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Resumé

I kvantemekanikken gælder andre spilleregler end vi kender fra vores klassiske
hverdag. Disse spilleregler kommer både i form af nye muligheder og nye begræn-
sninger. Begrænsningerne bunder primært i Heisenbergs ubestemthedsrelation
der siger at det ikke er muligt samtidigt at måle to konjugerede variable som
fx fasen og amplituden af et lys-felt, uden at tilføje støj. Mulighederne er of-
test forbundene med kvanternes evne til at være i superpositioner af tilstande.
Disse to grundlæggende egenskaber ændrer måden vi kan måle, kommunikere
og processerer information på.

I denne afhandling bruger vi laserlys (1064 nm) som bærer for kvantetil-
stande. Selve tilstandene ligger på et sidebånd nogle få megahertz fra bærer
frekvensen. Laserlys har mange fordele der gør det ideelt til at undersøge kvan-
tefænomener. Først og fremmest kan alt gøres ved stuetemperatur, fordi laserens
frekvens er meget højere end frekvenserne af den termiske baggrundstråling. Til-
stande kan genereres og omformes med linear optik og de kan måles med høj
e�ektivitet og lav støj.

I afhandlingen støder vi på et nyt mål for kvantekorrelationer kaldet kvante-
uoverensstemmelse (Quantum discord). Målet kvanti�cere hvor meget infor-
mation der går tabt ved måling af en del af en kvantetilstand både hvis til-
standene er kvante-sammen�ltrede og hvis de er separable. Vi har lavet et af
de første eksperimenter der viser hvordan dette tab af information afhænger af
tilstandene og hvordan det udvikler sig ved disspation. Vi viser bl.a. at kvante-
uoverensstemmelsen kan skabes med klassiske korrelationer og at den kan vokse
ved lokale operationer.

Vi har lavet et forsøg med kvantenøgledeling (Quantum key distribution).
Vi har i samarbejde med teoretikere fra Olomouc udviklet en avanceret kvan-
tenøgle protokol som benytter sig af kvante-sammen�ltring til garantere sikker
kommunikation over større afstande. Vi viser at den grundlæggende ressource
er kvante-sammenpresning (eng. squeezing) og vi viser at vi kan gøre det bedre
end nogen tilsvarende protokol som ikke benytter kvante-sammenpresning.

Polarisation bliver brugt i bred udstrækning til at manipulere kvantetil-
stande. Tilgæld er de�nitionerne af polarisationen for kvantetilstande mangel-
fulde, både begrund af at kvantetilstande ikke har et velde�neret foton tal og
fordi kvantetilstande ofte er kendetegnet ved der varians mere end deres mid-
delværdi. Vi har taget del i illustrationen af et nyt mål der inkluderer variansen
i et polarisations mål. Derefter har vi udviklet to nye mål der opløser polarisa-
tionen for hvert foton antal, et mål for middelværdien og et mål for variansen.
Med disse i bagagen undersøger vi polarisationen i regimet mellem enkelt foton
tilstande og tilstande med en klassisk komponent og �nder bl.a. tilstande med
skjult polarisation.

v



vi



List of Puplications

Articles

I Mikael Lassen, Lars S. Madsen, Metin Sabuncu, Radim Filip and Ulrik L.
Andersen. Experimental demonstration of squeezed-state quantum averag-
ing. Phys. Rev. A 82, 021801 (2010)

II A. B. Klimov, G. Bjork, J. Soderholm, L. S. Madsen, M. Lassen, U. L.
Andersen, J. Heersink, R. Dong, Ch. Marquardt, G. Leuchs, L. L. Sanchez-
Soto. Assessing the Polarization of a Quantum Field from Stokes Fluctua-
tion. Phys. Rev. Lett. 105, 153602 (2010)

III Lars S. Madsen, Adriano Berni, Mikael Lassen and Ulrik L. Andersen.
Experimental Investigation of the Evolution of Gaussian Quantum Discord
in an Open System. Phys. Rev. Lett. 109, 030402 (2012)

IV Lars S. Madsen, Vladyslav C. Usenko, Mikael Lassen, Radim Filip and
Ulrik L. Andersen. Continuous variable quantum key distribution with
two-mode squeezed states. Submitted to Nat. Commun., arXiv:1110.5522

V Christian Kothe, Lars S. Madsen, Ulrik L. Andersen, Gunnar Björk. Exper-
imental determination of the degree of quantum polarisation of continuous
variable states., Submitted to Phys. Rev. Lett., arXiv:1207.6366

Posters

I Quantum Averaging. Mikael Lassen, Lars Skovgaard Madsen, Metin Sabuncu,
Radim Filip and Ulrik L. Andersen. Continuous variable workshop, Herrsching
and QNLO Summer school.

II Experimental characterization of Gaussian quantum discord. Lars S. Mad-
sen, Adriano Berni, Mikael Lassen and Ulrik L. Andersen. CVQIP'12 and
QCMC 2012.

III Continuous variable quantum key distribution with coherently modulated
entangled states. Lars S. Madsen, Vladyslav C. Usenko, Mikael Lassen,
Radim Filip and Ulrik L. Andersen. QCMC 2012.

List of Projects

Apart from the projects mentioned in articles there are:

vii



viii

I Sensing the vibrations of a micro-toroid with squeezed light. Ulrich B. Ho�,
Hugo Kerdoncu�, Mikael Lassen, Lars S. Madsen and Ulrik L. Andersen.
Status: Experiment under development, �rst measurements completed.

II Passive phase estimation with squeezed states. Emanuele Distante, Miroslav
Jezek, Christian Kothe, Lars S. Madsen and Ulrik L. Andersen. Status:
Experiment completed. Data analysis in progress.

III Adaptive phase estimation with squeezed states. Mario A. Usuga Cas-
taneda, Bo Melholt Nielsen, Lars S. Madsen, Mikael Lassen and Ulrik L.
Andersen. Status: Experiments running.

IV Quantum Error Code Correction for Protecting Continuous-Variable Quan-
tum States in a Noisy non-Markovian Environment. Mikael Lassen, Lars
S. Madsen, Radim Filip and Ulrik L. Andersen. Status: Draft close to
submission.

V Reconciliation robust quantum key distribution with squeezed states. Vladislav
C. Usenko, Lars S. Madsen, Ulrik L. Andersen and Radim Filip. Status:
First experiments completed. Data analysis in progress.

VI Hidden polarization and the quantum transition from discrete to continuous
variable polarization states. Lars S. Madsen, Christian R. Müller and Ulrik
L. Andersen. Draft in progress.



Contents

1 Introduction 3

1.0.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.0.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Introduction to quantum optics 7

2.0.3 State representation . . . . . . . . . . . . . . . . . . . . . 8
2.0.4 Single mode operations . . . . . . . . . . . . . . . . . . . 9
2.0.5 Two-mode operations . . . . . . . . . . . . . . . . . . . . 10
2.0.6 The thermal state and irreversible operations . . . . . . . 12
2.0.7 The covariance matrix and the symplectic formalism . . . 12
2.0.8 Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.0.9 Transformations between the di�erent representations . . 15

2.1 Introduction to quantum information theory . . . . . . . . . . . . 17
2.1.1 Entropy and information . . . . . . . . . . . . . . . . . . 17
2.1.2 Quantum information of Gaussian states . . . . . . . . . . 19
2.1.3 Entanglement measures . . . . . . . . . . . . . . . . . . . 20

2.2 Introduction to the experiments . . . . . . . . . . . . . . . . . . . 21
2.2.1 Mode matching . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.2 Locks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.3 Cavities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.4 Displacements and mixtures of coherent states . . . . . . 24
2.2.5 Optical parametric ampli�ers . . . . . . . . . . . . . . . . 25
2.2.6 Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.7 Single mode states . . . . . . . . . . . . . . . . . . . . . . 28
2.2.8 Two mode states . . . . . . . . . . . . . . . . . . . . . . . 30

3 Gaussian quantum discord 33

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Theory of the Gaussian discord . . . . . . . . . . . . . . . . . . . 34
3.3 Experimental characterization . . . . . . . . . . . . . . . . . . . . 35

3.3.1 Entangled states . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.2 Mixtures of coherent states . . . . . . . . . . . . . . . . . 36

3.4 Simulations of Gaussian discord . . . . . . . . . . . . . . . . . . . 39
3.4.1 The robustness of discord . . . . . . . . . . . . . . . . . . 39
3.4.2 The reverse discord . . . . . . . . . . . . . . . . . . . . . . 40
3.4.3 Phase conjugation . . . . . . . . . . . . . . . . . . . . . . 40
3.4.4 Modulated EPR states . . . . . . . . . . . . . . . . . . . . 41
3.4.5 Single-mode squeezing . . . . . . . . . . . . . . . . . . . . 42

ix



CONTENTS 1

3.5 Summary and outlook . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Quantum key distribution 45

4.1 CV-QKD with modulated entangled states . . . . . . . . . . . . . 46
4.1.1 Secret Key . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.1.2 Theoretical results . . . . . . . . . . . . . . . . . . . . . . 48
4.1.3 Experimental setup . . . . . . . . . . . . . . . . . . . . . 50
4.1.4 Data analysis and results . . . . . . . . . . . . . . . . . . 50
4.1.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 β robust protocol . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2.1 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.2 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.4 Further analysis . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3.1 Measures in QKD . . . . . . . . . . . . . . . . . . . . . . 57
4.3.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3.3 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Quantum polarization 61

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.1.1 Poincaré sphere . . . . . . . . . . . . . . . . . . . . . . . . 62
5.1.2 The unpolarized states and Psc

1 . . . . . . . . . . . . . . . 62
5.1.3 An alternative measuring strategy . . . . . . . . . . . . . 63

5.2 De�ning and illustrating Pres

1 . . . . . . . . . . . . . . . . . . . . 63
5.2.1 Theoretical investigation of Pres

1 . . . . . . . . . . . . . . . 64
5.2.2 Experimental investigation of Pres

1 . . . . . . . . . . . . . 66
5.3 De�ning and illustrating P2 . . . . . . . . . . . . . . . . . . . . . 68

5.3.1 First experiment for P2 . . . . . . . . . . . . . . . . . . . 69
5.4 De�ning and illustrating Pres

2 . . . . . . . . . . . . . . . . . . . . 69
5.4.1 Comparison of the P's . . . . . . . . . . . . . . . . . . . . 70
5.4.2 Hidden polarization . . . . . . . . . . . . . . . . . . . . . 71
5.4.3 SU2 Wigner functions . . . . . . . . . . . . . . . . . . . . 72

6 Concluding remarks 79

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80



2 CONTENTS



Chapter 1

Introduction

Quantum states obey a di�erent set of rules than we are used to in our macro-
scopic world. These rules come both with possibilities and restrictions. The �rst
restriction is the impossibility of perfectly extracting two conjugate observables
such as both the amplitude and the phase of a light �eld simultaneously. It
is formulated in Heisenberg's uncertainty principle, stating that the product of
the uncertainties is greater than or equal to ~. The possibilities are most of-
ten rooted in the quantum state's ability to be in superpositions of eigenstates.
The superpositions can be between physically separated states which entangle
them so that they contain more information about each other than classically
possible. However, if kept separate the Heisenberg's uncertainty principle limits
the extractable information. Bringing them togther these superpositions al-
low us to squeeze the uncertainty of one observable below the limit set by the
minimal symmetric uncertainty allowed by the Heisenberg's uncertainty prin-
ciple and thereby measure more precisely than otherwise possible. This comes
at the expense of antisqueezing the conjugate observable so the state still ful-
�ll the Heisenberg's uncertainty principle. These quantum phenomena lead to
fundamental di�erences in the measurements, communication protocols and in-
formation processing which can be performed using quantum states.

The research �eld of quantum optics is one of the most developed when it
comes to observing quantum phenomena. The light produced by lasers can have
outstanding properties when it comes to generating simple quantum states of
light. Laser light is coherent, meaning that it stays in phase with itself, for
several kilometers. The light travels with minimal loss through air and high
quality optics makes it possible to steer and reshape the quantum modes. The
most important state of a quantum system is the ground or vacuum state. For
light near the visible wavelengths the ground state is the natural state at room
temperatures. This state is so important because it serves as the initial state
when preparing a quantum state. Linear optics makes it possible to displace,
rotate and couple the quantum states. Low loss non-linear interaction allows for
the generation of exotic squeezed and entangled states. Finally the generated
states can be measured and characterized with high e�ciency and low electronic
and thermal noise.

The research �eld is divided between two formalisms depending on the type
of measurements employed. When measuring on the light with photon counting
detectors the discrete photon numbers are observed giving a discrete variable
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4 CHAPTER 1. INTRODUCTION

formalism. When measuring with homodyne detectors where the faint quantum
state beats with a strong local oscillator the continuous phase and amplitude
quadratures are observed giving a continuous variable formalism. Each formal-
ism have their advantages and disadvantages which can be roughly summarized
as the discrete variables working perfectly but conditionally, while the continu-
ous variables work every time but imperfect. We will focus on the continuous
variables in this thesis.

To utilize squeezing and entanglement to surpass the classical boundaries is
a challenging task, partly due to their fragile nature where loss and noise quickly
degenerates the states and partly due to the challenge of extracting the infor-
mation. Entangled states have been used as a resource for teleportation, dense
coding, cryptography and several other quantum information protocols, for re-
views see for example refs. [1�3]. In teleportation a quantum state is physically
transferred to a distant ancilla state through a classical channel, using preestab-
lished entanglement, local operations and classical information. Dense coding
uses preestablished entanglement to double the classical information capacity of
a quantum channel. We will return to the topic of quantum cryptography and
how entanglement and squeezing can be used at a later stage.

1.0.1 Motivation

For me the prime motivation for working with quantum optics is the ability
to explore quantum mechanics in a table-top experiment. It is possible for a
few persons to get a nice idea, make simulations and perform the experiment,
thereby taking part in the whole process. At the same time the ideas devel-
oped and the results gained have the potential of making a real impact on how
quantum mechanics is applied in future technology.

1.0.2 Overview

In this thesis we will see quantum information protocols, quantum meteorology
as well as fundamental studies of quantum phenomena. The various topics are
connected by the experimental methods employed.

The thesis is built up as follows:

• In chapter 2 we will start with an intro to quantum optics theory, the co-
variance matrix formalism and the theory of quantum information. Then
we will go through an intro to the experimental methods we use to observe
these phenomena.

• In chapter 3 we will dive into the fundamentals of quantum correlations
and information by applying a new measure 'Gaussian quantum discord'
to various states. The measure quanti�es the loss of information when
measuring part of quantum state thereby revealing quantum inference in
a more general form than the measures of entanglement.

• In chapter 4 we show how the limitations in quantum mechanics can be
turned to our advantage. The rules of extractable information can be
used to restrict an eavesdropper. We will demonstrate how 'quantum
key distribution' can be improved by using squeezing and entanglement
combined with coherent modulation.
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• Chapter 5 is on the topic of quantum polarization. Polarization is well
known in the classic world and is highly used in quantum optics to perform
single- and two-mode rotations. Even though the polarization rotations
work well on quantum states, it is non-trivial to quantify how polarized
a state is. We shall see several attempts to improve our de�nitions of
quantum polarization. Further we will look at quantum e�ects leading to
hidden polarization and study the transition between quantum and classic
polarization.

• Finally we will conclude the thesis in chapter 6.
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Chapter 2

Introduction to quantum

optics

The electromagnetic �eld can be quantized as a harmonic oscillator (see e.g.
[4, 5]). We will express the properties of a single quantum mode of the light
�eld using the bosonic annihilation â and creation â† operators also known as
the ladder operators. They have the commutation relation[

â, â†
]
= 1 (2.1)

where ˆ symbolize that we are dealing with operators. We will set Plancks
constant ~ = 2 which corresponds to setting the variance of vacuum to one and
thereby counting everything in shot-noise units [1, 6]. The eigenstates are the
coherent states â|α⟩ = α|α⟩ where α is a complex number. These operators are
not hermitian and hence cannot be measured directly. We can however make
hermitian combinations that can be measured. We de�ne the amplitude and
the phase quadrature operators from the addition as

x̂ = â† + â

p̂ = i
(
â† − â

)
(2.2)

and in general
q̂(θ) = â†eiθ + âe−iθ. (2.3)

The operators x̂ and p̂ are called the canonical quadrature operators because
they have the same commutation relation as the position and momentum oper-
ators of a particle namely

[x̂, p̂] = 2i. (2.4)

With a commutation relation for two observables also comes a Heisenberg's
uncertainty relation (see e.g [7] �1.4). For x̂ and p̂ this relation states that

var(x̂)var(p̂) ≥ 1 (2.5)

where var is the variance calculated as ⟨ô2⟩ − ⟨ô⟩2 and ⟨ô⟩ is the expectation
value of ô. This uncertainty relation means that if we by some means measure

7



8 CHAPTER 2. INTRODUCTION TO QUANTUM OPTICS

or squeeze one quadrature so that the variance is reduced, then we must at the
same time increase the variance of the conjugate quadrature. The eigenstates of
the quadrature operators are the in�nitely squeezed states q̂|q⟩ = q|q⟩ meaning
they have zero variance in the respective quadrature. At �rst these states look
very interesting, however they are somewhat unphysical as they also have in�nite
anti-squeezing and correspondingly in�nite energy.

Rather than summing the ladder operators we can also take the product,
obtaining the number operator

n̂ = â†â. (2.6)

The eigenstates n̂|n⟩ = n|n⟩ are called the Fock-states. As the quadrature eigen-
states these states are in�nitely squeezed. However unlike quadrature eigen-
states the anti-squeezing is in the phase, that is, the phase is completely unde-
�ned. The Fock states are orthogonal and complete like the in�nitely squeezed
states. They are countable which simply means that you can count them as
1,2,3,... in contrast to |q⟩ which are continuous. These properties make the
Fock states a common choice for spanning the Hilbert space of the quantum
modes.

2.0.3 State representation

All the states that we have considered so far have the property that they can
be written as a single vector |ψ⟩. If we consider an ensemble described by a
statistical mixture of states this is no longer possible. Instead mixed states can
be expressed with density operators. Such an operator can in turn be written
in terms of the Fock states

ρ̂ =

∞∑
n,m=0

|n⟩⟨n|ρ̂|m⟩⟨m| =
∞∑

n,m=0

ρmn|m⟩⟨n|, (2.7)

where the (complex) numbers ρmn form the density matrix ρ in the Fock ba-
sis. Knowing the density operator we can calculate expectation of values any
operator as

⟨ô⟩ = trace(ρ̂ô). (2.8)

One special expectation value is that of the density operator itself, γ = trace(ρ2).
It is known as the purity and the state is said to be pure if ρ2 = ρ (γ = 1) and
mixed otherwise.

Alternatively we can express a state in phase space in terms of the quasi-
probability distribution called the Wigner function. The pre�x �quasi� originates
from the fact that Wigner functions can be negative unlike classical probabil-
ity distributions. The marginal distributions of the Wigner function gives the
classic probability distributions of the quadratures and there is a one to one
correspondence between the Wigner function and the density matrix (see Sec.
2.0.9). For these reasons the Wigner function is often used to illustrate states.

The states which have Gaussian Wigner functions are called the Gaussian
states. These states can be described in a particularly simple and useful way
using the covariance matrix formalism [1, 6]. The Gaussian states are fully de-
scribed by their mean value and their covariance matrix σ. Hence instead of
using the in�nite dimensional Hilbert space we are left with 5 real parameters,
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namely the mean and the variance of x̂ and of p̂ and the covariance between
x̂ and p̂. Note that since we have chosen ~ = 2 the covariance matrices corre-
sponding to the vacuum state will be the identity matrix.

2.0.4 Single mode operations

In general, a unitary operator Û transforms the density operator ρ̂ to a new
density operator ρ̂′ according to

ρ′ = Û ρ̂Û†. (2.9)

We have already encountered the coherent states as the eigenstates of the lad-
der operators. The unitary operator which creates these states is called the
displacement operator and is given by

D̂(α) = eαâ
†−α∗â. (2.10)

Operating on the vacuum state we get

D̂(α)|0⟩ = e−
1
2 |α|

2
∞∑

n=0

α√
n!
|n⟩ = |α⟩. (2.11)

The mean value of x̂ and p̂ gives the real and complex part of α while the variance
stays the same as for the vacuum state. Hence we consider the coherent states
as displaced vacuum states.

Finitely squeezed states can be generated from vacuum using the quadrature
squeezing operator. This unitary operator is de�ned as

Ŝ(z) = e
1
2 (z

∗â2−zâ†2), (2.12)

where z = rei2θ, r is the squeezing parameter and θ ∈ [0;π[ is the squeezing
phase. We see that the ladder operators are squared which signify that the
operator is non-linear. Operating on a vacuum state we get

Ŝ(z)|0⟩ = 1√
cosh(z)

∞∑
n=0

√
(2n)! tanh(zn)

2nn!
|2n⟩, (2.13)

from which we see that only every second photon number is excited. The vari-
ance has changed so that

var (q̂(θ)) = e−2r (2.14)

while
var

(
q̂(θ +

π

2
)
)
= e2r. (2.15)

From the variances we see that the distribution of the noise has been shifted
from one quadrature to the other. However the uncertainty relation between
the conjugate quadratures is conserved. We note that the squeezing operator
does not commute with the displacement operator.

Finally we can also rotate the states in phase-space with the operator

R̂(θ) = e−iθn̂, (2.16)
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which simply changes the phase of the state.

In the covariance formalism we can express the displacement as a vector

D̂ =

(
d1
d2

)
, (2.17)

the rotation as a rotation matrix

R̂(θ) =

(
cos(θ) sin θ
− sin θ cos(θ)

)
(2.18)

and the amplitude squeezing as

Ŝ(r) =

(
e−r 0
0 er

)
. (2.19)

Writing the quadratures as a vector, x̂, the displacement only changes the mean
value by simple addition. In a general unitary transformation the mean value
changes as

x̂
′ = R̂(ϕ)Ŝ(r)R̂(θ)x̂+ D̂, (2.20)

and the covariance matrix changes as

σ̂′ = R̂(ϕ)Ŝ(r)R̂(θ)σ̂
(
R̂(ϕ)Ŝ(r)R̂(θ)

)T

. (2.21)

All single mode Gaussian unitary operations can be decomposed into rotations,
displacement and squeezing.

2.0.5 Two-mode operations

All the operations we have considered so far have been single mode operations.
A beamsplitter couples two modes together and can be considered as a two-
mode rotation. The classic beamsplitter splits a single beam into two modes.
In quantum mechanics all modes have to be considered so we have to include
the vacuum entering the beamsplitter. Given input modes â and b̂, the phase
free beamsplitter can be described by a unitary operator

Ûbs(θ) = eθ(â
†b̂−âb̂†) (2.22)

where θ = cos−1(
√
T) and T is the transmission. θ is used to stress that the

beamsplitter operation can be considered as a two-mode rotation. Two-mode
rotations can also be performed with the polarization rotations. The Stokes
operators are used to describe these. We de�ne them in the horizontal-vertical
basis as

Ŝ0 = â†H âH + â†V âV Ŝ1 = â†H âH − â†V âV

Ŝ2 = â†H âV + â†V âH Ŝ3 = i(â†V âH − â†H âV ),

where Ŝ0 is the total number of photons, Ŝ1, Ŝ2, Ŝ3 are the di�erence between
the horizontally and vertically polarized photons, the di�erence between the 45◦
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and −45◦ polarized photons and the di�erence between left-hand and right-hand
circularly polarized photons, respectively. 1

All the Stokes operators commute with Ŝ0, while the others ful�ll the com-
mutation relation [

Ŝ1, Ŝ2

]
= 2iŜ3 (2.23)

and cyclic permutations hereof.
The polarization rotations are then given by

Ûpol(Ŝi, θ) = eiθŜi , i ∈ {0, 1, 2, 3}. (2.24)

The Ûpol(Ŝ0) gives a global phase rotations while Ûpol(Ŝ1), Ûpol(Ŝ2), Ûpol(Ŝ3)
corresponds to beamsplitter rotations with phase rotations between the two
modes. Using these operators together with polarization beamsplitters allow
the construction of beamsplitters with arbitrary phase.

These operators work on two-mode states. A two-mode state can be repre-
sented by a two-mode density operator by taking the Kronecker product

⊗
of

two single mode density operators. The
⊗

is often hidden to ease the reading
and rather the involved modes are speci�ed e.g in the expression for Ŝ1 it should
say â†H âH

⊗
IV − IH

⊗
â†V âV , instead we have used H and V to symbolize the

di�erent quantum modes. If using the covariance matrix formalism the modes
are added with the direct sum

⊕
.

In itself turning two single-mode matrices into a two-mode matrix does not
change the single mode states. We can still perform single mode operations by
taking the product of of the single-mode operator with the identity. However
once we perform a two-mode rotation the states might not be separable any
more. That means that we can no longer write the two-mode state as a product
of two single-mode states and the state is said to be entangled. The simplest
example of such a state is a single photon and vacuum state mixed on a 50/50
beamsplitter. For this state each of the single mode states will be a mixture
of vacuum and a single photon. However the two-mode state is not a mixed
state, rather it is a superposition of the photon being in the one mode and in
the other.

In this thesis the resource for generating entanglement is to couple two single
mode squeezed states with a π

2 phase shift on a 50/50 beamsplitter. This state
resembles the state �rst imagined by Einstein, Podolsky and Rosen in their
famous objection to quantum mechanics and hence it is often called an EPR-
state [8]. The state is characterized by each single mode being a thermal state,
while the two-mode state is pure. If the two modes are allowed to interfere again
on a 50/50 beamsplitter the two squeezed states reappear.

The two-mode squeezing operator which generates entanglement between
two modes can be written as

Ŝ2(r) = e
r
2 (âb̂−â†b̂†). (2.25)

The operation resembles that of a beamsplitter, but, like the single mode squeez-
ing operation, it does not conserve the photon number. We note that this two-

1We note that there are some disagreements in literature as to which operator should be
S1/Sx, we choose the di�erence between the horizontal and the vertical modes, but sometimes
the di�erence between the diagonal and the anti-diagonal is chosen. As long as the cyclic order
of the operators is preserved it is just rotation.
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mode squeezing operation can be realized by squeezing both modes, rotating
one of them by π

2 and then coupling them on a beamsplitter.

2.0.6 The thermal state and irreversible operations

Both the coherent and the squeezed states considered so far have been pure.
The simplest mixed state is called a thermal state. The density matrix is char-
acterized by a Lorentzian distribution of photons on the diagonal and there
are no coherences between the di�erent photon numbers. For a state with Nth

thermal photons we can write the non-zero elements of density matrix as

ρn,n(Nth) =
1

1 +Nth

(
Nth

1 +Nth

)n

(2.26)

and represented in the covariance formalism, the mean is zero and the covariance
matrix is

σ(Nth) =

[
1 + 2Nth 0

0 1 + 2Nth

]
. (2.27)

Together with the squeezing, rotation and displacement operators the thermal
state makes it possible to simulate any single mode Gaussian state.

Figure 2.1: a) Model for generation of a thermal state. The partial trace is
symbolized with the beam dump, BD. b) Model for thermal lossy channel with
a variable beamsplitter (VBS).

The thermal state can be generated by making a Gaussian mixture of co-
herent states or by tracing out one mode of an EPR-state as shown in Fig. 2.1
a). The second method has the advantage that it accounts for all modes, but it
requires the partial trace. Given the two modes A and B and their two-mode
density matrix ρAB we write

ρA = traceB(ρAB), (2.28)

where traceB works as the identity on system A, but traces out system B and all
correlations between the two systems. Using this trace we can model irreversible
loss and noise addition by coupling the state to a vacuum state or a thermal
state on a variable beamsplitter as shown on Fig. 2.1 b).

2.0.7 The covariance matrix and the symplectic formalism

We have already seen how Gaussian states can be represented with covariance
matrices and mean values and how these transform. These operations can be
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represented in a compact formalism [1,9]. For a N mode state we have the 2N
mean values in a vector x̂ and the 2N×2N covariance matrix σ. The Heisenberg
uncertainty principle is formulated as

σ +Ω ≥ 0, (2.29)

where Ω is the symplectic form

Ω =
N⊕
1

ω, ω =

(
0 1
−1 0

)
. (2.30)

The transformations Eq. 2.20 and Eq. 2.21 are straightforwardly generalized to
work on one of the N modes and the two-mode rotations can also be applied to
two of the N modes.

2.0.8 Detection

In quantum mechanics the type of measurement is as important as the states
measured. There can be several types of detectors that approximate the same
hermitian operator. In general, a measurement with the outcome m on one
mode of a multi-mode density matrix can be formulated as [10] (�2.4.2)

ρm =
M̂†

mρM̂m

trace(M̂†
mM̂mρ)

. (2.31)

Here we have written the measurement as operators. The most general class
of measurement operators are the positive operator-valued measure (POVM).
They are required to ful�ll the completeness relation

∑
m Êm = 1, where Êm =

M̂†
mM̂m. If furthermore M̂2

m = M̂m the measurements are said to be projective.
In terms of Eq. 2.31 subsequent measurement with a projective operator is
seen to give the same result, which is not the case if M̂2

m ̸= M̂m. In this sense
the relation between projective measurements and POVMs is like the relation
between pure states and the density matrix.

The most important detector in this thesis is the homodyne detector.

Figure 2.2: Theoretical homodyne detector. BBS balanced beam splitter
(50/50).

Imagine that two light �elds described by the lowering operators â and b̂
impinge on a balanced beamsplitter, see Fig. 2.2. Naming the modes clockwise
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we can describe the output �elds with lowering operators ĉ and d̂. The output
modes of the beamsplitter can be written as:

ĉ =
â+ b̂√

2
(2.32)

d̂ =
b̂− â√

2
(2.33)

and hence the output intensities become:

n̂c = ĉ†ĉ =
â†â+ b̂†b̂+ â†b̂+ b̂†â

2

n̂d = d̂†d̂ =
b̂†b̂+ â†â−

(
b̂†â+ â†b̂

)
2

.

(2.34)

Now we can look at the sums and the di�erence of the two outputs:

n̂c + n̂d = â†â+ b̂†b̂ (2.35)

n̂c − n̂d = â†b̂+ b̂†â, (2.36)

where we see that the sum simply gives the total number of photons and the
di�erence gives information about the cross terms.

Assuming the input in port b to be an intense coherent state, much brighter
than that of port a we can make an expansion b̂ = (⟨b⟩ + δb̂)eiθ where ⟨b⟩ is
the classical amplitude of the coherent state and θ is its phase. Both n̂c and
n̂d will be dominated by the amplitude of the coherent state from the b port,
so we write them as classical intensities Ic and Id respectively. Inserting this in
Eq. 2.36) we get

Ic − Id = i⟨b⟩
(
â†eiθ + âe−iθ

)
+O(δb̂â) ≈ ⟨b⟩q̂ (θ) . (2.37)

Hence by measuring and subtracting the intensities Ic and Id and controlling
the phase of the coherent state in the b port we can get information about any
quadrature of the a-�eld.

Seen in the general picture of POVM's the homodyne measurements of
e.g. x̂ have the completeness relation written as an integral over the in�nitely
squeezed states multiplied with the corresponding delta-function eigenvalues
1 =

∫
δ(x, x′)|x⟩⟨x|dx. The eigenstates are pure and orthogonal so they ful�ll

the criteria for being projective operators. The implementation using the ho-
modyne detector destroys the state in the process of measurement and hence
subsequent measurement on the same state is not possible. This can be modeled
by a projective measurement followed by a partial trace.

Another Gaussian measurement is the heterodyne detector. It can be consid-
ered as the projection onto the coherent states, simultaneously measuring both
x̂ and p̂ with the minimal noise penalty. The coherent states are not orthogonal,
so the heterodyne detection is not projective. The detection can be realized in
several ways, e.g. by splitting the state on a balanced beamsplitter (coupling it
to a vacuum ancilla) and performing a x̂ and a p̂ homodyne detection on the
two modes.

Both the homodyne and the heterodyne measurements are called Gaussian
as they preserve the Gaussianity of Gaussian states. Such measurements can
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be characterized with a covariance matrix corresponding to the Gaussian state
which they project on to. For a multi-mode state consisting of subsystems A
and B with the covariances C, the partial measurement of B can be written as

σAm = A− C(B + σm)−1CT , (2.38)

where σm is the covariance matrix of the measurement. At the same time the
mean value change according to

Xm = XT (B + σm)−1CT . (2.39)

2.0.9 Transformations between the di�erent representa-

tions

For Gaussian states going between the di�erent representations is particularly
simple. Given the density matrix, the covariance and mean are calculated as the
expectation values of the corresponding operators. On the other hand given the
covariance matrix and mean values, the density matrix can be calculated in the
following way: rotate the covariance matrix into diagonal form with the smallest
variance in the x- direction corresponding to a phase shift θ. The variances are
parameterized by the number of thermal photons and the squeezing and ful�ll
the relation

var(x̂) = (1 + 2Nth)e
−2r (2.40)

and
var(p̂) = (1 + 2Nth)e

2r, (2.41)

from which it can be seen that

Nth =

√
var(x̂)var(p̂)− 1

2
(2.42)

r =
1

4
ln

(
var(p̂)

var(x̂)

)
.

Hence to generate the density matrix we generate a thermal state with Nth

photons, squeeze it with the parameter r, rotate it with θ and �nally displace
it with the mean values using Eq. 2.26), Eq. 2.12) and Eq. 2.10).

The connection to the Wigner function is also straightforward,

W (x) =
1

2π
√
det(σ)

e
1
2 (x− x̄)Tσ−1(x− x̄), (2.43)

where we have written the coordinates and the expectation values as vectors.
In Fig. 2.3 we show these three representations of a squeezed state. Even
though the Wigner function and the density matrix have clear symmetries they
are somewhat complicated, while the means are zero and the covariance matrix
only has two non-zero entries.

In the more general case without the Gaussian assumption and by rewriting
x and p as x = r cos(ϕ) and p = r sin(ϕ), we can compute the Wigner function
as [5]

W (x, p) =

M∑
k=−M

w(r, k)e−ikϕ (2.44)
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with

w(r, k) =


∑M−k

n=0 wn(r, k)ρn+k,n for k ≥ 0

w(r,−k)∗ for k < 0

wn(r, k) =
(−1)n

π

√
n!

(n+ k)!
e−r2

(
r
√
2
)k

Lk
n

(
2r2

)
(2.45)

where Lk
n are the generalized Laguerre polynomials. To go from the Wigner

function to the density matrix, the density matrix elements are given by

ρnm = 2π

∫∫ ∞

−∞
W (x, p)w(r, n−m)e−i(n−m)θdxdp. (2.46)
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Figure 2.3: Representations of a squeezed state with 1 photon on average (z =
sinh(

√
1). a) The Wigner function. b) The absolute value of the corresponding

density matrix. c) The mean values and covariance matrix.
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2.1 Introduction to quantum information theory

In this section we will de�ne the information of quantum states and show how it
di�ers from the information of a classical system. We will start with the basics
of classical information theory and then see how it translates into quantum
information theory. Then we will see how we can calculate the di�erent types
of quantum information from the covariance matrices. Finally we will look at
some of the measures of entanglement applicable to Gaussian states.

2.1.1 Entropy and information

The entropy of a system quanti�es how much uncertainty or unknown informa-
tion is present in it. If we are able to measure exactly what state the system is
in, then we have gained an amount of information corresponding to the entropy.
In this way the entropy and the information are two sides of the same story-
the entropy is the information present in a system before measurement.

Imagine a person, Alice, having a systems A, we can write the Shannon
(classical) entropy [10]

H(A) = −
∑
x

p(x) log p(x), (2.47)

where A has the outcomes x each with a probability p(x) and
∑

x p(x) = 1.
If we now imagine another person, Bob, with a system B we can quantify how
much information Alice and Bob share (see Fig. 2.4). The joint entropy of the
total system is given by

H(A,B) = −
∑
x,y

p(x, y) log p(x, y), (2.48)

where y are the possible outcomes of measurements on system B. This joint
entropy is smaller than or equal to the sum of entropies of A and B and the
equality holds if and only if A and B are independent. The di�erence is called
the mutual information

H(A : B) = H(A) +H(B)−H(A,B) (2.49)

and it quanti�es how much information A and B share. Further the conditional
entropies of A given B can be de�ned as

H(A|B) = H(A,B)−H(B) (2.50)

and vice versa for B conditioned on A. The conditional entropy quanti�es how
much information B is missing in order to know all of A.

Some of the properties of the Shannon entropies can be summarized as

1. Joint entropy and mutual information are symmetric: H(A,B) = H(B,A),
H(A : B) = H(B : A)

2. Conditional entropy is positive: 0 ≤ H(A|B) ≤ H(A).

3. Mutual information is positive: 0 ≤ H(A : B) ≤ H(A).
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Figure 2.4: Overview of the classical entropy of a two-mode system.

4. Strong subadditivity: H(A,B,C) +H(B) ≤ H(A,B) +H(B,C).

For a quantum state the von Neumann (quantum) entropy is de�ned from
the density matrix as

S(ρA) = −trace(ρA log2(ρA)) = −
∑
x

λi log2(λi), (2.51)

with λi being the eigenvalues of ρA and 0 log2 0 = 0. The entropy is zero if and
only if the state is pure, so in this sense single mode pure states contain zero
information.

We can de�ne the quantum joint entropy, conditional entropy and mutual
information as we did for the classical quantities, only with the classical entropies
replaced by the corresponding von Neumann entropies. However the intuitive
picture in Fig. 2.4 will be misleading for quantum states, e.g the entangled states
we saw in Sec. 2.0.5 were pure while their submodes were in mixed states. This
means that in contrast to the classical entropy, the joint entropy S(ρAB) is not
always bigger than the entropies of the submodes S(ρA), so that the conditional
information S(ρB |ρA) is not always positive. In fact for a pure entangled state
S(ρAB) = 0 while 0 < S(ρA) = S(ρB) and the quantum mutual information is
twice that of each mode S(ρA : ρB) = 2S(ρA).

The classical information is scale free in the sense that the outcomes are al-
ways orthogonal, which again means that all information can be extracted. This
is not the case in quantum mechanics. The extractable information will be lim-
ited by the Heisenberg's uncertainty principle if the states are non-orthogonal.
This is formulated in the Holevo bound which sets the upper limit to the ex-
tractable information. Suppose A prepares a state ρA =

∑
i piρi and then send

it to B. If B performs a measurement on ρA described by a POVM, then the
mutual information after measurement will be bounded

H(A : B) ≤ S(ρ)−
∑
i

piS(ρi), (2.52)

which only depends on the prepared state.
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Furthermore since [10] (�11.3.6)

S(ρ)−
∑
i

piS(ρi) ≤ H(A), (2.53)

the extractable information is always smaller than or equal to the entropy
of the prepared state. For the example with the pure entangled state this
means that even though the quantum mutual information between A and B is
2S(ρA), if both A and B measure on their modes the extractable information is
smaller than or equal to H(A). This example shows the ambiguity of quantum
information- on the one hand there is the power of entanglement (superpositions
of correlations), but on the other hand the Heisenberg's uncertainty principle
limits the information we can extract from a system.

2.1.2 Quantum information of Gaussian states

The in�nite dimensionality of the Gaussian states at �rst seem staggering, how-
ever the symmetries of the states reduces the complexity to a few independent
variables. This makes calculation of the quantum information quantities and
optimizations much easier [1].

First we note that the mean value of the state does not have in�uence on
the entropy of the state. Hence for Gaussian states all information is in the
covariance matrix σ. Second we note that unitary transformations do not change
the entropy. For the single mode state this means that if we produce the state
by rotating a squeezed thermal state, then only the thermal state matters

S(σA) = f(1 + 2Nth), (2.54)

where f(x) = x+1
2 log(x+1

2 ) − x−1
2 log(x−1

2 ). This result can be generalized to
multi-mode Gaussian states by addition of f(1+2Nth,i) for each of the i modes.
However this does not give the mutual information between two modes as it
can be a�ected by two-mode unitary transformations. By only considering local
unitary transformations the 4× 4 covariance matrix of a two-mode state can be
put into the standard form

σAB =

(
α γ
γ β

)
, (2.55)

where the sub-matrices α = diag(a, a), β = diag(b, b) and γ = diag(c1, c2). The
determinants of these sub-matrices are invariant under local unitary transfor-
mations and are know as the local symplectic invariants. It is always possible
to locally rotate and squeeze a covariance matrix into standard form and since
these operations do not change the entropy one can always use the standard
form for calculations. The entropy of the full system is still given by the two
thermal contributions

S(σAB) = f(ν−) + f(ν+), (2.56)

which can be calculated as ν± =

√
∆±

√
∆2−4 det(σAB)

2 where ∆ = a2+b2+2c1c2.
The ν's are also known as the symplectic eigenvalues. The von Neumann mutual
information is then given by [11]:

S(σA : σB) = f(a) + f(b)− f(ν−)− f(ν+) (2.57)
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and the Holevo bound when Alice sends a state σB to Bob and Bob measures
it is given by

χ(σB) = S(σB)− S(σB|a) (2.58)

where σB|a is the state Bob receives conditioned on the information of Alice.
To use this equation we describe the state that Alice send to Bob as part of
a two-mode covariance matrix where Alice holds the remaining part herself. If
Alice's data is classical then she measures her mode and Bob's conditional state
can be calculated from Eq. 2.0.8.

2.1.3 Entanglement measures

Entanglement is a resource for several quantum information protocols. In prin-
ciple it can be distilled and used to generate other entangled states, however
it is not possible to distill entanglement from Gaussian states using Gaussian
operations. For mixed states the entanglement of formation and the distillable
entanglement are hard to calculate.

A more experimentally friendly approach to entanglement can be taken by
using the Duan- Simon inseparability criterion

var(x̂A − x̂B) + var(p̂A + p̂B) < 4. (2.59)

For symmetric Gaussian states the Duan- Simon criterion serves as a direct
operational measure.

Mixed or asymmetric states can also contain entanglement. A measure which
compromises being stringent, possible to calculate and working for all states is
the logarithmic negativity. The basic idea is that if taking the transpose of one
subsystem (partial transpose) on a separable state, then the state stays physical
and obey the Heisenberg's inequality. The degree of violation then measures the
entanglement, the only restriction that either Alice or Bob should only have one
mode. The measure is de�ned as

EN (ρ̂) = log ||ρ̂TB ||1, (2.60)

and for Gaussian states it can be calculated as

EN (σ) =
∑
k

F (ν̃k), (2.61)

where F (x) = −log(x) for x smaller than 1 and 0 otherwise and the ν̃k are the
eigenvalues of the partial transpose covariance matrix.
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2.2 Introduction to the experiments

In this section we will go through some of the techniques and equipment used
to generate, manipulate and measure the quantum states of light.

The starting point is the laser. We use a Diabolo Nd:YAG laser from In-
nolight. The main source of light is at 1064 nm, but it also has an internal
second harmonic generator giving light at 532 nm. It is placed on an optical
table where we guide the light around using lenses and mirrors.

In order to start the experiments with a vacuum state we use the side-
band frequencies rather than center frequency to carry the quantum informa-
tion. Most of our quantum states will be residing on the 4.9 MHz ± 90 kHz
sideband frequency of the laser beam. The di�erent sideband frequencies can
be separated after measurement, hence we can have a bright center frequency
(DC-component), relaxation noise of the laser at 1-3 MHz, several control mod-
ulations on e.g 12 MHz and 22 MHz frequency sidebands and still have e.g. a
vacuum state on the 4.9 MHz sideband.

2.2.1 Mode matching

The �rst and most used technique we discuss is how to make two quantum
modes overlap. In essence the technique is classical, however for a quantum
mode imperfection directly leads to loss. Hence even though the ideas are very
simple, they are all crucial for the successful implementation of an experiment.
For two freely propagating laser beams meeting on a beamsplitter the light must
be in the same mode in the following sense: same frequency, same Transverse
ElectroMagnetic (TEM) mode, same polarization, same beam waist position
and waist size and �nally they must meet in the same point and have the same
direction. The frequency is taken care of by using the same laser for the two
beams. The polarization can be rotated with quarter- and half-wave plates and
hence does not either pose a problem. The TEM mode does require precautions.
Most often we use the TEM00 (a simple Gaussian beam pro�le), however to keep
it that way ellipticity of the cavities, quality of optics (e.g. the crystals in the
modulators) and of course avoiding unwanted stu� in the beam path, should be
considered. Finally the actual alignment of the beams have to be perfected.

Figure 2.5: Misaligned overlaps. See text for description.

On Fig. 2.5 we show the most common alignment problems. In a) the
beams are overlapping in the point where the picture is taken, but they are not
going in the same direction giving phase interference ripples. In b) the opposite
is the case and interference is only visible where they overlap. In c) they do
not have the same focus giving di�erent phase relations in the radial direction.



22 CHAPTER 2. INTRODUCTION TO QUANTUM OPTICS

Figure 2.6: Visibility fringes of two equally powered beams, when scanning
with a saw-tooth (linear scan). The minimum and maximum can be read of,
possible DC o�set of the detector should be taken into account. Here around
90% visibility in the middle and bit lower both to the left and right (due to
tilting of the mirror). All the way to the left and to the right there are the
turning points of the piezo.

Making these parameters match is a craft called mode matching. In principle
this problem can be solved by ray tracing, giving the right position and direction
of the beams, and using the ABCD formalism to get the right beam waist and
position [12]. However to make it work in practice requires a bit of e�ort. Two
steering mirrors are needed to control both direction and position. One can
decouple these two degrees of freedom by placing one mirror far away from the
beamsplitter to steer the position and one mirror close to the interference point
to steer the direction of the beam. The two degrees of freedom will newer be
completely decoupled, but by repeatingly over-steering with the one mirror and
then with the other will allow to beam walk the beam to the right position and
direction. A similar technique is used to control the position and size of the
beam waist using proper lenses.

We quantify the mode matching between two beams by their visibility V. By
scanning the relative phase between the two beams using a piezo mounted mirror
and detecting the intensity, visibility fringes can be observed on an oscilloscope,
see Fig. 2.6. When the two beams have the same intensity the visibility is
calculated from the maximum and minimum as

V =
Imax − Imin

Imax + Imin
. (2.62)

2.2.2 Locks

Once the overlap is aligned, we often want to stabilize the relative phase be-
tween the two beams. A feedback system is needed to compensate for acoustic
vibrations and thermal drifts. To make such a feedback loop a signal is needed
telling what the relative phase between the two beams is. This signal is called
the error-signal as it tells the distance to the lock point. In essence, a good
error-signal must have a su�cient bandwidth, a steep slope and a high signal
to noise ratio.
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If we want to lock the two beams out of phase, the most simple solution is
to use the DC-component itself. A normal beamsplitter gives a π phase shift
of the visibility fringes between two beams, hence subtracting the two output
signals gives an error-signal which is insensitive to power �uctuations. If the
power of one beam drifts, both signals are a�ected, but the subtraction cancels
the drift and the lock holds the phase. If it is needed that both beams propagate
after the interference a small part of each can be tapped of, e.g. using a 99/1
beamsplitter, and measured with a high-gain DC detector.

To lock two beams in phase with each other several techniques can be used
depending on the exact application. AC-locking can be performed by placing a
phase modulation on a sideband frequency as shown on Fig. 2.7. By measuring
this modulated beam after the interference and mixing it down to DC, an error-
signal which is phase shifted with π

2 is obtained. The π
2 phase shift means the

slope is steepest on the minimum and maximum of the DC-interference and
hence it can be used to lock to these. An alternative is to to make a DC-lock
using polarization optics to control the phase of the beamsplitter called a Stokes
based DC-lock.

Figure 2.7: An AC feedback loop. Abbreviations: Phase Modulator PM, Polar-
ization Beamsplitter PBS, Half-wave plate λ1/2, Proportional Integral PI, Piezo
mounted mirror Ptz. Together the two PBSs and the half-wave plate form a
variable beamsplitter, hence the loss associated with locking the phase of the
two beam can be distributed. Alternatively if both modes are needed with low
loss, a small part one or each of the output beams can be measured.

The error-signal is fed to a proportional-integral (PI) ampli�er, which gives
an output which is partly proportional and partly the running integral of the
error-signal. This output signal can then be ampli�ed further or directly fed
back to a piezo-mounted mirror in one of the two beams.

2.2.3 Cavities

A cavity de�nes a resonant optical mode and it has a limited bandwidth, hence
we use cavities to de�ne optical modes, low-pass high frequency noise and to
locally enhance an optical mode. All the cavities have a piezo-mounted mir-
ror, which can be used to control the length of the cavity. The cavities are
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characterized by their �nesse

F =
2π

1−R
=
FSR

γ
, (2.63)

where R is the roundtrip loss, FSR is the free spectral range and γ is the
full with half maximum of the transmission peaks. The ratio can be measured
directly by scanning the length of a cavity with the piezo-mounted mirror. The
measured �nesse can be compared to the expected from the length of the cavity
and the re�ectance of the mirrors, as well as to compare the day to day results.
The cavities are locked to resonance using Pound-Drever-Hall (PDH) like locking
technique [13] similar to the above mentioned AC-lock Fig. 2.7.

The procedure to align a cavity depends on the cavity geometry and where
it is possible to access the beam. The �rst step is to prepare the seed to have
the right waist position and size, compared to the optical mode of the cavity.
This can be calculated with the ABCD formalism. The beam should be traced
around the �rst roundtrip of the cavity making sure it hits the mirrors in the
centers. When this is done at least two or more faint spots should be visible
on the output, corresponding to the �rst and second roundtrip. The cavity
mirrors or the steering mirrors are then used to beam walk the spots closer.
When the spots close up they should start to have unstable brightness caused
by the growing interference. Now by slowly scanning the length of the cavity
(less than 1 hz) the spot should be blinking. The spot can now be sent on to a
detector connected to an oscilloscope synchronized with the scan and the scan
speed set to e.g. 30 hz. Most likely there will be "a forest" of modes, further
mode matching allows to align the cavity to have the TEM00 highly dominant.
By again scanning slowly and looking at the output modes any other resonant
modes can be identi�ed. To test the alignment the Hermite-Gauss TEM01 and
TEM10 modes can be excited. By comparing the symmetry one can check that
there is room on all sides of the beam path inside the cavity as these modes have
larger and asymmetrical spatial pro�les and hence they can tell if the beam is
slightly cutting and in which plane.

2.2.4 Displacements and mixtures of coherent states

Displaced vacuum states can be generated by sending a seed through a phase
or an amplitude modulator driven by a sine (function) generator. To avoid
dephasing the sine generator should be synchronized with the sine generator
from the measurement. We use commercially available electro-optical modula-
tors (EOM) from Linos and New Focus and the operation simply requires that
the light is sent through. They work by applying an electric �eld to a LiNbO3,
MgO:LiNbO3 or KTP crystal which change its refractive index thereby chang-
ing the length of the optical path. The phase modulators can work with a single
crystal and the change in optical path length directly gives the modulation (the
Linos ones have several crystals for enhanced temperature stability). The am-
plitude modulators have two crystals oriented 90◦ relative to each other. If the
light is polarized along the crystals it gives phase modulation. If the light has
a 45◦ or circular polarization relative to the two crystals the two polarization
modes form a polarization Mach-Zehnder interferometer. Each mode of the in-
terferometer is phase modulated and by interfering them on a PBS afterwards
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amplitude modulation is generated. Any intermediate modulation can be gen-
erated by the polarization. Overall this works very e�ciently and basically any
desired displacement can be realized as a pure state.

Thermal states are also easily generated using these modulators. By driving
a pair of phase and amplitude modulators with independent white noise sources,
a wide range of thermal states can be realized.

For some of the experiments we want to store the information of the white
noise modulation so that the thermal states are conditional vacuum states. This
is a little more complicated. If we simply mix down the white noise from the
source, the signal to noise ratio is limited to 15-18 dB by a weak but complex
transfer function in the modulator. To circumvent this we can measure a part
of the modulated light directly, with a much greater signal to noise ratio than
the signal to noise ratio in the �nal seed. If the detector has the same transfer
function as the ones used for detection in the end of the protocol, then the signal
to noise ratio will only be limited by the phase locks or the dynamical range of
the detectors.

The modulators are not lossless, however displacements are only attenuated
by loss. So if we want to displace a fragile quantum state we can make an ancilla
state with a modulation 100 times bigger than wanted, couple the two on a 99/1
beamsplitter and lock their relative phase which then only results in a small loss
to the fragile quantum state.

2.2.5 Optical parametric ampli�ers

To generate squeezed states we use the χ2 non-linear coe�cient of a 10 mm
long type 1 periodically poled potassium titanyl phosphate (PPKTP) crystal
for parametric down-conversion. The crystal is designed to generate squeezing
at 1064 nm when it is pumped with a 532 nm pump beam. The crystals are
anti-re�ection coated (R ∼ 0.5%, recently changed to new R ∼ 0.2%) to reduce
the back-re�ection and the associated loss. The e�ective χ2 coe�cient is too
low in free space, so to enhance the e�ciency of the down-conversion process we
place the crystal in a cavity resonant for 1064 nm, while the 532 nm pump beam
is single passed. The cavity is a bow-tie shaped cavity which is designed to have
a 25 cm round trip length and a beam waist in the crystal ful�lling the Boyd-
Kleinman criterion [14]. The crystal is placed on a Peltier element which heats
it up to around 30◦ C. The cavity with the crystal inside is called an optical
parametric ampli�er (OPA) when operated below threshold and we have two
of these on the optical table, see Fig. 2.8. We need a seed (some light) on the
center frequency of the squeezed mode which can be used as a phase reference
for locking later in the experiment. The seed is coupled into the cavity with an
incoupling mirror with high re�ection (∼ 99.8%) while the outcoupling mirror is
92% in OPA1 and 90% in OPA2. This highly asymmetrical coupling, together
with the other losses in the cavity, gives a �nesse of ∼ 55 corresponding to an
outcoupling e�ciency of around 90% and a bandwidth between 20 and 25 MHz.

The cavity is locked with a counter-propagating lock beam. A small part of
this lock beam is back re�ected by the crystal. This can cause instabilities in
the seed intensity when the interference drifts. In front of OPA1 we have placed
an acousto-optical modulator in the lock beam which moves the frequency of
the light so that the Hermite-Gauss TEM10 resonance overlaps with the TEM00

of the seed beam. Since the two beams are in di�erent spatial modes even after
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back-re�ection they do not interfere and the intensity instabilities are avoided.
In the other OPA the crystal is slightly tilted which reduces the back re�ection
signi�cantly.

Inputs

Pump

Seed

Control

Lock

Out

99/1

Lock

OPA

Figure 2.8: Upper: Picture of OPA1. To the left on the big mirror mount is
the outcoupling mirror which is mounted on a piezo. In the middle we have the
crystal which is placed on the oven (with the black and red wires). The pump
enters to the right through a slit in the mirror mount and both the seed and
the lock beam enters through this big mirror. Lower: Sketch of an OPA with
locking loops and control beams. The locks consist of the above mentioned AC-
locking system, a proportional integral ampli�er and a high-voltage ampli�er.
Note that the input beams are much more intense and that most of them are
re�ected.

Aligning the pump beam is a little tricky as the overlap between it and the
seed only is visible when the parametric ampli�cation gain is working. Further-
more the beams are only overlapping inside the cavity and the green beam is
blocked before exiting. Hence we use an IR beam sent backwards into the cavity
through the outcoupling mirror to generate some green light (using the OPA
as a second harmonic generator) and align it back to the green mode-cleaning
cavity. This procedure gives some gain, which can be optimized with normal
beam walking.

The r parameter of the theoretical squeezing operator is proportional to
the non-linear coe�cient of the crystal, the cavity �nesse and the pump power.
The nonlinear coe�cient of the crystal (including the poling structure) can be
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optimized by controlling the temperature. Changing the cavity �nesse can be
done by changing the outcoupling mirror. This is however a trade-o� because
increasing the �nesse decreases the outcoupling e�ciency. Furthermore it would
decrease the bandwidth which for the 4.9 MHz would slightly decrease the trans-
mission and more importantly increase the coupling between the quadratures.
Considering lower frequency sidebands where these e�ects are smaller would re-
quire that the laser was shot noise limited at that frequency. The pump power
also has an optimum, because the increased antisqueezing and the coupling be-
tween squeezing and anti-squeezing at some point degrades the squeezing. The
trade-o� between the cavity �nesse and the pump power are coupled, however
by increasing the pump power and decreasing the �nesse (by increasing the out-
coupling) should give higher outcoupling e�ciency and thereby more squeezing.

The phase of the squeezing is given by the phase of the pump relative to
the seed. There is a 12 MHz phase modulation on the green light from the
laser. After the OPA we tap o� a small part of the squeezed seed to perform
an AC lock as shown in Fig. 2.8, which can lock to either phase or amplitude
squeezing. Both lock points are possible with the same error-signal due to the
π symmetry of the squeezing phase. The size of this error-signal sets the lower
limit on the r parameter, as the locking becomes unstable when turning down
the pump power. It is however always possible to attenuate the squeezed beam,
thereby lowering the degree of squeezing and it is also possible to increase the
antisqueezing by white noise modulation.

Comparing with state of the art squeezing [15, 16] our main limitations are
in the phase stability of the OPAs, the outcoupling and detection e�ciency (see
next section), but further we always have a relative long path to the detection
including the phase lock of the pump phase and the coupling of the two OPAs.

2.2.6 Detection

All our detectors are basically ampli�ed pin-diodes. For locking, we have reso-
nant detectors which give a higher signal to noise ratio at the cost of bandwidth.
For homodyne detection, we mostly use broad band detectors with a bandwidth
above 20 MHz and low electronic noise. Some of the detectors amplify every-
thing equally and some split the AC and DC components allowing di�erent
gains.

Figure 2.9: Sketch of data acquisition.

To set up a homodyne detector two detectors are needed, see Fig. 2.9;
The seed and the local oscillator are overlapped on a 50/50 beamsplitter, the
perfection of the overlap and the beamsplitting ratio being equally important.
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The output beams are focused onto each of the detector diodes. The size of
the electronic outputs should be balanced. This is done by placing a white-
noise modulation on the seed or on the local oscillator and blocking the other
beam. The single detector output can be compared with the subtraction of the
two detectors on a electronic spectrum analyzer. We refer to this subtraction
as the common mode rejection and it should be in the order of 30 dB within
the measurement bandwidth. Once balanced, the electronic output of the two
detectors is subtracted to obtain the quadrature as in Eq. 2.37. We have one
set of broadband homodyne detectors with an estimated detection e�ciency of
94%± 2% and a few sets with 90%± 2%. The phase of the local oscillator can
either be scanned or locked depending on the purpose of the measurement.

One way to check whether the measurements are shot noise limited is to
vary the optical power and check the linearity. An alternative way is to check
that the addition and subtraction of the balanced detectors give the same signal.
Furthermore the clearance to the dark/electronic noise of the detectors should be
measured; typically it is 20 dB. Finally the DC component of the seed should be
much fainter than the local oscillator to validate the approximation in Eq. (2.37).
Comparing with that equation there is an extra frequency of 4.9 MHz on our
measured quadrature. Hence we need to mix it down before low-passing it. The
low-pass �lter sets the bandwidth of the data and in most of the experiments
we use a 90 kHz second order �lter. Finally the data is sent to the computer
where it is sampled at 500 kHz by an analog to digital converter. The converter
has 4 inputs, 14 bit depth and a sampling rate up to 100 MHz.

2.2.7 Single mode states

With a homodyne detector the vacuum state (shot noise) can be measured and
the result of such a measurement is shown in Fig. 2.10. Whenever making
a measurement series, several shot noise measurements are taken to check the
power stability of the local oscillator. The standard deviation of one of these
data sets is used to normalize the other measurements, corresponding to setting
~ = 2. The vacuum state is symmetric so we cannot see if we are scanning the
local oscillator or have it locked to a given quadrature.

Figure 2.10: Data of a vacuum state (normalized).
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If we now turn on an OPA, scan the phase of the local oscillator and measure,
we see that at some phases the data points are more centered while at other
phases they are more wide spread, shown in upper part of Fig. 2.11. When
scanning the phase of the local oscillator, time resolved measurements gives
di�erent phases. Hence samples in the �gures corresponds to phase of the state.
The focusing and spreading of the data could also be measured on a state with
one noisy quadrature. The di�erence is that for the squeezed state the points
are more centered than for the vacuum state. This can be seen by binning the
points (here 1k per bin), calculating the variance and comparing it with the shot
noise as done in the lower part of Fig. 2.11 (showing 4.5 dB of squeezing and 8
dB of antisqueezing). In a similar fashion we can measure a coherent state, the
result of which is shown in the upper part of Fig. 2.12.
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Figure 2.11: Phase scan of an amplitude squeezed state. Upper �gure: raw
data. Lower �gure: running variance of the data compared with shot noise

If we both squeeze and displace, the relative phase between the two matters
as shown in the middle and lower part of Fig. 2.12. We see that if we squeeze
along the displament, the amplitude of the coherent state becomes better de�ned
and when squeezing orthogonally to the displacement the phase (the position of
the steepest slope) of the state becomes better de�ned.
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Figure 2.12: Upper: Phase scan of a phase quadrature displaced coherent state.
Middle �gure: squeezing and displacing the same quadrature. Lower �gure:
squeezing out of phase with the displacement.

2.2.8 Two mode states

To measure two-mode states we need two sets of detectors. We commonly
refer to the one set of detectors as belonging to Alice or A and the other set
to belong to Bob or B. The two sets of detectors need to be synchronized,
which is done by splitting a strong thermal seed, blocking one detector from
each set of detectors and subtracting the signals from the two other. It is not
essential that they have the same gain as each set will be normalized to their
respective shotnoise, but they have to be perfectly in phase with each other. By
turning on our two OPAs and locking the two seeds with a π

2 phase shift (e.g.
amplitude squeezing from both OPAs and a tap o� DC-lock), we can generate
the entangled state shown in Fig. 2.13. We see that even though each of the
modes are in symmetric noisy (thermal) states, 3 dB of two-mode squeezing
is observed between di�erence of the one quadrature and the sum of the other
quadrature witnessing entanglement with the Duan- Simon criterion.
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Figure 2.13: Homodyne measurement of an entangled state. The phase of the
homodyne detector at Alice (blue points) is locked while the phase of the homo-
dyne detector at Bob (blue points) is scanned. The data sets are �rst normalized
to their individual shot noise, and the sum/di�erence is divided by two. Upper
�gure: raw data. Lower �gure: the variance of Alice, Bob, their sum and their
di�erence.
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Chapter 3

Gaussian quantum discord

3.1 Introduction

Entanglement is undoubtedly a key resource in quantum information science
and it has become synonymous with di�erent nonclassical tasks such as quantum
teleportation, dense coding and quantum computation [10]. However, despite
its obvious importance for such tasks, the exact need of entanglement in some
other non-classical tasks has remained enigmatic. It has for example been shown
that some quantum computational tasks based on a single qubit (the socalled
DQC1 model) can be carried out by separable (that is, non-entangled) states
that nonetheless carries non-classical correlations [17�20]. Another quantum
task requiring the use of quantum correlations but not entanglement is quan-
tum key distribution [21, 22]. This indicates that there exist genuine quantum
correlations di�erent from entanglement, which allow for information processing
that is intractable by classical means.

In Sec. 2.1.1 we saw that we can de�ne the quantum mutual information
which gives a measure of all the correlations between two modes of a quantum
state. If measuring one mode of a two-mode quantum system with correla-
tions, the mutual information is most often reduced. When performing the
measurement which extracts the most of the total information, the reduction
quanti�es the quantum correlations of the system and is called the quantum
discord [23,24].

The quest of understanding the possible use of quantum discord for quantum
tasks has fueled an explosion in the research of discord spanning from the inves-
tigations of its evolution in noisy Markovian [25�29] and non-Markovian [30,31]
channels to its role in thermodynamics [32] and phase transitions in spin sys-
tems [33]. This measure has been given an operational interpretation in terms
of the required resource for enabling quantum state merging [34, 35] and local
broadcasting [36].

Most work on quantum discord has been focused on �nite dimensional sys-
tems including qubits and qudits but recently the discussion has been ex-
tended to in�nite dimensional systems also known as continuous variable sys-
tems [37�39]. This extension has mainly been restricted to the set of Gaussian
states and Gaussian measurements [37,38], partly due to the associated reduced
mathematical complexity of the problem and partly due to their immense im-

33
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portance for quantum information processing and their simplistic generation [2]:
Gaussian states can be e�ciently prepared [40] and allow for secure quantum
communication [22], near-optimal cloning [41] and teleportation [42].

The robustness of non-classical states against noise and loss is of high im-
portance as real-world quantum information protocols will inevitably consist of
noisy and lossy operations. Entanglement is known to be a fragile resource which
is di�cult to generate and the optimal use of it would require complex puri�ca-
tion and distillation protocols. On the contrary, it has been shown theoretically
that quantum discord of some states is robust against Markovian decoherence,
and in fact discord can increase through dissipation both for discrete [25,27,28]
and for continuous [26] variable systems.

Most studies of discord so far have been theoretical, however recently two
other experimental investigations of Gaussian discord have appeared [43,44].

This chapter is structured as follows: First we formalize the closed formu-
las for calculating the Gaussian discord. We experimentally characterize the
Gaussian quantum discord of EPR-states and separable two-mode mixtures of
coherent states. We investigate the evolution of the Gaussian quantum discord
in an open quantum system described by local Markovian decoherence in the
form of Gaussian noise addition corresponding to a classical noise channel and
pure attenuation. We then turn our attention to a broader range of simula-
tions and discuss the robustness of the discord and which states that would be
suitable for testing operational interpretations of the discord.

3.2 Theory of the Gaussian discord

The entropy of a Gaussian two-mode state is fully characterized by the covari-
ance matrices which can be experimentally accessed from homodyne measure-
ments. Up to local unitaries the 4 × 4 covariance matrix for the state ρAB can
be written as

σAB =

(
α γ
γT β

)
(3.1)

where the sub-matrices α = diag [var(xA), var(pA)], β = diag [var(xB), var(pB)]
and γ = diag [cov(xA, xB), cov(pA, pB)]. This form is called the standard form
as each sub-matrix is diagonal.

In the following we formalize the Gaussian quantum discord [37, 38]. In
a bipartite system, the total amount of correlations (classical and quantum) is
given by the von Neumann mutual information I(ρAB) = S(ρA)+S(ρB)−S(ρAB)
where S(ρ) is the von Neumann entropy and ρA(B) is the reduced density ma-
trix of the A (B) subsystem. Another measure of mutual information that only
quanti�es the one-way classical correlations extractable by a Gaussian measure-
ment is JA(ρAB) = S(ρA) − infσM S(ρA|σM

) where σM is the covariance matrix
of the measurement on mode B. In other words, J is the mutual information
of a two-mode quantum state after an measurement of mode B optimized to
extract the most of the correlations.

As it only captures the one-way classical correlations, the di�erence, DA =
I(ρAB)− JA(ρAB), is a measure of Gaussian quantum correlation that is coined
Gaussian quantum discord. An explicit expression for this discord of all Gaus-
sian states has been found [37]:
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D(σAB) = f(
√
I2)− f(ν−)− f(ν+) + f(

√
Emin) (3.2)

where f(x) = (x+1
2 ) log x+1

2 − (x−1
2 ) log x−1

2 and

Emin =


2I2

3+(I2−1)(I4−I1)+2|I3|
√

I2
3+(I2−1)(I4−I1)

(I2−1)2 a)

I1I2−I2
3+I4−

√
I4
3+(I4−I1I2)2−2C2(I4+I1I2)

2I2
b)

(3.3)

where a) applies if (I4− I1I2)2 ≤ I23 (I2+1)(I1+ I4) and b) applies otherwise.
I1 = detα, I2 = detβ, I3 = det γ, I4 = detσAB are the symplectic invariants
and ν2± = 1

2 (δ±
√
δ2 − 4I4), with δ = I1+I2+2I3, are the symplectic eigenvalues.

Most of the states we will discuss ful�ll the criterion a), which corresponds to a
heterodyne detection.

3.3 Experimental characterization

Figure 3.1 shows the experimental setup that was used to generate quantum
correlated Gaussian states. A pair of optical parametric ampli�ers (OPAs)
based on type I quasi-phase-matched periodically poled KTP cystals placed in-
side bow-tie shaped cavities were used to generate two independent amplitude
squeezed beams at 1064 nm. The OPAs were seeded with dim laser beams at
1064 nm to facilitate the locking of the cavities and several phases of the ex-
periment. Both OPA outputs had 3.2 ±0.2 dB of squeezing and 6.7 ±0.2 dB
of anti-squeezing which was measured with a homodyne detector with a total
e�ciency of 85±5% and electronic noise contribution of −20 dB relative to shot
noise. The measurements were performed at the sideband frequency of 4.9 MHz
with a bandwidth of 90 kHz. In order to generate correlations in addition to
those produced in the OPAs, one of the seed beams was symmetrically modu-
lated with two electro-optic modulators - an amplitude and a phase modulator -
that were driven by independent electronic noise generators. We interfered the
two squeezed beams on a symmetric beam splitter with a relative phase locked
at π/2 to produce a pair of quadrature entangled beams. One of the output
beams propagated through a dissipative channel which was implemented by a
beam splitter with a variable transmittivity. This setup can hence generate and
characterize a variety of two-mode Gaussian states.

3.3.1 Entangled states

Using the experimentally obtained covariance matrix of the two-mode squeezed
state, we calculate the Gaussian discord for di�erent attenuations of mode B.
The results for the mutual information are shown in �gure 3.2 a) and the discord
in �gure 3.2 b). As usually expected for quantum correlations in a dissipative
channel, we see a monotonic decrease of the Gaussian discord with increasing
dissipation. A similar behavior is expected and observed for the entanglement
of the state as shown in the inset of �gure 3.2 where the logarithmic negativity is
plotted against attenuation [45]. We thus conclude that for this particular two-
mode squeezed state, dissipation has a degrading in�uence on both entanglement
and discord. However, it is well-known that entangled states are not the only
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Figure 3.1: Experimental setup. See main text for description. Abbreviations:
IR: infrared (1064 nm), SH: second harmonic (532 nm), PM and AM: phase and
amplitude modulator, OPA: optical parametric ampli�er, BS: beamsplitter, LO:
local oscillator. DAQ/SP data acquisition/ signal processing

ones containing Gaussian discord. A two-mode mixed separable state may also
contain Gaussian discord as we shall see in the following.
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Figure 3.2: a) Mutual information for the two-mode squeezed state with the cir-
cles representing the I information (blue) and the J information (red), measured
with the natural logarithm as base (nat). The curves correspond to theoreti-
cal curves �tted to the �rst data point. b) Quantum discord and logaritmic
negativity (inset) for the two-mode state as a function of attenuation. The
experimental data (circles) show the discord and logaritmic negativity calcu-
lated from the measured covariance matrices and the solid lines are theoretical
predictions from the �rst measurement point (with no attenuation).

3.3.2 Mixtures of coherent states

In the experiment we generate a separable mixed state by enabling the electronic
noise generators and disabling the OPA's (see Fig. 3.1). This corresponds to
the splitting of a thermal state on a symmetric beam splitter and thus the
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generation of a two-mode mixture of coherent states with correlations between
the amplitude quadratures and the phase quadratures of the two modes. For
this state, we measure the covariance matrix for di�erent modulation depths of
the modulators and subsequently calculate the discord with the results shown
in Fig. 3.3 (green circles). The theoretically expected behavior of the discord
for the mixed state is represented by the solid red line which is monotonically
increasing, eventually saturating for large modulations. We see that the experi-
mentally obtained values of the discord decrease for very large modulations thus
deviating from the theoretically predicted behavior. This discrepancy is simply
due to �nite balancing between the two homodyne detectors which we measured
to have a common mode rejection ratio of 27 dB. Such an imperfection of our
detection system leads to the measurement of uncorrelated events which directly
simulate a classically noisy channel where the amount of noise scales with the
modulation depth. Since we are interested in simulating the e�ect of classical
noise on the discord, we decided to reduce the common mode rejection ratio of
the two detectors to 15 dB. The results for the discord are shown by the red
circles in Fig. 3.3 a), and the constituents - the mutual information I and J - are
presented in Fig. 3.3 b). We thus observe the transition from a quantum regime
with non-zero discord to a classical regime with near zero discord characterized
by having a high energy but �nite signal to noise ratio in the correlations.
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Figure 3.3: a) Quantum discord as a function of the modulation depth. The cir-
cles represent the experimentally obtained data for discord with 27 dB (green)
and 15 dB (blue) common-mode-rejection (CMR) between the homodyne de-
tector at A and the homodyne detecor at B. b) Mutual information I and J as
a function of the modulation depth. The circles represent the experimentally
obtained data. Solid lines result from theory with perfect detectors (correspond-
ing to a noise-free channel) whereas the dashed and dot-dashed curves are the
results of the theory including CMR and electronic noise. The error bars are
given by the statistical uncertainties.

In the next step we investigate the e�ect of dissipation on the mixtures of
coherent states. The results are shown in �gure 3.4 for di�erent amounts of
modulation (partially resulting in classically noisy channels). From these mea-
surements we see, interestingly, that the discord increases as a function of local
and Markovian dissipation. We do not only observe an extreme robustness of
discord associated with the separable state but also a clear rise of quantum cor-
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Figure 3.4: Upper: The discord of four mixed states from �gure 3.3 with di�er-
ent average photon numbers ⟨n⟩ as a function of attenuation of mode B. The
error-bars are given by the statistical uncertainty. The solid lines are theoreti-
cal estimations, �tted to the �rst data point associated with zero attenuation.
Lower: the corresponding mutual information (blue lines) and one-way classical
information (red lines)

relations during dissipative dynamics. This is in stark contrast to entanglement
which cannot increase under any local (unitary or non-unitary) transforma-
tions [46]. Ultimately, it is possible to observe the complete death of discord
through classical noise addition and its subsequent revival through dissipation
as partially demonstrated in �gure 3.3 (near death) and �gure 3.4 (revival).

We interestingly note that the discord of the classically noisy state investi-
gated above can be revived after death even if the state at A has been measured,
stored in a classical memory and subsequently recreated.



3.4. SIMULATIONS OF GAUSSIAN DISCORD 39

The revival of the discord as a result of dissipation can be understood from
two e�ects. The �rst one is the attenuation of the uncorrelated classical noise
in mode B, which is responsible for the near death of the discord in �gure 3.3.
This e�ect is hence the main contributor to the revival of the discord when
uncorrelated noise above shot noise is present. The second e�ect that leads to
a further increase in the discord results from the relatively higher amplitude of
mode A. This makes the inevitable noise contribution of a measurement on mode
B more signi�cant and thereby increase the di�erence between the information
obtainable by quantum and classical means.

3.4 Simulations of Gaussian discord

3.4.1 The robustness of discord

Although the Gaussian discord of our experimentally obtained separable states
is more resilient to losses than that of the entangled states, it is important
to point out that for the same amount of energy of the two types of states,
the entangled state will for any amount of Markovian loss exhibit the highest
discord. This is illustrated in �gure 3.5 where the discord of pure entangled
and separable states with mean photon numbers between 1 and 100 (1 and 10
photons corresponding to 5.7 dB and 13.4 dB of two-mode squeezing) is plotted
against attenuation (in dB). Needless to say, such pure entangled states are much
more di�cult to produce than the more robust two-mode mixed coherent state
with 100 photons (green curve in Fig. 3.5) which is straightforwardly produced
with electro-optical modulators.
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Figure 3.5: Theoretical simulations of the evolution of Gaussian discord in an
attenuating channel for pure two-mode squeezed (TMS) EPR-states and two-
mode mixtures of coherent states.
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3.4.2 The reverse discord

So far we have only considered the discord when measuring mode B. Instead
we now consider measuring mode A still sending mode B through an attenu-
ating channel. We have made simulations showing that the discord DB then
monotonically degrades as shown in Fig. 3.6.

Figure 3.6: Theoretical comparison of the evolution of Gaussian discord when
mode B is in an attenuating channel for pure two-mode squeezed (EPR) states
and two-mode mixtures of coherent states (Mix. coh.) for the discord measuring
mode A and measuring mode B. All the states have 2 photons on average.

3.4.3 Phase conjugation

We have looked at entangled states for which the correlations contained in the
sub-matrix γ have the opposite sign, corresponding to det(γ) < 0 ( the x-
quadratures are correlated and the p- quadratures are anticorrelated). Secondly
we looked at mixtures of coherent states where the corresponding correlations
have the same sign, corresponding to det(γ) > 0. For the entangled states it is
not possible to switch the sign as it would violate the Heisenberg's uncertainty
principle. However, for the mixture of coherent states it is possible to generate
states with det(γ) > 0 and states with det(γ) < 0. Instead of interfering a
thermal state and a vacuum state on the beamsplitter we could interfere states
modulated in one quadrature only and lock them with a π

2 phase shift. After
the beamsplitter the single mode states would be identical to the ones where
both quadratures are correlated, however as for the EPR states they would
have anti-correlated p-quadratures. We simulate how these states perform in
an attenuating channel in Fig 3.7. We see that the two states carry the same
classical information. This makes intuitive sense since phase conjugation does
not change the entropy of classical states. Surprisingly we see that the quantum
mutual information is very di�erent for the two states, giving rise to a signi�cant
di�erence in the discord.

These two types of mixtures of coherent state have all the same properties,
same energy, same single mode entropy, same classical information and no en-
tanglement. This means that they will perform equally in any protocol which
rely on these parameters, but not if the protocol rely on quantum discord. In
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Figure 3.7: Theoretical comparison of the discord a) and informations I and
J b) for phase conjugate mixtures of coherent states in an attenuating chan-
nel. Same/opposite correlations means that det(γ) is positive/negative. All the
states have 10 photons on average.

this way the states are ideal test states when searching for operational interpre-
tations of Gaussian quantum discord.

3.4.4 Modulated EPR states

Next we look at how the Gaussian discord of EPR-states perform when adding
coherent modulation to the states. We have performed simulations by adding
coherent modulation with det(γ) < 0 to already entangled states. If applied
symmetrically to both modes the behavior shown in Fig. 3.8 a) is observed. We
see that the discord depends on the initial squeezing. Initially a slow drop in
discord is observed, leading to a local minimum for weakly squeezed states, but
a global minimum for highly squeezed state. As the modulation is increased the
discord approaches a higher level for weakly squeezed states and a lower level
for highly squeezed states. At the same time in Fig. 3.8 b) we see that the
quantum mutual information is monotonically increasing, so the initial drops
must be due to more information being classical when the states go from pure
to slightly mixed. One could imagine these correlations to be more robust to

Figure 3.8: Theoretical comparison of the discord a) and informations I (solid)
and J (dashed) b) for states containing �xed two-mode squeezing containing 0.25
(blue), 1(red) and 4 (green) photons on average and varied coherent modulation
with det γ < 0.
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loss than any correlations without entanglement, hence we made the simulations
shown in Fig. 3.9. We see that the combined state have higher discord for all
attenuation than the same state with no EPR correlations and further it is
more robust than the EPR states with no modulation from Fig. 3.5. However
comparing to the coherent mixture with det γ > 0, we see that the relative
strength of the correlations after dissipation depends on the strength of the
EPR correlations.
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Figure 3.9: Theoretical comparison of the discord of coherent mixtures and
coherent mixtures with EPR correlations. The three blue lines are with EPR
correlations, from the bottom containing 0.25, 1 and 4 photons on average re-
spectively and 20 dB of coherent modulation with det γ < 0. For reference we
plot the yellow line showing the performance of 20 dB of coherent modulation
with det γ < 0 and the red line 20 dB of coherent modulation with det γ > 0.

3.4.5 Single-mode squeezing

Similarly to modulating EPR states we can also modulate squeezed states.
There are many possible combinations but the one with same squeezing in both
modes and det γ < 0 seems particularly interesting. This state can be gener-
ated by amplitude squeezing two seeds, modulate the one along the squeezing
direction and the other along the direction of the antisqueezing before coupling
them on a beamsplitter. We made simulations for these states shown in Fig.
3.10.

We see that both I and J are higher than for the state with no squeezing,
however their di�erence is no longer monotonic. It is not completely obvious
why the shown dip emerges, however it relates to the size of the modulation
relative to the squeezing (anti-squeezing).

3.5 Summary and outlook

Gaussian quantum discord is a measure of quantum correlations in Gaussian
systems. We used Gaussian discord to quantify the quantum correlations of a
bipartite entangled state and a separable two-mode mixture of coherent states.
We experimentally analyzed the e�ect of noise addition and dissipation on the
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Figure 3.10: Theoretical comparison of the discord a) and informations I and
J b) when both modes are 5.7 dB squeezed states and coherent modulation is
added with det(γ) < 1.

Gaussian discord of mixtures of coherent states and EPR states. We saw that the
former noise degrades the discord while the latter noise can lead to an increase
in discord for mixtures of coherent states. For the mixtures of coherent states
we observe the transition to classical states with the corresponding near-death
of discord by noisy evolution and the revival of the discord through dissipation.

Next we turned our attention to a wider range of simulations. We compare
the robustness of the discord in EPR states and mixtures of coherent states and
see that EPR states always carry more discord under energy constraint. We
saw that phase conjugate mixtures of coherent states can have exactly the same
properties except for a di�erent discord, making them good candidates for test
states. We added extra modulation to EPR-states testing the robustness of the
resulting combined correlations to attenuation. We observed that although the
resulting discord always was higher than for the det(γ) > 0 mixture of coherent
states, it could be both higher and lower than the det(γ) > 0mixture of coherent
states depending on the strength of the entanglement in the system. Finally we
observed non-monotonic behavior of the discord when adding modulation to
two-mode squeezed separable states.

There are several candidates for protocols where the discord might be the
best quanti�er, and with the above toolbox of states for testing it should be
possible to discriminate if a Gaussian protocol is discord based or not, before
trying to do a detailed mathematical proof.

We have no doubt that both the separable and entangled quantum correla-
tions will continue to attract much attention as they form the basis of quantum
information technology. As an example we will see in the next chapter, that
quantum correlations can be used to guarantee the security of secret commu-
nication. Inspired by quantum cryptography the di�erence between the Holevo
bound and the quantum mutual information would be an interesting quantity
to investigate in detail.
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Chapter 4

Quantum key distribution

There is a tremendous demand for secure communication of data in commerce,
�nance and government a�airs. Unconditional security is promised by the use
of a one-time pad strategy where two parties, Alice and Bob, share a pre-
established secret key which they use for encoding and decoding the message.
The con�dentiality of the communication therefore falls back on the generation
of a secret key between Alice and Bob [1,47]. Such a key can be generated with
quantum key distribution which was �rst proposed by Bennett and Brassard in
1984 (BB84) for single photons and discrete variable measurements [21]. The
technology has later been extended to also include coherent states and contin-
uous variable measurements known as CV-QKD [22,48�56].

A generic CV-QKD protocol between two trusted parties is initiated by
Alice who prepares a distribution of Gaussian quantum states of light, e.g.,
coherent [22,48�53,56] or squeezed/entangled states [55,57�61]. Alice transmits
the states through a quantum channel to Bob who performs measurements on
the continuous quadrature components of the light �eld using either a homodyne
detector [22, 48, 49, 56] or a heterodyne detector [53] thus measuring conjugate
quadratures either randomly or simultaneously, respectively. This results in a
set of data that is partially correlated with Alice's data set which she obtained
in the process of preparing the distribution of quantum states. Alternatively,
a two-way quantum communication scheme can be formulated [54], but we will
restrict our discussion to one-way quantum communication. To estimate the
secrecy of the transmission, Alice and Bob compare a subset of their data using
classical communication. Provided that the security threshold for channel loss
and excess noise has not been crossed the resulting set of raw data can then
be mapped onto a shared secret key using classical reconciliation and post-
processing techniques [49,62,63].

There are two major hurdles in CV-QKD that limits the distance for secure
communication. The �rst one is the presence of excess noise combined with high
losses in the optical channel [22,48,49,53,56] and the second one is the limited
classical reconciliation e�ciency. For example, in the realistic CV-QKD scheme
based on coherent states, the maximal secure distance is in theory limited to
around 140 km if the channel excess noise is 4% of vacuum noise, the loss is 0.2
dB/km and the post-processing e�ciency is 96.9% [63]. To enlarge the secure
distance, one obvious strategy is to reduce the channel loss and noise, and to
increase the post-processing e�ciency. However, present CV-QKD systems are

45
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already working with state-of-the-art optical channels and the post-processing
e�ciency is also reaching its limit. Therefore, to go beyond the currently achiev-
able distances, a fundamentally di�erent approach must be followed.

In this chapter we propose and, as a proof-of-principle, experimentally demon-
strate two CV-QKD protocols based on entangled states and single mode squeezed
states respectively, that are more tolerant to channel excess noise, channel loss
and limited post-processing e�ciency than the coherent state based protocols
1.

4.1 CV-QKD with modulated entangled states

The concept of the protocol is illustrated in Fig. 4.1. Alice prepares a Gaussian
entangled state, and measures one of the modes using a homodyne detector that
randomly detects the amplitude or the phase quadrature. This measurement
projects the EPR state onto a Gaussian distribution of conditionally squeezed
states [64]. Such alphabet of squeezed states could in principle be used to out-
perform the coherent state protocol under the condition of pure and strong en-
tanglement [55]. To release these stringent requirements, we propose to enlarge
the Gaussian distribution in phase space by a controlled modulation using two
random and independent Gaussian variables. The �nal Gaussian distribution of
states is then transmitted through a potentially lossy and noisy quantum chan-
nel the action of which may be ascribed to an eavesdropper (Eve). Finally, the
states are measured by Bob who randomly measures one of the two conjugate
continuous quadratures using homodyne detection.

Mod

SP

Detector Detector

Alice BobEve

Untrusted

Enviroment

WN

EPR

SP

Figure 4.1: Conceptual diagram of our QKD protocol. Alice prepares a con-
ditionally squeezed state by randomly measuring the amplitude or the phase
quadratures of one mode of an EPR state using a homodyne detector. The con-
ditionally squeezed state is modulated further by a modulator (Mod) fed with a
Gaussian white noise (WN) source controlled by Alice. The homodyne data and
the white noise data are stored for signal processing (SP) and the gain between
them is optimized. The modulated conditionally squeezed state is transmitted
through an untrusted quantum channel where Eve is allowed to perform any
attack that mimics the channel transmission η and the channel excess noise ϵ.
After the channel Bob performs quadrature measurements using a homodyne
detector and the classical post-processing can begin.

After the transmission Alice holds two sets of data; one set obtained from
the homodyne measurements, {xHD}, and one from the Gaussian modulation,

1The work in this chapter has been a collaboration with Mikael Lassen and the theoreticians
Vladyslav C. Usenko and Radim Filip from Palacký University, Olomouc, Czech Republic
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{xM}. To maximize the performance of the protocol, we suggest to weight the
homodyne data with a gain factor, g ∈ [0, 1], and subsequently add the two
sets to yield the optimized set: Ax = {xM + gxHD}. The optimal gain factor
depends on the strength and the purity of the EPR state. In the limit of no
squeezing Alice only keeps the data from the Gaussian modulation and thus the
protocol reduces to the standard coherent state protocol [22, 48]. On the other
hand for very high antisqueezing, g = 1 and the values of the resulting data set
are equally constructed from the two subsets. However, in a real life scenario
squeezing is limited and thus an intermediate gain will optimize the generation
of a secret key. The rest of the classical part of the protocol follows the common
recipe of the generic protocols.

4.1.1 Secret Key

After obtaining the two-mode covariance matrix the security analysis of our
protocol follows the well established security proofs for the Gaussian CV-QKD
protocols, which are based on the extremality of Gaussian states [65] and con-
sequently the optimality of Gaussian collective attacks [66, 67] under certain
symmetries of the protocol [68].

For collective attacks and using the classical technique of reverse reconcili-
ation [22], the achievable key rate (in the asymptotic limit of an in�nitely long
raw key) is given by

I = βIAB − χBE , (4.1)

where IAB is the Shannon mutual information between the data of Alice and
Bob, χBE is the Holevo bound on the information available between Bob and
Eve and β is the post-processing e�ciency 2.

The Shannon mutual information between Alice and Bob only comes from
one quadrature and is calculated as [69]

IAB =
var(Ax)

var(Ax|Bx)
=

var(Ax)

var(Ax)− cov(Ax,Bx)2

var(Bx)

(4.2)

where Ax is Alice's normalized data and Bx is Bob's normalized x-quadrature
data.

The calculation of the Holevo bound is a bit more complicated. The Holevo
quantity is expressed through the von Neumann entropies (S(·)) in Eq. 2.58

χBE = S(σE)− S(σE|Bx
). (4.3)

Hence we need to know the entropy of Eve's state and Eve's state conditioned
on Bob's measurement. To obtain these quantities we de�ne a theoretical prepa-
ration scheme [70�72] where the actual two-mode state of Alice and Bob is part
of a pure multi-mode state [73]. This puri�cation is generated by using pure
sources and accounting for all modes. We therefore de�ne a theoretical prepa-
ration scheme (see Fig. 4.2 )) that can generate any two-mode Gaussian state
between Alice and Bob as part of a pure four-mode state.

If untrusted noise is present in the system, Eve is assumed to be able to
purify the system of Alice and Bob so that S(σE) = S(σ̃AB) and S(σE|Bx

) =

2Note that I in this chapter refers to the key rate, where it referred to the von Neumann
mutual information in the chapter on Gaussian quantum discord.
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Figure 4.2: Puri�cation scheme for an arbitrary Gaussian QKD protocol. Two
quadrature squeezers (SQZ1 and SQZ2) are placed inside a Mach-Zehnder inter-
ferometer with beam splitters of transmittances T1 and T2 and fed with modes
from two independent EPR sources (EPR1 and EPR2) . The resulting 4-mode
state (A,B,C and D) is pure, while the six free parameters can be set so that
the two modes A and B can simulate any Gaussian two-mode state (up to a
local unitary transformation) including the states produced in our experimental
setup. One mode of the state is measured by an ideal detector at Alice while the
other travels through the channel which has transmission η and excess noise ϵ.
Finally Bob's noisy detection is puri�ed by placing a beamsplitter with an EPR
input and a transmission mimicking his electronic noise, detection e�ciency and
the noise he adds to his data, before an ideal detector.

S(σ̃AB|Bx
), where σ̃AB is the pure state shared between Alice and Bob [49].

These covariance matrices we know and hence the von Neumann entropies can
be calculated from the symplectic eigenvalues.

4.1.2 Theoretical results

To reach large distances for which key distribution can be attained, one must
develop a protocol that maximizes the key rate in Eq. (4.1). We start by
considering the standard coherent state protocol assuming unity post-processing
e�ciency. It is known that the key rate for this protocol can be maximized by
using an in�nitely large Gaussian modulation and by adding white noise to
Bobs data which are obtained by homodyne detection [55]. Using the above
mentioned analysis for collective attacks, we calculate the secure key rate and
the maximally tolerable excess noise, and the results are illustrated by the solid
curves in Fig. 4.3 a) and b) . These two curves represent the coherent state
benchmarks. Employing the squeezed state protocol suggested in ref. [55] these
benchmarks can be beaten but only for strongly squeezed states that is, 5.6 dB
noise suppression below the shot noise limit as illustrated by the dotted curves
in Fig. 4.3 a) and b).

Now by considering our protocol (Fig. 4.1 ), the key rate and the tolerable
excess noise are increased even further as shown by the bold dashed lines in Fig.
4.3. Comparing the previous squeezed state protocol [55] with ours, we see that
the maximal secure distance attainable for 3dB squeezed states is increased by a
factor of about 19 and the required squeezing for surpassing the coherent state
protocol is lowered from 5.6 dB to 0 dB for pure two-mode squeezed states. For
highly impure two-mode squeezed states we need 3 dB of two-mode squeezing as
shown with the dot-dashed curve. Our protocol thus has the remarkable prop-
erty that any conditionally squeezed state improves the performance beyond the
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Figure 4.3: Theoretical comparison between the performance of di�erent CV-
QKD protocols. a) Secret key rate as a function of distance (corresponding to a
loss of 0.2 dB per km) for a �xed excess noise of 0.1 SNU. 1) Ideal coherent state
protocol with 100 SNU modulation. The shaded region illustrates the regime
accessible with coherent state protocols. 2) and 3): Squeezed state protocol with
3 dB and 10 dB squeezing respectively (without additional modulation). 4) and
5): Our proposed protocol with 3 dB and 10 dB of squeezing respectively and 100
SNU modulation. For all protocols, the added noise to Bob's data is optimized
and β = 1. b) Maximal tolerable channel noise versus the initial antisqueezed
variance. The channel loss is set to 10 dB (corresponding to a distance of 50
km). 1) Ideal coherent state protocol with asymptotically large modulation.
The shaded region illustrates the regime accessible with coherent state QKD.
2) Squeezed state protocol without additional modulation. 3) New combined
squeezed state protocol with 100 SNU of coherent modulation without the gain.
This is also the performance obtained for highly impure squeezed states. 4) Our
proposed optimized protocol with 100 SNU coherent modulation and optimized
gain factor. For all protocols, the added noise to Bob's data is optimized and
β = 1.
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optimized coherent state protocol. Moreover, another important feature of our
protocol is that the squeezed states need not be pure; arbitrary mixedness can
be tolerated as long as the state is conditionally squeezed. Therefore, the main
resource for increased performance is conditional squeezing. We note however
that the performance saturates for high degrees of squeezing (see. Fig.4.3 b).

4.1.3 Experimental setup

The experimental setup is sketched in Fig. 4.4. We start by generating EPR
entanglement between two modes of light [64]. The quadrature of one of the
EPR modes is measured by means of high e�ciency homodyne detection at
Alice's station. In addition to the measurement, we induce a random but known
coherent modulation to the second EPR mode. After the channel we measure
the second mode using a high e�ciency homodyne detector at Bob's station, to
access either the amplitude quadrature or the phase quadrature. We use laser
light at 1064 nm for the seeds and local oscillators and 532 nm for the pump for
the Optical Parametric Oscillators (OPOs), which are operated below threshold.
The EPR state has 3.5 dB ±0.2 dB of two-mode squeezing and 8.2 dB ±0.2 dB of
antisqueezing and the coherent modulation depth is sequentially varied between
0 and 15 dB. All measurements are performed at the sideband frequency of 4.9
MHz with a bandwidth of 90 kHz. The system is initially calibrated to ensure
that the correlation between conjugate quadratures of Alice is negligible and
that the quadratures of Alice are in phase with Bob.

The experiment was carried out sequentially for conjugate quadratures; the
amplitude quadrature was �rst conditionally squeezed, displaced and measured,
and the procedure was then repeated for the phase quadrature. We add the
homodyne and modulation data with an optimized gain. For technical reasons
we multiply the modulation data with the inverse of the gain factor. This results
in two large data strings, one for Alice and one for Bob which are strongly
correlated as shown for three di�erent modulation depths in Fig. 4.5 a1)-a3 ).
The correlations arise partly from the quadrature entanglement and partly from
the coherent modulation. From the correlated data we compute the covariance
matrices as illustrated in Fig. 4.5 b1)-b3), from which we can estimate the
security limits for our system.

4.1.4 Data analysis and results

The measurement and the subsequent data processing (including numerical gain
optimization) resulted in a set of covariance matrices for di�erent values of mod-
ulation. The security analysis was carried out according to the above described
puri�cation method. Since the explicit trusted mode structure of the exper-
imentally obtained states was not known, the measured covariance matrices
were puri�ed using the Bloch-Messiah reduction theorem [73] as illustrated in
Fig. 4.2. For each of the measured covariance matrices the 4-mode pure state
(ABCD on Fig. 4.2) was constructed and used to calculate the Holevo quantity
and the resulting secure key rate.

In parallel, the theoretical estimation of the expected protocol performance
was calculated from the experimental parameters of our setup. The covariance
matrices were constructed from the experimentally measured EPR states. All
the respective transmittances and e�ciencies were applied in both EPR modes
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Figure 4.4: Experimental setup. A squeezed state is generated in each of the two
optical parametric oscillators (OPOs), operated below threshold. The squeezed
states interfere at a beam splitter to form a two-mode squeezed state. The
amplitude or the phase quadrature of the one mode is measured by Alice's ho-
modyne detector. The other mode is carefully phase locked to a coherently
modulated auxiliary mode. The auxiliary state is generated using a phase mod-
ulator (PM) and an amplitude modulator (AM), each of which are driven by a
white noise generator. Alice acquires information about the modulation by mea-
suring a part of the auxiliary state. The coherent state is puri�ed by the highly
asymmetric beamsplitter all of this in order to minimize the harmful prepara-
tion noise [70]. The modulated and conditionally squeezed state is transmitted
through the channel to Bob's homodyne detector where one of the conjugate
quadratures is measured. The resulting measurement outcomes are fed via a
fast AD card to a computer for signal processing.

(as beamsplitter transformations) and the coherent modulation was added atop.
The resulting covariance matrices were tested against given channel transmit-
tance and excess noise.

In the laboratory the channel transmission is 95% and the excess noise can
be continuously varied by unbalancing the generated data at Alice and Bob. As
an example we set the excess noise to 0.45 shot noise units (SNU) and the total
modulation depth to 23.4 SNU. For these settings of the experiment we generate
a raw key with a rate of 0.004 ± 0.001 bit per state. We note that neither the
coherent state based protocols nor the standard squeezed state based protocol
(with 3.5 dB squeezing) could have generated a key in such a channel.

We now investigate the security performance of our protocol in longer chan-
nels based on the experimentally measured covariance matrices assuming perfect
post-processing and channel estimation. The matrices are used in a model that
includes the trusted losses and noise sources of the detectors, and in which arbi-
trary channel loss and excess noise can be simulated. As an example we assume
a channel transmission of 10% and �nd the tolerable excess noise for six di�er-
ent realizations of the covariance matrices illustrated on Fig. 4.6. Finally, on
Fig. 4.7 we plot the maximum distance and loss as a function of the tolerable
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Figure 4.5: QKD measurement results. a1-3) The red points represent the
normalized and weighted quadrature data of Alice and Bob for three di�erent
depths of coherent modulation 1) 0 SNU, 2) 3.6 SNU and 3) 23.8 SNU all having
3.6 SNU modulation from the EPR source. These correlated data are contrasted
with a set of uncorrelated data points (green) with identical total energy. Solid
black ellipse and outer circle correspond to two standard deviations of these
two respectively, inner blue circle is two standard deviations of shot noise. b1-
3) Illustrations of the covariance matrices for the three modulation depths.

noise associated with the experimentally realized covariance matrix in Fig. 4.5
b3). We clearly see that by combining squeezed states with coherent modulation
we beat the performance of any coherent state protocol (limited to the shaded
region). The supremacy of the squeezed state protocol relative to the coherent
state protocol is best seen by equalizing the amount of energy used in the two
protocols. In this case the states entering the channel are identical and Eve
cannot tell the di�erence between the two protocols. The relative improvement
is illustrated by the dot-dashed curve relative to the dashed curve in Fig. 4.6.

4.1.5 Discussion

In our implementation we measure the quadratures sequentially, which is in
principle not secure. The conjecture from earlier protocols is that some sort or
switching between the conjugate variables has to take place. Surprisingly Alice
does not have to change anything (neither in an EPR implementation nor in a
direct squeezing implementation). If she knows what she sends into the channel
(by calibrating her system) there is no reason for Alice to change anything in
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Figure 4.6: Tolerable excess noise as a function of the modulation depth for
a simulated transmission of η = 0.1. The uncertainty represent the actual
measurements with compensation for 85 ± 5% quantum detection e�ciency as
the dominating source of uncertainty. The theoretical estimates for the ideal
coherent state protocol and our protocol with the experimental parameters are
given by the solid and dashed curves, respectively. For comparison, we also
include the performance of the coherent state protocol with an energy identical
to the energy of the two-mode squeezing protocol (dot dashed curve). The
shaded region illustrates the regime accessible with coherent state QKD. The
inset is the same as the main �gure but with limited post-processing e�ciency
β = 98%.

order to estimate the channel parameters. The easiest way to estimate the
channel is for Bob to measure part of each quadrature with an unbalanced dual
homodyne detector. Hence no movable parts are needed and the protocol can
if needed approach homodyne detection of one quadrature only. However as
some amount of excess noise is more harmful to Eve than to Alice and Bob pure
homodyne detection is not a goal in itself. Rather Bob can optimize the channel
estimation or the added noise directly by the balance in the dual homodyne
detector.

To use the framework of the security proof we need one covariance matrix
at Alice's side. Since we have data both from the modulation and the EPR
state we need to merge these data sets. The �rst way we considered doing this
was to modulate both modes of the EPR state, however it seemed ine�cient for
Alice �rst to modulate her mode and then measure it without it having been
to the channel. This was clearly seen from the low (pure) squeezing limit, were
it would simply correspond to adding one unit of vacuum noise to Alice's data.
We hence decided to modulate Bob's mode only, but then we had the task of
how to add the two sets of data at Alice's side. Adding them directly gives
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Figure 4.7: The maximally tolerable loss as a function of the channel excess
noise. The thick dashed line is for the data set presented in Fig. 4.5 a3) and
b3), the solid curve is for the ideal coherent state protocol. The dotted curve
corresponds to the two-mode squeezing protocol without additional modulation
presented in matrix b1). The insert is the same as the main �gure, the dotted
curve being the data set presented in Fig. 4.5 a1) and b1) but with limited
post-processing e�ciency β = 98%.

the same problems in the low squeezing limit so we added them with the gain
factor. It might be possible for Alice and Bob to get more mutual information
by combining the information di�erently.

In the analysis above we have assumed perfect classical post-processing (cor-
responding to β = 1). However, the key rate of real world implementations of
CV-QKD is currently limited by the ine�ciency of the yet developed classical
error codes [63, 74]. We have therefore considered the e�ect of imperfect post-
processing on our protocol corresponding to a security analysis with β < 1. The
results of this analysis for an optimistic β = 0.98 are illustrated in the insets of
Fig. 4.6 a) and Fig. 4.6 b). In �gure 4.8 we show the performance of our data
as a function of β, the lower the β factor the lower modulation is optimal.

It is evident from the �gures that despite ine�cient post-processing, our
squeezed state protocol remains superior to the coherent state protocol, and
remarkably, it is seen that the relative improvement has increased. We also
note that the optimal performance occurs for a �nite modulation depth.

4.2 β robust protocol

The major issue with the β- factor is when both IAB and χBE are big relative
to their di�erence. Then, even though the ideal key rate is relatively high, the
e�ective key rate can be zero. This primarily occurs for big modulations. For
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[SNU]

Figure 4.8: Tolerable excess noise as a function the post-processing e�ciency β
assuming a channel transmission of η = 0.1. The dashed line corresponds to the
performance of the experimentally obtained states; the solid line gives the limit
set by the optimally modulated coherent states. The kink of the dashed line is
caused by changing to a data set with lower modulation.

smaller modulation, the ratio of IAB to χBE grows so given the e�ciency of the
reconciliation there will be an optimum modulation. Improving the classical
algorithms is one approach to improve this part of the performance. In [74] the
reconciliation e�ciencies seems to be close to or above 95% for small signal to
noise ratios at Bob's side. A more physical approach to reduce the importance
of the problem is mentioned in [69]. The idea is to use a �xed squeezing of a
single quadrature and perform modulation in this squeezed quadrature. This
modulation can be smaller than the antisqueezing and when the modulation
is so small that the total variance is one, the Holevo bound between Eve and
Bob goes to zero in the purely lossy channel. This surprising result means that
the optimal modulation always will be bigger than or equal to one minus the
squeezed quadrature. While previous protocols have aimed at maximizing the
absolute ideal key rate given a channel, this protocol aims at minimizing the
Holevo bound on Eve's information.

4.2.1 Experiment

We have performed the �rst experiments on this protocol. The experimental
source consists of a single modulator and a single squeezer shown in Fig. 4.9.
Unlike the previous experiment in this chapter, the modulation of interest is
relatively low. This means that the transfer function of the modulators is of
little importance, so the signal of the modulation can be taken directly from
the function generator. We have experimentally implemented the purely lossy
quantum channel as a variable beamsplitter. After the channel we perform
homodyne detection measuring the x and the p quadrature sequentially on both
output modes, assigning one to Bob and one to Eve. These measurement hence
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give a two-mode density matrix and we have another mode coming from Alice.

-
50/50
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Bob

-WN
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LO

Eve

-
50/50

-
LO

Signal
Processing

Figure 4.9: The experimental setup. WN white noise.

4.2.2 Data analysis

We normalize the data of Bob and Eve to their respective shot noise. The data
of Alice is classical, in the sense that it has very high energy, but limited signal
to noise ratio. To treat this in the covariance matrix formalism we normalize the
data to a variance of 100 SNU which saturates the key rate of Bob and Alice.
Apart from this the calculation of the key rate proceeds as in the previous
section.

4.2.3 Results

Using our experimental source and attenuation we obtain the Holevo bound
shown Fig. 4.10. The e�ect is highly pronounced. Eve's information simply
drops towards zero when the total variance of Alice's squeezed quadrature with
modulation reaches 1 SNU being higher for both higher and lower modulations.

By subtracting this quantity from the mutual information of Alice and Bob
we get the key rate shown in Fig. 4.11. We show both the ideal key rate and a
very conservative key rate with a β = 0.75.

Due to the low Holevo bound of the data just around -3dB of modulation (-
3dB modulation plus -3dB shot noise) we see the that the key rate scales linearly
with β hence being the most robust protocol obtained to date. We note that
although more squeezing would give a slightly higher key rate the scaling with
β stays the same and hence only what corresponds to a slightly higher optimal
modulation is gained. This means that realistic squeezing sources su�ce to
implement the protocol.

We see that the ideal key rate also drops for higher modulation which is
caused by limited signal to noise ratio of the direct modulation. This can be
circumvented as was done in the �rst protocol if higher modulations are desired.

4.2.4 Further analysis

These results are basically the raw data. To proceed we have to consider what
the highest uncertainties are, simulate the theory, �gure whether we should
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Figure 4.10: The Holevo bound as a function of modulation depth for channel
transmission of 50%, 40%, 30%, 20% and 10% (transmission estimated in lab,
not from the covariance matrix).

Figure 4.11: The key rate as a function of modulation depth for channel trans-
mission of 50%, 30% and 10%. Circles indicate β = 1 and crosses β = 0.75.
(Transmission estimated in lab, not from the covariance matrix)

compensate for Eve's detection e�ciency and so forth. Further simulations in-
cluding channel excess noise would be interesting and it would also be interesting
to show the full potential of the protocol.

4.3 Concluding remarks

4.3.1 Measures in QKD

To optimize the information gained over Eve it would be useful to be able to
quantify the exact performance of a given type of states. We make these com-
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parisons using energy constraints and the key rate. For Gaussian states energy
constraints work similar to truncation of the Fock-space for discrete variables.
In the corresponding �gures 4.3 a), b) 4.6 a) and b) we see that the performance
of the di�erent states do not cross, in contrast to earlier comparisons in e.g [55].
It might be possible to �nd crossing states among the states asymmetrical in
phase space.

Finding more stringent and direct quanti�ers is an open question. Intuitively
the measure has to quantify that the states are hard to copy or clone and
yet carry much extractable information. EPR-measures have these properties,
however entanglement is not the direct resource as was �rst experimentally
demonstrated in [22].

The discord could be another candidate. States with zero discord cannot
be used for QKD as they can be copied noiselessly. However the discord does
not work as the direct resource. As we mention entanglement is not needed to
increase the performance beyond the coherent states bound, rather single mode
squeezing can do the same or better. The regime of discord greater than one
can only be reached with entanglement thereby giving a contradiction.

4.3.2 Summary

We have addressed two QKD protocols based on continuous variable squeezed
states of light. The �rst protocol is based on entangled states. The requirement
on the purity of the entangled states is relaxed compared with previous proto-
cols. We �nd that the key rate as well as the robustness against channel noise
is improved for any degree of conditional squeezing compared to the idealized
and optimized coherent state protocol. We experimentally demonstrate this by
generating the �rst raw key in channel where the coherent state protocol could
not work.

The second protocol focuses on the robustness to the reconciliation e�-
ciency. We experimentally demonstrate that by weakly modulating a single
mode squeezed state we completely decouple a potential eavesdropper in the
purely lossy channel. We show that using this protocol it is easy to reach the
10dB loss benchmark even with a highly limited reconciliation e�ciency. Mod-
erate squeezing su�ces so in future commercial implementations miniaturized
waveguide cavities could be used to make on chip squeezed state QKD.

4.3.3 Outlook

One way forward for Gaussian QKD and QKD in general is to make quantum re-
peaters which have the purpose of distributing entanglement over long distances
using (non-Gaussian) entanglement distillation and entanglement swapping [1].
This would allow for the teleportation of the states hence changing the scaling
of the loss and excess noise of the physical channel.

Seen from the quantum information perspective one-way QKD is not using
the full potential of the states. If it was possible to use the von Neumann
mutual information much greater information would be available. In the two-
way protocols one mode of an EPR state is sent to Bob, who modulates it or
measures it and then send either it or a new state back to Alice. The EPR
mode su�ers twice the loss and noise of the channel but a two-mode rotation
on the returned state allows Alice to use part of the von Neumann mutual
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information. This protocol still needs some development, in the form of security
proof and implementation, however it seems like a possible way forward [54].
Comparisons of EPR states, mixtures of coherent states and phase conjugate
mixtures of coherent states as resource states in the two-way scenario would be
interesting.
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Chapter 5

Quantum polarization

This chapter is dedicated to the task of illustrating and quantifying the polar-
ization of quantum states. The task di�ers from the classical counterpart partly
because of the interest in the higher moments of the distributions and partly
because of the discreteness of the photon number especially near the vacuum
state. It is structured as follows; First we will introduce the concepts of po-
larization measures in quantum optics and the Poincaré sphere. We will de�ne
and experimentally illustrate a second order polarization measure P2 from the
work [75], which is based on the variance of the Stokes operators. We will move
on to de�ning and experimentally illustrating a �rst order polarization measure
Pres

1 which resolves the polarization in the excitation manifolds thereby giving
a better polarization measure 1. Next, we will de�ne a second order manifold
resolved polarization measure Pres

2 and experimentally illustrate the transition
from small polarization states to highly excited states. In this section we will
also introduce the SU2 Wigner functions which expand the view of the Poincaré
sphere 2.

5.1 Introduction

Classical polarization has numerous applications. To mention a few, it is used
in thin-�lm ellipsometry [76], near-�eld microscopy [77], remote sensing [78] and
light scattering [79]. When implementing optical quantum information proto-
cols using the polarization rotations is a convenient way to make single mode
phase rotations and two mode rotations such as the variable beamsplitter. In
recent years, the concept of quantum polarization has further found a footing
in quantum optics and in quantum information science where the information
is e�ciently encoded in the polarization degree of freedom. This has lead to the
demonstrations of polarization entanglement [80], teleportation of the quantum
polarization [81] and quantum key distribution based on quantum polarization
encoding [82, 83]. The observables giving rise to quantum polarization are the

1 This work is a collaboration with Christian Kothe and Gunnar Björk from School of
Engineering Sciences, Royal Institute of Technology (KTH), Roslagstullsbacken 21, SE-106
91 Stockholm, Sweden

2This work is a collaboration with Christian R. Müller from Max-Planck-Institute for the
Science of Light Erlangen, Germany

61
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Stokes operators which we have already encountered in Sec. 2.0.5 as the gener-
ators of two-mode rotations.

5.1.1 Poincaré sphere

In classical optics a sphere with radius S0 drawn in the space spanned by the
Stokes parameters is called a Poincaré sphere. For fully polarized light modes
the spatial Stokes vector (S = {S1, S2, S3}) points to some point on this sphere.
For partially polarized light the Stokes vector wont reach the surface of the
sphere. The polarization rotations Eq. 2.24 simply rotate the direction of this
vector, keeping the length �xed.

In quantum optics the Poincaré sphere can also be drawn with mean radius
⟨Ŝ0(Ŝ0 + 2)⟩, see e.g [84]. The states cannot be represented by a point because
of Heisenberg's uncertainty relation. Rather the moments of the distribution or
the probability amplitude should be plotted. This works both for states where
the photon number is well de�ned, like the single and two photon states, and
for the states with one large excitation where the discreteness of the photon
number vanishes. In between the picture does not give the full detail of the
state as several of the discrete levels are excited with di�erent distributions. We
will return to this topic later in this chapter.

5.1.2 The unpolarized states and Psc

1

De�ning the degree of polarization for quantum states has received a lot atten-
tion. The de�nition of the unpolarized state is clear though. It is the states
which are invariant under the polarization rotations [85]. For the Gaussian
states this means the two-mode vacuum and the two-mode thermal states with
equal photon numbers in the two modes.

Classically, the degree of polarization is a simple expression of the mean
values of the Stokes parameters [86] which can be straightforwardly measured
[87]. In quantum optics the �rst approach to generalize this measure was simply
to replace the Stokes parameters by Stokes operators [88�90].

Psc

1 =

√
⟨Ŝ1⟩2 + ⟨Ŝ2⟩2 + ⟨Ŝ3⟩2

⟨Ŝ0⟩
. (5.1)

The 1 in Psc

1 refers to the measure considering the �rst moment of the Stokes
vectors and sc refers to semi-classical. It was soon realized that this measure is
insu�cient to characterize the degree of polarization for many quantum states.
States with average photon numbers much smaller than one could appear com-
pletely polarized even though the vacuum is invariant under the polarization
rotations. States where the di�erent photon number contributions points in
di�erent directions on the Poincaré sphere could appear completely unpolarized
even though when knowing the total photon number the state would be com-
pletely polarized. Furthermore as the measure only considers the �rst moment
it is insu�cient to characterize polarization phenomena hidden in the higher
moments.
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5.1.3 An alternative measuring strategy

Measuring the polarization is another highly discussed problem. For few photon
states single photon counters have been used. The promise of photon number re-
solving detectors (PRND) would allow to measure higher photon number states.
However for the polarization squeezed states one of the Stokes operators is highly
excited [87]. On the one hand the excitation allows one to perform Stokes based
homodyne detection and to write up a canonical commutation relation for the
two weakly excited Stokes operators. On the other hand it is impossible to mea-
sure, even in the near future with PRND's as the highly excited mode would
saturate the detector. This leaves a gap in which many experimentally accessi-
ble continuous variable quantum states reside. For these states the mean photon
number is too big for photon counters, but the excitation is too small to func-
tion as local oscillator in a Stokes homodyne measurement. In this chapter we
explore the polarization of weakly excited squeezed and displaced states to �ll
the gab between the two regimes by using homodyne detection with a separate
local oscillator.

A sketch of the experimental setup used in this chapter is shown in Fig. 5.1.
To form the two-mode state, the displaced and squeezed outputs from the OPAs
are combined on a polarizing beam splitter.

PBS

--

LO

--
LO

Computer

Measurement

OPA1

V-mode

H-mode

PBS

Preparation

OPA2

EOM

Figure 5.1: Setup for the production of the states in Eq. (5.6). Abbreviations:
EOM electro optical modulator. H horizontal. V vertical. PBS polarization
beamsplitter. LO local oscillator.

In contrast to previous realizations on CV polarization quantum states, we
solely de�ne our state to be residing at a sideband frequency of 4.9 MHz. Such
a de�nition of the polarization state enables us to investigate a large variety of
di�erent polarization states from vacuum states to a relatively high excitation.
We measure each mode, H and V , by splitting the polarization state on a
polarizing beam splitter and using two homodyne detectors. The measured
currents of the homodyne detectors are sampled at 500 kHz with a frequency
bandwidth of 90 kHz, and subsequently sent to a computer for analysis.

5.2 De�ning and illustrating Pres1

In this section, we suggest a new and simple �rst order measure of quantum
polarization and implement it experimentally. However, in contrast to the semi-
classical measure Psc

1 , the new measure accounts for the polarization in each
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excitation manifold which leads to a better characterization of the quantum
polarization.

Pres

1 (ρ̂) =

∞∑
N=1

pN

√
⟨Ŝ1,N ⟩2 + ⟨Ŝ2,N ⟩2 + ⟨Ŝ3,N ⟩2

⟨Ŝ0,N ⟩
, (5.2)

where pN = Tr(ÎN ρ̂), ρ̂N = (ÎN ρ̂ÎN )/pN , ⟨Ŝj,N ⟩ = Tr(Ŝj ρ̂N ), and ÎN =∑N
m=0 |m,N − m⟩⟨m,N − m|, so that ρ̂N is the normalized N -photon pro-

jection of the state's density matrix. The polarization degree is quanti�ed by
a weighted sum of the semi-classical degree of polarization in each excitation
manifold of the state (except for N = 0). In other words, every excitation
manifold is treated separately.

The measure can be slightly simpli�ed from this pedagogic form and is easily
calculated as

Pres

1 (ρ) =

∞∑
N=1

√
⟨Ŝ1,N ⟩2 + ⟨Ŝ2,N ⟩2 + ⟨Ŝ3,N ⟩2

N
. (5.3)

As is clear from the de�nition, Pres

1 coincides with Psc
1 when the number of

photons is a �xed quantity. The two de�nitions also become approximately equal
for classical-like states such as coherent states with ⟨Ŝ0⟩ ≫ 1. For many other
states the two de�nitions give di�erent results, and in the following we argue
that Pres

1 gives a better assessment of the polarization properties of quantum
states than Psc

1 .
The new measure is in principle directly detectable, since Ŝ0 commutes with

all other Stokes operators, the Stokes vectors per excitation manifold and thus
Pres

1 can be directly accessed by using a proper waveplate con�guration, a polar-
izing beam splitter and two photon number resolving detectors (PNRDs). Such
detectors are currently capable of e�ciently detecting more than 6 photons and
due to the rapid progress in developing such detectors more advanced versions
with increased optical power range might soon become available [91].

5.2.1 Theoretical investigation of Pres

1

First we consider a two-mode state in which one of two orthogonal polarization
modes is vacuum whereas the other one is a coherent state; |Ψ(α)⟩ = |α⟩H ⊗
|0⟩V , where α = aeiϕ is the complex amplitude of the coherent state (a ∈ R+

0 ,
ϕ ∈ [0; 2π)). For this state, the semi-classical degree of polarization is unity,
Psc
1 (|Ψ(α)⟩) = 1, for all values of α except α = 0. On the other hand, using the

new measure we �nd
Pres

1 (|Ψ(α)⟩) = 1− e−|α|2 . (5.4)

which is continuous for all α; Pres

1 (|Ψ(α)⟩) → 0 when α → 0, and for large
amplitudes, Pres

1 (|Ψ(α)⟩) → 1 when |α| ≫ 1. Therefore, the classical and
quantum limits, respectively corresponding to large and small amplitudes, are
smoothly connected. Pres

1 (|Ψ(α)⟩) is illustrated in Fig. 5.2 by the solid line,
Psc
1 (ρ̂) is shown by the dotted line.
Eq. (5.4) can be easily generalized to any two-mode coherent states, |α⟩H |β⟩V ,

which after an appropriate transformation can be written as a one mode coher-
ent state, |α′⟩|0⟩ in some other polarization basis with |α′|2 = |α|2 + |β|2. The
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Figure 5.2: Comparison between Pres

1 and Psc
1 as a function of the average photon

number for the states |Ψ(α)⟩H |0⟩V and |ψ(ξ(r))⟩H |0⟩V as de�ned in the text.
The lines represent theoretical predictions while the circles indicate experimental
values, see next subsection for experimental description.(-8 dB= 0.16 photons,
0 dB =1 photons, 8 dB=6.3 photons. )

degree of quantum polarization of any two-mode coherent state is therefore given
by Eq. (5.4) with |α|2 → |α|2 + |β|2.

Next we consider the degree of quantum polarization for single-mode squeezed
states; |φ(ξ, α)⟩ = D̂(α)Ŝ(ξ)|0⟩H ⊗ |0⟩V where D̂ is the displacement opera-
tor and Ŝ(ξ) = exp

[
(ξ∗â2 − ξâ†2)/2

]
is the squeezing operator with ξ = reiθ,

r ∈ R+
0 , θ ∈ [0; 2π) being the squeezing parameter. For this state we �nd

Psc
1 (|φ(ξ, α)⟩) = 1, whereas

Pres

1 (|φ(ξ, α)⟩) = 1− 1

cosh(r)
exp

[
−|α|2 − 1

2

(
α∗2eiθ + α2e−iθ

)
tanh(r)

]
. (5.5)

which is illustrated in Fig. 5.2 as a function of the average number of photons
for a squeezed vacuum state (that is, α = 0 and ⟨nsqz⟩ = sinh(r)). We clearly
see that Pres

1 di�ers signi�cantly from Psc
1 for basically all practical squeezing

values. We note that for the generalized squeezed state in (5.5), the degree
of polarization also depends on relative phase between the squeezing angle, θ,
and the phase of the displacement, ϕ: It is maximized for amplitude squeezing
(θ − 2ϕ = 0) and minimized for phase squeezing (θ − 2ϕ = π/2).

Overall we see that Pres

1 behaves as a �rst order polarization measure should,
giving a polarization equal to 1− ρ0,0 for all single mode states.

Finally we consider the generalized pure two-mode squeezed state

D̂(αH)Ŝ(ξH)|0⟩H ⊗ D̂(αV )Ŝ(ξV )|0⟩V , (5.6)

and plot the degree of polarization (both Psc
1 (upper row) and Pres

1 (lower row))
in Fig. 5.3 for three di�erent states. In Fig. 5.3 (left column), a two-mode
vacuum state (αH = αV = 0) is illustrated for di�erent squeezing degrees.
Both measures exhibit zero polarization degree for equal squeezing parameters
whereas for di�erent squeezing parameters, Pres

1 gives lower values than Psc
1 .
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Figure 5.3: Theoretical plots of the degree of polarization. We plot the state
|ψ(ξH(rH), ξV (rV ))⟩ (left column), |αH⟩H ⊗|ψ(ξV (rV ))⟩V (middle column) and
D̂(αH)Ŝ(0.2)|0⟩H⊗D̂(βV )Ŝ(0.6)|0⟩V (right column). The upper plots show Psc

1 ,
whereas the lower plots show Pres

1 .

If we now set ξH = 0 and αV = 0 (corresponding to a coherent state in the
H-mode and a squeezed vacuum state in the V -mode), the behavior of the two
polarization measures is very di�erent as illustrated in Fig. 5.3 (middle column).
Finally, we plot the two-mode displaced squeezed state (with ξH = 0.2 and
ξV = 0.6) in Fig. 5.3 (right column). The plot for the semi-classical measure
once again illustrates its weakness as a measure of polarization: The polarization
goes all the way to zero in a point where the state is neither thermal nor vacuum
as required for a Gaussian state to be unpolarized, and it is not because the
polarization is hidden in the higher moments which can be seen from the lower
plot of Pres

1 .

5.2.2 Experimental investigation of Pres

1

We use the experimental method discussed in Sec. 5.1.3 with the setup shown
in 5.1. Since the generated states have Gaussian wavefunctions, it su�ces to
estimate the covariance matrix of the state for full characterization [1]. From
this we calculate a su�cient number of excitation manifolds of the two-mode
density matrix and take the expectation values of the Stokes operators (per
manifold) from which the degree of polarization is estimated.

We start our experimental analysis with a single-mode squeezed or single-
mode coherent states, with the other mode being in a vacuum state. These
states are produced by blocking OPA2 while operating either the EOM (for
producing the coherent state) or the OPA1 (for producing the squeezed states).
The excitation of the coherent state is controlled by the modulation depth of
the EOM whereas the squeezing degree (or the average number of photons
associated with the squeezing process) of the squeezed state is controlled by the
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Figure 5.4: Upper �gure: Degree of polarization for experimental data of a
squeezed state in mode H and a displaced coherent state in mode V . Circles
indicate experimental data while lines are simulations. We vary the displace-
ment from −6 dB (α = 0.25, 0.0625 photons) to 6 dB (α = 4, 16 photons). The
squeezed state has a squeezing of 3.2 dB and an antisqueezing of 7.4 dB, corre-
sponding to 1.0 photons. Error bars correspond to 1% uncertainty in the shot
noise. Simulations starting from the initial squeezed state are shown with the
solid lines. Lower: the polarization contributions of the di�erent manifolds for
the 0 dB (1 photon) state. Only ⟨Ŝ1⟩ contributes to the polarization of the states
produced here (i.e., ⟨Ŝ2⟩ = ⟨Ŝ3⟩ = 0) and therefore one has Psc

1 = |
∑

blue bars|
and Pres

1 =
∑

|red bars|.
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pump power. Our results for Pres

1 and Psc
1 are plotted in Fig. 5.2, where the

error bars indicate the 1% uncertainty in determining the shot-noise limit. The
experimental values for the squeezed state deviates slightly from the theoretical
prediction (Eq. (5.5) with α = 0) which is a consequence of the small impurity
of the generated state. As also predicted by theory, we see that both states
become more polarized as the photon numbers from the coherent state or from
the squeezed state increases.

Next, we investigate another particularly interesting state in which a co-
herent state is excited in the H-mode while the V -mode is a squeezed vacuum
state. The squeezed state is squeezed by 3.2 dB below the shot noise limit (7.4
dB antisqueezing) and the coherent excitation of the H mode is varied.

We present the experimental results for this state in Fig. 5.4. For a coherent
amplitude of -6 dB (α = 0.25), Psc

1 yields a large degree of polarization of
0.88 although this state is very close to the vacuum state. When increasing
the coherent modulation, Psc

1 decreases to zero which occurs when the number
of photons in each polarization mode is the same (in this case = 1.0). This
result is not desirable for a polarization measure as the state is not invariant to
polarization rotations.

In contrast, the new measure displays a more natural behavior: The degree
of polarization is reasonably small for low excitations. There is clear signs of
interference between the photon distributions of the squeezed state and the co-
herent state. When the coherent state dominates a more monotonic behavior is
observed. These di�erent behaviors can be understood by looking at the con-
tributions of the di�erent manifolds in de�nition (5.2). Ŝ1 is the only operator
contributing to the polarization and we plot the expectation value of this per
manifold in the lower part of Fig. 5.4. Here, we see that it points in opposite
directions for the di�erent manifolds which then sum up to zero for the Psc

1 ,
and thus the polarization becomes hidden. However, for the Pres

1 -measure, the
polarization is not hidden since in this case the absolute value of the ⟨Ŝ1⟩-values
from the di�erent manifolds are added.

5.3 De�ning and illustrating P2

The �rst Stokes based measure to capture (part of ) the second moment of the
polarization was [92]

P
′

2 =

√
∆Ŝ

⟨Ŝ2
0⟩

, (5.7)

where ∆Ŝ =
√

⟨Ŝ2
1⟩+ ⟨Ŝ2

2⟩+ ⟨Ŝ2
3⟩. However it does not take fully into account

the distribution of noise in phase space assigning di�erent polarizations to the
same state rotated by polarization rotations.

The �rst project we took part in regarding polarization was the de�nition
of a new P2 measure [75]. The new measure is de�ned as

P2(ρ) =

√√√√1− inf
n

(∆Sn)2

1
3 Ŝ

2 , (5.8)

where (∆Sn) is the standard deviation of Ŝ · n and n is a unit vector. The
optimization can be performed by �nding the minimal eigenvalue of the positive



5.4. DEFINING AND ILLUSTRATING PRES2 69

covariance matrix between Ŝ1, Ŝ2 and Ŝ3 and the corresponding eigenvector.
This de�nition solves the problem of P′

2 by assigning a unique value to the
polarization.

5.3.1 First experiment for P2

Our part in the project was to experimentally illustrate the measure. To do
this we made an experiment involving only a single OPA and a single homodyne
detector of Fig 5.1. By coupling the squeezed seed from the OPA to the vacuum
mode in the polarization interferometer we generated a polarization state. After
decoupling the two polarization modes spatially we measured them sequentially
with full tomography. We veri�ed that the measured vacuum state was a vacuum
state (within the statistical error-bars) so we could be certain that there were
no correlations between the two beams. After this we reconstructed the single-
mode states with a maximum-likelihood algorithm. The reconstructed squeezed
state had -3.8 dB of squeezing and 8.6 dB antisqueezing.

Figure 5.5: The angular distribution of the variance (∆Sn)
2, linear colorscale.

The measured polarization is Psc

1 = 0.998±0.001 and P2 = 0.79±0.01 while
P′

2 = 0.43 ± 0.01. We illustrate the di�erence between P′

2 and P2 by plotting
(∆Sn) as function of n in Fig. 5.5.

5.4 De�ning and illustrating Pres2

Although taking into account the second moment gives a richer picture of the
polarization the measure P2 su�ers from some problems very similar to the
original Psc

1 . If the polarization of the variance points in di�erent directions in
the di�erent manifolds the measure will underestimate the polarization and if
taking e.g two pure squeezed states the measure will give 1 independent of the
size of the state and the unpolarized vacuum contribution.

To overcome these problems we propose to resolve the manifolds as done for
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Pres

1 , but for the second order in the Stokes operators. We de�ne

Pres

2 (ρ) =
∑
N=1

pN

√
1− inf

n

3(∆Sn,N )2

S2
N

, (5.9)

where pN is the probability of being in the Nth manifold, S2
N = Ŝ0,N (Ŝ0,N + 2)

is a normalization factor for the manifold and infn(∆Sn,N )2 is the smallest
variance of the given manifold. For each manifold the polarization is calculated
as it was for P2, however now each polarization manifold is weighted with the
probability of being in the given state and the absolute value is taken before the
summation.

5.4.1 Comparison of the P's
To compare the measures we have made a series of simulations and experiments.
The experiments are carried out as in Sec. 5.2.2, now using both OPA's from
Fig. 5.1. To illustrate the di�erence between Pres

2 and P2 we start by looking
at the degree of polarization when having squeezed states with equal energy in
both modes, see Fig. 5.6. The simulation shows that the polarization is hidden
for Pres

1 and P1, while P2 estimates all the states to be completely polarized.
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Figure 5.6: Simulation (lines) and experimental data (circles) with squeezing in
both modes. For the pure states in the simulation the new Pres

2 exactly follows
the vacuum contribution, while none of the other measures can quantify this
type of polarization. The data marked with circles are data points for squeezed
states with 3.6 dB (7.0 dB) (in H-mode) and 2.4 dB (7.0 dB) (in V-mode) and
0.86 and 0.90 photons on average.

In contrast our proposed measure Pres

2 neatly follows one minus the vacuum.
The experimental data shown in Fig. 5.6 has P1 = 0.026 Pres

1 = 0.039 Pres

2 = 0.39
P2 = 0.90 while one minus the vacuum contribution 1 − ρ0,0 = 0.44. In words
this mean that the �rst order measures are unable to detect the polarization
in this state. P2 gives a polarization close to unity even thought there is a
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signi�cant vacuum contribution while Pres

2 gives a very reasonable value of the
polarization.

Next we displace one of the squeezed modes, �rst along the squeezing direc-
tion shown in Fig. 5.7 a). We see that all the measures gives smooth curves and
all but P2 are below the 1−ρ0,0 limit. By instead displacing one of the squeezed
states along antisqueezing direction, the polarization shown in Fig. 5.7 b) is
observed. This is a radically di�erent picture for the second order measures
while the �rst order measures hardly see the di�erence. The complex sign of
the displacement makes the variance of polarization point in di�erent direction
in the di�erent manifolds causing destructive interference in similar fashion as
was observed in Fig. 5.4 for the �rst order measures.
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Figure 5.7: Simulation (lines) and experimental data (circles) with �xed 3.6 dB
(7.0 dB) and 2.4 dB (7.0 dB) amplitude squeezing (phase antisqueezing) in the
two modes. a) Displacement along squeezed direction. b) Displacement along
the antisqueezing direction.

The single mode states and the two-mode thermal state are important tests
for the new measures. We plot these with energy constraints in Fig. 5.8. We see
as expected that the polarization of Pres

1 exactly follow the vacuum contribution
of the single-mode states. Further we see that Pres

2 is smaller than the vacuum
contribution and smaller than P2. Only in the case shown in Fig. 5.7 b) where
the polarization contributions are pointing in di�erent directions does Pres

2 give
a higher polarization than P2. In general we see that the resolved measures
are neither convex nor concave functions of the displacements, when the photon
numbers in the two modes are similar and originate from di�erent types of dis-
tributions. However when the one mode is dominating the monotonic (classical
like) behavior returns.

5.4.2 Hidden polarization

To analyze the mechanism that hides the polarization from the �rst order mea-
sures we plot the �rst 5 manifolds of the two-mode density matrix of the ex-
perimentally generated state in Fig 5.9 a). The block diagonal carries the po-
larization information. The impurity of the states gives a thermal contribution
visible in the ⟨Ŝ0⟩ = 1 and the ⟨Ŝ0⟩ = 3 manifolds, which would be zero oth-
erwise. However we see that there are no diagonal elements next to each other
in the block diagonal. Furthermore the diagonal elements are ordered so that
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Figure 5.8: a) Coherent state and vacuum. b) Squeezed state and vacuum. c)
Thermal state and vacuum. d) Two-mode thermal state (all the measures show
the state to be unpolarized as expected). 1-vac is the same as 1− ρ0,0

even though they are not uniform within a manifold, they still cancel (e.g.
ρ2,0 − ρ1,1 = −ρ1,1 − ρ0,2 ). These two criteria are su�cient to make the �rst
moment of the Stokes operators vanish. However, if we make a polarization
rotation (on one of the manifolds) there can be neighboring coherences, but the
polarization is still the same.

Inspired by these symmetries we simulate a state that does not have 1st nor
2nd moment of polarization but has a signi�cant 4th moment, see Fig 5.9 b).
This state is generated by mixing 2

3 's of a squeezed state like our experimentally

generated state and 1
3 of the same state rotated π

4 around Ŝ2.
Alternatively we can generate hidden polarization by mixing coherent states.

To generate a �rst order hidden polarization state one can e.g. take coherent
states with αH = 1, αV = i mixed with αH = 1, αV = −i. A �rst and second
but not 4th order hidden polarization state can be generated by rotating it π

4

around Ŝ1, Ŝ2 and Ŝ3 and mixing these 3 states with equal parts of each.

5.4.3 SU2 Wigner functions

With these measures we can quantify the polarization up to second order in
the Stokes operators. We will not try to quantify the remaining polarization,
however we can illustrate it by plotting the SU2 Wigner function [93]. Any lack
of symmetry will give rise to di�erent statistics when performing polarization
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Figure 5.9: a) Reconstructed two-mode density matrix of an experimentally
realized �rst order hidden polarization state. The matrix is written in block
diagonal form, in the H-V basis, and we have taken the absolute value of the
elements. The color-bar gives the magnitude of the matrix elements. b) Simu-
lation of two-mode density matrix of a second order hidden polarization state,
with a non-zero 4th order moment.

rotations.
The SU2 Wigner functions are quasi probability distribution over operators

satisfying an SU(2) algebra. The operators Ŝi, i ∈ {1, 2, 3} ful�ll this algebra

with their commutation relation
[
Ŝi, Ŝj

]
= 2iϵijkŜk and hence this formalism

can be used. Unlike the normal Wigner function where there is a one to one
correspondence between the Wigner function and the full density matrix, the
SU2 Wigner functions have a one to one correspondence with the block diago-
nal of the two-mode density matrix. The marginal distributions reproduce the
distributions of the Stokes operators. In this sense they illustrate exactly what
we would expect from the Wigner function of the polarization state.

To obtain explicit formulas we use the Schwinger representation identifying
Ĵi = Ŝi/2. The eigenstates of Ĵ

2 and Ĵ3, |j,m⟩, then correspond to a relabeling
of the block diagonal of the density matrix (Fock basis) as j = (nL + nR)/2
and m = (nL−nR)/2, where nL and nR are the left-hand/right-hand circularly
polarized photon number. We make a multipole expansion of the density matrix
of a subspace j as

ρ̂(j) =

2j∑
k=0

k∑
q=−k

ρ
(j)
kq T̂

(j)
kq (5.10)

where T̂
(j)
kq are the spherical tensors

T̂
(j)
kq =

j∑
m=−j

j∑
m′=−j

(−1)j−m
√
2k + 1

(
j k j

−m q m′

)
|j m⟩⟨j m′| (5.11)

and

(
j k j

−m q m′

)
is the Wigner-3j symbol and further

ρ
(j)
kq = Tr[ρ̂(j) · T̂ (j) †

kq ]. (5.12)
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The SU2 Wigner function for an excitation manifold j is then

W (j)(θ, φ) =

2j∑
k=0

+k∑
q=−k

ρ
(j)
kq Ykq(θ, φ), (5.13)

where the Ykq(θ, φ) are the Laplace spherical harmonics. The radial distribution

is the discrete spheres given by r(S0) =
√

S0

2 (S0

2 + 1).

In our states there are many excited photon numbers so the SU2 Wigner
functions have probability amplitude in many excitation manifolds in contrast
e.g. to the case in reference [94] where only one manifold is excited. To see all the
non-trivial parts of the Wigner functions we encode the probability amplitude
in the color scale and the absolute of the probability amplitude linearly in the
transparency. We start with the two-mode vacuum squeezed state in Fig. 5.10
a). The symmetries of the state is what makes the polarization hidden for
the �rst order measures, however as both the �gure and the 2nd order measures
show, the state is not invariant under rotations. In Fig. 5.10 b) we illustrate the
above mentioned mixture of squeezed states which does not show polarization
with neither the �rst nor the 2nd order polarization measure. It is however
clear from the �gure that this state is not polarization rotation invariant and
as argued from the density matrices a fourth order polarization measure should
show the polarization of this state. In Fig. 5.11 a) we displace one of the two
squeezed states in the squeezing direction as was done in Fig. 5.7 a) and see
that the shape resembles that of a disk by looking in the three planes Fig. 5.11
b) c) d). If we instead of displacing along the squeezing direction displace along
the antisqueezing Fig. 5.12 a) as was done in Fig. 5.7 b) we see that we get
something which resembles a cigar shown in 5.12 b) c) d).
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Figure 5.10: Reconstructed SU2 Wigner functions. a) Experimental data for
two-mode vacuum squeezed states (same state as Fig. 5.9 a)). b) Simulation of
mixture of vacuum squeezed states the polarization is hidden from both �rst and
second order polarization measures (same state as Fig. 5.9 b)). Same colorbar
for a) and b).
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Figure 5.11: a) Experimental data: A small displacement is added to one of the
squeezed states along the squeezing direction. b) c) d) Viewing a) from S1−,
S2− and S3− direction respectively. Same colorbar for all �gures.
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Figure 5.12: a) Experimental data: Small displacement is added along the anti-
squeezing direction. b) c) d) Viewing a) from S1−, S2− and S3− direction
respectively. Same colorbar for all �gures.



78 CHAPTER 5. QUANTUM POLARIZATION



Chapter 6

Concluding remarks

6.1 Summary

The thesis is built up around a versatile optical experimental setup based on a
laser, two optical parametric ampli�ers, a few sets of modulators and two sets of
homodyne detectors, which together with passive linear optics generate, process
and characterize various types of Gaussian quantum states. Using this setup we
have experimentally and theoretically investigated Gaussian quantum discord,
continuous variable quantum key distribution and quantum polarization.

The Gaussian discord broadens the de�nition of non-classical correlations
from entanglement, to all types of correlations which cannot be extracted by
local measurements due to the limitations dictated by the Heisenberg's uncer-
tainty principle. We experimentally characterize the evolution of the discord
of EPR states and mixtures of coherent states in an attenuating channel. We
demonstrate that the discord can grow by local dissipation in the mixture of co-
herent states. Further we investigate the robustness of the discord of a broader
range of states and suggest a toolbox of states which can be used to test if a
protocol is discord based, before performing a rigid proof.

Gaussian quantum key distribution can be implemented with current com-
mercially available equipment. However the performance in terms of achievable
distance is highly limited. We �rst experimentally demonstrate that the bound-
aries of coherent states can be surpassed using modulated entangled states. A
simpli�ed experiment is also presented where the modulation of a single-mode
squeezed state gives a very reconciliation e�ciency robust protocol. All of this
is done to achieve higher key rates at the current limits of the coherent state
protocols and to extend the boundaries for tolerable channel noise, loss and rec-
onciliation e�ciency. As any degree of squeezing improves the performance the
extra e�ort of implementing squeezing in commercial devices is overshadowed
by the extended range and increased security margin achieved.

Still using the same experimental setup, but now in the context of polariza-
tion we have experimentally bridged the gab between the states with very low
photon numbers and the states where one of Stokes parameters is highly excited.
To describe the polarization of these state we introduce several new polarization
measures which take into account the covariance of the polarization and resolve
the polarization manifolds. We experimentally demonstrate states for which the

79
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polarization is hidden in the unresolved measures and as well a state which is
unpolarized for both �rst order polarization measures. Finally we illustrate the
polarization with SU2 Wigner functions to give a richer picture, not only of the
degree of polarization but also its distribution among the manifolds.

6.2 Outlook

Quantum information science is still a young research �eld. The discrete vari-
able formalism and experiments have dominated the early history of the �eld,
however in recent years the continuous variables have gained a footing. In this
thesis we have been focused on the continuous variable Gaussian states. The
power of the Gaussian state formalism has allowed theoretical result which we
have used, such as the general security framework for Gaussian quantum key
distribution and the optimization of measurements which lead to the closed
formulas for the Gaussian discord.

The Gaussian formalism has however also demonstrated several no-go theo-
rems for all Gaussian (that is Gaussian states, Gaussian unitaries and Gaussian
measurements) protocols including error correction, entanglement distillation
and quantum computation. Advancing in these subjects would hence require
non-Gaussian operations e.g. in the form an optical hybrid schemes based on
Gaussian states but non-Gaussian measurements, a breakthrough within new
stronger 3rd order non-linearities or coupling to other quantum resources such
as solid oscillators, atomic clouds, BECs or other novel media.

These tasks are however not the only ones of interest in quantum optics.
Especially the squeezed states have a bright future as a resource in energy
constrained metrology and information, it being gravitational wave detection in
facilities such as LIGO [95], measurements on microtoroids [96] or quantum key
distribution as we have seen here and maybe the entangled states could prove
bene�cial as well if smartly applied [54].
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