%1, σ[s 7→
s′]) sat preϕ} ⊆ %′(RQ) ∧ %′(RQ1) ⊇ S1, ...,∧ %′(RQn) ⊇ Sn ∧ %′ ⊇ %0} ∧
{s′|(%, σ[s 7→ s′]) sat preϕ} ⊆ {s′|(%1, σ[s 7→ s′]) sat preϕ} ∧ {s′|(%1, σ[s 7→
s′]) sat preϕ} ⊆ U}. Obviously Ψ′2 is a Moore Family. If %1 ∈ Ψ′2 holds,
%1 ∈ Ψ2 also holds. To show that %1 ∈ Ψ′2 holds, we need to prove that
%1 = u{%′ | %′ |= clϕ ∧ {s′|(%1, σ[s 7→ s′]) sat preϕ} ⊆ %′(RQ) ∧ %′(RQ1

) ⊇
S1, ...,∧ %′(RQn) ⊇ Sn∧%′ ⊇ %0} ∧ {s′|(%1, σ[s 7→ s′]) sat preϕ} ⊆ {s′|(%1, σ[s 7→
s′]) sat preϕ} ∧ {s′|(%1, σ[s 7→ s′]) sat preϕ} ⊆ U holds. It is obvious that
{s′|(%1, σ[s 7→ s′]) sat preϕ} ⊆ {s′|(%1, σ[s 7→ s′]) sat preϕ} ∧ {s′|(%1, σ[s 7→
s′]) sat preϕ} ⊆ U holds. It remains to prove that %1 = u{%′ | %′ |= clϕ ∧
{s′|(%1, σ[s 7→ s′]) sat preϕ} ⊆ %′(RQ) ∧%′(RQ1

) ⊇ S1, ...,∧ %′(RQn) ⊇ Sn∧%′ ⊇
%0} holds. We prove this equation as follows.



147

Let %′ = uΨ′ where Ψ′ = {%′ | %′ |= clϕ ∧ {s′|(%1, σ[s 7→ s′]) sat preϕ} ⊆
%′(RQ) ∧ %′(RQ1

) ⊇ S1, ...,∧ %′(RQn) ⊇ Sn ∧ %′ ⊇ %0} and now the equation we
want to prove becomes %1 = %′.

Since %1 |= clϕ ∧ {s′|(%1, σ[s 7→ s′]) sat preϕ} ⊆ %1(RQ) ∧ %1(RQ1) ⊇
S1, ...,∧ %1(RQn) ⊇ Sn ∧ %1 ⊇ %0 holds, we know that %1 ∈ Ψ′. Since %′ is
a lower bound of Ψ′, %′ v %1 holds. We know that %1 is the least element
in Ψ1 and %′ is the least element in Ψ′. We can know from the de�nition of
Ψ1 and Ψ′ that %1(RQ′) = %′(RQ′) for all RQ′ such that rankRQ′ < rankRQ .
Therefore, from %′ v %1 and the de�nition of lexicographic ordering, we know
that %′(RQ′′) ⊆ %1(RQ′′) for all RQ′′ such that rankRQ′′ = rankRQ . Now it
is not di�cult to prove that {s′|(%′, σ[s 7→ s′]) sat preϕ} ⊆ {s′|(%1, σ[s 7→
s′]) sat preϕ} holds, (i.e. Lemma D.1 helps to proof this statement). This means
{s′|(%′, σ[s 7→ s′]) sat preϕ} ⊆ %′(RQ) holds. Therefore, we know that %′ |=
clϕ ∧ {s′|(%1, σ[s 7→ s′]) sat preϕ} ⊆ %′(RQ) ∧ %′(RQ1

) ⊇ S1, ...,∧ %′(RQn) ⊇
Sn ∧ %′ ⊇ %0 holds. This means %′ ∈ Ψ1. Therefore, %1 v %′. Since v is anti-
symmetric, we know that %1 = %′.

According to induction hypothesis, [[ϕ]]e′[Q 7→S′] equals the set {s′|(%′, σ[s 7→
s′]) sat preϕ} in the least model %′ for clϕ subject to %

′(RQ1
) ⊇ S1, ..., %

′(RQn) ⊇
Sn, %

′(RQ) ⊇ S′, %′ ⊇ %0. Therefore, we know that %2(RQ) = ∩{S′ ⊆ U|
[[ϕ]]e′[Q7→S′] ⊆ S′}. This is exactly the least �xed point of the monotone func-
tion τ(ω) = [[ϕ]]e′[Q7→ω], which means %2(RQ) = [[µQ.ϕ]]e′ . Since we have proved
that %1 = %2, we know that [[µQ.ϕ]]e′ = %1(RQ). Therefore, s′ ∈ [[µQ.ϕ]]e′ i�
(%, σ[s 7→ s′]) sat RQ(s) in the least model % for clµQ.ϕ subject to %(RQ1

) ⊇
S1, ..., %(RQn) ⊇ Sn, % ⊇ %0. �



148 Appendix for Chapter 5



Appendix D

Appendix for Chapter 6

Lemma D.1 Given a negation-free precondition pre and two interpretations
ρ1 and ρ2 such that ρ1(R) ⊆ ρ2(R) where R occurs in pre, we then have that
(ρ1, σ) sat pre implies (ρ2, σ) sat pre.

Proof. We prove by induction on pre.

Case pre = R(v1, ..., vn): Assume that (ρ1, σ) sat R(v1, ..., vn) holds. Accord-
ing to the semantics for pre, we know that (σ(v1), ..., σ(vn)) ∈ ρ1(R) also holds.
From ρ1 ⊆ ρ2, we know that ρ1(R) ⊆ ρ2(R). Therefore, (σ(v1), ..., σ(vn)) ∈
ρ2(R). According to the semantics for pre, (ρ2, σ) sat R(v1, ..., vn) also holds.

Case pre = pre1 ∧ pre2: Assume that (ρ1, σ) sat pre1 ∧ pre2. According to the
semantics for pre, we know that (ρ1, σ) sat pre1 and (ρ1, σ) sat pre2 also hold.
Since pre1∧pre2 is negation-free, we know that both pre1 and pre2 are negation-
free. According to the induction hypothesis, we know that (ρ2, σ) sat pre1 and
(ρ2, σ) sat pre2. Therefore, we know that (ρ2, σ) sat pre1 ∧ pre2 holds.

Case pre = pre1 ∨ pre2: Assume that (ρ1, σ) sat pre1 ∨ pre2. According to the



150 Appendix for Chapter 6

semantics for pre, we know that either (ρ1, σ) sat pre1 or (ρ1, σ) sat pre2 holds.
Since pre1∨pre2 is negation-free, we know that both pre1 and pre2 are negation-
free. According to the induction hypothesis, we know that either (ρ2, σ) sat pre1
or (ρ2, σ) sat pre2 holds. Therefore, we know that (ρ2, σ) sat pre1∨pre2 holds.

Case pre = ∀x : pre′: Assume that (ρ1, σ) sat ∀x : pre′ holds. According to
the semantics for pre, we know that (ρ1, σ[x 7→ a]) sat pre′ for all a ∈ U . Since
∀x : pre′ is negation-free, we know that pre′ is also negation-free. According to
the induction hypothesis, we know that (ρ2, σ[x 7→ a]) sat pre′ for all a ∈ U .
Therefore, (ρ2, σ) sat ∀x : pre′ also holds.

Case pre = ∃x : pre′: Assume that (ρ1, σ) sat ∃x : pre′ holds. According to the
semantics for pre, we know that (ρ1, σ[x 7→ a]) sat pre′ for some a ∈ U . Since
∃x : pre′ is negation-free, we know that pre′ is also negation-free. According to
the induction hypothesis, we know that (ρ2, σ[x 7→ a]) sat pre′ for some a ∈ U .
Therefore, (ρ2, σ) sat ∃x : pre′ also holds. �

Lemma D.2 Given a negation-free clause cl. Let ρ1 and ρ2 be two interpreta-
tions such that ρ1(R) = ρ2(R) where R is de�ned in cl and that ρ2(R′) ⊆ ρ1(R′)
where R′ occurs in cl but is not de�ned in cl. Then we have (ρ1, σ) sat cl
implies (ρ2, σ) sat cl.

Proof. We prove by induction on cl.

Case cl = R(v1, ..., vn): Assume that (ρ1, σ) sat R(v1, ..., vn) holds. According
to the semantics for cl, we know that (σ(v1), ..., σ(vn)) ∈ ρ1(R). Since R is
de�ned in cl, we know that (σ(v1), ..., σ(vn)) ∈ ρ2(R). Therefore, we have that
(ρ2, σ) sat R(v1, ..., vn).

Case cl = true: This case is trivial, since (ρ2, σ) sat true always holds.

Case cl = pre ⇒ R(v1, ..., vn): Assume that (ρ1, σ) sat pre ⇒ R(v1, ..., vn)
holds. According to the semantics for cl, we know that (ρ1, σ) sat R(v1, ..., vn)
whenever (ρ1, σ) sat pre. We now have the following two cases.

Assume that (ρ1, σ) sat R(v1, ..., vn). This means (σ(v1), ..., σ(vn)) ∈ ρ1(R).



151

Since R is de�ned in cl, we know that (σ(v1), ..., σ(vn)) ∈ ρ2(R). Therefore, we
have that (ρ2, σ) sat R(v1, ..., vn). According to the semantics for cl, we know
that (ρ2, σ) sat pre⇒ R(v1, ..., vn) also holds.

Assume that (ρ1, σ) sat R(v1, ..., vn) does not hold. In this case, we know
that (ρ1, σ) sat pre should not hold. We will prove by contradiction that
(ρ2, σ) sat pre does not hold. From the de�nition of ρ1 and ρ2, we know
that ρ2 ⊆ ρ1. Assume that (ρ2, σ) sat pre holds. From Lemma D.1, we know
that (ρ1, σ) sat pre should also hold. This is a contradiction. Therefore, we
know that (ρ2, σ) sat pre does not hold. According to the semantics for cl, we
know that (ρ2, σ) sat pre⇒ R(v1, ..., vn) holds.

Case cl = cl1 ∧ cl2: Assume that (ρ1, σ) sat cl1 ∧ cl2 holds. According to the
semantics for cl, we know that (ρ1, σ) sat cl1 and (ρ1, σ) sat cl2. Since cl is
negation-free, we know that both cl1 and cl2 are also negation-free. According
to the induction hypothesis, we know that (ρ2, σ) sat cl1 and (ρ2, σ) sat cl2.
Therefore, (ρ2, σ) sat cl1 ∧ cl2 also holds.

Case cl = ∀x : cl′: Assume that (ρ1, σ) sat ∀x : cl′ holds. According to
the semantics for cl, we know that (ρ1, σ[x 7→ a]) sat cl′ for all a ∈ U . Since
∀x : cl′ is negation-free, we know that cl′ is also negation-free. According to
the induction hypothesis, we know that (ρ2, σ[x 7→ a]) sat cl′ for all a ∈ U .
Therefore, (ρ2, σ) sat ∀x : cl′ also holds. �

Lemma D.3 Let cls = cl1, ..., cln be weakly strati�ed and 1 ≤ i, j ≤ n. Let
ρ1 = %10, ..., %

1
n and ρ2 = %20, ..., %

2
n be two interpretations such that 1) %1i = %2i ,

2) if cli depends positively on clj when i 6= j, then %2j ⊆ %1j , and 3) if cli
depends negatively on clj, then %2j ⊇ %1j . Then we have (ρ1, σ) sat cli implies
(ρ2, σ) sat cli.

Proof. Notice that we can transform cli to a negation-free clause cl′i by sub-
stituting all negative queries of the form ¬R in cli with a relation R¬. Let ρ be
an interpretation. We interpret R¬ in ρ by de�ning that ρ(R¬) = ¬ρ(R). It's
obvious that (ρ, σ) sat cli i� (ρ, σ) sat cl′i.

We now interpret R¬ in ρ1 (resp. ρ2) by de�ning that ρ1(R¬) = ¬ρ1(R)
(resp. ρ2(R¬) = ¬ρ2(R)). It's obvious that ρ2(R¬) ⊆ ρ1(R¬). According



152 Appendix for Chapter 6

to Lemma D.2, we can see that (ρ1, σ) sat cl′i implies (ρ2, σ) sat cl′i. Therefore,
(ρ1, σ) sat cli implies (ρ2, σ) sat cli. �

Lemma D.4 Let ρ = %0, ..., %n be an interpretation, cls = cl1, ..., cln a weakly
strati�ed clause sequence and 1 ≤ i ≤ n. We have following two properties:

Property 1:

• The set {%′n | (ρ[%′n/%n], σ) sat cln} is a Moore Family.

• The set {%′i | ∃%′i+1, ..., %
′
n : (ρ[%′i/%i, ..., %

′
n/%n], σ) sat cli ∧

(ρ[%′i/%i, ..., %
′
n/%n], σ) sat LFP(cli+1, ..., cln)} is a Moore Family.

Property 2:
Assume that ρ1 = %10, ..., %

1
n and ρ2 = %20, ..., %

2
n are two interpretations such

that 1) ∃1 ≤ j < i : %1j ⊆ %2j , 2) ∀0 ≤ k < i, k 6= j : %1k = %2k, and 3)
(ρl, σ) sat LFP(cli, ..., cln) where l = 1, 2. Then, we have the following, where
i ≤ m:

• if clm depends positively on clj, then %
1
m ⊆ %2m;

• if clm depends negatively on clj, then %
1
m ⊇ %2m; and

• if clm does not depend on clj, then %
1
m = %2m.

Proof. The Lemma is about two properties of SFP formula LFP(cli, ..., cln).
We proceed by induction on the number clauses included in cli, ..., cln.

Base case: We �rst prove the Moore Family property. We consider the set
{%′n | (ρ[%′n/%n], σ) sat cln}. In this case, cln is an ALFP formula. From Propo-
sition 2.6, we know that {%′n | (ρ[%′n/%n], σ) sat cln} is a Moore Family.

We now consider the property 2. In this case, i = n. From the Moore Family
property for the base case, we know that (ρl, σ) sat cln where l = 1, 2.

Assume that cln positively depends on clj . Let ρ3 = %30, ..., %
3
n be an in-

terpretation such that ∀0 ≤ i′ ≤ n − 1 : %3i′ = %1i′ and %3n = %2n. Since



153

(ρ2, σ) sat cln, according to Lemma D.3, we know that (ρ3, σ) sat cln. This
means %2n, %

3
n ∈ {%′n | (ρ1[%′n/%

1
n], σ) sat cln}. Therefore, we have that %1n ⊆ %2n.

Assume that cln negatively depends on clj . Let ρ3 = %30, ..., %
3
n be an in-

terpretation such that ∀0 ≤ i′ ≤ n − 1 : %3i′ = %2i′ and %3n = %1n. Since
(ρ1, σ) sat cln, according to Lemma D.3, we know that (ρ3, σ) sat cln. This
means %1n, %

3
n ∈ {%′n | (ρ2[%′n/%

2
n], σ) sat cln}. Therefore, we have that %2n ⊆ %1n.

Assume that cln does not depend on clj . It's easy to see that %1n = %2n.

Induction step: We �rst prove the Moore Family property. Now we consider
the set Ψ = {%′i | ∃%′i+1, ..., %

′
n : (ρ[%′i/%i, ..., %

′
n/%n], σ) sat cli ∧

(ρ[%′i/%i, ..., %
′
n/%n], σ) sat LFP(cli+1, ..., cln)}. According to the de�nition of a

Moore Family, we need to prove that ∀Ψ′ ∈ Ψ : uΨ′ ∈ Ψ.

Let Ψ′ be an subset of Ψ. We de�ne a set Γ = {ρa|ρa = %a0 , ..., %
a
n, ∀0 ≤

i′ < i : %ai′ = %i′ , %
a
i ∈ Ψ′, (ρa, σ) sat cli, (ρa, σ) sat LFP(cli+1, ..., cln)}.

If ρa is an interpretation such that ρa ∈ Γ, then there is an element ψ′ ∈ Ψ′

such that %ai = ψ′. One the other hand, given any element ψ′ ∈ Ψ′, we can
construct an interpretation ρa such that %ai = ψ′ and ρa ∈ Γ. Let ρu =
%u0 , ..., %

u
n be an interpretation such that ∀0 ≤ i′ < i : %ui′ = %i′ , %

u
i = uΨ′

and that (ρu, σ) sat LFP(cli+1, ..., cln). In the following, we will prove that
(ρu, σ) sat cli, since this implies uΨ′ ∈ Ψ.

Let ρa ∈ Γ. We compare %um and %am where i < m in the following.

Assume that cli depends positively on clm. In this case, it's not possible that
clm depends negatively on cli duo to weak strati�cation. If clm depends posi-
tively on cli, then, according to the induction hypothesis of property 2, we know
that %um ⊆ %am. If clm does not depend on cli, then, according to the induction
hypothesis of property 2, we know that %um = %am. Therefore, %um ⊆ %am if cli
depends positively on clm.

Assume that cli depends negatively on clm. In this case, it's not possible that
clm depends positively on cli duo to weak strati�cation. If clm depends nega-
tively on cli, then, according to the induction hypothesis of property 2, we know
that %um ⊇ %am. If clm does not depend on cli, then, according to the induction



154 Appendix for Chapter 6

hypothesis of property 2, we know that %um = %am. Therefore, %um ⊇ %am if cli
depends negatively on clm.

We de�ne that Γ′ = {ρa′ |ρa′ = ρa[%ui+1/%
a
i+1, ..., %

u
n/%

a
n], ρa ∈ Γ}. Let ρa ∈ Γ

and ρa′ ∈ Γ′ such that ρa′ = ρa[%ui+1/%
a
i+1, ..., %

u
n/%

a
n]. Since (ρa, σ) sat cli, from

above and according to Lemma D.3, we know that (ρa′ , σ) sat cli. Since cli is
an ALFP formula, from Proposition 2.6, we can easily show that (ρu, σ) sat cli.
This �nishes the proof for property 1.

We now consider property 2. Remember that we have proved property 1 above
so that we can now use this property. We have three following cases:

Case 1: Assume that cli depends positively on clj . Let ρ′ = %′0, ..., %
′
n be

an interpretation such that 1) ∀0 ≤ k < i : %′k = %1k, 2) %′i = %2i , and 3)
(ρ′, σ) sat LFP(cli+1, ..., cln).

We �rst compare %1i and %
2
i .

Assume that cli depends positively on clm where i < m. In this case, it's not
possible that clm depends negatively on clj because otherwise cli depends also
negatively on clj , which does not satisfy weak strati�cation. If clm depends
positively on clj , then, according to the induction hypothesis of property 2, we
know that %′m ⊆ %2m. If clm does not depends on clj , then, according to the in-
duction hypothesis of property 2, we know that %′m = %2m. Therefore, %

′
m ⊆ %2m

if cli depends positively on clm.

Assume that cli depends negatively on clm where i < m. In this case, it's not
possible that clm depends positively on clj because otherwise cli depends also
negatively on clj , which does not satisfy weak strati�cation. If clm depends
negatively on clj , then, according to the induction hypothesis of property 2, we
know that %′m ⊇ %2m. If clm does not depends on clj , then, according to the in-
duction hypothesis of property 2, we know that %′m = %2m. Therefore, %

′
m ⊇ %2m

if cli depends negatively on clm.

Due to the Moore Family property we have proved above, we have (ρ2, σ) sat cli.
From above and according to Lemma D.3, we know that (ρ′, σ) sat cli. Let Ω1 =
{%′i | ∃%′i+1, ..., %

′
n : (ρ1[%′i/%

1
i , ..., %

′
n/%

1
n], σ) sat cli ∧ (ρ1[%′i/%

1
i , ..., %

′
n/%

1
n], σ) sat



155

LFP(cli+1, ..., cln)}. Since (ρ1, σ) sat LFP(cli, ..., cln), we know that %1i = uΩ1.
Since we know that ρ′ = ρ1[%′i/%

1
i , ..., %

′
n/%

1
n], we have %′i ∈ Ω1. Therefore,

%1i ⊆ %′i.

Since %2i = %′i, from above we know that %1i ⊆ %2i if cli depends positively on clj .

Now we compare %1m and %2m where i < m. Notice that (ρl, σ) sat
LFP(cli+1, ..., cln) where l = 1, 2.

Assume that clm depends positively on clj . Then, %
′
m ⊆ %2m. Moreover, clm does

not depends negatively on cli. If clm depends positively on cli, then, according
to the induction hypothesis of property 2, we know that %′m ⊇ %1m. If clm does
not depend on cli, then, according to the induction hypothesis of property 2,
we know that %′m = %1m. From above, %′m ⊇ %1m if clm depends positively on clj .
Therefore, %1m ⊆ %2m.

Assume that clm depends negatively on clj . Then, %′m ⊇ %2m. Moreover, clm
does not depends positively on cli. If clm depends negatively on cli, then, ac-
cording to the induction hypothesis of property 2, we know that %′m ⊆ %1m. If clm
does not depend on cli, then, according to the induction hypothesis of property
2, we know that %′m = %1m. From above, %′m ⊆ %1m if clm depends negatively on
clj . Therefore, %

1
m ⊇ %2m.

Assume that clm does not depend on clj . Then, according to the induction hy-
pothesis of property 2, %′m = %2m. Moreover, clm does not depend on cli. There-
fore, according to the induction hypothesis of property 2, %′m = %1m. Therefore,
%1m = %2m.

Therefore, property 2 holds when cli depends positively on clj .

Case 2: Assume that cli depends negatively on clj . Let ρ′ = %′0, ..., %
′
n be

an interpretation such that 1) ∀0 ≤ k < i : %′k = %2k, 2) %′i = %1i , and 3)
(ρ′, σ) sat LFP(cli+1, ..., cln).

We �rst compare %1i and %
2
i .



156 Appendix for Chapter 6

Assume that cli depends positively on clm where i < m. In this case, it's not
possible that clm depends positively on clj because otherwise cli depends also
positively on clj , which does not satisfy weak strati�cation. If clm depends
negatively on clj , then, according to the induction hypothesis of property 2, we
know that %′m ⊆ %1m. If clm does not depends on clj , then, according to the in-
duction hypothesis of property 2, we know that %′m = %1m. Therefore, %

′
m ⊆ %1m

if cli depends positively on clm.

Assume that cli depends negatively on clm where i < m. In this case, it's not
possible that clm depends negatively on clj because otherwise cli depends also
positively on clj , which does not satisfy weak strati�cation. If clm depends posi-
tively on clj , then, according to the induction hypothesis of property 2, we know
that %′m ⊇ %1m. If clm does not depends on clj , then, according to the induction
hypothesis of property 2, we know that %′m = %1m. Therefore, %′m ⊇ %1m if cli
depends negatively on clm.

Due to the Moore Family property we have proved above, we have (ρ1, σ) sat cli.
From above and according to Lemma D.3, we know that (ρ′, σ) sat cli. Let Ω2 =
{%′i | ∃%′i+1, ..., %

′
n : (ρ2[%′i/%

2
i , ..., %

′
n/%

2
n], σ) sat cli ∧ (ρ2[%′i/%

2
i , ..., %

′
n/%

2
n], σ) sat

LFP(cli+1, ..., cln)}. Since (ρ2, σ) sat LFP(cli, ..., cln), we know that %2i = uΩ2.
Since we know that ρ′ = ρ2[%′i/%

2
i , ..., %

′
n/%

2
n], we have %′i ∈ Ω2. Therefore,

%2i ⊆ %′i.

Since %1i = %′i, from above we know that %2i ⊆ %1i if cli depends negatively on
clj .

Now we compare %1m and %2m where i < m. Notice that (ρl, σ) sat
LFP(cli+1, ..., cln) where l = 1, 2.

Assume that clm depends positively on clj . Then, %
′
m ⊇ %1m. Moreover, clm does

not depends positively on cli. If clm depends negatively on cli, then, according
to the induction hypothesis of property 2, we know that %′m ⊆ %2m. If clm does
not depend on cli, then, according to the induction hypothesis of property 2,
we know that %′m = %2m. From above, %′m ⊆ %2m if clm depends positively on clj .
Therefore, %1m ⊆ %2m.

Assume that clm depends negatively on clj . Then, %′m ⊆ %1m. Moreover, clm
does not depends negatively on cli. If clm depends positively on cli, then, ac-



157

cording to the induction hypothesis of property 2, we know that %′m ⊇ %2m. If clm
does not depend on cli, then, according to the induction hypothesis of property
2, we know that %′m = %2m. From above, %′m ⊇ %2m if clm depends negatively on
clj . Therefore, %

1
m ⊇ %2m.

Assume that clm does not depend on clj . Then, according to the induction hy-
pothesis of property 2, %′m = %1m. Moreover, clm does not depend on cli. There-
fore, according to the induction hypothesis of property 2, %′m = %2m. Therefore,
%1m = %2m.

Therefore, property 2 holds when cli depends negatively on clj .

Case 3: Assume that cli does not depend on clj .

We �rst compare %1i and %
2
i .

Let ρ′ = %′0, ..., %
′
n be an interpretation such that 1) ∀0 ≤ k < i : %′k = %1k, 2)

%′i = %2i , and 3) (ρ′, σ) sat LFP(cli+1, ..., cln).

Assume that cli depends on clm where i < m. In this case, it's not possible that
clm depends on clj because otherwise cli depends also on clj , which does not
satisfy weak strati�cation. Therefore, according to the induction hypothesis of
property 2, we know that %′m = %2m.

Due to the Moore Family property we have proved above, we have (ρ2, σ) sat cli.
From above and according to Lemma D.3, we know that (ρ′, σ) sat cli. Let Ω1 =
{%′i | ∃%′i+1, ..., %

′
n : (ρ1[%′i/%

1
i , ..., %

′
n/%

1
n], σ) sat cli ∧ (ρ1[%′i/%

1
i , ..., %

′
n/%

1
n], σ) sat

LFP(cli+1, ..., cln)}. Since (ρ1, σ) sat LFP(cli, ..., cln), we know that %1i = uΩ1.
Since we know that ρ′ = ρ1[%′i/%

1
i , ..., %

′
n/%

1
n], we have %′i ∈ Ω1. Therefore,

%1i ⊆ %′i.

Since %2i = %′i, from above we know that %1i ⊆ %2i if cli does not depend on clj .

On the other hand, let ρ′′ = %′′0 , ..., %
′′
n be an interpretation such that 1) ∀0 ≤

k < i : %′′k = %2k, 2) %′′i = %1i , and 3) (ρ′′, σ) sat LFP(cli+1, ..., cln).



158 Appendix for Chapter 6

Assume that cli depends on clm where i < m. In this case, it's not possible that
clm depends on clj because otherwise cli depends also on clj , which does not
satisfy weak strati�cation. Therefore, according to the induction hypothesis of
property 2, we know that %′′m = %1m.

Due to the Moore Family property we have proved above, we have (ρ1, σ) sat cli.
From above and according to Lemma D.3, we know that (ρ′′, σ) sat cli. Let
Ω2 = {%′i | ∃%′i+1, ..., %

′
n : (ρ2[%′i/%

2
i , ..., %

′
n/%

2
n], σ) sat cli∧(ρ2[%′i/%

2
i , ..., %

′
n/%

2
n], σ)

sat LFP(cli+1, ..., cln)}. Since (ρ2, σ) sat LFP(cli, ..., cln), we know that
%2i = uΩ2. Since we know that ρ′′ = ρ2[%′′i /%

2
i , ..., %

′′
n/%

2
n], we have %′′i ∈ Ω2.

Therefore, %2i ⊆ %′′i .

Since %1i = %′′i , from above we know that %2i ⊆ %1i if cli does not depend on clj .

From above, we know that %2i = %1i if cli does not depend on clj .

Now we compare %1m and %2m where i < m. Notice that (ρl, σ) sat
LFP(cli+1, ..., cln) where l = 1, 2.

Assume that clm depends positively on clj . Then, according to the induction
hypothesis of property 2, we know that %1m ⊆ %2m. Assume that clm depends
negatively on clj . Then, according to the induction hypothesis of property 2, we
know that %1m ⊇ %2m. Assume that clm does not depend on clj . Then, according
to the induction hypothesis of property 2, %1m = %2m.

Therefore, property 2 holds when cli does not depend on clj .

Therefore, from the above three cases, we know that property 2 holds. �

Theorem 6.5 Let ρ = %0, ..., %n be an interpretation, cls = cl1, ..., cln a weakly
strati�ed clause sequence and 1 ≤ i ≤ n. Then, we have the followings:

• The set of interpretations {%′n | (ρ[%′n/%n], σ) sat cln} is a Moore Family



159

• The set of interpretations {%′i | ∃%′i+1, ..., %
′
n : (ρ[%′i/%i, ..., %

′
n/%n], σ) sat cli∧

(ρ[%′i/%i, ..., %
′
n/%n], σ) sat LFP(cli+1, ..., cln)} is a Moore Family.

Proof. This is obvious from Lemma D.4. �

Given a clause sequence cls = cl1, ..., cln, we can attach sign information to it
and write cls in the form cls = clκ1

1 , ..., clκnn , where κi ∈ {+,−} for 1 ≤ i ≤ n.
This introduces the notion of syntactic monotonicity de�ned as follows:

Definition D.5 (Syntactic Monotonicity) A clause sequence cls =
clκ1

1 , ..., clκnn , where κi ∈ {+,−} for 1 ≤ i ≤ n is syntactic monotone if there
exists a sign mapping function sign : R → {+,−} such that for all relations R
de�ned in cls the following conditions hold:

• if R is de�ned in clκii , then R is not de�ned in cl
κj
j and sign(R) = κi;

• if clκii contains a positive query of R, then sign(R) = κi; and

• if clκii contains a negative query of R, then sign(R) 6= κi.

Lemma D.6 Let cls = clκ1
1 , ..., clκnn be a syntactic monotonic clause sequence

and DGcls be its dependency graph. If cl
κj
j depends positively (resp. negatively)

on clκii (1 ≤ i, j ≤ n), then we have κi = κj (resp. κi 6= κj).

Proof. We denote a path from clκii to cl
κj
j inDGcls by πij = clκii

ei,k−→ clκkk ...cl
κj
j

where 1 ≤ k ≤ n and ei,k is the sign labeled to the edge from clκii to clκkk . We
de�ne the length of a path to be the number of edges on this path.

Assume that cl
κj
j depends positively (resp. negatively) on clκii . Then, there

exists a path πij such that there are even (resp. odd) number of negative edges
on it. We prove by induction on the length of πij .

Base case: In this case, the path πij = clκii
ei,j−→ cl

κj
j is of length 1. We prove

by contradiction.

Assume that cl
κj
j depends positively on clκii and that κi 6= κj . In this case, the

edge
ei,j−→ is a positive edge and we know that a relation de�ned in clκii is posi-

tively queried in cl
κj
j . According to the de�nition of syntactic monotonicity, we



160 Appendix for Chapter 6

know that κi = κj . This is a contradiction. Therefore, if cl
κj
j depends positively

on clκii , then κi = κj .

Assume that cl
κj
j depends negatively on clκii and that κi = κj . In this case, the

edge
ei,j−→ is a negative edge and we know that a relation de�ned in clκii is nega-

tively queried in cl
κj
j . According to the de�nition of syntactic monotonicity, we

know that κi 6= κj . This is a contradiction. Therefore, cl
κj
j depends negatively

on clκii , then κi 6= κj .

Induction: We denote the sub-path of the path πij = clκii
ei,k−→ clκkk ...cl

κj
j start-

ing from clκkk to cl
κj
j as πk,j .

Assume that cl
κj
j depends positively on clκii . In this case, there are even number

of negations on πi,j .

If there are even number of negations on πk,j , we know that cl
κj
j depends pos-

itively on clκkk . According to the induction hypothesis, we know that κk = κj .

Then, we know that
ei,k−→ is a positive edge which means clκkk depends positively

on clκii . According to the induction hypothesis, we know that κk = κi. There-
fore, κi = κj .

If there are odd number of negations on πk,j , we know that cl
κj
j depends neg-

atively on clκkk . According to the induction hypothesis, we know that κk 6= κj .

Then, we know that
ei,k−→ is a negative which means clκkk depends negatively on

clκii . According to the induction hypothesis, we know that κk 6= κi. Therefore,
κi = κj .

Assume that cl
κj
j depends negatively on clκii . In this case, there are odd number

of negations on πi,j .

If there are even number of negations on πk,j , we know that cl
κj
j depends pos-

itively on clκkk . According to the induction hypothesis, we know that κk = κj .

Then, we know that
ei,k−→ is a negative edge which means clκkk depends nega-

tively on clκii . According to the induction hypothesis, we know that κk 6= κi.
Therefore, κi 6= κj .



161

If there are odd number of negations on πk,j , we know that cl
κj
j depends neg-

atively on clκkk . According to the induction hypothesis, we know that κk 6= κj .

Then, we know that
ei,k−→ is a positive which means clκkk depends positively on

clκii . According to the induction hypothesis, we know that κk = κi. Therefore,
κi 6= κj . �

Lemma D.7 A clause sequence cls = cl1, ..., cln is weakly strati�ed if it is
syntactic monotone.

Proof. Assume that cls is syntactic monotone. We write it in the form
cls = clκ1

1 , ..., clκnn . There are three conditions listed in the de�nition of weak
strati�cation. It is easy to see that the condition that "if R is de�ned in cli,
then R is not de�ned in clj" is satis�ed since this is implied by the condition
that "if R is de�ned in clκii , then R is not de�ned in clκij " in the de�nition of
syntactic monotonicity.

The condition that "cli does not depend negatively on itself" should also be sat-
is�ed due to Lemma D.6. We prove by contradiction. Assume that cli depends
negatively on itself. According to Lemma D.6, we know that κi 6= κi, which
is obviously not possible. Therefore, the condition that "cli does not depend
negatively on itself" is also satis�ed.

We will prove by contradiction to show that the last condition in weak strati�-
cation is also satis�ed. Assume that cli depends both positively and negatively
on clj . According to Lemma D.6, we know that both κi = κi and κi 6= κi hold,
which is not possible. Therefore, the last condition is also satis�ed.

From above, we have proved that syntactic monotonicity implies weak strati�-
cation. �

Lemma 6.9 Given a closed µ-calculus formula φ, assume that φ 7−→ 〈clsφ, preφ〉
holds according to Table 6.3, the clause sequence clsφ is closed and weakly strat-
i�ed.



162 Appendix for Chapter 6

Proof. Let clsφ = cl1, ..., cln. Remember that we only de�ne one relation in
each clause cli (1 ≤ i ≤ n). We will �rst show that clsφ is syntactic monotone.
We pay attention to all the negations in φ. For a µ-subformula µQ.ϕ in φ, we
assume that RQ is de�ned in cli. We require that κi = + (resp. κi = −) i�
µQ.ϕ is under an even (resp. odd) number of negations. It's easy to see that
clsφ = clκ1

1 , ..., clκnn is syntactic monotone. According to Lemma D.7, we know
that clsφ = cl1, ..., cln is weakly strati�ed. �

Lemma D.8 Given a weakly strati�ed clause sequence cls = cls1, cls2, where
cls1 = cl1, ..., cln1

and cls2 = cln1
, ..., cln2

. Assume that no relations de�ned
in cls1 occur in cls2 and no relations de�ned in cls2 occur in cls1. Let ρ =
%0, ..., %n2 be an interpretation. Then, (ρ, σ) sat LFP(cls1, cls2) i� both
(ρ, σ) sat LFP(cls1) and (ρ, σ) sat LFP(cls2).

Proof. We proceed by induction on the number n1.

Base case n1 = 1: Assume that (ρ, σ) sat LFP(cl1, cls2) holds. Accord-
ing to the semantics of SFP, we know that (ρ, σ) sat LFP(cls2) and %1 =
u{%′1 | ∃%′2, ..., %′n2

: (ρ[%′1/%1, ..., %
′
n2
/%n2 ], σ) satcl1∧(ρ[%′2/%2, ..., %

′
n2
/%n2 ], σ) sat

LFP(cls2)}. Since no relations de�ned in cls2 occur in cl1 and, according to
Theorem 6.7, we can prove that ∃%′2, ..., %′n2

: (ρ[%′1/%1, ..., %
′
n2
/%n2

], σ) sat
LFP(cls2) always holds when %′1 is given, we know that %1 = u{%′1 | (ρ[%′1/%1], σ)
satcl1}. Therefore, (ρ, σ) sat LFP(cl1). This �nishes the proof of one direction.

Assume that (ρ, σ) sat LFP(cl1) and (ρ, σ) sat LFP(cls2). From (ρ, σ) sat
LFP(cl1), we know that %1 = u{%′1 | (ρ[%′1/%1], σ) sat cl1}. Since no relations
de�ned in cls2 occur in cl1 and , according to Theorem 6.7, we can prove that
∃%′2, ..., %′n2

: (ρ[%′1/%1, ..., %
′
n2
/%n2

], σ) sat LFP(cls2) always holds when %′1 is
given, we know that %1 = u{%′1 | ∃%′2, ..., %′n2

: (ρ[%′1/%1, ..., %
′
n2
/%n2

], σ) sat cl1∧
(ρ[%′1/%1, ..., %

′
n2
/%n2

], σ) sat LFP(cls2)}. Since (ρ, σ) sat LFP(cls2) holds, we
know that (ρ, σ) sat LFP(cl1, cls2) holds. This �nishes the proof of the other
direction.

Induction n1 = k + 1: Assume that (ρ, σ) sat LFP(cls1, cls2) holds. Accord-
ing to the semantics of SFP, we know that (ρ, σ) sat LFP(cl2, ..., clk+1, cls2).
According to the induction hypothesis, we know that both (ρ, σ) satLFP(cl2,
..., clk+1) and (ρ, σ) sat LFP(cls2) holds.



163

According to the semantics of SFP, we also have that %1 = u{%′1 | ∃%′2, ..., %′n2
:

(ρ[%′1/%1, ..., %
′
n2
/%n2

], σ) sat cl1∧(ρ[%′1/%1, ..., %
′
n2
/%n2

], σ) sat LFP(cl2, ..., clk+1,
cls2)}. According to the induction hypothesis, given %′1, ..., %

′
n2
, we know that

(ρ[%′1/%1, ..., %
′
n2
/%n2

], σ) sat LFP(cl2, ..., clk+1, cls2) i� both (ρ[%′1/%1, ...,
%′n2

/%n2
], σ) sat LFP(cl2, ..., clk+1) and (ρ[%′1/%1, ..., %

′
n2
/%n2

], σ)sat LFP(cls2).
Since no relations de�ned in cls2 occur in cls1, we know that %1 = u{%′1 | ∃%′2, ...,
%′k+1 : (ρ[%′1/%1, ..., %

′
k+1/%k+1], σ) sat cl1 ∧ (ρ[%′1/%1, ..., %

′
k+1/%k+1], σ) sat

LFP(cl2, ..., clk+1) ∧ ∃%′k+2, ..., %
′
n2

: (ρ[%′1/%1, ..., %
′
n2
/%n2

], σ)sat LFP(cls2)}.
Since we can prove, according to Theorem 6.7, that ∃%′k+2, ..., %

′
n2

:
(ρ[%′1/%1, ..., %

′
n2
/%n2

], σ)sat LFP(cls2) always holds when %′1, ..., %
′
k+1 are given,

we know that %1 = u{%′1 | ∃%′2, ..., %′k+1 : (ρ[%′1/%1, ..., %
′
k+1/%k+1], σ) sat cl1 ∧

(ρ[%′1/%1, ..., %
′
n2
/%n2 ], σ)sat LFP(cl2, ..., clk+1)}. Since (ρ, σ) sat LFP(cl2, ...,

clk+1) holds, according to the semantics of SFP, we know that (ρ, σ) sat
LFP(cls1). This �nishes the proof of one direction.

Assume that (ρ, σ) sat LFP(cls1) and (ρ, σ) sat LFP(cls2) hold. According
to the semantics of SFP, from (ρ, σ) sat LFP(cls1), we know that (ρ, σ) sat
LFP(cl2, ..., clk+1). According to the induction hypothesis, we know that
(ρ, σ)sat LFP(cl2, ..., clk+1, cls2).

According to the semantics of SFP, we know that %1 = u{%′1 | ∃%′2, ..., %′k+1 :
(ρ[%′1/%1, ..., %

′
k+1/%k+1], σ) sat cl1∧(ρ[%′1/%1, ..., %

′
k+1/%k+1], σ)sat LFP(cl2, ...,

clk+1)}. Since we can prove , according to Theorem 6.7, that ∃%′k+2, ..., %
′
n2

:
(ρ[%′1/%1, ..., %

′
n2
/%n2

], σ)sat LFP(cls2) always holds when %′1, ..., %
′
k+1 are given,

we know that %1 = u{%′1 | ∃%′2, ..., %′k+1 : (ρ[%′1/%1, ..., %
′
k+1/%k+1], σ) sat cl1 ∧

(ρ[%′1/%1, ..., %
′
k+1/%k+1], σ)sat LFP(cl2, ..., clk+1) ∧ ∃%′k+2, ..., %

′
n2

:
(ρ[%′1/%1, ..., %

′
n2
/%n2 ], σ)sat LFP(cls2)}. Since no relations de�ned in cls2 occur

in cls1, we know that %1 = u{%′1 | ∃%′2, ..., %′n2
: (ρ[%′1/%1, ..., %

′
n2
/%n2 ], σ) sat cl1∧

(ρ[%′1/%1, ..., %
′
n2
/%n2

], σ)sat LFP(cl2, ..., clk+1) ∧ (ρ[%′1/%1, ..., %
′
n2
/%n2

], σ)sat
LFP(cls2)}. According to the induction hypothesis, we know that %1 = u{%′1 |
∃%′2, ..., %′n2

: (ρ[%′1/%1, ..., %
′
n2
/%n2

], σ) sat cl1 ∧ (ρ[%′1/%1, ..., %
′
n2
/%n2

], σ)sat
LFP(cl2, ..., clk+1, cls2)}. Therefore, (ρ, σ) sat LFP(cls1, cls2). This �nishes
the proof of the other direction. �

Theorem 6.10 Let φ be a µ-calculus formula with Q1, ..., Qn being all the free
variables in it. Assume that φ 7−→ 〈clsφ, preφ〉. Let ρ = %0, ..., %n be an inter-
pretation such that (ρ, σ) sat LFP(clsφ), where %0(RQ1

) = S1, ..., %0(RQn) =
Sn and %0 de�nes Pp and Ta. Then, s′ ∈ [[φ]]e[Q1 7→S1,...,Qn 7→Sn] i� (ρ, σ[s 7→
s′]) sat preφ.



164 Appendix for Chapter 6

Proof. We proceed the proof by structural induction on φ.

Case φ = p: According to the semantics of the µ-calculus, we know that
s′ ∈ [[p]] i� p ∈ L(s′). According to Table 6.3, we map p to 〈true, Pp(s)〉.
Assume that ρ = %0, %1 and (ρ, σ) sat LFP(true). Actually here %1 does not
interpret any relations since no relations are de�ned in the clause true. Since
%0 de�nes Pp, we know that s ∈ %0(Pp) if and only if p ∈ L(s). Therefore,
(ρ, σ[s 7→ s′]) sat Pp(s) i� s′ ∈ ρ(Pp) i� s′ ∈ %0(Pp) i� p ∈ L(s′). This means
s′ ∈ [[p]] i� (ρ, σ[s 7→ s′]) sat Pp(s).

Case φ = Q: Let e′ = e[Q 7→ S]. According to the semantics of the µ-calculus,
we know that s′ ∈ [[Q]]e′ i� s

′ ∈ e′(Q) i� s′ ∈ S. According to Table 6.3, we map
Q to 〈true, RQ(s)〉. Assume that ρ = %0, %1 and (ρ, σ) sat LFP(true). Here,
%1 does not interpret any relations since no relations are de�ned in the clause
true. Since %0(RQ) = S, we know that (ρ, σ[s 7→ s′]) sat RQ(s) i� s′ ∈ ρ(RQ)
i� s′ ∈ %0(RQ) i� s′ ∈ S. This means s′ ∈ [[Q]]e′ i� (ρ, σ[s 7→ s′]) sat RQ(s).

Case φ = φ1 ∨ φ2: Assume that Q1, ..., Qn are all the free variables in φ1 ∨ φ2.
Let e′ = e[Q1 7→ S1, ..., Qn 7→ Sn]. According to Table 6.3, we know that
clsφ1∨φ2

= clsφ1
, clsφ2

. Assume that (ρ, σ) sat LFP(clsφ1∨φ2
).

From φ1 ∨ φ2, we know that no bounded variables in φ1 occur in φ2 and no
bounded variables in φ2 occur in φ1. Therefore, no relations de�ned in clφ1

occur in clφ2
and no relations de�ned in clφ2

occur in clφ1
. From Lemma D.8,

we know that (ρ, σ) sat LFP(clsφ1) and (ρ, σ) sat LFP(clsφ2). According to
the induction hypothesis, we know that s′ ∈ [[φ1]]e′ i� (ρ, σ[s 7→ s′]) sat preφ1

and s′ ∈ [[φ2]]e′ i� (ρ, σ[s 7→ s′]) sat preφ2
.

According to the semantics of the µ-calculus, s′ ∈ [[φ1 ∨ φ2]]e′ i� s
′ ∈ [[φ1]]e′ or

s′ ∈ [[φ2]]e′ holds. According to the semantics of SFP, we know that (ρ, σ[s 7→
s′]) sat preφ1

∨ preφ2
i� (ρ, σ[s 7→ s′]) sat preφ1

or (ρ, σ[s 7→ s′]) sat preφ2

holds. Therefore, s′ ∈ [[φ1 ∨ φ2]]e′ i� (ρ, σ[s 7→ s′]) sat preφ1
∨ preφ2

.

Case φ = φ1 ∧ φ2: This case is similar to φ = φ1 ∨ φ2.

Case φ = 〈a〉ϕ: Assume that Q1, ..., Qn are all the free variables in 〈a〉ϕ.
Let e′ = e[Q1 7→ S1, ..., Qn 7→ Sn]. According to Table 6.3, we know that



165

〈a〉ϕ 7−→ 〈clϕ, ∃s′ : Ta(s, s′)∧preϕ[s′/s]〉. Assume that (ρ, σ) sat LFP(cls〈a〉ϕ).
Since cls〈a〉ϕ = clsϕ, we know that (ρ, σ) sat LFP(clsϕ). Therefore, according
to the induction hypothesis, t ∈ [[ϕ]]e′ i� (ρ, σ[s 7→ t]) sat preϕ.

According to the semantics of the µ-calculus, s′′ ∈ [[〈a〉ϕ]]e′ i� ∃t : (s′′, t) ∈
a ∧ t ∈ [[ϕ]]e′ holds. Notice that (s′′, t) ∈ ρ(Ta) i� (s′′, t) ∈ a. Accord-
ing to the semantics of SFP, (ρ, σ[s 7→ s′′]) sat ∃s′ : Ta(s, s′) ∧ preϕ[s′/s]
i� (ρ, σ[s 7→ s′′][s′ 7→ t]) sat Ta(s, s′) ∧ preϕ[s′/s] holds for some t ∈ S i�
(s′′, t) ∈ ρ(Ta) ∧ (ρ, σ[s 7→ s′′][s′ 7→ t]) sat preϕ[s′/s] for some t ∈ S. Since
(ρ, σ[s 7→ s′′][s′ 7→ t]) sat preϕ[s′/s] i� ((ρ, σ[s 7→ t]) sat preϕ i� t ∈ [[ϕ]]e′ . We
can see that s′′ ∈ [[〈a〉ϕ]]e′ i� (ρ, σ[s 7→ s′′]) sat ∃s′ : Ta(s, s′) ∧ preφ[s′/s].

Case φ = [a]ϕ: Assume that Q1, ..., Qn are all the free variables in [a]ϕ.
Let e′ = e[Q1 7→ S1, ..., Qn 7→ Sn]. According to Table 6.3, we know that
[a]φ 7−→ 〈clφ, ∀s′ : ¬Ta(s, s′)∨preφ[s′/s]〉. Assume that (ρ, σ) sat LFP(cls[a]ϕ).
Since cls[a]ϕ = clsϕ, we know that (ρ, σ) sat LFP(clsϕ). Therefore, according
to the induction hypothesis, t ∈ [[ϕ]]e′ i� (ρ, σ[s 7→ t]) sat preϕ.

According to the semantics of the µ-calculus, s′′ ∈ [[[a]ϕ]]e′ i� ∀t : (s′′, t) ∈ a
implies t ∈ [[ϕ]]e′ i� ∀t : (s′′, t) 6∈ a ∨ t ∈ [[ϕ]]e′ . Notice that (s′′, t) 6∈ ρ(Ta)
i� (s′′, t) 6∈ a. According to the semantics of SFP, (ρ, σ[s 7→ s′′]) sat ∀s′ :
¬Ta(s, s′) ∨ preφ[s′/s] i� (ρ, σ[s 7→ s′′][s′ 7→ t]) sat ¬Ta(s, s′) ∨ preφ[s′/s] holds
for all t ∈ S i� (s′′, t) 6∈ ρ(Ta)∨(ρ, σ[s 7→ s′′][s′ 7→ t]) sat preϕ[s′/s] for all t ∈ S.
Since (ρ, σ[s 7→ s′′][s′ 7→ t]) sat preϕ[s′/s] i� ((ρ, σ[s 7→ t]) sat preϕ i� t ∈ [[ϕ]]e′ .
We can see that s′′ ∈ [[[a]ϕ]]e′ i� (ρ, σ[s 7→ s′′]) sat ∀s′ : ¬Ta(s, s′) ∨ preφ[s′/s].

Case φ = ¬µQ.ϕ: Assume that Q1, ..., Qn are all the free variables in ¬µQ.ϕ.
Let e′ = e[Q1 7→ S1, ..., Qn 7→ Sn]. Assume that (ρ, σ) sat LFP(cls¬µQ.ϕ).
Since cls¬µQ.ϕ = clsµQ.ϕ, we know that (ρ, σ) sat LFP(clsµQ.ϕ). Therefore,
according to the induction hypothesis, s′ ∈ [[µQ.ϕ]]e′ i� (ρ, σ[s 7→ s′]) sat RQ(s).

According to the semantics of the µ-calculus, s′ ∈ [[¬µQ.ϕ]]e′ i� s
′ 6∈ [[µQ.ϕ]]e′ .

According to the semantics of SFP, (ρ, σ[s 7→ s′]) sat ¬RQ(s) i� s′ 6∈ ρ(RQ).
Since s′ 6∈ ρ(RQ) i� (ρ, σ[s 7→ s′]) sat RQ(s) does not hold. Therefore,
s′ ∈ [[¬µQ.ϕ]]e′ i� (ρ, σ[s 7→ s′]) sat ¬RQ(s).

Case φ = µQ.ϕ: Assume that Q1, ..., Qn are all the free variables in µQ.ϕ. Let
e′ = e[Q1 7→ S1, ..., Qn 7→ Sn]. According to Table 6.3, we know that clsµQ.ϕ =



166 Appendix for Chapter 6

[∀s : preφ ⇒ RQ(s)], clsϕ. Assume ρ = %1, ..., %n and (ρ, σ) sat LFP(clsµQ.ϕ).
We write clsµQ.ϕ in the form clsµQ.ϕ = cl1, clsϕ, where cl1 = [∀s : preφ ⇒
RQ(s)]. According to the semantics of SFP, we know that (ρ, σ) sat LFP(clsϕ)
and %1 = u{%′1 | ∃%′2, ..., %′n : (ρ[%′1/%1, ..., %

′
n/%n], σ) sat [∀s : preφ ⇒ RQ(s)] ∧

(ρ[%′1/%1, ..., %
′
n/%n], σ) sat LFP(clsϕ)}. Here, %1 only interpret the relation RQ.

According to the semantics of SFP, we know that %1 = u{%′1 | ∃%′2, ..., %′n :
(ρ[%′1/%1, ..., %

′
n/%n], σ[s 7→ s′]) sat [preφ ⇒ RQ(s)] for all s′ ∈ U ∧

(ρ[%′1/%1, ..., %
′
n/%n], σ) sat LFP(clsϕ)} = u{%′1 | ∃%′2, ..., %′n :

s′ ∈ ρ[%′1/%1, ..., %
′
n/%n](RQ) whenever (ρ[%′1/%1, ..., %

′
n/%n], σ[s 7→ s′]) sat preϕ

for all s′ ∈ U ∧ (ρ[%′1/%1, ..., %
′
n/%n], σ) sat LFP(clsϕ)} = u{%′1 | ∃%′2, ..., %′n :

{s′|(ρ[%′1/%1, ..., %
′
n/%n], σ[s 7→ s′]) sat preϕ} ⊆ ρ[%′1/%1, ..., %

′
n/%n](RQ) ∧

(ρ[%′1/%1, ..., %
′
n/%n], σ) sat LFP(clsϕ)}.

Assume that (ρ[%′1/%1, ..., %
′
n/%n], σ) sat LFP(clsϕ) where %′1, ..., %

′
n are given.

According to the induction hypothesis, we know that s′ ∈ [[ϕ]]e′[Q 7→%′1(RQ)] i�
(ρ[%′1/%1, ..., %

′
n/%n], σ[s 7→ s′]) sat preϕ. Therefore, we know that %1 = u{%′1 |

∃%′2, ..., %′n : {s′|s′ ∈ [[ϕ]]e′[Q 7→%′1(RQ)]} ⊆ %′1(RQ) ∧ (ρ[%′1/%1, ..., %
′
n/%n], σ)

sat LFP(clsϕ)} = u{%′1 | {s′|s′ ∈ [[ϕ]]e′[Q7→%′1(RQ)]} ⊆ %′1(RQ) ∧ ∃%′2, ..., %′n :
(ρ[%′1/%1, ..., %

′
n/%n], σ) sat LFP(clsϕ)}. Since we can prove, according to The-

orem 6.7, that ∃%′2, ..., %′n : (ρ[%′1/%1, ..., %
′
n/%n], σ) sat LFP(clsϕ) always holds,

we know that %1 = u{%′1 | {s′|s′ ∈ [[ϕ]]e′[Q7→%′1(RQ)]} ⊆ %′1(RQ)}. This exactly
mimics the µ-calculus semantics of µQ.ϕ. Therefore, we know that s′ ∈ [[µQ.ϕ]]e′

i� (ρ, σ[s 7→ s′]) sat RQ(s). �



Bibliography

[1] A. Pnueli. The Temporal Logic of Programs. In Proc. of the 18th IEEE
Symposium on Foundations of Computer Science, pages 46-77, 1977.

[2] Edmund M. Clarke, Orna Grumberg, and Doron A.Peled: Model Checking.
MIT Press, 1999.

[3] Edmund M. Clarke, E. Allen Emerson: Design and Synthesis of Synchro-
nization Skeletons Using Branching-Time Temporal Logic. Logic of Pro-
grams 1981: 52-71

[4] E. Allen Emerson, Edmund M. Clarke: Characterizing Correctness Prop-
erties of Parallel Programs Using Fixpoints. ICALP 1980: 169-181

[5] Mordechai Ben-Ari, Amir Pnueli, Zohar Manna: The Temporal Logic of
Branching Time. Acta Inf. 20: 207-226 (1983)

[6] E. Allen Emerson, Chin-Laung Lei: E�cient Model Checking in Fragments
of the Propositional Mu-Calculus (Extended Abstract) LICS 1986 : 267-278

[7] Rance Cleaveland, Bernhard Ste�en: A Linear-Time Model-Checking Al-
gorithm for the Alternation-Free Modal Mu-Calculus. Formal Methods in
System Design 2 (2): 121-147 (1993)

[8] Henrik Reif Andersen: Model Checking and Boolean Graphs. Theor. Com-
put. Sci. 126 (1): 3-30 (1994)

[9] Rance Cleaveland, Marion Klein, Bernhard Ste�en: Faster Model Checking
for the Modal Mu-Calculus. CAV 1992: 410-422



168 BIBLIOGRAPHY

[10] Christel Baier, Joost-Pieter Katoen: Principles of model checking. MIT
Press 2008: I-XVII, 1-975

[11] Flemming Nielson, Hanne Riis Nielson, Chris Hankin: Principles of pro-
gram analysis (2. corr. print). Springer 2005: I-XXI, 1-452

[12] Rance Cleaveland: Tableau-Based Model Checking in the Propositional
Mu-Calculus. Acta Inf. 27(8): 725-747 (1989)

[13] Colin Stirling, David Walker: Local Model Checking in the Modal mu-
Calculus. Theor. Comput. Sci. 89(1): 161-177 (1991)

[14] Dexter Kozen: Results on the Propositional mu-Calculus. Theor. Comput.
Sci. 27 : 333-354 (1983)

[15] Hanne Riis Nielson, Flemming Nielson: Flow Logic: A Multi-paradigmatic
Approach to Static Analysis. The Essence of Computation 2002 : 223-244

[16] Bernhard Ste�en: Data Flow Analysis as Model Checking. TACS 1991 :
346-365

[17] Bernhard Ste�en: Generating Data Flow Analysis Algorithms from Modal
Speci�cations. Sci. Comput. Program. 21 (2): 115-139 (1993)

[18] Kim Guldstrand Larsen: E�cient Local Correctness Checking. CAV 1992:
30-43

[19] David A. Schmidt, Bernhard Ste�en: Program Analysis as Model Checking
of Abstract Interpretations. SAS 1998 : 351-380

[20] David A. Schmidt: Data Flow Analysis is Model Checking of Abstract
Interpretations. POPL 1998 : 38-48

[21] Flemming Nielson, Hanne Riis Nielson: Model Checking Is Static Analysis
of Modal Logic. FOSSACS 2010 : 191-205

[22] Chiara Bodei, Pierpaolo Degano, Flemming Nielson, Hanne Riis Nielson:
Flow logic for Dolev-Yao secrecy in cryptographic processes. Future Gen-
eration Comp. Syst. 18(6): 747-756 (2002)

[23] Flemming Nielson, Hanne Riis Nielson, Rene Rydhof Hansen: Validating
�rewalls using �ow logics. Theor. Comput. Sci. 283(2): 381-418 (2002)

[24] Chiara Bodei, Pierpaolo Degano, Flemming Nielson, Hanne Riis Nielson:
Security Analysis using Flow Logics. Bulletin of the EATCS 70: 112-130
(2000)

[25] Flemming Nielson, Hanne Riis Nielson: Flow Logic for Imperative Objects.
MFCS 1998: 220-228



BIBLIOGRAPHY 169

[26] Flemming Nielson, Hanne Riis Nielson: Flow Logic and Operational Se-
mantics. Electr. Notes Theor. Comput. Sci. 10: 150-169 (1997)

[27] Hanne Riis Nielson, Flemming Nielson: Flow Logics for Constraint Based
Analysis. CC 1998: 109-127

[28] Rocco De Nicola, Frits W. Vaandrager: Action versus State based Logics for
Transition Systems. Semantics of Systems of Concurrent Processes 1990 :
407-419

[29] Flemming Nielson, Helmut Seidl, Hanne Riis Nielson: A Succinct Solver
for ALFP. Nord. J. Comput. 9 (4): 335-372 (2002)

[30] Flemming Nielson: Two-Level Semantics and Abstract Interpretation.
Theor. Comput. Sci. 69 (2): 117-242 (1989)

[31] Hanne Riis Nielson, Flemming Nielson, Henrik Pilegaard: Flow Logic for
Process Calculi. ACM Comput. Surv. 44(1): 3 (2012)

[32] Krzysztof R. Apt, Howard A. Blair, Adrian Walker: Towards a Theory
of Declarative Knowledge. Foundations of Deductive Databases and Logic
Programming. 1988 : 89-148

[33] Ashok K. Chandra, David Harel: Computable Queries for Relational Data
Bases. J. Comput. Syst. Sci. 21(2): 156-178 (1980)

[34] Y. S. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakrishnan, Scott A.
Smolka, Terrance Swift, David Scott Warren: E�cient Model Checking
Using Tabled Resolution. CAV 1997 : 143-154

[35] C. R. Ramakrishnan: A Model Checker for Value-Passing Mu-Calculus
Using Logic Programming. PADL 2001 : 1-13

[36] C. R. Ramakrishnan, I. V. Ramakrishnan, Scott A. Smolka, Yifei Dong,
Xiaoqun Du, Abhik Roychoudhury, V. N. Venkatakrishnan: XMC: A Logic-
Programming-Based Veri�cation Toolset. CAV 2000 : 576-580

[37] Giorgio Delzanno, Andreas Podelski: Model Checking in CLP. TACAS
1999 : 223-239

[38] Giorgio Delzanno, Andreas Podelski: Constraint-based deductive model
checking. STTT 3(3): 250-270 (2001)

[39] Michael Leuschel, Thierry Massart: In�nite State Model Checking by Ab-
stract Interpretation and Program Specialisation. LOPSTR 1999: 62-81
(1999)

[40] Patrice Godefroid, Radha Jagadeesan: Automatic Abstraction Using Gen-
eralized Model Checking. CAV 2002: 137-150



170 BIBLIOGRAPHY

[41] Sharon Shoham, Orna Grumberg: A game-based framework for CTL coun-
terexamples and 3-valued abstraction-re�nement. ACM Trans. Comput.
Log. 9(1): (2007)

[42] Marsha Chechik, Steve M. Easterbrook, Victor Petrovykh: Model-
Checking over Multi-valued Logics. FME 2001: 72-98

[43] Marsha Chechik, Benet Devereux, Steve M. Easterbrook, Arie Gur�nkel:
Multi-valued symbolic model-checking. ACM Trans. Softw. Eng. Methodol.
12(4): 371-408 (2003)

[44] Marsha Chechik, Arie Gur�nkel, Benet Devereux: chi-Chek: A Multi-
valued Model-Checker. CAV 2002: 505-509

[45] Beata Konikowska, Wojciech Penczek: On Designated Values in Multi-
valued CTL* Model Checking. Fundam. Inform. 60(1-4): 211-224 (2004)

[46] Thomas W. Reps, Shmuel Sagiv, Reinhard Wilhelm: Static Program Anal-
ysis via 3-Valued Logic. CAV 2004: 15-30

[47] Shmuel Sagiv, Thomas W. Reps, Reinhard Wilhelm: Parametric shape
analysis via 3-valued logic. ACM Trans. Program. Lang. Syst. 24(3): 217-
298 (2002)

[48] Stephen Cole Kleene. Introduction to Metamathematics. North Holland,
1987.

[49] Glenn Bruns, Patrice Godefroid: Generalized Model Checking: Reasoning
about Partial State Spaces. CONCUR 2000: 168-182

[50] Michael Huth, Mark Ryan. Logic in Computer Science: Modelling and Rea-
soning about Systems. Cambridge University Press, 2004

[51] Piotr Filipiuk, Hanne Riis Nielson, Flemming Nielson: Explicit Versus Sym-
bolic Algorithms for Solving ALFP Constraints. Electr. Notes Theor. Com-
put. Sci. 267(2): 15-28 (2010)

[52] Kim Guldstrand Larsen, Bent Thomsen: A Modal Process Logic LICS
1988 : 203-210

[53] Kim Guldstrand Larsen: Modal Speci�cations. Automatic Veri�cation
Methods for Finite State Systems 1989 : 232-246

[54] Tal Lev-Ami, Shmuel Sagiv: TVLA: A System for Implementing Static
Analyses. SAS 2000 : 280-301

[55] Tal Lev-Ami, Roman Manevich, Shmuel Sagiv: TVLA: A system for gener-
ating abstract interpreters. IFIP Congress Topical Sessions 2004 : 367-376



BIBLIOGRAPHY 171

[56] Michael Huth, Radha Jagadeesan, David A. Schmidt: Modal Transition
Systems: A Foundation for Three-Valued Program Analysis. ESOP 2001:
155-169

[57] Igor Bogudlov, Tal Lev-Ami, Thomas W. Reps, Mooly Sagiv: Revamping
TVLA: Making Parametric Shape Analysis Competitive. CAV 2007 : 221-
225

[58] Leonard Bolc, Piotr Borowik: Many-Valued Logics. Springer Verlag, 1992.

[59] Brian A. Davey, Hilary A. Priestley:Introduction to Lattices and Order (2.
ed.). Cambridge University Press 2002: I-XII, 1-298

[60] E. Allen Emerson, Chin-Laung Lei: Modalities for Model Checking:
Branching Time Strikes Back. POPL 1985: 84-96

[61] Hongyan Sun, Hanne Riis Nielson, Flemming Nielson: Data Structures
in the Succinct Solver(V1.0). Technical Report, SECSAFE-IMM-005-1.0,
2002.

[62] Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Uni�ed Lattice
Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. POPL 1977: 238-252

[63] Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis
Frameworks. POPL 1979: 269-282

[64] Glenn Bruns, Patrice Godefroid: Model Checking with Multi-valued Logics.
ICALP 2004: 281-293

[65] Luca Cardelli, Andrew D. Gordon: Mobile Ambients. FoSSaCS 1998: 140-
155

[66] Hanne Riis Nielson, Flemming Nielson, Mikael Buchholtz: Security for
Mobility. FOSAD 2002: 207-265

[67] Fuyuan Zhang, Flemming Nielson, Hanne Riis Nielson: Multi-valued Static
Analysis. Under Submission.

[68] Fuyuan Zhang, Flemming Nielson, Hanne Riis Nielson: Fixpoints vs Moore
Families. Student Research Forum at SOFSEM 2012.

[69] Fuyuan Zhang, Flemming Nielson, Hanne Riis Nielson: Model Checking as
Static Analysis: Revisited. IFM 2012: 99-112

[70] M.S.Hecht: Flow Analysis of Computer Programs. North Holland, 1977.

[71] T.J.Marlowe and B.G.Ryder: Properties of Data Flow Frameworks- a Uni-
�ed Model. Acta Informatica, 28(2):121-163,1990.



172 BIBLIOGRAPHY

[72] Olin Shivers: Control-Flow Analysis in Scheme. PLDI 1988: 164-174

[73] Olin Shivers: The Semantics of Scheme Control-Flow Analysis. PEPM
1991: 190-198

[74] Pierre Jouvelot, David K. Gi�ord: Reasoning about Continuations with
Control E�ects. PLDI 1989: 218-226

[75] Pierre Jouvelot, David K. Gi�ord: Algebraic Reconstruction of Types and
E�ects. POPL 1991: 303-310

[76] A.V.Aho, J.E.Hopcroft, and J.D.Ullman: The Design and Analysis of Com-
puter Algorithms. Addison Wesley, 1974.

[77] Edmund M. Clarke, Orna Grumberg, Kiyoharu Hamaguchi: Another Look
at LTL Model Checking. Formal Methods in System Design 10(1): 47-71
(1997)

[78] Patrice Godefroid, Radha Jagadeesan: On the Expressiveness of 3-Valued
Models. VMCAI 2003: 206-222

[79] Edmund M. Clarke: The Birth of Model Checking. 25 Years of Model
Checking 2008: 1-26

[80] Park, D.M.R: Finiteness is mu-ine�able. Theory of Computation Report
No. 3, Warwich 1974

[81] Tarski, A: A Lattice-theoretical Fixpoint Theorem and Its Application.
Paci�c J. Math. 5, 285-309 1955

[82] Kleene, S.C: Introduction to Metamathematics, Wolters-Noordho�,
Groningen 1971

[83] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill,
L. J. Hwang: Symbolic Model Checking: 1020 States and Beyond LICS
1990: 428-439

[84] Kenneth L. McMillan: Symbolic model checking. Kluwer 1993: I-XV, 1-194

[85] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill, L.
J. Hwang: Symbolic Model Checking: 1020 States and Beyond Inf. Comput.
98(2): 142-170 (1992)

[86] Antti Valmari: A Stubborn Attack On State Explosion. CAV 1990: 156-165

[87] Patrice Godefroid: Using Partial Orders to Improve Automatic Veri�cation
Methods. CAV 1990: 176-185

[88] Doron Peled: Combining Partial Order Reductions with On-the-�y Model-
Checking. CAV 1994: 377-390



BIBLIOGRAPHY 173

[89] Cli� B. Jones: Speci�cation and Design of (Parallel) Programs. IFIP
Congress 1983: 321-332

[90] Orna Grumberg, David E. Long: Model Checking and Modular Veri�ca-
tion. ACM Trans. Program. Lang. Syst. 16(3): 843-871 (1994)

[91] Jayadev Misra, K. Mani Chandy: Proofs of Networks of Processes. IEEE
Trans. Software Eng. 7(4): 417-426 (1981)

[92] A. Pnueli. In Transition from Global to Modular Temporal Reasoning about
Programs. In K.R. Apt, editor, Logics and Models of Concurrent Sys-
tems, sub-series F: Computer and System Science, pages 123-144. Springer-
Verlag, 1985.

[93] Edmund M. Clarke, Orna Grumberg, David E. Long: Model Checking and
Abstraction. ACM Trans. Program. Lang. Syst. 16(5): 1512-1542 (1994)

[94] Edmund M. Clarke, Orna Grumberg, David E. Long: Model Checking and
Abstraction. POPL 1992: 342-354

[95] Saddek Bensalem, Ahmed Bouajjani, Claire Loiseaux, Joseph Sifakis:
Property Preserving Simulations. CAV 1992: 260-273

[96] C. Norris Ip, David L. Dill: Better Veri�cation Through Symmetry. CHDL
1993: 97-111

[97] Edmund M. Clarke, Thomas Filkorn, Somesh Jha: Exploiting Symmetry
In Temporal Logic Model Checking. CAV 1993: 450-462

[98] E. Allen Emerson, A. Prasad Sistla: Symmetry and Model Checking. CAV
1993: 463-478

[99] Edmund M. Clarke, Orna Grumberg, Michael C. Browne: Reasoning About
Networks With Many Identical Finite-State Processes. PODC 1986: 240-
248

[100] Robert P. Kurshan, Kenneth L. McMillan: A Structural Induction Theo-
rem for Processes. PODC 1989: 239-247

[101] Pierre Wolper, Vinciane Lovinfosse: Verifying Properties of Large Sets
of Processes with Network Invariants. Automatic Veri�cation Methods for
Finite State Systems 1989: 68-80

[102] John B. Kam, Je�rey D. Ullman: Monotone Data Flow Analysis Frame-
works. Acta Inf. 7: 305-317 (1977)

[103] Jens Palsberg: Closure Analysis in Constraint Form. ACM Trans. Pro-
gram. Lang. Syst. 17(1): 47-62 (1995)



174 BIBLIOGRAPHY

[104] Patrick Cousot, Radhia Cousot: Comparison of the Galois Connec-
tion and Widening/Narrowing Approaches to Abstract Interpretation.
JTASPEFT/WSA 1991: 107-110

[105] John M. Lucassen, David K. Gi�ord: Polymorphic E�ect Systems. POPL
1988: 47-57

[106] Dennis Dams, Rob Gerth, Orna Grumberg: Abstract Interpretation of
Reactive Systems. ACM Trans. Program. Lang. Syst. 19(2): 253-291 (1997)

[107] Witold Charatonik, Andreas Podelski: Set-Based Analysis of Reactive
In�nite-State Systems. TACAS 1998: 358-375

[108] Andreas Podelski: Model Checking as Constraint Solving. SAS 2000: 22-
37

[109] Patrick Cousot, Radhia Cousot: Temporal Abstract Interpretation. POPL
2000: 12-25

[110] Anca Browne, Edmund M. Clarke, Somesh Jha, David E. Long, Wilfredo
R. Marrero: An Improved Algorithm for the Evaluation of Fixpoint Ex-
pressions. Theor. Comput. Sci. 178(1-2): 237-255 (1997)


	Summary (English)
	Summary (Danish)
	Preface
	Acknowledgements
	1 Introduction
	2 Preliminaries
	2.1 Partially Ordered Set
	2.2 Alternation-free Least Fixed Point Logic
	2.3 Computation Tree Logic
	2.3.1 Kripke Structures
	2.3.2 Syntax and Semantics of CTL
	2.3.3 Fixpoint Representations of CTL
	2.3.4 CTL with Fairness Assumptions

	2.4 The Modal -calculus

	3 CTL in Alternation-free Least Fixed Point Logic
	3.1 CTL in ALFP
	3.1.1 Flow Logic
	3.1.2 Encoding CTL in ALFP

	3.2 CTL with Fairness Constraints in ALFP
	3.2.1 Unconditional Fairness and Weak Fairness
	3.2.2 Strong Fairness
	3.2.3 Fairness in Succinct Fixed Point Logic

	3.3 Discussions

	4 Multi-valued Alternation-free Least Fixed Point Logic
	4.1 Two-valued Static Analysis
	4.1.1 Two-valued ALFP
	4.1.2 Two-valued Transition Systems

	4.2 Multi-valued Static Analysis
	4.2.1 Multi-valued ALFP
	4.2.2 Multi-valued Transition Systems

	4.3 Reducing Multi-valued ALFP to Two-valued ALFP
	4.4 Static Analysis of Multi-valued Transition Systems
	4.5 Application to Modal Transition Systems
	4.5.1 Modal Transition Systems
	4.5.2 Three-valued ALFP
	4.5.3 Three-valued CTL
	4.5.4 Three-valued CTL in Three-valued ALFP

	4.6 Future Work

	5 Alternation-free -calculus in Alternation-free Least Fixed Point Logic
	5.1 The Alternation-free Fragment of the Modal -calculus
	5.1.1 The Alternation Depth of the -calculus
	5.1.2 Alternation-free Normal Form

	5.2 The Alternation-free Fragment of the -Calculus in ALFP
	5.3 Stratification Fails to Capture Syntactic Monotonicity
	5.4 Future Work

	6 The Modal -calculus in Succinct Fixed Point Logic
	6.1 Succinct Fixed Point Logic
	6.1.1 Logical Approach to Static Analysis
	6.1.2 Succinct Fixed Point Logic

	6.2 Modal -calculus in SFP
	6.3 Future Work

	7 Conclusion
	A Appendix for Chapter 3
	B Appendix for Chapter 4
	C Appendix for Chapter 5
	D Appendix for Chapter 6
	Bibliography

