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Abstract 
This paper presents a method for evaluating measuring errors in a CT system using information from 

quality of reconstruction images. In particular, spatial resolution and pixel noise are considered in this 

work. Both factors can be theoretically described using formulas, and can be expressed as a 

combination of scanning setting parameters. A 3
2
 full factorial design of experiment (DOE) was 

carried out to determine the influence of the two factors on dimensional measurements. For 

quantification of the influence, an evaluation parameter sphere distance error was selected. Results 

show that the spatial resolution is a dominant factor. Analysis of the reconstruction images is carried 

out, showing image artifacts occurring on the spheres visible under large opening angle, which are 

usually more significant for CT scans at high magnification. Theoretical formulation of pixel noise was 

validated through the experimentation.  

 

Keywords: Computed tomography, image quality, pixel noise, spatial resolution, dimensional CT 

measurement. 

1  Introduction 

Computed Tomography (CT) is becoming more and more accepted measuring technique [1]. Even 

though, measurement uncertainty in CT is in many cases unknown [2], CT has many advantages which 

make this imaging technique a very interesting tool. In CT, large number of influence factors is present 

in the whole process chain of CT measurement. Sometimes, identification and correction of these 

factors is a challenge. There are influence quantities related to software/data processing, hardware, 

measurement object, environment and operator. Influence factors and their effect on dimensional 

measurements have been widely studied by a number of authors [3-7].  

One way to analyze the influence of several factors and their interaction at the same time is the 

application of design of experiment (DOE). This is a systematic approach to experimentation, when all 

the factors, defined at different levels, and their interactions, are considered simultaneously. In [3], for 

example, a fractional factorial DOE was carried out to investigate the effect of CT system parameters, 

which influence the imaging process and can be varied by the system operator. Tube voltage, tube 

current, pre-filter, exposure time and sensitivity of the detector were considered, each factor was 

investigated at two levels. The influence of each factor was assessed by calculation of the measurement 

uncertainty. In [4], a full factorial DOE was performed to investigate the influence of operator-related 

factors to dimensional CT. In particular, magnification, orientation, number of views and threshold 

method were considered to evaluate their influence on measurements of inner and outer diameter of 

parts of different material. Here, the factors were defined at two levels each.  
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This paper presents an investigation of the influence of several operator-related parameters on 

dimensional CT measurements. The focus is on parameters influencing the image quality. In particular, 

spatial resolution and pixel noise are considered.  

2  Current approach 

This paper introduces an alternative approach of experimental design in CT. The approach is based on 

defining factors through combination of scanning parameters (X-ray source current, integration time, 

image averaging, scanning geometry, etc.) and derived quantities in connection with the physical-

technical characteristics of the X-ray tube (focus spot) and the detector system (resolution) as the two 

main system components. The two selected factors, spatial resolution and pixel noise, are well-known 

key characteristics describing the quality of CT images [8].  

Spatial resolution in a volumetric CT image, UTOT, is mainly influenced by the focus size, focus drift 

during scanning, contrast transmission of the detector system, reconstruction algorithm, and scanning 

geometry [8]. For simplification reasons, the focus size, the detector system, and the scanner geometry 

were taken into account only. The estimated spatial resolution, UTOT, is then defined as [8]: 

 

     √  
    

  (eq. 1) 

 

where UF is geometrical unsharpness associated with focus size and UD is geometrical unsharpness 

associated with the contrast transmission of the detector. Both can be described as follows [9, 10]: 
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 (eq. 3) 

 

where m is geometrical magnification, defined as m = SDD/SRD with SDD as source-to-detector 

distance and SRD as source-to-rotation center distance [11]. WF is size of the focus spot which is 

linked to the X-ray tube power [10, 12] and WD is detector image unsharpness which is assumed to be 

double the pixel size [13]. Only two geometrical unsharpness parameters UF and UD were considered, 

also because they are the most dominant geometrical unsharpness sources.  

The symbol of spatial resolution UTOT should not be confused with measurement uncertainty which has 

typically the same symbol U.  

Pixel noise, σpn, is expressed in the form of standard deviation evaluated in 2D slices of reconstructed 

images as follows [9, 14]: 
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  (eq. 4) 

 

where k  constant depending on a back-projection filter type, in our case k = 0.23 was chosen 

s  pixel size in a 2D slice in mm
2
 

V  number of views (projections) 

I  X-ray source current in mA 

t  integration time of the detector in s 

i  image averaging number 

 



The pixel noise should not be confused with the noise in the projection images.  

With the increase of X-ray source current and integration time, more photons are detected by the 

detector system. An increased number of photons and image averaging improve the detector image 

statistics, which follows a Poisson distribution, leading to an improved signal-to-noise ratio (SNR).  

Based on the formulas described above (eq. 1 and eq. 4), a 3
2
 full factorial DOE was assessed and is 

shown in Table 1. The two factors, spatial resolution and pixel noise, are defined theoretically by the 

assessment of scanning parameters at three levels, approx. equally distributed. The DOE was created in 

statistical software Minitab Release 14.1. This software is used to create a design to examine the 

relationship between factors. The design is fully randomized which helps to ensure that the model 

meets certain statistical assumptions. Column Run Order in the table indicates the order in which the 

data are collected. 

 

Run 
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σpn in  

mm
-2

∙(mA∙s)
-1/2

 

1 70 0.112 3.52 57 8.2 1.415 2 1200 0.114 0.65 

2 70 0.112 7.04 28 16.2 2.829 4 1200 0.057 0.65 

3 81 0.096 2.35 85 5.4 0.708 1 1200 0.170 0.94 

4 78 0.100 3.52 57 8.2 0.708 1 1200 0.114 1.38 

5 87 0.090 2.35 85 5.4 0.354 1 1200 0.170 1.37 

6 78 0.101 7.04 28 16.2 2.829 1 1200 0.057 1.37 

7 78 0.100 2.35 85 5.4 1.415 1 1200 0.170 0.65 

8 72 0.109 7.04 28 16.2 1.415 4 1200 0.057 0.93 

9 72 0.108 3.52 57 8.2 0.708 2 1200 0.114 0.94 

Table 1: Experimental plan with calculated factors UTOT and σpn from eq. 1 and eq. 4. 
  

The individual positions of the object in the CT volume, i.e. positions of the object with respect to the 

X-ray source in the direction of the magnification axis, are shown in Figure 1. Explanation of the full 

cone angle α from Table 1 is also shown in the figure.  

 

 
Figure 1: Three positions of the object (CT ball plate) (side view) in the CT volume according to the DOE plan 

presented in Table 1. The full cone angle at individual positions is specified. 
 



In order to minimize the influence of the focus spot size, this was nominally kept constant by using 

constant power. The focal spot size was assumed to be approx. 1 µm per Watt tube power [12]. Since 

all the nine experimental runs yield different contrast, the corresponding X-ray tube power (X-ray tube 

current and acceleration voltage) were adjusted so, that the focus spot size was approx. 7 µm.  

3  Experimental setup 

A newly developed reference standard for metrological performance testing of CT systems – a CT ball 

plate [15] (Figure 2 left) was used in this study. This object features ruby spheres of diam. 5 mm in a 

regular 5 x 5 array with a nominal pitch between sphere centers of 10 mm. The spheres are glued on a 

2 mm thick carbon fibre plate. 

This reference standard is calibrated using a tactile coordinate measuring machine (CMM). The 

standard was measured at two positions, D0 and D180. In both positions all spheres were measured 

twice, once in a counter-clockwise and once in a clockwise spiral sequence. This procedure was 

repeated three times. The standard was also measured in different days to check the stability. The 

calibration involves measurements of center positions of the spheres, the sphere diameters and form 

errors. The expanded calibration uncertainty for measurements of distance between sphere centers, 

evaluated at 95% confidence level, was estimated to be 1.7 µm. The standard enables to evaluate 

300 sphere-to-sphere distances in total. 

The experiment was carried out using a Nikon Metrology XT H 225 ST CT scanner. FDK based 

reconstruction was done using software CT Pro V2.2 SP2 provided by Nikon Metrology, too. The CT 

ball plate was positioned vertically, and was not repositioned during individual runs of the experiment. 

The position of the object in Z direction (Z axis points from X-ray tube to the detector, see Figure 2 

right) of the CT scanner’s coordinate system was in accordance with Table 1. 

 

          

Figure 2: CT ball plate used for quantification of measurement errors in the CT volume, designation of the spheres 

and workpiece coordinate system (left) and measurement setup in the XT H 225 ST CT scanner (right). The CT 

ball plate was scanned in vertical position. The coordinate system of the CT scanner and the position of a thin 

metal plate (yellow arrow), indicating origin of the CT ball plate, are also shown.  

4  Data evaluation 

For determination of the surface, inspection software VG Studio Max 2.1 was used. Figure 3 presents a 

gray value distribution of the reconstructed volume. The three peaks correspond to air, carbon fibre 

and ruby. Since the automatic method for surface determination did not segment the air and ruby 

spheres, but air and carbon fibre (Figure 3 left), the segmentation was done manually by specifying the 

ruby spheres on the peak with material. Finally, advanced surface method was applied (Figure 3 right). 

Here, the vertical red line represents a starting value for threshold in adaptive surface determination. 
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As evaluation parameter, sphere distance error SD, was selected according to VDI/VDE 2630 – Part 

1.3 [16]. SD is a robust parameter independent of errors due to a threshold determination, and it is a 

parameter used for correction of scaling errors. Other performance characteristics from this standard, 

i.e. probing error size PS, probing error form PF and length measurement error E, were not considered 

in this work, also due to size limitations of the paper. SD was evaluated at the upper hemi-spherical 

surface only, leaving out the part of spheres glued to the plate, which could lead to imperfections in 

measurements, possibly caused by noise. Approximately 1000 points were fit to define geometrical 

primitives (“half” spheres in our case).  

The CT scans were corrected for scale errors by applying linear regression. A linear regression 

coefficient a is obtained by fitting a linear line through the whole data set of 300 single point 

deviations with its intersection in point [0,0]. A correction factor CF is calculated as CF = 1/(a+1). 

This method was already introduced in [17]. The resulting corrected voxel size sCOR is given by 

multiplying the correction factor CF and the original voxel size s0 as sCOR = CF∙s0. 

 

 
Figure 3: Histogram of gray values of the reconstructed volume and determination of ISO surface. By applying 

automatic threshold method, the surface is determined between the air (background) and carbon fibre (material) 

(left). A manual determination of the ruby material was carried out (right). Finally, the surface was determined 

using advanced threshold method. The red line represents a starting value for threshold in adaptive surface 

determination.  

5  Results and discussion 

Results of sphere distance errors (Figure 4) show that the errors in the present study are bigger at high 

geometrical magnification (= high resolution), approx. ±30 µm, and smaller at low magnification 

(= low resolution), approx. ±10 µm. This can be due to three reasons: Feldkamp effect [17], focus spot 

drift or rotary axis drift in X and Y directions [18] (for orientation see Figure 2 right). It is known that 

Feldkamp effect is most pronounced when an object is scanned at large opening angles. Table 1, 

among others, show that a cone angle at high magnification (α=16.2°) is approx. three times bigger 

than at low magnification (α=5.4°). Image artifacts, most likely caused by the Feldkamp effect, were 

observed on reconstruction images for CT scans at high resolution (see Figure 5). The potential impact 

of the focus drift is also most pronounced at high magnifications. At high magnifications, the 

difference between the focus drift and the drift of axis of the rotary table is small. Therefore, it is 

difficult to separate the three effects – Feldkamp, focus drift and rotary axis drift. Due to experience of 

the authors in general and with the CT system under study it is assumed for the series of measurements 

performed here that the Feldkamp effect is the most dominant of the three error types.  

Figure 5 shows an example of a reconstructed image corresponding to Run 2 of the experiment, i.e. CT 

scan at high spatial resolution. Here, image artifacts at the upper and lower borders of the image can be 

recognized. The occurrence of the Feldkamp effect is more clear here. Image in this figure was taken 

in the XY plane of the CT scanner’s coordinate system, and was slightly modified in Fiji software (free 

software for image analysis) to enhance the contrast and to better visualize the image artifacts.  

Plot in Figure 6 shows results of one-factor effects, so called main effects, calculated in Minitab DOE 

software. In particular, the figure shows the influence of spatial resolution and pixel noise on data 
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scatter of SD parameter, expressed as 2*standard deviation of this parameter. Individual points in the 

graph represent a mean of all runs using individual level of either of the factors, i.e. in case of our DOE 

each data point corresponds to a mean value of three runs. One can observe, that the influence of 

spatial resolution on data scatter is clearly significant (steep nearly linear trend), compared to pixel 

noise, where this factor seems not to be significant (horizontal linear trend – providing approx. the 

same pixel noise value at all three levels). The figure confirms the problem of scanning at high 

resolution, during which big data scatter concerning measured SD values occurs. 

 

   
a) Run 1 (UTOT=0. 114 mm; 

σpn=0.65 mm-2∙(mA∙s)-1/2) 

b) Run 2 (UTOT=0.057 mm; 

σpn=0.65 mm-2∙(mA∙s)-1/2) 

c) Run 3 (UTOT=0.170 mm; 

σpn=0.94 mm-2∙(mA∙s)-1/2) 

   
d) Run 4 (UTOT=0.114 mm; 

σpn=1.38 mm-2∙(mA∙s)-1/2) 

e) Run 5 (UTOT=0.170 mm; 

σpn=1.37 mm-2∙(mA∙s)-1/2) 

f) Run 6 (UTOT=0.057 mm; 

σpn=1.37 mm-2∙(mA∙s)-1/2) 

   
g) Run 7 (UTOT=0.170 mm; 

σpn=0.65 mm-2∙(mA∙s)-1/2) 

h) Run 8 (UTOT=0.057 mm; 

σpn=0.94 mm-2∙(mA∙s)-1/2) 

i) Run 9 (UTOT=0.114 mm; 

σpn=0.94 mm-2∙(mA∙s)-1/2) 

Figure 4: Sphere distance errors calculated as a difference between CT and CMM measurements. LCAL is the 

sphere-to-sphere calibrated length. Results are shown for all the nine runs of the experiment, as specified in 

Table 1. UTOT and σpn, specified in the brackets, are the calculated spatial resolution and the calculated pixel 

noise, respectively. m is magnification. The original voxel data set is corrected for scale errors using linear 

regression. 
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Figure 5: Slice of the reconstructed image for Run 2 of the experiment with high resolution (UTOT = 0.057 mm; 

α=16.2°), taken in the XY plane of the CT scanner’s coordinate system. Image artifacts can be recognized on the 

spheres positioned close to the upper and lower borders of the image, where Feldkamp effect is most pronounced. 

The orientation of this image is equivalent to position of the object in Figure 2 right. 

 

 
Figure 6: DOE results showing influence of the calculated spatial resolution (eq. 1) and the calculated pixel noise 

(eq. 4) on data scatter for calculation of the sphere distance error (SD), expressed as 2*standard deviation (STD 

DEV) of this parameter. 

 

Since big errors were attributed to a position of the object close to the X-ray source (= high 

magnification) yielding big cone angle, further validation of the results should be done, in order to be 

able to make more general statements and conclusions about the proposed method. In particular, the 

CT ball plate should also be investigated at low magnification and, at the same time, at the upper or 

lower position at large opening angle. This could give an explanation to whether the errors come from 

the opening angle or any drift effect. 

6  Experimental validation 

From the results of the DOE analysis it appears that spatial resolution is a dominant factor having a 

great influence on dimensional measurements. In contrast, pixel noise seems not to have a visible 

influence for the selected scanning parameters and the selected measurand SD. Therefore, in the 

following, reconstruction images were analyzed for image quality.  
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It is known that in general, CT scans produced at higher spatial resolution lead to an increased noise 

[19]. This was also confirmed in our case – low SNR was measured on reconstructed images for CT 

scans at high resolution (see Figure 7). SNR was measured in the XZ plane of the CT scanner’s 

coordinate system on a middle sphere, by selecting a region of interest (ROI) positioned in the center 

of the sphere (see Figure 8). The same ROI was applied to measure the SNR values for all the runs of 

the experiment. SNR is determined as a ratio between average gray values (signal) in the ROI, µ, and 

associated standard deviation of the gray values (noise), σ.  

As three levels of pixel noise were theoretically specified according to eq. 4, three levels of SNR were 

expected to be measured. This was validated in the experiment and can be seen in Figure 7, where, 

clearly three levels of SNR are plotted at three associated levels of spatial resolution. The results are in 

a good agreement with the theory, i.e. the experimentally obtained values of SNR increase when pixel 

noise decreases. It can also be observed that the range of SNR values is bigger at lower spatial 

resolution and vice versa. The authors believe that the levels for pixel noise should have been selected 

in a wider range, where the influence of the pixel noise is bigger (see results of pixel noise in Figure 6). 

It should also be noted that each data point in the figure has an attributed uncertainty derived from the 

assessment of the SNR values, which might be influenced e.g. by the size and position of the ROI. 

Since the first term in eq. 4 does not take into account spatial resolution, but a voxel size, this formula 

should be extended with this factor. It appears that the voxel size in the formula does not have big 

effect on pixel noise and thus the influence of spatial resolution can be underestimated. 

 

  
Figure 7: Signal-to-noise ratio (SNR) measured on reconstruction slices, showing low SNR for high resolution CT 

scans and vice versa. 

 

 
Figure 8: Selection of the ROI for measurements of the SNR. The slice was taken in the XZ plane of the CT 

scanner’s coordinate system. 

7  Conclusion 

This paper describes a method allowing systematical analysis of measurement errors which occur in 

the volume of the CT system. The method is based on defining factors through combination of 
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scanning parameters. A CT ball plate, a reference standard featuring 25 ruby spheres glued on a carbon 

fibre plate, was used in this work to investigate the influence of image quality on dimensional CT 

measurements. Image quality was assessed in terms of spatial resolution and pixel noise. Both factors 

were determined theoretically. Measurement accuracy was determined by the analysis of sphere 

distance errors SD. In the following, several conclusions from this investigation are drawn: 

 

 Results of the SD parameter have shown that by selecting proper combination of scanning 

parameters, minimization of these errors down to 10 µm, compared to the worst case being 

approx. 30 µm, can be achieved. Greater errors were found for CT scans at high resolution, 

i.e. for a position of the object close to the X-ray source where spheres are imaged at large 

opening angle. At this position, image artifacts, probably caused by the Feldkamp effect, as 

well as to a minor extent focus spot drift or rotary axis drift, were pronounced.  

 The DOE analysis has shown the spatial resolution being dominant factor and thus, having a 

big influence on dimensional measurements. In contrast, the pixel noise appeared not to be 

significant. However, this was only investigated for the selected parameter SD and the limited 

number of runs of DOE under study.  

 The theoretical formulation of pixel noise was experimentally validated by analyzing images 

obtained from a reconstruction volume. As three levels of pixel noise were theoretically 

defined, three levels (values) of SNR were expected. These were found in a well-specified 

ROI and thus, it can be concluded that the experiment is in a good agreement with theory. 

Moreover, with decreased pixel noise, increase of SNR values was observed. The three levels 

of SNR were more distinctive for CT scans at low resolution. Most likely, the levels for pixel 

noise should have been selected in a wider range, where the influence of the pixel noise is 

more significant.  

 The presented approach seems to be a promising method for prediction and optimization of 

scanning parameters. 

8  Outlook 

 The authors believe that the proposed experimental design can be adapted to real workpieces 

and it is therefore an intention to investigate into what extent this design can be applied.  

 Further validation of the proposed method should be done, in order to be able to make more 

general conclusions. In particular, the CT ball plate should also be investigated at low 

magnification and, at the same time, at the upper or lower position at large opening angle.  

 Further analysis should be carried out to investigate the effect of the two factors (spatial 

resolution and pixel noise) on other parameters than SD, e.g. probing errors PF and PS, or 

threshold effects by the assessment of bidirectional length measuring errors E.  

 Further, experimental validation of spatial resolution is necessary, since this was not done in 

the present work. Spatial resolution can be experimentally determined using e.g. wires 

(cylinders), spheres, edges [8, 10, 13].  
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