
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 20, 2017

Itinerant Ferromagnetism in Ultracold Fermi Gases

Heiselberg, Henning

Published in:
Physical Review A (Atomic, Molecular and Optical Physics)

Link to article, DOI:
10.1103/PhysRevA.83.053635

Publication date:
2012

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Heiselberg, H. (2012). Itinerant Ferromagnetism in Ultracold Fermi Gases. Physical Review A (Atomic,
Molecular and Optical Physics), 83(053635). DOI: 10.1103/PhysRevA.83.053635

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13797337?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1103/PhysRevA.83.053635
http://orbit.dtu.dk/en/publications/itinerant-ferromagnetism-in-ultracold-fermi-gases(0be96f49-f592-45bb-92de-f81895e709af).html


Itinerant Ferromagnetism in ultraold Fermi gases

H. Heiselberg
Applied Researh, DALO, Lautrupbjerg 1-5, DK-2750 Ballerup, Denmark

Itinerant ferromagnetism in old Fermi gases with repulsive interations is studied applying the
Jastrow-Slater approximation generalized to �nite polarization and temperature. For two ompo-
nents at zero temperature a seond order transition is found at akF ≃ 0.90 ompatible with QMC.
Thermodynami funtions and observables suh as the ompressibility and spin suseptibility and
the resulting �utuations in number and spin are alulated. For trapped gases the resulting loud
radii and kineti energies are alulated and ompared to reent experiments. Spin polarized sys-
tems are reommended for e�etive separation of large ferromagneti domains. Colletive modes
are predited and tri-ritial points are alulated for multi-omponent systems.

PACS numbers: 71.10.Ca, 03.75.Ss, 32.80.Pj

I. INTRODUCTION

Ultraold Fermi systems with strong attration be-

tween atoms has led to important disoveries as universal

physis and the BCS-BEC rossover. Reently strongly

repulsive interations has been studied and a transition

to a ferromagneti phase was observed in the experiments

of Jo et al. [1℄. Earlier Bourdel et al. [2℄ and Gupta et

al. [3℄ also observed a transition when the interations

beame strongly repulsive near Feshbah resonanes. A

phase transition from a paramagneti (PM) to ferromag-

neti (FM) phase was predited long ago by Stoner [4℄

based on the Hartree-Foh mean �eld energy and has

reently been on�rmed by more elaborate alulations

inluding �utuations [5, 6℄ and by QMC [7�9℄. The al-

ulated transition points and order of the transition di�er

also from experiment [1℄. The FM transition is disputed

by Zhai [10℄ who laims that the experimental data is

ompatible with strongly orrelated repulsive Fermi sys-

tems whih would explain the inability to observe FM

domains in Ref. [1℄.

It the purpose of this work to larify the phase dia-

gram of strongly repulsive Fermi atomi systems as well

as to alulate thermodynami funtions and measurable

observables in atomi traps that learly an distinguish

the FM and PM phases and determine the order of the

transition and the universal funtions. By extending the

Jastrow-Slater model [11�13℄ to �nite polarization and

temperature, we alulate the free energy and �nd a se-

ond order FM transition in a repulsive Fermi gas. A num-

ber of thermodynami funtions as the spin suseptibil-

ity, ompressibility, and observables as radii and kineti

energies an be ompared to experiments, and others as

�utuations, olletive osillations and phase separation

an be predited.

As a start the dilute limit model of Stoner is extended

to �nite temperature and the polarization and order of

the transition is determined and ompared to seond or-

der alulations. Subsequently, the Jastrow-Slater ap-

proximation is desribed for the orrelated manybody

wave-funtion in the strongly interating limit and ex-

tended to �nite polarization and temperature. Detailed

alulations of the free energy and a number of ther-

modynami funtions are given. In partiular the spin-

suseptibility and ompressibility are used for alulating

�utuations in spin and total partile number in setion

III. In setion IV �nite traps are onsidered and the loud

radii and kineti energies are alulated and ompared

to reent experiments [1℄. Colletive modes are disussed

in setion V. Multi-omponents systems are disussed in

setion VI and a new string of ritial points is found and

plotted in a multi-omponent phase diagram. Finally, a

summary and outlook is given.

II. FERROMAGNETIC TRANSITION

The models for repulsive ultraold Fermi gases in Refs.

[4�8℄ all predit a phase transition somewhere near the

unitarity limit akF ∼ 1 but the phase diagrams disagree

quantitatively as well as qualitatively onerning the or-

der and ritial points.

For a referene model we start with a simple �nite

temperature extension of the Hartree-Fok approxima-

tion originally studied by Stoner [4℄, whih is a dilute

limit expansion to �rst order in the sattering length.

Subsequently, we alulate the phase diagram in the JS

approximation and ompare to those in the dilute limit

to �rst [4℄ and seond [5, 6℄ order as well as QMC [7, 8℄.

A. Dilute approximations

A dilute (kF a ≪ 1) degenerate Fermi gas with atoms

in spin states σ = 1, .., ν with densities ρσ = k3
F,σ/6π2

and Fermi energy EF,σ = kBTF,σ = ~
2k2

F,σ/2m has the

free energy

f =
3

5

∑

σ

EF,σρσ +
∑

σ<σ′

4πa

m
ρσρσ′ + fT . (1)

It onsists of the kineti energy, the interation en-

ergy to lowest order in the sattering length a as

in the Stoner model [4℄, and the thermal energy
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Figure 1: Phase diagram for a two-omponent Fermi gas with
repulsive interations. Full (dashed) urves indiate �rst (se-
ond) order PM to FM transitions within JS and dilute ap-
proximations with [6℄ and without [4℄ �utuations. The irle
indiates a tri-ritial point. Triangles show the QMC transi-
tion points at zero temperature of Refs. [7, 8℄.

fT = −(π2/4)(m∗/m)
∑

σ ρσT 2/EF,σ at low tempera-

tures T ≪ EF,σ. In the dilute limit the e�etive mass

m∗/m = 1 + [8(7 ln 2 − 1)/15π2]a2k2
F in two-omponent

symmetri systems only deviates from the bare mass to

seond order in the interation parameter akF .

The density of the omponents are equal only in the

PM phase and when the omponents are balaned ini-

tially. In the following we de�ne an average Fermi wave

number kF from the total density ρ = νk3
F /6π2.

We postpone multiomponent systems to se. VI and

onentrate �rst on two spin states, e.g. σ =↑, ↓ with

total density ρ = ρ↓ + ρ↑. The population of spin states

are allowed to hange (polarize) in order to observe phase

transitions to itinerant ferromagnetism. The polarization

(or magnetization) P = (ρ↓ − ρ↑)/ρ of the ground state

phase is found by minimizing the free energy at zero mag-

neti �eld. The free energy of a low temperature ideal

gas is f0 = EF ρ(3/5 − π2T 2/4E2
F ). Expanding Eq. (1)

for small polarization leads to a Ginzburg-Landau type

equation for the free energy

f

f0

= 1 +
10

9π
akF +

5

9

[

χ0

χT
P 2 +

1

27
P 4

]

, (2)

to leading orders in interation, polarization and temper-

ature. Here χT = (∂2f/∂P 2)−1 is the isothermal spin-

suseptibility given by

χ0

χT
= 1 −

2

π
akF +

π2

12

T 2

T 2
F

, (3)

where χ0 = 3ρ/2EF is the spin-suseptibility for an ideal

gas at zero temperature. χT beomes singular when

akF =
π

2

(

1 +
π2

12

T 2

T 2
F

)

, (4)

where the free energy of Eq. (2) predits a seond order

phase transition from a PM to a FM (see Fig. 1) in

aordane with the zero temperature result of Stoner

[4℄. The polarization is P = ±
√

27(akF /π − 1/2) at zero
temperature but quikly leads to a loally fully polarized

system P = ±1 due to the small fourth order oe�ient

in Eq. (2).

However, the predited transition ours lose to the

unitarity limit where the dilute equation of state Eq. (1)

is not valid. Higher orders are important as exempli�ed

by inluding �utuations, i.e. the next order a2 orre-

tion. As found in Refs. [5, 6℄ �utuations hange the

transition from seond to �rst order at low temperatures

up to a tri-ritial point at temperature ≃ 0.2TF , where

the transition beomes seond order again (see Fig. 1).

However, the 2nd order expansion is not valid either in

the unitarity limit.

B. Jastrow-Slater approximation

The JS approximation applies to both strongly attra-

tive and repulsive rossovers where it already has proven

to be quite aurate for prediting universal funtions

and parameters. The JS approximation is the lowest

order in a onstrained variational (LOCV) approah to

alulate the ground state energies of strongly orrelated

systems. It was developed for strongly interating and

orrelated Bose and Fermi �uids respetively suh as 4He,
3He and nulear matter [11℄. JS was among the earliest

models applied to the unitarity limit and rossover of

ultraold Fermi [12℄ and Bose [13℄ atomi gases. As ex-

plained in [11�13℄ the JS wave funtion

ΨJS(r1, ..., rN ) = ΦS

∏

i,j′

φ(ri − rj′) , (5)

inorporates essential two-body orrelations in the Jas-

trow funtion φ(r). The Slater wave funtion ΦS is

a produt of antisymmetrized free fermion wave fun-

tions for eah spin. Eah of these are the produt of

extended state free waves (eikj·r with |kj | ≤ kF ) anti-

symmetrized to insure that same spins are spatially anti-

symmetri. The Jastrow wave funtion φ(r) only ap-

plies to partiles with di�erent spins (indiated by the

primes). For attrative interations it orrelates di�erent

spins whereas for repulsive interations it anti-orrelates.

The pair orrelation funtion an be determined varia-

tionally by minimizing the expetation value of the en-

ergy, E/N = 〈Ψ|H|Ψ〉 / 〈Ψ|Ψ〉, whih may be alu-

lated by Monte Carlo methods [8, 14℄. At distanes

shorter than the interpartile spaing two-body lusters

dominate and the Jastrow wave funtion φ(r) obeys the
Shrödinger equation for a pair of partiles of di�erent

spins interating through a potential U(r)

[

−
~

2

m

d2

dr2
+ U(r)

]

rφ(r) = 2λ rφ(r) , (6)
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where the eigenvalue is the interation energy of one atom

λ = Eint/N . Most importantly, the boundary ondition

at short distanes (r = 0) is given by the sattering length

(rφ)′

rφ
= −

1

a
. (7)

Many-body e�ets beome important when r is ompa-

rable to the interpartile distane ∼ k−1

F , but are found

to be small [11�13℄. Here the boundary onditions that

φ(r > dσ) is onstant and φ′(r = dσ) = 0 are imposed at

the healing distane dσ, whih is determined self onsis-

tently from number onservation

(ρ − ρσ)

∫ dσ

0

φ2(r)

φ2(dσ)
4πr2dr = 1. (8)

The prefator ρ − ρσ = ρσ′ takes into aount that a

given spin σ only interats and orrelates with unlike

spins σ′ 6= σ. In the dilute limit φ(r) ≃ 1 and so dσ =
(9π/2)1/3k−1

F,σ′ . In the unitary limit a → ±∞ the healing

length approahes dσ = (3π)1/3k−1

F,σ′ in stead. Generally

the healing length is of order the Fermi wavelength of the

other omponent, dσkF,σ′ ∼ 1.
For a positive sattering length the interation energy

λ is positive and the solution to Eq. (6) is rφ(r) ∝
sin[k(r − b)] with λσ = ~

2k2/2m. De�ning κσ = kdσ the

boundary onditions and number onservation requires

[13℄

a

dσ
=

κ−1
σ tan κσ − 1

1 + κσ tan κσ
. (9)

The resulting interation energy reprodues the orret

dilute limit result of Eq. (1). In the unitarity limit a →
+∞, the positive energy solution redues to κ tan κ = −1
with multiple solutions κ1 = 2.798.., κ2 = 6.121.., et.,
and asymptotially κn = nπ for integer n. In addi-

tion there is one negative energy solution for n = 0
with κ0 = 1.997.. whih orresponds to the BCS-BEC

rossover when a → −∞. Generally, n = 0, 1, 2, .. is the
number of nodes in the Jastrow wave funtion and eah

determines a new universal limit with universal parame-

ters depending on the number of nodes. The phase in the

wave funtion is kb = π(n − 1/2) whenever the unitarity
limit of n nodes is enountered.

It should be emphasised that for positive sattering

lengths the wave funtion and thus the orrelations fun-

tion between fermions of unlike spin and bosons ∝ rφ ∼
sin(kr − b) has a node at b/k whih is somewhere within

the interpartile distane. It does not vanish as r → 0 as

does the wave funtion for a short range repulsive poten-

tial as in hard sphere sattering where a ≃ R. Therefore
the Gutzwiller approximation may well apply for hard

sphere gases, strongly orrelated nulear �uids and liq-

uid helium as disussed in [10℄ but it does not apply to

the repulsive unitarity limit of ultraold gases when the

wave funtion has to obey the short range boundary on-

dition of Eq. (7).

0 1 2 3
0

1

2

3

β1

χ0/χT

P/P0 µ/EF

ak
F

Figure 2: (Color online) Universal funtions alulated within
JS at zero temperature vs. repulsive interation: the ratio of
interation and kineti energy β, the pressure and hemial
potential and the inverse spin suseptibility χ0/χT , all with
respet to their non-interative values. Note that χT diverges
at akF = 0.90 due to the FM instability. Full urves inlude
the FM transition whereas the dashed have FM suppressed,
i.e. remain in the PM phase.

It is ustomary to de�ne the universal funtion β =
Eint/Ekin as the ratio of the interation Eint and kineti

energy Ekin = (3/5)EF . In the JS model the interation

energy per partile is Eint = ~
2k2/2m = κ2/2md2 and

thus β = (5/3)κ2/k2
F d2 in the PM phase. In the FM

phase the spin densities di�er and the ratio of the average

interation to kineti energy an be onsiderably lower

than β as shown in Fig. (2).

Beause Eq. (9) has a string of solutions for a given

sattering length or kF a, κ and β are multivalued fun-

tions whih we distinguish by the index n = 0, 1, 2, ...
referring to the number of nodes in the many-body wave

funtion between any two atoms [12℄. β0 has been studied

extensively in the BCS-BEC rossover and β1 in the re-

pulsive rossover [1�3℄. In the repulsive unitarity limit

n = 1 the universal parameter is β1(kF a → ∞) =
5κ2

1/3(3π)2/3 ≃ 2.93. It has reently been measured for

a 6Li gas in two spin states [1℄. The hemial poten-

tial in the optial trap almost doubles going from the

non-interating to the unitarity limit. Sine it sales as

µ ∝
√

1 + β1(∞) we obtain β1(∞) ∼ 3 ompatible with

JS. In the following we onentrate on repulsive intera-

tions and use β = β1.

The interation energy for an atom with spin σ de-

pends on the density of unlike spins and is given by

λ = κ2
σ/2md2

σ ≡ (3/5)EFσ′β(akF,σ′), where β is the uni-

versal funtion for repulsive interations. We obtain the

total energy density at zero temperature by adding the

Fermi kineti energy and the interation energy λσ, and
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Figure 3: (Color online) Polarization vs. akF at T/TF =

0, 0.1, 0.2, ..., 0.5 from left to right. The seond order
transition yields a steep but ontinuous transitions P ∝√

akF − akc. The diamond indiates the transition point to
a pure one-omponent (P = ±1) FM at zero temperature.

sum over partile densities [11, 12℄

f =
3

5

∑

σ

EF,σρσ +
3

5

∑

σ 6=σ′

EF,σ′β(akF,σ′)ρσ + fT ,(10)

inluding a thermal free energy fT as given above. This

expression generalizes the standard expression for the en-

ergy density E/V = (3/5)EF (1 + β)ρ to �nite polar-

ization and temperature. The result an be understood

from dimensional arguments as β is dimensionless and

gives the repulsive energy of partiles of spin σ due in-

terations with partiles of opposite spin. Note that the

interation energy and its dependene on polarization is

given in terms of one universal funtion β of one variable

only. As shown in Fig. 2 the ratio of the interation to

kineti energy is redued by the FM transition w.r.t β.
Expanding Eq. (10) for small polarization gives

f

f0

= 1 + β +
5

9

χ0

χT
P 2 + O(P 4) , (11)

where the isothermal spin suseptibility is

χ0

χT
= 1 −

7

5
β −

2

5
akF β′ +

1

10
(akF )2β′′ +

π2

12

T 2

T 2
F

, (12)

with β′ = dβ/d(akF ) and β′′ = d2β/d(akF )2. In the

dilute limit β = (10/9π)akF and Eqs. (11) and (12)

redue to Eqs. (2) and (3) respetively.

The spin-suseptibility alulated within JS is shown

in Fig. 2 at zero temperature. It diverges at akF ≃ 0.90
where the universal funtion is βFM ≃ 0.53. By equat-

ing the energy of the unpolarized gas, ∼ (1 + β) with

that of a fully polarized (one-omponent) gas, ∼ 22/3, we

�nd that a �rst order transition requires β = 22/3 − 1 ≃

0 0.5 1 1.5 2
0

1

2

3

κ0/κT

γ

ak
F

Figure 4: (Color online) Compressibility and polytropi index
vs. repulsive sattering length (ak0

F ) at zero temperature.
Both are seond derivates of the free energy and are therefore
disontinuous at the FM transition.

0.59 > βFM , and therefore JS predits a seond order

FM transition as shown in Fig. 1. This transition point

is in remarkable agreement with two reent QMC alu-

lations whih �nd akF = 0.86 [7℄ and akF = 0.89 [8℄. The
QMC alulations ould not determine the order of the

transition within numerial auray. In the BCS-BEC

rossover a minor disrepany was found between JS [12℄

and QMC [14, 15℄ whih partly ould be attributed to

pairing whih is exluded in the JS wave funtion but

inluded in the QMC alulations with attrative inter-

ations. Sine pairing is absent for repulsive interations

in both QMC and the JS model, they are expeted to

math better near the FM transition. Note that the JS

wave funtion is also used as a starting point in the QMC

alulations of Refs. [8, 14, 15℄.

Minimizing the free energy of Eq. (11) we obtain

the polarization P ∝
√

−χ0/χT at the onset of FM as

shown in Fig. 3 at low temperatures. Full polarization

is reahed at akF ≃ 1.1 at zero temperature only.

The spin-suseptibility is related to the spin-

antisymmetri Landau parameter as FA
0 =

(m∗/m)χ0/χT − 1. The e�etive mass m∗ = m is

impliitly assumed in the JS energy of Eq. (10). It

has reently been measured in the BCS-BEC unitarity

limit m∗
0/m = 1.13 ± 0.03 [16℄ but not for the repulsive

rossover yet. Sine β at the FM transition point is

omparable to |β0|, these two e�etive masses may

be expeted to be similar. The small deviation from

m∗ = m only hanges the universal funtions and the

phase diagram slightly at higher temperature. The order

and the position of the transition is unhanged at zero

temperature.
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III. NUMBER FLUCTUATIONS

The density or loal number �utuations have reently

been measured in shot noise experiments for an ideal ul-

traold Fermi gas and by spekle noise in the BCS-BEC

rossover [17, 18℄. The number �utuations are measured

in a small subvolume of the atomi loud with almost uni-

form density. The �utuations in spin and total number

of atoms are diretly related to the spin suseptibility

and ompressibility respetively.

The loal �utuations in total number an for a large

number of atoms be related to the isothermal om-

pressibility κT = ρ−2(∂ρ/∂µ)V,T , by the �utuation-

dissipation theorem

(∆N)2

N
=

3

2

T

TF

κT

κ0

. (13)

Here, κ0 = 3/(2ρEF ) is the ompressibility for an ideal

Fermi gas at zero temperatures. An ideal lassial gas

has κT = 1/(ρkBT ) suh that the number �utua-

tions are Poisson: (∆N)2/N = 1. The ompressibil-

ity is related to the symmetri Landau parameter as

FS
0 = (m∗/m)κ0/κT − 1.
The ompressibility an generally be expressed in

terms of the universal funtion β [20℄ at zero temper-

ature

κ0

κT
= 1 + β +

4

5
akF β′ +

1

10
(akF )2β′′, (14)

in the PM phase. One the FM transition sets in, the

ground state energy of Eq. (10) is lowered due to �-

nite polarization and the inverse ompressibility drops

as shown in Fig. 4 for JS. It is disontinuous when the

seond order FM transition sets in beause it is a se-

ond derivative of the free energy whih is softened by

the spin-suseptibility term in Eq. (11). In the pure

one-omponent FM phase the ompressibility is that of

an ideal one-omponent gas κ0/κT = 22/3. The peuliar

and disontinuous behaviour of the ompressibility at the

FM transition is diretly re�eted in the �utuations in

total number aording to Eq. (13).

If the FM transition was �rst order the ompressibil-

ity diverges at the phase transition, i.e., κ0/κT vanishes

in part of the density region where 0 < P < 1 (see

Figs. 3+4). Consequently, the number �utuation also

diverges aording to Eq. (13) re�eting the density dis-

ontinuity at a �rst order transition.

The �utuation-dissipation theorem also relates the

thermal spin �utuations to the spin suseptibility

∆(N↑ − N↓)
2

N
=

3

2

T

TF

χT

χ0

. (15)

At the FM instability the spin-suseptibility and there-

fore also the spin �utuations diverge re�eting that

phase separation ours between domains of polarization

±P . Suh domains were, however, not observed in the

experiments of [1℄ within the spatial resolution of the ex-

periment.

IV. TRAP RADII AND KINETIC ENERGIES

In experiments the atoms are on�ned in harmoni

traps. For a su�iently large number N =
∑

σ Nσ of

partiles on�ned in a (shallow) trap the system size Rσ

is so long that density variations and the extent of possi-

ble phase transition interfaes an be ignored and one an

apply the loal density approximation. The total hemi-

al potential is given by the sum of the harmoni trap po-

tential and the loal hemial potential µσ = (df/dρσ)V,T

µσ(r) +
1

2
mω2r2 =

1

2
mω2R2

σ , (16)

whih must be onstant over the lattie for all ompo-

nents σ = 1, 2, .., ν. It an therefore be set to its value

at its edge Rσ, whih gives the r.h.s. in Eq. (16). The

equation of state determines the hemial potentials µσ

in terms of the universal funtion of Eq. (10).

In a two-omponent spin-balaned system the hemi-

al potential and radii of the two omponents are equal

(denoted µ and R in the following). In the FM phase

their densities ρ(1 ± P ) di�er but these FM spin do-

mains oexist. Using the JS EoS of Eq. (10) to al-

ulate the hemial potential we an �nd the density dis-

tribution from hemial equilibrium Eq. (16) inluding

phase transitions and alulate loud radii R, the root

mean square RMS =
√

〈r2〉 and kineti energy Ekin =
〈k2

F /2m〉 averaged over all partiles in the trap. These

are shown in Fig. 5 normalized to their values trapped

non-interating ultraold atoms, R0 = (24N)1/6a0 ,

RMS0 =
√

3/8R0 and E0
kin = (3/8)E0

F respetively.

Here, E0
F = (~k0

F )2/2m and k0
F = (24N)1/6/a0 are the

Fermi energy and wave number in the entre of the trap

for non-interating atoms and a0 =
√

~/mω is the os-

illator length. Repulsive interations redue the entral

density and Fermi energy as an be seen from kF /k0
F

shown in Fig. 5. As a onsequene the radii inrease

exept for the RMS radius above the FM transition (see

Fig. 5). It dereases beause atoms are redistributed

from the PM phase near the surfae to the FM phase

in the entre. The kineti energy of the atoms has the

opposite behaviour beause repulsion inreases the inter-

ation energy in the PM phase at the ost of the kineti

energy.

In the reent experiment of Ref. [1℄ a transition is ob-

served around ak0
F ≃ 2.2 at temperatures T/E0

F = 0.12
(and ak0

F ≃ 4.2 at T/EF = 0.22), whih is ompatible

with the �rst order alulation of Ref. [19℄. This transi-

tion point is a fator of ∼ 2 larger than the FM transition

point alulated in all models [4�8℄ as well as JS. Resal-

ing ak0
F by a fator 2 we �nd very good quantitative and

qualitative agreement with the data of [1℄ as was found

in the seond order alulation of Ref. [6℄). The distint

transitions in the radii, kineti energies and atomi losses

are well reprodued qualitatively and quantitatively after

resaling ak0
F by a fator 2. It is urrently not under-

stood why all the higher order and QMC alulations lead

to a larger disrepany than the simpler �rst order when
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Figure 5: (Color online) Radius of the trapped loud, RMS
radius, kineti energy and entral Fermi wavenumber all at
zero temperature and relative to their non-interation values
vs. repulsive sattering length (ak0

F ). Dashed urved shows
the RMS radius for a PM phase where the FM transition is
inhibited. Due to repulsion the entral density and thus kF

is lower.

ompared to experiments. As disussed above there are

no pairing interation in neither QMC nor the JS model

for repulsive interations. However, the strongly repul-

sive interation limit is metastable w.r.t. three-body in-

terations as well as a transition to the paired BCS state

with no nodes in the Jastrow two-body orrelation fun-

tion, and it ould be responsible for the earlier on-set of

the FM transition.

Another puzzling result was the apparent absene of

FM domains within the spatial resolution of the experi-

ment of Ref. [1℄. We suggest to start out with an unbal-

aned spin system where marosopi FM domain sizes

an be realized and diret observation of large FM do-

mains is possible. As the repulsion is inreased the RMS

radii of the minority spins inreases faster than that of

the majority spins. When the FM transition ours the

system favours a ore with predominantly majority spins

surrounded by a mantle of both spins in a PM phase.

With inreasing spin imbalane the majority spin purity

of the FM ore inreases, i.e. the domains are e�etively

separated on a large sale. The amount of separation and

hange in radii will depend on the overall spin imbalane.

Three omponent systems with more than one Fesh-

bah resonane as in 6Li are also more ompliated. For

example, when the Feshbah magneti �eld is suh that

two resonanes a12 and a13 are large but a23 small, the

atoms will separate between a FM phase of 1 and a mixed

FM phase of 2+3 with di�erent densities.

V. COLLECTIVE MODES

Colletive modes have been studied intensively in the

BCS-BEC rossover where they reveal important infor-

mation of the equation of state (EoS) and determine

β0(akF ). When the EoS an be approximated by a sim-

ple polytrope P ∝ ργ+1 the olletive eigen-frequenies

an be alulated analytially [20, 21℄ in terms of the

polytropi index γ. Even when the EoS is not a perfet

polytrope the olletive modes in the BCS-BEC rossover

ould be desribed well using the e�etive polytropi in-

dex at densities near the entre of the trap given by the

logarithmi derivative [20℄

γ ≡
ρ

P

dP

dρ
− 1 =

2

3
(1 + β) + 5

6
akF β′ + 1

6
(akF )2β′′

1 + β + akF β′/2
.(17)

We therefore alulate γ within JS for repulsive intera-

tions as shown in Fig. 4. Like the ompressibility it has

a disontinuity at the FM phase transition beause it is a

seond derivative of the free energy with a seond order

transition. In both the dilute limit and pure FM phase

the gas is ideal with polytropi index γ = 2/3.
For a very elongated or igar-shaped trap (prolate

in nulear terminology), λ ≪ 1, used in most experi-

ments [22, 23℄, the olletive breathing modes separate

into a low frequeny axial mode with osillation fre-

queny ωax =
√

3 − (γ + 1)−1 ω3 and a radial mode with

ωrad =
√

2(γ + 1) ω0 [21℄.

The spin dipole mode is more ompliated beause it

is sensitive to the spin suseptibility whih diverges at

the FM transition point. The EoS is far from polytropi

and the deliate alulation of spin dipole modes with

diverging spin suseptibility is beyond the sope of this

work. The spin dipole mode is estimated within a sum

rule approah in Ref. [24℄.

VI. MULTICOMPONENT SYSTEMS

Interesting information on the order of the FM tran-

sition an be obtained by generalizing the above results

to Fermi gases with more that two spin states suh as
6Li with ν = 3 hyper�ne states [25℄, 137Yb with six nu-

lear spin states [26℄, and heteronulear mixtures of 40K

and 6Li [27℄. The interations and phases an be very

ompliated when the Feshbah resonanes between var-

ious omponents di�er as for 6Li. In the following we

restrit ourselves to multi-omponents with the same rel-

ative sattering length a.
In the dilute ase the ondition for a �rst order phase

transition in a ν omponent system an be found from

the energy density of Eq. (1). The preferred transition

is diretly from ν = 1 to a domains of one-omponents

system ν = 1 whih ours when

akF =
9π

10

ν2/3 − 1

ν − 1

(

1 +
5π2

12

T 2

T 2
F

ν−2/3

)

. (18)
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At zero temperature this ondition is akF ≃
1.66, 1.53, 1.43, 1.36, et. for ν = 2, 3, 4, 5, 6, .. respe-

tively. The ondition for a seond order transition is

found by expanding the dilute multi-omponent free en-

ergy for small polarization. One �nds the same spin

suseptibility as in the two-omponent ase, Eq. (4),

and therefore the putative the seond order transition

remains at akF = π/2 ≃ 1.57. Comparing numbers we

onlude that at zero temperature the seond order tran-

sition ours for ν = 2 only in the dilute ase whereas for

ν ≥ 3 the FM transition is �rst order and given by Eq.

(18). At �nite temperatures the seond order transition

of Eq. (3) math the �rst order of Eq. (18) at a temper-

ature whih determines the tri-ritial point (akF , T ) in

the phase diagram for ν ≥ 3 as shown in Fig. 6.

The free energy of the JS model, Eq. (10), also applies

to multi-omponent systems. The ondition for a �rst

order FM transition to oexisting fully polarized (one-

omponent) FM domains is

β(akF ) =
ν2/3 − 1

ν − 1

(

1 +
5π2

12

T 2

T 2
F

m∗

m
ν−2/3

)

. (19)

At zero temperature the FM transition ours for β =
0.59, 0.54, 0.51, 0.48, .. at akF = 0.96, 0.91, 0.87, 0.84, ..
for ν = 2, 3, 4, 5, .. respetively. As in the dilute ase

the spin-suseptibility is unhanged, Eq. (12), in the JS

model and the putative seond order transition remains

when β = 0.53 at akF = 0.90. Thus the FM transition at

is at zero temperature marginally seond order for ν ≤ 3
but �rst order for ν ≥ 4. Again the tri-ritial points

(akF , T ) are determined by the mathing ondition for

the �rst Eq. (19) and seond Eq. (12) order transitions

and are shown in Fig. 6.

Generally the di�erene between �rst and seond or-

der FM transition is small whih may explain why QMC

ould not determine the order within numerial auray

[7, 8℄. First order transitions to partially polarized FM

does not our for two-omponent systems but may be

possible in multi-omponent systems.

The marginal �rst vs. seond order FM transition

for ν = 3 is analogous to the marginal stability in the

unitary limit of the BCS-BEC rossover [12℄. Here it is

known that two-omponent systems are stable but four-

omponent systems are unstable as in nulear matter.

VII. SUMMARY AND OUTLOOK

By extending the Jastrow-Slater approximation to �-

nite polarization and temperature we have alulated a

number of thermodynami funtions and observables for

old Fermi atoms with repulsive interations. In par-

tiular we found a seond order FM phase transition at

akF ≃ 0.90 at zero temperature in lose agreement with

QMC. The ompressibility and spin suseptibility were

alulated and the resulting observables like the �utua-

tions in total number and spin as well as olletive modes

0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

ak
F

T
/T

F

ν=6  5 4  3   2

ν=6   5   4      3       2

JS Dilute

Figure 6: (Color online) Phase diagrams for multi-omponent
(ν = 2, 3, 4, 5, 6 from left to right) Fermi gases with repul-
sive interations. Full (dashed) urves indiate �rst (seond)
order PM to FM transitions within JS and dilute approx-
imations. Cirles indiate the tri-ritial points where the
transition hanges from �rst to seond order at higher tem-
peratures.

are disontinuous at the transition point. These an be

distinguished from a �rst order transition where, e.g., the

ompressibility diverges.

For trapped gases the radii and kineti energies also

have harateristi behaviour as funtion of repulsive in-

teration strength when the FM transition ours in the

entre. If the interation strength is redued by a fator

∼ 2 the radii and kineti energies of JS and Ref. [6℄ agree

qualitatively and quantitatively with experiments [1℄. In

order to observe the FM domains we suggest to start out

with a spin-imbalaned system of two-omponent Fermi

atoms and tune the magneti �eld towards the Feshbah

resonane from the repulse side where the FM transition

sets in. As result the ore will be a large domain of the

majority spin only whih exeeds the experimental do-

main size resolution.

It would be interesting to study multi-omponent sys-

tems suh as the three omponent 6Li system near Fesh-

bah resonanes where bulk separation between the spin

omponent domains is predited to take plae. Multi-

omponent systems with the same interations (and sat-

tering lengths) between states display interesting phase

diagrams with �rst to seond order tri-ritial points

when the number of omponents exeeds two in the dilute

ase and three in the JS model.
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