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a  b  s  t  r  a  c  t

Many  fish  stock  assessments  are  based  on  numbers  at age  from  research  sampling  programmes  and
samples  from  commercial  catches.  However,  only  a small  fraction  of  the  catch  is typically  analyzed  for
age as  this  is  a  costly  and  time-consuming  process.  Larger  samples  of the  length  distribution  and  a so-
called  age-length  key  (ALK) is  then  used  to obtain  the  age  distribution.  Regional  differences  in ALKs  are  not
uncommon,  but  stratification  is often  problematic  due  to  a  small  number  of  samples.  Here,  we  combine
generalized  additive  modelling  with  continuation  ratio  logits  to model  the  probability  of  age  given  length
and spatial  coordinates  to  overcome  these  issues.  The  method  is applied  to data  gathered  on  North  Sea
haddock (Melanogrammus  aeglefinus),  cod  (Gadus  morhua),  whiting  (Merlangius  merlangus)  and  herring
(Clupea  harengus)  and  its  implications  for a simple  age-based  survey  index  of  abundance  are  examined.
The  spatial  varying  ALK  outperforms  simpler  approaches  with  respect  to  AIC  and  BIC,  and  the survey
indices  created  using  the  spatial  varying  ALK  displays  better  internal  and  external  consistency  indicating
improved  precision.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Estimation of catch at age from combined samples of length and
age is standard procedure in analyses of fisheries data. Only a small
fraction of the catch is typically analyzed for age as this is a costly
and time-consuming process. Larger samples of the length distri-
bution and a so-called age-length key (ALK) are then used to obtain
the age distribution.

The ALK is typically estimated from length-stratified subsam-
ples of the catch that are analyzed for age by examining the annual
ring structure in the otholiths. Missing or few data points for a given
combination of strata such as age, length group, and geographi-
cal area frequently occur due to unreadable otholiths or simply
because no fish were caught. In this case the raw observed pro-
portions of age-at-length are unsuitable for assigning age to fish in
these length groups. A solution to this problem is to use a statistical
model to create a smooth distribution of age given length and pos-
sibly other covariates, such that missing values can be interpolated
in an objective and robust way, and the uncertainty due to the sam-
pling variability can be taken into account. A statistical model also
has the advantage of allowing formal testing of hypotheses such as
whether two ALKs can be considered identical.

Continuation ratio logits (CRLs) is a type of model for ordered
categorical responses (such as age groups) and it has previously

∗ Corresponding author.
E-mail address: cbe@aqua.dtu.dk (C.W. Berg).

been used for modelling ALKs (Kvist et al., 2000; Rindorf and Lewy,
2001). In addition to ALKs, Rindorf and Lewy (2001) also applied
CRLs for estimating smooth length distributions.

CRLs have also been used to investigate spatial differences in
ALKs (Gerritsen et al., 2006; Stari et al., 2010). In both cases,
significant spatial differences were found in ALKs for North Sea
haddock. Gerritsen et al. (2006) divided their data into 3 depth
strata and examined the differences between using a single ALK and
ALKs calculated for each stratum. The shallow stratum was signifi-
cantly different from the deeper strata, with higher probabilities for
younger fish in the shallow stratum. Using a combined ALK for all
the strata resulted in nearly twice as many 1-year olds compared to
a survey index calculated from the stratified ALKs. Stari et al. (2010)
found significant differences between geographical areas, mature
and immature fish, commercial and survey data, and fleets using
different fishing gear.

In all previous applications of CRLs to ALK modelling, Gener-
alized Linear Models (GLMs) have been used for estimation, and
stratification has been used to model the effect of regional differ-
ences. Any type of stratification will exacerbate the problems with
missing data, and the choice of strata will often be a somewhat sub-
jective decision made by the modeller. In situations where detailed
information about the geographical origin of the age samples is
available, it is possible to consider alternatives to stratification by
area.

One such alternative is to use Generalized Additive Models
(GAMs) in place of GLMs. GAMs is a non-parametric tool for non-
linear modelling, which allows smooth functions of the explanatory
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variables in the specification of the mean value distribution, and
numerous studies have used GAMs for modelling spatial effects.
Toscas et al. (2009) used GAMs to fit spatio-temporal models of
prawn catches with 2D thin plate regression splines for modelling
spatial variation. The GAMs interpolated the data well, but extrapo-
lation beyond data coverage was found to be problematic. Maxwell
et al. (2012) compared GAMs to a stratified mean method (strat-
ification in time and space) for estimating egg production of cod,
plaice, and haddock in the Irish Sea. The methods gave relatively
consistent estimates, but the GAM methodology offered higher pre-
cision and was better suited for handling missing observations. For
a thorough introduction to GAMs see Wood (2006).

In this study we describe how GAMs can be used for fitting CRLs
to model age as a smooth function of length and geographical posi-
tion. In addition to the advantages offered by the GLM approach,
it eliminates the need for spatial stratification by providing an ALK
that varies smoothly with geographical position.

The methodology has been fully implemented in the DATRAS
software package (Kristensen and Berg, 2012) for R (R Development
Core Team, 2012), which offers an accessible way to cre-
ate ALKs from all the data available in the DATRAS database
(www.datras.ices.dk) as well as other data using this format.

Using ten years of survey data the new method is compared to
the traditionally applied regional stratification of ALKs to determine
whether a significantly better fit to data is obtained. Further-
more, internal and external consistencies are calculated to examine
whether the new method leads to improved precision when used
to create indices of abundance by age.

2. Methods

The response variable is the age group of a fish, a = R . . . A,
i.e., ordered categorical also known as ordinal response, where R
denotes the youngest age category and A is the oldest. The latter
category is often defined to be a “plus group” which consists of fish
of age A or older. For each fish where the age has been determined,
a set of covariates x is also available, which in this study includes
the length l of the fish and the spatial coordinates of the fishery.

The continuation ratio model (Agresti, 2010) is well suited to
model the distribution of ages Pa(x) = {pR . . . pA}. This is accom-
plished through A minus R models for the conditional probability
of being of age a given that it is at least age a. That is, let

�a = P(Y = a|Y ≥ a) = pa

pa + · · · + pA
, a = R . . . A − 1

be those conditional probabilities and let our set of continuation
ratio logits be given by GAMs of the following type:

logit(�a[xi]) = x∗
i �a + f1a(x1i) + f2a(x2i, x3i) + f3a(x4i)x5i + · · ·,

a = R . . . A − 1

where xi is a vector of covariates, x∗
i

is a subset of the covariates
entering linearly in the model, � is the corresponding parameter
vector, and fj denotes some smooth function of the covariates xk,
which may  be of one or more dimensions and also multiplied by
known covariates. Given the set of A − R models, we can calculate
the estimated unconditional probabilities p̂a from the conditional
probabilities �̂a (the dependence on covariates is omitted here):

p̂R = �̂R

p̂a = �̂a

⎛
⎝1 −

a−1∑
j=R

p̂j

⎞
⎠ = �̂a

a−1∏
j=R

(
1 − �̂j

)
, a > R

We choose to consider the following six formulations of the
CRLs:

1. A single common ALK for the whole North Sea fitted using GLM
methodology.

2. A stratified approach having separate ALKs within 3 subareas of
the North Sea (see Fig. 1), also fitted using GLMs.

3. A smooth spatial varying ALK fitted using GAMs with smooth-
ness selection by AIC. Only the intercept in the models are
allowed to vary with location.

4. Same as model 4, but with smoothness selection by BIC instead
of AIC.

5. A GAM where both the intercept and the regression coefficient
on length are allowed to vary with geographical coordinates.

6. Like model 4, but with the same spatial effect in all years, as
opposed to estimating a set of parameters for each year.

Using mathematical notation these six models can be written as
follows:

logit(�ayq[xi]) = ˛ayq + ˇayqli (1)

logit(�ayq[xi]) = ˛ayq + ıayq(Areai) + ωayq(Areai)li (2)

logit(�ayq[xi]) = ˛ayq + ˇayqli + sayq,AIC (loni, lati) (3)

logit(�ayq[xi]) = ˛ayq + ˇayqli + sayq,BIC (loni, lati) (4)

logit(�ayq[xi]) = ˛ayq + sayq,BIC (loni, lati)li + sayq,BIC (loni, lati) (5)

logit(�ayq[xi]) = ˛ayq + ˇayqli + saq,BIC (loni, lati) (6)

where i denotes the ith fish, l denotes the length of the fish, (lon,
lat) the geographical coordinates where the haul was taken (longi-
tude and latitude), ıa(Areai) maps the ith observation to one of 3
categorical effects for a division of the North Sea into 3 areas (see
Fig. 1), and similarly denotes ωa a regression parameter for each
of the 3 areas, sa is a thin plate spline in two dimensions, where
subscripts AIC and BIC denote which criterion is used for smooth-
ness selection, and (˛a, ˇa) are ordinary regression parameters to
be estimated. Subscripts y and q have been included here to indicate
that each combination of year and quarter should have a distinct set
of parameters to account for differences in population structure.

Note, that model 2 is equivalent to dividing the data set accord-
ing to the 3 areas and fitting model 1 with individual parameters
for each area. Models 3 and 4 include a spatial varying intercept for
each continuation ratio logit but a common regression parameter
on length, whereas model 5 is a varying-coefficients model (Hastie
and Tibshirani, 1993), where both the intercept and the regres-
sion parameter are allowed to vary with geographical coordinates.
Model 6 is like model 4 except that the spatial effect is constrained
to be identical for all years. All the parameters in the model has the
subscript a indicating that each logit has a distinct set of param-
eters. This implies that the likelihood equation can be partitioned
into separate terms for each logit (Agresti, 2010; Kvist et al., 2000),
and hence each logit can be fitted separately. Similarly, the total
deviance for the model is simply the sum of deviances from the
individual fits. This feature makes it possible to fit the continuation
ratio logit model using standard software that can handle binomial
responses.

Our GAM models are based on the implementation in the
mgcv package for R (Wood, 2006), which offers a variety of types
including multi-dimensional splines and automatic smoothness
selection. We  follow the recommendation in Wood (2006),  who
suggests using thin plate regression splines for inputs on same
scale and where isotropy is relevant such as spatial coordinates.
All the thin plate splines used in this study for geographical effects
are splines with shrinkage smoothing (Wood, 2006, p. 160), which

http://www.datras.ices.dk
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Fig. 1. Map  of the three areas used in model 2 and of three selected locations 1,2 and 3 (top left). Predicted probabilities of age given length using model 4 at each location
(solid  lines) as well as the raw observed proportions (points) in each of the boxed areas for the year 2011 Q1 (top right and bottom figures).

allows them to be completely eliminated from the model in the
sense of having all the parameters estimated to be zero.

2.1. Evaluating the implication of the ALK

Previous works (Gerritsen et al., 2006; Stari et al., 2010) have
utilized the generalized likelihood ratio test for measuring whether
two ALKs could be considered identical. This test requires that the
smaller model is nested within the larger, which is not the case for
all our models. Instead, we use the AIC and BIC values to investigate
which models are more appropriate. For the GAMs, the number
of parameters, which is needed to calculate the AIC and BIC, is
replaced by the effective degrees of freedom (edf), see Wood (2006)
for details.

However, since the AIC and BIC only applies to the age data,
it does not tell us whether applying the estimated ALKs to all the
length data will result in significant changes in an index of abun-
dance by age. We  will therefore create such an index to investigate
the implications of our proposed method for creating ALKs. If a spa-
tial ALK, in addition to providing a better fit to the age data, also
results in improved precision for a derived index of abundance, this
can be seen as further evidence that the spatial ALK is more appro-
priate. If the spatial effect in the ALKs were really noise rather than

a true signal, one would expect the precision of an index of abun-
dance to deteriorate when applying a spatial ALK as opposed to a
non-spatial ALK.

We  choose one of the simplest estimates of abundance:

Iayq = 1
hyq

nyq∑
i=1

p̂a(xi) (7)

where Iayq is the average predicted number of fish caught in age
group a per haul in year and quarter (y, q), n is the total number of
fish caught, and h is the number of hauls.

An appropriate way to test whether one index of abundance is
more accurate than another would be to run full assessment mod-
els using the different indices as well as commercial catch data and
compare their estimated observation variances. However, since this
is a quite complicated task we choose a simpler way of compar-
ing our different indices of abundance based on the concepts of
internal and external consistency (e.g., Payne et al., 2009). Under
the assumptions that an index is proportional to the abundance
without error and of constant catchability and constant total mor-
tality over time, the logarithm of the abundance at time t should
be perfectly correlated with the logarithm of abundance of the
same cohort at time t + �t.  Although all these assumptions are not
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correct, we should still be able to obtain significant correlations for
values of �t  within the range of a year, given that the signal in the
time-series outweighs the variability from sampling noise and vio-
lations of our assumptions. Recapping from Payne et al. (2009),  if
we assume that we have a survey index with a log-normal error
structure and substitute this into the Baranov catch equation we
get

Ia(t) = qa(t)Na(t)�a(t), �∼LN(0,  �a(t))

log(Ia(t)) = log(Ia(t+�t)) + log

(
qa(t+�t)

qa(t)

)
+ log(�a(t+�t)) − log(�a(t)) − Za(t, t + �t)

where Ia(t) refers to the index of abundance for some age group
a at time t, q denotes catchability, Z the total mortality over the
considered time interval, and � is a random log-normal distributed
component.

Internal consistency refers to correlations between Is within the
same survey index (e.g., Age 1 in quarter 1 year y versus Age 2 in
quarter 1 in year y + 1), whereas external consistency refers to com-
paring two independent survey indices, such as those for quarter 1
and 3 (Q1 and Q3). We  will refer to internal consistency between
age a and a + 1 (�t  = 1 year) in quarter q as IC(q, a) and external
consistency between the same age classes in Q1 and Q3 (�t  = 0.5
years) as EC(a).

3. Case studies

In this section the method will be applied to ten years
(2001–2011) of data from the International Bottom Trawl Survey
(IBTS) obtained from the DATRAS database (www.datras.ices.dk).
The samples are collected in the first and third quarters of the year
and all samples are caught using the same gear type. For further
details about the IBTS survey see (ICES, 2012). In section 3.1 we
will investigate an application of models 1 through 6 on North Sea
haddock data. Section 3.2 will deal with a less detailed rerun of
models 1 and 4 on multiple species focusing on consistencies only.

3.1. Haddock using models 1–6

For the area stratified model 2 we divide the North Sea into 3
areas (Fig. 1) with roughly the same number of age samples per year
(see tables in online supplemental material1). Area 2 is much larger
than the others, but this is due to the fact that haddock is primarily
caught in the northern parts of the North Sea. For all models except
model 2, it was possible to consider up to age group 8 without
estimation problems. However, for simplicity we consider the age
groups 1 to 4+ for all models, where the last group consists of fish
of age 4 or older. As age 0 appears for the first time in the IBTS
survey in Q3, it must also be included when creating the ALKs for
this time-series, but results of this estimation are not included in
the further analysis.

Table 1 shows the AIC and BIC calculated for each combination
of model and quarters. Since lower values of AIC and BIC are to be
preferred, model 2 is consistently better than model 1, implying
that there is significant geographical variation in the ALKs. Model
3 is consistently best with respect to AIC while models 6 and 5
are respectively best with respect to BIC for Q1 and Q3, but the
differences are much smaller between models 3–5 than the rest.
These values provide strong evidence against a null hypothesis of no
spatial effect in the ALKs, and also that the stratified GLM approach
did not sufficiently capture the spatial variation.

Fig. 1 shows the fitted distribution (model 4) of age given length
at three selected locations, as well as the raw observed proportions

1 See Appendix A.

Table 1
Haddock: summary of models 1–6. The columns ‘�AIC’ and ‘�BIC’ contain the
decrease in AIC and BIC from model 1, and the best values are shown in bold face.
The column ‘edf’ contains the effective number of parameters.

Model Quarter edf �AIC �BIC

1 1 66 0 0
2 1  198 3028.36 1940.47
3  1 770.10 10,155.53 4352.64
4  1 361.13 9252.17 6819.83
5  1 396.28 9600.90 6878.87
6 1 125 7659.33 7173.11

1  3 66 0 0
2 3  198 2966.02 1858.38
3  3 936.62 10,605.83 3300.25
4  3 384.29 9268.28 6597.43
5  3 421.89 9720.27 6733.91
6 3 130.88  6685.59 6141.19

within each stratum. The observed proportions seem to differ
between areas, and the fit in the three chosen locations resembles
the raw observations in the three strata. We  should note, that we
cannot expect the fitted distributions to be the best interpolation
of the raw proportions since the raw proportions are calculated
over the entire stratum, but the shown fitted distributions applies
only to the points in space marked by the numbers on the map,
and the fits will therefore vary over the strata due to the significant
spatial effect in the model.

Fig. 2 shows the spatial pattern in the probability of being older
than one year given a length of 20 cm in 2011 Q1. The figure illus-
trates that there is spatial contrast in the data with a peak east of
the Scottish coast. Given that a 20 cm haddock is caught in this
region, it is more likely to be 2 years or older than being 1 year old,
whereas the opposite is true in the south-eastern parts of the North
Sea.

In order to illustrate the differences between models 1–6, the
estimated age probabilities for a 30 cm haddock along a selected
route (Fig. 3) from each model in year 2001 Q3 are shown in Fig. 4.
The same plots for all the years and quarters can be found in the

Fig. 2. Contour plot of the estimated probability (model 4) of being older than 1
year given a length of 20 cm in year 2011 Q1.

http://www.datras.ices.dk
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Fig. 3. A selected route through the North Sea and some selected points marked by
‘+’.

online supplemental materials. The models based on GAMs (3–6) all
show a steep increase in probability for observing younger individ-
uals on last part of the route around the Skagerrak region. Although
there is considerable variation between years and quarters in the
estimated probabilities, the spatial pattern seems to be relatively
consistent. This is also supported by the fact, that model 6, which
has the same spatial effect over all the years, was  chosen as the
best model by the BIC criterion for Q3. Models 4 and 5 display very
similar results, while model 3 in some years estimates some more
wiggly curves in comparison, due to the AIC criterion being less
restrictive than BIC in terms of the amount of smoothing.

To illustrate the implications of using the different models
for our simple index of abundance we have plotted log(I2yq) and
log(I3yq) in Fig. 5. There seems to be very high consistencies between
the series, both internally and externally, for all ALKs. This implies,
that even though significant differences were found between the
ALKs, the resulting indices of abundance turned out to be quite sim-
ilar. The uncertainties on the indices of abundance were further
investigated using bootstrapping (not shown), and these analyses
confirmed that the difference between the calculated indices were
generally not statistically different.

The internal and external consistencies are shown in Table 2,
which confirms the apparent high correlation observed in Fig. 5,

Table 2
Haddock: internal and external consistencies for models 1–6. Internal consistency
between age a and a + 1 in quarter q is referred to as IC(q, a) and external consistency
between the same age classes in Q1 and Q3 as EC(a). Best average consistency is
shown in bold face.

Type\Model 1 2 3 4 5 6

IC(Q1, 1) 0.961 0.955 0.956 0.954 0.954 0.961
IC(Q1,  2) 0.910 0.919 0.918 0.917 0.916 0.918
IC(Q3,  1) 0.951 0.950 0.949 0.968 0.973 0.966
IC(Q3,  2) 0.970 0.976 0.944 0.963 0.968 0.969
EC(1) 0.972 0.973 0.969 0.968 0.969 0.955
EC(2)  0.985 0.993 0.980 0.992 0.992 0.994
EC(3) 0.921 0.948 0.954 0.956 0.945 0.963

Avg  0.953 0.959 0.953 0.960 0.959 0.961

Table 3
Haddock: internal and external consistencies for models 1 and 4. Internal consis-
tency between age a and a + 1 in quarter q is referred to as IC(q, a) and external
consistency between the same age classes in Q1 and Q3 as EC(a). Best average
consistencies are shown in bold face.

IC(Q1, x) IC(Q3, x) EC(x)

x\Model 1 4 1 4 1 4

1 0.96 0.95 0.93 0.97 0.97 0.97
2  0.91 0.92 0.95 0.97 0.99 0.99
3  0.95 0.95 0.97 0.96 0.92 0.96
4  0.93 0.95 0.97 0.96 0.93 0.99
5  0.94 0.97 0.98 0.99 0.95 0.96
6 0.88  0.95 0.92 0.93 0.91 0.95
7 0.73  0.68 0.94 0.92 0.88 0.90

Avg  0.90 0.91 0.95 0.96 0.94 0.96

Table 4
Cod: internal and external consistencies for models 1 and 4. Internal consistency
between age a and a + 1 in quarter q is referred to as IC(q, a) and external consistency
between the same age classes in Q1 and Q3 as EC(a). Best average consistencies are
shown in bold face.

IC(Q1, x) IC(Q3, x) EC(x)

x\Model 1 4 1 4 1 4

1 0.56 0.68 0.86 0.85 0.91 0.93
2  0.71 0.88 0.19 0.31 0.77 0.75
3  0.87 0.83 0.36 0.57 0.43 0.49
4  0.66 0.63 0.30 0.27 0.42 0.48
5  0.37 0.33 0.40 0.37 0.58 0.64

Avg  0.63 0.67 0.42 0.47 0.62 0.66

which implies a very strong signal in data. On average, models 4–6
have higher consistencies than the rest, which validates our con-
clusion that there is a spatial effect and that the GAM framework
outperforms the stratified approach.

3.2. Models 1 and 4 on more species

Tables 3–6 show internal and external consistencies for mod-
els 1 and 4 for cod, haddock, whiting and herring in the North Sea.
The choice of model 4 among the different GAM formulations was
rather arbitrary, although it can be considered the more conserva-
tive choice with respect to the amount of spatial variation in the
ALKs, as it uses the fewest number of effective parameters of the
GAMs. Since we  do not consider model 2, we can include a higher
number of age groups without worrying about years with no obser-
vations of older age groups. For all species except herring, model 4
is consistently better than model 1 with respect to average consis-
tency over age groups. While haddock has very high consistencies
even in older age classes, herring has appalling consistencies for Q1
(some are even negative). Whiting and Cod have fairly good con-
sistencies, perhaps with the exception of IC(Q3) for cod (4). These

Table 5
Whiting: internal and external consistencies for models 1 and 4. Internal consistency
between age a and a + 1 in quarter q is referred to as IC(q, a) and external consistency
between the same age classes in Q1 and Q3 as EC(a). Best average consistencies are
shown in bold face.

IC(Q1, x) IC(Q3, x) EC(x)

x\Model 1 4 1 4 1 4

1 0.79 0.76 0.70 0.72 0.84 0.86
2  0.96 0.98 0.83 0.82 0.85 0.84
3 0.86 0.87 0.76 0.78 0.88 0.90
4  0.63 0.65 0.85 0.85 0.67 0.67
5 0.37 0.47 0.85 0.84 0.57 0.57

Avg 0.72 0.75 0.80 0.80 0.76 0.77
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Fig. 4. Estimated age probabilities for a 30-cm haddock along the route shown in Fig. 3 from models 1 to 6 for year 2001 Q3. The x-axis corresponds to the position on the
route  from west to east, and the vertical lines indicate the positions marked with a ‘+’ on the map.

results emphasize the results found for haddock, namely that there
generally is spatial variation in length-at-age, and that improved
precision in indices of abundance can be obtained by including this
variation in the ALKs.

4. Discussion

Several studies have suggested using continuation ratio log-
its for modelling the age distribution in catch data from

Table 6
Herring: internal and external consistencies for models 1 and 4. Internal consistency
between age a and a + 1 in quarter q is referred to as IC(q, a) and external consistency
between the same age classes in Q1 and Q3 as EC(a). Best average consistencies are
shown in bold face.

IC(Q1, x) IC(Q3, x) EC(x)

x\Model 1 4 1 4 1 4

1 0.22 0.36 0.58 0.56 0.58 0.57
2  −0.14 −0.09 0.78 0.77 0.28 0.34
3 0.07 −0.07 0.71 0.69 0.44 0.55
4  0.23 0.05 0.76 0.75 0.61 0.49
5 0.24 0.35 0.80 0.83 0.63 0.54

Avg 0.12 0.12 0.73 0.72 0.51 0.50

length-stratified subsamples of age in place of raw proportions of
age given length. Two studies have also shown regional as well as
other effects using CRLs for North Sea haddock (Gerritsen et al.,
2006; Stari et al., 2010), a result that is confirmed in this study.
While these studies used a number of parameters proportional to
the number of boxed areas using GLM methodology, we propose to
use GAM methodology to model spatial effects as a smooth surface
and thereby be able to predict numbers-at-age at the haul level,
whenever the required information is available. This removes the
problem of having to select appropriate boxes for the data, and the
problem of missing data whenever a too fine-grained stratification
is chosen. This effect is comparable to the result found in Maxwell
et al. (2012),  who  compared GAMs with a stratified mean method
for modelling egg production in fishes. Also, the ALKs based on
GAMs provided a much better fit to data than the GLM based meth-
ods examined in this study, and they were also superior in terms
of both AIC and BIC. Our proposed model allows for a higher num-
ber of age groups than usual to be considered when an age based
index of abundance is to be created, and, although there were only
small differences in the survey indices between ALK methods, our
results indicated that including spatial variation in ALKs seemed
to improve the precision of the indices. It is straightforward to
expand the number of covariates used in this study, using the same
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Fig. 5. Index of abundances for age groups 2 and 3 in Q1 and Q3. The series have
been rescaled to prevent overlap between Q1 and Q3 for better overview, so only
relative comparisons of the time-series are meaningful.

technique. While a spatial smoother is a convenient way of mod-
elling the observed differences in ALKs between areas, it does not
offer us an explanation for the observed effects. Possible expla-
nations could be regional differences in growth, but also local
variation in relative abundance of age-classes, which can occur due
to migration, local differences in natural mortality, or even effects
due to the data collection such as different laboratories used for
ageing. In other words, the observed differences might be equally
well explained by other covariates not included in our models, but
given adequate spatial overlap between for instance different age-
ing labs, it will be possible to test for such an effect within our
model framework while still accounting for residual unexplained
spatial correlations by including a thin plate regression spline. Very
high internal and external consistencies were found for all the age
classes examined for haddock. While lack of consistency points to
problems with some of the usual assumptions made for survey
indices, strong consistencies are not proof of an excellent survey
index, e.g., a constant index, which could hardly be informative,
would yield perfect consistencies. We  found fairly good consisten-
cies for whiting and cod, but poorer consistencies for herring.

To ensure that changes in catch rates are due to changes in the
population size rather than changes in survey design or other fac-
tors, survey indices should be standardized in some way to make
them representative for the stock and comparable between years, a
process which is sometimes called catch-rate standardization (e.g.,
Maunder and Punt, 2004). We  should however keep in mind, that
we did not perform a proper catch-rate standardization, but instead
used a very simple index based on average numbers per haul. Also,
catch rates for herring are generally much more variable than for
the other species considered in this study, which can explain why
our simple index performs so poorly for herring.

We should note, that even though many stock assessment mod-
els use age-structured indices of abundance as input, alternatives
exist such as purely length-based models (e.g., Kristensen et al.,
2006) or integrated stock assessments (e.g., Fournier et al., 1998) in

which the separation into age-classes is performed within the stock
assessment model, such that the associated uncertainty is included
in the estimation. For stock assessments it should certainly be pre-
ferred to include the uncertainties due to the ALK estimation, either
by integrating the ALK estimation within the stock assessment
model, or to estimate the uncertainties on the derived indices of
abundance by age outside the model, and provide these uncertain-
ties as input to the stock assessment model along with the indices.
The latter approach could be accomplished by bootstrapping, and
is possible to carry out using the DATRAS-package.

Another useful aspect of ALKs is to combine them with the dis-
tributions of length and apply Bayes formula to get the probability
of length given age (as opposed to age given length in ALKs), which
for instance can be used to examine growth or differences in length
distributions between regions. This idea was  pursued in Rindorf
and Lewy (2001) where CRLs were used for both the ALKs as well
as the length distributions. The idea is, that since length distribu-
tions suffer from the same problems as age distributions, namely
being patchy when small areas or individual hauls are considered,
CRLs can be used to obtain smooth length distributions. Rindorf and
Lewy (2001) used a seventh degree polynomial to obtain the length
distributions on different locations, but noted that other types of
smooth functions could be considered. GAMs could be considered
in this respect, and this could be an interesting area for future
research.

Fisheries data can be very complex, and the data sets available
from DATRAS are certainly no exception to this rule. Producing an
age-based survey index, which includes the application of an ALK, is
therefore often a challenging task, and reproducing them by other
people even more so. We  have provided a software package for R
that allows for manipulation of data from the DATRAS database, and
easy generation and application of robust ALKs without the need
for area stratification. The software package and all its source code
is publicly available (Kristensen and Berg, 2012), which allows for
adaptation to other data sets than those from the DATRAS database,
including samples from commercial fisheries. Example code show-
ing how to reproduce the models found in this paper is included
in the online supplemental material. We  have shown, that our
approach is superior to the stratified approach with respect to AIC
and BIC, and that it generally leads to better internal and external
consistencies for age based survey indices.
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