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Building an Orthonormal Basis from a
3D Unit Vector Without Normalization

Jeppe Revall Frisvad
Technical University of Denmark

Abstract. I present two tools that save the computation of a dot product and a

reciprocal square root in operations that are used frequently in the core of many

rendering programs. The first tool is a formula for rotating a direction sampled

around the z-axis to a direction sampled around an arbitrary unit vector. This is

useful in Monte Carlo rendering techniques, such as path tracing, where directions

are usually sampled in spherical coordinates and then transformed to a Cartesian

unit vector in a local coordinate system where the zenith direction is the z-axis.

The second tool is a more general result extracted from the first formula, namely

a faster way of building an orthonormal basis from a 3D unit vector. These tools

require fewer arithmetic operations than other methods I am aware of, and a per-

formance test of the more general tool confirms that it is faster.

1. Introduction

It often happens in Monte Carlo simulation that we would like to sample
a direction from a probability density function (pdf) that depends on the
angle with a specific direction. The specific direction could be a surface nor-
mal or the forward direction of a ray traveling through a scattering material
[Pharr and Humphreys 10]. The classical example is the sampling of a direc-
tion on a cosine-weighted hemisphere. This is useful for sampling the cosine
dependency of diffuse reflections if we would like to evaluate the rendering
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equation using Monte Carlo integration. Directions are typically sampled in
spherical coordinates, and these are transformed to Cartesian coordinates by
assuming that the zenith direction is the z-axis. This means that we get local
Cartesian coordinates that must be transformed to coordinates in the usual
basis where the zenith direction is an arbitrary (user-specified) direction vec-
tor. This paper provides an inexpensive formula (Equation 3) for rotating
a sampled direction from being sampled around the z-axis to being sampled
around an arbitrary direction.

The rotation used for this type of sampling corresponds to a change of
basis. Another way to do it is to take the arbitrary direction (the surface
normal, for example), build an orthonormal basis from it, and use the three
basis vectors to specify a rotation matrix. This means that the solution
found for rotating directions sampled in spherical coordinates also solves a
more general problem, namely the problem of building an orthonormal basis
from an arbitrary 3D unit vector. My solution (Equations 4–6) has the
advantage that it does not require the dot product and reciprocal square
root computations needed for vector normalization. The number of other
arithmetic operations corresponds to little more than what is needed for a
cross product, so the normalization is saved nearly without adding extra cost,
as compared to other methods.

2. Notation and Background

Let us use bold face to denote arbitrary vectors (e.g. s) and arrow overline to
denote unit vectors (e.g. ~ω). With respect to the problem at hand, we let ~n
denote the specific direction that we would like to sample a new direction ~ω
around. The new direction is sampled in spherical coordinates (θ, φ), where θ
is the inclination angle and φ is the azimuthal angle. We can translate these
spherical coordinates to a Cartesian unit vector by

⊥~ω = (x, y, z) = (sin θ cosφ, sin θ sinφ, cos θ) ,

where the subscript ⊥ signals that these are coordinates with respect to a
basis {~b1,~b2, ~n}, where ~n is the direction of the z-axis. We have no explicit
knowledge about the other two vectors of this basis. Therefore, we must
build an orthonormal basis from ~n in order to find ~ω in the usual basis. Once
the two other basis vectors have been chosen, the change of basis is

~ω = x~b1 + y~b2 + z~n .

There are several ways to build the vectors ~b1 and ~b2 from ~n. For the basis
to be orthonormal, the requirement is that all three vectors are orthogonal
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Listing 1. Common ways of finding an orthonormal basis from a unit 3D vector.

void naive(const Vec3f& n, Vec3f& b1, Vec3f& b2)
{

// If n is near the x-axis , use the y-axis. Otherwise use the x-axis.
if(n.x > 0.9f) b1 = Vec3f (0.0f, 1.0f, 0.0f);
else b1 = Vec3f (1.0f, 0.0f, 0.0f);
b1 -= n*dot(b1, n); // Make b1 orthogonal to n
b1 *= rsqrt(dot(b1 , b1)); // Normalize b1
b2 = cross(n, b1); // Construct b2 using a cross product

}

void hughes_moeller(const Vec3f& n, Vec3f& b1, Vec3f& b2)
{

// Choose a vector orthogonal to n as the direction of b2.
if(fabs(n.x) > fabs(n.z)) b2 = Vec3f(-n.y, n.x, 0.0f);
else b2 = Vec3f (0.0f, -n.z, n.y);
b2 *= rsqrt(dot(b2 , b2)); // Normalize b2
b1 = cross(b2 , n); // Construct b1 using a cross product

}

and of unit length. The usual approach is to find a vector orthogonal to ~n,
normalize it, and take the cross product of this vector and ~n to find the third
vector in the basis. C++ code for doing this both in a näıve way and using the
faster Hughes-Möller method [Hughes and Möller 99] is provided in Listing 1.
The vector normalization is expensive in these methods as it involves a dot
product and a reciprocal square root. All the methods I have been able to
find use vector normalization. In the following section, I use quaternions
[Hamilton 44] to find a method that does not need normalization.

3. Rotation of the z-axis to an Arbitrary Direction

A change of basis corresponds to rotation. A quaternion is a different way to
express a three-dimensional rotation. The rotation we need is the rotation
from the z-axis to the arbitrary unit vector ~n. This is the rotation that we
would like to apply to the sampled direction ⊥~ω in order to get ~ω. The
following formula finds a unit quaternion q̂ that specifies the rotation from a
vector s to a vector t [Akenine-Möller et al. 08, Section 4.3]:

q̂ = (qv, qw) =

(
1√

2(1 + s · t)
(s× t),

√
2(1 + s · t)

2

)
. (1)

If a point or a vector is given in homogeneous coordinates (p, pw), we can
represent it by a quaternion p̂ defined by the same four coordinates. The
rotation defined by a unit quaternion q̂ is then applied using the mapping

p̂ 7→ q̂p̂q̂−1 ,
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and q̂−1 = q̂∗ = (−qv, qw) for unit quaternions, where the asterisk (∗) denotes
the quaternion conjugate. Multiplication of quaternions is associative but not
commutative, and it is defined by

p̂q̂ = (pv × qv + qwpv + pwqv, pwqw − pv · qv) .

To rotate from the direction of the z-axis (0, 0, 1) to ~n = (nx, ny, nz), the
rotation formula (1) simplifies to

q̂ =

(
(−ny, nx, 0)√

2(1 + nz)
,

1

2

√
2(1 + nz)

)
. (2)

A direction vector has a zero as its w-coordinate, thus p̂ = (⊥~ω, 0), and we
have

(~ω, 0) = q̂ (⊥~ω, 0) q̂∗ = q̂ (x, y, z, 0) q̂∗ .

After some algebraic manipulation and using the fact that ~n is of unit length
(see Appendix A), we get the result

~ω = (q̂ (⊥~ω, 0) q̂∗)v

=

x
1− n2x/(1 + nz)
−nxny/(1 + nz)

−nx

+ y

−nxny/(1 + nz)
1− n2y/(1 + nz)

−ny

+ z

nxny
nz

 . (3)

The equation has a singularity if 1 + nz = 0, which happens only when
~n = (0, 0,−1). We can handle this case by setting ~ω = (−y,−x,−z), which
is what the formula would go to for nz going to −1. Note that this end result
involves no square root and that (1 +nz)−1 is used repeatedly and should be
stored as a temporary variable. Storing −nxny/(1 +nz) as a temporary also
seems to give a slight advantage.

4. Building an Orthonormal Basis from a 3D Unit Vector

Looking at the formula (3) for rotation of a direction sampled around the z-
axis to a direction sampled around an arbitrary direction ~n, the three vectors

~b1 = (1− n2x/(1 + nz), −nxny/(1 + nz), −nx) (4)

~b2 = (−nxny/(1 + nz), 1− n2y/(1 + nz), −ny) (5)

~n = (nx, ny, nz) (6)
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are a basis with ~n as the z-axis. We should check that this basis is orthonor-
mal, such that we are certain that we get a unit vector result if the sampled
direction ⊥~ω = (x, y, z) is a unit vector. We check this by ensuring that the
vectors are of unit length and that the dot products between them are zero
(see Appendix B). Because this is true, Equations 4–6 provide a tool for
building an orthonormal basis from an arbitrary unit vector ~n. The singular-
ity 1 +nz = 0 is handled by setting ~b1 = (0,−1, 0) and ~b2 = (−1, 0, 0), which
is the limit the equations would go to. Code implementing this new method
is provided in Listing 2. If we want a function that builds a right-handed
orthonormal basis {~x, ~y, ~z} with ~n as the x-axis, we should use

~x = ~n , ~y = ~b2 , ~z = −~b1 .

5. Performance

The operations needed for the new method are six multiplications, three ad-
ditions/subtractions, three negations, one division, and a conditional. For
comparison, the Hughes-Möller method uses six multiplications, three sub-
tractions, three negations/absolute values (fabs), a normalization, and a con-
ditional. This means that, if we use the new method instead of the Hughes-
Möller method, we trade a normalization for a division. Normalization is
multiplying the reciprocal square root (rsqrt) of a dot product onto a vec-
tor, that is, six multiplications, two additions, and one rsqrt. Thus the new
method should nearly double performance.

Table 1 provides a test of the performance of the new method (Listing 2)
compared with the methods in Listing 1. To ensure that the test provides a
fair indication of the performance gain that we can expect from using the new
method, the previous methods have been tested using the different implemen-
tations of the rsqrt function in Listing 3. If we want comparable precision,
the new method really is almost twice as fast as the Hughes-Möller method.

Listing 2. New way of finding an orthonormal basis from a unit 3D vector.

void frisvad(const Vec3f& n, Vec3f& b1, Vec3f& b2)
{

if(n.z < -0.9999999f) // Handle the singularity
{

b1 = Vec3f( 0.0f, -1.0f, 0.0f);
b2 = Vec3f (-1.0f, 0.0f, 0.0f);
return;

}
const float a = 1.0f/(1.0f + n.z);
const float b = -n.x*n.y*a;
b1 = Vec3f (1.0f - n.x*n.x*a, b, -n.x);
b2 = Vec3f(b, 1.0f - n.y*n.y*a, -n.y);

}
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onb function rsqrt function no. of trials (millions) RMSE

naive rsqrt 22.6 5.6 · 10−8

InvSqrt 33.8 7.3 · 10−4

SSE rsqrt 40.8 6.6 · 10−5

SSE rsqrt 1N 34.3 6.2 · 10−8

no normalization 64.6 1.5 · 10−1

hughes moeller rsqrt 26.0 3.2 · 10−8

InvSqrt 41.4 7.9 · 10−4

SSE rsqrt 53.1 6.7 · 10−5

SSE rsqrt 1N 41.0 4.0 · 10−8

no normalization 73.1 5.5 · 10−2

frisvad not needed 78.5 7.2 · 10−7

Table 1. Number of times that we can find an orthonormal basis (onb) in 1 second
on a laptop computer with a 2.4 GHz Intel Core2 Duo CPU (using OpenMP to
employ both cores). RMSE is root mean square error with respect to length and
orthogonality of the vectors.

Listing 3. Different options for the rsqrt function used for normalization.

// Using the C++ standard library sqrt function
inline float rsqrt(float x) { return static_cast <float >(1.0/ sqrt(x)); }

// See http ://en.wikipedia.org/wiki/Fast_inverse_square_root
inline float InvSqrt(float x)
{

float xhalf = 0.5f*x;
int i = *(int *)&x;
i = 0x5f3759df - (i>>1);
x = *(float *)&i;
x = x*(1.5f - xhalf*x*x); // (repeat to improve precision)
return x;

}

// Streaming SIMD Extension (SSE) scalar rsqrt function
inline float SSE_rsqrt(float x)
{

// The following compiles to movss , rsqrtss , movss
_mm_store_ss (&x, _mm_rsqrt_ss(_mm_load_ss (&x)));
return x;

}

// Include a Newton iteration with the SSE rsqrt to improve precision
inline float SSE_rsqrt_1N(float x)
{

float y = SSE_rsqrt(x);
return y*(1.5f - 0.5f*x*y*y);

}

Surprisingly, the Hughes-Möller method is not faster than the new method
if we exclude normalization entirely and accept a large error. Considering
the number of operations, it should be faster by a division. My guess is that
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the new method is still faster because the condition is almost always false.
This should lead to only very few branch mispredictions.

In conclusion, the first tool discussed in this paper is an inexpensive way
of transforming a direction sampled in spherical coordinates (with the z-axis
as the zenith direction) to a Cartesian unit vector ~ω specifying the direction
as if it were sampled around a specific unit vector ~n. Use Equation 3 to do
this. The more general result is a tool (Equations 4–6 and Listing 2) for
building an orthonormal basis from a unit vector ~n without having to use a
dot product and a reciprocal square root for vector normalization.

Acknowledgment. Thanks to an anonymous reviewer for suggesting the
näıve way of finding an orthonormal basis (first function in Listing 1). Thanks
to Nelson Max for pointing out that the RMSE numbers in the publisher’s
version of this paper are faulty. The rightmost column of Table 1 has been
fixed in this author’s version.

A. Applying the Unit Quaternion q̂

Using p̂ = (x, y, z, 0) and Equation 2, we first find the quaternion product

p̂q̂∗ = (x, y, z, 0)

(
(ny,−nx, 0)√

2(1 + nz)
,

1

2

√
2(1 + nz)

)

=

(
(znx, zny,−xnx − yny)√

2(1 + nz)
+

1

2

√
2(1 + nz)(x, y, z),− xny − ynx√

2(1 + nz)

)

=
1√

2(1 + nz)

(
x

(
1 + nz

0
−nx

)
+ y

(
0

1 + nz

−ny

)
+ z

(
nx

ny

1 + nz

)
, ynx − xny

)
.

Completing the application of the unit quaternion q̂, we get

2(1 + nz)(q̂p̂q̂
∗
)v

=

 −xn2
x − ynxny + znx(1 + nz) + (xny − ynx)ny + (1 + nz)(x(1 + nz) + znx)

−xnxny − yn2
y + zny(1 + nz)− (xny − ynx)nx + (1 + nz)(y(1 + nz) + zny)

−xnx(1 + nz)− yny(1 + nz)− z(nx + n2
y)− (1 + nz)(xnx + yny − z(1 + nz))



=

x

n2
y − n2

x + (1 + nz)
2

−2nxny

−2nx(1 + nz)

 + y

 −2nxny

n2
x − n2

y + (1 + nz)
2

−2ny(1 + nz)

 + z

 2nx(1 + nz)
2ny(1 + nz)

(1 + nz)
2 − n2

x − n2
y

 .

Note that the square root disappears. Now we can use the fact that ~n is a
unit vector to simplify the equation further. Because ~n is of unit length, we
have:
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n2x + n2y + n2z = 1

n2y − n2x + (1 + nz)2 = 1− n2x + n2y + n2z + 2nz = 2(1 + nz)− 2n2x

n2x − n2y + (1 + nz)2 = 1 + n2x − n2y + n2z + 2nz = 2(1 + nz)− 2n2y

(1 + nz)2 − n2x − n2y = (1 + nz)2 − (1 + nz)(1− nz) .

Thus, when the equation is divided on both sides by 2(1 + nz), we have

~ω = (q̂p̂q̂∗)v

=

x
1− n2x/(1 + nz)
−nxny/(1 + nz)

−nx

+ y

−nxny/(1 + nz)
1− n2y/(1 + nz)

−ny

+ z

nxny
nz

 .

B. Proof That the Basis We Build Is Orthonormal

Using that ~n is a unit vector, the squared length of ~b1 from Equations 4–6 is

~b1 ·~b1 =

(
1− n2x

1 + nz

)2

+

(
nxny

1 + nz

)2

+ n2x

= 1 +
n4x − n2x(2(1 + nz)− n2y − (1 + nz)2)

(1 + nz)2

= 1 +
n4x − n2x(n2x)

(1 + nz)2
= 1 .

Swapping the x and y subscripts in this calculation, we also get |~b2| = 1, thus

all three basis vectors are of unit length. The cosine of the angle between ~b1
and ~n is

~b1 · ~n =
nx(1 + nz)− n3x − nxn2y − nxnz(1 + nz)

1 + nz

=
nx(1− n2x − n2y − n2z)

1 + nz
= 0 ,

and similarly ~b2 · ~n = 0. Finally,
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~b1 ·~b2 =
n3xny − 2nxny(1 + nz) + nxn

3
y + nxny(1 + nz)2

(1 + nz)2

=
nxny(n2x + n2y + (1 + nz)2 − 2(1 + nz))

(1 + nz)2
= 0 ,

which proves that the presented formulae build an orthonormal basis from a
unit vector without using vector normalization explicitly.
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