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Itinerant Ferromagnetism in ultra
old Fermi gases

H. Heiselberg
Applied Resear
h, DALO, Lautrupbjerg 1-5, DK-2750 Ballerup, Denmark

Itinerant ferromagnetism in 
old Fermi gases with repulsive intera
tions is studied applying the
Jastrow-Slater approximation generalized to �nite polarization and temperature. For two 
ompo-
nents at zero temperature a se
ond order transition is found at akF ≃ 0.90 
ompatible with QMC.
Thermodynami
 fun
tions and observables su
h as the 
ompressibility and spin sus
eptibility and
the resulting �u
tuations in number and spin are 
al
ulated. For trapped gases the resulting 
loud
radii and kineti
 energies are 
al
ulated and 
ompared to re
ent experiments. Spin polarized sys-
tems are re
ommended for e�e
tive separation of large ferromagneti
 domains. Colle
tive modes
are predi
ted and tri-
riti
al points are 
al
ulated for multi-
omponent systems.

PACS numbers: 71.10.Ca, 03.75.Ss, 32.80.Pj

I. INTRODUCTION

Ultra
old Fermi systems with strong attra
tion be-

tween atoms has led to important dis
overies as universal

physi
s and the BCS-BEC 
rossover. Re
ently strongly

repulsive intera
tions has been studied and a transition

to a ferromagneti
 phase was observed in the experiments

of Jo et al. [1℄. Earlier Bourdel et al. [2℄ and Gupta et

al. [3℄ also observed a transition when the intera
tions

be
ame strongly repulsive near Feshba
h resonan
es. A

phase transition from a paramagneti
 (PM) to ferromag-

neti
 (FM) phase was predi
ted long ago by Stoner [4℄

based on the Hartree-Fo
h mean �eld energy and has

re
ently been 
on�rmed by more elaborate 
al
ulations

in
luding �u
tuations [5, 6℄ and by QMC [7�9℄. The 
al-


ulated transition points and order of the transition di�er

also from experiment [1℄. The FM transition is disputed

by Zhai [10℄ who 
laims that the experimental data is


ompatible with strongly 
orrelated repulsive Fermi sys-

tems whi
h would explain the inability to observe FM

domains in Ref. [1℄.

It the purpose of this work to 
larify the phase dia-

gram of strongly repulsive Fermi atomi
 systems as well

as to 
al
ulate thermodynami
 fun
tions and measurable

observables in atomi
 traps that 
learly 
an distinguish

the FM and PM phases and determine the order of the

transition and the universal fun
tions. By extending the

Jastrow-Slater model [11�13℄ to �nite polarization and

temperature, we 
al
ulate the free energy and �nd a se
-

ond order FM transition in a repulsive Fermi gas. A num-

ber of thermodynami
 fun
tions as the spin sus
eptibil-

ity, 
ompressibility, and observables as radii and kineti


energies 
an be 
ompared to experiments, and others as

�u
tuations, 
olle
tive os
illations and phase separation


an be predi
ted.

As a start the dilute limit model of Stoner is extended

to �nite temperature and the polarization and order of

the transition is determined and 
ompared to se
ond or-

der 
al
ulations. Subsequently, the Jastrow-Slater ap-

proximation is des
ribed for the 
orrelated manybody

wave-fun
tion in the strongly intera
ting limit and ex-

tended to �nite polarization and temperature. Detailed


al
ulations of the free energy and a number of ther-

modynami
 fun
tions are given. In parti
ular the spin-

sus
eptibility and 
ompressibility are used for 
al
ulating

�u
tuations in spin and total parti
le number in se
tion

III. In se
tion IV �nite traps are 
onsidered and the 
loud

radii and kineti
 energies are 
al
ulated and 
ompared

to re
ent experiments [1℄. Colle
tive modes are dis
ussed

in se
tion V. Multi-
omponents systems are dis
ussed in

se
tion VI and a new string of 
riti
al points is found and

plotted in a multi-
omponent phase diagram. Finally, a

summary and outlook is given.

II. FERROMAGNETIC TRANSITION

The models for repulsive ultra
old Fermi gases in Refs.

[4�8℄ all predi
t a phase transition somewhere near the

unitarity limit akF ∼ 1 but the phase diagrams disagree

quantitatively as well as qualitatively 
on
erning the or-

der and 
riti
al points.

For a referen
e model we start with a simple �nite

temperature extension of the Hartree-Fo
k approxima-

tion originally studied by Stoner [4℄, whi
h is a dilute

limit expansion to �rst order in the s
attering length.

Subsequently, we 
al
ulate the phase diagram in the JS

approximation and 
ompare to those in the dilute limit

to �rst [4℄ and se
ond [5, 6℄ order as well as QMC [7, 8℄.

A. Dilute approximations

A dilute (kF a ≪ 1) degenerate Fermi gas with atoms

in spin states σ = 1, .., ν with densities ρσ = k3
F,σ/6π2

and Fermi energy EF,σ = kBTF,σ = ~
2k2

F,σ/2m has the

free energy

f =
3

5

∑

σ

EF,σρσ +
∑

σ<σ′

4πa

m
ρσρσ′ + fT . (1)

It 
onsists of the kineti
 energy, the intera
tion en-

ergy to lowest order in the s
attering length a as

in the Stoner model [4℄, and the thermal energy
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Figure 1: Phase diagram for a two-
omponent Fermi gas with
repulsive intera
tions. Full (dashed) 
urves indi
ate �rst (se
-
ond) order PM to FM transitions within JS and dilute ap-
proximations with [6℄ and without [4℄ �u
tuations. The 
ir
le
indi
ates a tri-
riti
al point. Triangles show the QMC transi-
tion points at zero temperature of Refs. [7, 8℄.

fT = −(π2/4)(m∗/m)
∑

σ ρσT 2/EF,σ at low tempera-

tures T ≪ EF,σ. In the dilute limit the e�e
tive mass

m∗/m = 1 + [8(7 ln 2 − 1)/15π2]a2k2
F in two-
omponent

symmetri
 systems only deviates from the bare mass to

se
ond order in the intera
tion parameter akF .

The density of the 
omponents are equal only in the

PM phase and when the 
omponents are balan
ed ini-

tially. In the following we de�ne an average Fermi wave

number kF from the total density ρ = νk3
F /6π2.

We postpone multi
omponent systems to se
. VI and


on
entrate �rst on two spin states, e.g. σ =↑, ↓ with

total density ρ = ρ↓ + ρ↑. The population of spin states

are allowed to 
hange (polarize) in order to observe phase

transitions to itinerant ferromagnetism. The polarization

(or magnetization) P = (ρ↓ − ρ↑)/ρ of the ground state

phase is found by minimizing the free energy at zero mag-

neti
 �eld. The free energy of a low temperature ideal

gas is f0 = EF ρ(3/5 − π2T 2/4E2
F ). Expanding Eq. (1)

for small polarization leads to a Ginzburg-Landau type

equation for the free energy

f

f0

= 1 +
10

9π
akF +

5

9

[

χ0

χT
P 2 +

1

27
P 4

]

, (2)

to leading orders in intera
tion, polarization and temper-

ature. Here χT = (∂2f/∂P 2)−1 is the isothermal spin-

sus
eptibility given by

χ0

χT
= 1 −

2

π
akF +

π2

12

T 2

T 2
F

, (3)

where χ0 = 3ρ/2EF is the spin-sus
eptibility for an ideal

gas at zero temperature. χT be
omes singular when

akF =
π

2

(

1 +
π2

12

T 2

T 2
F

)

, (4)

where the free energy of Eq. (2) predi
ts a se
ond order

phase transition from a PM to a FM (see Fig. 1) in

a

ordan
e with the zero temperature result of Stoner

[4℄. The polarization is P = ±
√

27(akF /π − 1/2) at zero
temperature but qui
kly leads to a lo
ally fully polarized

system P = ±1 due to the small fourth order 
oe�
ient

in Eq. (2).

However, the predi
ted transition o

urs 
lose to the

unitarity limit where the dilute equation of state Eq. (1)

is not valid. Higher orders are important as exempli�ed

by in
luding �u
tuations, i.e. the next order a2 
orre
-

tion. As found in Refs. [5, 6℄ �u
tuations 
hange the

transition from se
ond to �rst order at low temperatures

up to a tri-
riti
al point at temperature ≃ 0.2TF , where

the transition be
omes se
ond order again (see Fig. 1).

However, the 2nd order expansion is not valid either in

the unitarity limit.

B. Jastrow-Slater approximation

The JS approximation applies to both strongly attra
-

tive and repulsive 
rossovers where it already has proven

to be quite a

urate for predi
ting universal fun
tions

and parameters. The JS approximation is the lowest

order in a 
onstrained variational (LOCV) approa
h to


al
ulate the ground state energies of strongly 
orrelated

systems. It was developed for strongly intera
ting and


orrelated Bose and Fermi �uids respe
tively su
h as 4He,
3He and nu
lear matter [11℄. JS was among the earliest

models applied to the unitarity limit and 
rossover of

ultra
old Fermi [12℄ and Bose [13℄ atomi
 gases. As ex-

plained in [11�13℄ the JS wave fun
tion

ΨJS(r1, ..., rN ) = ΦS

∏

i,j′

φ(ri − rj′) , (5)

in
orporates essential two-body 
orrelations in the Jas-

trow fun
tion φ(r). The Slater wave fun
tion ΦS is

a produ
t of antisymmetrized free fermion wave fun
-

tions for ea
h spin. Ea
h of these are the produ
t of

extended state free waves (eikj·r with |kj | ≤ kF ) anti-

symmetrized to insure that same spins are spatially anti-

symmetri
. The Jastrow wave fun
tion φ(r) only ap-

plies to parti
les with di�erent spins (indi
ated by the

primes). For attra
tive intera
tions it 
orrelates di�erent

spins whereas for repulsive intera
tions it anti-
orrelates.

The pair 
orrelation fun
tion 
an be determined varia-

tionally by minimizing the expe
tation value of the en-

ergy, E/N = 〈Ψ|H|Ψ〉 / 〈Ψ|Ψ〉, whi
h may be 
al
u-

lated by Monte Carlo methods [8, 14℄. At distan
es

shorter than the interparti
le spa
ing two-body 
lusters

dominate and the Jastrow wave fun
tion φ(r) obeys the
S
hrödinger equation for a pair of parti
les of di�erent

spins intera
ting through a potential U(r)

[

−
~

2

m

d2

dr2
+ U(r)

]

rφ(r) = 2λ rφ(r) , (6)
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where the eigenvalue is the intera
tion energy of one atom

λ = Eint/N . Most importantly, the boundary 
ondition

at short distan
es (r = 0) is given by the s
attering length

(rφ)′

rφ
= −

1

a
. (7)

Many-body e�e
ts be
ome important when r is 
ompa-

rable to the interparti
le distan
e ∼ k−1

F , but are found

to be small [11�13℄. Here the boundary 
onditions that

φ(r > dσ) is 
onstant and φ′(r = dσ) = 0 are imposed at

the healing distan
e dσ, whi
h is determined self 
onsis-

tently from number 
onservation

(ρ − ρσ)

∫ dσ

0

φ2(r)

φ2(dσ)
4πr2dr = 1. (8)

The prefa
tor ρ − ρσ = ρσ′ takes into a

ount that a

given spin σ only intera
ts and 
orrelates with unlike

spins σ′ 6= σ. In the dilute limit φ(r) ≃ 1 and so dσ =
(9π/2)1/3k−1

F,σ′ . In the unitary limit a → ±∞ the healing

length approa
hes dσ = (3π)1/3k−1

F,σ′ in stead. Generally

the healing length is of order the Fermi wavelength of the

other 
omponent, dσkF,σ′ ∼ 1.
For a positive s
attering length the intera
tion energy

λ is positive and the solution to Eq. (6) is rφ(r) ∝
sin[k(r − b)] with λσ = ~

2k2/2m. De�ning κσ = kdσ the

boundary 
onditions and number 
onservation requires

[13℄

a

dσ
=

κ−1
σ tan κσ − 1

1 + κσ tan κσ
. (9)

The resulting intera
tion energy reprodu
es the 
orre
t

dilute limit result of Eq. (1). In the unitarity limit a →
+∞, the positive energy solution redu
es to κ tan κ = −1
with multiple solutions κ1 = 2.798.., κ2 = 6.121.., et
.,
and asymptoti
ally κn = nπ for integer n. In addi-

tion there is one negative energy solution for n = 0
with κ0 = 1.997.. whi
h 
orresponds to the BCS-BEC


rossover when a → −∞. Generally, n = 0, 1, 2, .. is the
number of nodes in the Jastrow wave fun
tion and ea
h

determines a new universal limit with universal parame-

ters depending on the number of nodes. The phase in the

wave fun
tion is kb = π(n − 1/2) whenever the unitarity
limit of n nodes is en
ountered.

It should be emphasised that for positive s
attering

lengths the wave fun
tion and thus the 
orrelations fun
-

tion between fermions of unlike spin and bosons ∝ rφ ∼
sin(kr − b) has a node at b/k whi
h is somewhere within

the interparti
le distan
e. It does not vanish as r → 0 as

does the wave fun
tion for a short range repulsive poten-

tial as in hard sphere s
attering where a ≃ R. Therefore
the Gutzwiller approximation may well apply for hard

sphere gases, strongly 
orrelated nu
lear �uids and liq-

uid helium as dis
ussed in [10℄ but it does not apply to

the repulsive unitarity limit of ultra
old gases when the

wave fun
tion has to obey the short range boundary 
on-

dition of Eq. (7).

0 1 2 3
0

1

2

3

β1

χ0/χT

P/P0 µ/EF

ak
F

Figure 2: (Color online) Universal fun
tions 
al
ulated within
JS at zero temperature vs. repulsive intera
tion: the ratio of
intera
tion and kineti
 energy β, the pressure and 
hemi
al
potential and the inverse spin sus
eptibility χ0/χT , all with
respe
t to their non-intera
tive values. Note that χT diverges
at akF = 0.90 due to the FM instability. Full 
urves in
lude
the FM transition whereas the dashed have FM suppressed,
i.e. remain in the PM phase.

It is 
ustomary to de�ne the universal fun
tion β =
Eint/Ekin as the ratio of the intera
tion Eint and kineti


energy Ekin = (3/5)EF . In the JS model the intera
tion

energy per parti
le is Eint = ~
2k2/2m = κ2/2md2 and

thus β = (5/3)κ2/k2
F d2 in the PM phase. In the FM

phase the spin densities di�er and the ratio of the average

intera
tion to kineti
 energy 
an be 
onsiderably lower

than β as shown in Fig. (2).

Be
ause Eq. (9) has a string of solutions for a given

s
attering length or kF a, κ and β are multivalued fun
-

tions whi
h we distinguish by the index n = 0, 1, 2, ...
referring to the number of nodes in the many-body wave

fun
tion between any two atoms [12℄. β0 has been studied

extensively in the BCS-BEC 
rossover and β1 in the re-

pulsive 
rossover [1�3℄. In the repulsive unitarity limit

n = 1 the universal parameter is β1(kF a → ∞) =
5κ2

1/3(3π)2/3 ≃ 2.93. It has re
ently been measured for

a 6Li gas in two spin states [1℄. The 
hemi
al poten-

tial in the opti
al trap almost doubles going from the

non-intera
ting to the unitarity limit. Sin
e it s
ales as

µ ∝
√

1 + β1(∞) we obtain β1(∞) ∼ 3 
ompatible with

JS. In the following we 
on
entrate on repulsive intera
-

tions and use β = β1.

The intera
tion energy for an atom with spin σ de-

pends on the density of unlike spins and is given by

λ = κ2
σ/2md2

σ ≡ (3/5)EFσ′β(akF,σ′), where β is the uni-

versal fun
tion for repulsive intera
tions. We obtain the

total energy density at zero temperature by adding the

Fermi kineti
 energy and the intera
tion energy λσ, and
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Figure 3: (Color online) Polarization vs. akF at T/TF =

0, 0.1, 0.2, ..., 0.5 from left to right. The se
ond order
transition yields a steep but 
ontinuous transitions P ∝√

akF − akc. The diamond indi
ates the transition point to
a pure one-
omponent (P = ±1) FM at zero temperature.

sum over parti
le densities [11, 12℄

f =
3

5

∑

σ

EF,σρσ +
3

5

∑

σ 6=σ′

EF,σ′β(akF,σ′)ρσ + fT ,(10)

in
luding a thermal free energy fT as given above. This

expression generalizes the standard expression for the en-

ergy density E/V = (3/5)EF (1 + β)ρ to �nite polar-

ization and temperature. The result 
an be understood

from dimensional arguments as β is dimensionless and

gives the repulsive energy of parti
les of spin σ due in-

tera
tions with parti
les of opposite spin. Note that the

intera
tion energy and its dependen
e on polarization is

given in terms of one universal fun
tion β of one variable

only. As shown in Fig. 2 the ratio of the intera
tion to

kineti
 energy is redu
ed by the FM transition w.r.t β.
Expanding Eq. (10) for small polarization gives

f

f0

= 1 + β +
5

9

χ0

χT
P 2 + O(P 4) , (11)

where the isothermal spin sus
eptibility is

χ0

χT
= 1 −

7

5
β −

2

5
akF β′ +

1

10
(akF )2β′′ +

π2

12

T 2

T 2
F

, (12)

with β′ = dβ/d(akF ) and β′′ = d2β/d(akF )2. In the

dilute limit β = (10/9π)akF and Eqs. (11) and (12)

redu
e to Eqs. (2) and (3) respe
tively.

The spin-sus
eptibility 
al
ulated within JS is shown

in Fig. 2 at zero temperature. It diverges at akF ≃ 0.90
where the universal fun
tion is βFM ≃ 0.53. By equat-

ing the energy of the unpolarized gas, ∼ (1 + β) with

that of a fully polarized (one-
omponent) gas, ∼ 22/3, we

�nd that a �rst order transition requires β = 22/3 − 1 ≃

0 0.5 1 1.5 2
0

1

2

3

κ0/κT

γ

ak
F

Figure 4: (Color online) Compressibility and polytropi
 index
vs. repulsive s
attering length (ak0

F ) at zero temperature.
Both are se
ond derivates of the free energy and are therefore
dis
ontinuous at the FM transition.

0.59 > βFM , and therefore JS predi
ts a se
ond order

FM transition as shown in Fig. 1. This transition point

is in remarkable agreement with two re
ent QMC 
al
u-

lations whi
h �nd akF = 0.86 [7℄ and akF = 0.89 [8℄. The
QMC 
al
ulations 
ould not determine the order of the

transition within numeri
al a

ura
y. In the BCS-BEC


rossover a minor dis
repan
y was found between JS [12℄

and QMC [14, 15℄ whi
h partly 
ould be attributed to

pairing whi
h is ex
luded in the JS wave fun
tion but

in
luded in the QMC 
al
ulations with attra
tive inter-

a
tions. Sin
e pairing is absent for repulsive intera
tions

in both QMC and the JS model, they are expe
ted to

mat
h better near the FM transition. Note that the JS

wave fun
tion is also used as a starting point in the QMC


al
ulations of Refs. [8, 14, 15℄.

Minimizing the free energy of Eq. (11) we obtain

the polarization P ∝
√

−χ0/χT at the onset of FM as

shown in Fig. 3 at low temperatures. Full polarization

is rea
hed at akF ≃ 1.1 at zero temperature only.

The spin-sus
eptibility is related to the spin-

antisymmetri
 Landau parameter as FA
0 =

(m∗/m)χ0/χT − 1. The e�e
tive mass m∗ = m is

impli
itly assumed in the JS energy of Eq. (10). It

has re
ently been measured in the BCS-BEC unitarity

limit m∗
0/m = 1.13 ± 0.03 [16℄ but not for the repulsive


rossover yet. Sin
e β at the FM transition point is


omparable to |β0|, these two e�e
tive masses may

be expe
ted to be similar. The small deviation from

m∗ = m only 
hanges the universal fun
tions and the

phase diagram slightly at higher temperature. The order

and the position of the transition is un
hanged at zero

temperature.
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III. NUMBER FLUCTUATIONS

The density or lo
al number �u
tuations have re
ently

been measured in shot noise experiments for an ideal ul-

tra
old Fermi gas and by spe
kle noise in the BCS-BEC


rossover [17, 18℄. The number �u
tuations are measured

in a small subvolume of the atomi
 
loud with almost uni-

form density. The �u
tuations in spin and total number

of atoms are dire
tly related to the spin sus
eptibility

and 
ompressibility respe
tively.

The lo
al �u
tuations in total number 
an for a large

number of atoms be related to the isothermal 
om-

pressibility κT = ρ−2(∂ρ/∂µ)V,T , by the �u
tuation-

dissipation theorem

(∆N)2

N
=

3

2

T

TF

κT

κ0

. (13)

Here, κ0 = 3/(2ρEF ) is the 
ompressibility for an ideal

Fermi gas at zero temperatures. An ideal 
lassi
al gas

has κT = 1/(ρkBT ) su
h that the number �u
tua-

tions are Poisson: (∆N)2/N = 1. The 
ompressibil-

ity is related to the symmetri
 Landau parameter as

FS
0 = (m∗/m)κ0/κT − 1.
The 
ompressibility 
an generally be expressed in

terms of the universal fun
tion β [20℄ at zero temper-

ature

κ0

κT
= 1 + β +

4

5
akF β′ +

1

10
(akF )2β′′, (14)

in the PM phase. On
e the FM transition sets in, the

ground state energy of Eq. (10) is lowered due to �-

nite polarization and the inverse 
ompressibility drops

as shown in Fig. 4 for JS. It is dis
ontinuous when the

se
ond order FM transition sets in be
ause it is a se
-

ond derivative of the free energy whi
h is softened by

the spin-sus
eptibility term in Eq. (11). In the pure

one-
omponent FM phase the 
ompressibility is that of

an ideal one-
omponent gas κ0/κT = 22/3. The pe
uliar

and dis
ontinuous behaviour of the 
ompressibility at the

FM transition is dire
tly re�e
ted in the �u
tuations in

total number a

ording to Eq. (13).

If the FM transition was �rst order the 
ompressibil-

ity diverges at the phase transition, i.e., κ0/κT vanishes

in part of the density region where 0 < P < 1 (see

Figs. 3+4). Consequently, the number �u
tuation also

diverges a

ording to Eq. (13) re�e
ting the density dis-


ontinuity at a �rst order transition.

The �u
tuation-dissipation theorem also relates the

thermal spin �u
tuations to the spin sus
eptibility

∆(N↑ − N↓)
2

N
=

3

2

T

TF

χT

χ0

. (15)

At the FM instability the spin-sus
eptibility and there-

fore also the spin �u
tuations diverge re�e
ting that

phase separation o

urs between domains of polarization

±P . Su
h domains were, however, not observed in the

experiments of [1℄ within the spatial resolution of the ex-

periment.

IV. TRAP RADII AND KINETIC ENERGIES

In experiments the atoms are 
on�ned in harmoni


traps. For a su�
iently large number N =
∑

σ Nσ of

parti
les 
on�ned in a (shallow) trap the system size Rσ

is so long that density variations and the extent of possi-

ble phase transition interfa
es 
an be ignored and one 
an

apply the lo
al density approximation. The total 
hemi-


al potential is given by the sum of the harmoni
 trap po-

tential and the lo
al 
hemi
al potential µσ = (df/dρσ)V,T

µσ(r) +
1

2
mω2r2 =

1

2
mω2R2

σ , (16)

whi
h must be 
onstant over the latti
e for all 
ompo-

nents σ = 1, 2, .., ν. It 
an therefore be set to its value

at its edge Rσ, whi
h gives the r.h.s. in Eq. (16). The

equation of state determines the 
hemi
al potentials µσ

in terms of the universal fun
tion of Eq. (10).

In a two-
omponent spin-balan
ed system the 
hemi-


al potential and radii of the two 
omponents are equal

(denoted µ and R in the following). In the FM phase

their densities ρ(1 ± P ) di�er but these FM spin do-

mains 
oexist. Using the JS EoS of Eq. (10) to 
al-


ulate the 
hemi
al potential we 
an �nd the density dis-

tribution from 
hemi
al equilibrium Eq. (16) in
luding

phase transitions and 
al
ulate 
loud radii R, the root

mean square RMS =
√

〈r2〉 and kineti
 energy Ekin =
〈k2

F /2m〉 averaged over all parti
les in the trap. These

are shown in Fig. 5 normalized to their values trapped

non-intera
ting ultra
old atoms, R0 = (24N)1/6a0 ,

RMS0 =
√

3/8R0 and E0
kin = (3/8)E0

F respe
tively.

Here, E0
F = (~k0

F )2/2m and k0
F = (24N)1/6/a0 are the

Fermi energy and wave number in the 
entre of the trap

for non-intera
ting atoms and a0 =
√

~/mω is the os-


illator length. Repulsive intera
tions redu
e the 
entral

density and Fermi energy as 
an be seen from kF /k0
F

shown in Fig. 5. As a 
onsequen
e the radii in
rease

ex
ept for the RMS radius above the FM transition (see

Fig. 5). It de
reases be
ause atoms are redistributed

from the PM phase near the surfa
e to the FM phase

in the 
entre. The kineti
 energy of the atoms has the

opposite behaviour be
ause repulsion in
reases the inter-

a
tion energy in the PM phase at the 
ost of the kineti


energy.

In the re
ent experiment of Ref. [1℄ a transition is ob-

served around ak0
F ≃ 2.2 at temperatures T/E0

F = 0.12
(and ak0

F ≃ 4.2 at T/EF = 0.22), whi
h is 
ompatible

with the �rst order 
al
ulation of Ref. [19℄. This transi-

tion point is a fa
tor of ∼ 2 larger than the FM transition

point 
al
ulated in all models [4�8℄ as well as JS. Res
al-

ing ak0
F by a fa
tor 2 we �nd very good quantitative and

qualitative agreement with the data of [1℄ as was found

in the se
ond order 
al
ulation of Ref. [6℄). The distin
t

transitions in the radii, kineti
 energies and atomi
 losses

are well reprodu
ed qualitatively and quantitatively after

res
aling ak0
F by a fa
tor 2. It is 
urrently not under-

stood why all the higher order and QMC 
al
ulations lead

to a larger dis
repan
y than the simpler �rst order when
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Figure 5: (Color online) Radius of the trapped 
loud, RMS
radius, kineti
 energy and 
entral Fermi wavenumber all at
zero temperature and relative to their non-intera
tion values
vs. repulsive s
attering length (ak0

F ). Dashed 
urved shows
the RMS radius for a PM phase where the FM transition is
inhibited. Due to repulsion the 
entral density and thus kF

is lower.


ompared to experiments. As dis
ussed above there are

no pairing intera
tion in neither QMC nor the JS model

for repulsive intera
tions. However, the strongly repul-

sive intera
tion limit is metastable w.r.t. three-body in-

tera
tions as well as a transition to the paired BCS state

with no nodes in the Jastrow two-body 
orrelation fun
-

tion, and it 
ould be responsible for the earlier on-set of

the FM transition.

Another puzzling result was the apparent absen
e of

FM domains within the spatial resolution of the experi-

ment of Ref. [1℄. We suggest to start out with an unbal-

an
ed spin system where ma
ros
opi
 FM domain sizes


an be realized and dire
t observation of large FM do-

mains is possible. As the repulsion is in
reased the RMS

radii of the minority spins in
reases faster than that of

the majority spins. When the FM transition o

urs the

system favours a 
ore with predominantly majority spins

surrounded by a mantle of both spins in a PM phase.

With in
reasing spin imbalan
e the majority spin purity

of the FM 
ore in
reases, i.e. the domains are e�e
tively

separated on a large s
ale. The amount of separation and


hange in radii will depend on the overall spin imbalan
e.

Three 
omponent systems with more than one Fesh-

ba
h resonan
e as in 6Li are also more 
ompli
ated. For

example, when the Feshba
h magneti
 �eld is su
h that

two resonan
es a12 and a13 are large but a23 small, the

atoms will separate between a FM phase of 1 and a mixed

FM phase of 2+3 with di�erent densities.

V. COLLECTIVE MODES

Colle
tive modes have been studied intensively in the

BCS-BEC 
rossover where they reveal important infor-

mation of the equation of state (EoS) and determine

β0(akF ). When the EoS 
an be approximated by a sim-

ple polytrope P ∝ ργ+1 the 
olle
tive eigen-frequen
ies


an be 
al
ulated analyti
ally [20, 21℄ in terms of the

polytropi
 index γ. Even when the EoS is not a perfe
t

polytrope the 
olle
tive modes in the BCS-BEC 
rossover


ould be des
ribed well using the e�e
tive polytropi
 in-

dex at densities near the 
entre of the trap given by the

logarithmi
 derivative [20℄

γ ≡
ρ

P

dP

dρ
− 1 =

2

3
(1 + β) + 5

6
akF β′ + 1

6
(akF )2β′′

1 + β + akF β′/2
.(17)

We therefore 
al
ulate γ within JS for repulsive intera
-

tions as shown in Fig. 4. Like the 
ompressibility it has

a dis
ontinuity at the FM phase transition be
ause it is a

se
ond derivative of the free energy with a se
ond order

transition. In both the dilute limit and pure FM phase

the gas is ideal with polytropi
 index γ = 2/3.
For a very elongated or 
igar-shaped trap (prolate

in nu
lear terminology), λ ≪ 1, used in most experi-

ments [22, 23℄, the 
olle
tive breathing modes separate

into a low frequen
y axial mode with os
illation fre-

quen
y ωax =
√

3 − (γ + 1)−1 ω3 and a radial mode with

ωrad =
√

2(γ + 1) ω0 [21℄.

The spin dipole mode is more 
ompli
ated be
ause it

is sensitive to the spin sus
eptibility whi
h diverges at

the FM transition point. The EoS is far from polytropi


and the deli
ate 
al
ulation of spin dipole modes with

diverging spin sus
eptibility is beyond the s
ope of this

work. The spin dipole mode is estimated within a sum

rule approa
h in Ref. [24℄.

VI. MULTICOMPONENT SYSTEMS

Interesting information on the order of the FM tran-

sition 
an be obtained by generalizing the above results

to Fermi gases with more that two spin states su
h as
6Li with ν = 3 hyper�ne states [25℄, 137Yb with six nu-


lear spin states [26℄, and heteronu
lear mixtures of 40K

and 6Li [27℄. The intera
tions and phases 
an be very


ompli
ated when the Feshba
h resonan
es between var-

ious 
omponents di�er as for 6Li. In the following we

restri
t ourselves to multi-
omponents with the same rel-

ative s
attering length a.
In the dilute 
ase the 
ondition for a �rst order phase

transition in a ν 
omponent system 
an be found from

the energy density of Eq. (1). The preferred transition

is dire
tly from ν = 1 to a domains of one-
omponents

system ν = 1 whi
h o

urs when

akF =
9π

10

ν2/3 − 1

ν − 1

(

1 +
5π2

12

T 2

T 2
F

ν−2/3

)

. (18)
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At zero temperature this 
ondition is akF ≃
1.66, 1.53, 1.43, 1.36, et
. for ν = 2, 3, 4, 5, 6, .. respe
-

tively. The 
ondition for a se
ond order transition is

found by expanding the dilute multi-
omponent free en-

ergy for small polarization. One �nds the same spin

sus
eptibility as in the two-
omponent 
ase, Eq. (4),

and therefore the putative the se
ond order transition

remains at akF = π/2 ≃ 1.57. Comparing numbers we


on
lude that at zero temperature the se
ond order tran-

sition o

urs for ν = 2 only in the dilute 
ase whereas for

ν ≥ 3 the FM transition is �rst order and given by Eq.

(18). At �nite temperatures the se
ond order transition

of Eq. (3) mat
h the �rst order of Eq. (18) at a temper-

ature whi
h determines the tri-
riti
al point (akF , T ) in

the phase diagram for ν ≥ 3 as shown in Fig. 6.

The free energy of the JS model, Eq. (10), also applies

to multi-
omponent systems. The 
ondition for a �rst

order FM transition to 
oexisting fully polarized (one-


omponent) FM domains is

β(akF ) =
ν2/3 − 1

ν − 1

(

1 +
5π2

12

T 2

T 2
F

m∗

m
ν−2/3

)

. (19)

At zero temperature the FM transition o

urs for β =
0.59, 0.54, 0.51, 0.48, .. at akF = 0.96, 0.91, 0.87, 0.84, ..
for ν = 2, 3, 4, 5, .. respe
tively. As in the dilute 
ase

the spin-sus
eptibility is un
hanged, Eq. (12), in the JS

model and the putative se
ond order transition remains

when β = 0.53 at akF = 0.90. Thus the FM transition at

is at zero temperature marginally se
ond order for ν ≤ 3
but �rst order for ν ≥ 4. Again the tri-
riti
al points

(akF , T ) are determined by the mat
hing 
ondition for

the �rst Eq. (19) and se
ond Eq. (12) order transitions

and are shown in Fig. 6.

Generally the di�eren
e between �rst and se
ond or-

der FM transition is small whi
h may explain why QMC


ould not determine the order within numeri
al a

ura
y

[7, 8℄. First order transitions to partially polarized FM

does not o

ur for two-
omponent systems but may be

possible in multi-
omponent systems.

The marginal �rst vs. se
ond order FM transition

for ν = 3 is analogous to the marginal stability in the

unitary limit of the BCS-BEC 
rossover [12℄. Here it is

known that two-
omponent systems are stable but four-


omponent systems are unstable as in nu
lear matter.

VII. SUMMARY AND OUTLOOK

By extending the Jastrow-Slater approximation to �-

nite polarization and temperature we have 
al
ulated a

number of thermodynami
 fun
tions and observables for


old Fermi atoms with repulsive intera
tions. In par-

ti
ular we found a se
ond order FM phase transition at

akF ≃ 0.90 at zero temperature in 
lose agreement with

QMC. The 
ompressibility and spin sus
eptibility were


al
ulated and the resulting observables like the �u
tua-

tions in total number and spin as well as 
olle
tive modes

0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

ak
F

T
/T

F

ν=6  5 4  3   2

ν=6   5   4      3       2

JS Dilute

Figure 6: (Color online) Phase diagrams for multi-
omponent
(ν = 2, 3, 4, 5, 6 from left to right) Fermi gases with repul-
sive intera
tions. Full (dashed) 
urves indi
ate �rst (se
ond)
order PM to FM transitions within JS and dilute approx-
imations. Cir
les indi
ate the tri-
riti
al points where the
transition 
hanges from �rst to se
ond order at higher tem-
peratures.

are dis
ontinuous at the transition point. These 
an be

distinguished from a �rst order transition where, e.g., the


ompressibility diverges.

For trapped gases the radii and kineti
 energies also

have 
hara
teristi
 behaviour as fun
tion of repulsive in-

tera
tion strength when the FM transition o

urs in the


entre. If the intera
tion strength is redu
ed by a fa
tor

∼ 2 the radii and kineti
 energies of JS and Ref. [6℄ agree

qualitatively and quantitatively with experiments [1℄. In

order to observe the FM domains we suggest to start out

with a spin-imbalan
ed system of two-
omponent Fermi

atoms and tune the magneti
 �eld towards the Feshba
h

resonan
e from the repulse side where the FM transition

sets in. As result the 
ore will be a large domain of the

majority spin only whi
h ex
eeds the experimental do-

main size resolution.

It would be interesting to study multi-
omponent sys-

tems su
h as the three 
omponent 6Li system near Fesh-

ba
h resonan
es where bulk separation between the spin


omponent domains is predi
ted to take pla
e. Multi-


omponent systems with the same intera
tions (and s
at-

tering lengths) between states display interesting phase

diagrams with �rst to se
ond order tri-
riti
al points

when the number of 
omponents ex
eeds two in the dilute


ase and three in the JS model.
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