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a  b  s  t  r  a  c  t

To  determine  the  origin  of  the  quasi-two-dimensional  electron  gas  formed  at the  interface  between  the
two  complex  oxides  of  LaAlO3 (LAO)  and  SrTiO3 (STO),  various  amorphous  films  of  LAO,  La2O3, Al2O3,
and  La7/8Sr1/8MnO3 (LSMO),  were  deposited  on  TiO2-terminated  (0  0  1) STO  substrates  by  pulsed  laser
deposition  at  room  temperature.  Metallic  interfaces  are  observed  when  the  over-layers  are  amorphous
LAO,  La2O3,  or  Al2O3, while  insulating  interfaces  are  observed  when  the  over-layer  is LSMO.  The  interfacial
conductivity  of these  SrTiO3-based  hetero-structures  shows  strong  dependence  on  both  film  thickness
and  oxygen  pressure  during  film  growth.  The  possible  origin  for  the  occurrence  of metallic  interfaces  in
these  complex  oxide  hetero-structures  due  to redox  reactions  at  the STO  substrate  surface  is  discussed.  A
thermodynamic  criterion  for  designing  either  metallic  or insulating  interfaces  between  complex  oxides
is proposed.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Complex oxides exhibit a wide range of ionic, electronic, and
magnetic properties, which have shown extensive applications
in multifunctional devices [1].  The recent advances of fabricat-
ing oxide materials at atomic level with controlled structure and
composition, especially the epitaxial growth of high-quality com-
plex oxide films on unit cell scale [2],  provide new challenges and
opportunities to explore and design novel materials or devices
with tailored properties. A particular example in this area is the
observation of metallic conductivity at the interface between the
two nominal insulators of LaAlO3 (LAO) and SrTiO3 (STO) [3].
It has been demonstrated that the LAO/STO interface not only
exhibits a broad range of interesting physical properties, such as
superconductivity [4] and large magnetoresistance [5],  but also
shows versatile application potentials in oxide electronics, such
as electric-field-controlled interfacial conductivity [6,7] and even
resistance switching [8].  Nevertheless, the basic question of the
mechanism underlying the conductivity at the interface remains
unclear [9].  To date, three dominant mechanisms have been pro-
posed to explain the interfacial conductivity [9].  The most prevalent
opinion is the electronic reconstruction due to the polar discon-
tinuity at the polar–nonpolar interface [3].  This seems consistent
with the observation that the interfacial conductivity only occurs
when the LAO thickness equals or exceeds a critical thickness of
4 unit cells (1.6 nm)  [6]. The other two viewpoints rely on the
unintentional doping of the STO by La elements from the LAO
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films [9] or oxygen vacancies formed in STO substrates [10]. Intri-
cately, the latter two  mechanisms both exhibit clear experimental
evidence [9,10].  As a consequence, the situation turns out that
the three explanations mentioned above may  all play roles in
the conductivity at the interface of LAO/STO when the LAO films
are deposited at high temperature to form a crystalline struc-
ture. However, the mechanism that plays the dominant role in the
interfacial conductivity in LAO/STO has not been unambiguously
determined. One question that arises is whether the conductiv-
ity would also be observed in LAO/STO hetero-structures if the
top LAO film is amorphous, where both polar discontinuity and
cation intermixing at the interface are expected to be significantly
suppressed.

Recently, we grew various amorphous oxide films on STO sub-
strates by pulsed laser deposited (PLD) at room temperature.
Remarkably, metallic conductivities were observed at the inter-
face between STO single crystalline substrates and amorphous
LAO (aLAO) capping films [11]. Furthermore, the conductivity of
these amorphous–crystalline aLAO/STO hetero-structures exhibits
critical dependence on both film thickness and oxygen pressure
during film deposition, resembling the characteristic features found
in the intensively researched crystalline–crystalline samples. We
suggested that the conductivity resulted from oxygen vacancies
formed on the STO side when the STO surface is exposed to reactive
species of the PLD plasma [11]. Here, with the aim to determine
the respective roles of the plasma composition on the interfacial
conductivity, we  further demonstrate that either a La2O3 or an
Al2O3 plasma can result in a metallic interface conductivity in the
formed STO-based hetero-structures. The possible mechanisms for
the occurrence of interfacial conductivity are discussed, which are
mainly ascribed to the chemical interactions at the hetero-interface
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Fig. 1. (a)–(c) The temperature dependent Rs, ns, and �s, respectively, for the aLAO/STO samples with amorphous 26.5 nm LAO films deposited at different PO2 .

and can be used to design either metallic or insulating interfaces
between complex oxides.

2. Experimental details

The LAO, La2O3, Al2O3 and La7/8Sr1/8MnO3 (LSMO) films were
grown under different oxygen pressure, PO2 , ranging from 1 × 10−4

to 100 Pa, by PLD using a KrF laser (� = 248 nm) with a repetition
rate of 1 Hz and laser fluence of 4 J cm−2 at room temperature.
The target-to-substrate distance was fixed at 5.0 cm.  For depositing
LAO films, a commercial LAO single crystal was  used as the tar-
get. For depositing La2O3, Al2O3 and LSMO films, ceramic targets
with nominal composition were used. All films were deposited on
singly TiO2-terminated (0 0 1) STO substrates, which were achieved
by chemical etching followed by heat treatment [12]. The films
were formed in amorphous states. This was confirmed by in situ
high pressure reflection high energy electron diffraction (RHEED).
The sheet resistance, Rs, and carrier density, ns, of the buried
interface were measured using a 4-probe Van der Pauw method
with ultrasonically wire-bonded aluminum wires as electrodes.
The temperature dependent electrical transport and Hall-effect
measurements were performed in a Quantum Design physical
properties measurement system (PPMS) in the temperature range
from 300 K down to 2 K with magnetic fields up to 14 T.

3. Results and discussion

Fig. 1(a)–(c) shows the temperature dependent sheet resistance,
Rs, carrier density, ns, and electron mobility, �s, respectively, for
the aLAO/STO hetero-structures deposited at different PO2 . The
film thickness, t, is about 26.5 nm for all the samples. As shown in
Fig. 1(a), films deposited at PO2 ≈ 1 × 10−4 Pa and PO2 ≈ 1 × 10−3 Pa,
exhibit metallic interfaces from 300 K down to around 30 K. The
electron densities at T = 300 K obtained from the Hall-effect mea-
surements are ns = 1.2 × 1014 cm−2 and ns = 5.8 × 1013 cm−2 for PO2
≈ 1 × 10−4 Pa and PO2 ≈ 1 × 10−3 Pa, respectively. For both metal-
lic samples, ns is constant in the temperature range of 100–300 K.
However, a distinct decrease in ns with decreasing temperature
appears at T < 100 K, whereas �s increases gradually with decreas-
ing temperature in the whole range of 2–300 K. Increasing PO2
to 0.01 Pa results in the presence of a distinct metal-to-insulator
transition around T = 40 K upon cooling at the hetero-interface.
Further increasing PO2 to 0.1 Pa decreases the interface con-
ductivity significantly, where only a semiconducting behavior is
observed with ns = 1.6 × 1012 cm−2 and �s = 4.7 cm2 V−1 s−1 around

300 K. When PO2 is increased to higher than 1 Pa, no measurable
interfacial conductivity can be observed anymore. Therefore, the
amorphous–crystalline aLAO/STO samples exhibit strong depen-
dence on oxygen pressure of film growth, which is similar to the
situation in crystalline–crystalline LAO/STO samples [5]. Mean-
while, it is interesting to note that the carrier density for the
amorphous STO-based hetero-structures is of the same order
of magnitude as those reported for crystalline LAO/STO hetero-
structures deposited at high temperature [3–10].

Fig. 2 (a) shows the dependence of the Rs on film thick-
ness at T = 300 K for the aLAO/STO hetero-structures deposited
at different oxygen pressure of 1 × 10−4, 1 × 10−3, and 0.01 Pa.
As shown in the figure, the interface is highly insulating below
a critical value around t = 1.8 nm,  t = 2.7 nm and t = 5.4 nm for
PO2 of 1 × 10−4 Pa, 1 × 10−3 Pa and 0.01 Pa, respectively. How-
ever, the interface switches to conductive once the film thickness
is higher than the critical value. More interestingly, the inter-
face obtained at PO2 of 1 × 10−4 Pa and 1 × 10−3 Pa turns from
the highly insulating states to metallic states directly, as shown
in Fig. 2(b) for PO2 = 1 × 10−4 Pa. These metallic states are quite
different from the resistive states observed at the higher PO2
of 0.01 Pa and 0.1 Pa as shown in Fig. 1(a), though a resistance
abnormality at T ≈ 250 K is observed in the t = 1.8 nm sample. In
short, the amorphous–crystalline aLAO/STO samples also exhibit
a critical thickness effect, which is a prominent feature of the
crystalline–crystalline samples [6].  This is rather striking, since
the threshold film thickness of t ≈ 1.6 nm has been regarded as
the minimum thickness requirement for the occurrence of charge
transfer to alleviate the “polar catastrophe” in crystalline LAO/STO
samples [6].  However, the “polar catastrophe” is negligible in the
amorphous–crystalline samples investigated here since there is no
long-range translational symmetry in the amorphous over-layers.
From Fig. 2(a), it is also indicated that the critical thickness for the
occurrence of interface conductivity increases with enhanced oxy-
gen background pressure, which is also not compatible with the
“polar catastrophe” viewpoint.

As for the origin of the conductivity, the signature of Ti3+ near
the interface as determined by in situ X-ray photoelectron spec-
troscopy (XPS) measurements indicates that the oxygen vacancies
on the SrTiO3 side may  account for the conductivity in these hetero-
structures with amorphous capping films [11]. What is the driving
force for the accumulation of oxygen vacancies on the STO side?
It has been generally argued that the oxygen vacancies are created
by the bombardment due to the high energy of the arriving species
during PLD process [10,13,14].  However, this should be ruled out
here, since it is not compatible with the thickness dependence of
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Fig. 2. (a) The film thickness dependent Rs at 300 K of the aLAO/STO hetero-structures deposited at different oxygen pressure of 1 × 10−4, 1 × 10−3, and 0.01 Pa. (b) The
temperature dependence of Rs for aLAO/STO samples with different film thickness deposited at PO2 ≈ 1 × 10−4 Pa.

the conducting behavior as shown in Fig. 2(a) [11]. Furthermore,
this is also not consistent with the fact that the deposition of amor-
phous LSMO (aLSMO) films on STO substrates does not result in
any interfacial conductivity as discussed later. Besides the high
energy of the plasma species, there are generally a large fraction
of neutrals, such as La and Al, diatomic oxides of the much reac-
tive plume cations, such as LaO, and a small fraction of positive
ions and electrons, in the composition of the PLD plasma for PO2
≤ 0.1 Pa [14]. We  suggest that the oxygen vacancies in STO-based
hetero-structures might result from the outward diffusion of oxy-
gen ions from the STO lattice due to the exposure of the STO surface
to chemically reactive plasma species during deposition. To deter-
mine the respective role of the Al or La related plasma composition
on the outward diffusion of oxygen ions and thus the interface con-
ductivity at the STO surface, we further deposited amorphous La2O3
(aLa2O3) and amorphous Al2O3 (aAl2O3) films on STO substrates at
different oxygen pressures.

Fig. 3 shows the PO2 dependence of the sheet conduc-
tance at T = 300 K for the aLAO/STO, aLa2O3/STO, aAl2O3/STO and
aLSMO/STO hetero-structures with the film thickness of about
25 nm.  Results for the crystalline LAO/STO samples (Refs. [5,10])
are also given for comparison. As shown in Fig. 3, the interfaces
of aLa2O3/STO and aAl2O3/STO are highly insulating at PO2 of 1 Pa,

Fig. 3. The dependence of sheet conductance at T = 300 K on the oxygen pressure
of  film growth for the aLAO/STO, aLa2O3/STO, aAl2O3/STO and aLSMO/STO hetero-
structures with film thickness of about 25 nm.  Results for the crystalline LAO/STO
samples are also shown for comparison.

similar to the case of aLAO/STO samples. This may result from the
fact that the majority of the reactive species in the PLD plasma have
been oxidized due to their significant collisions with the oxygen
background gas before reaching the STO surface [14]. Interest-
ingly, conductive interfaces are observed in both La2O3/STO and
Al2O3/STO hetero-structures grown at lower oxygen pressures of
1 × 10−4 Pa and 0.01 Pa. This indicates that both Al and La related
plasma composition could result in oxygen vacancies at the STO
surface when depositing at lower oxygen pressure. Therefore, both
of them may  contribute to the conduction in LAO/STO hetero-
structures. It has been indicated that the charged species in the
plasma composition contribute to the interfacial conductivity [15].
Here, we further suggest that the neutrals of La or Al in LAO plasma
should also play a role in the interfacial conductivity.

It should be noted that the oxidization of neutral La and Al is
generally highly favorable even in the oxygen pressure range of
PO2 ≤ 0.1 Pa due to their high affinity to oxygen. The reason for
their presence near the STO surface during PLD film deposition is
probably due to the rather high instantaneous growth rate inher-
ent to the PLD process, where a large flux of species (of the order of
1020 atoms cm−2 s−1) incident to the target surface during one laser
pulse. In this case, the oxidation of the high flux of cation species
during film growth can be kinetically limited by the availability of
sufficient oxygen in the chamber, particularly for the low oxygen
pressure of PO2 ≤ 0.1 Pa. It is worth noting that when reactive met-
als, such as La and Al, contact the STO surface, a redox reaction at
the interface occurs by oxidizing the metal overlayer and reducing
the oxide substrate through charge transfer from the metal atoms
to Ti4+ in STO [16]. For the conventional metal/oxide interfaces, a
thermodynamic criterion for the occurrence of metal oxidation on
STO surfaces is that the heat of oxide formation per mole of oxy-
gen should be lower than −250 kJ/(mol O) [16]. Surprisingly, most
of the conductive interfaces observed in STO-based oxide/oxide
hetero-structures prepared by PLD, LAO/STO [3],  LaTiO3/STO [17],
LaVO3/STO [18], CaHfO3/STO [13], STO/STO [11], Yttria-stabilized
zirconia (YSZ)/STO [11], LaGaO3/STO [19], and BiFeO3/STO [20],
consist of cation elements following the above thermodynamic
criterion. However, it should be mentioned that the deposition
of aLSMO films, whose cation elements also fall in the thermo-
dynamic criterion, do not show any interfacial conductivity, as
shown in Fig. 3. This may  due to that fact that the oxidation of
the reactive metals is also controlled by the space charges at the
metal/oxide interface, which is determined by the interface elec-
tronic configuration, i.e. the relative Fermi level of the metal and
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that of the oxide before contact [16]. Besides the requirement
for the heat of oxide formation �Hf

O < −250 kJ/(mol O), another
requirement for the occurrence of room temperature interfacial
redox reaction is that the work function of the metals, ϕ, is in the
range of ϕ < 5.0 eV [16]. Interestingly, for the LAO film growth with
conducting interfaces, one of the main neutral species in freely-
expanding plume (at PO2 ≤ 0.1 Pa) is Al, which obeys the above
criterions. On the other hand, Mn,  the main atomic species of the
corresponding LSMO plasma, locates on the border region for the
occurrence/non-occurrence of redox reactions on the TiO2 surface
at room temperature [16]. Therefore, the lack of redox reactions at
the interface of our amorphous LSMO/STO samples should explain
their insulating interfaces. This argument fits very well with the
clearly reduced amount of Ti3+ observed by XPS in the LSMO/STO
heterostructure deposited even under PO2 ≈ 1 × 10−4 Pa [11]. To
date, four kinds of STO-based hetero-structures: LAO/STO [11],
STO/STO [11], YSZ/STO [11], and CaHfO3/STO [13], which consist
of ternary ABO3-type complex oxides, have been found to exhibit
metallic interfaces that can be realized during room temperature
deposition. Interestingly, the B site cation elements in these cap-
ping films all follow the above criterions [here, �Hf

O < −250 kJ/(mol
O), 3.75 eV < ϕ < 5.0 eV].

Generally, the reduction of the STO substrate shows kinetic lim-
its at room temperature, which is either associated with the redox
reaction itself or due to the diffusion limitation of oxygen ions,
as demonstrated in the case of metal/oxide interfaces [16]. There-
fore, the observed interfacial conductivity in amorphous STO-based
oxide hetero-structures deposited at room temperature is sug-
gested to be confined near the interface. When the temperature is
elevated, extended out-diffusion of oxygen ions could be activated
at rather low oxygen pressure (for STO, this becomes clear above
350 ◦C). This can result in the bulk STO substrate being completely
reduced and becoming highly conductive even without any film
deposition [21]. The film deposition on STO at high temperature
can further enhance the out-diffusion of oxygen ions significantly,
such as the case under PO2 ≈ 1 × 10−4 Pa [22]. On the other hand,
high temperatures can facilitate the incorporation of oxygen into
the film and the STO substrate at high oxygen pressures [21]. This
could remove the oxygen vacancies formed at the interface, and
should be the main reason why all the conductive interfaces in STO-
based hetero-structures, including all LAO/STO samples [3,10],  turn
insulating after suitable annealing in high oxygen pressure (this
process also depends on the annealing time [21]). Therefore, to
achieve a conductive interface in complex oxide hetero-structures,
it is essential to understand how to freeze the oxygen vacancies
near the interface, which is a topic related to the defect chemistry
of oxides [21,23].

Finally, besides the charged species and neutral metals, a ques-
tion remains open on whether the oxides in the PLD plume or the
ultimately formed oxide film alone could result in a conductive
interface when they contact with the STO surface. This seems pos-
sible considering that a space charge layer may  also appear when
two oxides meet at the interface, which could lead to a dramatic

change in the interfacial electrical properties. However, this topic
is not considered here.

In summary, metallic interfaces are observed in STO-based
hetero-structures when the deposited films are amorphous LAO,
La2O3, or Al2O3, though the interfaces remain highly insulating
when the capping film is LSMO. The interfacial conductivity of the
amorphous hetero-structures shows strong dependence on both
film thickness and oxygen pressure during film growth. The redox
reaction at the interface, by oxidizing deposited films and reducing
the STO substrate, probably accounts for most of the metallic inter-
faces observed in these oxide hetero-structures. Besides electronic
interactions, chemical reaction related nonstoichiometry near the
interface could be an alternative way to design complex oxide
hetero-structures with novel physical properties.
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