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Classical analogues of the well-known effect of electromagnetically induced transparency (EIT) in quantum optics
have been the subject of considerable research in recent years from microwave to optical frequencies, because of
their potential applications in slow light devices, studying nonlinear effects in low-loss nanostructures, and de-
velopment of low-loss metamaterials. A large variety of plasmonic structures has been proposed for producing
classical EIT-like effects in different spectral ranges. The current approach for producing plasmon-induced trans-
parency is usually based on precise design of plasmonic “molecules,” which can provide specific interacting
dark and bright plasmonic modes with Fano-type resonance couplings. In this paper, we show that classical
interactions of coupled plasmonic and excitonic spherical nanoparticles (NPs) can result in much more effective
transparency and slow light effects in metamaterials composed of such coupled NPs. To reveal more details of the
wave-particle and particle-particle interactions, the electric field distribution and field lines of Poynting vector
inside and around the NPs are calculated using the finite element method. Finally, using extended Maxwell
Garnett theory, we study the coupled-NP-induced transparency and slow light effects in a metamaterial compris-
ing random mixture of silver and copper chloride (CuCl) NPs, and more effectively in a metamaterial consisting
of random distribution of coated NPs with CuCl cores and aluminum shells in the UV region. © 2012 Optical
Society of America

OCIS codes: 160.3918, 260.2030, 260.2065, 290.4020.

1. INTRODUCTION
Hybrid structures composed of molecular excitons or exci-
tonic semiconductor quantum dots, coupled to metallic nano-
particles have been greatly interested and investigated in
recent years, due to their potential applications in the devel-
opment of functional materials, nanoscale optical devices,
molecular sensors, and other applications in biophotonics
and nanoplasmonics [1–8]. Novel materials can be assembled
from excitonic and plasmonic NPs, joined with biolinkers
[4–8]. The metallic NP constituents in such hybrid nanostruc-
tures can support localized surface plasmon resonances,
providing spatially confined, intensive electric fields on the
surface of the NPs. This enhanced near field can strongly mod-
ify the properties of nearby atoms or molecules. The coupling
between the continuum plasmonic excitations of the resonant
metallic NPs and the strong discrete excitations of semicon-
ductor quantum dots (excitons) can lead to interesting effects,
such as linear and nonlinear Fano couplings in weak and
strong interaction regimes, usually described by quantum
mechanical approaches [4–8].

If we consider metallic and excitonic NPs as fundamental
elements of composite metamaterials, which are macroscopi-
cally homogenized, then the size of NPs should be much
smaller than wavelength in the spectral range of interest.
However, the size of the inclusions can be large enough to
be described classically with some proper dielectric func-
tions and polarizabilities. Classical approaches and numerical
simulations of Maxwell’s equations have been successfully
used to model both the optical response of the constituent

elements and the collective behavior of many metamaterial
nanostructures, containing metallic and semiconductor inclu-
sions [9–11].

In this paper, we study the classical wave-particle and
particle-particle interactions in coupled plasmonic and exci-
tonic spherical NPs as fundamental elements of optical me-
tamaterials, exhibiting electromagnetic transparency and
slow light effects. In Section 2, we study the wave-particle
interactions based on Mie scattering theory to calculate
the uncoupled polarizabilities and then coupled dipole ap-
proximation is used to account for mutual interactions of
the NPs. We show that some interesting features can arise,
such as enhanced absorption, coupling-induced transpar-
ency, and even amplification of the incident wave by indivi-
dual coupled NPs. We are mostly concerned with Fano-type
coupling of the NPs, which can lead to asymmetric absorp-
tion profiles and electromagnetic transparency of the cou-
pled NPs. To study the details of the interactions, finite
element simulations are performed to calculate the electric
field, absorption loss, and power flow lines inside and around
the NPs. In Section 3, using extended Maxwell Garnett the-
ory, we study the optical properties of a random mixture
of excitonic and plasmonic spherical NPs and also a mixture
of spherical coated NPs with excitonic cores and plasmonic
shells and show that such coupled plasmonic-excitonic (plex-
citonic [8]) core-shell NPs can be considered as building
blocks of optical metamaterials, exhibiting transparency
and slow light effects. A brief summary is also presented
in the last section.
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2. CLASSICAL INTERACTIONS
IN A PLEXCITONIC PAIR
We consider a pair of coupled spherical silver and copper
chloride (CuCl) NPs with equal radius of a and separation
of R, excited by an electromagnetic plane wave. The mutual
interaction of the NPs is studied using coupled dipole approx-
imation and it is supplemented with numerical simulations,
which account for higher-order multipolar interactions. We
denote the positions and uncoupled polarizabilities by rj and
αj , respectively. The induced dipole pj in each NP, in presence
of an applied electric field is pj � ε0εhαjEloc;j� j � 1; 2�, where
the local field at each NP position (Eloc;j) is a sum of the
external field and also contribution from the other dipole:

Eloc;j � E0 exp�ik · rj� � Edipole;i≠j ; �i; j � 1; 2�: (1)

Here, E0 and k � 2π ∕ λ are the respective amplitude and
wave vector of the incident wave. The electric field produced
by each dipole is obtained from,

Edipole;j �
�
�1 − ikr� 3r̂ · pj r̂ − pj

r3
� k2

pj − r̂ · pj r̂
r

�
eikr; (2)

where r is position vector pointing from dipole to the field
point. From these relations, containing the full effects of re-
tardation, the individual coupled polarizabilities and local
fields can be calculated.

As a semiconductor with a very sharp excitonic resonance
and strong oscillator strength, we consider CuCl with a dielec-
tric function of the form [9]:

εp�ω� � ε∞ � A
γ

ω0 − ω − iγ
; (3)

where ε∞ � 5.59 is the high-frequency limit dielectric con-
stant, ω0 � 5.109 × 1015 rad ∕ s the exciton resonance fre-
quency, γ � 7.596 × 1010 rad ∕ s the loss factor, and A � 632,
a constant proportional to the exciton oscillator strength.
The strength and relaxation of excitonic resonances can only
be described quantum mechanically [12,13], but the response
of excitonic materials to light waves can also be described
classically by proper dielectric functions such as in relation
(3) [14]. In this way, the excitonic resonances are described
by very sharp Lorentzian resonances of the dielectric func-
tion. The sharp variations in dielectric function of spherical
nanoparticles can lead to sharp dipolar and multipolar electric
and magnetic Mie resonances, described by Mie coefficients
[15]. A classical description of dipolar and multipolar excita-
tions in spherical excitonic nanoparticles and their mutual
couplings based on the Mie theory are given in [16].

Since the interactions are studied in a small spectral
range around the CuCl excitonic resonance in the UV region
(λresonance ≅ 368.9 nm), for the dielectric function of the silver
NP, we use a Drude–Lorentz model with two adjusting para-
meters [17], so that it can be best fitted to the experimental data
of Johnson and Christy [18], in the limited spectral range of our
interest. The effect of size dependence of damping constant
(electron confinement) is also accounted for in this model:

εAg�ω; α; β� � 1 −
ω2
p

ω�ω� iαγ�a�� �
fω2

L

ω2
L − ω2 − iβΓLω

: (4)

Here,ωp � 1.39 × 1016 rad ∕ s,ωL � 8 × 1015 rad ∕ s, andΓL �
1.73 × 1015 rad ∕ s are used for silver and adjusting parameters

are α � 1.3 and β � 0.2. The size-dependent plasmonic damp-
ing constant is γ�a� � γb � AVF ∕ a, where γb � 3.19 ×
1013 rad ∕ s is the bulk damping constant, VF is the Fermi velo-
city at the Fermi surface, a is the NP radius, and A is a coeffi-
cient equal to 0.25 for spherical particles in vacuum, but can
take higher values for particles in a dielectric matrix. We take
A � 3 ∕ 4, which is used by Kreibig [19] for spherical NPs. The
real and imaginary parts of the Drude–Lorentz dielectric func-
tion curves, fitted to the experimental data of Johnson and
Christy for bulk silver are shown in Fig. 1.

Total extinction cross section of the coupled NP pair is
calculated from the following relation, which is generally
applicable to a group of N interacting particles [20]:

Cext �
k

ε0εhjE0j2
XN
j�1

Im�E�
inc;j · pj�: (5)

Here, pj is coupled-induced dipole, calculated from rela-
tions (1) and (2). In the simplest case of just two coupled
NPs, excited by an incoming plane wave, with electric field
vector parallel or perpendicular to the NPs’ connecting line,
the relation (5) can simply be written in terms of coupled
polarizabilities of the NPs:

Cext � k Im
�X
j�1;2

αcoupledj

�
: (6)

We consider two coupled spherical silver and CuCl NPs
with equal radii of a � 10 nm, in a medium with dielectric
constant εh � 1.6. The real and imaginary parts of the un-
coupled polarizabilities of individual NPs are shown in Fig. 2.
We see that the resonance width of the CuCl NP is much nar-
rower than that of the silver NP. For CuCl NP, the strength of
the resonance depends on the exciton oscillator strength, re-
presented by parameter A in relation (3). The width and
strength of the resonances for both silver and CuCl NPs de-
pend also on the sizes of the NPs. Larger diameters lead to
lower strengths and also broadening of the resonances due
to depolarization effects. The resonance of the CuCl NP with
a � 10 nm is mainly dipolar. Using the Mie theory, we can
show that the quadrupole moment is negligible except for
diameters larger than 40 nm. Figure 3(a)–3(c) show the total

320 340 360 380 400 420 440

-7

-6

-5

-4

-3

-2

-1

0

1

Wavelength (nm)

E
le

ct
ric

 p
er

m
itt

iv
ity

 o
f b

ul
k 

S
ilv

er
 (

re
la

tiv
e)

 

 

Re( ), J&C
Im( ), J&C
Re( ), Drude-Lorentz
Im( ), Drude-Lorentz

Fig. 1. Real and imaginary parts of the Drude–Lorentz dielectric
function curves, fitted to the experimental data of Johnson and
Christy for bulk silver.
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extinction coefficients (extinction cross sections normalized
to geometrical cross section of the NPs, πa2) of the same
coupled silver and CuCl NPs for different separations of
(a) R � 140 nm, (b) R � 80 nm, and (c) R � 50 nm. The inci-
dent electric field polarization is assumed to be parallel to the
line connecting the NPs’ centers. The extinction curves in
Fig. 3 have some similarities to the energy absorption curves
in weak and strong interaction regimes, described by quantum
approaches [5]. In Fig. 3(a), the particles separation is rather
large (R � 140 nm) and coupling is accordingly lower, com-
pared to the other curves. In this case the sharp absorption
peak of the excitonic resonance is superposed on a much
wider extinction curve, corresponding to the localized surface
plasmon (LSP) resonance of the silver NP. Figure 3(b) shows
the asymmetric Fano coupling of the two resonances, as a
result of reduction in NPs separation (R � 80 nm) and conse-
quently improvement of their mutual coupling. We can see
both enhancement and suppression of absorption around
the resonance line of the CuCl NP. As shown in Fig. 3(c),
by further increasing the NPs’ coupling (reducing the separa-
tion to R � 50 nm) the excitonic resonance produces a nar-
row transparency dip within the wider plasmonic extinction
curve and the redshift of the LSP resonance is further in-
creased. The curves show that the extinction profile of the
pair is quite sensitive to the NPs’ coupling strength. The re-
spective Figs. 4 and 5 show the increase of the depth and

width of the transparency dip for larger couplings or smaller
separations. Also, the redshift of the transparency dip as a
function of the separation of the NPs is shown in Fig. 6.
The redshift is calculated from the reference wavelength re-
lated to the case where the separation of the NPs is R �
40 nm. Furthermore, it can be seen that for larger frequency
separations between the excitonic and plasmonic resonances,
the transparency is more pronounced and the width of the
dip is increased.

For the same NPs corresponding to Fig. 3(a), the extinction
coefficient of the individual coupled silver NP is plotted in
Fig. 7. We see that while the total extinction of the pair in
Fig. 3(a) shows a very sharp excitonic peak over the wide
LSP curve, the contribution of the coupled silver NP is an
LSP extinction profile with a quite narrow dip in the middle,
approaching to zero at the bottom. For providing more clar-
ity, the overall extinction coefficient (solid curve) and the
contributions from individual coupled CuCl (dotted curve)
and silver NPs (dashed curve) are plotted in Fig. 8, in a much
narrower spectral range of λ � 368.51–368.63 nm. The curves
show that for R � 140 nm, while the CuCl NP and the whole
plexcitonic pair are highly absorptive, the silver NP is nearly
transparent to the incident wave in the small wavelength
range inside the narrow dip.
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Fig. 2. The real and imaginary parts of the uncoupled polarizabilities
of individual silver and CuCl NPs with equal radii of a � 10 nm, in a
medium with dielectric constant εh � 1.6.
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Fig. 3. Total extinction coefficients of two coupled spherical silver and CuCl NPs with equal radii of a � 10 nm, in a medium with dielectric
constant εh � 1.6, for different separations of (a) R � 140 nm; (b) R � 80 nm, and (c) R � 50 nm. The incident electric field polarization is
assumed to be parallel to the line connecting the NPs.
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Fig. 4. The minimum values of extinction coefficient inside the trans-
parency dip, produced by two coupled silver and CuCl NPs with the
same parameters as in Fig. 3, as a function of separation of the NPs.
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As shown in Figs. 3(b) and 3(c), corresponding to smaller
separations of the NPs (or larger couplings), considerable
suppression is produced in the total extinction of the pair near
the sharp excitonic resonance of the CuCl NP, which means
that the pair as a whole can also be nearly transparent to the
incident wave in a narrow wavelength range. Within the trans-
parency windows produced in the extinction profiles of the
plexcitonic pairs in Figs. 3(b) and 3(c), the overall polarizabil-
ity of the NPs shows steep variations, which can produce
strong normal dispersions in media containing large number
of such NPs. The real part of the total polarizability (normal-
ized to 4πa3) of the same NP pair of Fig. 3(c) for R � 50 nm is
plotted in Fig. 9. The steep variation of the polarizability
near the excitonic resonance, together with the very low ex-
tinction coefficient of the NP pair in the same spectral range
[Fig. 3(c)], suggests that plexcitonic pairs can be considered
as building blocks of composite metamaterials exhibiting
transparency and slow light effects. In Section 3, we show that
a random mixture of such interacting NPs can show such
effects.

The conventional methods of plasmon-induced transpar-
ency as classical analogues of the quantum optical effect of
EIT [21] are usually based on designing specific plasmonic
“molecules” for providing two interacting superradiant and
subradiant plasmonic modes [22–26]. The superradiant mode
(or the “bright” state) in such synthetic molecules is directly
excited by the external field and the subradiant mode (“dark”
state) is excited through coupling to the superradiant mode.
The transparency effect results from the destructive interfer-
ence between two different excitation pathways; one, being
the direct excitation of the bright mode by the incident wave
and the other, excitation through coupling to the dark mode.
The destructive interference of the two excitation pathways
leads to the development of a dip in the imaginary part of
the polarizability of the bright mode and steep variation of
the polarizability in the same spectral region. The plasmon-
induced transparency methods are different from our pro-
posed approach, based on coupling of NPs in plexcitonic
molecules. In a plexcitonic molecule, both of the NPs have
strong couplings to the external field. In addition, the reso-
nance of the excitonic NP is much sharper than the dark-state
plasmonic resonance, which suffers from ohmic losses inher-
ent in metals. Therefore, the transparency effect can be much
more efficient and pronounced in a plexcitonic molecule than
a plasmonic one. Plasmonic molecules usually lead to group
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Fig. 5. Full-width of the transparency dip as a function of separation
of two coupled silver and CuCl NPs with the same parameters and
conditions as in Fig. 3.
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Fig. 6. The redshift of the minimum point of the transparency dip
as a function of separation of two coupled silver and CuCl NPs with
the same parameters and conditions as in Fig. 3. The redshift is cal-
culated from the reference wavelength related to the case where the
separation of the NPs is R � 40 nm.
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indices of refraction of the order of several hundreds [22–26],
while as we show in the following sections, group indices in
the proposed plexcitonic metamaterials can be of the order of
several thousands.

The enhancement and suppression of extinction cross sec-
tions are not the only features arising from mutual interaction
of excitonic and plasmonic NPs. In addition to zero extinction
or transparency, we show that in proper conditions, each
coupled NP in a plexcitonic pair can even exhibit negative ex-
tinction or amplification in a specific wavelength range. We
consider the extinction of a plane wave by two coupled silver
and CuCl NPs in the same condition of Fig. 3(c). Figure 10
shows the contribution of individual coupled NPs to the
extinction coefficient, separately. We see that for each NP,
there is a narrow negative extinction region, near the CuCl
resonance. For the same NPs, the contribution of individual
NPs to the extinction and also the total extinction coefficient
of the pair are plotted in Fig. 11, in a much narrower wave-
length range, showing that both silver (dashed curve) and
CuCl (dotted curve) NPs exhibit amplification in the respec-
tive wavelength ranges of λ ≅ 368.51–368.55 nm and λ ≅
368.2–368.51 nm. However, the sum of the two curves corre-
sponding to the overall extinction of the NPs (the solid curve)
is always positive, so the system as a whole is absorptive. We
note that the NPs’ amplifications cannot be observed in far

field, because what we observe in far field is an overall effect,
which is a positive extinction.

The physics of the classical plasmon-exciton interactions
can be better understood if we consider the two NPs as
two classical oscillators with uncoupled polarizabilities of
Lorentzian form, and then instead of relation (2) we assume
a much more simpler relation for the electric field pro-
duced by each dipole, Edipole;j � C�R� · pj , (j � 1; 2), where
C�R� ∝ 1 ∕R3, and R is the distance between the NPs. We as-
sume that the NPs are excited by a plane wave with the elec-
tric field amplitude denoted by E0 and wavelength much
larger than the NPs’ sizes and separation. So, the induced
dipole moment in each of the NPs can be written as

P1 � α1�E0 � CP2�; (7)

P2 � α2�βE0 � CP1�: (8)

The parameter β is inserted in relation (8) in order to con-
sider two different cases. When both of the NPs are effectively
coupled to the external field, we put β � 1 and when the ex-
citation of the second NP is mainly through coupling to the
other NP we put β � 0. The relations (7) and (8) can be solved
for the induced dipole moments:

Pj � α0jE0; j � 1; 2 (9)

with coupled polarizabilities of

α01 � α1
1� βCα2
1 − C2α1α2

; (10)

α02 � α2
β� Cα1

1 − C2α1α2
: (11)

We assume that the uncoupled polarizabilities have a
Lorentzian response:

αj �
A

ω2
j − ω2 − iωγj

; j � 1; 2; (12)
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where ωj and γj are the center frequency and damping con-
stant of the Lorentzian polarizability αj , and A is a constant.
Substituting the uncoupled polarizabilities (αj , j � 1; 2) into
relations (10) and (11), we get

α01 �
�δ2 − iγ2ω� − βC

�δ1 − iγ1ω��δ2 − iγ2ω� − C2 A; (13)

α02 �
�δ1 − iγ1ω�β − C

�δ1 − iγ1ω��δ2 − iγ2ω� − C2 A; (14)

in which δj � ω2
j − ω2� j � 1; 2�. The condition of negligible

coupling of the second NP to the external field (β ≅ 0), cor-
responds to classical analogy of the Fano resonance and clas-
sical EIT, which is thoroughly discussed in [27] and we do not
repeat the results here, except for a brief description of the
phenomenon. If we assume ω1 ≠ ω2 and γ2 ≪ γ1 in relations
(13) and (14), the absolute value of α01 as a function of ω,
shows two peaks corresponding to the resonances of the
two NPs with a minimum between them at a frequency very
close to ω2. The minimum of the curve approaches to zero as
γ2 takes smaller values. We can see that at this point the os-
cillation of the first NP is out of phase with and quenched
by the second NP oscillation, which is synchronized with
the external field. In this case while the imaginary part of
α01 is always positive the imaginary part of α02 is negative

for ω <
����������������������������������������������������
�ω2

1γ2 � γ1ω
2
2� ∕ �γ1 � γ2�

q
:

For the case that both of the NPs are effectively coupled to
the external field (β � 1), we calculate the phase angle and
imaginary part of the polarizabilities in (13) and (14) near
the resonances. Using the parameters, A ∕ω2

1 � 0.0851,
γ1 ∕ω1 � 0.0117, γ2 ∕ω1 � 1.167 × 10−4, C ∕ω2

1 � 2.735 × 10−4,
the imaginary part of α01 � α02 and the phase angles of α01 �
jα01j exp�iϕ1�ω�� and α02 � jα02j exp�iϕ2�ω�� are shown in
Figs. 12, 13, and 14, for three different values of ω2 ∕ω1 � 1,
1.0018 and 0.9982, respectively. In Fig. 12, where ω1 � ω2,
we see the enhancement of the imaginary part of α01 by the
sharp peak corresponding to the imaginary part of α02 at
ω � ω1 � ω2, where the phases of the resonances are equal

to π ∕ 2. So, at this frequency both of the NPs are effectively
coupled to the external field and their amplitudes are added
constructively. In Fig. 13, showing the same curves at ω2 �
1.0018 ω1, we see the phase angle ϕ2�ω� is nearly the same
as that of an uncoupled NP (α2), but the phase angle ϕ1�ω�
at the minimum point of the solid curve shows an abrupt
change from ≅π ∕ 2 toward the zero. The inset shows a closer
view of the curves around ω � ω2. We see that both of the NPs
have phase values near to zero at this point, showing that they
are not effectively coupled to the external field and are nearly
transparent at this frequency. Figure 14 shows similar curves
for the same parameters but when ω2 � 0.9982 ω1. In this fig-
ure also, near the minimum point of the solid curve, we see an
abrupt change of ϕ1�ω� from values near π ∕ 2 toward the zero.
This leads to lower coupling of the first NP to the external
field. In this figure and Fig. 13, the phase angles corresponding
to the maximum points of the solid curves are around π ∕ 2,
showing that in these cases, both of the NPs are highly
coupled to the external field.
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Fig. 12. (Color online) The imaginary part of the total (coupled) po-
larizabilities, α01 � α02 and the phase angles of α01 and α02, for the case
that both of the NPs are effectively coupled to the external field
(β � 1) and ω2 � ω1, using the parameters A ∕ω2

1 � 0.0851,
γ1 ∕ω1 � 0.0117, γ2 ∕ω1 � 1.167 × 10−4, C ∕ω2

1 � 2.735 × 10−4.
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Other features of the two interacting NPs can be revealed
through changing the parameters such as coupling coefficient
(C) or the difference between the resonance frequencies,
Δω � jω1 − ω2j. In general by increasing these parameters,
both the depth and width of the produced dip in the imaginary
part of α01 � α02 increases.

It can be shown easily that the imaginary parts of both of
the coupled polarizabilities α01 and α02 can take negative values
in different specific frequency ranges, while the sum of the
imaginary parts is positive at all frequencies:

Im�α01�α02� �
γ2�C − δ1�2� γ1γ2�γ1� γ2�ω2� γ1�δ22�C2�
�δ1δ2 − γ1γ2ω2 −C2�2��δ1γ2ω� δ2γ1ω�2

> 0:

(15)

This is another feature of the interacting bright NPs (β � 1),
showing that their overall extinction is always positive, while
the individual coupled NPs can take negative extinction coef-
ficients in separate narrow spectral ranges.

More details of the wave-particle and particle-particle inter-
actions can be observed by studying the field lines of Poynting
vector inside and around the NPs near their resonances [28]
and in the spectral range of exciton-plasmon interaction. In
Figs. 15(a) to 15(c), some results of our numerical calcula-
tions based on the finite element method are shown, where
the power flow lines are plotted in the polarization plane of
the incident field, inside and around a single silver NP of
radius a � 10 nm in a medium with dielectric constant εh �
1.6 and at different wavelengths of λ � 365 nm [Fig. 15(a)],
λ � 363 nm [Fig. 15(b)], and λ � 390 nm [Fig. 15(c)]. The
incident plane wave propagates in �z direction and the field
polarization is parallel to the x axis. The color legends
represent the z component of Poynting vector normalized
to the intensity of incident wave. In Fig. 15(a), corresponding
to LSP resonance peak of the NP at the wavelength
λ � 365 nm, we see how the particle attracts the power flow
from an area much larger than its geometrical cross section,
so that its extinction coefficient is much larger than unity.
Also, we can see that the power intake is from a small surface
area on the back side of the NP. Figure 15(b) corresponds to
λ � 363 nm, a little smaller than the wavelength of LSP reso-
nance peak. It is seen that only part of the entering power
from the back side is trapped into the optical whirlpools to
be absorbed by the NP, and some part of energy can escape
and exit from the front side of the NP. Figure 15(c) corre-
sponds to the wavelength of λ � 390 nm, which is rather
far from the NP’s LSP resonance peak, where the extinction
cross section is much smaller than the geometrical cross sec-
tion. In this figure we see that the trapped power flow comes
from an area much smaller than geometrical cross section and
the power intake is from an area in front of the NP. Also, the
power flow lines rotate in the opposite direction, compared
to that in Fig. 15(b). Similar results can also be obtained
for a single CuCl NP, at its resonance, and also at wavelengths
a little smaller and larger than the resonance line.

For a pair of coupled CuCl and silver NPs with the same
radius of a � 10 nm and separation of R � 30 nm, in a host
medium with dielectric constant εh � 1.6, we numerically cal-
culated the normalized value of electric field at the center of
each NP (shown in Fig. 16), which can be considered as a
measure of strength of the wave-particle interaction. Also,

the total power loss due to absorption is calculated and shown
in Fig. 17. In these simulations the incident plane wave pro-
pagates in �z direction, perpendicular to the line connecting
the NPs’ centers and the field polarization is along the x axis
and parallel to the NPs’ connecting line. Near the minimum
point of total absorption curve in Fig. 17, the power flow lines
around the NPs have a typical pattern shown in Fig. 18(a),
corresponding to the wavelength of λ � 368.55 nm. In this
figure, the optical whirlpool between the NPs and passing
through both of them visualizes the mutual couplings of the
NPs. The color legends in this and in the following figures
represent the x component of electric field normalized to
the incident field amplitude. Figure 18(b) shows the power
flow lines and field distribution at the wavelength of
λ � 368.56 nm, exactly at the minimum point of the total

Fig. 15. (Color online) Power flow lines in x-z plane, inside and
around a single silver NP of radius a � 10 nm, in a medium with di-
electric constant εh � 1.6, at the wavelengths of (a) λ � 365 nm, cor-
responding to the LSP resonance of the NP; (b) λ � 363 nm, a little
smaller than the wavelength of the NP’s LSP resonance peak, and
(c) λ � 390 nm, far from the wavelength of NP’s LSP resonance peak.
The plane wave propagation is in �z direction and the field polariza-
tion is parallel to the x axis. The color legends represent the z com-
ponent of the Poynting vector normalized to the incident wave
intensity.
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absorption curve in Fig. 17. We see that just a small number of
power lines are trapped into the optical whirlpools and most
of them easily pass through or turn around the NPs.
Figure 18(c), corresponds to the minimum value of electric
field (Fig. 16) at the center of the silver NP and at the wave-
length λ � 368.57 nm. In contrast to Figs. 18(a) and 18(b),
where the power flow lines are fed mainly from the front side
of the silver NP, in Fig. 18(c) the power intake is from a
small surface area on the back side of the silver NP. This
is due to an unusual phase change in polarizability of the silver
NP, so that the local field at the position of the silver NP, and
the wave-particle interactions are minimum at this wave-
length. Figure 18(d) is related to the maximum point of total
absorption loss at λ � 386.63 nm (Fig. 17). Here we see that
power flow pattern for both of the NPs has changed and the
power is mainly fed from the front side. This can also be at-
tributed to the phase changes in polarizabilities of the NPs,
returning to the value of ϕ ≈ π ∕ 2, leading to high absorption
losses of the pair at this wavelength.

We note that in Fig. 16, there is a small and rather sharp
peak on the left side of the main peak of the electric field
at the center of the CuCl NP. This is due to the electric quad-

rupole component of the field at λ � 386.52 nm. As shown in
Fig. 18(e), the field distribution around this wavelength and
power flow patterns are quite different from previous figures
and some smaller scale optical whirlpools are produced near
the surface of the CuCl NP.

3. TRANSPARENCY AND SLOW LIGHT IN
PLEXCITONIC METAMATERIALS
In the previous sections, we showed that Fano-like coupling of
excitonic and plasmonic NPs can render a plexcitonic pair
transparent to the incident wave. This suggests that a medium
comprising a mixture of such NPs might be capable of exhi-
biting transparency and slow light effects at optical frequen-
cies. In this section we study the effective electromagnetic
properties of a random mixture of such NPs. Also, we study
the transparency of a metamaterial composed of coated sphe-
rical NPs with excitonic cores and plasmonic shells.

A. Random Mixture of Excitonic and Plasmonic NPs
We consider a random distribution of silver and CuCl. For
calculation of effective electromagnetic parameters of the
medium, we use the extended Maxwell Garnett theory for
multiphase (or multicomponent) structures in quasi-static lim-
it [29,30], which accounts for dipolar interactions among the
NP inclusions [31,32]:

εeff � εh
1� 2

Pn
j�1 f jα

e
j

1−
Pn

j�1 f jα
e
j
; μeff � μh

1� 2
Pn

j�1 f jα
m
j

1−
Pn

j�1 f jα
m
j

: (16)

The sums are over the n components of the medium except
the host, f j denotes the volume fraction occupied by the com-
ponent j (which can be a measure of average distance be-
tween the NPs), and αej (αmj ) is the electric (magnetic)
polarizability factor of the component j, obtained from the ex-
pression −�3 ∕ 2�ia1 ∕ x3 (−�3 ∕ 2�ib1 ∕ x3) [33]. Here, a1 and b1 are
the first Mie coefficients [16]:

a1 �
mψ1�mx�ψ 0

1�x� − ψ 0
1�mx�ψ1�x�

ψ1�mx�ξ01�mx� −mξ1�x�ψ 0
1�mx� ; (17)

b1 �
ψ1�mx�ψ 0

1�x� −mψ1�x�ψ 0
1�mx�

ψ1�mx�ξ01�mx� −mξ1�x�ψ 0
1�mx� ; (18)

where m � np ∕nh is the ratio of the particle to host medium
refractive indices, x � 2πnha ∕ λ is a size parameter, ψ1�ρ� �
ρj1�ρ� and ξ1�ρ� � ρh�1�1 �ρ� are Riccati–Bessel functions
proportional to spherical Bessel and Hankel functions.

In Fig. 19, real and imaginary parts of effective dielectric
function of a medium is plotted, which contains microscopi-
cally random, but macroscopically homogenous distribution
of spherical silver and CuCl NPs with respective diameters
and volume fractions of dAg � 14 nm, dCuCl � 20 nm, f Ag �
0.03 and f CuCl � 0.3, embedded in a host medium with dielec-
tric constant εh � 1.6. The curve in Fig. 19(a) shows that there
is a very steep normal dispersion within the narrow transpar-
ency window, corresponding to the narrow dip in the imagin-
ary part of the effective dielectric function of the medium at
λ ≅ 368.5 nm [Fig. 19(b)]. Figure 19(b) shows an asymmetric
Fano profile with a sharp and strong absorption peak in the
vicinity of the narrow transparency dip.
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Fig. 16. (Color online) Normalized (to the incident wave amplitude)
electric field at the center of each NP in a plexcitonic molecule, com-
posed of two coupled CuCl and silver NPs with the same radius of
a � 10 nm and separation of R � 30 nm, in a medium with dielectric
constant εh � 1.6, calculated by finite element method.
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Fig. 16, calculated by the finite element method.
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The effective phase index of refraction of the medium is
calculated using the relation

neff �
����������������������
jεeff j:jμeff j

p
exp�i�θε � θμ� ∕ 2�; (19)

where θε and θμ are the phases of the εeff and μeff , respectively.
In the highly dispersive region within the transparency win-
dow, the group index of refraction, defined as ng�λ� � n�λ� −
λ�dn�λ� ∕ dλ� (where n�λ� is the phase index of refraction as a
function of wavelength), can take very high values, which
can be utilized in slow light applications. The group index
and the imaginary part of the effective phase index as a func-
tion of wavelength are shown in Fig. 20, for the same medium
parameters as used in Fig. 19. According to Fig. 20, the max-
imum value of group index, ng � 3740 (solid curve), corre-
sponds to the value of 0.7 for the imaginary part of phase
index (broken curve), and figure of merit (FoM; the ratio
of real to imaginary part of phase index) value of
FoM ≅ 1. Also, the minimum value of the imaginary part
of phase index is 0.6 that corresponds to ng � 2300 and
FoM ≅ 1.6. Even though that the FoM values are not so pro-

mising, we show in the next section that a metamaterial com-
posed of spherical NPs of core-shell geometry can result in
much improved FoM values.

Fig. 18. (Color online) Power flow lines inside and around two coupled silver (lower) and CuCl (upper) NPs with the same parameters and con-
ditions as in Fig. 16, at different wavelengths of (a) λ � 368.55 nm, visualizing the mutual coupling of the NPs; (b) λ � 368.56 nm, where according to
Fig. 17, the total absorption loss is minimum; (c) λ � 368.57 nm, corresponding to the minimum value of the electric field at the center of the silver
NP (Fig. 16); (d) λ � 368.63 nm, corresponding to the maximum point of total absorption loss (Fig. 17), and (e) λ � 386.52 nm, near the electric
quadrupole resonance peak of the CuCl NP. The color legends represent the x component of electric field normalized to the incident wave amplitude.
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of a medium containing random distribution of spherical silver and
CuCl NPs with respective diameters and volume fractions of
dAg � 14 nm, dCuCl � 20 nm, f Ag � 0.03, and f CuCl � 0.3, in a host
medium with dielectric constant εh � 1.6.
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The transparency effect in a random mixture of plasmonic
and excitonic NPs can be examined numerically by calculat-
ing the total absorbed power in the mixture. Such calculations
for very large number of NPs usually require very long run-
times, but we have done finite element calculations for a small
cluster containing three-dimensional random distribution of 8
silver and 18 CuCl NPs, shown in Fig. 21. The total absorbed
power curve is shown in Fig. 22, which is the result of calcula-
tions at 100 discrete wavelengths. In this figure, we see both
suppression and enhancement of absorption due to coherent
interaction of the NPs. There is also a rather small absorption
peak at the right side of the main peak, which can be due to
hybridization of the dipolar modes in the cluster. The para-
meters of the cluster are not optimized for getting maximum
transparency. The depth and width of the transparency dip in
Fig. 22 can be tuned by changing the filling fraction of the NP
components through changing the NPs’ dimensions, number
density, and the average distance between them.

B. Random Mixture of Spherical Core-Shell NPs
In this section we show that transparency and slow light ef-
fects can also be observed in a medium containing spherical
NPs of core-shell geometry with excitonic cores and plasmo-
nic shells. A plasmonic spherical nanoshell has two separate
LSP resonances in the optical region, resulting from hybridi-
zation of the dipolar modes of a metallic sphere and of a di-
electric void in a metallic substrate [34]. We consider metallic
nanoshells of aluminum (Al), which by adopting proper

radius and thickness and proper dielectric constant of the host
material, can provide an LSP resonance in the UV region, co-
inciding with the excitonic resonance of CuCl cores. For
dielectric function of Al, we use the Drude–Lorentz multios-
cillator model [35–37]:

εc�ω� � 1 −
f 0ω2

p

ω�ω� iγ0�
�

X5
i�1

f iω2
p

ω2
0i − ω2 − iγiω

: (20)

We denote the radius and refractive index of the cores
(shells) by ac and nc (as and ns), respectively. For evaluation
of the effective permittivity and permeability of the medium
with core-shell inclusions, we use extended Maxwell Garnett
relations:

εeff � εh
1–2 f �3 ∕ 2�ia1 ∕ x30
1� f �3 ∕ 2�ia1 ∕ x30

; (21)

μeff � μh
1–2f �3 ∕ 2�ib1 ∕ x30
1� f �3 ∕ 2�ib1 ∕ x30

; (22)

with Mie coefficients a1 and b1 given by the following relations
(by putting n � 1), derived for core-shell geometry [15]:

an � mψn�mx��ψ 0
n�x� − Anχ

0
n�x�� − ψ 0

n�mx��ψn�x� − Anχn�x��
mξn�mx��ψ 0

n�x� − Anχ
0
n�x�� − ξ0n�mx��ψn�x� − Anχn�x��

;

(23)

bn � ψn�mx��ψ 0
n�x� − Bnχ

0
n�x�� −mψ 0

n�mx��ψn�x� − Bnχn�x��
ξn�mx��ψ 0

n�x� − Bnχ
0
n�x�� −mξ0n�mx��ψn�x� − Bnχn�x��

;

(24)

in which

An � m1ψn�m1x1�ψ 0
n�x1� − ψ 0

n�m1x1�ψn�x1�
m1χn�m1x1�ψ 0

n�x1� − χ 0n�m1x1�ψn�x1�
; (25)

Bn � ψn�m1x1�ψ 0
n�x1� −m1ψ

0
n�m1x1�ψn�x1�

χn�m1x1�ψ 0
n�x1� −m1χ

0
n�m1x1�ψn�x1�

: (26)

Here, x0 � nhk0as, m � nh ∕ns, x � nsk0as, k0 � 2π ∕ λ,
m1 � ns ∕nc, x1 � nck0ac, ψn�ρ� � ρjn�ρ�, χn�ρ� � ρyn�ρ�,
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XY view YZ view ZX view 

Fig. 21. (Color online) A NP cluster containing three-dimensional
random distribution of 8 silver (blue or darker spheres) and 18 CuCl
(red spheres) NPs, viewed through XY, YZ and ZX planes. All of the
NPs have the same radius of a � 10 nm.
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and ξn�ρ� � ρh�1�n �ρ� � ρ� jn�ρ� � iyn�ρ��, in which jn�ρ� and
yn�ρ� are Bessel functions of order n. Figure 23 shows real
and imaginary parts of phase index of refraction, in a medium
containing random distribution of core-shell NPs with volume
fraction f � 0.3 and inner (outer) shell radius of ac � 10 nm
(as � 15 nm), embedded in a host with dielectric constant
εh � 2.3. The highly dispersive region in this figure within
the narrow transparency window occurs around the wave-
length of λ � 369 nm.

The group index and the imaginary part of the phase index,
neff , are shown in Fig. 24, where the group index takes the
value of ng ≅ 1300, at the wavelength of λ � 369.2, corre-
sponding to the imaginary part of phase index ≅0.13 and
FoM value of ≅17, which shows nearly 1 order of magnitude
improvement compared to the case of random mixture of NPs
in the previous section.

An important parameter for evaluation of the performance
of slow light structures is delay-bandwidth product given by
Δτ:B �

���������
ln 2

p �����������������
LΔα�0�

p
[38], in which L is the slow light de-

vice length andΔα�0� is the depth of the spectral hole defined
as the difference between the original and modified absorp-
tion spectra at the center frequency. Calculating the depth
of spectral hole in two different cases, we see that for a single
wavelength propagation length, the delay-bandwidth product

is equal to 6.1 in the case of random mixture of CuCl and Ag
nanoparticles (in the condition described in Fig. 19), and it is
equal to 3.4 in the case of random distribution of coated na-
noparticles with CuCl cores and aluminum shells (with para-
meters given in Fig. 23). The delay-bandwidth product values
are higher than that obtained in [39] and are comparable to
those obtained in [40,41].

4. SUMMARY
The classical interactions of plasmonic and excitonic NPs can
result in enhanced or suppressed absorption of electromag-
netic waves. The suppressed absorption or transparency is
at the same spectral region of steep variations in real part
of the plasmonic-excitonic pair’s polarizability, which can re-
sult in high normal dispersions in metamaterials composed of
such coupled NPs. It is shown that within the transparency
window, group indices of refraction of the order of several
thousands can be achieved in metamaterials composed of ran-
dom distribution of excitonic (copper chloride) and plasmo-
nic (silver) NPs, or random distribution of core-shell NPs with
copper chloride cores and aluminum shells in the UV region.
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