DTU

1st Symposium on Advances in Refrigeration and Heat Pump Technology

15–16th May 2012, Kongens Lyngby, Denmark

Edited by

Proceedings

Brian Elmegaard, Wiebke Brix, Martin Ryhl Kærn, Torben Ommen, Jorrit Wronski, Frederik Holten-Tingleff, Claus S. Poulsen, Jørn Borup Jensen, Morten Juel Skovrup, Arne Jakobsen

May 2012

Department of Mechanical Engineering

DANISH TECHNOLOGICAL INSTITUTE

Contents

1	Prea	mble	1
	1.1	Foreword	1
	1.2	Timetable	3
	1.3	Welcome	4
2	Keyr	notes	7
	2.1	Minichannel Heat Exchangers	7
	2.2	DTU International Energy Report	21
	2.3	Heat Pump Integration in Energy Systems	42
	2.4	Capacity-Controlled Ground Source Heat Pumps	59
	2.5	Energy Efficient Impulse Coolers	79
	2.6	Research and Development in Efficient Energy Use	94
3	Pres	entations	107
	3.1	Magnetic Refrigeration – and Heating	107
	3.2	Aquifer Thermal Energy Storage	133
	3.3	Second-law Efficiency and COP of Supermarked Refrigeration Systems .	151
	3.4	Optimization of Commercial Refrigeration Plants	160
	3.5	Compensation of Airflow Maldistribution in Fin-and-Tube Evaporators	172
	3.6	Engineering the Heat Curve	190
	3.7	Cost and Energy Efficiency of Air-Water Heat Pumps	205
	3.8	Heat Pump Booster Configurations in Novel District Heating Networks .	215
	3.9	Application of Industrial Heat Pumps	231
	3.10	Refrigerant Flow in Vertical Pipes	243
	3.11	Cooling Towers of the Future	260
	3.12	Optimization Through Interaction Between PackCalc and BSim	287
	3.13	Pumpable Phase Change Material	301
4	List	of Participants	319

1 Preamble

1.1 Foreword

Technical University of Denmark – Department of Mechanical Engineering, Danish Technological Institute, and the Danish Energy Association in collaboration hosted a two-day symposium covering advances in refrigeration and heat pump technology on the 15th and 16th of May 2012.

These proceedings are the formal documentation of the lectures that were given over the two days on several topics of significant relevance for the future development of technology for cooling and heating application. The focus was on both the industrial development of solutions for domestic, commercial and industrial applications in the near future as well as the scientific and engineering research in the more distant years to come. Applications of compression technology, phase changing materials and magnetic refrigeration were presented as well as novel results for selection of working fluids and design of cycles, development of components and cycles. The topics were presented by experts in the specific fields who had taken the opportunity to disseminate the results of their most recent research to an audience covering practitioners in the fields of refrigeration and heat pumps together with consultants, development engineers and staff from academia who together formed a forum for fruitful discussions at high-level in an open and responsive atmosphere.

We had invited a number of keynote speakers to give talks on topics which were intended to give inputs on the position of research and development in refrigeration technology in the future energy system:

- Hans Hvidtfeldt Larsen, DTU National Laboratory for Sustainable Energy, DTU International Energy Report
- Anders Stouge, Danish Energy Association, Research and Development in Efficient Energy Use
- Henrik Lund, Aalborg University, Heat Pump Integration in Energy Systems

And on recent development trends with significant commercial perspectives in Denmark and the neighbouring countries Sweden and Germany:

- Per Henrik Pedersen, DTI, Center for Refrigiation, Energy Efficient Impulse Coolers
- Michael Kauffeld, Karlsruhe University of Applied Sciences, Germany, Minichannel Heat Exchangers

1 Preamble

• Hatef Madani, Royal Insitute Of Technology, KTH, Sweden, Capacity-Controlled Ground Source Heat Pumps

The keynote talks inspired further discussion and we hope that they may have sowed just a small seed of an idea which may be harvested in future R&D efforts.

We would like to thank the speakers and the participants for their mindful attendance and active participation. It was a pleasure to host the event. We hope this has been the initial meeting in a range of symposia in the field and we are of the definitive persuasion to take part in arranging future meetings. We are very open for topic suggestions for future events.

Wiebke Brix, DTU Mechanical Engineering Brian Elmegaard, DTU Mechanical Engineering Frederik Holten-Tingleff, DTU Mechanical Engineering Arne Jakobsen, Københavns Maskinmesterskole Jørn Borup Jensen, Danish Energy Association Martin Ryhl Kærn, DTU Mechanical Engineering Torben Ommen, DTU Mechanical Engineering Claus S. Poulsen, DTI, Energy & Climate Morten Juel Skovrup, IPU Refrigeration and Energy Technology Jorrit Wronski, DTU Mechanical Engineering

1.2 Timetable

Tuesda	y 15 th of May, Mødeloka	le 1
9:00	Brian Elmegaard	Welcome
9:10	Hans Hvidtfeldt Larsen	DTU International Energy Report
10:00	Hatef Madani	Capacity-Controlled Ground Source Heat Pumps
11:10	Anders Stouge	Research and Development in Efficient Energy Use
11:45	Wiebke Brix	Second-law Efficiency and COP of Supermarked
		Refrigeration Systems
12:15		Lunch Break
13:15	Svend V. Pedersen	Application of Industrial Heat Pumps
14:00	Lars Reinholdt	Refrigerant Flow in Vertical Pipes
14:45		Short Break
15:00	Martin Ryhl Kærn	Compensation of Airflow Maldistribution in Fin-
		and-Tube Evaporators
15:45	Peter Schneider	Cooling Towers of the Future
16:30		Short Break
16:45	Michael Kauffeld	Minichannel Heat Exchangers

Tuesda	y 15 th of May, Mød	lelokale S09
13:15	Mikael Bastholm	Aquifer Thermal Energy Storage
14:45	John Wioliski	Short Break
15:00 15:45	Christian Bahl Ulrik Larsen	Magnetic Refrigeration – and Heating Engineering the Heat Curve

1 Preamble

Wedne	sday 16 th of May, Mød	elokale 1
9:00	Per Henrik Pedersen	Energy Efficient Impulse Coolers
9:45	Christian Heerup	Optimization of Commercial Refrigeration Plants
10:30		Short Break
11:00	Henrik Lund	Heat Pump Integration in Energy Systems
11:45	Morten Juel Skovrup	Optimization Through Interaction Between PackCalc
		and BSim
12:30		Lunch Break
13:30	Torben Ommen	Heat Pump Booster Configurations in Novel District
		Heating Networks
14:15	Gunda Mader	Cost and Energy Efficiency of Air-Water Heat Pumps
15:00		Closing Plenum Discussion

1.3 Welcome

Brian Elmegaard (be@mek.dtu.dk) **DTU Mechanical Engineering** Timetable ▲ Table of contents **▲**

Go back to the table of contents $\overline{\blacktriangle}$ or to the timetable \blacktriangle

2.1 Minichannel Heat Exchangers

Michael Kauffeld (michael.kauffeld@hs-karlsruhe.de) Karlsruhe University of Applied Sciences, Germany Timetable ▲ Table of contents **▲**

		Round tube and fin	Minichannel
Depth		100 %	28 %
Face area		100 %	75 %
Weight		100 %	42 %
Refrigerant charge –	in Condenser in System	100 % 100 %	7 % 65 - 70 %
Air side pressure drop		100 %	74 %
COP		100 %	110 %

Go back to the table of contents $\overline{\blacktriangle}$ or to the timetable \blacktriangle

2.2 DTU International Energy Report

Hans Hvidtfeldt Larsen (hala@dtu.dk) DTU National Laboratory for Sustainable Energy Timetable ▲ Table of contents **▲**

The changing global energy scene

- In the coming years the world is facing major challenges, to ensure the supply of energy for a growing population, particularly in developing countries.
- We need a paradigm shift in the energy systems, we have to move from a system based on fossil fuels to a sustainable nonfossil system.
- Especially in developing countries the challenges are significant and at the same time the possibilities enormous for development and green growth

DTU National Laboratory for Sustainable Energy

24

DTU National Laboratory for Sustainable Energy

DTU

Technology for sustainable energy supply -Bioenergy

- Production and properties of biomass
- Biomass conversion and co-production
- The production of 2 generation bio-fuel from straw by means of an internationally unique method

20

DTU National Laboratory for Sustainable Energy

Efficiency improvements through district heating and cooling

 District cooling follows a similar pattern, supplying chilled water and aircondition to a network of users

DTU

- · Cooling can be obtained directly from seawater or groundwater.
- Alternatively, cooling can be provided via heat pumps or absorption refrigeration systems that take most of their energy from the environment, industrial waste heat or leftover heat from district heating.

Smart cities

We need a new approach to what cities should do to become more liveable, economically successful, and environmentally responsible:

smart cities

that is, energy-efficient, consumerfocused and technology-driven.

Smart buildings

The buildings within a smart city are themselves smart, with internal systems featuring a high degree of interoperability thanks to ICT and connections to the smart grid.

DTU National Laboratory for Sustainable Energy

Motivation of consumers

A challenge will be to motivate consumers in smart cities to achieve sustainable development by using available technologies in smart ways.

Motivation may be economic, but may also take the form of information, education, regulation, reorganization, or improved services.

Smart technical solutions already exist; now they must be made available to consumers and backed up by suitable economic incentives.

DTU National Laboratory for Sustainable Energy

Go back to the table of contents $\mathbf{\overline{A}}$ or to the timetable $\mathbf{\overline{A}}$

2.3 Heat Pump Integration in Energy Systems

Henrik Lund (lund@plan.aau.dk) Aalborg University Timetable ▲ Table of contents **▲**

Go back to the table of contents **▲** or to the timetable **▲**

2.4 Capacity-Controlled Ground Source Heat Pumps

Hatef Madani (hatef.madani@energy.kth.se) Royal Insitute Of Technology, KTH, Sweden Timetable ▲ Table of contents **▲**

Publications' examples

• Madani H., Claesson J., Lundqvist P. 2011 "Capacity control in ground source heat pump systems, Part I: modeling and simulation", International Journal of Refrigeration, Volume 34 (6), Issue 6, pp 1338-1347.

• Madani H., Claesson J., Lundqvist P. 2011 "Capacity control in ground source heat pump systems, Part II: Comparative analysis between on/off controlled and variable capacity systems", International Journal of Refrigeration, Volume 34 (8), pp 1934-1942.

• Madani H., Lundqvist P. 2011 "Evaluation of the annual performance of Ground Source Heat Pump systems: A comparison between single speed and variable speed systems", 23rd IIR International Congress of Refrigeration, Prague, Czech Republic, ID 843.

Publications

•Madani H., Claesson J., Lundqvist P. "A descriptive and comparative analysis of three common control techniques for an on/off controlled Ground Source Heat Pump (GSHP) system", submitted to International Journal of Energy and Buildings.

•Madani H., J. Acuna, B. Palm, J. Claesson, P. Lundqvist 2010 "The ground source heat pump: a system analysis with a particular focus on the U-pipe borehole heat exchanger" 14th ASME International Heat Transfer conference, Washington, US, ID IHTC-22395.

•Madani H., Wallin J., Claesson J., Lundqvist P. 2010 "Retrofitting a variable capacity heat pump to a ventilation heat recovery system: modeling and performance analysis", International Conference of Applied Energy, Singapore, ID 136.

•Wallin J., Madani H., Claesson J. 2012 "Run-around coil ventilation heat recovery system: A comparative study between different system configurations", International Journal of Applied Energy, Volume 90, Issue 1, pp 258-265.

Go back to the table of contents **▲** or to the timetable **▲**

2.5 Energy Efficient Impulse Coolers

Per Henrik Pedersen (*prp@teknologisk.dk*) **DTI, Center for Refrigiation** Timetable ▲ Table of contents **▲**

Helped Danish manufacturers develop and market energy efficient appliances with <u>natural</u> <u>refrigerants</u>!

<u>Vestfrost</u>: First bottle cooler was marketed in 2001 (R600a) Improved versions in field test in 2006 (Carlsberg, COOP, DTI)

<u>Gram Commercial</u>: First professional kitchen refrigerators and freezers marketed in 2002 (R290). Now: becoming standard in Northern Europe.

Great success with these products!

7

Background (3)

- Vestfrost and DTI developed and tested large bottle coolers (400 litres with glass doors) with R600a (isobutane) and CO₂ as refrigerant and have good experience with both types of refrigerant.
- A field-test of 18 bottle coolers with R134a, R600a and CO₂ as refrigerant has taken place in co-operation with Carlsberg. The result shows that hydrocarbon bottle coolers are app. 28% more energy efficient compared to R134a. It also shows that CO₂ bottle coolers are app. 12% more energy efficient compared to R134a.
- In the light of the above-mentioned test, Carlsberg has decided to purchase bottle coolers based on hydrocarbons.

	_
Discussion on improvements	DANISH TECHNOLOGICAL INSTITUTE
Reducing air infiltration Better air curtain? Vestfrost idea: Removable lid Reduce leakage in refrigeration machine 	
Reducing other heat loads Better insulation	
 Improvement of cooling system Use state of the art R600a compressor: NLE15KTK.2 or smaller compressor 26% better COP Use of R290 compressors (NL7CN or TL5CN)? Improvement of condenser and evaporator? Improvement of air cooling and condenser? Improvement of cold air flow? 	

				>	DANISH FECHNOLOGIC INSTITUTE
third	generation p	prototype (2	2)		
Test 1	6: Test with	open lid: E=	=1.907 kWh	/day	
Test 1 sett	7. As test 16 ng: E= 2.02	but slightly 2 kWh/day	colder ther	mostat	
Test 1 kWł	8: As test 17 /day	, but with c	losed lid. E=	= 1.805	
The co prev the to 4	oler has no l rious prototy result. The re .149 for orig	ED light. To pes 0.25 kV esult is 2.21 inal cooler (o compare w Vh/day was 5 kWh/day 47% reduct	vith added to compared ion).	
Now li 11%	d closure onl	y reduces e	nergy consu	Imption by	,

Go back to the table of contents $\mathbf{\overline{A}}$ or to the timetable $\mathbf{\overline{A}}$

2.6 Research and Development in Efficient Energy Use

Anders Stouge (ast@danskenergi.dk) Danish Energy Association Timetable ▲ Table of contents **▲**

1.11	ergiforskning.omega.oitudv.dk/en, $\mathcal{P} = \bigotimes \mathcal{O} \times \bigcup \bigotimes$ Få over	blik over dansk energif	. A Energitorskning	
		👻 🚼 Søg 🕶 Mere ≫		
Internet	Explorer kan ikke 📋 {749C363B-6BBF-426B-AD 🚺 Foresl	låede websteder 👻 📑 httpwww.alacrastore (2) 📑 httpv	www.alacrastore	
			-ELFORSK	
	Energieffektiv mælkekøli	ng med intelligent styring	Technology	
	Lokalenergi		 Any - Biomass at 	
	På grundlag af målinger hos et mindre antal repr	æsentative mælkeproducenter vurderes	 Hydrogen 	
	optimeringspotentiale ved bl.a. at justere anlæg,	optimeringspotentiale ved bl.a. at justere anlæg, installere frekvensregulering af kølekompressor		
	udvikles en styring, der skal sikre optimal samtid	lighed mellem kulde- og	Smart Grid	
	Key figures	Participants	Wind	
	Period: 3/2012 - 6/2013	Lokalenerai (hovedansvarlia)	 Wave Ener 	
	Funding year: 2012	Eokaleitei gi (hovedansvanig)	Other	
	Own financial contribution: 0,75 mio. DKK	Partner	Sted	
	Grant: 0,87 mio. DKK Funding rate: 54%	Teknologisk Institut	– Any –	
	Project budget: 1,61 mio. DKK	Arla Foods	Cranted year	
		Videncentret for landbrug	Granted year	
	Categories	Rø-Ka Industri		
	Original project title:	SVK-Industri	Start (år)	
	Energieffektiv mælkekøling med intelligent	Agri Teknik		
	styring Program: ELEORSK	mælkeproducenter	Completed (yea	
	Technology area: Energy Efficiency			
	Project number: ELFORSK 344-011	Contact information	Status	
			– Any –	
		JOL@lokalenergi.dk	Managing comp	

T 🕞 🖓 http://dev.energiforskning.omega.oitudv.dk/en, 🔎 🗕 🖒	🔀 🍪 Få overblik over dansk energif 🚺 Tal og statistik EUDP - Energi	Rergiforskning
Google	👻 🋂 Søg 🔹 Mere »>	
🚼 Google 🧃 Internet Explorer kan ikke 📄 {749C363B-6BBF-426B	-AD 🚺 Foreslåede websteder 🔻 📑 httpwww.alacrastore (2) 📑 httpv	www.alacrastore
Energibesparelse brug af ny luftkøl udvikling Teknologisk Institut Dette projekt er første del af et så hybridkøler kan demonstreres på vinteren og køletårn on sommer	r på industrielle køleanlæg ved let hybridkøler - del 1: Prototype amlet udviklingsforløb, der skal resultere i, at driften af en 700 kW Danish Grown i Ringsted. Hybridkaleren skal virke som tarkaler om n. Det er projektaruppens ambiton at ond en vandbesparelse på	Technology - Any - Biomass au Hydrogen Energy Eff Smart Grid Wind Sun
ca. 50 % i forhold til køletårne og Kov figuros	a en elbesparelse	 Wave Ener Other
Key figures	Parucipants	Sted
Period: 3/2012 - 6/2013 Funding year: 2012	Teknologisk Institut (hovedansvarlig)	– Any –
Own financial contribution: 0, Grant: 0,96 mio. DKK	93 mio. DKK Partner Vestas Aircoil	Granted year
Funding rate: 51% Project budget: 1.89 min. DKK	Novenco	
	Danish Clean Water	Start (år)
Categories	IPU Køle- og Energiteknik	
Original project title:	Accoat A/S	Completed (yea
Energibesparelser på industrielle l	køleanlæg ved Danish Crown A/S	
brug af ny luftkølet hybridkøler - (Prototype udvikling	del 1:	Status
Program: ELFORSK Technology area: Energy Efficie	ncy Contact information	– Any –
Project number: ELFORSK 344-019	019 Peter Schneider psc@teknologisk.dk	Managing comp

A http://dev.energifor x Google	skning.omega. oitudv.dk /en/ 🔎 👻 🗟 🕈 overb	lik over dansk 🛛 🔁 Tal og statistik EUDP 🧭 Indsatso 🗸 🛟 Søg 🔹 Mere ≫	områder Elforsk 🧿
🍰 🛃 Google 🧧 Internet Explor	rer kan ikke 📄 {749C363B-6BBF-426B-AD 🌄 Foreslå	iede websteder 🔻 📕 httpwww.alacrastore (2) 📑 httpw	ww.alacrastore
	Energy efficient ammonia Teknologisk Institut Projektet anfatter udvikling og test af en prototy, som kalemiddel. Måler er at opnå en COP-forbed opnålelse af størst mulig energieffektivitet af de e energilagring vil blive tilvejebragt for at kunne bli	heat pump pe på en industriel varmepumpe med ammoniak ing på 20 %, bl.a. ved at indrette konceptet efter nkelte komponenter, Løsningsforslag til rage til et fl	Technology - Any - Biomass ar Hydrogen a Energy Effi Smart Grid
	Key figures	Participants	 Wind Sun
	Period: 3/2011 - 3/2013 Funding year: 2011 Own financial contribution: 1,62 mio. DKK	Teknologisk Institut (hovedansvarlig) Partner	 Wave Ener Other Sted
	Grant: 1,77 mio. DKK Funding rate: 52% Project budget: 3,38 mio. DKK	Alfa Laval	– Any –
		Svedan Grundfos management A/S	Granted year
	Categories		
	Original project title:	Contact information	Start (ăr)
	Program: ELFORSK Technology area: Energy Efficiency Project number: ELFORSK 343-059	Madsen, Claus claus.madsen@teknologisk.dk	Completed (yea
	Publikationer:		Status
	« FIRST « PREVIOUS	NEXT > LAST >	– Any –
	DOC Udskrift (basis information på dette projek	t) SHOWING NUMBER 21 OF 226 PROJECTS	Managing comp – Any –

A http://dev.energiforskning.om	nega.oitudv.dk/en, 🔎 👻 🗟 🗙 🎽 🍯 Få overblik	k over dansk 🚺 Tal og statistik EUDP 🧭 Indsatso	mråder Elforsk 🛛 🔾 E	
× Google		▼ Søg • • Mere≫		
👍 🚼 Google 🙆 Internet Explorer kan ikke	e 📋 {749C363B-6BBF-426B-AD 🌄 Foreslåe	de websteder 👻 httpwww.alacrastore (2) 📕 httpw	ww.alacrastore	
Rec	Reduced energy consumption for ventilation in			
bui	buildings by integrated air cleaning and heat pump			
- ta	- task 2			
DTU	DTU Risø - Nationallaboratoriet for Bæredygtig Energi Der udvikkes og demonstrerse et nyt ventilationsprincip, som integrerer et regenerativt roterende Indersensetski land et blik de værensense. Genergierer et ergenerativt roterende			
Der u				
santio	samtidig fjernes gasfase kemiske forureninger fra indeluften. Exhausto vil efterfølgende søge at			
komm	nercialisere resultaterne. (Energi 11)		 Wave Energing Other 	
Ke	y figures	Participants	Sted	
Per	iod: 3/2011 - 3/2013	DTU Risø - Nationallaboratoriet for Bæredygtig	= Any =	
Fur	nding year: 2011 In financial contribution: 0.54 min. DKK	Energi (hovedansvarlig)		
Gra	int: 0,70 mio. DKK	Partner	Granted year	
Fur	nding rate: 56%	COWI A/S		
10	Jeer Dudger. 1,25 mill. Diak	Exhausto A/S	Start (år)	
Cal	tegories			
Ori	ginal project title:	Contact information	Completed (yea	
CLE	CLEAN-AIR Heat Pump - Reduceret energiforbrug til ventilation af bygninger ved luftrensning integreret med luft varmepumpe - TASK 2 Program: ELFORSK Technolowa zera: Foerny Efficiency	Fano, Lei		
ene		fl@byg.dtu.dk	Status	
TAS			– Any –	
Pro			Managing comp	
Pro	ject number: ELFORSK 343-008		- Any -	
Put	blikationer:		Coarob for	

Go back to the table of contents \blacksquare or to the timetable \blacktriangle
3 Presentations

3.1 Magnetic Refrigeration – and Heating

Christian Bahl (*chrb@dtu.dk*) **DTU Energy Conversion** Timetable ▲ Table of contents **▲**

3 Presentations

Go back to the table of contents $\mathbf{\overline{A}}$ or to the timetable $\mathbf{\overline{A}}$

3.2 Aquifer Thermal Energy Storage

Mikael Bastholm (mib@ramboll.dk) Rambøll Timetable ▲ Table of contents **▲**

QUALIFIERS FOR AQUIFER THERMAL ENERGY STORAGE

- Groundwater conditions
- Other interests in the surroundings
- Legislation/permits
- The wells
- Cooling/heating system
- The economy

RAMBOLL

5

ATES CENTRAL AT RHO – FACTS

- Comfort cooling, 2.2 MW in two machines, R717 (ammonia)
- Data warehouse cooling, 360 kW delivered by a machine, R717
- The ATES supplies chilled water in the summer and heating for the heat pumps in the winter
- Data warehouse cooling runs in the winter and also delivers heat to the heat pumps
- In case of a mishap, the data warehouse cooling system takes priority over the comfort cooling system

RAMBOLL

Out of the cooling season166,01,2Yearly middle15,55,51,2Peak load155,01,2Absorption with ground- water	5,1	2						
Compressor Yearly middle 1 5,5 1,2 Peak load 1 5 5,0 1,2 Absorption with ground- water All 0,08 0,7 8,8 -			1,2	6,0	6	1	Out of the cooling season	.
Absorption with ground- water All 0,08 0,7 8,8 -	4,7	2	1,2	5,5	5,5	1	Yearly middle	Compressor
Absorption with ground- water 0,08 0,7 8,8 -	4,3	2	1,2	5,0	5	1	Peak load	
Absorption with ground- water water								
	5,7	-	-	8,8	0,7	0,08	All	Absorption with ground- water
Groundwater All 1 50 50,0 1,0	15,3	0	1,0	50,0	50	1	All	Groundwater
Dry cooling Winter 1,0	40,0	0	1,0	-	-	-	Winter	Dry cooling

STATUS OF ATES IN DENMARK

- Individual plants
- Established after the "first come first served" principle
- Disadvantages:
 - No overarching planning
 - Poor resource utilization
 - Higher operating costs
 - Often weak operating organisations

Calje, 2010

23

RAMBOLL

ENVIRONMENTAL - CHALLENGES IN URBAN AREAS

Problem:

RAMBOLL

- Many groundwater contaminants
- Hydro-geological challenges
 - Water penetration in basements
 - Displacement of basement structures
- Influence of the water table in the city's lakes and streams
- Thermal effects on the groundwater

Solution:

- Carbon filter purification:
 - "Free" resource restoration
- Field studies and detailed hydraulic models
- Mutually balanced wells

- Development and testing of energy supply concepts with ATES
- Need for a nation-wide survey of ATES
- "First come first served" principle is abandoned
- ATES in collective energy
- ATES integrated into municipalities:
 - Heat supply plans
 - Water supply plans

RAMBOLL

- The regulation of the utilities who may establish ATES should be relaxed
- Changing the tax on electricity for heat pumps in the excess production periods
- Reduction in the distribution temperature of district heating systems in areas with a potential for ATES

32

<text><text><image><image>

Go back to the table of contents **▲** or to the timetable **▲**

3.3 Second-law Efficiency and COP of Supermarked Refrigeration Systems

Wiebke Brix (wb@mek.dtu.dk) DTU Mechanical Engineering Timetable ▲ Table of contents **▲**

3.3 Second-law Efficiency and COP of Supermarked Refrigeration Systems

Go back to the table of contents $\mathbf{\overline{A}}$ or to the timetable $\mathbf{\overline{A}}$

3.4 Optimization of Commercial Refrigeration Plants

Christian Heerup (chp@teknologisk.dk) DTI, Energy & Climate Timetable ▲ Table of contents **▲**

Go back to the table of contents **A** or to the timetable **A**

3.5 Compensation of Airflow Maldistribution in Fin-and-Tube Evaporators

Martin Ryhl Kærn (pmak@mek.dtu.dk) DTU Mechanical Engineering Timetable ▲ Table of contents **▲**

	No blockage	14% blockage	28% blockag
Cooling capacity (air-side)	15.56 kW	15.33 kW	14.91 kW
Cooling capacity (ref-side)	16.01 kW	15.61 kW	15.34 kW
Mass flow rate	0.0955 kg/s	0.0930 kg/s	0.0907 kg/s
Evaporator outlet pressure	10.73 bar	10.47 bar	10.28 bar
Sensible heat	12.27 kW	12.16 kW	11.93 kW
Latent heat	3.24 kW	3.12 kW	2.93 kW
Note that the simul	ations showed or	ıly 7-9% UA impr	ovements

Go back to the table of contents $\mathbf{\overline{A}}$ or to the timetable $\mathbf{\overline{A}}$

3 Presentations

3.6 Engineering the Heat Curve

Ulrik Larsen (*ular@mek.dtu.dk*) **DTU Mechanical Engineering** Timetable ▲ Table of contents ▲

Go back to the table of contents $\overline{\blacktriangle}$ or to the timetable \blacktriangle

3.7 Cost and Energy Efficiency of Air-Water Heat Pumps

Gunda Mader (gunda.mader@danfoss.com) Danfoss A/S Timetable ▲ Table of contents **▲**

Go back to the table of contents $\mathbf{\overline{A}}$ or to the timetable $\mathbf{\overline{A}}$

3.8 Heat Pump Booster Configurations in Novel District Heating Networks

Torben Ommen (tsom@mek.dtu.dk) **DTU Mechanical Engineering** Timetable ▲ Table of contents **▲**

Assumptions:		
Estimated heat loss coefficie	ent per unit pipe length: 65 W/km °C .	
Variable		Assumption
Minimum temperature differ	ence in heat exchanger in network	5 [K]
HEX pinch temperature diffe	rence in both Condenser and Evaporator	2.5 [K]
Refrigerant		R134a
Isentropic efficiency of compr	ressor	0.5 [/]
Hot tap water		50 [°C]
Lap water in		10 [°C]
Minimum temperature if wat	er stored on secondary side	60 [°C]
rressure loss in system		0 [KPa]
1		

3.8 Heat Pump Booster Configurations in Novel District Heating Networks

Go back to the table of contents $\mathbf{\overline{A}}$ or to the timetable $\mathbf{\overline{A}}$

3.9 Application of Industrial Heat Pumps

Svend V. Pedersen (svp@teknologisk.dk) DTI Timetable ▲ Table of contents **▲**

Go back to the table of contents $\overline{\blacktriangle}$ or to the timetable \blacktriangle

3.10 Refrigerant Flow in Vertical Pipes

Lars Reinholdt (lre@teknologisk.dk) DTI Timetable ▲ Table of contents **▲**

Why two phase flow in vertical piping?	DANISH TECHNOLOGICAL INSTITUTE
····) •··• p···•• ··· ·· · · · · · ··· p·p····g·	
Flooded evaporators!!!	
Why not DX:	
 Higher evaporating temperature: Traditional DX evaporators need superheating of the return gas resulting in a lower evaporating temperature 	I
 Ammonia is quite difficult to control in DX operation 	
Higher heat transfer coefficient more even temperature distribution	n
Challenge:	
Liquid over feed results in wet discharge gas form the evaporator	
 Traditionally liquid and gas is separated in the plant room: The liq overfeed has to be returned along with the return gas 	uid
Result: Wet return lines	

3 Presentations

3 Presentations

Go back to the table of contents $\mathbf{\overline{A}}$ or to the timetable $\mathbf{\overline{A}}$

3 Presentations

3.11 Cooling Towers of the Future

Peter Schneider (*psc@teknologisk.dk*) **DTI** Timetable ▲ Table of contents **▲**

Measurement programme					
Water temperature T _{wi} [°C]	Air velocity [m/s]	Mass flow per plate [kg/s]			
30	1	0.05			
35	2	0.10			
40	3	0.15			
	4				
	5				

		The lot of	hard a second		
Cooling tower water consumption Prices	Percipitation data				
Prices not related to water treatment:				L Boinwater to	ink I
Installation cost:	kr ,000	Winda	ige Evaporated	Rainwater ta	ITK
Equipment cost:	kr ,000	1055	water		
Yearly maintenance cost:	kr ,000				
These prices should include refrigeratio	n outen		1001		Water
cooling tower, pumps, fans etc. but no	t rainwater		Makeup	👤 s	Softener
tanki	e.		water	≫⊢⊁∖⊷	
These prices will be added to the water prices when returning to the main LCC	calculation.	Circulating		4	Raw water
	puo	water			supply
	0		Bleed off	ሰ	Recharging
			water	Chemicals	loss
Water treatment prices:			*		· ·
Water supply [kr./m^3]:	0	Load prices			
Salt for water softener [kr./m^3 soften	ed water]: 0	Save prices			
Chemicals [kr./m^3 makeup water]:	0				
Drainage fee [kr./m^3]:	0				
V Drainage fee includes only bleed off	and recharging loss				
(i.e. no fee for evaporated water an	id windage loss)				
Rainwater tank price function (incl. insta	llation):				
From [m^3] To [m^3] Price [kr./m^	Add price				
0 0	Delete price				
	Update				
	Loa	d default prices			
	St	ive as default			
1					

Setup systems Copy system System 1 (reference)	3. Economy 4. Report Delete system Rename system				
System configuration	Suction side Discharge side				
Condenser type:	System 1				L
Ar codes Dry coler Evaporative condenser Cooling tower Water cooled	Condenser capacity control: © Constant Tc: 30,0 °C Tc = Tamb + 9,0 K Fan trunn gwith compressor(s) Minimum Tc [*C]: 20,0 Subcooling [k]: 2,0 Speed controlled fans Speed controlled pump	V Use non-standard dry i At 0 % capacity: DT [k] = 17.0 Qc [kW] = 5.8 Note: Dimensioning includes condenser	At 100 % capacity: DT [k] = Qc [kW] = Wfan [kW] = Wpump [kW] =	\$ 17,0 145,1 1,70 1,65	
	Heat recovery				

Go back to the table of contents $\mathbf{\overline{A}}$ or to the timetable $\mathbf{\overline{A}}$

3.12 Optimization Through Interaction Between PackCalc and BSim

Morten Juel Skovrup (mjs@ipu.dk) IPU Refrigeration and Energy Technology Timetable ▲ Table of contents **▲**

Cooling requirement:	from BSim			
Total dimensioning cooling requirement equals 50.0 kW	Adjust size			
Dimension compressor system so that it's able to deliver 100 😴 % of the dimensioning requirement				
at the conditions specified below (= 50.0 kW)				
Supply temperature [°C]: 12.0 Dimension	ng ambient (outdoor) temperature [°C]: 28.0			
Central refrigeration system type:	Condition			
Refrigerant: R134a	-			
Compressor pack:	Cold side:			
Number of compressors: 1	Dry expansion evaporator			
Compressor type: Reciprocating	© Flooded evaporator			
Speed controlled compressor	Natural circulation			
Compressor pack	Internal heat exchanger			
Condenser type:	Additional options			
Air cooled Evaporative condenser	Free cooling Options			
Dry cooler O Cooling tower	Speed controlled fans			
Speed controlly I from	Speed controlled pump			
apeeu controlle anis	Heat recovery			
Condenser	when condensing temperature is larger than 30.0 90			
	Groundwater cooling			
	Total dimensioning cooling requirement equals 50.0 kW Dimension compressor system so that it's able to deliver at the conditions specified below (= 50.0 kW) Supply temperature [*C]: 12.0 Dimension Central refrigeration system type: Refrigerant: R134a Compressor pack: Number of compressors: 1 © Compressor pack: Orompressor pack Condenser type: Speed controlled compressor Compressor pack Ordenser type: Air cooled Evapor ative condenser Dry cooler Cooling tower Speed controll. fans Condenser			

294

ntral refrigeration system: Refrig System		
Cooling requirement: Total dimensioning cooling requirement equals 50.0 kW Dimension compressor system so that it's able to deliver at the conditions specified below (= 50.0 kW) Supply temperature [*C]: 12.0 Dimension Central refigeration system type: Deficience: Distance: Dist	Dim. cap 100 % of the dmensioning requirement ing ambient (outdoor) temperature [*C]: 28.0 Dim. Te Dim. Tc Dim. Tc	 Using requirement and condition, dimensioning capacities can be calculated (cycle calculation). Then using default value for dimensioning
Conpressor pact: Number of compressors: 1 Compressor type: Reciprocating	Cold side: Dry expansion evaporator Proced evaporator S Forced circulation Natural circulation Teatment that evaphages	temperature differences: $UA_{evaporator} = \frac{\dot{Q}_{e,\text{dim}}}{\Delta T_{e,\text{dim}}}$
Condenser type: Ar cooled Evaporative condenser Dry cooler Cooling tool Speed controlled fans	Additional options Free cooling Speed controlled fans Speed controlled pump Heat recovery Use condenser heat for room heating when condensing temperature is larger than: 30.0 °C Groundwater cooling	$UA_{condenser} = \frac{\dot{Q}_{c, \text{dim}}}{\Delta T_{c, \text{dim}}}$
Detais	ОК	

0		
2 options	8:	
 1) Start 	free cooling at a certain an	bient temperature and then run 100% (default)
 2) Start i another 	free cooling – typically at a temperature	higher – ambient temperature and ramp up to 100% at
V Free cooling	F	Condenser with integrated Free cooling coil
On/Off	100% free cooling when Tamb <= 6	
	Start free cooling when Tamb <= 10	
Continuous	100% free cooling when Tamb <= 6	
Speed contro	rolled fans Supply temperature: 12	
Speed contro	rolled pump	
Use non-s	standard free cooler:	
DT [K] = 10.0	.0 DT R(] = 10.0 Wfan R(W) = 1.27	
Q [kW] = 2.0	Q [kW] = 50.0 Wpump [kW] = 0.23	
		\checkmark
 To calcu 	late the power consumption	n of the fans and the pumps, you have to specify a heat
exchang	ger (like specifying an air co	oled condenser):
0		,
	\dot{O} -U	(T - T)
	$\mathcal{Q}_{freecool} = 0.$	freecool (I supply - I amb)

Balar	ncing				<u></u> <u> </u> <u> </u>	W fan
 Full balancing is always required! 						
 Bala simu 	ancing is culation:	alculated a	at the end	of the		
	🕅 January	February	March	Q1	groundwater	
	V April	🔽 May	🔽 June	Q2		
	🔽 July	V August	September	Q3		$T \rightarrow \Lambda T$
• Rea	uired bala	ncina is ba	ased on sto	orage effici	encv and temperature ri	se of ground water:
	Thermal balance	ing:			,	J
	Temperature r	ise of groundwater	[K]: 1			
	Capacity/Powe	er rate for balance o	ooler [-]: 20			
	Storage efficie	ncy of groundwater	layer: 0.8			
	\dot{Q}_{hall}	nncina =	η_{storage}	\dot{Q}_{cooli}	na	
		incing	· storage		ng	

	Central refrigeration system: Refrig System	
A lot of default values based on a few clicks in:	Cooling requirement: Total dimensioning cooling requirement equals 50.0 kW Dimension compressor system so that it's able to deliver at the conditions specified below (= 50.0 kW) Supply temperature [*C]: 12.0 Dimension	100 💮 % of the dimensioning requirement ing ambient (outdoor) temperature [*C]: 28.0
• Therefore options should be reviewed by refrigeration expert BSim interface is for	Central refrigeration system type: Refrigerant: R134a Compressor pack: Number of compressors: 1 Compressor type: Reciprocating Speed controlled compressor	Cold side: Dry expansion evaporator Flooded evaporator Flooded evaporator Flooded evaporator Flooded crudiation Flooded aculation Internal heat exchanger
testing possibilities.	Condenser type: Air cooled Evaporative condenser Ory cooler Cooling tower	Additional options Free cooling Speed controlled fans Controlled fans
	Speed controlled fans	speed controlled pump Heat recovery Use condenser heat for room heating when condensing temperature is larger than: 30.0 °C Groundwater cooling
	Details	OK

Conclusion	22.5.2012 – page 2
Connecting BSim and PackCalc enables BSim engineers to quickly quar consequences of:	ntify
• Changing operating conditions for AC/HP system (changing supply temperature	.)
 Changing control strategies for AC system 	
Testing:	
Free cooling	
Groundwater cooling	
Speed control	
•	
	IDU

Next step	22.5.2012 – page 2
BSim will (as part of this project) be prepared to accept set points software	from other
This means that scenarios like the following can be investigated in	n the near future:
 What is the consequences of cooling a building in the night and turning daytime? 	of the AC during
Economic Comfort	
• What is the consequences of turning off cooling/heating for a short time	?
•	
This can be done using realistic building models and realistic mod systems	lels of AC and HP
	IPU

Go back to the table of contents **▲** or to the timetable **▲**

3.13 Pumpable Phase Change Material

Jorrit Wronski (jowr@mek.dtu.dk) DTU Mechanical Engineering Timetable ▲ Table of contents **▲**

302

311

	DTU
	H. Mehling, L. F. Cabeza, Heat and cold storage with PCM, Springer, Berlin Heidelberg, 2008.
	T. Kappels, C. Pollerberg, L. G. Hanu, Z. Youssef, A. Delahaye, L. Fournaison, Phase Change Slurries as Cold Storage Fluid with High Energy Density For Solar Cooling, in: ISES Solar World Congress 2011 Proceedings, Kassel, Germany, 2011.
	L. Huang, M. Petermann, C. Dötsch, Evaluation of paraffin/water emulsion as a phase change slurry for cooling applications, Energy 34 (9) (2009) 1145–1155.
	L. Huang, E. Günther, C. Doetsch, H. Mehling, Subcooling in PCM emulsions-Part 1: Experimental, Thermochimica Acta 509 (1-2) (2010) 93–99.
	J. Wronski, C. Pollerberg, C. W. Windt, L. Huang, Charge State Sensor for Thermal Energy Storages Based on Phase Change Slurries, in: Proceedings of the International Conference on Solar Heating, Cooling and Buildings (EuroSun), 2010.
	S. Bargel, C. Pollerberg, A. Knels, L. Huang, D. Müller, C. Dötsch, Enhanced District heating and Cooling Systems - Realisation of the Low-Ex Concept, in: Proceedings of the 12th International Symposium on District Heating and Cooling, Tallinn, Estonia, 2010.
	L. Huang, P. Noeres, M. Petermann, C. Doetsch, Experimental study on heat capacity of paraffin/water phase change emulsion, Energy Conversion and Management 51 (6) (2010) 1264–1269.
	M. H. Levitt, Spin Dynamics – Basics of Nuclear Magnetic Resonance, 2nd Edition, John Wiley & Sons, Ltd, 2008.
	H. Inaba, K. Sato, Latent cold heat energy storage characteristics by means of direct-contact-freezing between oil droplets and cold water solution, International Journal of Heat and Mass Transfer 40 (13) (1997) 3189–3200.
27	DTU Mechanical Engineering, Technical University of Denmark Pumpable Phase Change Material 15.5.2012

Go back to the table of contents $\mathbf{\overline{A}}$ or to the timetable $\mathbf{\overline{A}}$

4 List of Participants

Name ^{1,2,3}	Affiliation	Email Address
Christian Bahl √	DTU Energy Conversion	chrb@dtu.dk
Mikael Bastholm √	Rambøll	mib@ramboll.dk
Morten Boje Blarke	Aalborg University, Assoc. Prof.	mbb@et.aau.dk
Wiebke Brix 🗸 🕰	DTU Mechanical Engineering	wb@mek.dtu.dk
Peter Brøndum	Grontmii A/S	peter.brondum@grontmii.dk
Preben Byberg	Danisco	preben.byberg@danisco.com
Junping Cai	Danfoss A/S	junping@danfoss.com
Henrik Carlsen	DTU Mechanical Engineering	hc@mek.dtu.dk
Margarita Chalari	DTU Mechanical Engineering	s101548@student.dtu.dk
Louis B. Cording	Agramkow Fluid Systems A/S	lc@agramkow.com
Giorgio Cosma	DTU Mechanical Engineering	giorgio.cosma@gmail.com
Arne J. Egelund	DTU Mechanical Engineering	aje@mek.dtu.dk
Brian Elmegaard 🗸 🙇	DTU Mechanical Engineering	be@mek.dtu.dk
Søren Gram	Svedan Industri Køleanlæg	sg@svedan.com
Niels Henrik Harbo	COWI	nha@cowi.com
Christian Heerup √	DTI. Energy & Climate	chp@teknologisk.dk
Mikkel Peter Hollnagel	Danfoss, Ventialtion	mph@danfoss.com
Jørgen Holst	Danfoss, Customer Concepts	j holst@danfoss.com
Frederik Holten-Tingleff 🕰	DTU Mechanical Engineering	fhot@mek.dtu.dk
Claus H. Ibsen	VP industries	ci@vpindustries.eu
Emil Jacobsen	DTI. Energy & Climate	emia@teknologisk.dk
Arne Jakobsen 🛎	Københavns Maskinmesterskole	ai@kme.dk
Jonas Kiær Jensen	DTU Mechanical Engineering	s062626@student.dtu.dk
Jørn Borup Jensen 🛆	Danish Energy Association	ibi@danskenergi.dk
Søren A. Lykke Jensen	Niras	sli@niras.dk
Jesper Damgaard Jørgensen	Johnson Controls	Jesper Damgaard Jorgensen@ici.com
Martin Ryhl Kærn 🗸 🛆	DTU Mechanical Engineering	pmak@mek.dtu.dk
Michael Kauffeld 📈	Karlsruhe University of Applied	michael.kauffeld@hs-karlsruhe.de
	Sciences, Germany	
Eva Stitz Larsen	DTU Mechanical Engineering	Esl@mek.dtu.dk
Hans Hvidtfeldt Larsen 📈	DTU National Laboratory for Sustain-	hala@dtu.dk
	able Energy	
Jan-Erik Rose Larsen	Gilleleje Køle-& Energiteknik	info@gilcool.dk
Lars Torp Larsen	Alectia A/S	lcla@alectia.com
Ulrik Larsen √	DTU Mechanical Engineering	ular@mek.dtu.dk
Claus Skyth Larsen	COWI	
Aage Birkkjær Lauritsen	Engineering College of Aarhus	abl@iha.dk
Niels Liengaard	Bosch & Siemens Hausgeräte	niels.liengaard@BSHG.com
Dorte Lindholm	Danish Energy Association	dli@danskenergi.dk
Henrik Lund 🗸	Aalborg University	lund@plan.aau.dk
Hatef Madani 📈	Royal Insitute Of Technology, KTH,	hatef.madani@energy.kth.se
	Sweden	
Gunda Mader 🗸	Danfoss A/S	gunda.mader@danfoss.com
Claus Madsen	DTI, Energy & Climate	clma@teknologisk.dk
Karsten Mehlsen	Force Technology	kme@force.dk
Christina Munk	Ingeniørhøjskolen Aarhus Univ.	cmu@iha.dk
Daniel Rønne Nielsen	Alectia A/S	drni@alectia.com
Torben Ommen 🗸 🙇	DTU Mechanical Engineering	tsom@mek.dtu.dk
Bent Pedersen	Ahlsell køl	
Carsten Pedersen	Lodam, Area sales Manager	cpe@lodam.com
Dennis Bo Pedersen	Københavns Maskinmesterskole og	dp@kme.dk
	Elinstallatørskole	-
¹ Speaker: \checkmark , ² Keynote: \checkmark , ³	Beditor: 🛋 table of contents	, timetable ▲ Next page

4 List of Participants

Name ^{1,2,3}	Affiliation	Email Address
Lars Pedersen	Ahlsell køl	
Per Henrik Pedersen 📈	DTI, Center for Refrigiation	prp@teknologisk.dk
Svend V. Pedersen √	DTI	svp@teknologisk.dk
Claus S. Poulsen \land	DTI, Energy & Climate	csp@teknologisk.dk
Lars Reinholdt 🗸	DTI	lre@teknologisk.dk
Frede Schmidt	Danfoss A/S	frs@danfoss.com
Peter Schneider √	DTI	psc@teknologisk.dk
Morten Juel Skovrup √ ≰	IPU Refrigeration and Energy Tech- nology	mjs@ipu.dk
Anders Stouge 📈	Danish Energy Association	ast@danskenergi.dk
Kristoffer Bjerg Sørensen	Alectia A/S	kbso@alectia.com
Alessio Tafone	DTU Mechanical Engineering	alessio.tafone@gmail.com
Jan Bro Vernersen	Danfoss Comm. Compressors	jvernersen@danfoss.com
Jens Brusgaard Vestergaard	Ingeniørhøjskolen Aarhus Univ.	jbv@iha.dk
Jorrit Wronski 🗸 🙇	DTU Mechanical Engineering	jowr@mek.dtu.dk

¹ Speaker: \checkmark , ² Keynote: \checkmark , ³ Editor: \checkmark

Go back to the table of contents **▲** or to the timetable **▲**
DTU Mechanical Engineering Section of Thermal Energy Systems Technical University of Denmark

Nils Koppels Allé, Bld. 403 DK-2800 Kgs. Lyngby Denmark Phone (+45) 45 25 41 31 Fax (+45) 45 88 43 25

www.mek.dtu.dk