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Abstract 

This work concerns the development of simulation tools for mapping of degradation phenomena 

and estimation of mass loss and ablation rates during weathering tests of thermoset coatings. A 

novel mathematical model, which includes photoinitiated oxidation reactions, intrafilm oxygen 

permeability, water absorption and diffusion, reduction of crosslink density, and development of 

a thin surface oxidation zone, was recently developed. The model has been validated against 

three previous experimental data series with two-component epoxy-amine coatings at constant 

exposure conditions. One data series includes the effect of nano-particles (SiO2 and multi-

walled carbon nano-tubes) on the rate of degradation. In this presentation, a concise 

introduction to the model and some of the simulation results are provided. Further development 

of the simulation tool to commercial coatings and dynamic exposure conditions will be shortly 

discussed. 

 

Introduction 
Degradation of coatings exposed to solar ultraviolet (UV) radiation, heat, moisture and other environmental 

stresses is termed weathering [1]. For thermodynamic reasons, all organic coatings are prone to weathering 

eventually, at least in principle, converting the organic components to the stable end products CO2 and water 

[1]. However, the rate at which this happens is strongly dependent on the binders and other coating materials 

used and the conditions of exposure. For modern high-performance coatings, weathering is usually a slow 

process typically taking five years or longer before a critical performance property can be said to have failed 

[2]. New products are continuously developed by the coatings industry and there is a constant need for 

accelerated weathering tests. Accelerated testing can be done in laboratory exposure equipment, using high 

radiation intensity and/or high temperature and relative humidity, or outdoor in climatically stable regions 

such as the very sunny reference climates in Miami, Florida, where the relative humidity is high, and 

Phoenix, Arizona, where the air is very dry [1]. However, it is essential that the exposure strategies 

developed allow valid extrapolations to in-service exposure conditions [2]. To analyse and improve the 

correlations between laboratory and field data and increase the understanding of coating behavior during 

accelerated exposure conditions it is of relevance to quantify the underlying physical and chemical 

mechanisms and develop modeling tools. In this work a mathematical model, which quantifies coating 

degradation of a thermoset coating, at constant exposure conditions, is briefly presented and some important 

results discussed. 

 

Mathematical coating degradation model 
The mathematical model was presented and verified against experimental data for epoxy-amine coatings in a 

recent publication [3] and here will only be given a concise, equation-free introduction. Epoxy-amine 

coatings are rarely used in the heavy-duty sector without a UV radiation resistant top coat [4] and therefore 

serves here only as a reference system for which a significant amount of experimental data has accumulated 

in the open literature.  

 

A closed-loop mechanism, including photoinitiation, radical oxidation, and termination reactions, was used 

to describe the degradation chemistry. The process that takes place when a densely crosslinked epoxy-amine 

coating is exposed to conditions of constant UV radiation, humidity and temperature in an accelerated 

exposure device is schematically shown in Fig. 1. From the onset of exposure, photoinitiated reactions take 

place, which slowly degrade the top layer of the coating. Simultaneously, if the coating, prior to exposure, 

has been stored at another value of relative humidity than that in the exposure chamber, moisture is absorbed 

(or desorbed depending on the relative humidity in the chamber), and starts to penetrate the coating. At the 

surface, an oxidation front begins to move into the coating.  
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Figure 1: Schematic illustration (cross-section view) of epoxy-amine coating during exposure to ultraviolet 

radiation and humidity. On the surface of the coating, a thin oxidation zone is formed, where the 

degradation takes place. Figure is not to scale, in reality the oxidation zone is much thinner than the initial 

coating thickness. After Kiil [3]. 

 

The rates of chemical oxidations, the solubility of oxygen in the coating, and the rate of diffusion of oxygen 

into the coating determine the rate of movement of this front. At the point in time where a critical fraction of 

the original network chains (termed XCL,max) has been broken at the coating surface, the ablative front (i.e. the 

coating surface) begins to move and the thickness of the coating is reduced. At some point, the rate of 

movement of the oxidation and ablative fronts can become equal and a stable oxidation zone thickness is 

established (see Fig. 1 and [3]). This stable surface zone has been observed in practice for densely 

crosslinked epoxy-amine coatings and estimated by various analytical methods to be about 2 µm [3]. In the 

inner, much wider and oxygen-free zone, no degradation takes place despite the fact that radiation penetrates. 

When radicals are formed in this zone, they rapidly recombine and no damage occurs. In the stable oxidation 

zone, concentration gradients are established, the original matrix structure is partly lost, and oxidation 

products are present. As evidenced by Nguyen et al. [5], about 80 % of the original benzene rings in the 

epoxy structure can disappear from the outer part of the oxidation zone and the presence of carbonyl and 

amide groups increase rapidly.  

 

In summary, the model includes the following rate-influencing phenomena: photoinitiated oxidation 

reactions, intrafilm oxygen permeation, water absorption and diffusion, reduction of crosslink density, and 

development of a thin surface oxidation zone. The overall purpose of the model is to quantify the rates of 

ablation and mass loss and estimate the ablation lag time (defined as the initial time lag before the crosslink 

density at the coating surface has been sufficiently reduced for ablation to begin). 

 

Results and Discussion 
The model developed is relevant for industrial protective coatings and therefore does not include a direct 

description of how the gloss develops, but rather focuses on prediction of mass loss and ablation rates 

(thickness reduction). As discussed in Kiil [3], the simple epoxy-amine coatings used for model verification 

and the constant exposure conditions (with no dark cycles and no water spray) applied leads to very thin 

surface oxidation zones of just a few microns. This situation is expected to be quite different for commercial 

coatings containing UV absorbers, radical scavengers, and more UV radiation stable binders at dynamic 

exposure conditions. In those more realistic exposure scenarios, oxygen diffusion is most likely not the main 

factor determining the thickness of the oxidation zone, but rather UV radiation absorption [3]. So, the present 

model is the first step towards simulations under realistic exposure conditions. 
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Figure 2: Comparison of model simulations (lines) with experimental mass loss data (symbols) of an epoxy-

amine coating containing either 0.72 wt% multi-walled carbon nanotubes (MWCNT) or 5 wt% nano-SiO2 

particles. Conditions: 50 °C, relative humidity 75 %, and 480 W/m
2
 (295-400 nm). The experimental data 

were taken from Nguyen et al. [5] and the figure reproduced from Kiil [3] (open access publication). Model 

parameters are available in [3]. 

 

Simulations with the model for densely crosslinked epoxy-amine coatings have been compared to three 

experimental data series (artificial UV exposure). As an example, in this short communication, the transient 

mass loss for two coatings containing nano-particles will be reviewed (see the original reference [3] for 

details).  

 

In Fig. 2 a comparison of simulations and experimental data from [5] for two low-pigmented coatings are 

shown. One of the coatings contains 0.72 wt% multi-walled carbon nano-tubes (MWCNT) and the other 5 wt 

% nano-SiO2. A good agreement between simulations and experimental data is evident (for a list of and 

discussion of the parameter values used see [3]). Initially, the mass increases due to absorption of moisture. 

Later, ablation of the coating surface becomes important and the rate of mass loss increases significantly and 

finally attains a constant value. For the coating containing nano-SiO2, all adjustable parameters were the 

same as for the same pigment-free coating and the difference (not shown) in the relative mass loss (and 

associated ablation rates) can be attributed entirely to a difference in the initial dry film thickness. So, there is 

no effect of adding 5 wt% nano-SiO2 to these simple coatings. On the other hand, the rate of mass loss for 

the coating containing MWCNT is smaller than that of the clear coat. The constant rate of ablation (not 

shown) is reduced by 36 % when the coating contains as little as 0.72 wt % MWCNT. The effect of 

MWCNT is thought to be mechanical though the material can most likely also absorb some UV radiation. 

This was verified by the fact that increasing XCL,max from 0.4 (the value used for the pigment-free coating) to 

0.6 resulted in the very good fit shown in Fig. 2 suggesting that the effect of MWCNT is mostly mechanical 

(an increase in XCL,max means that more bonds must be broken at the coating surface before ablation sets in).  

Many other simulations and experimental data series are available in Kiil [3]
 
showing, for instance, the effect 

of changing the relative humidity in the exposure chamber.  

 



 

 

The next step in the model development will be to consider dynamic conditions and thereby provide 

simulations of coating behaviour in various cyclic exposure scenarios being used in accelerated testing 

equipment. Subsequently, conditions of natural weathering should be considered. In addition, it may be 

investigated how the effects of e.g. UV radiation absorbers and light stabilizers can be included in the model. 

The model approach can be extended to other coating systems provided experimental data and observations 

are available for calibration of the model and a closed-loop mechanism for the degradation chemistry can be 

established. Simultaneous measurements of rates of mass loss, ablation, and formation of photoproducts, as 

well as oxidation zone thickness measurements, on the same well-characterized coatings, at controlled 

exposure conditions, would be very useful. 

 

Conclusions 
The mathematical model developed is able to simulate experimental data available for simple densely 

crosslinked epoxy-amine coatings under constant exposure conditions. The phenomena influencing the rate 

of degradation have been mapped. In the presentation a range of simulations with the model will be shown 

and discussed. Future work with the model involves extension to dynamic exposure conditions and more 

industrially relevant coatings.  
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