

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 20, 2017

Distributed security in closed distributed systems

Hernandez, Alejandro Mario; Nielson, Flemming; Nielson, Hanne Riis

Publication date:
2012

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Hernandez, A. M., Nielson, F., & Nielson, H. R. (2012). Distributed security in closed distributed systems. Kgs.
Lyngby: Technical University of Denmark (DTU). (IMM-PHD-2012; No. 274).

http://orbit.dtu.dk/en/publications/distributed-security-in-closed-distributed-systems(f980893d-d7b4-4902-afa6-f3ab4915ecc6).html

Distributed security
in closed distributed systems

Alejandro Mario Hernandez

Kongens Lyngby 2012
IMM-PHD-2012-274

DTU Informatics
Department of Informatics and Mathematical Modelling
Technical University of Denmark

Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk

Summary

The goal of the present thesis is to discuss, argue and conclude about ways to
provide security to the information travelling around computer systems consist-
ing of several known locations.

When developing software systems, security of the information managed by
these plays an important role in their design. There should always exist tech-
niques for ensuring that the required security properties are met. This has been
thoroughly investigated through the years, and many varied methodologies have
come through.

In the case of distributed systems, there are even harder issues to deal with.
Many approaches have been taken towards solving security problems, yet many
questions remain unanswered. Most of these problems are related to some of the
following facts: distributed systems do not usually have any central controller
providing security to the entire system; the system heterogeneity is usually re-
flected in heterogeneous security aims; the software life cycle entails evolution
and this includes security expectations; the distribution is useful if the entire
system is “open” to new (a priori unknown) interactions; the distribution itself
poses intrinsically more complex security-related problems, such as communica-
tion, cryptography, performance and reliability. We do not expect to solve all
of these, but we shall approach the first three.

In this dissertation, we take the view of a distributed system from a high-level
of abstraction. We then focus on the interactions that can take place between
the locations, and aim at providing security to each of these individually. The
approach taken is by means of access control enforcement mechanisms, provid-
ing security to the locations they are related to. We provide a framework for

ii

modelling so. All this follows techniques borrowed from the aspect-orientation
community.

As this needs to be scaled up to the entire distributed system, we then focus
on ways of reasoning about the resulting composition of these individual access
control mechanisms. We show how, by means of relying on the semantics of our
framework, we can syntactically guarantee some limited set of global security
properties. This is also restricted to distributed systems in which the set of
locations is known a priori. All this follows techniques borrowed from both the
model checking and the static analysis communities.

In the end, we reach a step towards solving the problem of enforcing security
in distributed systems. We achieve the goal of showing how this can be done,
though we restrict ourselves to closed systems and with a limited set of enforce-
able security policies. In this setting, our approach proves to be efficient.

Finally, we achieve all this by bringing together several fields of Computer Sci-
ence. These include aspect orientation, model checking and static analysis, and
of course some ingredients of logics and formal methods as well. All this is in
an attempt to approach a software engineering problem, such as security in dis-
tributed systems. This shows how the full field of Computer Science can benefit
from combining its subfields.

Resumé

Denne afhandling studerer forskellige teknikker til at opnå sikkerhed af infor-
mation, der distribueres mellem forskellige forbundne computer systemer.

Sikkerhed er en væsentlig overvejelse i forbindelse med udviklingen af softwa-
resystemer. Det er væsentligt at sørge for at der altid er relevante teknikker,
der kan garantere at den ønskede sikkerhed nås. Litteraturen anviser mange
forskellige former for løsninger og tilgangsvinkler. Distribuerede systemer giver
problemet en ny dimension. Distribuerede systemer har sædvanligvis ikke en
central instans, der sørger for sikkerhed i hele systemer; der er således heteroge-
ne mekanismer der skal spille sammen; disse skal indarbejds i software livscyklen;
systemet skal være åbent over for nye interaktioner. Det giver nye udfordringer
inden for kommunikation, kryptografi, ydeevne og pålidelighed og vi fokuserer
på de første tre.

I denne afhandling betragter vi distribuerede systemer fra et højt abstraktions-
niveau. Vi fokuserer på de interaktioner, der sker mellem de forskellige steder,
og hvorledes sikkerhed af de enkelte interaktioner kan opnås. Vi benytter me-
kanismer inspireret af adgangskontrol og aspekt-orienteret programmering for
at opnå denne sikkerhed og udvikler en begrebsramme inden for hvilken disse
problemer kan modelleres og analyseres.

Vi studerer dernæst hvordan disse overvejelser kan skaleres op til at gælde for
det samlede system. Vi viser hvordan semantikken af vores begrebsramme gør
det muligt at formulere simple syntaktiske betingelser, der garanterer væsentlige
sikkerhedsegenskaber. Dette arbejder benytter sig af teknikker fra model tjek og
statisk analyse.

iv

Samlet set udgør dette et bidrag inden for mekanismer til at sikre sikkerhed i
distribuerede systemer. I tilpas statiske og lukkede systemer viser vi at vores
tilgangsvinkel er tilstrækkeligt effektiv til at være praktisk anvendelig. Forsk-
ningen der ligger til grund for afhandlingens bidrag bygger på en bred vifte af
datalogiske kompetencer. Især aspekt-orientering, model tjek, statisk analyse og
bidrag fra logik og formelle metoder.

Preface

This dissertation has been prepared at the Department of Informatics and Math-
ematical Modelling at the Technical University of Denmark, in partial fulfilment
of the requirements for acquiring the Ph.D. degree in Computer Science.

The Ph.D. study process was carried out under the supervision of Professor
Flemming Nielson and Professor Hanne Riis Nielson in the period from June
2009 to May 2012. The Ph.D. study was funded by the Danish Strategic Re-
search Council (project 2106-06-0028) project “Aspects of Security for Citizens”.

Most of the work behind this dissertation has been carried out independently
and I take full responsibility for its contents. I have regularly received ideas
and feedback from both my Ph.D. supervisors, but then the resulting work was
accomplished by myself.

Some of the work reported in this dissertation was carried out in the period from
December 2008 to May 2009, during which I worked as a research assistant under
the supervision of Professor Flemming Nielson at the same Department of the
Technical University of Denmark (DTU). During that period I was funded by
the EU Integrated Project SENSORIA (contract 016004).

During all the time I have worked at DTU I have had excellent research collab-
orators, and my work is actually the development of an original idea by Chris
Hankin, Flemming Nielson and Hanne Riis Nielson, reported in [HNN09]. In-
deed, most of the Tables in Chapters 2, 3 and 4 are taken from that work with
a few small amendments.

However, the rest of the developments in these Chapters are of my own creation.

vi

This includes, but it is not limited to: all the examples; most of the properties
in Chapter 3 (and of course all the proofs in Appendix A); the LTS-inducting
semantics and the pruned LTS concept; and the entire adaptation of the Ep-
SOS case study (which was actually done after discussions with some excellent
collaborators from CNR Pisa, IMT Lucca and Università degli Studi di Firenze,
all of them in Italy, during a 3-month research stay abroad).

Chapter 5.1 also follows an original idea reported in [HNN09], but I approach
it in a different way. The rest of this Chapter continues with my own original
creations.

The work in Chapter 6 is completely my own, although not without feedback
from my Ph.D. supervisors. Finally, Chapter 1 and 7 are my own creation as
well.

As for previously reported work, Chapter 6 follows an original idea of mine
reported in [HN09], which was later developed and reported in [HN10]. This
led to an extended work reported in [HNN11], which is actually very similar to
the resulting Chapter 6 and some parts of Chapter 5 of the current dissertation.
Most of the developments of Chapter 5 are reported in [Her11]. Finally, some
parts of Chapter 3 are reported in [HN12].

Lyngby, June 2012

Alejandro Mario Hernandez

Acknowledgements

First of all, I am extremely grateful to my Ph.D. Supervisors, Prof. Flemming
Nielson and Prof. Hanne Riis-Nielson. I decided to pursue Ph.D. Studies mainly
because of them, and I feel I have learnt a lot during the time I worked under
them, both from the scientific/technical and philosophical/behavioural point of
view.

I would like to thank all the current and former members of the LBT Section
at DTU Informatics, with whom I spent pleasant moments during my time in
Denmark, making the usually lonely Ph.D. Studies at DTU a bit more enjoy-
able. They are: Flemming, Hanne, Christian, Henrik, Lijun, Sebastian M., Eva,
Marian, Sebastian N., Han, Michael, Fan, Ender, Nataliya, Matthieu, Fuyuan,
Piotr, Jose, Carroline, Michal and Roberto. Among these, special thanks to Se-
bastian Möddersheim, Fan Yang and Carroline Ramli for the fruitful discussions
at different stages of my work at DTU.

I would like to specially thank Fabio Martinelli, who hosted me in his Security
Research Group at Consiglio Nazionale delle Ricerca, at Pisa, Italy. I am very
grateful to him for that, and also to Charles Morriset and Gabriele Costa for
fruitful discussions during that period.

During this long-term stay, I have also had the opportunity to visit two other
research groups around Italy. These groups are both led by Rocco De Nicola,
to whom I am very grateful as well for introducing me to the members, and
specially to Francesco Tiezzi from IMT Lucca and Massimiliano Massi from the
University of Firenze, with whom I had some fruitful discussions.

viii

I am specially grateful to the three examiners of this work: Rocco De Nicola,
Chris Hankin and Christian Probst. I hope this dissertation fulfils your expec-
tations.

At different stages during my Ph.D. Studies, I have received input from the fol-
lowing people, to whom I am grateful as well: John Gallagher, Dieter Gollman,
Chris Hankin, Michael Huth, Alan Mycroft, Valerio Senni and Mario Sudhold.

I would like to give special thanks again to Chris Hankin, Flemming Nielson
and Hanne Riis Nielson, for devising the initial ideas that I then took over for
creating this work. Without their seeds, I could not have achieved this. They
were encouraged to work on this topic by Michael Huth, so these special thanks
extends to him as well.

Last but not least, I am extremely grateful to my family, for their support,
patience and constant love. Without the individual push from each of them and
the collective help they always give me, I would not have achieved this point in
my life and career. I want to dedicate this Ph.D. dissertation to them in reward
for the time I have stolen from them in the last 3 years. They are my mom,
Celia, my dad, Armando, my sister, Celina, and the love of my life, Verónica.
Esto es para ustedes, los quiero mucho. Gracias!

ix

x

Contents

Summary i

Resumé iii

Preface v

Acknowledgements vii

1 Introduction 1
1.1 Distributed systems . 3
1.2 Computer security . 4
1.3 Closed systems . 7
1.4 Dissertation outline . 9

2 Closed Distributed Systems 13
2.1 Networks syntax . 14
2.2 Security . 18
2.3 A Health Care distributed system 21

3 Combinable Access Control 27
3.1 A 4-valued logic . 28
3.2 Mapping 4-valued into 2-valued logic 35
3.3 Aspectual enforcement mechanisms 49
3.4 Adding security to EpSOS case study 57

4 Networks Evolving 63
4.1 Reaction semantics . 64
4.2 Policies involved . 69
4.3 How semantics work on EpSOS case study 80

xii CONTENTS

5 Reasoning about distributed security policies 89
5.1 A logic for global systems . 90
5.2 Using enforcement mechanisms to reason efficiently 105
5.3 Global security of EpSOS case study 124
5.4 Chapter final remarks . 134

6 Framework extended: History-sensitive policies 137
6.1 History-sensitive security policies 138
6.2 Framework for history-sensitive security 147
6.3 Chapter final remarks . 162

7 Conclusion 165
7.1 Future work . 167

A Proof of properties from Chapter 3 173
A.1 Proofs from Section 3.2.1 . 173
A.2 Proofs from Section 3.2.2 . 177
A.3 Proofs from Section 3.2.3 . 182
A.4 Proofs from Section 3.3.1 . 188

Bibliography 195

List of Figures

2.1 Basic EpSOS abstracted system. 21

3.1 The Belnap bilattice Four: ≤k and ≤t. 31
3.2 A higher-order bilattice. 41

4.1 Labelled Transition System (LTS) for NetExample4.1. 74
4.2 Pruned LTS for NetExample4.1 using aspects 4.1 and 4.4. . . . 78
4.3 Actual LTS generated by semantics for NetExample4.1 with as-

pects 4.1 and 4.4. 79
4.4 Generic pruned LTS for AspectKBL. 79

5.1 Schematisation of algorithm for smart model checking. 113
5.2 Schematisation of algorithm for smart model checking using di-

rectly 2-valued logic. 120
5.3 First two levels of the LTS generated by the extended EpSOS

model. 129
5.4 General approach for designing secure closed distributed systems. 132

6.1 Examples of situations that might happen. 141
6.2 Schematisation of the Bell-LaPadula model. 144
6.3 An example of lattice L for a Chinese Wall policy with two Com-

panies. 163

xiv LIST OF FIGURES

List of Tables

2.1 AspectKBL Syntax – Nets, Processes, Actions and Locations. . 14

3.1 AspectKBL Syntax – enforcement mechanisms for security poli-
cies. 51

3.2 Continuation analysis operator occurs-in. 53

4.1 Reaction semantics of AspectKBL. 66
4.2 Semantics of AspectKBL (auxiliary). 67
4.3 Structural Congruence. 67
4.4 Matching Input Patterns to Data. 68
4.5 Evaluation of enforcement mechanisms in EM for AspectKBL. 70
4.6 Checking Formals to Actuals AspectKBL. 71

5.1 ACTLv Syntax – How to express obligations. 92
5.2 ACTLv Semantics – Satisfaction relation |=Obl. 93
5.3 ACTLv Semantics – Satisfaction relation |=Pr. 94
5.4 ACTLv Semantics – Auxiliary functions for the |=Pr satisfaction

relation. 95
5.5 ACTLv Semantics – Satisfaction relation |=bp. 97
5.6 ACTLv Semantics – Interpretation of test. 97

6.1 AspectKBL+ Syntax – Nets, Processes, Actions and Locations. 149
6.2 AspectKBL+ Syntax – Aspects in general, aspectual enforce-

ment mechanisms for security policies, and aspectual localised
state. 149

6.3 Continuation analysis operator occurs-in. 150
6.4 Reaction semantics of AspectKBL+. 151
6.5 Semantics of AspectKBL+ (auxiliary). 152
6.6 Structural Congruence. 152

xvi LIST OF TABLES

6.7 Matching Input Patterns to Data. 153
6.8 Evaluation of enforcement mechanisms in EM for AspectKBL+.155
6.9 Checking Formals to Actuals AspectKBL+. 156

Chapter 1

Introduction

Along the history of Computer Science, many different topics have dominated
the overall picture of the state-of-the-art techniques to solve this or that prob-
lem. For instance, in the middle of the last century, research was focused on
finding ways a computer system could think or behave like a human being.
Then came the times of operating systems, and management of concurrency
and resource sharing. More recently, clusters of personal computers working to-
gether to solve computationally-expensive problems became a trend, as physical
limitations with hardware components started to arise.

Most of the topics that dominated the picture of Computer Science gave birth
to strong research fields, which even today are producing interesting work that
is fed back to other research fields, continuing the cycle. Indeed, this commu-
nication of knowledge goes back and forth, with the common aim of improving
the discipline of Computer Science as a whole, since isolating some research field
does not actually help it to grow and to learn from others.

This parable looks self-reflexive, or even as a meta-analogy, since we will be
dealing with Computer Science topics themselves throughout this dissertation.
However, it is indeed a useful analogy to introduce the specific topic we will
be working on, for several reasons. First, we will be dealing with distributed
systems, which is a field in Computer Science that deals with software systems
that consist of several parts, which need to communicate to solve some common

2 Introduction

task, and indeed isolating some of them does not actually help. Second, we
will actually be dealing with several research fields of the Computer Science
discipline, in order to develop some theory and obtain some results for improving
the field of distributed systems.

Some of the research fields that supply the present work are: software engi-
neering as a whole, and in particular the world of modelling and the world of
computer security; formal methods, and in particular the field of formal veri-
fication; and finally logics, in particular the branch of temporal logics and the
branch of multi-valued logics.

Finally, and more specifically, there is a last reason that makes the introductory
parable a good analogy for what this work will be: we aim at showing that,
in distributed systems, it is possible to provide security by combining simple
enforcement mechanisms into a complex (global) security policy. The simple
enforcement mechanisms will be scattered around the system, possibly having
their own objectives and/or origins, and their individual knowledge will be com-
bined and fed back into the entire system.

Indeed, the main thesis of this dissertation can be formulated as follows:

It is possible to provide security to the information travelling around
a closed distributed system by means of combining sets of enforce-
ment mechanisms, each one relevant just to certain communications
within the system.

Throughout this dissertation, we will provide enough arguments to support
this thesis. In particular, we will develop a framework for modelling closed
distributed systems and for modelling enforcement mechanisms relevant just
to certain communications that can then be combined. With these, we will
show how to prove that some security properties that are global to the entire
distributed system can indeed be satisfied.

To be precise, we will argue that the main thesis holds under certain assump-
tions, such as reliable connections between nodes and no external tampering.
The assumptions can actually be summarised by the existence of a Virtual
Private Network (VPN) among the localities that form the closed distributed
system.

However, even with such a VPN, there might be untrusted processes running
on those localities. These processes are usually called “insider threats” because
some locality intended to be involved in the communications actually means

1.1 Distributed systems 3

some threat. Therefore, we will focus on the possible threats that might occur
due to untrusted code running on the intended participants of a distributed
system, and that is why we will restrict ourselves to closed systems.

We will show that, in such a setting, we can enforce global security by means
of localised enforcement mechanisms, which are relevant to the communications
happening on their own neighbourhood, i.e. involving the locality to which they
belong. Furthermore, this way of enforcing security is arguably realistic and
practical, and at the same time it will be shown to be effective and efficient
throughout this work.

1.1 Distributed systems

Since the beginnings of computing, having single, isolated computers perform
individually has proved useless, unless an operator goes and checks the results
on site. On the other side, sharing of information and collaboration to solve
complex problems are features that are needed by human beings. So, having
sets of computers collaborating to solve problems, and sharing information to
achieve that common goal, and even helping distant-based locations to interact,
are just some of the advantages of distributed computing.

Some of the main functional advantages of distributed systems are those men-
tioned above. For instance, they allow solving complex problems even with
hardware limitation, since each component of the system can be in charge of
some part of the problem, and then the common solution can be achieved by
combination, and perhaps processing in a central location, of the partial results
obtained by them.

Another functional advantage is that each component of a distributed system
can actually perform processing of information related to the neighbourhood
of the component, or the information that the component can gather directly
by interaction with the real world. This actually gives the impression that a
distributed system is a system where each of its components resides physically
in a distant place. This is not actually the general case, but it is the reason
why these components are usually called locations; a name that we will adopt
throughout this work.

4 Introduction

1.1.1 Information sharing

As can be seen from these typical examples, all of them involve sharing of
information. Certainly, if no information is shared between the locations of a
distributed system, then it is not really a distributed system but just a collection
of isolated systems, and we have argued that this is not really useful.

We will study distributed systems from a high-level point of view. We shall
abstract some of the features of a distributed system, and will concentrate on the
information sharing part. We will study the points in time when the information
is shared, and how each of the locations involved perform operations in order to
realise the sharing. We will focus on which of these sharing operations comply
with the expected behaviour of the distributed system, and on mechanisms to
ensure this.

Complying with the expected behaviour may actually be seen from different
perspectives and some of these might be functional ones. We will actually focus
in a non-functional one. This is a very important feature of systems in general,
and distributed systems in particular. It is actually a very broad field of research,
especially for distributed systems: computer security.

1.2 Computer security

Computer security is one of the most important non-functional requirements
that a computer system should have. Security as such (i.e. not “computer”
security) deals with protection of assets or resources. Computer security in its
turn, adapts this concept into the “information” world. Certainly, protection of
the hardware of a computer system is still a “physical” security issue. Either
if the hardware is stolen, or it gets broken, it is relevant to the non-computer
security point of view. What is actually relevant to the computer security point
of view, is what happens with the information that might have been stored in
that piece of hardware.

From a broader perspective, computer security can be seen as the protection of
the information that is kept in, or travels around, a computer system. This is
regardless of which kind of threat the information may be faced with. For the
remainder of this work, and unless established otherwise, whenever we mention
“security” we shall be talking about “computer security”, regardless of whether
we explicitly mention the word “computer”.

1.2 Computer security 5

Protecting some information can be seen as having mechanisms for preventing
the information from being known by others. It can even be seen as having
mechanisms for discovering when others learn the information. It can also be
seen as having mechanisms for avoiding the information to be modified by others,
or for determining whether others already did so. It can even be seen as having
mechanisms for being sure we will be able to gather the information whenever
we want.

1.2.1 Access control

One common mechanism for protecting information is the so-called access con-
trol. It is based on precisely that; controlling who can have access to what
pieces of information. Accessing some information is done whenever one needs
to read, modify, or delete it. Then, access control is also based on controlling
which kinds of access might occur.

Two common approaches to access control are access control lists, and capability
lists. The former are based on having lists of resources (e.g. information)
together with the set of users that might access them. This type of access
control is useful for providing security to the resources directly. Access control
lists (commonly referred to as ACLs) are especially efficient when the number of
resources is small compared to the number of potential users, but not so efficient
the other way around, specially when it is necessary to list the resources that
a specific user can access. Finally, the common implementation of ACLs is by
means of having a list of access-allowed users (or groups, or roles, or some way
to identify specific users) together with each resource.

Capability lists are based on having lists of users together with the set of re-
sources they might access. This type of access control is useful when specific
users have to be faced with their set of accessible resources, and it is especially
efficient when the resources are indeed too many compared to the number of
users. On the other hand, it is not so efficient when it is necessary to list the
users that have access to specific resources.

A common implementation of capability lists is by means of letting users have
keys (e.g. authorisation tokens) that allow them access to specific (sets of)
resources, and users are required to provide their keys upon every access. This
makes it sometimes difficult to revoke capabilities, specially in the non-efficient
cases mentioned above. Indeed, if one wants to revoke a capability from a user,
the key for the specific resource has to be changed and all the other intended
users have to be notified.

6 Introduction

As it is customary in access control, and in security in general, we might use
the terms object and subject to refer to the resources (or information) and the
users (or processes).

1.2.2 Combining access control policies

One of the aims we have in this work is providing mechanisms for combining
(perhaps partial) access control lists and (perhaps partial) capability lists into
some more complex access control criteria.

As we are dealing with distributed systems, different locations might be designed
or built by different people. The security goals each location has may well be
different.

Furthermore, the security goals might certainly change along the lifetime of
the distributed system. This can happen due to legislation changes or new
standards, or to periodical updates of the distributed system itself. And of
course there might even be bugs that need to be fixed as well.

For the three reasons established in the previous three paragraphs, we will ap-
proach our solution to access control in a “compositional” way. There will not
be any central controller responsible for making the access control decisions. We
will adopt a standard in which each location has its own access control policies.
Whenever the location interacts with another location, the policies from both
of them will be combined, solving conflicts, if any, and the final decision on
whether to allow the access will be taken.

We will provide a framework for doing this. The combination of access control
policies will be precise. The conflict management mechanisms will be clear, even
in cases where no access control policy is present. We could then speak about
distributed access control.

This might actually not seem quite new. Indeed, it is traditional that each
location has its own security mechanism. Moreover, there are various ways of
solving conflicts that might certainly be used for such a setting.

However, the new concept behind our work is that we will provide global security,
by means of these localised security mechanisms. Indeed, we want to be able
to reason about the information that moves throughout the entire distributed
system (and not just around a specific location).

Each step (or movement) that some piece of information performs will be gov-

1.3 Closed systems 7

erned by different sets of access control mechanisms, but we want to ensure
that in all of them some common (global) property is satisfied. Therefore, re-
lying just on the individual enforcement mechanisms is not enough, we need to
combine their individual decisions towards a common goal.

As there will not be central controller for making the access control decisions,
neither will there be any central controller keeping track of them for making the
global reasoning. Indeed, the framework will allow us to model a distributed
system in a completely distributed way. For making the global reasoning, it
should be enough to only rely on some basic assumption about its locations.

1.3 Closed systems

For the remainder of this work, we will restrict ourselves to distributed access
control in closed distributed systems, so in this Section we will establish more
clearly what we mean and how we will deal with this issue.

We are making a trade-off. We will abstract from several security issues such
as cryptography or communication issues. We will also avoid having central
controllers or runtime code checking for security compliance. We will just have
access control policies in each location of the system, and these should be enough
to prove some global property of the information they protect. However, for this
to be achievable we need to have some restrictions and to make some assump-
tions.

1.3.1 Fixed set of locations

The main restriction is that we are in a closed system. This means that all the
locations that are part of the system are known, and fixed, in advance. There are
no unknown locations. There is no possibility to create locations dynamically.

Actually, these restrictions could somehow be overcome. Indeed, to simulate the
dynamic creation of a location, we could have the location already existing from
the beginning, and perhaps with some special action it could start interacting
with the other locations, and not before that special action occurs.

If there are unknown locations, overcoming this is a bit more tricky. Indeed, we
do not assume any ubiquitous attacker, or the possibility for the environment to
interact in every possible way with our system. As we have a closed system, we

8 Introduction

need to simulate every possible attack by explicitly creating the location of the
attacker, and the processes the attacker might execute to perform the attack.
Still, it is possible to overcome.

Another limitation that we have is that we do not build our framework with al-
lowing code mobility, or the possibility of spawning processes in other locations.
This could also be overcome, in some cases, by already creating the processes
in the target locations from the beginning. However, it might be a strong lim-
itation in the general case. We will leave this for future work, as it is actually
not the main problem we are aiming to solve with this work.

1.3.2 Trusted locations

After the restrictions, we need to clarify the assumptions that we have. The
main assumption is about trust.

As we have a closed system, all the locations are present and known a priori.
We will assume all locations know each other, and each one trusts all the others.

Even though this might seem to be a very strong assumption, it is actually
not, as we are saying they trust the locations, but not necessarily the processes
running on them. Indeed, what one location must assume is that other locations
will behave properly, in the sense that they will respect the policies they claim
to have. This does not mean in any sense that the location must assume that
any interaction with other locations is secure.

A location does not have to trust the processes running in other locations. For
instance, if a process P running in location B wants to interact with location A,
A will just trust the policies of location B, apart from its own policies. To avoid
malicious processes, A will rely on the policies, and moreover A might want to
inspect the code of P . However, A will not put any runtime controller over P
or over the information that P might gather. Indeed, A will trust the policies
of B should prevent P for doing something considered insecure by A.

With this assumption, we will be able to deal with most cases, proving global
security in a distributed system by just relying on the distributed access control
policies. Throughout this work, several examples will be presented to illustrate
our developments. However, a specific larger case study will accompany us in
all the Chapters, not only for showing how we build up our framework, but also
because it serves us as a motivation for the current work. We present here its
basic concepts.

1.4 Dissertation outline 9

1.3.3 European eHealth project

The European Commission has decided to fund a project for building a ser-
vice infrastructure for interoperability of electronic health care systems across
Europe. The project is called EpSOS (standing for European Patients Smart
Open Services), and it deals with how information from health care databases of
European countries might be used by practitioners from other countries as well.
This has become a necessity since patients might need to be treated in different
countries, due to special requirements or just because of travelling schedules.

This is a real project and it is currently being developed and evaluated. Many
Universities and Companies are involved in it. However, the project lacks a
formal foundation for its software systems. Indeed, although it has been estab-
lished how the software should work, no verification has been done.

We aim in this work to prove that some of these software systems certainly
satisfy some given (European) global security properties. Of course we will not
deal with the entire system, but with some abstraction of it. We will provide
our own abstraction, aiming at making it realistic as well as closely related to
the actual system that is being developed.

Among other problems of the actual EpSOS system, several legal and other
administrative issues arise when trying to combine already existing health care
systems into one large inter-operable system. Specifically with regard to the
law, the system has to pass a series of tests to guarantee that each country sat-
isfies what is intended, according to European legislation regarding information
management and privacy. We will assume that countries are satisfying the law,
and we will actually rely on this to build our abstraction, aiming to prove that
if this is the case, then the interoperation is secure, in some sense that will later
be properly established.

1.4 Dissertation outline

In the remainder of this dissertation we will provide enough support for the main
thesis given above. We will apply the assumptions already made, especially those
established in Section 1.3.

The outline of Chapters following the current one is the following:

In Chapter 2 we will provide the formal syntax of our framework for distributed

10 Introduction

systems. With the framework, we will be able to model closed distributed
systems, abstracting their behaviour to capture just the interactions among the
location. We will provide examples of systems that can be modelled with the
framework, and show possible threats that may arise for some security issues.

In Chapter 3 we will develop an extension to the framework for modelling en-
forcement mechanisms that can be attached to the locations of the closed dis-
tributed systems. These enforcement mechanisms will then be scattered around
the system, and they will form the base to provide global security to the system.
The individual enforcement mechanisms will deploy specific parts of the global
security policy aimed for the system, and to achieve this they will provide pro-
tection to the locations to which they belong and the ones that interact with
them.

In Chapter 4 we will give the formal semantics of the language described by the
syntax in Chapters 2 and 3. The semantics will be based on reaction rules and
will take into account what is decided by the enforcement mechanisms attached
to the locations. We will show how, with the semantics, the examples of threats
given in Chapter 2 are indeed secured by some enforcement mechanisms that
follow the syntax from Chapter 3. With this, we will have provided a full
proper framework that could be used for modelling closed distributed systems
with distributed security.

In Chapter 5 we will provide a computational logic that can be used for reasoning
about the possible computations that a distributed system modelled with our
framework might have. We will show how this logic can actually capture some
security properties that are intrinsically global to the entire system. We will
then argue that, with the distributed enforcement mechanisms, we can certainly
satisfy these properties. We will show how we can perform a formal verification
of the global security property expected from the distributed system model.
Finally, we will present an idea for performing this model checking in an efficient
and safe way, and discuss an algorithm for achieving this.

Throughout Chapters 2 to 5, and in addition to some smaller examples pre-
senting specific ideas, a thorough case study about EpSOS will be constructed.
With this case study, major points of our developments will become clear, and
the main contribution of our work will be realised and shown useful.

In Chapter 6 we will go one step further by presenting an extension to our
framework and also considering history-sensitive security policies. With this
extension, it would be possible to model a distributed system whose locations
are, by definition, aware of past behaviour of other locations, and then their
individual enforcement mechanisms might rely on this knowledge to provide
security. Indeed, we will show how these new features help to capture some

1.4 Dissertation outline 11

security policies in a more elegant way, since some traditional security policies
are intrinsically history-sensitive. Some such examples are the Bell-LaPadula
policy or the Chinese Wall.

In Chapter 7 we will conclude this dissertation, wrapping up the main contri-
butions of the work and giving pointers to future work and open problems that
remain.

12 Introduction

Chapter 2

Closed Distributed Systems

In this Chapter, we will present our formal framework for modelling distributed
systems.

Our framework is mainly based on KLAIM [NFP98], which is a coordination
language [GC92] focused on modelling the interactions (aka. coordination) in
distributed systems. The interactions capture the points when some process
performs some operation on the shared memory. The shared memory keeps
data in the form of tuples, and these can be sitting in any location, not limited
to a central one. This gives the idea of distributed shared memory, or distributed
tuple space.

In Section 2.1 we present the abstract syntax of our framework, and the limi-
tations and restrictions that we have. In Section 2.2 we point to some security
flaws, and ideas on how we could overcome them. Finally, in Section 2.3 we
model an abstraction of our EpSOS case study in our framework.

14 Closed Distributed Systems

N ∈ Net N ::= N1 || N2 | l ::w P | l ::w 〈
−→
l 〉

P ∈ Proc P ::= P1 | P2 |
∑
i ai.Pi | ∗P

a ∈ Act a ::= out(
−→
`)@` | in(

−→
`λ)@` | read(

−→
`λ)@`

` ∈ Loc ` ::= u | l
`λ ∈ Locλ `λ ::= ` | !u

Table 2.1: AspectKBL Syntax – Nets, Processes, Actions and Locations.

2.1 Networks syntax

We are restricting ourselves to closed systems, with fixed locations, thus mak-
ing dynamical creation of locations impossible. Mobility is also a limitation, as
discussed in Chapter 1. These two features are present in the original KLAIM
framework, but we omit them in ours. Indeed, as already discussed, most of
these limitations could be overcome by smartly modelling the distributed sys-
tem, and they do not actually contribute to the focus of our work.

The syntax of our language, named AspectKBL, is given in Table 2.1. In this
Table, we give the syntactic categories of the elements of our language, together
with the BNF grammar of how they are constructed. We have four syntactic
categories, each one related to each kind of element.

The set Net is the syntactic category of the networks of the system. All the
elements that represent a network belong to this set. A generic element of this
set is represented by the meta-variable N . A network N can have three different
forms, according to how it is constructed. It can be a parallel composition of
two simpler nets, each one represented by the meta-variables N1 and N2, and
combined by the parallel composition operator (for networks) ||. It can also be
a singular net consisting of a process P running on a location l, represented by
l ::w P . Finally, it can be a singular net consisting a tuple of data running on a
location l, represented by l ::w 〈

−→
l 〉. In these latter two cases, in the location

there is an annotation w, which we will ignore during the current Chapter.

The syntactic category of processes is represented by the set Proc, and a generic
element of it by the meta-variable P . A process can have three different forms: a
composition, a choice or a replication. A composition of processes is obtained by
composing two simpler processes, say P1 and P2, with the parallel composition
operator (for processes) |. A choice is a sum of processes following an action,
in such a way that just one of the actions, and later its continuation process, is
executed. This is represented by

∑
i ai.Pi, where the subindex i iterates among

the various sumands. In some cases, no choice will be involved and just one

2.1 Networks syntax 15

action will be available. In such cases, where the index i will range over a
singleton set, we will omit the symbol

∑
writing directly, for instance, a.P . If

no action is available, i.e. the index i ranges over an empty set, we will write
0 to represent this null process. Finally, a replicated process is an arbitrary
number of the same process in parallel, and it is represented by ∗P , using the
replication operator ∗.

The set of all possible single actions is denoted by Act, and we use the meta-
variable a to range over this set. An action can be a writing of a tuple of
information

−→
` into some target location `, denoted by out(

−→
`)@`. On the

other hand, it can be reading of a tuple of information from some target location,
either erasing the original data or not. In the first case, denoted by in(

−→
`λ)@`,

some data existing in the location ` is non-deterministically matched, and then
read by the action and deleted from location `. In the second case, denoted by
read(

−→
`λ)@`, the same happens, except that the data also remains in location `.

There might be more than one tuple that can be matched by the formal action,
and that is why it is non-deterministically taken, so any possible actual action
can take place. The difference between the formal parameters of the out action
and the in and read actions is because in these latter two there can be binding
of variables, prefixed by the symbol !.

Finally, the set of locations is denoted by Loc, and the meta-variable ` represents
them. For constants, we denote them by l; and for variables, we denote them by
u. As just mentioned, the prefix symbol ! represents that a variable is bound at
that specific point. It is worth noticing that locations are considered first-class
data. Therefore, any location name can be passed as a parameter to any action.

Example 2.1 Assume a sender that forwards messages arriving through some
input channel to some other output channel. We might model the system by two
locations input and output, each keeping the messages/data, and by a location
sender with a process that iteratively performs the forwarding. Formally, we
can express the sender by the following AspectKBL network:

Sender = sender ::wsender

∗(in(!msg)@input.
out(msg)@output. 0)

The variable msg is bound at the time of the in action, and this value is used at
the time of the out action. After this, this process instance simply terminates,
but an arbitrary number of instances of the same process might be running in
parallel.

Example 2.2 Assume there is a simple database db with records of values
indexed by an integer key. A client cli1 might want to read some record from

16 Closed Distributed Systems

the database, and write it on his own tuple space. We can express this by the
following network:

NetExample2.2 = Database || Client

where
Database = db ::wdb 〈1, val1〉 ||

db ::wdb 〈2, val2〉
Client = cli1 ::wcli1

read(1, !data)@db.
out(data)@self. 0

Note that, according to the syntax, although both tuples 〈1, val1〉 and 〈2, val2〉
are in the same location db, it must be written explicitly both times (and as a
net composition).

Example 2.3 Assume that in a given Hospital we have a Health Care System
where there is a data base, named EHDB (for Electronic Health Data Base), with
some information about some patients. In this case, let us assume there is one
tuple (piece of data) regarding Alice, and that the tuple specifies a given Care
Plan for her. In addition, there is another tuple regarding Bob, and it is related
to some Private Notes some Doctor might have taken about him. This can be
written in a network as follows:

NetData = EHDB ::wEHDB 〈Alice, CarePlan, alicetext〉 ||
EHDB ::wEHDB 〈Bob, PrivateNotes, bobtext〉

Assume now that there is also another location with information about the staff
of the Hospital, which could be defined in the following way:

NetRoles = ROLES ::wROLES 〈Doctor, Hansen〉 ||
ROLES ::wROLES 〈Nurse, Olsen〉

Now, assume that both employees have some location, and there is a Process
running on each of them. Doctor Hansen might try to read patient Bob’s private
information. On her side, Nurse Olsen might try to read Alice’s information
about how to take care of her. This could be defined as follows:

NetHansen = Hansen ::wstaff

read(Bob, PrivateNotes, !content)@EHDB.0

NetOlsen = Olsen ::wstaff

read(Alice, CarePlan, !content)@EHDB. 0

Finally, the entire network could be defined using the previous definitions as
follows:

NetData || NetRoles || NetHansen || NetOlsen

2.1 Networks syntax 17

2.1.1 Overcoming the limitations

We are restricting to closed networks where, for instance, it is not possible for a
location to spawn a process in another location. This task is performed in the
original KLAIM framework by an action eval. We show here by means of an
example that we could actually overcome this limitation by smartly modelling
our network.

Assume a location spawner wants to spawn a process P on a location l1, so after
the spawning is performed there should be a process P running on location l1.
This is expressed in KLAIM1 by the following network:

NetEval = spawner ::wspawner

eval(P)@l1. 0

Certainly, after one step of computation of that network, the resulting state of
the network would be the following:

NetEval′ = spawner ::wspawner 0 ||
l1 ::wnull P

More generally, the location l1 might have had some process Q already running
on it, and then the spawned process P simply starts running in parallel with it.
Formally:

NetEvalGeneric = spawner ::wspawner

eval(P)@l1. 0 ||
l1 ::wl1 Q

This, after one step of computation, might reach the following state:

NetEvalGeneric′ = spawner ::wspawner 0 ||
l1 ::wl1 Q | P

It should be noticed that the network might otherwise reach the state where
the first action of Q was taken, since the location whose process is run is chosen
non-deterministically.

In our case, we do not count with the action eval for spawning processes, so
we have to fix the processes since the beginning of the computation. We could
simulate the previous behaviour, though, by directly creating the process P as

1Actually, this would be an extended version of AspectKBL and not KLAIM itself, since
KLAIM does not provide the annotation w, whose utility will become clear in the following
Chapters.

18 Closed Distributed Systems

running on location l1, and having some mechanism for synchronising when
location spawner actually wants to spawn the process. Formally:

NetEvalSimul = spawner ::wspawner out(start)@sync. 0 ||
l1 ::wl1 Q | (in(start)@sync.P)

This network might reach, after two steps of computation, the very same state
as NetEvalGeneric′. Certainly, after the process at location spawner writes the
synchronisation token, and later the process at location l1 (at the right-hand
side of the parallel composition) reads it, the remaining process is just P . It
should be noticed that this might otherwise also happen later, after some actions
from process Q take place. Indeed, this is the same behaviour as if in network
NetEvalGeneric some actions of Q occur before the action eval(P)@l1 from
location spawner takes place. Hence, we could say that NetEvalGeneric and
NetEvalSimul are equivalent to our purposes.

This shows that, although we do not have the eval action present in KLAIM,
we are able to design systems that behave in similar ways and thereby we could
certainly overcome the limitation. To be rigorous, in practice we might not have
the process already present in the location. However, we might emulate what
could happen if we did, and then all the properties that we might find for the
emulated model will also hold for the practical system in which the eval action
is actually used.

Being specific, we could design a distributed system using our AspectKBL
framework, in which we might have locations holding processes that cannot run
until some synchronisation is performed by other locations. If we could prove
that some properties hold for such a distributed system, then we could be sure
that the same properties hold for a distributed system in which these processes
are actually spawned by external locations onto the locations where they are
supposed to run. For the remainder of this work, we will restrict ourselves to
our framework without even mentioning eval. At all events we could rely on
the development of this Section and perhaps include it in future work.

2.2 Security

We have not yet gone into formal details about how runtime behaviour is ob-
tained. No formal semantics have been given so far for our framework, whose
abstract syntax was described in the previous Section. We shall leave this for
later. However, we can still easily detect some security issues that might arise
due to interactions among locations, in the same way as we understood how the

2.2 Security 19

networks from the examples of previous Section might perform some computa-
tion steps.

We are modelling closed systems, with locations known a priori by any other
location. This means that a process running on a location might refer to any
other location as a target of its own actions. For instance, a process might per-
form a read action to gather information present in another location. A process
might also perform an out action to put information in any other location, even
if that location is not supposed to keep information. Even assuming we had
eval, a process might be spawned in an honest location, to make it perform
some bad behaviour.

The subject of our work is to allow locations to have security policies that will
aim at stopping these undesired behaviours. These security policies have to
capture the actions a process might want to perform, and only allow those that
satisfy some security constraint, for instance that a secret piece of information
is only read by a specific user. The way these security policies are expressed will
be left for next Chapter, but in this Section we show by means of the Examples
2.1, 2.2 and 2.3 some intuition about which security threats we might be exposed
to.

Example 2.4 In Example 2.1 there is a process running on location sender,
that gathers information from location input and forwards it to location output.
Location input does not take part in this reading at all, it is just a passive loca-
tion keeping intermediate information. Assume there is another process running
on another location, let us say attacker, that wants to gather information from
location input as well. For instance:

Attack2.4 = attacker ::wattacker

∗(in(!msg)@input.0)

This attacker will certainly be able to gather all the information present in lo-
cation input, unless something prevents it from doing this. For instance, there
might be some security policy present in location input, which will only allow
processes running on location sender to gather information.

Looking from another perspective, assume there is a malicious process running
on the honest location sender. For instance, assume the following code:

SenderAttacked = sender ::wsender

∗(in(!msg)@input.
out(msg)@output. 0) |
∗(in(!msg)@input.
out(msg)@attacker. 0)

20 Closed Distributed Systems

In this case, location sender contains the proper process but also another ma-
licious process running in parallel, which will forward to the attacker all the
information read from input. We might put some security policy in location
sender to avoid such insecure behaviour.

Example 2.5 In Example 2.2 a client cli1 reads some record from the database
db. This client might be an honest one, but some of the records might not belong
to him. So, he should not be allowed to read every record from the database, but
still some records. For instance, recalling the database from Example 2.2:

Database = db ::wdb 〈1, val1〉 ||
db ::wdb 〈2, val2〉

Assume the record with index 1 corresponds to client cli1, but not the record
with index 2. Then, the following code of Example 2.2 is fine:

Client = cli1 ::wcli1

read(1, !data)@db.
out(data)@self. 0

But the following code is not secure:

ClientAttacked = cli1 ::wcli1

read(2, !data)@db.
out(data)@self. 0

In this case, just a single value in a parameter changes, and the action turns
from secure to insecure. We should be able to express some security policy to
prevent the insecure action from happening, while not stoping the secure one.

Example 2.6 In Example 2.3, the processes running on the Doctor’s location
and on the Nurse’s location were fine, as they aimed at reading information they
were allowed to. Now, assume Doctor Hansen might try to read patient Bob’s
information, and then leak it to Nurse Olsen. This could be defined as follows:

NetHansenBad = Hansen ::wstaff

read(Bob, PrivateNotes, !content)@EHDB.
out(Bob, PrivateNotes, content)@Olsen. 0

On her side, Nurse Olsen might try to read Bob’s information directly:

NetOlsenBad = Olsen ::wstaff

read(Bob, PrivateNotes, !content)@EHDB. 0

Now, assume the entire network is defined using the previous definitions, and
those coming directly from Example 2.3, as follows:

NetData || NetRoles || NetHansenBad || NetOlsenBad

2.3 A Health Care distributed system 21

This network is not really fine, as Bob’s private information is not supposed to
reach Nurse Olsen’s location; neither directly, nor through Doctor Hansen.

The way to express security policies that could perform the work mentioned in
these examples, and much more work as well, is left for Chapter 3.

2.3 A Health Care distributed system

The EpSOS interoperability health care system is mainly aimed at allowing
doctors from European countries to access information about patients from other
countries, in order to treat them. We abstract here the basics of this system.

Doctor B Int. DB DB A

Mid. A Mid. B

Country
A

Country
B

Patient
A

Figure 2.1: Basic EpSOS abstracted system.

Figure 2.1 shows a simple schema of the basic components of the system and
its relations, for a simple case where just two countries are involved. The two
countries are customarily called country A and B, referring respectively to the
one where the patient comes from and to the one where the patient needs to
be treated. In each country, there is a middleware layer involved in relating its
own country’s already existing infrastructure with the outside world, namely
the EpSOS infrastructure for communicating between all European countries.
We assume that part of this infrastructure is an international database, where
the middlewares of the involved countries can share information.

Considering the relations among principals in Figure 2.1, we could informally
depict a request procedure. For instance, the normal procedure for a request
coming from country B to country A is the following: Doctor from country B

22 Closed Distributed Systems

requests information about a patient to his country’s middleware layer. Mid-
dleware from country B forwards the request to the middleware of country A,
using the international database as shared source. Middleware from country A
processes the request by accessing the relevant database, and then puts the results
in the international database for country B. Middleware from country B gathers
the results and gives them to the Doctor, who uses them for treating the patient.

2.3.1 Modelling the procedure

We could separate this procedure into three different threads of tasks, each one
produced by a specific principal. Certainly, both the Doctor and the middle-
ware of both countries have their own contribution to the normal procedure.
This means each of them can know in advance exactly what they should do,
but not exactly when (this will be triggered by other principal doing its own
contribution).

For the Doctor, he is the one starting the entire procedure and using the results
at the end. Indeed, his tasks could be enumerated as follows: “Doctor from
country B requests information about patient to his country’s middleware layer ”;
and then, Doctor “uses the results for treating the patient”.

For the middleware from country B, the relevant tasks from the normal pro-
cedure are the following: “Middleware from country B forwards the request to
the middleware of country A, using the international database as shared source”;
and then, “Middleware from country B gathers the results and gives them to the
Doctor ”.

For the middleware from country A, the following is relevant: “Middleware from
country A processes the request, by accessing the relevant database, and then
puts the results in the international database for country B ”.

Being even more structured, aiming at later turning these into processes in our
framework, we could define the tasks as follows (separated into groups depending
who initiates them):

• Doctor requests information to his country’s middleware.

• Doctor gathers information and treats patient.

• Middleware B learns about new request.

2.3 A Health Care distributed system 23

• Middleware B forwards request to middleware A.

• Middleware B gathers results of request.

• Middleware B makes results available for Doctor.

• Middleware A learns about the request.

• Middleware A processes the request.

• Middleware A puts results of request in international database.

The steps that mention learning about something in order to start some com-
munication are indeed needed due to our framework’s paradigm. Certainly, the
interactions that we are capturing are those relating some process doing some
task over some tuple space. We are not capturing interactions between two or
more processes, like other process algebrae do. If a process P needs to activate
or wake up another process Q, the way is actually process Q being blocked ex-
pecting some signal from P, and doing its own tasks after such signal arrives.
Such signals can actually contain information, as they are indeed encoded into
tuples that can be written and read.

2.3.2 The formal model

Let us finally give the AspectKBL processes that express the basic request
procedure just depicted. Moreover, the following is actually the entire model of

24 Closed Distributed Systems

the basic request procedure of this EpSOS abstraction2:

EpSOS = DoctorB ||MiddlewareB ||MiddlewareA ||
IntDB || DBA

where
DoctorB = doctorB ::wdoctorB

out(req, midA, patient1, self)@midB.
in(res, midA, patient1, self, !data)@midB.
0

MiddlewareB = midB ::wmidB

read(req, !src, !pat, !dr)@self.
out(req, src, self, pat)@intDB.
in(res, self, src, pat, !data)@intDB.
out(res, src, pat, dr, data)@self. 0

MiddlewareA = midA ::wmidA

read(req, self, !dest, !pat)@intDB.
read(pat, !data)@dbA.
out(res, dest, self, pat, data)@intDB. 0

IntDB = intDB ::wintDB 0

DBA = dbA ::wdbA 〈patient1, privateinfo〉



(2.1)

Each of the components of Figure 2.1 are expressed in this AspectKBL net-
work. Even the one that does not have any process on it: IntDB. This is to
overcome the limitation of not having a way to dynamically create new loca-
tions, as the original KLAIM had3. We just create the location intDB with a
null process running on it, then that location is completely passive. So, other
processes could write and read information there. Location dBA does not have
any process either, but it actually has a tuple of data about a patient, namely
patient1. For the other three locations, each action expresses exactly one of
the tasks for each component. They are explained in the following paragraphs.

The doctor component The component of the doctor, DoctorB, consists
of a location doctorB with a process running on it. The process has two ac-
tions. The first action is the doctor requesting information from his country’s
middleware. It simply writes a request (out action with first parameter req)
to the location midB, which is the middleware’s location. The other parameters

2The big curly bracket } is solely for denoting that the number 2.1 refers to the entire
Equation, and not to a single network (for instance MiddlewareB).

3This complements the other (much more important and interesting) overcoming presented
in Section 2.1.1.

2.3 A Health Care distributed system 25

reference the patient identifier (in this case patient1) and the location of his
country of origin (midA). Finally, the self is meant for the results coming back
to this same doctor doctorB.

The second action of the doctor’s process simply aims at gathering the results
(in action with first parameter res). This action will only take place after the
results are indeed available at location midB, in the meantime the process will
simply be blocked. The last parameter aims at binding the patient information
into the variable data, so it is assumed that the doctor can later use this data to
decide how to treat the patient. After this action, the process simply terminates
(null process 0).

The middleware layers For the middleware of country B, location midB is
set with a process that performs the necessary tasks. The first action is the one
that simply informs the middleware that there is a request pending. The process
will be blocked until such request is present there. The request is read from the
very same location (action read, first parameter req, and target location self).
Three variables are bound at this time: src, pat and dr. Since the only tuple
present in the location midB will be the one written by the process at location
doctorB, the variables will take, respectively, the values midA, patient1 and
doctorB.

The second action will simply forward the request to the relevant country, in
this case country A, by putting a tuple in the international database. The
recipient of the request is changed to be country B’s middleware by using the
self parameter, since country A does not need to know which doctor from
country B has actually made the request. In the next action, the results of
the request are read, and the information is stored in variable data, using the
binding in the fifth parameter. This action will only be done after the result is
indeed available, blocking the process until then. The last action simply puts the
information on itself, making it available for the doctor doctorB, and actually
inserting his location name in the fourth parameter (variable dr was already
bound in the first action of this process).

For the middleware of country A, analogous actions are defined, according to
the tasks the component has to perform. These actions finally close the cycle,
as the other processes are supposed to be blocked at some points waiting for
some results coming from MiddlewareA. The first action learns about the
request by just taking the tuple from the international database, and binding
the middleware intended to be recipient of the results (variable dest, that in
this case will be bound to midB) and the patient’s name (variable pat, that
will be bound to patient1). Then, it simply reads from the database of its

26 Closed Distributed Systems

country the information about the patient, binding variable data with the results
(privateinfo). The last action writes the results in the international database,
including both countries’ middleware names, the patient name and the actual
resulting information.

2.3.3 Extensions to this basic EpSOS model

The model given in this Section is an extremely simplified one. The abstractions
of the components are fine, but the processes running on each of them are
specially created to fit amongst each other. Furthermore, only one request can
be done, and then the system finishes its use. We will need to extend this model
with several features. We will actually do this at different steps throughout this
work.

Some of the features will be modifications that demonstrate some security flaw.
We will mainly do this in Section 3.4. We will then aim at solving the security
flaw, mainly in Section 4.3.

There will also be some extensions that are functional. For instance, to allow
more requests than just one. Actually, allowing more requests can indeed pose
some security issues as well, because a single request could be confused and
processed more than once. Other functional extensions include allowing more
countries to be involved (and more than just one doctor per country), and
allowing countries to behave both as requester and processor of requests. All
these, and even other, functional extensions pose security threats as well. We
will come back to this in Section 5.3.

We aim at showing that all of these security issues can indeed be managed by
our framework, if the necessary security policies are included. We shall develop
more on this in the following Chapters.

Chapter 3

Combinable Access Control

In this Chapter, we will introduce the way security policies can be added to our
framework. In particular, we will show how we can actually combine multiple
enforcement mechanisms into a given security policy.

The main idea is that on each of the locations of our framework there may be
attached some enforcement mechanisms (EMs). These EMs will trap each and
every interaction the location may be involved in. In some cases, the interaction
will actually be forbidden by (some of) the EMs, preventing some security flaw
turning into an actual security error.

Since interactions always take place between two locations, the EMs present
in both locations will be involved. This results in the need to combine the
decisions of all of them. This combination will eventually lead to either granting
or denying the action. We aim at showing that this combination of (simple)
EMs will indeed deny all the actions that are insecure according to some (more
complex) security policy.

This Chapter is divided into a more theoretical part in the first two Sections and
a more practical part in the last two. In Section 3.1 we introduce the logics that
we will use for combining enforcement mechanisms (EMs). In Section 3.2 we
present the way we actually use these logics, and we also build up a theory over
these logics by deriving several properties that can actually be used to reason

28 Combinable Access Control

about the EMs. In Section 3.3 we present the abstract syntax for the EMs that
can be attached to each location in our AspectKBL framework. Finally, in
Section 3.4 we give some EMs for the EpSOS case study.

3.1 A 4-valued logic

This entire Chapter deals with combinations of enforcement mechanisms (EMs)
that will be attached to the locations of a network in AspectKBL. The com-
binations need to be done every time two locations are to interact. When these
combinations are done, they are subject to possibly conflicting information. It is
also possible that for some interactions there is a lack of EMs telling the system
what to do. This Section deals with a 4-valued logic that will be used for solving
these situations.

The EMs that are combined every time an interaction takes place come from
different locations. It is likely that the authors of these EMs aimed at different
security policies when creating them. It is also possible that some locations have
more restrictive behaviour than others. It is even possible, thanks to the way our
framework is designed, that some locations change their security policies after
the original design of the system. All these situations might result in having
conflicts among the EMs coming from different locations.

On the other hand, recall that we are in a closed system and all the locations
can, in principle, interact with each other. This poses a high demand on EMs for
each location, as each possible interaction should be considered while creating
them. This leads to possible missing EMs for some particular interactions, in
which cases we say there is lack of information about what to do. Other sources
of lack of information might include EMs that are intended to be generic but
actually they are not, and interactions that occur between locations that were
not supposed to interact. Finally, and also thanks to the way our framework is
designed, EMs can be removed from locations, so if no EM is later added, then
there will be a lack of information as well.

For these two kinds of problems that might arise when combining EMs, conflicts
and lack of information, we need to have a consistent way of solving them. If
no problem is happening, then the result of the combination of EMs will be
either grant or deny the interaction. But in our case there might be two other
possibilities.

3.1 A 4-valued logic 29

3.1.1 Belnap Logic

We shall use a 4-valued logic first proposed by Belnap [Bel77] to deal with our
problems. This is an extension to the traditional Boolean logic. It defines two
extra values together with some operations over the set of values. There is a set
of properties that are known to hold in them [AA98]. We will mention those
that help for our developments, and will prove several new ones as well.

As for the values, of course the traditional Boolean values tt and ff1 are available.
There are also two extra values: > and ⊥ (read “top” and “bottom”). For
our purposes, the traditional tt would mean “the EMs accept the interaction”
(i.e. grant) whereas the traditional ff would mean “the EMs do not accept the
interaction” (i.e. deny). Furthermore, the two extra values would mean “there
is contradictory information” (i.e. conflict) and “there is a lack of information”
(i.e. no decision), resp. > and ⊥.

We call this set of values Four (i.e. Four = {⊥, tt, ff,>}), and similarly we call
the Boolean set of values Two (i.e. Two = {tt, ff}).

With the set Four, it is possible to extend the usual Boolean operators and to
define new ones. This can certainly be done by extending the usual truth tables.
For instance, the following is the usual truth table of the ∧ operator:

∧ ff tt
ff ff ff
tt ff tt

This can be extended by adding the rows and columns for the new possible
operands and filling the respective cells, as follows:

∧ ff tt ⊥ >
ff ff ff ff ff
tt ff tt ⊥ >
⊥ ff ⊥ ⊥ ff
> ff > ff >

(3.1)

In the same way, the following is the usual truth table of the ∨ operator:

∨ ff tt
ff ff tt
tt tt tt

1We will use this notation, namely tt and ff , for the True and False Boolean values through-
out this work.

30 Combinable Access Control

This can be extended as follows:

∨ ff tt ⊥ >
ff ff tt ⊥ >
tt tt tt tt tt
⊥ ⊥ tt ⊥ tt
> > tt tt >

(3.2)

Two orderings over Four There is a more useful way to do this, though.
We equip the set Four with two partial orderings: ≤k and ≤t. The subindexes
identify that they are a knowledge ordering and a truth ordering, respectively.
For the knowledge ordering, the following relations are defined:

tt ≤k >

ff ≤k >

⊥ ≤k tt

⊥ ≤k ff

⊥ ≤k >

The last relation can actually be derived by combining the previous four, but
we give it here for completeness. The only incomparable elements are tt and ff.
This means that neither ———tt ≤k ff nor ———ff ≤k tt holds.

Our intuition behind the knowledge ordering is that each element of the set
Four keeps some knowledge about the access control decision to take. Since
the > element represents a conflict, it means it “keeps” both the values tt and
ff , thereby having “more knowledge” than other values. On the other hand, we
could say that ⊥ does not keep any of the values tt or ff , so it has the “least
knowledge” amongst the elements.

We should mention that in some literature, the four elements used for the defi-
nition of Belnap Logic are the ones from the powerset of Two = {tt,ff }, namely
{tt,ff }, {tt }, {ff } and {}. These elements represent, respectively, our >, tt, ff
and ⊥. With this, it would be more evident in our intuition from the previous
paragraph.

Coming back to our ordering definitions, the following relations are defined for
the truth ordering:

> ≤t tt

⊥ ≤t tt

3.1 A 4-valued logic 31

>

tt ff

⊥

≤k

�
�
��

@
@
@@

@
@
@@

�
�
��

(a) Partial ordering defined by ≤k

tt

⊥ >

ff

≤t

�
�
��

@
@
@@

@
@
@@

�
�
��

(b) Partial ordering defined by ≤t

Figure 3.1: The Belnap bilattice Four: ≤k and ≤t.

ff ≤t >

ff ≤t ⊥

ff ≤t tt

Again, the last relation can be derived by combining the previous four, and the
only incomparable elements are > and ⊥, so neither ———-> ≤t ⊥ nor ———-> ≤t ⊥ holds.

These sets of relations are depicted in the Hasse diagrams of Figure 3.1, with
the left lattice (Subfigure (a)) representing the knowledge ordering and the right
one (Subfigure (b)) representing the truth ordering. This is the so-called Belnap
bilattice.

With this bilattice, we can easily define operators over the set Four. The exten-
sions of the Boolean operators can also easily be done. The bilattice provides us
with a graphical way to remember the relative positions of the elements of the
set. This is beneficial not only for recalling what an operator does (mnemotech-
nical rule) but also for assessing the usefulness of new operators one may devise.
Indeed, a truth table would be difficult to read due to its large number of cells.

Extension of Boolean operators Now, we are ready to give the definitions
of the usual Boolean operators, extended to deal with these four values. The
conjunction ∧ is defined to be the greatest lower bound (usually called meet)
on the truth lattice. Certainly, the intuition behind the ∧ operator is that it
must result in the infimum truth value as possible amongst its operands. This
intuition is indeed followed by the usual Boolean definition of the operator: it
only gives tt if both operands are tt. Notice that this definition gives exactly
the same results expressed in the truth table of Equation 3.1. In particular, it

32 Combinable Access Control

is a proper extension of the Boolean version of the operator, since it gives the
same result when both operands belong to Two.

For the disjunction ∨, it is defined to be the least upper bound (usually called
join) on the very same truth lattice. Certainly, the intuition behind the ∨
operator is that it must result in the supremum truth value as possible amongst
its operands. This intuition is indeed followed by the usual Boolean definition of
the operator: it gives tt as long as some operand is tt. Notice that this definition
gives exactly the same results expressed in the truth table of Equation 3.2. In
particular, it is a proper extension of the Boolean version of the operator, since
it gives the same result when both operands belong to Two.

Operators on the knowledge lattice As we have extended the usual Boolean
operators to be the meet and join on the truth lattice, there must be analogous
operators on the knowledge lattice. Indeed, these are the ⊗ and ⊕ operators
(read “times” and “plus”). The ⊗ is defined to be the greatest lower bound, or
meet, on the knowledge lattice. The intuition behind the operator is that it
must result in the infimum knowledge value amongst its operands. Had we in-
terpreted the Belnap elements as the powerset of the Boolean ones, this operator
would represent the set intersection.

For the ⊕, it is defined to be the least upper bound, or join, on the same knowl-
edge lattice. The intuition is that it must result in the supremum knowledge
amongst its operands; or, if interpreted as set elements, it would be the set
union.

If one wants to have a truth table for these operators, this is certainly possible.
The truth table for the ⊗ operator is the following:

⊗ ff tt ⊥ >
ff ff ⊥ ⊥ ff
tt ⊥ tt ⊥ tt
⊥ ⊥ ⊥ ⊥ ⊥
> ff tt ⊥ >

(3.3)

On its side, the truth table for the ⊕ operator is the following:

3.1 A 4-valued logic 33

⊕ ff tt ⊥ >
ff ff > ff >
tt > tt tt >
⊥ ff tt ⊥ >
> > > > >

(3.4)

Same as it is customary notation to use
∧

and
∨

for making the binary Boolean
operators ∧ and ∨ to become n-ary, we will use

⊗
and

⊕
for making the

binary Belnap operators ⊗ and ⊕ to become n-ary. With this, assuming we
have n Belnap values f1, f2, ..., fn2, we may write, apart from the usual binary
f1 ∧ f2, f1 ∨ f2, f1 ⊗ f2andf1 ⊕ f2, the following n-ary operations:∧n

i=1 fi∨n
i=1 fi⊗n
i=1 fi⊕n
i=1 fi

Security examples Let us give some brief examples of the use of Belnap
Logic for combining results of enforcement mechanisms into a final decision.
For now, we assume that the results of the enforcement mechanisms can be any
of the four Belnap values.

Example 3.1 If we are to combine the results of several enforcement mech-
anisms, and if we aim at considering all of them for taking the final decision,
we can use the operator ⊕. Then, the final result will gather the information
coming from every enforcement mechanism. Suppose there are n enforcement
mechanisms, whose results are f1, f2, ..., fn. The final result,

⊕n
i=1 fi, might

have the following forms (amongst others):

• conflict >: if at least some of the values are >; or if both values tt and ff
occur amongst the operands. Indeed, the existing values will be carried on
until the final result > can demonstrate there has been a conflict.

• grant tt: if there is some operand with value tt, and no operand has neither
the value ff nor a conflict >. Indeed, any operand with no decision ⊥ will
be basically ignored, as ⊥ is the identity element for the operation ⊕.

2From now and on, we shall be using the notation f for identifying an arbitrary element
of the set Four.

34 Combinable Access Control

Example 3.2 If we want to be certain that every single enforcement mecha-
nism has agreed on granting, and we want to combine all of them in a single
result, we cam use the operator ∧. Assume there are n enforcement mechanisms,
whose results are f1, f2, ..., fn. The final result,

∧n
i=1 fi, will only be tt if every

fi is tt. Otherwise, assume there is a single conflict > amongst the operands.
Then the final result will be conflict as well. Analogously, if there is a single no
decision ⊥. Finally, if there are both of them, the final result will be ff.

These two examples show that both the new operators and the extensions of the
usual Boolean operators can be used for taking access control decisions using
Belnap Logic. Indeed, there are two different lattices that we might exploit to
obtain and analyse those decisions.

However, let us look to this example, that might generate some new insights.

Example 3.3 Assume we have just two enforcement mechanisms, whose re-
sults are f1 and f2, and we want to combine them in such way that with at
least one of them granting, the final result must be grant. Then, we will use the
operator ∨. Indeed, f1 ∨ f2 will be tt if at least one of the fi is tt. However,
consider the following two cases:

• If one operand is ff and the other is >, then the final result will be >. This
might mean we have at least a tt (since > encodes the combination between
tt and ff). However, the final result > is different from tt.

• If one operand is ⊥ and the other is >, then the final result will be tt. With
this we might believe that we have at least one of the operands granting
(this is what we aimed by using the operator ∨), but this is actually not
the case.

This third example shows us that actually the Belnap Logic, despite being a
proper 4-valued logic, should be used carefully if it is intended to be a tool for
access control decisions. Indeed, a proper access control decision must be either
grant or deny. The two extra values that we have while using the Belnap Logic
are just internal values that help us to keep internal information about how the
combination of enforcement mechanisms might have taken place. At the end,
these Belnap values have to be mapped into traditional 2-valued Boolean logic
for the final decision. There are actually several ways to do this, and we shall
discuss them in Section 3.2. But as Example 3.3 suggested, the particular way
one uses for doing this mapping should be carefully considered, also at the time
of operating within Belnap Logic. Certainly, for us Belnap Logic is just a tool
for manipulating access control decisions, and not merely logic constructions
that could lead to any logical result.

3.2 Mapping 4-valued into 2-valued logic 35

3.2 Mapping 4-valued into 2-valued logic

We know that when modelling access control, the final result must be a Boolean
answer: either grant or deny. We noticed that in the case of distributed sys-
tems, there might be sources of conflict or missing information, and thereby the
need to keep some internal values to model these behaviours, making the access
control compositional. In this Section, we will discuss different ways of mapping
from the internal informative 4-valued logic into the external decision-oriented
2-valued logic. We take a quite theoretical approach. We shall prove some prop-
erties of the different mapping approaches, since some of these properties will
help us in later Chapters for formal reasoning about the access control decisions.
Furthermore, although some of the developments from this Section might not
be used later in this work, these will certainly give insights for possible future
theoretical work on the topic of security policies composition.

3.2.1 Approaches for mapping into 2-valued logic

Clearly, if we have a Belnap value that is either tt or ff , the mapping must
preserve it. If the internal combination of enforcement mechanisms produced
some of these values, then that must be the final decision for the access control
granting. We take this canonical approach for these two elements.

For the other two elements, > and ⊥, either combination of possible mappings
might in principle be taken. Indeed, since Belnap Logic is just a tool that one
might use for storing internal information about access control decisions, no
limit should be imposed on how the granting is actually performed. This might
then produce four possible mappings. We have:

> maps to tt and ⊥ maps to tt
> maps to tt and ⊥ maps to ff
> maps to ff and ⊥ maps to tt
> maps to ff and ⊥ maps to ff

(3.5)

Since the analysis of compositional security in general, and in particular the
use of 4-valued logic for access control combination, is a rather new direction of
research in computer security, there is no standard agreement on which approach
to use (see for instance [BH08] and [HNN09]). In the following Chapters, we
shall stick to one particular approach for doing other developments. But for
now we will develop some theoretical work among the four of them. This could
lead to future work, both in the theoretical side and in the practical one (for
instance to improve or generalise our work from the following Chapters).

36 Combinable Access Control

We should have names for the four approaches, and we will use the ones sug-
gested in [HNN09] (in the same order as in Equation 3.5): non-blocking, rigor-
ous, designated and liberal. For instance, the rigorous approach could be the
one taken if one aims at having decisions in the fashion of Example 3.2, were
each and every operand has to be tt in order to return tt.

To be formal, let us define a substitution operation as follows:

f1[f2 7→ f3] =

{
f3 if f1 = f2
f1 otherwise ∀f1, f2, f3 ∈ Four

Now, the four granting approaches can be defined as four functions, with type
Four → Two, in the following way:

grantN (f) = f [> 7→ tt][⊥ 7→ tt]

grantR(f) = f [> 7→ ff][⊥ 7→ ff]

grantD(f) = f [> 7→ tt][⊥ 7→ ff]

grantL(f) = f [> 7→ ff][⊥ 7→ tt]

The subindexes N , D, L and R identify, respectively, non-blocking, designated,
liberal and rigorous. We will use grantg() as a generic way of covering all of
them (i.e. subindex g belongs to the set {N,R,D,L}).

The non-blocking approach encodes the intuition that an access should be
granted unless all the enforcement mechanisms suggest the opposite. This is
an extreme approach, giving the benefit of the doubt. Indeed, with this ap-
proach, as long as there is at least a single enforcement mechanism with no
decision or conflict, then the final result will be granting. It should be targeted
to relaxed cases of access control.

On the opposite side, the rigorous approach encodes the intuition that access
should only be granted if all the enforcement mechanisms suggest doing so. This
is also an extreme approach where, in cases of doubt, no access is permitted. It
might be useful for critical domains where guarantees from all observers (in our
case the enforcement mechanisms) are needed.

The intermediate cases tend to be the option for most access control domains.
The designated approach has the intuition that if there is some tt value present
in the internal composition, then the final result should be tt. A tt value is
of course present in a tt operand, and also in a > operand, as we have seen
that this lumps both Boolean values together. This tends to be the approach
taken by those that prefer to represent the Belnap values as a powerset having
the conflict as {tt,ff } instead of >. Furthermore, this seems to be the proper

3.2 Mapping 4-valued into 2-valued logic 37

approach if evidence against granting is negligible when combined with evidence
in favour of granting, since conflicts will be resolved positively. This seems also
to be appropriate if explicit evidence in favour of granting is necessary, as a ⊥
value will be mapped to not granting, i.e. denying.

On the opposite side, the liberal approach has the intuition that the access
should be granted unless there is evidence that suggests the opposite. If no
decision ⊥ then the approach grants access. This means that if there are no
explicit enforcement mechanisms preventing some behaviour, then the behaviour
should be granted. This tends to be a proper approach when no explicit evidence
in favour of the operations is needed, but any evidence against must be strictly
considered. This seems to be a reference-monitor-like approach, as the lack of
reference monitor will never stop an operation. On the other hand, a conflict >
will be mapped to deny, taking into account the existence of a ff .

Grouping the approaches While a direct use of the relevant grant() func-
tion is possible, having valid relations over the elements makes it useful for
manipulating and analysing formulae. The following Propositions depict some
properties that hold in the respective approaches, in particular relating the op-
erators defined as bounds in one and the other lattice:

Proposition 3.1 The following relation holds for every f1, f2 ∈ Four:

grantD(f1 ⊕ f2) = grantD(f1) ∨ grantD(f2)

Proof. See Appendix A �

Proposition 3.2 The following relation holds for every f1, f2 ∈ Four:

grantD(f1 ⊗ f2) = grantD(f1) ∧ grantD(f2)

Proof. See Appendix A �

Proposition 3.3 The following relation holds for every f1, f2 ∈ Four:

grantL(f1 ⊕ f2) = grantL(f1) ∧ grantL(f2)

Proof. See Appendix A �

38 Combinable Access Control

Proposition 3.4 The following relation holds for every f1, f2 ∈ Four:

grantL(f1 ⊗ f2) = grantL(f1) ∨ grantL(f2)

Proof. See Appendix A �

However, the following Proposition can also be proven (by means of counterex-
amples):

Proposition 3.5 For the rigorous and the non-blocking 4-valued to 2-valued
mapping approaches, there does not exist any operator ? that can make the
following relations to hold for every f1, f2 ∈ Four:

granti(f1 ⊕ f2) = granti(f1) ? granti(f2) (if i ∈ {N,R}, then no ? exists)

granti(f1 ⊗ f2) = granti(f1) ? granti(f2) (if i ∈ {N,R}, then no ? exists)

Proof. See Appendix A �

Due to the observation that can be done with these Propositions, let us group the
liberal and the designated approaches, and name them as the flexible approaches.
Analogously, let us group the rigorous and the non-blocking approaches together,
and name them as the strict approaches.

3.2.2 Generic properties for all the mapping approaches

There are some relations that hold for every mapping approach grantg(). These
relations provide inequalities over Two (assuming ff ≤ tt) that hold no matter
which parameter is given, and we will explain them in this Subsection. The
first four of these inequalities (or two double inequalities), relate the Boolean
combination of grant() function results with the result of applying the function
to a Belnap combination of values:

Proposition 3.6 The following relations hold for every f1, f2 ∈ Four, g ∈
{N,R,D,L}:

grantg(f1) ∧ grantg(f2) ≤ grantg(f1 ⊕ f2) ≤ grantg(f1) ∨ grantg(f2) (3.6)

grantg(f1) ∧ grantg(f2) ≤ grantg(f1 ⊗ f2) ≤ grantg(f1) ∨ grantg(f2) (3.7)

3.2 Mapping 4-valued into 2-valued logic 39

Proof. See Appendix A �

Actually, there are some cases where the inequalities turn into equalities, ac-
cording to the Propositions 3.1, 3.2, 3.3 and 3.4. Certainly, when the mapping
approach is the liberal one, both the first inequality of Equation 3.6 and the
second inequality of Equation 3.7 are equalities. On the other side, when the
mapping approach is the designated one, the other two inequalities turn into
equalities. However, with the other two mapping approaches (rigorous and
non-blocking), all four inequalities of Equations 3.6 and 3.7 are always strict
(i.e. <).

Notice that the inequalities of Proposition 3.6 are relations among elements of
Two and not among elements of Four. This is because the range of the grantg()
functions is Two. Therefore, it is not possible to have analogous relations using
the operators ⊕ and ⊗ in the extremes of the inequalities (and the ∧ and ∨ in
the middle part).

There is another group of four inequalities (or two double inequalities) that is
observed by the following Proposition:

Proposition 3.7 The following relations hold for every f1, f2 ∈ Four, g ∈
{N,R,D,L}:

grantg(f1 ∧ f2) ≤ grantg(f1) ∧ grantg(f2) ≤ grantg(f1 ∨ f2) (3.8)

grantg(f1 ∧ f2) ≤ grantg(f1) ∨ grantg(f2) ≤ grantg(f1 ∨ f2) (3.9)

Proof. See Appendix A �

Indeed, some of the inequalities turn into equalities depending on which of
the four mapping approaches is used. Moreover, there are indeed cases where
this occurs even for the strict approaches. The first inequality of Equation 3.8
turns into equality if the function used is grantR(); and the second inequality of
Equation 3.9 turns into equality if the function used is grantN (). Furthermore,
those two inequalities are the same ones that turn into equalities for both of
the flexible approaches. This also shows some relation among the approaches,
where the flexible ones are tightly grouped, and they indeed cover the lumping
of the strict ones.

Same as with Proposition 3.6, notice that the inequalities of Proposition 3.7 are
relations among elements of Two and not among elements of Four. It is again

40 Combinable Access Control

not possible to have analogous relations using the operators ⊕ and ⊗, because
the range of the grantg() functions is Two.

A higher-order bilattice Propositions 3.6 and 3.7 can even be used for
creating a new bilattice in its turn. Each of the lattices on this bilattice will
consist of four elements (those occurring in the inequalities of each Proposition).
For one lattice the elements will be:

grantg(f1) ∧ grantg(f2);

grantg(f1 ⊕ f2);

grantg(f1) ∨ grantg(f2);

grantg(f1 ⊗ f2).

For the second lattice the elements will be:

grantg(f1 ∧ f2);

grantg(f1) ∧ grantg(f2);

grantg(f1 ∨ f2);

grantg(f1) ∨ grantg(f2).

This bilattice is depicted in Figure 3.2. This bilattice must not be confused
with the Belnap bilattice from Figure 3.1, although it is built from relations
coming from there. The analysis of this new higher-order bilattice may lead
to some more theoretical developments about granting access and 4-to-2-valued
mappings. However, this falls beyond of the scope of this work. We are only
interested in relations that can make reasoning simpler for some developments
that will occur in the following Chapters. These theoretical developments are
very interesting, though, so it might be the subject of future work.

3.2.3 Other operators of Belnap Logic

So far, we have not defined any Belnap operator other than the join and meet in
each of the lattices from the Belnap bilattice, i.e. ∨, ∧, ⊕ and ⊗. In traditional
Boolean logic there exist other commonly used operators, and some are even
necessary for having an adequate set of operators. The latter is the case of the
negation, and also the implication tends to be a useful operator. Later in this
Subsection, we will define some other interesting operators relevant for Belnap

3.2 Mapping 4-valued into 2-valued logic 41

grantg(f1) ∨ grantg(f2)

grantg(f1 ⊕ f2) grantg(f1 ⊗ f2)

grantg(f1) ∧ grantg(f2)
�
�
��

@
@

@@

@
@
@@

�
�

��

(a) Partial ordering defined by Proposition 3.6

grantg(f1 ∨ f2)

grantg(f1) ∧ grantg(f2) grantg(f1) ∨ grantg(f2)

grantg(f1 ∧ f2)
�
�
��

@
@

@@

@
@
@@

�
�

��

(b) Partial ordering defined by Proposition 3.6

Figure 3.2: A higher-order bilattice.

Logic, but for now let us focus on extending the traditional implication and
negation.

For the implication, the existing literature treats it in various ways. It is clear
what to do when the antecedent is tt or ff , but there is no common agreement
on how to compute it when the antecedent is > or ⊥. We propose here a
generic definition, which actually lumps together the existing definitions from
the literature. Indeed, it is customary defining the behaviour of the operator
according to the use one will give to the Belnap Logic, and this is why the
different pieces of work define the operator in various ways. We will also follow
this approach. We will define the operator according to the use we will give
to it, namely solving conflicts among enforcement mechanisms. For this, our
definition actually depends on which 4-valued to 2-valued mapping approach is
used. Our definition is the following:

f1 ⇒g f2 =

{
f2 if grantg(f1)
tt otherwise ∀f1, f2 ∈ Four

This leads to four different specific definitions of implication, namely ⇒N , ⇒D,
⇒L and ⇒R. All these are grouped in this generic one ⇒g, which depends

42 Combinable Access Control

on the grantg() used. We said that our definition lumps together the existing
definitions from the literature, and this is certainly true: one just needs to
change the grant() function used and the operator changes its definition. Each
of the existing definitions of the operator in the literature can be achieved by
using one or another grant() function in our definition.

A desirable property of an implication operator in an access control setting is
that “if policy f1 would grant access, then policy f2 would do so”. Our definition
covers this in a generic way, regardless of the mapping approach used. Indeed,
we can prove the following:

Proposition 3.8 The following relation holds for every f1, f2 ∈ Four, g ∈
{N,R,D,L}:

grantg(f1 ⇒g f2) = grantg(f1)⇒ grantg(f2)
3

Proof. See Appendix A �

Corollary 3.9 The following relation holds for every f1, f2 ∈ Four, g ∈
{N,R,D,L}:

grantg(f1 ⇒g f2) = ¬grantg(f1) ∨ grantg(f2)

Proof. See Appendix A �

Example 3.4 Consider a setting where we have a policy saying that the owner
of a folder can read both public and secret files from the folder. This can be ex-
pressed as (read, owner, {secret, public}). Another policy says that the group
members can also read public files, and can be expressed (read, group, {public}).
We expect the first policy to be stronger than the second one, in the sense that it
forbids more attemps to read, or said in another way, it controls more accesses
by improper users. Then, we combine them using the implication, and expect the
system to grant access only in the event the implication holds, since otherwise
it would mean that we failed in making the first policy stronger. This is:

grantg((read, owner, {secret, public})⇒g (read, group, {public})) (3.10)

Now, if a group member attempts to read a secret file, the antecedent of the
implication would be ⊥ (because it does not predicate about group members) and

3Notice that in the right-hand side of the equality, the implication operator used does not
have any subindex. This is because it is indeed the traditional Boolean implication, as the
grantg() function is applied to both sides of this implication.

3.2 Mapping 4-valued into 2-valued logic 43

the consequent would be ff (since it predicates about group members, but it does
not allow them to read secret files). Using the designated approach, Equation
3.10 turns out to be tt, while using the liberal approach, it turns out to be ff.

This example shows how different mapping approaches can produce different
results, and in this case it decides whether one policy is stronger than another.
This analysis is more easily done using Boolean logic, thanks to Proposition 3.8
and Corollary 3.9.

Negation Traditionally, the negation operator ¬ is extended by leaving the
two new values unchanged (i.e. ¬⊥ = ⊥ and ¬> = >). We shall call this
negation the truth negation, and write it as ¬t. This Belnap operator can
intuitively be interpreted as the Boolean negation of each truth value present
in the argument, assuming > to be both tt and ff and ⊥ none of them. A truth
table for this traditional truth negation is the following:

f ¬tf
ff tt
tt ff
⊥ ⊥
> >

(3.11)

This definition makes all the 5 operators ∨, ∧, ⊕, ⊗ and ¬t to be monotone in
the ≤k lattice [AA98]. Indeed, if we have

f1a ≤k f2a and f1b ≤k f2b;

then
f1a(op)f1b ≤k f2a(op)f2b;

for any
(op) ∈ {∧,∨,⊗,⊕};

which is certainly desirable. However, if we have

f1 ≤k f2;

then
¬tf1 ≤k ¬tf2;

and this is not always desirable.

44 Combinable Access Control

With this traditional definition of the negation, though, in the ≤t lattice the
operator ¬t changes the direction with the usual Boolean values, making it
anti-monotone[AA98]. Indeed, if we have

f1 ≤t f2;

then
¬tf2 ≤t ¬tf2.

An analogous negation could be named the knowledge negation, and could be
defined as ¬kff = ff, ¬ktt = tt, ¬k⊥ = >, ¬k> = ⊥. In a truth table, we can
express it as:

f ¬kf
ff ff
tt tt
⊥ >
> ⊥

(3.12)

This definition might seem counterintuitive, but it could actually be interpreted
as the negation of the amount of information present in the argument (e.g. tt
has 1 piece of information so the result is still tt). The truth negation is the
traditional negation, and it is monotone in the knowledge lattice ≤k but not in
the truth lattice ≤t. Analogously, the knowledge negation is monotone in the
truth lattice ≤t, but it is not monotone in the knowledge lattice ≤k.

A coupled negation We are actually interested in making a negation anti-
monotone in both lattices. This will help us prove a few more Propositions. We
believe that counting with adapted versions of traditional (well-known) equiv-
alences could simplify the task of reasoning and performing analyses, based on
the security policies manipulation, in order to assess their compliance with the
desired security setting. Moreover, we believe it may lead up to some other
theoretical developments beyond this work. For instance, the monotonicity of
operators provides ways of grouping some of the Belnap values, being able to
make some topological space over them, thereby making the operators reflex-
ive over some given interpretation. With this, some useful analysis might be
developed. We leave this issue for future work.

About our generic definition of the negation operator, making it anti-monotone
in both lattices seems to be proper, as a negation should change the values of
the operands it takes. We shall call our new negation coupled negation, as it is a
coupling of the two lattices ≤k and ≤t. We shall write it as ¬c, and its definition
is such that the Boolean values tt and ff are opposite from each other, just as

3.2 Mapping 4-valued into 2-valued logic 45

the two extra Belnap values > and ⊥. This means that ¬cff = tt, ¬ctt = ff,
¬c⊥ = >, ¬c> = ⊥. A proper truth table is the following:

f ¬cf
ff tt
tt ff
⊥ >
> ⊥

(3.13)

The intuitive interpretation of this coupled negation is as a set complement, if
considering that > = {tt,ff }, tt = {tt }, ff = {ff } and ⊥ = {}.

This negation, being anti-monotone, is useful for extending traditional Boolean
properties into the Belnap setting. For instance, we can prove the following
DeMorgan-like laws:

Proposition 3.10 The following relations hold for every f1, f2 ∈ Four:

¬c(f1 ⊕ f2) = ¬cf1 ⊗ ¬cf2 (3.14)

¬c(f1 ⊗ f2) = ¬cf1 ⊕ ¬cf2 (3.15)

Proof. See Appendix A �

A relation analogous to these, but with the traditional truth negation is not
possible. For instance, if we substitute in Equation 3.14 all ¬t’s instead of the
¬c’s, and we have f1 = > and f2 = ⊥, then the right hand side of the equality
results in >, whereas the left-hand side results in ⊥.

Another property that holds, is an extension of the even more fundamental law
of the excluded middle. Indeed, it is possible to prove the following:

Proposition 3.11 The following relation holds for every f ∈ Four:

f ∨ ¬cf = tt

Proof. See Appendix A �

46 Combinable Access Control

Useful properties for access control Coming back to our main interest
in this work, the Belnap Logic is just used as a tool for internally storing the
partial results of enforcement mechanisms towards some access control decision.
We are interested in reasoning about these enforcement mechanisms, and this
is why we develop some theory around the Belnap Logic. But the first few
properties about the coupled negation do not reflect the fact of any 4-valued
to 2-valued mapping. Let us show other properties that hold when the grant()
function for mapping is involved.

Certainly, we can prove the following for the flexible approaches:

Proposition 3.12 For the liberal and the designated 4-valued to 2-valued
mapping approaches, the following relation holds for every f ∈ Four:

granti(¬cf) = ¬granti(f)4 (i ∈ {D,L}) (3.16)

Proof. See Appendix A �

Then, we can prove the following:

Corollary 3.13 For the liberal and the designated 4-valued to 2-valued
mapping approaches, the following relation holds for every f1, f2 ∈ Four:

granti(f1 ⇒i f2) = granti(¬cf1 ∨ f2) (i ∈ {D,L})

Proof. See Appendix A �

This does not hold if we replace the coupled negation ¬c and put the traditional
truth negation ¬t.

So far, we have shown several properties that might help us to develop analyses
of policy combinations mostly in Boolean logic, although the combinations are
internally stored in Belnap Logic, as in Example 3.4. We shall see in the follow-
ing Chapters how we could count on some of these properties when developing
an automatic analysis of policy composition.

4Notice that in the right-hand side, the negation operator does not have the c subindex.
This is because it is the traditional Boolean negation, as a granti() function is applied in its
argument.

3.2 Mapping 4-valued into 2-valued logic 47

A Belnap priority operator There is another useful operator in Belnap
Logic, specially when using it as a tool for policy composition. The operator is
a priority among two operands. The operator, noted >, is used for combining
two policies with the purpose of using only one of them. The high-priority policy
(at the left-hand side of the operator) should be considered first, and if it cannot
be applied (i.e. it results in ⊥), then the low-priority policy (at the right-hand
side) is considered. The definition of the operator is:

f1 > f2 =

{
f2 if f1 = ⊥
f1 otherwise ∀f1, f2 ∈ Four

This, given as a truth table, can be written as:

> ff tt ⊥ >
ff ff ff ff ff
tt tt tt tt tt
⊥ ff tt ⊥ >
> > > > >

(3.17)

This operation is sometimes useful when priorities among enforcement mecha-
nisms are needed. However, if it is then necessary to analyse the result of the
use of such operator, it is not very simple. Indeed, we can prove the following:

Proposition 3.14 There does not exist any operator ? that can make the
following relation to hold for every f1, f2 ∈ Four:

grantg(f1 > f2) = grantg(f1) ? grantg(f2) (if g ∈ {N,R,D,L}, then no ? exists)

Proof. See Appendix A �

This means that no Boolean operator can “replace” the usefulness of the Belnap
priority operator >.

3.2.4 Section final remarks

The current Section 3.2 has so far been quite theoretical. We have developed a
strong theory around the 4-valued to 2-valued mapping approaches. We have
mentioned that there might be several theoretical directions to follow as future
work after this. At all events, we are also interested in using all these theoretical
constructions in order to reason about the composition of security policies in

48 Combinable Access Control

the following Chapters. The best approach for performing policies combination
is not necessarily fixed, as the mappings from 4-valued to 2-valued logic could
be done in different ways. The mapping approach will have to depend on the
application, and on the aims of the administrative domains defining the security
policies, or the policy authors.

In our case, in the following Chapters we will focus on one specific mapping
approach. Our choice will be the liberal one. The reason is that we aim at
modelling reference monitors [Lam74], and actually we aim at being able to
model them in already existing distributed systems, for which purpose we take
an aspect-oriented [KLM+97] approach.

Traditional approaches to enforce security policies at runtime follow the refer-
ence monitors concept. The typical way is to assess security compliance for
each runtime operation, forbidding those that do not comply with the security
policy. This is generally accomplished by an external (hardware or software)
system, that interacts with the target basic system, monitoring its operations,
and stopping it in the event of a security policy violation [Sch00, BLW02]. For
us, the use of aspect-orientation will provide the means to include these features
within the system, though without over-modifying it [HNNY08, HJ08].

If reference monitors are involved, then in order to allow an interaction no
reference monitor should recommend the interaction to be denied. Otherwise, if
there is at least one negative reference monitor, we just consider this and deny
the interaction. Then, for combining reference monitors, the most appropriate
Belnap binary operator will be the ⊕. This does not necessarily prevent us
from using other operators, but for a conservative approach, this should be
the operator. Certainly, Proposition 3.3 suggests that with this operator an
interaction is denied as long as there is one policy that suggests so.

Another issue that is worth mentioning about Belnap Logic is that it is not ca-
pable of expressing voting. Indeed, if one aims at some combination of policies
where some voting amongst the involved policies is intended, aiming at taking
the decision most of the policies agree on, then Belnap Logic might not be the
right choice. Voting can indeed be done if the number of enforcement mech-
anisms is known in advance, or if there is an upper bound on their quantity.
Otherwise, if the number is unbound, then this is not possible.

3.3 Aspectual enforcement mechanisms 49

3.3 Aspectual enforcement mechanisms

In Chapter 2 we focused on closed distributed systems. In Section 2.1 we pro-
vided the abstract syntax for modelling the systems. We then raised some
security issues in Section 2.2. A case study was given in Section 2.3 for illus-
trating these issues. We will focus now, in the current Section, on giving the
abstract syntax for enforcing security in these distributed systems.

The locations of our distributed systems can hold processes, and these are the
main part of the functionality of the distributed systems. These processes are
the ones that generate the interactions among the various locations. Since these
interactions can give rise to security threats, we are interested in providing
security to the distributed system. Our aim is to provide security so that it is
separated from the basic functionality provided by the processes. This is why
the enforcement mechanisms are attached to the locations, but these are not
actually part of them. This way of approaching the problem follows techniques
traditional in aspect orientation (AO) [KLM+97].

According to the AO community, an aspect is a piece of code that captures some
cross-cutting concern of the system. These cross-cutting concerns are properties
of the system that are intrinsically cluttered among the system modules. To
avoid scattering them throughout the system code, thereby entangling them
with the rest of the modules, one creates some aspects for capturing the cross-
cutting concerns. Then, there will be an aspect weaver that will take care of
putting everything together, so at runtime the system will behave as expected.

Actually, in general aspect weavers do their job at compilation time, producing
the final implementation code. This could then be seen as a kind of preprocessor,
which will produce some code that will, at runtime, behave in different ways
according to the inputs, and depending on whether these are from expected
input sets. We will go one step further with this, and focus on aspects that are
evaluated at runtime, as as done in [Yan10].

The basic functionality of the system is usually oblivious of the existence of the
aspects, since the aspect weaver is the one in charge of having them do their
work. On their hand, the aspects must be aware of the existence of the basic
functionality, as it is over some conditions of this that they are built.

An aspect consists of two basic components: a pointcut and a piece of advice.
The pointcut represents one or several conditions that the basic functionality of
the system might reach. The piece of advice gives some code or functionality
to be performed whenever the condition of the pointcut is met by the basic
functionality. At runtime, the weaver detects whenever the basic functionality

50 Combinable Access Control

meets some condition given by the pointcut, and it is said that in this case there
is a jointpoint.

The most valuable advantage achieved with AO is modularity and adaptability
of a system. Indeed, since the code of the aspects is grouped together instead
of being scattered and entangled with other code, this gives the power to mod-
ify/add/delete the aspects without interfering with the rest of the system.

Traditional applications of AO include logging, performance and security. In
particular, reference monitors are a very interesting subject to implement with
AO. Indeed, reference monitors are supposed to detect when some conditions
are met by the basic functionality, and they can then take some action on this
matter. Furthermore, aspect orientation has proven to be a flexible way to deal
with modifications in reference monitors [HJ08, Dan07].

We will provide the abstract syntax for attaching reference monitors to the
locations of the distributed systems modelled with our syntax of Table 2.1.
Certainly, one should recall that throughout Chapter 2 we avoided talking about
the parameter w occurring in the locations, according to the first line of that
Table. This parameter w can be seen as an aspect encoding some enforcement
mechanism, and in the current Section we will give the syntax of it.

With this, we provide aspectual flexibility for the security of our distributed
systems. Indeed, the enforcement mechanisms encoded in the parameter w can
certainly be modified. Hence, the security policies do not have to be known
in advance before building the actual system. Indeed, this aspect-oriented ap-
proach gives us the power to change the enforcement mechanisms whenever we
want, possibly aiming at proving different global security policies, which will be
the subject of Chapter 5.

Abstract syntax The abstract syntax of the enforcement mechanisms is given
in Table 3.1. The annotation w (already introduced in Table 2.1 as mentioned)
belongs to the set of annotations Annot and it can only be an enforcement
mechanism, represented by the meta-variable em.

An enforcement mechanism (EM), represented by the meta-variable em and
belonging to the syntactic category EM, can be a Belnap combination of (sim-
pler) EMs, using the binary operators ⊕,⊗,∧,∨, >, or ⇒L. Recall that from
now and on our choice of 4-valued to 2-valued mapping approach will be the
liberal one. This is the reason why we will use the implication ⇒L instead of a
generic one. The other options for an EM include the canonical extremes: true

3.3 Aspectual enforcement mechanisms 51

w ∈ Annot w ::= em
em ∈ EM em ::= em⊕ em | em⊗ em | em ∧ em | em ∨ em |

em > em | em⇒L em | true | false | asp
asp ∈ Asp asp ::= [rec if cut : cond]
cut ∈ Cut cut ::= ` :: at . X

at ∈ Actt at ::= out(
−→
`t)@` | in(

−→
`tλ)@` | read(

−→
`tλ)@`

rec ∈ Rec rec ::= true | false | `1 = `2 | test(
−→
`t)` |

a occurs-in X | rec⊕ rec | rec⊗ rec |
rec ∧ rec | rec ∨ rec | rec⇒L rec | ¬rec

cond ∈ Cond cond ::= true | false | `1 = `2 | a occurs-in X |
¬cond | cond1 ∧ cond2 | cond1 ∨ cond2

`t ::= ` | _ `tλ ::= `λ | _

Table 3.1: AspectKBL Syntax – enforcement mechanisms for security poli-
cies.

or false5, meaning that the enforcement mechanism does not really care about
the specific interaction but actually always takes the same decision. Finally, an
enforcement mechanism can be a single aspect asp.

An aspect, from the syntactic category Asp of aspects, is a single piece of
advice depending on a pointcut. For us, we represent a pointcut by the meta-
variable cut, and it is then restricted by some Boolean condition cond, which
will capture some of the information coming from the pointcut. Then, the piece
of advice is given by the Belnap contents of the meta-variable rec. Each of these
components, cut, cond and rec are explained in the following paragraphs.

A pointcut, represented by the meta-variable cut that ranges in set Cut, takes
the form of a parameterised action at, together with the location ` where the
process performing the action is running, and the continuation process X that
will continue running in the event the action is finally granted by the enforcement
mechanisms relevant to it.

The elements represented by the meta-variable at are those in the syntactic
category of parameterised actions, Actt. This syntactic category differs from
the syntactic category Act (given in Table 2.1) in that the parameters of the
action can be ignored. This is achieved by putting a single _ in a given parameter
position. This is the reason why we also define the categories of parameterised

5These are the syntactic constructions that we use to represent the True and False Boolean
values. This syntactic notation should not be confused with the Boolean notation that we
have been using so far and will keep using: tt and ff .

52 Combinable Access Control

locations `t and `tλ (the latter with the possibility of binding using the operator
!, same as in Table 2.1).

The syntactic category of recommendations, Rec, is represented by the meta-
variable rec. Recommendations are 4-valued Belnap decisions. The simplest
forms it can take are the canonical true or false. Having one of these values
here is different from having it in the place of the enforcement mechanism em,
discussed before. Indeed, in the current case we are inside a specific aspect asp,
so the canonical decision given by the recommendation will only be considered
in the event that the pointcut cut of the aspect is relevant for the interaction.

Two other basic forms that a rec can take are an equality comparison of two
locations/values and testing if a given tuple is present in a given location.

The last basic form that a rec can take is checking whether a particular action
a occurs in the process continuation X. This is used to inspect the continuation
process that will run after the current action, so we can provide security based
on this future behaviour. Its usefulness can be understood as follows: assume a
process running on location `1 aims at reading some information from location
l2. The enforcement mechanisms of location l2 can protect the information only
at this point in time, but never in the future, as the process in location l1 might
try to interact with other locations. Therefore, in order to provide some kind of
usage control, we take the approach of inspecting the process code. We will later
provide some examples of this. The definition of the occurs-in operator is given
in an inductive way in Table 3.2, over the syntactic category of processes Proc.
We omit the (trivial) definition of a matches ai, which is a unique possible
source of a tt for the occurs-in function.

To finish with the syntactic category of recommendations Rec from Table 3.1,
we consider the inductive forms: we can combine (simpler) recommendations
rec using the binary operators ⊕,⊗,∧,∨, and ⇒L and the unary operator
¬. For this latter case of negation, and from now on, we will be using the
symbol ¬ to refer to the truth negation operator ¬t mentioned in Section 3.2.
Certainly, Section 3.2 included some theoretical developments that will no longer
be considered for the rest of this work, in particular this one about different types
of negation operators.

Finally, the last syntactic category from Table 3.1 is the one given by the set
Cond. The meta-variable cond ranges over this set, and it can provide only
2-valued Boolean results. The simplest forms are the canonical true and false.
These values will basically decide whether the aspect should be applied at all
for the given interaction. Therefore, these values here again play a different role
than in the place of a recommendation rec or the entire enforcement mechanism
em. As with the recommendations rec, other simple forms include an equality

3.3 Aspectual enforcement mechanisms 53

a occurs-in (P1 | P2) = (a occurs-in P1) ∨ (a occurs-in P2)
a occurs-in (

∑
i ai.Pi) =

∨
i(a matches ai ∨ a occurs-in Pi)

a occurs-in (∗P) = a occurs-in P
a occurs-in (0) = ff

Table 3.2: Continuation analysis operator occurs-in.

comparison or checking the continuation process X. Finally, a Boolean com-
bination of (simpler) conditions cond is also possible, using the operators ¬, ∧
and ∨.

It should be noticed that some of the conditions cond and recommendations rec
are defined already grounded, for instance true and false. This means that
the evaluation of these conditions and recommendations can be done directly,
namely [(true)] = tt and [(false)] = ff . The traditional 2-valued meaning operator
[()] can easily be adapted to become a 4-valued meaning operator. However, for
most of the other conditions and recommendations, some substitution will be
needed in order to ground them. This substitution will always depend on which
values the variables occurring in the pointcut cut have. The formal definition of
this will be given together with the rest of the formal semantics, in Chapter 4.

Examples Let us provide some Examples of aspects for enforcing some secu-
rity policies.

Example 3.5 In Example 2.6, from Section 2.2, we saw a couple of situations
that could lead to an insecure state, since Nurse Olsen was not supposed to get
the private information about Bob. We want to prevent this behaviour, without
modifying the existing locations and processes running on them. We already had
an annotation wEHDB attached to the Health Care Data Base, but we have not
given its definition. We could prevent all Nurses from reading Private Notes
directly from EHDB by defining wEHDB as follows:

wEHDB =

 test(Doctor,#u)@ROLES
if #u :: read(−, PrivateNotes,−)@EHDB.#P :

true


The pointcut (cut) of this aspect is #u :: read(−, PrivateNotes,−)@EHDB.#P .
This means that any action that follows this pattern and aims at performing an
interaction with the location EHDB will be trapped. While trapping the action,
the first and third parameter are ignored, and the second one must be equal to
PrivateNotes; also, the target location must be equal to EHDB. In such case,

54 Combinable Access Control

the variable #u6 will be bound to a specific value: the location trying to perform
the trapped action. Then, the aspect will be applied as long as its condition
evaluates to tt. This is certainly the case, as the condition (cond) is true.
Now, the decision on whether to grant or deny the interaction will be given
by the recommendation (rec), which in this case is test(Doctor,#u)@ROLES.
This means that, for instance, the first action in the process running in location
Hansen from Example 2.6 (namely network NetHansenBad) will be allowed to
execute. However, the action from the process running in location Olsen from
the same Example (namely network NetOlsenBad) will be denied.

We are still in trouble: the Doctor can indeed pass Bob’s private information
to the Nurse. To prevent this, we could give the following definition for the
annotation that every location representing a staff member has, namely wstaff :

wstaff =

 test(Doctor,#target)@ROLES
if #u :: out(−, PrivateNotes,−)@#target.#P :

¬(#target = EHDB)


Now, the pointcut will trap out actions, in particular the second action in
the process running in location Hansen from Example 2.6 (namely network
NetHansenBad). In this case, variable #u will be bound to Hansen and vari-
able #target will be bound to Olsen. The condition of the aspect, namely
¬(#target = EHDB), establishes that the aspect must be applied if the target
location is not the Electronic HealthCare Data Base. Indeed, if a Doctor writes
information there, nothing should be considered harmful. However, in this case,
the aspect is certainly applied, as the Doctor is trying to send the information
to the Nurse. Then, the aspect recommendation, test(Doctor,#target)@ROLES,
will deny the interaction.

Now, let us try to provide security to the same Example, but by inspecting a
continuation process.

Example 3.6 In Example 3.5, we solved the second security issue raised by
Example 2.6 from Section 2.2. However, our solution involves an enforcement
mechanism attached to a Doctor’s location to prevent it from sending some pri-
vate information to a Nurse. In this example, we shall also prevent this, but by
directly having an enforcement mechanism in the Electronic HealthCare Date-
Base. In this case, the enforcement mechanism will inspect the code of the
processes that try to gather information from the database.

Recall that the process running in location Hansen from Example 2.6 (namely
NetHansenBad) reads Bob’s private information before trying to send it to

6We take the convention that every variable defined in an aspect must start with the special
symbol #.

3.3 Aspectual enforcement mechanisms 55

Nurse Olsen. An enforcement mechanism present in location EHDB could not
participate in the second interaction of this process, namely the one where the
process interacts with location Olsen. However, the enforcement mechanism
can inspect the process’ code at the time of the first action. Assume we have the
following definition of the annotation wEHDB attached to location EHDB:

wEHDB =

 ¬(out(#data)@Olsen occurs-in #P)
if #u :: read(−, PrivateNotes,#data)@EHDB.#P :

true


Now, the first action of NetHansenBad will be denied, since the continuation
process contains an out that will leak the information to the Nurse. On the other
hand, the action of NetHansen from Example 2.3 will be granted, as there is
no unsecure out after it.

Inspecting continuation processes is not the main aim of this work. For the
interested reader, there are many more realistic examples of this in [YHNN12],
also in the Electronic Health Records domain.

3.3.1 Some properties about aspects

Throughout Section 3.2 we have given several Propositions about properties that
hold for given 4-valued intermediate results and operations. Now that we have
the definition of simple aspects, and we understand how these intermediate 4-
valued results are obtained. Then, we give here a few other properties that hold
depending on the internal definition of the aspect. These following properties are
restricted to our already-made choice of 4-valued to 2-valued mapping approach:
the liberal one.

Considering that the results of evaluating the conditions (cond) and the recom-
mendations (rec) of some given aspects will end up being 2-valued and 4-valued
respectively, we could rely on the following properties to make aspects simpler
by changing their internal definition:

Proposition 3.15 For the liberal 4-valued to 2-valued mapping approach,
the following relations hold for every f1, f2 ∈ Four, b3, b4 ∈ Two:

grantL([f1 if cut : b3 ∧ b4]) = grantL([b3 ⇒L f1 if cut : b4]) (3.18)

grantL([f1 if cut : b3]⊕ [f2 if cut : b3]) = grantL([f1 ∧ f2 if cut : b3]) (3.19)

grantL([f1 if cut : b3]⊗ [f2 if cut : b3]) = grantL([f1 ∨ f2 if cut : b3]) (3.20)

56 Combinable Access Control

Proof. See Appendix A �

According to Proposition 3.14 from Section 3.2.3, there is no generic way of
adapting a combination of aspects in a priority operation. This means that the
operator is really necessary when operating in 4-valued Belnap Logic. However,
with the following property, we can see that there is a way to get rid of the
operator under some restrictions. The first restriction is that both sides of
the priority represent a single aspect and these are modified accordingly. The
second restriction is that the leftmost aspect can only result in ⊥ due to a non-
applicability condition (i.e. cond = ff) but not because the recommendation
lacks information (namely rec = ⊥):

Proposition 3.16 For the liberal 4-valued to 2-valued mapping approach,
the following Equations 3.21 and 3.22 are equivalent for every f1, f2 ∈ Four,
b3, b4 ∈ Two, provided that f1 can never evaluate to ⊥:

grantL([f1 if cut : b3] > [f2 if cut : b4]) (3.21)

grantL([(b3 ∧ f1) ∨ (¬b3 ∧ (b4 ⇒L f2)) if cut : true]) (3.22)

Proof. See Appendix A �

Now, we have a property that follows from some of the already proven Propo-
sitions:

Corollary 3.17 Equation 3.21 is equivalent to both of the following Equa-
tions:

grantL(α ⊗ (β ⊕ χ)) (3.23)

grantL(α) ∨ (grantL(β) ∧ grantL(χ) (3.24)

where α = [b3 ∧ f1 if cut : true], β = [¬b3 if cut : true] and χ = [b4 ⇒L

f2 if cut : true]. And where f1, f2 ∈ Four, b3, b4 ∈ Two.

Proof. See Appendix A �

Special case: granting aspect temporarily added Assume in some lo-
cation there is an aspect that in some cases grants actions and in some denies
actions. There might be some periods of time where a granting aspect must

3.4 Adding security to EpSOS case study 57

be added with higher priority, for instance in a database in the periods where
auditors have to access it. In these cases, the recommendation is always tt, but
the applicability of the aspect is the one that matters, to see if the temporary
condition is met. For these cases, the following property is a very strong one:

Proposition 3.18 For the liberal 4-valued to 2-valued mapping approach,
the following Equations 3.25 and 3.26 are equivalent for every f ∈ Four, b1, b2 ∈
Two:

grantL([true if cut : b1] > [f if cut : b2]) (3.25)

grantL([b1 ∨ (b2 ⇒L f) if cut : true]) (3.26)

Proof. See Appendix A �

3.4 Adding security to EpSOS case study

In Section 2.3, we introduced the basic procedure for a piece of health care
information lookup coming from a different country. In this procedure, a Doctor
from country B needs information about a patient coming from country A. Then,
the request has to travel back and forth through a couple of middleware layers,
and using an international repository for intermediate sharing. We shall see
in this Section a few situations where the procedure is threatened and might
become insecure, due to slight variations in the processes running in some of the
locations. Then, we will show how simple aspects for enforcement mechanisms
can avoid turning the system insecure in these cases; all this without interfering
with a proper system, for instance the one depicted in Section 2.3.

A naive attacker In the normal procedure depicted in Section 2.3, a Doctor
initiates the procedure by posting a request into its country’s middleware. What
if a naive attacker just tries to perform a similar request? Shall the middleware
blindly trust this, thereby processing the request? Actually, a very simple Role-
Based Access Control policy will detect this situation, and the request made by
the attacker will simply be ignored.

In our case, we will need an aspect sitting in the middleware location, and the
aspect will then monitor each and every interaction the middleware might be
involved in. When an interaction involves a request made by a third party to
the middleware, the aspect should trap it, and the interaction might be granted
only in the cases where the third party is a valid and registered Doctor.

58 Combinable Access Control

To achieve this, we present here the aspect that can perform this task:

wmidB =

 test(Doctor,#u)@Roles
if #u :: out(req,−,−,−)@midB.#P :

true


This aspect will be attached to the location midB, as actually we finally defined
the annotation wmidB, which has been set but not defined in Section 2.3.2. With
this, a request made by a Doctor, such as the one formally written in Section
2.3.2 made by Doctor B, will not be interfered with. However, the aspect will
prevent any insecure situation that might arise due to a naive attacker such as
for instance the following:

Attacker = att ::watt

out(req, midA, patient1, self)@midB.
in(res, midA, patient1, self, !data)@midB. 0

The process running in location att is exactly the same as the one running in
location doctorB in the original definition from Equation 2.1 in Section 2.3.2.
However, one is insecure whereas the other is not. Indeed, for this attacker to
be avoided, and Doctor B to be allowed to perform the request, there has to
exist a location Roles holding the identifiers of all the registered doctors and
none other than these. In our case, the following definition would do:

Roles = Roles ::wRoles 〈Doctor, doctorB〉

Then, the entire system should change from the already defined:

EpSOS = DoctorB ||MiddlewareB ||MiddlewareA || IntDB || DBA;

to an extended one including the newly defined location Roles:

EpSOS′ = DoctorB ||MiddlewareB ||MiddlewareA ||
IntDB || DBA || Roles.

A trojan horse Now, we will inspect the system assuming no extra location
is present, but some real internal attack might occur. The normal procedure
depicted in Section 2.3 assumes all the processes running in all the locations
do exactly what is intended. What if there is some Trojan horse in a location?
This can again be detected and stopped by a simple aspect.

To be specific, assume that country B’s middleware location is defined in the
following way (instead of how it is defined in Section 2.3.2):

MiddlewareB′ = midB ::wmidB

read(req, !src, !pat, !dr)@self.
out(req, src, self, pat)@intDB.
in(res, self, src, pat, !data)@intDB.
out(res, src, pat, dr, data)@att. 0

(3.27)

3.4 Adding security to EpSOS case study 59

In this case, at the very end of the process that takes care of the request made by
Doctor B, the middleware sends the patient information to the attacker, instead
of putting it in its own location so later Doctor B could gather it. This is not
a problem of roles, so no aspect could be set in order to stop such behaviour.
Neither is this a problem in which an external location is performing some
improper behaviour, because it is actually something running internally.

Then, again the middleware location will be the place to attach the aspect. The
aspect will then prevent insecure behaviour that might arise due to an improper
process running in the very same location where the aspect is sitting. This
is certainly possible thanks to our way of combining aspects using the Belnap
Logic and the mechanisms depicted in the current Chapter. Indeed, both the
aspects coming from the process location and the target location can prevent
the interaction from happening.

The aspect that will stop such behaviour is the following:

wmidB =

 #target = self
if self :: out(res,−,−,−,−)@#target.#P :

true

 (3.28)

This aspect will only allow writing the results of a request to the same location
where the process aiming to perform the out is running. This means that the
process in theMiddlewareB defined in Equation 2.1 in Section 2.3.2 will be able
to execute without being interfered with. However, the process just defined in
Equation 3.27 will be denied from executing the fourth action.

This situation might actually occur if we assume that we count with the eval
action present in the original Klaim. In our case, we do not have the eval
action, but we do have a way to overcome this, as shown in Section 2.1.1. Then,
certainly the situation of this improper process might be understood as a Trojan
horse, as mentioned above.

It is worth noticing that, because we are following the liberal approach, as
mentioned at the very end of Section 3.2, this aspect is done like this. For
instance, with the designated approach we could have done something like:

w′midB =

 true
if self :: out(res,−,−,−,−)@self.#P :

true

 (3.29)

This aspect will not trap the fourth action of the process defined forMiddlewareB′

in Equation 3.27. This means it will give ⊥. If we use this aspect under the
liberal approach, then the insecure behaviour will certainly occur. But with the
designated approach this aspect is indeed useful, and actually simpler than the

60 Combinable Access Control

one in Equation 3.28. This shows once more that the design of the aspects has
to be done carefully and, among other features, consider the choice of 4-valued
to 2-valued mapping approach to be used.

A dishonest Doctor Assume now that all interactions that are to take place
in the EpSOS model do indeed follow the normal procedure model from Section
2.3. By just monitoring the interactions it will not be possible to detect any
possible threat. However, a threat might exist if, for instance, the Doctor keeps
the information about the patient after treating him. For example, we could
have the following definition:

DoctorB′ = doctorB ::wdoctorB

out(req, midA, patient1, self)@midB.
in(res, midA, patient1, self, !data)@midB.
out(res, midA, patient1, self, data)@self. 0

(3.30)

In this case, the Doctor interacts with the rest of the EpSOS system following
proper behaviour. However, after reading the information from his country’s
middleware for treating the patient, the Doctor decides to keep it for his own
records. This should certainly be forbidden. However, since only the Doctor’s
location is taking part of the interaction (because he holds both the process and
the target location), then nothing will ensure that he has an aspect for denying
this.

The solution is now looking to the future from another location. For instance,
if there is an aspect in country B’s middleware, which can look to the future at
the time the Doctor reads the information from the middleware, this situation
can be detected. Certainly, we can define the following aspect to be attached in
the middleware of country B:

wmidB =

 ¬(out(#data)@#u occurs-in #P)
if #u :: in(res,−,−,−,#data)@midB.#P :

true

 (3.31)

Now, when the Doctor interacts with the middleware to gather the results of
his request, the aspect in the middleware will monitor the interaction. The
aspect will inspect the remaining code, or continuation process, that runs after
the interaction might take place. Then, in the case of Doctor B defined in
Equation 2.1 from Section 2.3.2, the interaction will be granted because after
the Doctor gathers the results, the process simply terminates. In the case of our
modified DoctorB′ from Equation 3.30 above, the continuation process contains
an improper out operation, which indeed dissatisfies the recommendation rec
of the aspect at Equation 3.31.

3.4 Adding security to EpSOS case study 61

A point to notice is that in the aspect, the recommendation mentions explic-
itly the target location where the data cannot be written, namely #u. Other
similar aspects should be defined for other locations to avoid sending the data
somewhere else. Since in this entire work we are dealing with closed systems, all
the locations should be known in advance, thereby giving the chance to create
all the necessary aspects. All these aspects will then be combined, thanks once
more to our use of Belnap Logic.

3.4.1 A note on our approach

One might argue that another, broadly used, way of protecting the information
about patients is sending them encrypted. Certainly, this is another security
measure that might indeed be taken in some cases. However, in this work we
are aiming at proving other means of providing security, and actually the target
systems are slightly different.

Encrypted information is certainly secure while travelling from one end to an-
other. In our case, many participants are involved in the closed distributed
system, and there is not necessarily a concept of end-to-end communication.
For instance, the Doctor does not actually have direct access to the Database
existing in a different country. Of course the communication from the Doctor
to the middleware, and from here to the international shared source, and so
on, might be encrypted. But we are abstracting from that right now, since our
assumptions include that there is a Virtual Private Network amongst the par-
ticipants that we indeed mention in our distributed system. These participants
should have access to the non-encrypted information, and this is why we simply
ignore encryption while discussing our framework. This would therefore just be
an implementation issue.

Another point is that regardless of whether the information travels encrypted,
we aim at proving global security by means of interacting security policies. We
then solely focus on these, thereby simply ignoring the implementation details
of perhaps having encryption in internal channels. We then prove that the
information is indeed protected, although it might seem it is not, of course
restricting to the explicit locations of the system. This is why throughout this
work we are focusing just on systems that are closed.

There are cases where cryptography is even outside the scope, such as attestation
like in digital rights management. In this setting, the owner of some information
sets security policies about how to handle the information in a third party com-
puter system. Then, this third party can only interact with the information as
long as they do not modify the security policy. This is established by some code

62 Combinable Access Control

that will change as soon as the configuration of the computer system changes,
thereby indicating a possible tampering of the security policy. More on this can
be found in [Gol11], Sections 15.6 and 20.7.

Assume the following example: process P running in location l1 can interact
with the same location only if P is signed by some authority. Instead, an aspect
in l1 can see the code of P and look to the future, namely the continuation
process. Moving to our setting, this interaction can be remote, and P might
indeed want to interact with l2, whose aspects will do the same job. Another
variation might be that l2 knows that l1 satisfies some conditions, because l1
provides some code generated by some authority trusted by l2, and that code
cannot be tampered by l1 if its configuration changes. In our case, l2 can see
the code of process P in l1, and if the configuration changes then, in a new
interaction, the code will be inspected again.

Then, in our framework we achieve the same security goals as in these cases,
but using other means. We do this by direct inspection of processes, whereas
in these cases it is done by direct inspection of some tamper-proof signature or
code.

Chapter 4

Networks Evolving

In this Chapter, we will provide the formal semantics of AspectKBL. In Chap-
ter 2 we gave the syntax of the basic networks, and then in Chapter 3 we gave the
syntax of the attached aspects for enforcement mechanisms. We have discussed
and intuitively understood how the networks behave, and how the aspects pro-
vide security for these. Now, all this will become clear, as the formal semantics
will be given and explained.

The semantics are basically divided into two parts: the reaction semantics that
generate the possible transitions that the system might perform; and the eval-
uation semantics for determining the aspects combination decision on possible
transitions. As one might guess, the former relies on the latter to perform its
jobs. Indeed, the aspects coming from the locations are combined and later
analysed to obtain a decision, which is then fed into the reaction semantics that
might generate a transition. The transitions generated will induce a labelled
transition system (LTS). This LTS will then represent the set of possible be-
haviours that the entire global system can have, and will also be the subject of
study to understand if the entire global system does satisfy the expected security
policies.

In Section 4.1 we introduce the reaction semantics of AspectKBL, and all
the auxiliary formulations that help build proper labelled transition systems.
In Section 4.2 we present the aspect evaluation formulae, to complete all the

64 Networks Evolving

formal parts of the AspectKBL language definition. Then, in Section 4.3 we
show how the networks of the EpSOS case study evolve, formally following the
previously given semantics, without needing to rely on intuition, as was the case
in the previous Chapters.

4.1 Reaction semantics

AspectKBL is a formal language for modelling distributed systems and the
processes and information present in these. Aspects for enforcement mechanisms
can be attached to the locations. We gave all the intuition on this in the
previous Chapters and, moreover, we gave the formal syntax for representing
these distributed systems with attached aspects. To complete the modelling
formulation, formal semantics have to be given. With formal semantics, we
are able to formally decide the possible transitions that the distributed system
can perform and the possible states it can reach, without having to rely on
intuition on what the processes and aspects do. This eventually spans an entire
labelled transition system (LTS), and this gives us the power to mathematically
determine several properties of the distributed system.

The semantics are reaction semantics, which prescribe possible transitions that
can occur, according to structural features of the current distributed system
state. The state is basically determined by the set of locations, processes and
tuples present in the system. A transition slightly modifies the state by chang-
ing the process after the action just executed to get the remaining actions, and
by possibly changing the occurrence of some tuple somewhere in the system,
depending on which specific action was just executed. Finally, since the reac-
tion semantics are defined according to some structural features, it is certainly
possible that in some given states more than one possible interaction can take
place. This is indeed considered, as the induced LTS is defined as the largest
that can be generated using all the reaction semantics rules.

4.1.1 Semantic Tables

The semantics are given by a one-step reduction relation on nets, whose reaction
rules are defined in Table 4.1 and explained below. Some auxiliary inference
rules are given later in Table 4.2, to make the reaction rules simple and still
provide the power to cover all the situations. The semantics make use of a
structural congruence relation on nets, consisting of the usual equivalence rules
(namely reflexivity, symmetry and transitivity) and those given in Table 4.3.

4.1 Reaction semantics 65

The semantics also make use of an operator match for matching input patterns
to actual data, defined in Table 4.4.

With these definitions, → is a relation over Net×Lab1×Net. The relation →
defines from which nets we can move to other ones and what the label of the
transition is, and it induces a Labelled Transition System (LTS). Also, ≡ is a
relation over Net×Net, and it defines which pairs of net expressions actually
identify the same net.

The main Table of reaction rules The three reaction rules of Table 4.1
prescribe how the system may evolve in the presence of some process location
and some target location. To this end, each rule only defines a transition if the
enforcement mechanisms agree on allowing the interaction to take place. This is
the purpose of calling the auxiliary function grantL(), with the ⊕ combination of
the involved enforcement mechanisms ems and emt, together with the intended
action (varies according to the specific rule).

The function grantL() turns the four-valued policies recommendations into an
actual Boolean decision using the liberal approach. Both enforcement mech-
anisms and the intended action are needed to define which will be the input
to the function grantL(). The way this is achieved will be explained further in
Section 4.2. When the interaction is actually allowed by the policies (b equals
tt), the transition is performed (subject to the existence of some actual data in
the case of a read or in action).

In rule [Rule−read], if the action is granted then the continuation process P at
location ls is subject to a substitution θ, using the result of the matching done
with the match operation. The tuple 〈

−→
l 〉 remains unchanged in the target loca-

tion lt. The label ls(ws) : r(
−→
l)@lt(wt) in the transition identifies the operation

as a read operation with the r keyword, and it has 5 parameters for keeping
the specific information of the given transition. These parameters identify the
subject and the target location interacting (resp. ls and lt), their annotations
(ws and wt), and the actual tuple read (

−→
l).

In rule [Rule− in], as in [Rule− read], the process is subject to a substitution
if the action is granted. In this case, the tuple 〈

−→
l 〉 is consumed and an empty

process 0 is left (just to keep the existence of the target location lt). The label
in the transition follows the same fashion as before, except for the keyword i
identifying an in.

1In Chapter 5 it will be clear why we need labels in the transitions.

66 Networks Evolving

[Rule− read]
(ls ::

ws read(
−→
`λ)@lt.P) || (lt ::wt 〈

−→
l 〉)

→ls(ws):r(
−→
l)@lt(wt) ls ::

ws Pθ || lt ::wt 〈
−→
l 〉 if b ∧ match(

−→
`λ;
−→
l) = θ

where wδ = emδ, (δ ∈ {s, t});
and where b = grantL([[ems ⊕ emt]](ls :: read(

−→
`λ)@lt.P)).

[Rule− in]
(ls ::

ws in(
−→
`λ)@lt.P) || (lt ::wt 〈

−→
l 〉)

→ls(ws):i(
−→
l)@lt(wt) ls ::

ws Pθ || lt ::wt 0 if b ∧ match(
−→
`λ;
−→
l) = θ

where wδ = emδ, (δ ∈ {s, t});
and where b = grantL([[ems ⊕ emt]](ls :: in(

−→
`λ)@lt.P)).

[Rule− out]
(ls ::

ws out(
−→
l)@lt.P) || (lt ::wt Q)

→ls(ws):o(
−→
l)@lt(wt) ls ::

ws P || lt ::wt 〈
−→
l 〉 || lt ::wt Q if b

where wδ = emδ, (δ ∈ {s, t});
and where b = grantL([[ems ⊕ emt]](ls :: out(

−→
l)@lt.P)).

Table 4.1: Reaction semantics of AspectKBL.

In rule [Rule− out], if the action is granted then the tuple of data 〈
−→
l 〉 is stored

in the target location lt. The existence of the target location, holding a process
Q that does not actually take part in the interaction, is merely for guaranteeing
that the location indeed exists. The rest of the rule follows the same fashion
as the previous ones. The obvious difference is that the continuation process
P is not subject to any substitution. Indeed, it is supposed not to have free
variables, as the binding of variables is only allowed in read and in actions, as
prescribed by the syntax of Table 2.1.

Finally, it is worth noticing that in all the three rules, after the transition, the
subject location ls and the target location lt will have the same annotation ws
and wt they had just before the transition. Certainly, the enforcement mecha-
nisms ems and emt will never change. This gives a well-formedness condition,
and furthermore it will allow us to reason about the locations in terms of their
enforcement mechanisms, which are fixed during all the lifetime of the location.

4.1 Reaction semantics 67

N1 →lab N ′1

N1 || N2 →lab N ′1 || N2

N ≡M M →lab M ′ M ′ ≡ N ′

N →lab N ′

ls ::
w a1.P1 || N →lab N1

ls ::
w a1.P1 + a2.P2 || N →lab N1

ls ::
w a2.P2 || N →lab N2

ls ::
w a1.P1 + a2.P2 || N →lab N2

Table 4.2: Semantics of AspectKBL (auxiliary).

l ::w P1 | P2 ≡ l ::w P1 || l ::w P2

l ::w ∗P ≡ l ::w P | ∗P
l ::w P ≡ l ::w P || l ::w 0

l ::w 〈
−→
l 〉 ≡ l ::w 〈

−→
l 〉 || l ::w 0

N1 ≡ N2

N || N1 ≡ N || N2

Table 4.3: Structural Congruence.

Auxiliary Tables Now focusing on Table 4.2, it provides ways to generate
transitions in larger networks than the ones that match the rules of Table 4.1.

In the upper row, the leftmost rule says that if a transition with label lab can
be generated from a network N1 to a network N ′1, then a transition can also be
generated if the networkN1 is in the context of another networkN2. In this case,
the resulting entire network will only modify the internal state of N1, reaching
again N ′1, leaving the context N2 unchanged. The label of the transition will be
the same.

The top-right rule assumes that 2 pairs of networks (N and M and also M ′
and N ′) are structurally congruent (following the rules of Table 4.3, explained
below). Then, the rule says that if a transition can be generated from a member
of the first pair (in this case M) to a member of the second pair (M ′), then a
similar transition can be generated from the other member of the first pair (N)
to the other member of the second pair (N ′).

In the lower row, the leftmost rule assumes that a transition can be generated
from a subject location ls and executing an action a1 if ls is in the context of
another network N . In this case, the transition has label lab and the resulting
entire network is N1. Then, the rule says that if in location ls there is actually a
non-deterministic choice between this action a1 and another action (for instance
a2), then the transition can still be generated. This stresses the fact that a
non-deterministic choice can indeed choose to follow the leftmost option. The

68 Networks Evolving

match(!u,
−→
`λ ; l,

−→
l) = [l/u] ◦match(

−→
`λ ;
−→
l)

match(l,
−→
`λ ; l,

−→
l) = match(

−→
`λ ;
−→
l)

match(ε ; ε) = id
match(· ; ·) = fail otherwise

Table 4.4: Matching Input Patterns to Data.

second rule in this lower row is completely analogous, and shows that a non-
deterministic choice can choose to follow the rightmost option.

Table 4.3 defines a structural congruence. As mentioned, this congruence con-
sists of the usual equivalence rules of reflexivity, symmetry and transitivity,
together with the rules of this Table.

The leftmost column focuses on how a process inside a location can be congruent
to other processes. The first rule says that a location l with annotation w can
hold a parallel composition of processes P1 and P2, and it is the same to have
the parallel composition of networks, where each network consists of the very
same location l, with the very same annotation w, and either one of the two
processes.

The second rule is the one that demonstrates how the replication operator ∗
works. If, in a location l, there is a replication of a process P , then it is the
same as having a single occurrence of the very same process P in parallel with a
replication of the very same process P . Finally, the last rule says that an empty
process 0 does not actually modify the behaviour of any network. Certainly,
any location holding such process can be put in parallel with another proper
(process) network. In the right column, the top rule says the same but in this
case with a tuple network.

The last rule of Table 4.3 simply says that if two networks N1 and N2 are
congruent, then both can be put in the context of a third network N and the
results will still be congruent.

The last auxiliary Table is Table 4.4, and it defines how it is possible to match
input patterns to actual data. If a matching is possible, a substitution is con-
structed and then used in the rules of Table 4.1 (with the name θ).

The matching is done datum by datum inside a pair of tuples, where the first
one is supposed to be some input pattern coming from an action expression
(either read or in) and the second one some actual tuple. In the first line, if
the input is a binding of variable u using the binding operator !, and the datum

4.2 Policies involved 69

is a proper name l, then a single substitution from u to l is created and the
remaining tuples are analysed recursively.

In the second line, if both the input pattern and the actual tuple hold the very
same constant value (for instance l), then the substitution is still possible and
the remaining tuples are analysed recursively. In the third line, if the remaining
tuples are both consumed, then the resulting substitution has been obtained.
Finally, in any other case a fail is returned, meaning no substitution has been
found.

4.2 Policies involved

In the “where” lines of each semantic rule from Table 4.1, there is a check using
the function grantL() that tells whether the interaction should be allowed. For
this purpose, the policies of both locations taking part in the interaction are
combined using the Belnap operator ⊕, and the result of the evaluation by the
operator [[]] is passed to the function grantL() together with the intended action.
In the current Section, this operator [[]] will be formally defined and explained.

The liberal function grantL() grants access whenever its input is less than or
equal to tt in the knowledge lattice ≤k. This happens not only when both
policies agree, but also when some of the policies lack decision. This is related
to the use of ⊕ to combine the policies in Table 4.1; the aim is that whenever the
policies are conflicting, we conservatively forbid the interaction. Indeed, with
the liberal approach and the use of ⊕, we will deny access as long as some policy
coming from either location has evidence that the interaction should be denied.
Of course then the internal combination of policies within a single location will
follow any possible aim, according to the authors of these policies.

Evaluation of enforcement mechanisms The evaluation function [[]] from
Table 4.5 returns a 4-valued Belnap value given a single enforcement mechanism
and an action with location and continuation process (not actually belonging to
Act because then it would also have to include an annotation). The enforcement
mechanism can certainly be a combination of simpler ones, and this is what
actually is given by the “where” line of the semantic rules of Table 4.1: the ⊕
combination of two enforcement mechanisms, namely ems and emt.

The function [[]] is defined inductively according to the structure of the en-
forcement mechanism given as (infix) parameter, and belonging to the syntactic
category EM from Table 3.1. The first case is the non-trivial base one and it

70 Networks Evolving

[[[rec if cut : cond]]](act) =
case check(extract(cut) ; extract(act)) of

fail : ⊥

θ :

{
[((rec θ))] if [(cond θ)]
⊥ if ¬[(cond θ)]


[[em1 φ em2]](act) = ([[em1]](act)) φ ([[em2]](act)),

(φ ∈ {∧,∨,⊗,⊕, >,⇒L})
[[true]](act) = tt
[[false]](act) = ff

where act = l :: a . P

Table 4.5: Evaluation of enforcement mechanisms in EM for AspectKBL.

is left for the next paragraph. The second case is the inductive case where the
enforcement mechanism is a combination of simpler enforcement mechanisms,
and in this case we simply combine their results using the corresponding Belnap
operator. In the third and fourth cases the enforcement mechanism is a trivial
constant so it is again a base case, and the result is the corresponding Boolean
decision.

For the first case where the parameter of the [[]] operation is a single aspect asp,
then the internal parts of the aspect will be considered. These are the pointcut
cut, the condition cond and the recommendation rec. The cut is paired with the
intended action act given as (postfix) parameter to [[]], which indeed will always
be the intended action according to the rules of Table 4.1. A possible unification
amongst them is explored. For this, the auxiliary function check, given in Table
4.6 and explained below, is used. This in its turn relies on another auxiliary
function extract, which gives the list of literals occurring in an action with
continuation in a way that, for instance, extract(` :: out(`t1, · · · , `tn)@`′.X) =
[`,out, `t1, · · · , `tn, `′, X]. We omit the formal definition of extract, which could
easily be done by pattern matching the components of the given parameter and
pushing them into a list.

If there is no possible matching between the pointcut cut from the aspect and
the intended action act, then the result of the operation [[]] is simply ⊥. This
means that the aspect has no decision about the intended action. Certainly, if
cut cannot be matched with act it means the aspect does not predicate about
such action.

If there is possible matching, then such matching produces some substition θ.
Then, this θ has to be applied to both the condition cond and the recommen-

4.2 Policies involved 71

check(α,−→α ; α′,
−→
α′) = check(−→α ;

−→
α′) ◦ do(α;α′)

check(ε ; ε) = id
check(· ; ·) = fail otherwise

do(u ; l) = [u 7→ l]
do(!u ; !u′) = [u 7→ u′]
do(X ; P) = [X 7→ P]
do(_ ; l) = id
do(_ ; !u) = id
do(l ; l) = id
do(c ; c) = id
do(· ; ·) = fail otherwise

Table 4.6: Checking Formals to Actuals AspectKBL.

dation rec of the aspect. The intended action act is no longer needed, since
its specific parameters will be encoded in the particular θ just found. Then,
if the meaning [()] of cond substituted with θ is ff , the entire result of the [[]]
is again ⊥, because it means the condition is not satisfied by the intended ac-
tion, thereby not considering the entire aspect. Otherwise, if the meaning [()] of
cond substituted with θ is tt, then the entire result of the [[]] will be the result
of applying the same θ to the recommendation rec and evaluating it with the
meaning operator [()]. This can finally result in either of the four values in Four.

Auxiliary check The function check (Table 4.6) determines whether there
is a substitution θ that can be performed in the cut that matches the specific
intended action with continuation given as (postfix) parameter to the evaluation
function [[]]. Actually, the function check receives two lists of literals, and it
just pattern matches them one by one (using the function do) in order to find a
unification. We just ignore (i.e. return id) the positions where the cut ignored
the literal (written ‘_’) or it mentions the very same constant as in the actual
action (do lines 4 to 8). For the other positions, we just map the variable from
the cut to the literal occurring in the actual action (do lines 1 to 3). Finally,
the last line of do simply fails if none of the previous cases is found.

The function check, apart from relying on function do for its inductive case
with more than a single literal in each parameter, it has two base cases. When
the literals lists are both entirely consumed, it simply terminates returning the
current result (id). If one of the lists of literals is consumed before the other
one, namely their lengths were not equal, then the function simply returns fail,
meaning no unification is possible.

72 Networks Evolving

4.2.1 Examples

Let us now show by means of Examples how the semantics work. We will first
assume no policies are present and see how the reaction semantics generate
transitions and thereby paths. Then, we will assume the existence of some
policies and show how some of the paths are stopped at some points due to
some enforcement mechanism that deny some interaction.

Example 4.1 Recall Example 2.6 where we define a network consisting of
four simpler networks, and some of them are actually performing some bad
behaviour. We had the following networks:

NetData = EHDB ::wEHDB 〈Alice, CarePlan, alicetext〉 ||
EHDB ::wEHDB 〈Bob, PrivateNotes, bobtext〉

NetRoles = ROLES ::wROLES 〈Doctor, Hansen〉 ||
ROLES ::wROLES 〈Nurse, Olsen〉

NetHansenBad = Hansen ::wstaff

read(Bob, PrivateNotes, !content)@EHDB.
out(Bob, PrivateNotes, content)@Olsen. 0

NetOlsenBad = Olsen ::wstaff

read(Bob, PrivateNotes, !content)@EHDB. 0

Then, the entire network was the following:

NetExample4.1 = NetData || NetRoles || NetHansenBad || NetOlsenBad

Assume all the annotations wEHDB, wROLES and wstaff are equal to the trivial
enforcement mechanism true, meaning we aim at granting every intended in-
teraction.

So, one possible path we could obtain with this network, and following the se-
mantics given in the current Chapter, is the following:

4.2 Policies involved 73

NetData || NetRoles || NetHansenBad || NetOlsenBad
→Hansen(wstaff):r(Bob, PrivateNotes, bobtext)@EHDB(wEHDB)

NetData || NetRoles || NetOlsenBad ||
Hansen ::wstaff out(Bob, PrivateNotes, bobtext)@Olsen.0

→Hansen(wstaff):o(Bob, PrivateNotes, bobtext)@Olsen(wstaff)

NetData || NetRoles || NetOlsenBad ||
Hansen ::wstaff 0 ||
Olsen ::wstaff 〈Bob, PrivateNotes, bobtext〉

→Olsen(wstaff):r(Bob, PrivateNotes, bobtext)@EHDB(wEHDB)

NetData || NetRoles || Olsen ::wstaff 0 ||
Hansen ::wstaff 0 ||
Olsen ::wstaff 〈Bob, PrivateNotes, bobtext〉

The first transition is generated by the application of [Rule − read] with ls =
Hansen and lt = EHDB. We are assuming that the attached policies (in this
case ws = wstaff and wt = wEHDB) are all equal to the trivial true, and this
means the b in the rule is tt. Then, the matching is found using the 〈

−→
` λ〉 =

〈Bob, PrivateNotes, !content〉 and 〈
−→
l 〉 = 〈Bob, PrivateNotes, bobtext〉,

and the resulting θ is equal to [bobtext/content]. This is why the continu-
ation process P = out(Bob, PrivateNotes, content)@Olsen.0 is transformed
into out(Bob, PrivateNotes, bobtext)@Olsen.0 while applying the substitu-
tion θ, as prescribed by [Rule − read]. Finally, the top-left rule of Table 4.2
helps in finally generating the transition, as NetHansenBad and EHDB ::wEHDB

〈Bob, PrivateNotes, bobtext〉 are not the only networks that are running in
parallel in NetExample4.1.

The second transition is generated by the application of [Rule − out] with ls =
Hansen and lt = Olsen. Again, b is tt and the state after the transition includes
the network Olsen ::wstaff 〈Bob, PrivateNotes, bobtext〉, besides the already
existent Olsen ::wstaff Q, where in this case Q = read(Bob, PrivateNotes,
!content)@EHDB.0. The third transition is generated by the application of [Rule−
read], in an analogous way as before.

Finally, it has to be noticed that this path is one of the three paths that can be
followed starting with network NetExample4.1. This one is the one followed
if both actions from the process in location Hansen take place before the single
action in location Olsen. The other two paths can be followed if the interleaving
is different. Any interleaving is possible thanks to the rules in Table 4.1 and
of the auxiliary Table 4.2, in this case only due to the top-left rule about non-
interfering parallel composition. With all the three paths, the entire Labelled
Transition System of NetExample4.1 can be formed. This is shown in Figure

74 Networks Evolving

Hansen:r… Olsen:r…

Hansen:o… Hansen:r…

Olsen:r…

Olsen:r…

Hansen:o… Hansen:o…

Figure 4.1: Labelled Transition System (LTS) for NetExample4.1.

4.1. In the Figure, we do not include the entire labels but just the subject location
and the operation done, in order to identify them. This finalises Example 4.1.

Example 4.2 In Example 3.5 we showed some aspects that could prevent the
insecure behaviour that Example 2.6 (thereby 4.1) had. We will see here how ex-
actly this is achieved, by means of finding the right applicability of the semantics
formal definition.

We had the following aspect for preventing any Nurse from reading Private Notes
from EHDB:

wEHDB =

 test(Doctor,#u)@ROLES
if #u :: read(−, PrivateNotes,−)@EHDB.#P :

true

 (4.1)

Let us see how the semantics will consider this aspect, by assessing the transi-
tions of previous Example 4.1.

For the first transition, now wt = wEHDB is no longer the trivial true. Then,
when [Rule− read] is applied, the b is not automatically tt, but it is actually the
result of grantL([[ems ⊕ emt]](ls :: read(

−→
`λ)@lt.P)). Then, let us assess step by

4.2 Policies involved 75

step which is now the parameter passed to the grantL() function2:

[[ems ⊕ emt]](ls :: read(
−→
`λ)@lt.P)

= (by 2nd line of Table 4.5)

[[ems]](ls :: read(
−→
`λ)@lt.P)⊕ [[emt]](ls :: read(

−→
`λ)@lt.P)

= (by 3rd line of Table 4.5, as ems is still the trivial true)

tt⊕ [[emt]](ls :: read(
−→
`λ)@lt.P)

= (by 1st line of Table 4.5, as emt is the aspect of Equation 4.1)

tt⊕ tt

= (by ⊕ operator definition)

tt



(4.2)

Since this will then be passed as parameter to the grantL() function, the final
result of the b in [Rule − read] is tt, thereby generating exactly the same first
transition we showed in Example 4.1. We will see below that with the very same
aspect, the third transition from that Example is not actually generated.

The third step of the derivation in Equation 4.2 is the most interesting one,
so we will go into it more deeply below. Another interesting point is after the
second step, where we kept the tt value at the left of the ⊕ operator until the very
end of the derivation. However, since we know that in the end the result will be
passed as argument to a liberal grantL() function, we could rely on Proposition
3.3 to get rid of that tt value as soon as we get it.

For the third step of the derivation, the aspect of Equation 4.1 is considered
(meaning that the 1st line of Table 4.5 will be applied), and the parameter
ls :: read(

−→
`λ)@lt.P equals to the entire process in location Hansen, namely

the following:

Hansen ::
read(Bob, PrivateNotes, !content)@EHDB.
out(Bob, PrivateNotes, content)@Olsen. 0

This means that ls = Hansen and lt = EHDB, as we already know by our
assessment of the transition in Example 4.1. And this also means 〈

−→
`λ〉 =

〈Bob, PrivateNotes, !content〉. Finally, it also means that the continuation
process P equals out(Bob, PrivateNotes, content)@Olsen.0.

2The big curly bracket } is solely for denoting that the number 4.2 refers to the entire
Equation, and not to a single line. The same holds in some following Equations.

76 Networks Evolving

Now, the first thing to do is the check of the extract of the just assessed pa-
rameter and the cut of the aspect. Applying Table 4.6 we end up finding the
following substitution:

[#P 7→ P] ◦ [#u 7→ Hansen];

where P is the one just mentioned in the previous paragraph.

Now, since this is a proper substitution and not a fail, we call it θ and we apply it
to the cond of the aspect, which in this case simply returns tt. The final thing to
do, still according to the 1st line of Table 4.5, is to apply the very same θ to the
recommendation rec of the aspect. This results in test(Doctor, Hansen)@ROLES,
which results in the tt we found in the third step of the derivation in Equation
4.2.

Let us focus now on the third transition from Example 4.1. This transition was
also generated by [Rule − read], and it was also subject to the trivial policies
true before. Now, it is subject to the newly defined wEHDB. So, let us assess step
by step which is now the parameter passed to the grantL() function:

[[ems ⊕ emt]](ls :: read(
−→
`λ)@lt.P)

= (by 2nd line of Table 4.5)

[[ems]](ls :: read(
−→
`λ)@lt.P)⊕ [[emt]](ls :: read(

−→
`λ)@lt.P)

= (by 3rd line of Table 4.5, as ems is still the trivial true,
and applying Proposition 3.3)

[[emt]](ls :: read(
−→
`λ)@lt.P)

= (by 1st line of Table 4.5, as emt is the aspect of Equation 4.1)

ff



(4.3)

Indeed, the last step results in ff because the parameter ls :: read(
−→
`λ)@lt.P is

the following:

Olsen ::wstaff

read(Bob, PrivateNotes, !content)@EHDB. 0

Then, when we apply the 1st line of Table 4.5 the check results in:

[#P 7→ 0] ◦ [#u 7→ Olsen];

and this results in ff when applied to the recommendation rec of the aspect.

This means that with the aspect of Equation 4.1, the path from Example 4.1
cannot perform the third transition. This finalises Example 4.2.

4.2 Policies involved 77

Example 4.3 In the previous Example, we showed how the first aspect defined
in Example 3.5 formally prevents one of the insecure behaviours of Example 2.6
(thereby 4.1), in this case the one in the third transition. The second transition
is also insecure, as the Private Notes get to Nurse Olsen’s location anyway. In
Example 3.5 we also had an aspect for preventing this, namely:

wstaff =

 test(Doctor,#target)@ROLES
if #u :: out(−, PrivateNotes,−)@#target.#P :

¬(#target = EHDB)

 (4.4)

We will see in the current Example how this aspect formally prevents the second
transition of Example 4.1.

The transition is generated by [Rule − out]. In Example 4.1 we assumed both
ems and emt were the trivial tt, but here we have the aspect from Equation 4.4.
Then, the condition b on the rule will depend on this aspect, let us assess step
by step what will be the result for passing to the grantL() function:

[[ems ⊕ emt]](ls :: out(
−→
l)@lt.P)

= (by 2nd line of Table 4.5)

[[ems]](ls :: out(
−→
l)@lt.P)⊕ [[emt]](ls :: out(

−→
l)@lt.P)

= (by 3rd line of Table 4.5 and Proposition 3.3)

[[ems]](ls :: out(
−→
l)@lt.P)

= (by 1st line of Table 4.5, as ems is the aspect of Equation 4.4)

ff

(4.5)

Let us focus more deeply in the last step of this derivation. The aspect ems

is the one in Equation 4.4, and the parameter ls :: out(
−→
l)@lt.P takes the

form Hansen :: out(Bob, PrivateNotes, bobtext)@Olsen.0. Applying to this
parameter and to the pointcut cut of the aspect the check function from Table
4.6 we obtain the following substitution, which we call θ:

[#P 7→ 0] ◦ [#target 7→ Olsen] ◦ [#u 7→ Hansen];

Then, according to Table 4.5 we need to check the condition cond substituted
with this θ. This results in tt, as Olsen = EHDB is ff. Then, the recom-
mendation rec is evaluated with the same substitution θ, giving the formula
test(Doctor, Olsen)@ROLES, whose result is ff.

This means that with the aspect of Equation 4.4, the path from Example 4.1
cannot perform the second transition. Neither can it perform the third one,
since its preceding state is not reachable. This does not mean that aspect from
Equation 4.1 is not needed; since with other interleavings, namely other paths
from the LTS, this aspect is indeed necessary. This finalises Example 4.3.

78 Networks Evolving

Hansen:r… Olsen:r…

Hansen:o… Hansen:r…

Olsen:r…

Olsen:r…

Hansen:o… Hansen:o…

Figure 4.2: Pruned LTS for NetExample4.1 using aspects 4.1 and 4.4.

4.2.2 “Pruned” Labelled Transition System

We have seen how the semantics generate paths for networks in AspectKBL.
If one assumes that all the policies are the trivial true, which is the same as
not having the b condition in all the rules from Table 4.1, then we can think of
an entire Labelled Transition System, as shown in Figure 4.1.

In our framework, we have the possibility of attaching enforcement mechanisms
to the locations, and then we have this b conditions in the rules. If we assume for
instance the aspects 4.1 and 4.4 from the previous Examples, then the Labelled
Transition System is actually “pruned”. Indeed, some of the possible transitions
will be denied by some of the enforcement mechanisms, and any possible path
after these points will not be possible.

The pruned LTS for NetExample4.1 is shown in Figure 4.2. This is the result
of having the aspects 4.1 and 4.4 attached to locations EHDB and Hansen respec-
tively. The transitions that are prevented by some aspect are drawn in red. The
remaining paths after these transitions are not reachable, and therefore they are
drawn half transparent.

The pruned LTS is just a concept we built up for this work. If one consid-
ers the entire semantics of the current Chapter, the actual LTS generated for
NetExample4.1 with aspects 4.1 and 4.4 is the one depicted in Figure 4.3.

4.2 Policies involved 79

Hansen:r…

Figure 4.3: Actual LTS generated by semantics for NetExample4.1 with as-
pects 4.1 and 4.4.

Figure 4.4: Generic pruned LTS for AspectKBL.

Generalising In general, we will have the situation of Figure 4.4 for the
pruned LTS. The LTS if all aspects are the trivial true is the one delimited
with the (outer) red circle. The actual LTS is the one marked with the (inner)
green circle.

We will keep the concept of pruned LTS for our convenience. In the follow-
ing Chapter we will devise an analysis of the actual LTS. There, some over-
approximations we will make can make us consider some of the (half transpar-
ent) transitions of the pruned LTS.

80 Networks Evolving

4.3 How semantics work on EpSOS case study

In this Section, we shall see how the semantics just presented work on the EpSOS
case study that we have been working with throughout this dissertation. We
have discussed the case study in Chapter 1, and then we have presented the
formal model in Chapter 2. Later, in Chapter 3 we showed some possible attacks
and aspects of security policies to prevent them. Now it is time to formally wrap
all this up.

4.3.1 The basic model evolving

In Section 2.3.2, we presented the basic formal model for the EpSOS case-
study. With the semantics of AspectKBL, we will see that there is just one
path this system can follow. This is as such, even though there might not be
any enforcement mechanism attached to the locations. Indeed, since the formal
model presented there followed the normal procedure discussed at the beginning
of Section 2.3, then the path in the formal system is indeed the expected one.

So, recall that the formal model was given in Equation 2.1, in Section 2.3.2.
There, five networks were defined: DoctorB, MiddlewareB, MiddlewareA,
IntDB and DBA3. All these were running in parallel, forming the entire
EpSOS network. According to the semantics of the current Chapter, the first
action transition that can take place is the following4:

DoctorB ||MiddlewareB ||MiddlewareA || IntDB || DBA
→doctorB(wdoctorB):o(req,midA,patient1,doctorB)@midB(wmidB)

doctorB ::wdoctorB in(res,midA,patient1, self, !data)@midB. 0 ||
MiddlewareB ||MiddlewareA || IntDB || DBA ||
midB ::wmidB 〈req,midA,patient1,doctorB〉

(4.6)

Certainly, the action taking place is the out action in the process at doctorB
location, following [Rule − out]. There is no interleaving possible that makes
any of the read actions run; neither at midB nor at midA locations. For such
read actions to take place, there must be a tuple existing at the target location
for matching with the match function, and this is not the case.

Now, for the second step it holds the same rationale: the in action at doctorB
location cannot take place as there is no tuple at midB location whose first
component is res. The newly existing tuple’s first component is req. It holds

3Please refer to Equation 2.1 for the internal definition of each of these.
4To help the reader, the parts that are changing with the transition are written in red.

4.3 How semantics work on EpSOS case study 81

an analogous rationale for the read action in the process at midA location.
Therefore, the second transition is the following:

doctorB ::wdoctorB in(res,midA,patient1, self, !data)@midB. 0 ||
MiddlewareB ||MiddlewareA || IntDB || DBA ||
midB ::wmidB 〈req,midA,patient1,doctorB〉

→midB(wmidB):r(req,midA,patient1,doctorB)@midB(wmidB)

doctorB ::wdoctorB in(res,midA,patient1, self, !data)@midB. 0 ||
MiddlewareA || IntDB || DBA ||
midB ::wmidB 〈req,midA,patient1,doctorB〉 ||
midB ::wmidB out(req,midA, self, patient1)@intDB.
in(res, self, midA,patient1, !data)@intDB.
out(res,midA,patient1,doctorB, data)@self. 0



(4.7)

[Rule − read] is applied for this transition to be generated. The match func-
tion from Table 4.4 produces a substitution that makes the formal parameters’
input patterns of the read action at midB location to be grounded to actual
data. The formal parameters are req, !src, !pat and !dr. These are ground
to req,midA,patient1 and doctorB respectively, since this is the only tuple
present at location midB at the time the transition takes place. Indeed, the
substitution θ is the following:

[midA/src] ◦ [patient1/pat] ◦ [doctorB/dr];

This substitution θ is applied to the continuation process after current action
from location midB that is taking place, as also prescribed by [Rule − read].
This is why in the network just after the transition in Equation 4.7, the process
at location midB has most of the formal parameters fixed to constants. These
parameters, in the original definition from the formal model at Equation 2.1
(Section 2.3.2), were not fixed but variable bindings instead.

The rest of the LTS To continue faster, let us present, without too detailed
explanations, the rest of the entire labelled transition system (LTS) generated
by the semantics of this Chapter, in the EpSOS formal model normal procedure
that we are dealing with in the current Section. The third transition of the LTS

82 Networks Evolving

is the following:

doctorB ::wdoctorB in(res,midA,patient1, self, !data)@midB. 0 ||
MiddlewareA || IntDB || DBA ||
midB ::wmidB 〈req,midA,patient1,doctorB〉 ||
midB ::wmidB out(req, midA, self, patient1)@intDB.
in(res, self, midA,patient1, !data)@intDB.
out(res,midA,patient1,doctorB, data)@self. 0

→midB(wmidB):o(req,midA,midB,patient1)@intDB(wintDB)

doctorB ::wdoctorB in(res,midA,patient1, self, !data)@midB. 0 ||
MiddlewareA || DBA ||
midB ::wmidB 〈req,midA,patient1,doctorB〉 ||
midB ::wmidB in(res, self, midA,patient1, !data)@intDB.
out(res,midA,patient1,doctorB, data)@self. 0 ||

intDB ::wintDB 〈req,midA,midB,patient1〉



(4.8)

Notice that, after the transition, the original (pre-defined) network IntDB is
no longer present, as we have the new occurrence of a tuple at location intDB.
However, due to the top-right equivalence in the structural congruence relation
from Table 4.3, we could have left it. Indeed, if for instance in the future that
tuple is no longer there, a null process 0 must remain.

The fourth transition is the following:

doctorB ::wdoctorB in(res,midA,patient1, self, !data)@midB. 0 ||
MiddlewareA || DBA ||
midB ::wmidB 〈req,midA,patient1,doctorB〉 ||
midB ::wmidB in(res, self, midA,patient1, !data)@intDB.
out(res,midA,patient1,doctorB, data)@self. 0 ||

intDB ::wintDB 〈req,midA,midB,patient1〉
→midA(wmidA):r(req,midA,midB,patient1)@intDB(wintDB)

doctorB ::wdoctorB in(res,midA,patient1, self, !data)@midB. 0 ||
DBA ||
midB ::wmidB 〈req,midA,patient1,doctorB〉 ||
midB ::wmidB in(res, self, midA,patient1, !data)@intDB.
out(res,midA,patient1,doctorB, data)@self. 0 ||

intDB ::wintDB 〈req,midA,midB,patient1〉 ||
midA ::wmidA read(patient1, !data)@dbA.
out(res,midB, self, patient1, data)@intDB. 0



(4.9)

Now, let us group in just one Equation the fifth and sixth transitions, which are

4.3 How semantics work on EpSOS case study 83

the following:

doctorB ::wdoctorB in(res,midA,patient1, self, !data)@midB. 0 ||
DBA ||
midB ::wmidB 〈req,midA,patient1,doctorB〉 ||
midB ::wmidB in(res, self, midA,patient1, !data)@intDB.
out(res,midA,patient1,doctorB, data)@self. 0 ||

intDB ::wintDB 〈req,midA,midB,patient1〉 ||
midA ::wmidA read(patient1, !data)@dbA.
out(res,midB, self, patient1, data)@intDB. 0

→midA(wmidA):r(patient1,privateinfo)@dbA(wdbA)

doctorB ::wdoctorB in(res,midA,patient1, self, !data)@midB. 0 ||
DBA ||
midB ::wmidB 〈req,midA,patient1,doctorB〉 ||
midB ::wmidB in(res, self, midA,patient1, !data)@intDB.
out(res,midA,patient1,doctorB, data)@self. 0 ||

intDB ::wintDB 〈req,midA,midB,patient1〉 ||
midA ::wmidA

out(res,midB, self, patient1,privateinfo)@intDB. 0

→midA(wmidA):o(res,midB,midA,patient1,privateinfo)@intDB(wintDB)

doctorB ::wdoctorB in(res,midA,patient1, self, !data)@midB. 0 ||
DBA ||
midB ::wmidB 〈req,midA,patient1,doctorB〉 ||
midB ::wmidB in(res, self, midA,patient1, !data)@intDB.
out(res,midA,patient1,doctorB, data)@self. 0 ||

intDB ::wintDB 〈req,midA,midB,patient1〉 ||
intDB ::wintDB 〈res,midB,midA,patient1,privateinfo〉 ||
midA ::wmidA 0



(4.10)

Note that we keep the location midA, even though the process in it is the null
process. Indeed, [Rule − out], which was the rule used in this last transition,
prescribes that the continuation process remains in the subject location. In this
case, the process is the null process 0 but there is no structural congruence rule
that allows us to take it out. Certainly, a location cannot just disappear.

84 Networks Evolving

Finally, the last three transitions (seventh, eighth and ninth) are the following:

doctorB ::wdoctorB in(res,midA,patient1, self, !data)@midB. 0 ||
DBA ||
midB ::wmidB 〈req,midA,patient1,doctorB〉 ||
midB ::wmidB in(res, self, midA,patient1, !data)@intDB.
out(res, midA,patient1,doctorB, data)@self. 0 ||

intDB ::wintDB 〈req,midA,midB,patient1〉 ||
intDB ::wintDB 〈res,midB,midA,patient1,privateinfo〉 ||
midA ::wmidA 0

→midB(wmidB):i(res,midB,midA,patient1,privateinfo)@intDB(wintDB)

doctorB ::wdoctorB in(res,midA,patient1, self, !data)@midB. 0 ||
DBA ||
midB ::wmidB 〈req,midA,patient1,doctorB〉 ||
midB ::wmidB

out(res,midA,patient1,doctorB,privateinfo)@self. 0 ||
intDB ::wintDB 〈req,midA,midB,patient1〉 ||
midA ::wmidA 0

→midB(wmidB):o(res,midA,patient1,doctorB,privateinfo)@midB(wmidB)

doctorB ::wdoctorB in(res,midA,patient1, self, !data)@midB. 0 ||
DBA ||
midB ::wmidB 〈req,midA,patient1,doctorB〉 ||
midB ::wmidB 〈res,midA,patient1,doctorB,privateinfo〉 ||
intDB ::wintDB 〈req,midA,midB,patient1〉 ||
midA ::wmidA 0

→doctorB(wdoctorB):i(res,midA,patient1,doctorB,privateinfo)@midB(wmidB)

doctorB ::wdoctorB 0 ||
DBA ||
midB ::wmidB 〈req,midA,patient1,doctorB〉 ||
intDB ::wintDB 〈req,midA,midB,patient1〉 ||
midA ::wmidA 0



(4.11)

Note that this time we do not keep the location midB with the null process 0
after the second transition within this group (as opposed as we did in Equation
4.10 with midA). Indeed, even though [Rule − out] prescribes leaving the null
process 0 present in the location, there is a structural congruence rule that
allows taking the location out. This is possible because the location name does
not actually disappear, as there is at least one tuple in it. Something similar
happens in the first and third transitions within Equation 4.11, but in this case
using [Rule− in]: both locations intDB and midB have other tuples in them, so
there is no need to explicitly mention the null process.

4.3 How semantics work on EpSOS case study 85

4.3.2 Insider threats

For obtaining the labelled transition system just given in Section 4.3.1, we as-
sumed that all the aspects of enforcement mechanisms attached to the locations
were trivial. Moreover, even though they might not have been trivial, the given
EpSOS model followed the normal procedure, and this means that it was in-
tended to work properly. But this is not the case if the model has some flaw,
either intended or unintended.

In Section 3.4, we saw some aspects of enforcement mechanisms for providing
security to models that were slightly changed with respect to the EpSOS normal
procedure. We will see now how two of these insecure models formally evolve,
and how the given aspects indeed provide security. We shall focus on the Trojan
horse and on the dishonest doctor examples, which are the second and third
examples from Section 3.4.

Trojan horse In this model, the middleware from country B was performing
an insecure action as the fourth step of its contribution to the EpSOS normal
procedure. This is represented in Equation 3.27. With this, the eighth transition
of the LTS (second one in Equation 4.11) takes this form5:

doctorB ::wdoctorB in(res,midA,patient1, self, !data)@midB. 0 ||
DBA ||
midB ::wmidB 〈req,midA,patient1,doctorB〉 ||
midB ::wmidB

out(res,midA,patient1,doctorB,privateinfo)@att. 0 ||
intDB ::wintDB 〈req,midA,midB,patient1〉 ||
midA ::wmidA 0 ||
att ::watt 0

→midB(wmidB):o(res,midA,patient1,doctorB,privateinfo)@att(watt)

doctorB ::wdoctorB in(res,midA,patient1, self, !data)@midB. 0 ||
DBA ||
midB ::wmidB 〈req,midA,patient1,doctorB〉 ||
intDB ::wintDB 〈req,midA,midB,patient1〉 ||
midA ::wmidA 0 ||
att ::watt 0 ||
att ::watt 〈res,midA,patient1,doctorB,privateinfo〉



(4.12)

Then, the insecure situation that we informally intuited when we presented this
modified MiddlewareB network in Section 3.4, indeed exists. The attacker,

5We have added the location att already before the transition since, as we have discussed
in Chapter 1, no dynamic creation of locations is possible.

86 Networks Evolving

who must be an existing part of the network from the beginning, can access the
information if the process at midB sends it. So, let us assume we have the aspect
of Equation 3.28, which we write here again:

wmidB =

 #target = self
if self :: out(res,−,−,−,−)@#target.#P :

true

 (4.13)

Now, [Rule−out] will pass to the grantL() function this aspect as the annotation
from the subject location. Even if there were other aspects at the target location,
att, which would allow the interaction, these are combined in [Rule−out] using
the Belnap operator ⊕. Then, a deny decision given by this aspect is enough,
thanks to Proposition 3.3. So let us assess how this aspect will be evaluated,
according to Table 4.5. The evaluation function [[]] will first check whether there
is a matching, and according to Table 4.6 the following substitution is found:

[#P 7→ 0] ◦ [#target 7→ att]

Then, the application of this substitution to the condiction true gives the same
true and this evaluates to tt. So the recommendation #target = self is also
applied with the substitution, giving att = self , which evaluates to ff . Then,
[Rule − out] does not generate any transition. This means that the LTS gen-
erated for this modified version of the EpSOS model, actually has only seven
transitions, as the eighth one is never generated. This is the point where we say
that the LTS is pruned.

A dishonest doctor The third insider threat shown in Section 3.4 is about
a Doctor who keeps the private information of the patient for himself. We also
saw an aspect for preventing this. The aspect was an example of looking to the
future, by assessing the continuation process after a given action.

Assume for now the aspect is not present, but indeed the network DoctorB
is replaced by DoctorB′ in the model of Section 4.3.1. DoctorB′ looked in
Equation 3.30 like this:

DoctorB′ = doctorB ::wdoctorB

out(req, midA, patient1, self)@midB.
in(res, midA, patient1, self, !data)@midB.
out(res, midA, patient1, self, data)@self. 0

(4.14)

In this case, the last transition of the LTS in Section 4.3.1, namely the third

4.3 How semantics work on EpSOS case study 87

one in Equation 4.11, would be replaced by the following two transitions:

doctorB ::wdoctorB in(res,midA,patient1, self, !data)@midB.
out(res, midA, patient1, self, data)@self. 0 ||

DBA ||
midB ::wmidB 〈req,midA,patient1,doctorB〉 ||
midB ::wmidB 〈res,midA,patient1,doctorB,privateinfo〉 ||
intDB ::wintDB 〈req,midA,midB,patient1〉 ||
midA ::wmidA 0

→doctorB(wdoctorB):i(res,midA,patient1,doctorB,privateinfo)@midB(wmidB)

doctorB ::wdoctorB

out(res,midA,patient1, self, privateinfo)@self. 0 ||
DBA ||
midB ::wmidB 〈req,midA,patient1,doctorB〉 ||
intDB ::wintDB 〈req,midA,midB,patient1〉 ||
midA ::wmidA 0

→doctorB(wdoctorB):o(res,midA,patient1,doctorB,privateinfo)@doctorB(wdoctorB)

doctorB ::wdoctorB

〈res,midA,patient1,doctorB,privateinfo〉 ||
DBA ||
midB ::wmidB 〈req,midA,patient1,doctorB〉 ||
intDB ::wintDB 〈req,midA,midB,patient1〉 ||
midA ::wmidA 0



(4.15)

Actually, not just the last transition from the LTS is replaced, but all the network
states in the LTS as well, since the process at location doctorB is different from
the very beginning.

The second of these two transitions is insecure, as it leaves the Doctor in pos-
session of the patient’s data, even after the patient was treated. This does not
happen if location midB has the following aspect attached (the same as from
Equation 3.31):

wmidB =

 ¬(out(#data)@#u occurs-in #P)
if #u :: in(res,−,−,−,#data)@midB.#P :

true

 (4.16)

Now, at the time of the first transition from Equation 4.15, [Rule− in] will use
this aspect. The first step finds the following substitution:

[#P 7→ out(res,midA,patient1, self, privateinfo)@self. 0]
◦[#data 7→ privateinfo] ◦ [#u 7→ doctorB]

Then, after checking the trivial substituted condition, the recommendation is

88 Networks Evolving

substituted obtaining:

¬(out(privateinfo)@doctorB occurs-in
out(res,midA,patient1,doctorB,privateinfo)@doctorB. 0)

Now, since it holds that:

out(privateinfo)@doctorB matches
out(res,midA,patient1,doctorB,privateinfo)@doctorB;

then the definition of occurs-in from Table 3.2 makes the recommendation ff
due to the negation ¬.

Hence, this pruned LTS has just eight transitions, being the last network state
the same as the one just before the first transition in Equation 4.15, which is
indeed the transition that is pruned by this aspect from Equation 4.16.

Chapter 5

Reasoning about distributed
security policies

Throughout this work, we have formally defined a framework for modelling
closed distributed systems. The models in our framework, called AspectKBL,
describe the locations of the systems, and the processes and information sitting
on these. Moreover, AspectKBL allows us to describe enforcement mecha-
nisms attached to some of the locations, in order to monitor the interactions
the locations might be involved in. We have proposed a way to logically combine
these enforcement mechanisms, and later given the formal semantics of all this
entire framework. Finally, we showed how a labelled transition system (LTS)
can be induced by a given network in AspectKBL.

Now, we will focus on reasoning over these LTS’s to ensure global security for
the entire closed distributed systems modelled in AspectKBL. Certainly, the
LTS induced by the semantics for a given network represents the complete set of
transitions the network can perform and states it can reach. Then, by analysing
this entire LTS we can guarantee some global security properties we might be
interested in.

Furthermore, although all the locations of a given network are part of this larger
global distributed system, the enforcement mechanisms provide security just to
the locations to which they are attached, and to those that interact with these.

90 Reasoning about distributed security policies

However, we will show how the global combination of all these enforcement
mechanisms can be used to reason about the LTS. We will aim at doing this
without the need to span the entire LTS. Indeed, we will just rely on the localised
enforcement mechanisms for proving some global security policies. This is the
topic of the current Chapter.

In Section 5.1 we will provide a computational tree logic that can be used to
analyse LTS’s. This logic will be based on actions as well, and then the labels
in the LTS’s induced by the semantics of AspectKBL will be those that are
key for performing the analyses. In Section 5.2 we will show how the localised
enforcement mechanisms “partly” enforce some of the properties that can be
described with our logic. This will give us evidence that properly combining
all the enforcement mechanisms we could “completely” enforce these properties.
We will then show an algorithm for performing this efficient evaluation of the
networks, without the need to span the entire LTS. Finally, in Section 5.3 we
will show how this algorithm can be applied to the EpSOS case study.

5.1 A logic for global systems

Having defined the language for describing networks and localised enforcement
mechanisms over them, we will proceed to devise a technique for analysing the
networks actually described using this language.

What we expect to have is a logic for expressing the desired global security
property of our network, and a way to check if the property is actually met by
the network, considering the existing localised policies that we have attached.
We need to have a way of analysing given networks against the expressions in
this logic, and relying on the Labelled Transition System (LTS) induced by the
semantics of AspectKBL seems to be the way. We then have to define a logic
that can be interpreted under an LTS.

We approach the problem by defining a variant of the temporal logic ACTL
[NV90] giving its syntax and semantics (and named ACTLv - ‘v’ for variant),
and then we observe some properties useful for the later model checking of it.

5.1.1 Defining the logic

We expect to describe useful desired global security properties, so let us assess
what exactly might be a useful property to be described. As for global, what we

5.1 A logic for global systems 91

need to establish is something that happens always, no matter which interleaving
or path the system follows. The system should always be secure in the sense
of the property we might expect. As for security, what we need to establish is
something that happens whenever some security threat might arise, the system
should never actually fall into the threat, thereby moving into an insecure state.

In a process calculi such as the one we are dealing with, the interactions among
locations are those that need to be monitored and controlled, and in particular
when they take place, some information may go from one location to another.
Therefore, what we need to check and assess as possible threats are the move-
ments of information that might not be desired. In such cases, we need to ensure
that the state reached after the interaction is secure.

Having said that, it will be straightforward to realise that we need to trap all
the possible interactions that are of our interest, and whenever they take place
we need to check the states just before and just after the interaction, to see
whether the interaction is leading to some insecure state. With this, the logic
formula that naturally arises is the traditional AG, in our case annotated with
some set of transitions, thereby converting our logic in a variant of ACTL as
already mentioned.

Moreover, the problem of properly characterising what security properties can
indeed be enforced at runtime by access control methods has been dealt with
by Schneider [Sch00], and certainly they come up with the conclusion that
safety [AS86] properties are the answer. Then, as safety properties are those
related with the G modality of LTL and the AG one in CTL [BK08], our as-
sessment of the previous paragraph makes sense.

5.1.1.1 Syntax

The formal syntax of our logic is given in Table 5.1.

We shall express an obligation (something we want the network to satisfy) as
an AG formula, meaning we want the property to be satisfied always, and in
all possible paths the system might run into; this clearly enforces security. As a
subscript to the formula, some set of transitions {labs} belonging to Lab is to
be given; together with a predicate Pred to be satisfied by the states (networks)
linked via some of the transitions in {labs}.

The syntactic category Lab identifies all the possible labels a transition might
have. The transitions are those generated by the semantics of AspectKBL
from Table 4.1. Then, the set Lab groups all of them, and the metavariable

92 Reasoning about distributed security policies

Obl ∈ Obligations Obl ::= AG{labs}Pred

labs ∈ Lab labs ::= `s (ws) : c(
−→
`t)@ lt (wt)

c ∈ Cap c ::= o | i | r
Pred ∈ Predicates Pred ::= true | false | ¬Pred | Pred ∨ Pred

| Pred ∧ Pred | ∀x : Pred | ∃x : Pred | bp
bp ∈ BasicPredicates bp ::= `a = `b | test(

−→
`a)@`b | test′(

−→
`a)@`b

Table 5.1: ACTLv Syntax – How to express obligations.

labs identifies some element in this set. This means that an obligation from
Obligations is subscripted by some actual transitions that might occur in the
Labelled Transition System induced by the semantics of AspectKBL for a
given network. Then, we will say that the AG formula predicates about all
these transitions.

Now, the metavariable labs has the form of a subject location `s and its an-
notation ws, then a capability c and its parameters

−→
`t , and then a constant

target location lt and its annotation wt. This syntax clearly subsumes that in
the labels of the transitions in the rules of Table 4.1, supporting the statements
of the previous paragraph. The capabilities can be either o, i, r, referring to
the three possible actions an AspectKBL process can perform.

The idea is that some of the transitions in the running network might be trapped
by the set of transitions given in this labs subscript, and in those cases the states
related by the transition are to be analysed. The network states relating the
transition are then analysed by checking the predicate Pred expressed in the
formula.

The syntactic category of predicates is denoted by Predicates, and the metavari-
able Pred identifies a generic element. A predicate can be a constant Boolean tt
or ff , represented by the syntactic identifiers true and false respectively. Other
options are the combination of simpler predicates, using the Boolean operators
for negation, disjunction and conjunction. A predicate can speak about ranges
of transitions, and for that some variable can be used. The predicate cannot
be open, though, so the variables have to be bound to some quantifier, either
universal (∀) or existential (∃). Finally, the simplest (non-constant) predicate
is a basic predicate bp, predicating about the state of the network itself.

The bp metavariable belongs to the syntactic category of basic predicates, Ba-
sicPredicates. These predicates speak about the network itself, and for this

5.1 A logic for global systems 93

N0 |=Obl AG{labs}Pred
iff
∀ paths N0 →∗ Ni →ls(ws):c(

−→
l)@lt(wt) Ni+1 :

(∀θ : labs θ = ls(ws) : c(
−→
l)@lt(wt) ⇒ (Ni, Ni+1) |=θPr Pred)

Table 5.2: ACTLv Semantics – Satisfaction relation |=Obl.

they access the location names and their tuple content. One possible predicate
is the comparison for equality of two location names, `a = `b, mainly aimed at
comparing a constant with a variable, which can be bound in the labs subscript
of the obligation in which the basic predicate is sitting. Another possible pred-
icate is the check-up of a specific tuple in the tuple space of a given location.
Again, the tuple might be constant or not, like the location. There are two such
operations, though, namely test(

−→
`a)@`b and a primed version test′(

−→
`a)@`b.

The former is intended to evaluate in the network just before the transition,
whereas the latter is intended to evaluate in the network just after.

5.1.1.2 Semantics

The formal semantics of the logic are divided into three satisfaction relations,
one for each of the syntactic categories defined in Table 5.1 (Obligations, Pred-
icates and BasicPredicates).

Obligations The first satisfaction relation, |=Obl, gives semantics for the obli-
gation formula and it is given in Table 5.2. It basically checks that in every path,
when it is possible to substitute the labs of the obligation thereby matching the
label of the path’s last transition, then the pair of nets that are connected by
that transition satisfy the given predicate.

A path is given co-inductively using the extended transition relation→∗, mean-
ing every possible reachable network. The last transition in the path is the one
that is analysed, so both Ni and Ni+1 matter for the satisfaction of the formula.
Furthermore, the transition label ls(ws) : c(

−→
l)@lt(wt) has to be matched by

some substitution θ done over the labs subscript in the formula, and if this is the
case, then the pair of relevant networks (Ni, Ni+1) has to satisfy the satisfaction
relation |=Pr using that very same substitution θ.

Since the formula is preceded by an universal quantification ∀, it has to be
satisfied for all paths, meaning that every possible reachable path has to be

94 Reasoning about distributed security policies

(N1, N2) |=θPr true iff tt
(N1, N2) |=θPr false iff ff
(N1, N2) |=θPr ¬Pred iff (N1, N2) 6|=θPr Pred
(N1, N2) |=θPr Pred1 ∨ Pred2 iff (N1, N2) |=θPr Pred1 ∨ (N1, N2) |=θPr Pred1
(N1, N2) |=θPr Pred1 ∧ Pred2 iff (N1, N2) |=θPr Pred1 ∧ (N1, N2) |=θPr Pred1
(N1, N2) |=θPr ∀x : Pred iff ∀l ∈ Loc(N1) ∪ Loc(N2) : (N1, N2) |=θ[l/x]Pr Pred

(N1, N2) |=θPr ∃x : Pred iff ∃l ∈ Loc(N1) ∪ Loc(N2) : (N1, N2) |=θ[l/x]Pr Pred
(N1, N2) |=θPr bp iff (N1, N2) |=θbp bp

Table 5.3: ACTLv Semantics – Satisfaction relation |=Pr.

analysed, and the last transition matched with the labs. If no matching is
possible, then the satisfaction is trivial. If there is a θ, then the networks
have to satisfy the Pred. With this, the entire Labelled Transition System is
inspected, and all the relevant transitions are considered and analysed.

Predicates The satisfaction relation |=Pr is defined in Table 5.3. The param-
eters it depends on are a substitution θ and a pair of networks. The networks
will always be two consecutive ones, according to how the satisfaction relation
|=Obl relies on it. There are eight relations in total, one for each case in the
syntactic category Predicates.

The first two relations are straightforward: constant predicates return constant
Boolean values. Next, the three relations involving simpler predicates are con-
structed inductively, using the given parameters of substitution θ and the pair
of networks (N1, N2). The negation of a predicate is satisfied if the predicate
cannot be satisfied under the same parameters. A disjunction of predicates is
satisfied if either one or the other is satisfied under the same parameters. A
conjunction of predicates is satisfied if both predicates are satisfied under the
same parameters.

The last three relations are the most interesting. In the first one, it is established
that an universal quantification of a variable x (that might occur free in a
predicate Pred) is satisfied if, for every possible value of that variable, the
predicate is satisfied. To find every possible value of the variable, the entire
set of locations occurring in any of the two networks given as parameters is
inspected, using the auxiliary function Loc, defined in Table 5.4 and explained
below. Indeed, location names are the only constants that can occur in the
networks, so l ranges over the set of all locations present in either network N1

or N2. Then, the substitution θ is updated with the specific value l is taking,

5.1 A logic for global systems 95

Loc(N1 || N2) = Loc(N1) ∪ Loc(N2)
Loc(ls ::

w P) = {ls} ∪ LocProc(P)
Loc(l1 ::w 〈

−→
l2 〉) = {l1} ∪ LocV ec(

−→
l2)

LocProc(P1 | P2) = LocProc(P1) ∪ LocProc(P2)
LocProc(∗P) = LocProc(P)

LocProc(
∑
i ai.Pi) =

⋃
i(LocAct(ai) ∪ LocProc(Pi))

LocProc(0) = ∅

LocAct(out(
−→
`1)@`2) = LocSingle(`2) ∪ LocV ec(

−→
`1)

LocAct(in(
−→
`λ1)@`2) = LocSingle(`2) ∪ LocV ec(

−→
`λ1)

LocAct(read(
−→
`λ1)@`2) = LocSingle(`2) ∪ LocV ec(

−→
`λ1)

LocV ec(α,
−→
α′) = LocSingle(α) ∪ LocV ec(

−→
α′)

LocV ec(ε) = ∅

LocSingle(l) = {l}
LocSingle(u) = ∅
LocSingle(!u) = ∅

Table 5.4: ACTLv Semantics – Auxiliary functions for the |=Pr satisfaction
relation.

to cover the free occurrences of variable x in the predicate Pred.

The existential quantification follows a similar fashion. It is satisfied if there
exists some value for the quantified variable x that makes the predicate Pred
to be satisfied. The values range in the set of locations occurring in any of the
two networks given as parameters. For each binding of l, the substitution θ is
updated accordingly, while checking satisfaction of the predicate Pred.

Finally, the last case we are missing about the satisfaction relation |=Pr is if the
predicate is a simple basic predicate bp. In such case, it is satisfied with respect
to the satisfaction relation |=Pr if it is satisfied with respect to the satisfaction
relation |=bp, defined in Table 5.5 and explained below.

Auxiliary functions For the cases with quantification to work, the auxiliary
functions Loc is defined in Table 5.4, in its turn relying on several other auxliary

96 Reasoning about distributed security policies

functions also defined in the same Table. Loc gives the set of all locations
occurring in a given network.

The function Loc is defined inductively on the structure of the network. If the
network is a parallel composition of networks N1 and N2, the function Loc is
called recursively. If the network is a location ls holding a process P , then the
result includes location ls together with all the location names occurring in the
process P . For this latter, the auxiliary function LocProc is used.

If the network is a location l1 holding a tuple
−→
l2 , then the result includes location

l1 together with all the location names occurring in the tuple
−→
l2 . For this latter,

the auxiliary function LocV ec is used giving the tuple
−→
l2 as parameter.

Function LocProc gives the set of all locations occurring in a given process. It
is defined inductively on the structure of the process. If the process is a parallel
composition or a replication, the simpler processes are passed as parameters in a
recursive call to the same function. If the process is a non-deterministic choice,
then the result includes all the locations occurring in the first action ai and in
the continuation process Pi, for all the possible subindexes i according to the
choice. Finally, if the process is the nil process 0, then no location occurs so the
result is the empty set ∅.

Function LocAct gives the set of all locations occurring in a given action from
the syntactic category Act. It is defined inductively on the structure of the
action, and the three cases follow a very similar fashion. The target location
`2 is evaluated on one side, and the parameter (either

−→
`1 or

−→
`λ1 , depending on

the case) is evaluated on the other side. The result includes all the locations
occurring in this location and this tuple expression.

LocV ec simply checks the elements of a tuple one by one, returning the empty
set ∅ in the case of empty tuple ε. LocSingle returns the constant location l if
this is the parameter, and an empty set if the parameter is not a constant.

Note that all the definitions from Table 5.4 use the union operator ∪ for com-
bining the partial results. Moreover, the empty set ∅ is used as neutral element.
This of course follows the aim of finding every single constant occurring in an
expression. This is regardless of whether later these constants are to be ranging
using a universal or existential quantification in Table 5.3.

Basic predicates The satisfaction relation for basic predicates |=bp is given
in Table 5.5. There are three cases, according to the structure of the syntactic
category BasicPredicates. If the basic predicate is a comparison `a = `b,

5.1 A logic for global systems 97

(N1, N2) |=θbp `a = `b iff (`aθ) = (`bθ)

(N1, N2) |=θbp test(
−→
`a)@`b iff [(test(

−→
`aθ)@(

−→
`bθ), N1)]

(N1, N2) |=θbp test′(
−→
`a)@`b iff [(test(

−→
`aθ)@(

−→
`bθ), N2)]

Table 5.5: ACTLv Semantics – Satisfaction relation |=bp.

[(test(
−→
l1)@l2, N1 || N2)] = [(test(

−→
l1)@l2, N1)] ∨ [(test(

−→
l1)@l2, N2)]

[(test(
−→
l1)@l2, l ::w P)] = ff

[(test(
−→
l1)@l2, l3 ::w 〈

−→
l4 〉)] = (l2 = l3 ∧

−→
l1 =

−→
l4)

Table 5.6: ACTLv Semantics – Interpretation of test.

then both elements are substituted with the substitution parameter θ and their
comparison is done. If the basic predicate is a test, this is evaluated on a
network while performing the substitution on the parameters of the test. The
substitution is performed both in the tuple argument and in the target location.
The network used for evaluating the test depends on whether the test is intended
for the network just before (no prime) or the network just after (primed one)
the transition.

The way the test is interpreted depends on the structure of the net, and its
structural inductive definition is given in Table 5.5.

If the network is a parallel composition of networks N1 and N2 then these
networks are recursively analysed with the same test parameters. If the network
is a process P localised in some location, then the answer is clearly ff , as no
tuple is present in that specific occurrence of the location. Otherwise, if the
network is a location l3 holding a tuple

−→
l4 , then these values have to be checked

against the values being searched with the test, namely tuple
−→
l1 in location l2.

5.1.1.3 An example

In Example 2.6 from Section 2.2, we saw a couple of situations that could lead
to an insecure state, since Nurse Olsen was not supposed to get the private
information about Bob. We gave in Example 3.5 from Section 3.3 some aspects
of security policies in order to avoid the insecure behaviour.

Indeed, we may aim at not allowing any Nurse to get access to any private

98 Reasoning about distributed security policies

notes from any patient. We should then have some global property that traps
the transitions that could lead to such an “insecure” state. Clearly, in the LTS
induced by the semantics of AspectKBL, the transitions that could lead to
such a state are both if a Nurse reads the data directly or if she is given the
data by some Doctor. Therefore, we will have to express two separate global
properties, one capturing one case and another for the other case.

Informally, we could express the properties by “any read of private notes should
only be done by a Doctor” and “any out of private notes should not be done
to a Nurse’s location”. Formally, we have to follow our syntactic rules, thereby
writing the following:

AG{$u(−):r(−,PrivateNotes,−)@EHDB(−)}test(Doctor, $u)@ROLES (5.1)

and

AG{$u(−):o(−,PrivateNotes,−)@Olsen(−)}test(Doctor,Olsen)@ROLES (5.2)

Equation 5.1 formalises the first informal property, but restricting to the database
where the data might be (due to our syntactic restriction that the target location
must be a constant). It will trap every transition from the LTS that has capa-
bility r, i.e. coming from a read action, and with three parameters. Moreover,
the second parameter must be equal to PrivateNotes, and the target location
must be EHDB. The subject location is then bound to the variable $u1, and this
might be used in the predicate.

For the trapped transitions from the LTS, the predicate will be evaluated. In
this specific predicate, the variable is indeed used. The predicate checks that
the subject location of the trapped transition is a doctor in the system. For
achieving this, the test will return tt only in the event that 〈Doctor, $u〉, with
the specific value bound to the variable $u, is an existing tuple within location
ROLES.

In Equation 5.2 the restriction of a constant target location is a bit less practical,
but still necessary due to our formal language. We need to specify which is the
target location we are talking about, and in this case we would need to write
one specific global property for each location that we suspect might be a Nurse
in our network. In our case, we do that just with location Olsen.

We could check, using the semantics of ACTLv from the current Chapter,
whether these properties are indeed satisfied by the LTS’s induced by the se-
mantics of Chapter 4. This holds for Example 3.5 from Section 3.3, as the

1We take the convention that every variable defined in a global property, namely in the
labs subscript, must start with the special symbol $.

5.1 A logic for global systems 99

aspects will enforce them. This also holds for Example 2.3 from Section 2.1, as
the processes do not intend any insecure action. However, the properties are
not satisfied by the Example 2.6 in Section 2.2. This means that this latter
Example is indeed insecure with respect to the properties.

5.1.2 Structural Congruent nets produce same results

One expected property of the semantics just defined is that if the semantics
are given two different AspectKBL networks, which are actually structurally
congruent, then the result should be the same. Indeed, otherwise it would mean
that the result depends on how the network is described and not on which
components it has, which in the end are the ones that make the network run
according to the semantics. In this Subsection we prove a Theorem about this
issue.

First, we need to rely on the fact that the set of constant locations occurring in
a network expression does not change when the way the network is expressed
changes. This means that structurally congruent networks contain the same set
of constant location names. This is expressed in the following:

Lemma 5.1 If N1 ≡ N2, then Loc(N1) = Loc(N2).

Proof. This proof can be straightforwardly done by structural induction on
how the ≡ is obtained between a pair of networks. There are five cases in total
(four base cases and one inductive case). We will just show one base case and
the inductive case, and omit the rest.

• Base case N1 = l ::w P1 | P2 and N2 = l ::w P1 || l ::w P2

Loc(l ::w P1 | P2)
= [by Table 5.4, definition of Loc]
{l} ∪ LocProc(P1 | P2)
= [by Table 5.4, definition of LocProc]
{l} ∪ LocProc(P1) ∪ LocProc(P2)
= [by Set Theory]
{l} ∪ LocProc(P1) ∪ {l} ∪ LocProc(P2)
= [by Table 5.4, definition of Loc twice]
Loc(l ::w P1) ∪ Loc(l ::w P2)
= [by Table 5.4, definition of Loc]
Loc(l ::w P1 || l ::w P2)

100 Reasoning about distributed security policies

• Inductive case N1 = N || Na and N2 = N || Nb
From the Induction Hypothesis we can assume Loc(Na) = Loc(Nb)

Loc(N || Na)
= [by Table 5.4, definition of Loc]
Loc(N) ∪ Loc(Na)
= [by Induction Hypothesis]
Loc(N) ∪ Loc(Nb)
= [by Table 5.4, definition of Loc]
Loc(N || Nb)

�

Now, we are ready to establish the following:

Theorem 5.2 All the following rules hold:

N1 ≡ N2

[(test(
−→
l1)@l2, N1)] = [(test(

−→
l1)@l2, N2)]

[StrC1]

N1 ≡ N2 ∧M1 ≡M2

(N1,M1) |=θbp bp = (N2,M2) |=θbp bp
[StrC2]

N1 ≡ N2 ∧M1 ≡M2

(N1,M1) |=θPr Pred = (N2,M2) |=θPr Pred
[StrC3]

N1 ≡ N2

N1 |=Obl Obl = N2 |=Obl Obl
[StrC4]

Proof. We shall prove only some parts of this Theorem, and leave the rest for
the reader.

• Rule [StrC1]

To prove this rule, we shall use the definitions from Table 5.5. Let us call
them respectively (a), (b) and (c) just for the purposes of this proof.

Assuming N1 ≡ N2, we will prove [(test(
−→
l1)@l2, N1)] = [(test(

−→
l1)@l2, N2)].

The proof is by induction on how ≡ is obtained. We have five cases (four
base and one inductive), according to Table 4.3.

5.1 A logic for global systems 101

Case N1 = l ::w P1 | P2 and N2 = l ::w P1 || l ::w P2

[(test(
−→
l1)@l2, l ::

w P1 | P2)]
= [by (b)]
ff
= [Boolean logic]
ff ∨ ff
= [by (b) twice]
[(test(

−→
l1)@l2, l ::

w P1)] ∨ [(test(
−→
l1)@l2, l ::

w P2)]
= [by (a)]

[(test(
−→
l1)@l2, l ::

w P1 || l ::w P2)]

Case N1 = l ::w ∗P and N2 = l ::w P | ∗P
Even more trivially since no application of (a) is needed.

Case N1 = l ::w P and N2 = l ::w P || l ::w 0

Analogous to the first case as 0 is a process.

Case N1 = l ::w 〈
−→
l 〉 and N2 = l ::w 〈

−→
l 〉 || l ::w 0

[(test(
−→
l1)@l2, l ::

w 〈
−→
l 〉)]

= [by (c)]

(l2 = l ∧
−→
l1 =

−→
l)

= [Boolean logic]
(l2 = l ∧

−→
l1 =

−→
l) ∨ ff

= [by (c) and (b)]

[(test(
−→
l1)@l2, l ::

w 〈
−→
l 〉)] ∨ [(test(

−→
l1)@l2, l ::

w 0)]
= [by (a)]

[(test(
−→
l1)@l2, l ::

w 〈
−→
l 〉 || l ::w 0)]

Inductive case N1 = N || Na and N2 = N || Nb

From Induction Hypothesis we can assume that [(test(
−→
l1)@l2, Na)] =

[(test(
−→
l1)@l2, Nb)].

[(test(
−→
l1)@l2, N || Na)]

= [by (a)]

[(test(
−→
l1)@l2, N)] ∨ [(test(

−→
l1)@l2, Na)]

= [by Induction Hypthesis]
[(test(

−→
l1)@l2, N)] ∨ [(test(

−→
l1)@l2, Nb)]

= [by (a)]

[(test(
−→
l1)@l2, N || Nb)]

102 Reasoning about distributed security policies

• Rule [StrC2]

Assuming N1 ≡ N2 and M1 ≡ M2, we have to prove that (N1,M1) |=θbp
bp = (N2,M2) |=θbp bp. We will do this by structural induction on bp. We
have three cases, according to Table 5.1.

– Case `a = `b

(N1,M1) |=θbp `a = `b
= [by 5.5]
(`aθ) = (`bθ)
= [by 5.5]
(N2,M2) |=θbp `a = `b

– Case test(
−→
`a)@`b

(N1,M1) |=θbp test(
−→
`a)@`b

= [by 5.5]
[(test(

−→
`aθ)@(

−→
`b θ), N1)]

= [by [StrC1] since N1 ≡ N2]

[(test(
−→
`aθ)@(

−→
`b θ), N2)]

= [by 5.5]
(N2,M2) |=θbp test(

−→
`a)@`b

– Case test′(
−→
`a)@`b

We omit this case.

• Rule [StrC3]

Assuming N1 ≡ N2 and M1 ≡ M2, we have to prove that (N1,M1) |=θPr
Pred = (N2,M2) |=θPr Pred. We will do this by structural induction
on Pred. We have eight cases (three base cases and five inductive cases),
according to Table 5.1.

– Base case Pred = true

(N1,M1) |=θPr true
= [by Table 5.3]
tt
= [by Table 5.3]
(N2,M2) |=θPr true

– Base case Pred = false

Analogous case true.

5.1 A logic for global systems 103

– Base case Pred = bp

(N1,M1) |=θPr bp
= [by Table 5.3]
(N1,M1) |=θbp bp
= [by rule [StrC2]]
(N2,M2) |=θbp bp
= [by Table 5.3]
(N2,M2) |=θPr Pred

– Inductive case Pred = ¬Pred
We omit this case.

– Inductive case Pred = Pred ∨ Pred
From Induction Hypothesis we can assume that (N1,M1) |=θPr Pred =
(N2,M2) |=θPr Pred.

(N1,M1) |=θPr Pred ∨ Pred
= [by Table 5.3]
(N1,M1) |=θPr Pred ∨ (N1,M1) |=θPr Pred
= [by Induction Hypothesis twice]
(N2,M2) |=θPr Pred ∨ (N2,M2) |=θPr Pred
= [by Table 5.3]
(N2,M2) |=θPr Pred ∨ Pred

– Inductive case Pred = Pred ∧ Pred
We omit this case.

– Inductive case Pred = ∀x : Pred

From Induction Hypothesis we can assume that (N1,M1) |=θPr Pred =
(N2,M2) |=θPr Pred.

(N1,M1) |=θPr ∀x : Pred
= [by Table 5.3]
∀l ∈ Loc(N1) ∪ Loc(M1) : (N1,M1) |=θ[l/x]Pr Pred
= [by Lemma 5.1 twice]
∀l ∈ Loc(N2) ∪ Loc(M2) : (N1,M1) |=θ[l/x]Pr Pred
= [by Induction Hypothesis]
∀l ∈ Loc(N2) ∪ Loc(M2) : (N2,M2) |=θ[l/x]Pr Pred
= [by Table 5.3]
(N1,M1) |=θPr ∀x : Pred

– Inductive case Pred = ∃x : Pred

We omit this case.

104 Reasoning about distributed security policies

• Rule [StrC4]

Assuming N1 ≡ N2, we have to prove N1 |=Obl Obl = N2 |=Obl Obl. The
proof uses the top-right rule of Table 4.2, which says that if two networks
are structurally congruent, then they can transition to two other networks
that are again structurally congruent. In our case, if there is a transition
N1 →lab N ′1 and if N ′1 ≡ N ′2, then there is a transition N2 →lab N ′2. We
assume this rule can be applied in a sequence as many times as needed.

Now, assuming N1 |=Obl Obl holds, the definition of Table 5.2 tells us
that we need to rely on a couple of networks Ni(1) and Ni+1(1) . Apply-
ing the rule mentioned in the previous paragraph, we can instead rely on
a couple of networks Ni(2) and Ni+1(2) , which we assume satisfy the fol-
lowing: Ni(1) ≡ Ni(2) and Ni+1(1) ≡ Ni+1(2) . Now, the only difference is
that in one case we need to prove (Ni(2) , Ni+1(2)) |=θPr Pred instead of
(Ni(1) , Ni+1(1)) |=θPr Pred. But this is guaranteed by rule [StrC3]. �

Given that two congruent nets produce the same result when checking an
ACTLv formula over them, we could rely on this to automatically check a given
formula in any net that is structurally congruent to the one we are supposed
to check. This gives the idea of single-representative for structurally congruent
nets, and helps in choosing the one that fits better for an automatic checking.
Indeed, when later we will be doing the automatic checking of the satisfaction
formula, we will often be analysing some other net different but structurally
equivalent to the given one.

5.1.3 Interpretation of the semantics over an LTS

As observed in Chapter 4, the semantics of the AspectKBL language induce
an LTS, and over such structure it is possible to interpret the ACTLv Semantics
from the current Section.

Now, one would be verifying the formula if one could check that for all paths, it
is always the case that the following holds: whenever some transition over the
path is done and whose label matches the labs of an ACTLv obligation, then
the predicate Pred is satisfied in the reached state.

However, since ourAspectKBL language is Turing-complete[NGP06], the paths
might be infinite, and so also the breadth of the path tree. Although there are
some results that show that for certain subclasses of LTS’s the problem is de-
cidable [Esp99][BK08], we do not want to risk falling into a different subclass.

5.2 Using enforcement mechanisms to reason efficiently 105

Indeed, in [Esp99] it is also shown that, for instance, Branching Time Logics
without EG (and therefore AF) operator (a similar one to our ACTL) is unde-
cidable for Petri Nets, although it is decidable for some subclasses of Petri Nets,
including BPP (Basic Parallel Processes). More of this is discussed in Section
5.4.

In the following Section, we will be assessing another way of checking this,
without having to induce the whole LTS for deciding whether a given network
satisfies a given property. This would overcome the undecidability issue at the
expense of losing some precision when assessing a network’s security. We shall
show, though, that we remain on the safe side while losing this precision. This
means that, if we certify a given network to be secure with respect to some
ACTLv property, then the network is indeed secure.

5.2 Using enforcement mechanisms to reason ef-
ficiently

We aim at establishing proper ways for model checking the global security of
distributed systems. We have seen that using the semantics of AspectKBL,
a Labelled Transition System (LTS) can be induced for every particular dis-
tributed system. Furthermore, in the current Chapter we have seen that over
this LTS some model checking tasks could be done.

It is widely known that model checking suffers from the state explosion prob-
lem [Val98]. Several approaches have been taken for overcoming this limita-
tion, some based on abstractions of the state space [Smi10, TD11], and some
based on combination with other system-assessing techniques such as static
analysis[Sch98, NN10].

In this Section, we identify how this LTS is obtained, and propose an alterna-
tive approach for model checking. This approach works, for our AspectKBL
language, by avoiding exploring the entire state space of the induced LTS while
performing the model checking. We achieve this by relying on some features
of our language, mainly on the aspects of enforcement mechanisms, which are
fixed for the entire lifetime of the distributed system.

We will be model checking AspectKBL networks not by inducing the entire
LTS but by looking at the network definition, directly in the AspectKBL
syntax. This may lead to over-approximations, thereby producing imprecise
results, but we will show that these over-approximations are safe. Furthermore,

106 Reasoning about distributed security policies

in infinite systems, namely using the replication operator ∗, we will be certain
about the decidability, of course not without losing some precision.

Let us informally introduce our approach in the following Subsection 5.2.1.
Then, in Section 5.2.2 we present an algorithm and assess its power and com-
pliance with our purposes.

5.2.1 Model checking by inspecting each single action

We know that the LTS induced by our AspectKBL network could be properly
model checked by following the traditional way. But since we also know that
this LTS depends directly on the specific network we have at hand, perhaps
we can do something directly over it. Certainly, the network is governed by
some aspects of enforcement mechanisms attached to each location, and indeed
those aspects never change during the runtime of the network. This is actually
ensured by the semantics of Table 4.1. Then, we may rely on them to be the
ones that will in the end either allow or deny the actions to happen. This is a
key concept that helps us propose this alternative approach to model checking.

Following this idea, one can statically decide whether some interactions will be
allowed at runtime. This is done by means of relying on the recommendations
rec of the aspects doing their job (the semantics of AspectKBL also take care
of this). Hence, for each given possible interaction relevant for the ACTLv
global property, if the combination of the rec of the relevant aspects implies the
predicate of global property, then the interaction is secure.

Let us now explain each step individually.

Starting from the global property Our approach is to over-approximate
the behaviour of the runtime network, with which it is possible to model check in
a very fast way. We will interpret the semantics of the ACTLv formula statically,
by looking directly to the AspectKBL network instead of to the LTS induced
by it.

The actions defined in each process are the basic concept. We know that when-
ever an action is matched by the labs subscript of the ACTLv obligation, then
the predicate of the obligation must evaluate tt in order to satisfy the obligation.
Then, instead of checking the action considering the path in which it occurs,
we can just check the action by itself just once. We can do this by relying on
the action being governed by some aspects of enforcement mechanisms, which

5.2 Using enforcement mechanisms to reason efficiently 107

will not change during runtime so we could know them, and their possible ac-
cess control decisions, beforehand. Therefore, if the Belnap recommendation (of
the aspects that govern a given action) implies the intended predicate of the
ACTLv formula, we can safely certify the security of the given action, though
not without over-approxaimation.

If one recalls how an LTS is induced from a given AspectKBL network, it is
evident that the aspects are directly involved in how the semantics influence
the creation of every path. From there, one could interpret the semantics of
ACTLv in every path that has been obtained. Therefore, we could think about
an “order” on how these steps take part for a given action. Indeed, the aspects
are considered first, and then the global property should be interpreted over the
resulting LTS.

Since our approach will consider each action just once, and since the policies
that govern such action are fixed at runtime, we could rely on them to know
whether the action will be allowed or not. The steps from the previous paragraph
then change their “order”. Then, instead of inducing the LTS already having
considered the aspects, and then having just to check the relevant transitions
against the global property, here we take each action exactly once. We do this
even though in some cases the action might be granted and in some it may
not, and even though the actual values bound to the variables occurring might
change dramatically from one case to another.

What we have now is a more general (and over-approximate) way of checking
each action. However, the actions are still governed by some aspects of security
policies, which will be those that in the end will either grant or deny the action.
Hence, the aspects will be considered at last step.

Actually, and since the action might contain a variable as target, we may need
to ground that variable first, so we could count on a given set of aspects. This
set includes the aspects coming from the source of the action, which is known
because it is taken from the description of the network, and the ones coming
from the target, which after grounding the variable target is known as well.

Determining involved aspects Taking into account that in the labs of an
ACTLv Obligation the target must be a constant (restricted by the Syntax
of Table 5.1), if we first check whether the action might be trapped by the
labs then we could proceed by considering the action, otherwise we can safely
(and trivially) certify the security of the action, since it is not relevant for our
purposes.

108 Reasoning about distributed security policies

If the action is relevant, and since the target in the labs is a constant, we may
safely assume that the action will be relevant only in the event that the target
variable is ground to the specific constant value occurring in the labs. To illus-
trate, assume the action is l1 :: read(x)@y and the labs of the global property is
$x(−) : r($y)@l2(−). The action could occur in the induced LTS with the vari-
ables x and y bound to various different values, for instance l1 :: read(l1)@l1,
l1 :: read(l2)@l3, l1 :: read(l2)@l1, l1 :: read(l3)@l3, etc. However, only those
occurrences that have the value of variable y equal to l2 are relevant for the global
property, for instance l1 :: read(l1)@l2, l1 :: read(l2)@l2, l1 :: read(l3)@l2, etc.

Indeed, some other variables occurring either in the action or in the labs may
also be ground during this matching. Only at that point can we start assessing
whether the resulting (possibly completely grounded) action might be allowed
or not by the (fixed) aspects.

In future work, we may relax the syntactic restriction that the target in the labs
of the obligation must be a constant, but then some static analysis might be
needed in order to obtain a set of possible values for the occurring variables, in
order to determine the possible involved aspects.

Using aspects Now, if we can certainly ensure that the combination of as-
pects will not allow the action, again we can certify that the action is secure
(other possible values for the variables are not relevant for the global prop-
erty, and the ones found with this grounding will never be used for an actual
transition).

However, if the action may possibly be allowed by the aspects, our task is slightly
different, although we can still do some work. Indeed, if the aspects may allow
the action to take place, then their recommendations rec must evaluate to tt
in these cases, but then we can rely on these recommendations to be sure that
some properties hold whenever the action is allowed. The properties that hold
are exactly those implied by the constraints established in the combination of
these rec coming from the involved aspects. Hence, if this implies the property
established in the predicate Pred of the obligation, then we can certify the
action we are analysing.

The procedure basically involves taking the aspects one by one and finding
a substitution that can be applied both to the cut of the aspect and to the
action in order to unify them. If such substitution does not exist, we consider
the aspect will give ⊥, and remember this result. Otherwise, if there is such
substitution, we need to apply it to the condition of the aspect to see if it might
be considered. If it will never be considered given such substitution, it is again

5.2 Using enforcement mechanisms to reason efficiently 109

⊥ and we remember this result.

In the opposite case, if the aspect might be considered, we take the same sub-
stitution and apply it to the recommendation, and we have to remember the
resulting substituted recommendation as a constraint.

We proceed stepwise with all the aspects involved (finding a new substitution in
each of them), until we at the end combine all the constraints obtained using 4-
valued logic (including the ⊥ values) and then map to 2-valued logic for deciding
whether the action might be granted. If it cannot be granted, then we can certify
the action, otherwise we need to prove that the combination of the constraints
implies the predicate of the global property.

Summing up If each and every action is certified following this procedure,
we can certify the whole network. Otherwise, if we cannot safely certify some
of the actions, then we cannot conclude anything about the entire network.

This procedure does not need any LTS to be induced, neither the hypothetical
one, assuming no security policy is different than the trivial one, nor the pruned
one. Certainly, since every action is considered and their variables are ground
just by matching with the labs of the obligation, thereby detecting possible
relevance of the action for the desired global property, then we cannot even
know if these values for the variables can indeed be possible in the induced
LTS. Hence, this could be the source of an imprecise over-approximation, since
we may finally not certify the network due to some possible action we cannot
certify, but the action might actually never occur in the pruned LTS.

It is then a key subject of study to determine the circumstances in which we
could rely on the precision of our procedure, and we leave this for future work.
On the other hand, if the over-approximation is indeed safe, we can certainly
rely on a network that has been certified. We will show that this is indeed the
case.

5.2.2 The algorithm for smart model checking

Having informally introduced what our approach to model checking without
spanning the entire LTS does, we will proceed to show how we achieve this.
The main algorithm basically does what is explained in the previous Subsection.
Here we will see more formally how it is constructed, and show some auxiliary
parts of it.

110 Reasoning about distributed security policies

5.2.2.1 Preliminaries: unifying and grounding variables

First, recall that we have to match in several occasions with the action we are
analysing in each step. For performing the matching, some substitution must
be found that unifies the action with the given entity that is being matched.
Whenever we are given one entity, which could be the labs of an obligation or
the cut of an aspect, we must try to match it with the action we are analysing,
and the function for making the unification is defined as follows:

unify l1 l2 = if l1 = l2 then id else fail
unify l1 v2 = [v2 7→ l1]
unify v1 l2 = [v1 7→ l2]
unify v1 v2 = [v1 7→ v2]
unify ′ −′ l2 = id
unify ′ −′ v2 = id

(5.3)

Notice that in the fourth line the direction of the mapping is always from the
first to the second parameter. This must be as it is because the actual action
being analysed will always contribute to the second parameter, and since we
need to find possible relevance of the action to the entity (either labs or cut)
being considered, we have to map variables from this entity into the action.

Besides, the last two lines capture the cases that ignore the value of some given
parameter, and in such cases the action might of course be trapped no matter
what is the component on it. Finally, a fail means that it was not possible to
find a matching, and in our case it will mean that the action cannot be relevant
at all for the entity we are taking.

This unification function is only for single literals, but while trying to match
actions, there are indeed several literals occurring (recall the function extract
mentioned in Chapter 4). Moreover, the number is unknown, and even unbound,
due to the ones that can occur as parameters of the action. Therefore, we need
an extended function that allows capturing these cases:

unifylist nil nil = id
unifylist (x : xs) (y : ys) = θ1.θ2
where
θ1 = unify x y
θ2 = unifylist (xs θ1)(ys θ1)

unifylist nil (y : ys) = fail
unifylist (x : xs) nil = fail

5.2 Using enforcement mechanisms to reason efficiently 111

Notice the order in which the substitution pairs are put into the substitution
sequence, in particular in the second line. This is done as it is because it
directly depends on how it is later used for performing the substitution, with the
sequence found. Indeed, given a substitution consisting of a sequence of several
pairs, we shall start applying from the beginning of the sequence, and then
continue by applying the rest of the substitution pairs to the entity obtained,
and so on.

Matching whole action Using the unification function defined in the pre-
vious paragraph, we need to find an entire substitution that allows the action
being analysed to be matched, or trapped, by the specific labs or cut being
considered right now, namely a substitution θ such that cut θ = act θ or labs θ
= act θ, assuming the action is act.

This task is performed by a function findsubs, that takes the labs or cut and
the action, and it stepwise performs the unifications, applying the substitution
parts already found to later literals that are to be unified. The definition is the
following2:

findsubs cut action = θ1.θ2.θ3
where
θ1 = unify locsrc1 locsrc2
θ2 = unifylist (params1 θ1) (params2 θ1)
θ3 = unify ((loctgt1 θ1)θ2) ((loctgt2 θ1)θ2)

and assuming
cut = locsrc1 params1 loctgt1
action = locsrc2 params2 loctgt2

Again, notice that the order in the first line is set in such a way that the
entire substitution is to be applied starting from the beginning of the sequence.
Moreover, the first line will give fail as long as at least one of the components
gives fail. It is also worth noticing that finding a substitution in such a way is
only valid provided both the cut and the action are defined as the same kind of
operation, namely the same capability (either read, in or out).

2We give the definition using cut. For labs it is exactly the same. While making an
implementation this might have to use two separate definitions due to typing constraints.

112 Reasoning about distributed security policies

5.2.2.2 The main algorithm

As discussed in Section 5.2.1, the algorithm for model checking will take each
action in its turn, and it will check if it is relevant for the labs of the obligation.
This is done by trying to match the labs with the action. If it is possible, then
it will use the substitution found in order to see if, under that condition, the
action might be granted by the enforcement mechanisms, otherwise it is trivially
certified.

To detect if the action might be granted by the enforcement mechanisms, the
combination of them must be considered, and within each of them each aspect
must be considered in its turn.

For each aspect, first it is necessary to see if it is relevant for the given action
by finding a substitution with its cut, and if this is the case, then the condition
cond and later the recommendation rec must be substituted and evaluated. At
this point, if the rec might be tt then we could rely on this as one specific
constraint that will hold whenever the action is indeed executed. Finally, we
check if under the entire set of constraints found the predicate of the obligation
will always be satisfied. The only cases where we omit the steps after finding
the substitution, are those in which the second line of the unification algorithm
of Equation 5.3 is used. Indeed, this would mean that a variable occurring
in the action is mapped to a constant occurring in the aspect. But then this
means the aspect will only trap the action in the cases where the variable takes
that specific constant value at runtime. In every other case, the action will be
granted. Then, we over-approximate even more, assuming that the aspect never
traps the action, thereby giving ⊥.

The algorithm is formalised below, by stepwise dividing its parts in different
levels of abstraction. Broadly, the algorithm consists of three parts, the first
one in charge of taking each and every action and analysing it in an isolated
way. The second part is in charge of analysing how an aspect of enforcement
mechanism influences the given action. The third part is in charge of evaluating
the constraints obtained in order to see whether they imply the expected pred-
icate. An schematisation of the algorithm is given in Figure 5.1. Subfigure 5.1a
represents the first part of the algorithm (which in its turn relies on the third
part, given in the bottom-left of the tree) and the Subfigure 5.1b represents the
second part3. Now we proceed to explain each part.

3The reason why in Subfigure 5.1b a False is framed in green, is that if the answer of
MIGHTGRANT is False, then the action is trivially certified. Therefore, to oppose this we frame
True in red.

5.2 Using enforcement mechanisms to reason efficiently 113

MAIN	

True	

(sa-sfies)	

EACH	
 NOT	
 EACH	

Theta0	
 exists	
 Theta0	
 fail	

CHECKCOMPLIANCE	

both	
 MIGHTGRANT	
 NOT	
 both	
 MIGHTGRANT	

CHECKCONSTRAINTS	

True	

(sa-sfies)	

True	

(sa-sfies)	

False	

(may	
 not)	

Belnap	
 combina-on	
 of	
 rec	
 implies	
 Pred	

NOT	
 Belnap	
 combina-on	
 of	
 rec	
 implies	
 Pred	

False	

(may	
 not)	

True	

(sa-sfies)	

(a) First (main) and third (checkconstraints) parts of the algorithm. A
True here means the network satisfies the obligation. A False means
the network may not satisfy the obligation.

MIGHTGRANT	

True	

(mightgrant)	

all	
 SINGLEASPECT	

Theta1	
 exists	
 Theta1	
 fail	

ENQUEUE	

CHECKCONDITION	

cond	
 might	
 be	
 true	

Cond	
 always	
 false	

ENQUEUE	

CHECKRECOMMENDATION	

False	

(not	
 grant)	

NOT	
 all	
 SINGLEASPECT	

ENQUEUE	

BoMom	

ENQUEUE	

BoMom	

ENQUEUE	
 REC	

(b) Second part (mightgrant) of the algorithm. A False here means the
given action will never be granted. A True means the action might be
granted under certain conditions.

Figure 5.1: Schematisation of algorithm for smart model checking.

114 Reasoning about distributed security policies

Isolating action This first part isolates the action, and it makes the alter-
native calls to other functions to determine in which cases the action might be
certified. If we answer True it means we certify the action. We aim at this to
be a safe over-approximation, meaning no insecure network can be certified.

This part of the algorithm consists of three subparts: one in charge of the entire
algorithm, one in charge of deciding whether the specific action is relevant for
the global property, and one in charge of checking if a relevant action complies
with the obligation.

The main algorithm just splits the entire network into single actions for checking
them separately. If each and every action satisfies the predicate, then the entire
network does so, otherwise it may not4:

[MAIN algorithm: Checks if Network N satisfies Obligation Obl.]

If EACH action A from Network N satisfies Obl
Then Return True

[obligation is satisfied]
Else Return False

[obligation may not be satisfied]

It is straightforward that the MAIN algorithm certifies the entire network only if
assuming the EACH algorithm certifies each action.

Once each action is isolated, the certification of it must be done by first checking
its relevance to the given global property by trying to match it using some
possible substitution. If no substitution can be found, then the action trivially
satisfies the obligation, otherwise its compliance has to be assessed:

[EACH action algorithm: Checks if Action A satisfies Obligation Obl.]

If FINDSUBS (labs) (A) can find a substitution Theta_0
Then CHECKCOMPLIANCE of A under the substitution found
Else Return True

[obligation is satisfied]
[where labs is the labs of the Obligation Obl]

It is straightforward that the EACH algorithm trivially certifies the action only if
4In this and subsequent pieces of pseudo code, words entirely in capital letters are references

to some other parts of the algorithm or to some functions already defined. Besides, the
sentences between square brackets are comments.

5.2 Using enforcement mechanisms to reason efficiently 115

there is no substitution that can unify it with the labs of the obligation. Indeed,
this would mean that the action is irrelevant for the obligation, and thus the
certification is a safe over-approximation.

For checking the compliance of the action, first it has to be checked whether the
action might indeed be executed at all, because otherwise the action is again
trivially certified. Since the semantics of AspectKBL use the ⊕ operator to
combine the enforcement mechanisms coming from either location, we can rely
on Proposition 3.3 to assume both of them have to grant in order to allow the
action. If the action might indeed be executed, then the constraints raised by
all the aspects must be checked:

[CHECKCOMPLIANCE algorithm: Checks if Action A
satisfies Obligation Obl, under the given substitution Theta_0.]

If both enforcement mechanisms coming from the source and from
the target of action A MIGHTGRANT action (A Theta_0)
Then CHECKCONSTRAINTS given by the aspects
Else Return True

[obligation is satisfied]

The reason why we substitute the action A using Theta_0 (apart from using it
for substituting the labs of course), is that, if the second line of the unification
algorithm from Equation 5.3 was used, it means the action is relevant for the
obligation only in the cases where the variable bounds at runtime to the specific
constant value. Then, the aspects will have to trap that specific constant, and
that would be enough.

It is straightforward that the CHECKCOMPLIANCE algorithm certifies the action
only if some of the enforcement mechanisms will never grant the action. Indeed,
if the action never executes, then it trivially satisfies the obligation.

This first part of the algorithm clearly provides a safe over-approximation,
assuming the two auxiliary procedures (MIGHTGRANT and CHECKCONSTRAINTS,
which are the points of the second and third parts of the algorithm) work as
expected. It is also clear that this first part of the algorithm is linear on the
number of single actions occurring in the network definition. This is much more
efficient than spanning the entire LTS, which is likely to be exponential on the
number of single actions.

Aspects influence This second part of the algorithm is the one in charge
of deciding whether the involved aspects might grant the action, and collecting

116 Reasoning about distributed security policies

some constraints in the case that it is, to recall the conditions under which the
action might indeed be granted. If MIGHTGRANT answers True, it means the given
action might be granted, which then implies we need a subsequent analysis (done
in the third part of the algorithm by CHECKCONSTRAINTS) to check whether, in
the cases where it is granted, it satisfies the predicate of the obligation.

For a complex set of aspects, each of them must be checked individually, and then
their results must be taken and combined, according to the Belnap operators
that are used to combine them in the locations where they are attached:

[MIGHTGRANT algorithm: Checks if there might be some
chance that action A is allowed by the aspects.]

If Belnap Combination of every SINGLEASPECT in Asp
might grant action A
Then Return True

[might grant -> don’t know yet about obligation]
Else Return False

[never grants -> obligation is satisfied]

It is straightforward that if the Belnap combination of the aspects can never
grant the action, then the obligation is trivially satisfied. Then, the False
we answer here will make the If condition within CHECKCOMPLIANCE to be ff ,
thereby returning True.

From now on, we have some subparts that provide the results for making the
Belnap combination of single aspects within the MIGHTGRANT algorithm.

Given a single involved aspect, for checking its decision for a specific action,
the first step is to find whether its cut can match the action by finding some
possible substitution. If no substitution is found, then the aspect is not actually
considered, giving ⊥ by default. If there is some substitution, the applicability
condition of the aspect must be assessed, given the substitution found5:

5Recall that if the substitution found uses the second line of Equation 5.3, then we assume
there was no substitution found, going directly through the Else branch.

5.2 Using enforcement mechanisms to reason efficiently 117

[SINGLEASPECT algorithm: remembers the constraints
associated with the specific aspect Asp being analysed.]

If FINDSUBS (cut) (A) can find a substitution Theta_1
Then ENQUEUECONSTRAINT (CHECKCONDITION under the substitution found)

[remember what is given by this subalgorithm]
Else ENQUEUECONSTRAINT (Bottom)

[remember a bottom for the Belnap combination]
[where cut is the cut of the aspect Asp]

If the applicability condition says the aspect must be applied, then its recom-
mendation will give the final decision of it, otherwise a ⊥ is returned. The value
returned will then be enqueued within SINGLEASPECT:

[CHECKCONDITION algorithm: returns the relevant constraint
to be enqueued within SINGLEASPECT algorithm.]

If (cond Theta_1) might be True
Then Return (CHECKRECOMMENDATION of aspect Asp)

[remember what is given by this subalgorithm]
Else Return (Bottom)

[remember a bottom for the Belnap combination]

If we reach the point of checking a recommendation of a single aspect means
the aspect might be applied, and then the substituted recommendation has to
be considered for the Belnap decision.

[CHECKRECOMMENDATION algorithm: directly enqueue the
substituted recommendation of the aspect as a new constraint.]

Return (rec Theta_1)
[where rec is the recommendation of aspect Asp]

Solving the constraints After collecting all the constraints coming from
the relevant aspects (and ⊥ in the cases where the aspects are not applicable)
we need to solve the set of constraints in order to determine if, under these
conditions, the predicate of the obligation that we are analysing is satisfied. If
this is the case, then we can certify the action, as it will always be the case
that if the action is allowed, it is due to the recommendations of the involved
aspects, and because their Belnap combination implies the predicate, then the
action is indeed secure:

118 Reasoning about distributed security policies

[CHECKCONSTRAINTS algorithm: Checks if the combination
of recommendation from the aspects imply the predicate Pred
of the obligation Obl under the given substitution Theta_0.]

If set of Enqueued constraints implies (Pred Theta_0)
Then True

[implication holds -> obligation is satisfied]
Else False

[implication does not hold -> obligation may not be satisfied]

5.2.2.3 Using 2-valued logic

The algorithm we have just seen can safely decide if a given AspectKBL net-
work satisfies a given ACTLv obligation. However, this involves continuing
dealing with 4-valued logic, keeping the internal results of each aspect to later
combine them into a single decision from each location.

We show here how we could make the same algorithm but using only 2-valued
logic. This has the advantage that there are plenty of solvers we could use,
as 2-valued logic is a more properly established logic than the Belnap 4-valued
logic.

To present this approach, we restrict ourselves to the cases where, in each loca-
tion, all the attached aspects are combined using only the ⊕ operation. This is
actually not a very strong restriction. Indeed, since we are aiming at expressing
reference monitors, and since one denying reference monitor is enough to deny
an action, then the ⊕ operation is the one chosen for the combination. This
follows the suggestion of Proposition 3.3.

Although using only ⊕ is not a strong restriction, it would really be interesting
to have the entire set of operations available and still do the work using 2-valued
logic. For this to be achieved, the rest of the properties from Chapter 3 might
be used. We leave this for future work.

Slightly changing the algorithm Since the only place where a Belnap com-
bination of values is used is in deciding whether an action is granted or not, it
turns out that only the second part of the algorithm (the one schematised in
Subfigure 5.1b) needs to be changed. Furthermore, as these changes will di-
rectly return a result from MIGHTGRANT, there is no need for CHECKCONSTRAINTS
algorithm as before. This means that CHECKCOMPLIANCE is modified accordingly,

5.2 Using enforcement mechanisms to reason efficiently 119

answering False in the Then branch. The schematisation of this modified al-
gorithm is given in Figure 5.2, with bold letters in the boxes, where there are
some changes with respect to Figure 5.1.

Again, we take the approach that if MIGHTGRANT answers True it means the
given action might be granted. However, since now we assume the combination
of aspects is done only with the ⊕ operator, a ⊥ in some aspect can be automat-
ically ignored, as suggested by the truth table of Equation 3.4. This is achieved
with a True answer resulting from a call to the SINGLEASPECT algorithm, not
changing the final result of MIGHTGRANT.

At the same time, if a single aspect cannot grant the action, we can automatically
assume the action will not be granted, as suggested by Proposition 3.3. This is
achieved by a False answer resulting from a call to the CHECKRECOMMENDATION
algorithm, absorbing the final result of MIGHTGRANT into False.

The algorithm begins as follows:

[MIGHTGRANT algorithm: Checks if there might be some
chance that action A is allowed by the aspect Asp.]

If every SINGLEASPECT in Asp might grant action A
Then Return True

[might grant -> don’t know yet about obligation]
Else Return False

[never grants -> obligation is satisfied]

It is straightforward that if there is at least an aspect that will not grant the
action, then the obligation is trivially satisfied. Then, the False we answer here
will make the If condition within CHECKCOMPLIANCE to be ff , thereby returning
True.

From now on, the subparts that we have will directly provide an answer to the
MIGHTGRANT algorithm, instead of enqueueing some Belnap constraint as with
the original algorithm from above.

Given a single involved aspect, for checking its decision for a specific action,
the first step is to find whether its cut can match the action by finding some
possible substitution. If no substitution is found, then the aspect will trivially
grant the action. If there is some substitution, the applicability condition of the
aspect must be assessed, given the substitution found:

120 Reasoning about distributed security policies

MAIN	

True	

(sa-sfies)	

EACH	
 NOT	
 EACH	

Theta0	
 exists	
 Theta0	
 fail	

CHECKCOMPLIANCE	

both	
 MIGHTGRANT	
 NOT	
 both	
 MIGHTGRANT	

True	

(sa-sfies)	

True	

(sa-sfies)	

False	

(may	
 not)	

False	

(may	
 not)	

(a) First part of the algorithm. A True here means the network satisfies the
obligation. A False means the network may not satisfy the obligation.

MIGHTGRANT	

True	

(mightgrant)	

every	
 SINGLEASPECT	

Theta1	
 exists	
 Theta1	
 fail	

CHECKCONDITION	

cond	
 might	
 be	
 true	
 Cond	
 always	
 false	

CHECKRECOMMENDATION	

False	

(not	
 grant)	

rec	
 does	
 not	
 imply	
 Pred	

rec	
 implies	
 Pred	

NOT	
 every	
 SINGLEASPECT	

True	

(mightgrant)	

True	

(mightgrant)	

False	

(not	
 grant)	

True	

(mightgrant)	

(b) Second part (mightgrant) of the algorithm. A False here means the
given action will never be granted. A True means the action might be
granted under certain conditions.

Figure 5.2: Schematisation of algorithm for smart model checking using di-
rectly 2-valued logic.

5.2 Using enforcement mechanisms to reason efficiently 121

[SINGLEASPECT algorithm: Checks if there might be some
chance that action A is allowed by the single aspect Asp.]

If FINDSUBS (cut) (A) can find a substitution Theta_1
Then Return (CHECKCONDITION under the substitution found)

[don’t know yet if it may grant]
Else Return True

[aspect might grant -> don’t know yet about obligation]
[where cut is the cut of the aspect Asp]

If the applicability condition says the aspect must be applied, then its recom-
mendation will give the final decision of it:

[CHECKCONDITION algorithm: Checks if the aspect Asp
might be applied, under the given substitution Theta_1.]

If (cond Theta_1) might be True
Then Return (CHECKRECOMMENDATION of aspect Asp)

[don’t know yet if it may grant]
Else Return True

[aspect might grant -> don’t know yet about obligation]

If we reach the point of checking a recommendation of a single aspect means
the aspect might be applied, and then the substituted recommendation has to
be considered for checking against the predicate of the obligation.

[CHECKRECOMMENDATION algorithm: Directly enqueue the
substituted recommendation of the aspect as a new constraint.]

If (rec Theta_1) implies (Pred Theta_0)
Then Return False

[if grants then the predicate is satisfied ->
obligation satisfied]

Else Return True
[might grant in other cases ->

don’t know yet about obligation]
[where rec is the recommendation of aspect Asp,
and Pred is the predicated of the obligation Obl]

One might argue that this is a very imprecise over-approximation, because we are
not checking whether the combination of recommendations implies the predicate

122 Reasoning about distributed security policies

of the obligation. We are rather checking if a single recommendation does so.
Indeed, it might be the case that, for instance, the predicate is satisfied because
some of the cases covered by the predicate are implied by some recommendation,
and some other cases are implied by another recommendation. This means that
there are “subcases” of the obligation, and it might happen that each aspect
enforces “partly” and the combination of them enforces “completely”. Then,
some secure case might be regarded as insecure by our algorithm, because no
single recommendation implies the predicate.

However, we will show now, by means of an example, that this is not a strong
limitation for our algorithm. Indeed, as long as all the variables occurring in the
action definition within the network are grounded while unifying with the cut
of each aspect, then this is precise enough. The cases where some variables are
not ground could be covered by combining our method with some static analysis
techniques, such as Flow Logic [NNP12], to obtain the set of possible constant
values that a variable might have at runtime. We leave this for future work.

An example of algorithm application Assume there are two locations, say
A and B, where B is a database containing pairs in which the first component
determines whether the second component is secret information or not, using
the keyword secret or public.

The security policy of A says that only secret information can be read from B.
The security policy of B says that A cannot read any secret information. So,
the aspects for enforcing such policies are the following:

wA =

 #x = secret
if A :: read(#x,−)@B.#P :

true



wB =

 #x 6= secret
if A :: read(#x,−)@B.#P :

true



Assume the global property establishes that A cannot read anything from B,
like this:

AG{A(−):r(−,−)@B(−)}false

This will clearly be satisfied for any network, as one aspect will prevent some
reads while the other aspect will prevent other reads.

5.2 Using enforcement mechanisms to reason efficiently 123

Assume now there is a process in location A with read(secret, !data)@B.0.
Certainly, spanning the entire LTS one can check that the answer of the ACTLv
is tt.

And now let us assess how our algorithm will work without spanning this (ex-
tremely little) LTS.

The MAIN algorithm will take each action, in this case just one, and will then
process it. The first thing to do with the action is findsubs using the labs (in this
case A(−) : r(−,−)@B(−)) and the action (in this case read(secret, !data)@B).
The resulting θ0 is id.

Since there is a substitution (the action is relevant for the global property) we
execute CHECKCOMPLIANCE using the substituted action. If the action was not
relevant, we could have trivially certified it.

Then, we check if each of the two given aspects MIGHTGRANT the substituted
action. Since one of the aspects (in this case wB) cannot grant the action, but
CHECKCOMPLIANCE asks to grant for both of them, we go to the Else and answer
that the obligation is satisfied.

The way we detect that one of the aspects cannot grant is inside the MIGHTGRANT
called from CHECKCOMPLIANCE. Recall we are assessing how our second version
of MIGHTGRANT works; i.e. the one from Section 5.2.2.3. This gets the aspect
and the action and since there is a single aspect in each location, SINGLEASPECT
is called. This finds the substitution θ1 = [#x 7→ secret]. After applying
CHECKCONDITION we apply CHECKRECOMMENDATION. This latter checks whether
the rec of the aspect, under the given θ1 substituion, implies the predicate Pred
under the θ0 substitution. This is the following implication:

(#x 6= secret)[#x 7→ secret] =⇒ (ff)id;

which is clearly tt. This means the algorithm precisely answers that the obliga-
tion is satisfied.

A note about replication One might argue that, in infinite systems, namely
those using the replication operator ∗, our algorithm might be unsafe. Indeed,
as in most security protocols, replay attacks might occur by executing the same
piece of code several times [Low95, GBDN07].

However, according to what we have shown, if all the variables are ground,
we are precise. Indeed, this is the case even while using replication. If the
variables are ground, then we are sure about the values the involved variables

124 Reasoning about distributed security policies

will take at runtime, at least those that are relevant for the global property. In
any occurrence of the action that might be executed several times, these values
will remain the same, as we were able to ground them using our unification
procedure.

In the other case, if there still remain some unground variables in some ac-
tion that is in the scope of some replication operator, then the problem is
another. Indeed, in most of these cases, there will be some very imprecise
over-approximation, answering False and meaning that the network may be
insecure.

The reason is that the variable will ultimately occur in the conditional of the
CHECKRECOMMENDATION algorithm associated to the rec substituted with θ1. This
will then take the Else branch in most of the cases.

The only cases where we will take the Then branch are those cases where the
same variable also occurs in the predicate Pred of the obligation substituted
with θ0. But then, since we unified from the very same action, we are sure both
occurrences are referring to the same variable, and that at runtime the value
will then be unique. In these cases, we will safely and precisely answer True
meaning that the network is secure.

We ignore this problem, as this is the case in most static analysis approaches to
security protocols [BBD+05].

5.3 Global security of EpSOS case study

We saw in Section 2.3 the formal model of a very simple definition of the EpSOS
case study. In this Section, we will extend this model with some desired features,
and then we will model check it using our alternative approach (more efficient
than entire LTS spanning). We will not explain everything with so much detail,
neither the extended model nor the model checking. Indeed, the reader should
by this point already be familiar with our framework.

5.3 Global security of EpSOS case study 125

5.3.1 Extended model

The following is the entire extended model for the EpSOS case study. We now
have Doctors and databases in both countries:

EpSOSext = IntDB || DBA || DBB || DoctorB1 || DoctorB2 ||
DoctorA ||MiddlewareB ||MiddlewareA

(5.4)

The databases follow the same fashion as in the model of Section 2.3.2:

IntDB = intDB ::wintDB 0

DBA = dbA ::wdbA 〈patient1, privateinfo〉

DBB = dbB ::wdbB 〈patient2, privateinfo〉

 (5.5)

We now have more doctors, and indeed DoctorB1 and DoctorA are analogous
to each other, following the same fashion as in the model of Section 2.3.2. On
his side, DoctorB2 aims at reading information from a patient from his own
country, which becomes apparent by the second parameter of the request being
the same as the target location of the out action:

DoctorB1 = doctorB1 ::wdoctorB1

out(req, midA, patient1, self)@midB.
in(res, midA, patient1, self, !data)@midB.
0

DoctorA = doctorA ::wdoctorA

out(req, midB, patient2, self)@midA.
in(res, midB, patient2, self, !data)@midA.
0

DoctorB2 = doctorB2 ::wdoctorB2

out(req, midB, patient2, self)@midB.
in(res, midB, patient2, self, !data)@midB.
0



(5.6)

Middlewares The real qualitative improvement of this extended model is
done in the middlewares. Indeed, in our initial model of Section 2.3 we assumed
that in one country there was a doctor and in another country there was a
database. As this EpSOS system is aimed at being an interoperability tool for
different countries already implementing their own health care systems, in the
reality there will be doctors and databases everywhere. Moreover, there might

126 Reasoning about distributed security policies

even be nurses, pharmacists, researchers, and other user types of the health care
system that we abstract.

Due to this, information might go in one or the other direction, so the mid-
dleware parts of EpSOS must be able to deal with this. We then define a new
generic middleware (that works for both countries A and B) in order to cover
this extension. This is handled by a parallel composition operator that divides
the tasks of the middleware as behaving as requestor country and processor of
the request.

Furthermore, the middleware is supposed to manage every transfer of informa-
tion that might occur between the local country and other European countries.
This means that not just one single request can be done by the doctor. Then,
we need to allow multiple requests, and probably in parallel. This is why we
introduce the use of the replication operator ∗.

Finally, we assume the middleware will handle the intra-country requests as
well. This should actually be already implemented in each country that had
a health care system before interoperating in EpSOS, separate from the inter-
country requests added by EpSOS. However, for simplicity we might assume
that this is done all together in the same middleware, as anyway we are just
abstracting behaviour. We achieve this by using a choice + after the request
arrives. Depending on whether the request is an intra- or inter-country request,
the middleware will proceed accordingly. The generic middleware formal model
is the following:

5.3 Global security of EpSOS case study 127

genericMiddleware =
midNM ::enfMec

∗(
(
act1.
(
continuation1a

+
continuation1b

)
)
||
(
process2

)
)

where
act1 =

read(req, !src, !pat, !dr)@self
continuation1a =

out(req, src, self, pat)@intDB.
in(res, self, src, pat, !data)@intDB.
out(res, src, pat, dr, data)@self. 0

continuation1b =
read(pat, !data)@locDB.
out(res, self, pat, dr, data)@self. 0

process2 =
read(req, self, !dest, !pat)@intDB.
read(pat, !data)@locDB.
out(res, dest, self, pat, data)@intDB. 0



(5.7)

It should be noticed that process2 handles the situations where an external
middleware requests some information from the local databases. This is the
same task done by the process in MiddlewareA in the model of Section 2.3.2.
It should also be noticed that act1 followed by continuation1a handles the
situations where a local doctor requests some information from an external
databases. This is the same task done by the process in MiddlewareB in
the model of Section 2.3.2. In this generic middleware model, act1 can also be
followed by continuation1b, and this handles the situations where a local doctor
requests some information from the local databases.

128 Reasoning about distributed security policies

Now, MiddlewareA and MiddlewareB are just instantiations of the generic
one (changing the names of the middleware location, enforcement mechanism
and database location):

MiddlewareA =
genericMiddleware[midA/midNM, wmidA/enfMec, dbA/locDB]

MiddlewareB =
genericMiddleware[midB/midNM, wmidB/enfMec, dbB/locDB]

 (5.8)

This is indeed possible, as this generic middleware is the proper one for our
purposes. In Section 2.3 we just assumed ad-hoc middleware definitions for
handling the specific simplistic case at hand. Now, our generic middleware
should cover all situations. If one aims at extending this EpSOS case study
even further (for instance with other user types, or perhaps other features),
then just the generic middleware has to be extended accordingly. Perhaps there
might also occur just small changes in the other components (such as doctors
and databases). However, this is very unlikely unless one aims at capturing other
features not captured by our system (for instance timestamps, doctor-patient
relations, emergency situation exceptions, etc.), and also of course if one aims
at lowering the abstraction level.

5.3.1.1 Spanning entire LTS

If one aims at model checking this EpSOSext network using the traditional
model checking approach, one needs to span the entire LTS. For the general case,
this has the state explosion problem, and in some cases is even undecidable. In
our case, as we just have three doctors, the network is indeed finite, thereby
making the model checking decidable. However, the state explosion problem is
still there. In Figure 5.3 we show just the first two levels of this LTS, showing
that in each level, the breadth of the LTS equals 3. The labels are shrunk to fit
the Figure, but it should be straightforward which actions each of these identify.

The first action will come from either of the doctors starting a request. Then,
in the second step, another doctor can start a request in turn (and this has two
doctors to choose from), or otherwise the first request can start being processed.

The entire LTS for this system has an amount of states that is roughly in the
order of 106, thereby so is the amount of transitions. Of course, to reach this
number each of the 24 actions (2 from each of the three doctors, plus 9 from

5.3 Global security of EpSOS case study 129

docB1:out docA:out
docB2:out

docA:out
docB2:out

docB1:out docA:out
docB1:out

docB2:out

midB:read
(req,midA…

midA:read
(req,midB…

midB:read
(req,midB…

Figure 5.3: First two levels of the LTS generated by the extended EpSOS
model.

each of the two middlewares) has to appear in the LTS in many places, perhaps
with different constant values for the variable parameters.

It is clear that model checking this (rather simple) system is still possible, but
as the system might grow a bit more, the number of states becomes unmanage-
able. In the following Subsection, we will use our alternative approach of model
checking to show how this EpSOSext system can be model checked in O(24), as
each of the 24 actions will be checked just once.

5.3.2 Efficient model checking

Using our alternative approach for model checking from Section 5.2.2, and par-
ticularly using the 2-valued logic modifications from Section 5.2.2.3, we will
show how we can model check the EpSOSext model from Section 5.3.1.

The first step for model checking the system is to establish some overall global
security property we want the system to satisfy. An interesting security property
we could aim at proving is that international interoperability mechanisms must
only be involved in international requests. This means that if a doctor requests
information from a patient from his own country, the middleware must not
leak any information about the given request outside the country. This, in our
model, is achieved if the international database does not receive any request
from a middleware that is trying to gather information from its own country.
We need to follow the ACTLv syntax from Section 5.1.1.1. Let us call our
property intvsnat. So, the ACTLv property establishing this is the following:

130 Reasoning about distributed security policies

intvsnat = AG{$mid(−):o(req,$src,$dest,−)@intDB(−)}¬($src = $dest) (5.9)

The property expresses what is informally mentioned in the previous para-
graph. Formally, this Obl says that whenever an action from the entire LTS
matches $mid(−) : o(req, $src, $dest,−)@intDB(−) (our labs), then the predi-
cate ¬($src = $dest) (our Pred) must hold. The actions that match the given
labs are those where any location (bound to the variable $mid but not used)
writes (an o capability) to location intDB. Actually, only the writes that are
requests (req as first parameter) are matched. Then, the second and third pa-
rameters will be bound to the variables $src and $dest respectively. The fourth
parameter, like both attached aspects, is ignored. The Pred checks that the
source and the destination of the request are different.

For model checking this formula using our alternative approach, we need to apply
the MAIN algorithm. Then, we will be checking if network EpSOSext satisfies
obligation intvsnat. Then, N from the algorithm is bound to EpSOSext and
Obl to intvsnat.

We first need to execute algorithm EACH using each of the 24 actions in network
EpSOSext, and if they all satisfy intvsnat we answer True (meaning the net-
work satisfies the obligation), otherwise we answer False (meaning we do not
know).

Checking each action Let us take just a few of the 24 actions to illustrate
how the rest of the procedure continues.

For instance, let us take the first action of DoctorB1, namely out(req, midA,
patient1, self)@midB. This action (let us call it act) does not match the labs
of intvsnat, since findsubs labs act returns fail. Then, algorithm EACH returns
True. In this case, this very fast answer is reached because the action trivially
satisfies the global property. Indeed, the action is not even writing to intDB. The
same happens with the first actions of the other doctors. With the second actions
of the doctors, the capability is not even the same: doctors are performing in
actions whereas the global property is only interested in out actions. The same
will happen with several others of the single actions from EpSOSext, these will
be trivially certified, as they are not relevant for the global property.

An instance that is not trivially certified, is the second action of each middleware
location. Let us take for instance from MiddlewareA, whose second action is
out(req, src, self, pat)@intDB. When we make findsubs labs act we obtain
(by relying also on unifylist and unify from Section 5.2.2.1) the following

5.3 Global security of EpSOS case study 131

substitution θ0:

[$src 7→ src].[$dest 7→ midA]

Then, CHECKCOMPLIANCE algorithm comes into play (the modified one from Sec-
tion 5.2.2.3). So, we need to check both enforcement mechanisms coming from
midA and from intDB (respectively the source and the target of the action). We
need to see if these enforcement mechanisms might grant action Aθ0. As we
have not specified any enforcement mechanisms in EpSOSext, we assume they
are all true, so they grant every action. Then, CHECKCOMPLIANCE answers False
meaning that the obligation from Equation 5.9 may not be satisfied by the ac-
tion midA :: out(req, src, self, pat)@intDB, and thereby by the entire network
EpSOSext.

Understanding the result The result just obtained can in some cases be
due to an over-approximation in our model checking algorithm. However, we
will see that in this case it is certainly a security flaw. Indeed, we only have
the trivial true aspect for enforcement mechanism attached to every location.
Then, any action will never be forbidden. In particular, in the choice + in
genericMiddleware, nothing restricts from taking one or the other path. After
the action midNM :: read(req, !src, !pat, !dr)@self , the variables src, pat and
dr are bound to some values, say src0, pat0 and dr0. Then, both actions
out(req,sr0,midNM,pat0)@intDB and read(pat0, !data)@locDB are possible.
Any of these two actions might execute, as the semantics of AspectKBL from
Chapter 4 permit so. This can only be avoided by the presence of some as-
pect for enforcement mechanism that prevents the actions under some given
circumstances.

The assessment of the previous paragraph shows that the EpSOSext model has
a security flaw. This happens even though the design we did in Section 5.3.1
seemed to be proper. Indeed, we precisely followed what we wanted from the
system to do. However, there was a security flaw that is found by applying our
global model checking from the current Chapter, in particular the algorithm
from Section 5.2.2.

This is opposed as what happened in Section 2.3.2 from Chapter 2. In that case,
we needed to find small modifications, done in Section 3.4 from Chapter 3, to
show some security flaw. We should then observe that no design is guaranteed to
be secure unless we certify it. This is why we have our global security property
assessment ideas from the current Chapter.

132 Reasoning about distributed security policies

Step 1: Design a closed distributed system NET in AspectKBL.
Step 2: Describe an ACTLv global security property OBL desired from system NET.
Step 3: Apply efficient model checking algorithm from Section 5.2.2.
Step 4: If answer is True, then certify NET. Goto END.
Step 5: If answer is False, assess whether it might be due to over-approximation.
Otherwise, design some aspectual enforcement mechanism to prevent security flaw.
Goto Step 3.
END

Figure 5.4: General approach for designing secure closed distributed systems.

5.3.2.1 Network design iteration

We have designed a distributed system, described in the AspectKBL network
EpSOSext. We have then assessed whether it satisfies some global security
property, and found out that it does not. This was done fairly fast thanks to
our efficient model checking algorithm. Now, we can then provide some aspect
for enforcement mechanism to prevent the security flaw and hopefully achieve
the global certification of the entire network through a second run of our efficient
model checking algorithm.

This suggests a general approach for designing secure closed distributed systems.
This approach involves iteratively adding aspects for enforcement mechanisms
and applying our efficient model checking algorithm. Eventually, after some
number of iterations, we can obtain that the desired global property is satisfied.
This could certainly be much more difficult to do if the model checking taken
involved inefficiently spanning the entire LTS.

Furthermore, we can take this approach due to the way we can define our en-
forcement mechanisms. We do not need to modify our basic system design to
do this. We can just add some aspects for taking care of solving some specific
security flaw, thereby making the modification much more manageable. This is
thanks to borrowing this idea from the aspect-orientation community.

Figure 5.4 shows and algorithm that depicts this general approach for designing
secure closed distributed systems.

Iteration in our example We still need to achieve the certification of our
EpSOSext network against the global property of Equation 5.9. By applying
the general approach just discussed, we aim at certifying this rather simple
network already in the second iteration. We will here provide some aspects and
then apply again the algorithm to show that, in this case, the answer is True,

5.3 Global security of EpSOS case study 133

meaning the network is secure.

The aspect that we devise for achieving this is the following:

enfMec =

 ¬(#x = #y)
if self :: out(req,#x,#y,−)@intDB.#P :

true

 (5.10)

This must go attached to each middleware location, meaning that the following
two annotations are modified:

wmidA = enfMec
wmidB = enfMec

Now we need to apply our model checking procedure again. Let us do this with-
out explaining each of the algorithm calls, but just go to the CHECKCOMPLIANCE,
as this was where the previous assessment from the beginning of Section 5.9
found that the network was insecure. We must have found the very same sub-
stitution θ0 as before, namely [$src 7→ src].[$dest 7→ midA]. Just one of the
enforcement mechanisms coming from the source and the target of the action
has changed. Then, we apply MIGHTGRANT using this aspect from Equation 5.10.

This is the only aspect present, so the only call to SINGLEASPECT will be done
with it. We then try to find a substitution by applying findsubs cut act, using
the cut of the aspect and the action we are aiming to certify. We indeed find
the following θ1:

[#x 7→ src].
[#y 7→ midA].
[#P 7→ in(res, self, src, pat, !data)@intDB.

out(res, src, pat, dr, data)@self.0]

Since we found a substitution, we take the Then branch in SINGLEASPECT and
apply CHECKCONDITION using the substitution found. As the condition of as-
pect from Equation 5.10 is true, condθ1 equals tt. Then, we finally apply
CHECKRECOMMENDATION.

The conditional of this latter algorithm prescribes checking whether the recom-
mendation implies the predicate of the global property. In this case, rec(θ1) is
¬(src = midA) and Pred(θ0) is ¬(src = midA). Then, the implication holds.
With this, CHECKRECOMMENDATION takes the Then branch and answers False.
This means the MIGHTGRANT will end up answering False, meaning that the
aspect can never grant the action.

134 Reasoning about distributed security policies

Finally, CHECKCOMPLIANCE will answer True, meaning that the network EpSOSext
(of course with the aspect of Equation 5.10) satisfies the global property of
Equation 5.9. Therefore, we were able to find a proper design for this ex-
tended EpSOS closed distributed system using our general approach of design-
ing/assessing/adding aspects. This final design is indeed secure with regard to
the global property we devised. Adding new global properties will of course
imply taking the steps of Figure 5.4 even more times.

It should be noticed that since the countries’ middlewares are not part of the
read action in the other branch of the choice +, we cannot provide any analo-
gous aspect for preventing taking this branch. However, for taking this branch,
some tuple must exist in the local database for matching with the value bound
in variable pat. This suggests that the identification of each patient must be
globally unique, as it is indeed the case in reality (for instance with passport
number and country of emission).

5.4 Chapter final remarks

In this Chapter, we have proposed a logic for global properties with which
AspectKBL networks can be analysed. Furthermore, we have proposed an
alternative way of model checking, which prevents against the state explosion
problem, and makes model checking decidable. In this Section, we will discuss
some decidability results from the existing literature.

Later, we will mention a tool that has been developed for performing the alter-
native model checking.

5.4.1 Decidability results

There are several pieces of work about the problem of decidability for model
checking labelled transition systems (LTS) and what happens under certain
conditions and also depending on the logics (LTL vs. CTL vs. others). This is
a summary of some of them:

• Control-state reachability is decidable for well-structured LTS. [ACJT96]

For this, well-structured LTS is one that has an infinite set of states,
consisting of the cartesian product of a finite set of control states and
an infinite set of data values. This set of states must be interpreted as

5.4 Chapter final remarks 135

a lattice with finite width (well-ordered), and satisfying the descending
chain condition (well-founded). The control state reachability problem is
deciding whether a certain control state is reachable, no matter which data
value is present in the other part of the pair.

• Finite Reachability Set Problem (deciding whether the set of reachable
states is finite) is decidable for strictly structured transition systems.
[Fin90]

A transition system is strictly structured if it meets the following three
conditions:

1. The infinite state space is a preorder, in which the transition relation
is strictly monotonous. A transition relation is said to be strictly
monotonous if for every pair of states s1 and s2 such that s1 < s2
(in the preorder operation) and such that the transition makes s1
to move to s′1, then if the transition makes s2 to move to s′2, s′1 <
s′2 holds. (Anyway, the same paper conjectures that in the general
case is undecidable to determine if the transition relation is strictly
monotonous – see next condition)

2. Is is decidable to determine if the transition relation is strictly monotonous
3. The preorder of the state space has finite width.

• Modal mu-calculus is undecidable for VBPP (and then also for BPP and
Petri Nets) [Esp99]

For this, BPP (Basic Parallel Processes) is an algebra very similar to
CCS but without synchronisation (only interleaving). Basically they have
action prefix, choice, and merge (parallelism). If choice operator is not
allowed, then the algebra is called VBPP (Very Basic Parallel Processes).
Is is clear that VBPP is a subclass of BPP and BPP is a subclass of Petri
Nets.

• Linear time mu-calculus is decidable for Petri Nets (and then also for BPP
and VBPP) [Esp99]

Apparently, restricting what properties can be written (limiting to linear
time mu-calculus instead of the whole one), makes the problem decidable,
even for more powerful process algebrae.

• Branching Time Logics without EG (and therefore AF) operator is unde-
cidable for Petri Nets, although it is decidable for some subclasses of Petri
Nets, including BPP [Esp99]

This Branching Time Logics is a subclass of a more general BTL that is
similar to the ACTL of [NV90], because it has a next operator with action
subscript, and it has EF and EG. Restricting it to avoid EG gives a very
similar logic to the ACTLv we have in the current work.

136 Reasoning about distributed security policies

• If the graph induced by the process expressed in LTS is effective, then
CTL without Existential quantifiers is decidable [HHK95]

For this, effective is defined as having regions effectively representable, in
the sense that they are able to be drawn in 2D.

• Baier and Katoen [BK08] mention that in some cases it is possible to take
a finite LTS bisimilar to an infinite one we might be dealing with. In such
cases it will of course be decidable. Some of the conditions to perform this
are about the structure of the state space, recalling [ACJT96].

5.4.2 A tool for efficient model checking

The author of this work has implemented in Haskell a prototype tool, which per-
forms the efficient model checking described in Section 5.2.2, and in particular
using the second version of the MIGHTGRANT from Section 5.2.2.3.

This prototype tool is a proof of concept, but must be improved for dealing with
some parts of the algorithm not implemented yet, and for scalability to larger
examples. The implementation details have to be revised as well.

Then, when the algorithm gets better by achieving the future work topics just
discussed, the implementation should be improved in these directions as well.

The tool Haskell code, together with some simple examples to show its usability,
can be downloaded from the following URL:

http://www.imm.dtu.dk/~aher/Other/tool

In the near future, the entire code of the EpSOS case study will also be available
through that URL.

http://www.imm.dtu.dk/~aher/Other/tool

Chapter 6

Framework extended:
History-sensitive policies

Throughout this work, we have built a framework for the distributed enforce-
ment of global security policies in distributed systems. We started from the
intuitive limitations and assumptions we should have, and we developed by con-
structing all the formal base, ending with a method for analysing the systems
globally, including a tool for doing so.

In this Chapter, we propose an extension to the entire framework in order to
deal with history-sensitive security policies. This will reach a two-fold objective:
firstly, we show how we could adapt to a distributed setting to some security
policies that are traditionally aimed for centralised systems; and secondly, we
show how our framework is flexible enough to be extended according to our
needs.

History-sensitive security policies are those that rely on some component of the
past behaviour of the system in order to decide what to do in the present and/or
future. We have seen in previous Chapters that, due to our process-algebraic
setting, we could analyse the future behaviour of the processes while making
an access control decision. In this Chapter, we will show how we could, still
in our distributed setting, keep some record of some abstracted past behaviour.
This will allow our security policies to make access control decisions based on

138 Framework extended: History-sensitive policies

the past interactions of the locations involved. The most traditional of such
security policies is the Bell-LaPadula model, but there are others such as the
Chinese Wall.

From the point of view of the flexibility of the framework, we should recall that so
far our enforcement mechanisms have had an aspect-oriented flavour. Following
these concepts of aspect-orientation, we could strengthen our framework by
allowing other types of attached information in the locations. We might not
reach the full power of the practical aspect-oriented systems, but we are building
it with a solid formal base, that might in the future provide strong foundations
for this community as well. For the moment, we show how we could attach to
the locations some abstracted information about the past behaviour, and we do
this without large modifications to the framework either, taking advantage of a
“second order” aspectual advantage.

So, aspect-orientation provides a means for modifying the behaviour of an entire
system without touching the basic components, and we achieved that by adding
security to distributed systems by only adding aspectual enforcement mecha-
nisms to the locations. As a second-order level, we will be able to modify our
framework to allow history-sensitive information to be kept, without creating
completely new Tables or modifying the basic ones we have already shown, but
just adding some lines to these Tables to provide the new features. This will
show that our framework is flexible enough to be extended according to our
needs.

In Section 6.1 we present the challenge of capturing history-sensitive security
policies in a distributed setting, and we review the Bell-LaPadula model, as-
sessing the challenges of adapting it to a distributed setting. In Section 6.2 we
provide a way to express historical information in our distributed setting and
show how to capture the Bell-LaPadula model (an extension of Chapters 3 and
4).

6.1 History-sensitive security policies

In the previous Chapters we used aspectual enforcement mechanisms to make
access control decisions on distributed systems. We have been able to analyse
the future behaviour of the systems, and this gives the flavour of dealing with
information flow rather than mere access control. Indeed, although the enforce-
ment mechanisms do not actually statically analyse the possible behaviours of
the system as traditional non-distributed information flow would, they do so
dynamically, step by step as the system evolves. With this, the enforcement

6.1 History-sensitive security policies 139

mechanisms can avoid any potential misuse in the future. This is opposite to
the traditional reference-monitor-based approaches, as they are generally based
on current state and (thereby) past behaviour that leads to it, instead of poten-
tial future behaviour.

In this Section, we show that it is beneficial to augment this approach with
history-based components, as it is traditional in reference-monitor-based ap-
proaches to mandatory access control.

We shall consider a multilevel access control policy [Gol11], the Bell-LaPadula
model [BL73]. We aim at showing some difficulties while capturing such a
policy in a distributed framework. Moreover, in a framework whose security
policies focus on looking to the future, the difficulties are even greater, since
such multilevel policies are better suited for past analysis of how the system
reached its current state. We shall see that some precision is missing by not
considering past behaviour.

We start by giving an intuitive example of how future-based analysis might
provide an excessively coarse approximation, and how history-based analysis
can make it more precise.

6.1.1 Limitations of looking to the future

The AspectKBL framework we developed allows writing enforcement mecha-
nisms that analyse the continuation processes. However, the only process that
can be analysed is the one that continues after the current action, since the
others could be interleaved at any possible point during runtime. As a result,
the possible outcomes that may occur during runtime due to other processes
could not be predicted. This means that deciding whether or not to allow the
interaction to happen has to be done by looking to the future of just one pro-
cess, namely the one involved. This can lead to two possible ways of obtaining
imprecise decisions, either over-approximation or under-approximation.

In order to understand what over-approximation is, let us assume we pessimisti-
cally expect that a particular action done by a process could, because of other
processes we do not know, lead to an insecure state. Then we may disallow
the process to execute that action, but in some cases there might be no other
process performing anything that could lead to an insecure state.

In order to understand what under-approximation is, let us assume we opti-
mistically expect that a particular action done by a process will not lead to an
insecure state because the very same process will not perform another related

140 Framework extended: History-sensitive policies

action that leads to such a state. Then we may allow the process to execute
that action, but in some cases there might be some other process that makes
the system reach some insecure state, due to some interactions that could have
been avoided, if the action was disallowed.

In some cases, the information-flow approach must be taken. If this is intended
by the security policy to be captured, then over- (resp. under-) approximating
the behaviour is correct. But, if the security policy to be captured expresses
some precise situations where the interactions must be allowed / disallowed,
then if we over- or under-approximate them, it would mean that we are missing
some precision while trying to capture the policy.

Let us discuss a simple example, without involving AspectKBL for simplicity,
so we can focus on our current problem.

Let us think about a security policy where we have different security levels, and
every location is assigned to some level. We do not want any information to be
leaked from any security level to lower ones. Then, we should allow a process,
running in a given location, to read data from another location, as long as the
following two conditions are met: first, the other location, where the data is
right now, is in a security level not higher than the one where the process is
running; second, the process will not try, in the future, to write information
to locations with security levels lower than the level of the location where the
data is right now, since this writing may be influenced by the reading previously
done.

Let us assume now a particular situation where we have four locations (say A,
B, C and D), and three security levels (say 1, 2 and 3). Let us assume the
security levels are ordered as their values in natural numbers (3 > 2 > 1). Let
us assume that location A is in security level 1, locations B and C are both
in security level 2, and location D is in security level 3. Figure 6.1 contains
three cases of such a situation, showing the locations and their security levels
in different layers.

Illustrated in Figure 6.1a, there is a process in location D, that tries to read
information from location B at t1, and then tries to write some information to
location A at t2. This process should clearly be forbidden, because it does not
meet the second condition of the policy we are trying to capture (although it
meets the first one). This can of course be done following the information-flow
approach, looking to the future at t1, since we know that the process trying to
read from B will try to write to A, and this should not be allowed.

However, let us think about another case, illustrated in Figure 6.1b. Let us say
that the process running in location D, whose first action is to read information

6.1 History-sensitive security policies 141

D

A

B C

read
t1

write

Sec. level 3

t2 Sec. level 2

Sec. level 1

(a) Insecure case, de-
tectable by information
flow.

D

A

B C

read
t1

write

Sec. level 3

t2 Sec. level 2

Sec. level 1

(b) Secure case, but over-
approximation would
incorrectly disallow it.

D

A

B C

read
t1

write

Sec. level 3

t3 Sec. level 2

Sec. level 1

E t2 write

(c) Insecure case, but
under-approximation
would incorrectly allow
it.

Figure 6.1: Examples of situations that might happen.

from location B at t1, then tries to write some information to location C (in
the same level as B) at t2. This does meet the second condition of the policy,
since the only information the process could write to C is what it has read from
B. Therefore, this should be allowed.

Now let us consider the next extension to the example, illustrated in Figure 6.1c.
Assume there is a fifth location E that is in security level 3. Assume there is a
process running in E that writes some information to D at t2, after the process
running in D has read from B at t1. In this case, the future writing to C by the
process running in D (which in this case will be done at t3) should be forbidden,
because it might be influenced by the new information learned by location D
at t2. Anyway, since the process that writes to C is not the same as the one
running in D, the process-algebraic way of modelling does not permit us to know
in advance (at t1) that this will happen. If we had taken an approach looking
to the past, then we would have checked the insecure operation of writing to C
right in the moment of the writing (at t3), and we would have known that some
information from E was leaked, thereby avoiding the write operation.

We could take the information-flow approach using over-approximation, and al-
ways avoid this type of write operation (e.g. from D to C, since the former is in
level 3 while the latter in level 2), but that would be very imprecise (and restric-
tive), since sometimes there is nothing insecure in doing that write operation, as
shown in the case of Figure 6.1b. Taking the information-flow approach using
under-approximation would mean allowing the process in D to perform the read
and the subsequent write, since this write operation is not insecure. This will
be secure enough in the case of Figure 6.1b, but not in the case of Figure 6.1c.

Hence, we have found some possible situations where using an information-
flow approach in a distributed setting is not completely precise, and therefore
another approach might be taken, for instance looking to the past. In the rest

142 Framework extended: History-sensitive policies

of this Chapter, we will be studying how to deal with looking to the past, and
how to extend our distributed systems framework to achieve this. We will see
that the resulting framework allows us to combine both approaches, therefore
obtaining the advantages of both of them. In particular, we will see that the
simple example we have seen is just one possible instance of something that can
be easily (and more precisely) captured by the Bell-LaPadula policy.

6.1.2 Assessment of the Bell-LaPadula model

In Section 6.1.1 we saw that, for distributed systems, the information-flow ap-
proach is not as adequate as it was for sequential programs. In this Section,
we review another approach, the Bell-LaPadula (BLP) policy, and discuss the
challenges of using it in a distributed setting, while aiming to show that this
can be as adequate as in its original formulation.

6.1.2.1 The Operating System view of BLP

The BLP model is the most traditional Mandatory Access Control model. Here
we briefly introduce it, inspired by [Gol11], but abstracting some unnecessary
details that do not contribute to our study.

State The computer system will be checked for security by looking into its
state. In order to represent this, some sets must be introduced:

• S is the set of subjects (processes in our setting) that may use the infor-
mation stored in the system,

• O is the set of objects (pieces of information) stored in the system,

• A = {read, write} is the set of operations a subject may do over an
object,

• L is a lattice of security levels.

Apart from this, there are three functions that are fixed during the lifetime of
the specific system. They are named fS , fC and fO and their types are S → L,
S → L and O → L. The functions are supposed to be total functions, and
they will give, respectively, the maximum security level a subject can have (its

6.1 History-sensitive security policies 143

clearance), the current security level a subject has1, and the security level an
object has (its classification). Without loss of generality, the functions can be
considered as part of the state, yet keeping in mind that they will not change.
Therefore, every state of the system is composed of a set of tuples of the form
(s, o, a) (each tuple would mean that subject s is doing an a operation over
object o), and of a tuple with the functions (fS , fC , fO). Formally, a state
(B,F) ∈ B × F , where F = (fS , fC , fO), and where:

• B = P(S ×O ×A)

• F = (S → L)× (S → L)× (O → L)

Policies The BLP model specifies two properties that every state should meet
in order to be considered secure.

• ss-property2. A state (B,F) satisfies this property iff ∀(s, o, a) ∈ B :
a = read =⇒ fS(s) ≥ fO(o). This means that each object being read by
a subject should be in a level not higher than the level the subject is able
to reach, which is usually called no read-up.

• ?-property3. This property consists of two parts. A state (B,F) satisfies
the first part (let us name it ?-property.1) of this property iff ∀(s, o, a) ∈
B : a = write =⇒ fO(o) ≥ fC(s). This means that each object being
written by a subject should be in a level not lower than the level the subject
is currently in, which is usually called no write-down. On the other side,
a state (B,F) satisfies the second part (let us name it ?-property.2) of
this property iff ∀(s, o, a) ∈ B : a = write =⇒ [∀(s, o′, a′) ∈ B : a′ =
read =⇒ fO(o) ≥ fO(o′)]. This means that if a specific subject (note the
use of the same s in both quantifications) is operating with many objects,
some being read and some being written, then no object being read could
be in a higher level than any object being written. This prevents the
subject from reading some high-level object and then writing a low-level
one.

A state is said to be secure if it satisfies both properties.
1A subject can log into the system with a lower security level than its corresponding

clearance. Once it did so, that security level cannot be changed until it logs in again.
2For “simple security”.
3Read “star property”. In some formulations of the BLP model, this property only consists

of the first part because the ss-property uses fC instead of fS , and then the second part is
just a consequence. However, that kind of formulation is again too restrictive, since a subject
cannot perform read operations in levels up to its clearance, but just up to the level it has
logged in.

144 Framework extended: History-sensitive policies

> (eg. Top Secret)

@
@

�
�

•

•• ...

• subject security level (“clearance”) (fS)@
@I read forbidden by ss-property

�
��
�
�
�
�
��

read is secure

• subject current level (fC)A
AK
A
A
A
A
AK

write is secure

��	 write forbidden by ?-property.1... ••

•�
�

@
@

⊥ (eg. public)

Figure 6.2: Schematisation of the Bell-LaPadula model.

Figure 6.2 illustrates the properties. It should be clear that the purpose of
allowing the current level to be lower than the clearance permits a subject to
write to objects below its clearance, otherwise the ?-property.1 would forbid
this. The ?-property.2 avoids a subject leaking information that must not be
leaked if working with two objects between its clearance and its current level
(i.e. between the dotted lines in Figure 6.2).

6.1.2.2 The challenges of distribution

The BLP model was originally meant for Operating Systems. These have a
particular feature: they are centralised, this means that a central controller
(i.e. the Operating System) takes care of everything that happens in the system.
In particular it can control (and in some cases restrict) the processes that try
to access resources. Moreover, one key concept needed to check BLP policy
compliance is the state, and since Operating Systems have a centralised state,
they can do the calculations to ascertain whether the BLP policy is met or not.

Lack of central controller In a distributed setting we do not have any
central controller, many locations run in parallel and share information, but no
location could know what other locations are doing. Therefore, once a location is
allowed access to some resource, there is no way the other locations can forbid
it from doing whatever it wants with the resource. In particular, there is no

6.1 History-sensitive security policies 145

notion of state, the processes interact and synchronise, but no central entity
knows what has happened in the whole system so far.

It should be clear that a distributed framework is not trivially able to meet
security properties that were originally developed for simpler systems, such as
centralised systems or sequential programs. In the case of Information Flow,
we have seen some simple examples where we can lose precision. In the case of
BLP, we propose in the next Subsection an extension that will help us to adapt
the policy to a distributed setting.

6.1.2.3 Extending BLP

The original formulation of the BLP policy relies on three functions, which can
be computed by the Operating System every time an action is to be executed.
If the resulting state will be secure, then the action is allowed, otherwise it is
not. Two of the functions can be applied to every subject and one to every
object. In a setting without a central controller we may want to call any of
them with any possible entity of the system without distinguishing between
objects and subjects. Here we propose an extension to their domains in order
to have common signatures. We also propose a fourth function which captures
information about the past interactions for each entity. Later in the paper we
will see that this latter function can be used to have a form of localised state.

As for the existing functions, their types are changed to S ∪ O → L for all of
them, and their definitions are extended in a straightforward way as follows:

∀o ∈ O, s ∈ S : fS(o) = fO(o) ∧ fC(o) = fO(o) ∧ fO(s) = fS(s)

As for the new function, we will call it fH since it keeps track of (a part of)
the history of the system. When we apply this function to a particular input
subject (resp. object) we should learn what kinds of interactions the subject
(resp. object) has been involved in during the past. Therefore, the output of
the function would be a kind of current state of the argument subject (resp.
object). To capture this notion of state, the function will not be fixed once and
for all, as the original three functions were. Indeed, the output of this function
will be:

• (case1) For a particular subject: the least upper bound of the security
levels of all the objects read by the subject so far.

146 Framework extended: History-sensitive policies

• (case2) For a particular object: the least upper bound of the (current)
security levels of all the subjects that have written to the object so far.

For a subject, the value of the historical component can therefore range between
its initial value and that of the subject’s clearance. A lower value cannot be
possible due to the least upper bound restriction, and a greater value cannot be
possible because it would mean the ss-property was violated. Analogously, for
an object, the value of the historical component can range between its initial
value and that of the object’s security level. A greater value would mean the
?-property.1 was violated.

Furthermore, the historical components are non-decreasing, and this means that
every time there is a state change from (B, (fS , fC , fO, fH)) 4 to some (B′,
(fS , fC , fO, f ′H)) due to some interaction, the output of f ′H for some input may
be higher or equal to that of fH . This is straightforward by the following simple
lattice-theory result:

t(L) = t{t(L \ {a}), a} (∀a ∈ L) (6.1)

This establishes that the least upper bound obtained from a set L (⊆ L) is
the same as the one obtained from L minus any element and that very same
element. We should also observe that t(∅) = ⊥(∈ L).

New property The property expected from a system to satisfy this extended
BLP policy would be that a subject is only allowed to read objects with a
historical component lower than or equal to the subject clearance. Conversely,
a subject would only be allowed to write objects with a historical component
greater than or equal to the subject’s historical component. These properties
would replace the ?-property.2 since, instead of information about the objects
being operated by a subject right now, we now have information about the past
behaviour of the subject (process).

Formally, capturing the notion of state and the conditions that have to be
satisfied can be expressed as follows:

∀(s, o, a) ∈ B : ((a = read =⇒ fH(s) ≥ fO(o)
∧ fH(s) ≥ fH(o)
∧ fS(s) ≥ fH(o)) ∧

(a = write =⇒ fH(o) ≥ fC(s)
∧ fH(o) ≥ fH(s)
∧ fO(o) ≥ fH(s)))

(6.2)

4Assuming (B, (fS , fC , fO, fH)) to be some “virtual” global state that depends on the
interactions that have happened.

6.2 Framework for history-sensitive security 147

The first conjunct establishes that if a subject reads an object, then the historical
component of the subject is greater than or equal to both the security level and
the historical component of the object. Also, the clearance of the subject is
greater than or equal to the historical component of the object. The first and
third inequalities mimic the ss-property (and they are both indeed necessary,
as here we are considering non-fixed information). The second inequality relates
the history of both entities, to keep the track from both sides. In the second
conjunct, something analogous is established: the first and third inequalities
mimic the ?-property.1 and the second relates both histories.

We shall use these four functions to capture this extended version of BLP in a
distributed setting.

6.2 Framework for history-sensitive security

In this Section, we will provide an extension to our AspectKBL framework
aiming to describe the Bell-LaPadula policy as elegantly as possible. This exten-
sion will show how history-sensitive security policies can be precisely captured
in a distributed setting, and it will provide an example of many extensions one
might devise according to the needs. Furthermore, thanks to the use of Belnap
Logic, this specific resulting framework will have the capability of combining
both history-sensitive and future-sensitive policies, providing even more flexibil-
ity and power.

AspectKBL allows us to express location-based systems in a process-calculus-
oriented manner. These located processes interact with other locations when
they try to gather (or put) information from (or into) them (maybe themselves).
The locations holding data are known as tuple spaces. Every location in the
system may have either processes or data, or both. These locations can have
aspects of enforcement mechanisms attached to them, turning the framework
into an aspect-oriented language.

In this Section, an extension to that framework is made, mixing all process
locations and tuple locations into just entity locations, and attaching to them
more aspects than just the security policies. The extra information attached to
each location refers to security levels in the sense of a multilevel security policy.

The mechanisms of this extended language explicitly keep track of some infor-
mation (at a certain level of abstraction) regarding the interactions that have
taken place so far. This gives the flavour of a localised state, which the semantics

148 Framework extended: History-sensitive policies

of the language keep updated5.

One can also write aspects of enforcement mechanisms using that extra informa-
tion, which is basically the output of the functions mentioned in Section 6.1.2.3
(considering that every entity location can be either a subject and/or an object
in the whole system, so every location can be a potential input to all those
functions). This will then allow us to capture, among others, the BLP policies
without losing precision.

Following this informal introduction to our extension, which we shall call As-
pectKBL+ due to its enhanced features, we present its formalities.

6.2.1 Syntax

The Syntax of the basic part of the framework is the same as before. Moreover,
for the aspectual part there are only slight changes, providing the extended
features. This supports our argument from the beginning of this Chapter that
there is a second-order aspectual advantage.

Although there are few or no changes for the initial Tables, we still give all the
Tables again for completeness. However, the Table parts that are exactly the
same as in the basic AspectKBL framework are written in grey. Meanwhile,
the new or modified parts are written in red, surrounded by normal black for
ease of reading of the relevant dependencies.

The syntax of the AspectKBL+ language is given in Table 6.1. As evident by
the entire grey, this Table is exactly the same as Table 2.1 for the AspectKBL
language. Please refer to Chapter 2 for an explanation of each of the lines of
this Table.

The syntax of the aspectual components is given in Table 6.2. Compared with
Table 3.1, there are three new lines (in red) at the end of the Table, that repre-
sent the localised state we aim to express. There are also two small modifications
at the beginning and in the middle of the Table.

In this extended AspectKBL+ framework, the annotation w attached to every
location is not only an enforcement mechanisms, as it was inAspectKBL. Here,

5As one can argue, having information inside the locations, namely the tuples, also gives
us the flavour of state. However, that is information that changes according to what processes
do, and not due to the semantics of the language, so we cannot rely on that information for
guaranteeing any property.

6.2 Framework for history-sensitive security 149

N ∈ Net N ::= N1 || N2 | l ::w P | l ::w 〈
−→
l 〉

P ∈ Proc P ::= P1 | P2 |
∑
i ai.Pi | ∗P

a ∈ Act a ::= out(
−→
`)@` | in(

−→
`λ)@` | read(

−→
`λ)@`

` ∈ Loc ` ::= u | l
`λ ∈ Locλ `λ ::= ` | !u

Table 6.1: AspectKBL+ Syntax – Nets, Processes, Actions and Locations.

w ∈ Annot w ::= < lst, em >
em ∈ EM em ::= em⊕ em | em⊗ em | em ∧ em | em ∨ em |

em > em | em⇒L em | true | false | asp
asp ∈ Asp asp ::= [rec if cut : cond]
cut ∈ Cut cut ::= ` :: at . X

at ∈ Actt at ::= out(
−→
`t)@` | in(

−→
`tλ)@` | read(

−→
`tλ)@`

rec ∈ Rec rec ::= true | false | `1 = `2 | test(
−→
`t)` |

a occurs-in X | rec⊕ rec | rec⊗ rec |
rec ∧ rec | rec ∨ rec | rec⇒L rec | ¬rec| v1 ≥ v2

cond ∈ Cond cond ::= true | false | `1 = `2 | a occurs-in X |
¬cond | cond1 ∧ cond2 | cond1 ∨ cond2

`t ::= ` | _`tλ ::= `λ | _
v ∈ Lev v ::= Ss | Cs | Hs | Ot | Ht | γ
lst ∈ LocSt lst ::= < γS , γC , γH , γO >
γ ∈ L

Table 6.2: AspectKBL+ Syntax – Aspects in general, aspectual enforcement
mechanisms for security policies, and aspectual localised state.

there is also a localised state component lst beloging to the syntactic category
LocSt.

The localised state lst is intended to keep track of the interactions that the
location has been involved in so far. To this end, it consists of four values γS ,
γC , γH and γO, representing four security levels. Since these are security levels,
they belong to the lattice L defined in Section 6.1.2.1.

The four specific values of security levels stored in the localised state of a location
are those obtained by evaluating each of the four functions (fS , fC , fH and fO)
discussed in Section 6.1.2.3, passing as parameter for the location where the
lst component is attached. This means that each and every location (say l) of
the distributed system will have attached to itself the four values resulting from

150 Framework extended: History-sensitive policies

a occurs-in (P1 | P2) = (a occurs-in P1) ∨ (a occurs-in P2)
a occurs-in (

∑
i ai.Pi) =

∨
i(a matches ai ∨ a occurs-in Pi)

a occurs-in (∗P) = a occurs-in P
a occurs-in (0) = ff

Table 6.3: Continuation analysis operator occurs-in.

evaluating the four security level functions in the very same location l.

It is worth noticing that we do not consider these security level values stored in
the localised state component as first-class data (like in the case with location
names). Therefore, the vector (not tuple) of security levels is written with < . >
instead of 〈.〉.

With regard to the small modification in the middle of Table 6.2, the recom-
mendation rec can be, apart from all the other options already present in As-
pectKBL, a comparison between two values v1 ≥ v2. These two values belong
to the syntactic category Lev, which consists of security levels (those values in
L) and also five specific constructors Ss, Cs, Hs, Ot and Ht.

While defining a recommendation rec, one may refer to to a single constant
value from the lattice L or the security levels stored in the trapped interaction.
To do the former, one can provide a specific value, as the category v ∈ Lev
permits (by having γ among its choices).

To refer to the security levels stored in the trapped interaction, one can use
some of the five syntactic constructors Ss, Cs, Hs, Ot or Ht. These constructors
will later be matched by the semantics to the specific values kept in the localised
states of the locations involved in the current interaction.

Please refer to Chapter 3 for an explanation of the rest of Table 6.2 (the parts in
grey), since this is the same as Table 3.1, as mentioned above. For completeness,
we give here also Table 6.3, but this is exactly the same as Table 3.2, so please
refer to Chapter 3 for an explanation of it.

6.2.2 Semantics

The semantics are given by a one-step reduction relation on nets whose reaction
rules are defined in Table 6.4. Some auxiliary inference rules are given in Table
6.5, to make the reaction rules simpler. The semantics make use of a structural
congruence relation on nets, consisting of the usual congruence rules besides

6.2 Framework for history-sensitive security 151

[Rule− read]
(ls ::

ws read(
−→
`λ)@lt.P) || (lt ::wt 〈

−→
l 〉)

→ls(ws):r(
−→
l)@lt(wt) ls ::

w′
s Pθ || lt ::wt 〈

−→
l 〉 if b ∧ match(

−→
`λ;
−→
l) = θ

where wδ = < lstδ,emδ>, (δ ∈ {s, t});
and where b = grantL([[ems ⊕ emt]](ls :: read(

−→
`λ)@lt.P , lsts, lstt));

and where w′s = ws[(γ
H
s t (γOt t γHt))/γHs].

[Rule− in]
(ls ::

ws in(
−→
`λ)@lt.P) || (lt ::wt 〈

−→
l 〉)

→ls(ws):i(
−→
l)@lt(wt) ls ::

w′
s Pθ || lt ::wt 0 if b ∧ match(

−→
`λ;
−→
l) = θ

where wδ = < lstδ,emδ>, (δ ∈ {s, t});
and where b = grantL([[ems ⊕ emt]](ls :: in(

−→
`λ)@lt.P , lsts, lstt));

and where w′s = ws[(γ
H
s t (γOt t γHt))/γHs].

[Rule− out]
(ls ::

ws out(
−→
l)@lt.P) || (lt ::wt Q)

→ls(ws):o(
−→
l)@lt(wt) ls ::

ws P || lt ::w
′
t 〈
−→
l 〉 || lt ::wt Q if b

where wδ = < lstδ,emδ>, (δ ∈ {s, t});
and where b = grantL([[ems ⊕ emt]](ls :: out(

−→
l)@lt.P , lsts, lstt));

and where w′t = wt[(γ
H
t t (γCs t γHs))/γHt].

Table 6.4: Reaction semantics of AspectKBL+.

those given in Table 6.6. The semantics also make use of an operator match,
for matching input patterns to actual data, defined in Table 6.7. With this, →
is a relation over Net×Lab×Net, and it defines from which nets we can move
to other ones and what the label of the transition is. Also, ≡ is a relation over
Net ×Net, and it defines which pairs of net expressions actually identify the
same net.

The three reaction rules of Table 6.4 are quite similar to those in Table 4.1,
except for two main differences. The first is that now the decision on whether
to grant or deny the action depends not only on the action itself, but also on
both localised states lsts and lstt. This will be clearer in Section 6.2.3, but
we could at least say that this is the main aim of history-sensitive policies;
to depend on the current (localised) state. The second difference is that the
annotated information of one of the interacting locations can change, according
to an extra “where” line in each semantic rule.

152 Framework extended: History-sensitive policies

N1 →lab N ′1

N1 || N2 →lab N ′1 || N2

N ≡M M →lab M ′ M ′ ≡ N ′

N →lab N ′

ls ::
w a1.P1 || N →lab N1

ls ::
w a1.P1 + a2.P2 || N →lab N1

ls ::
w a2.P2 || N →lab N2

ls ::
w a1.P1 + a2.P2 || N →lab N2

Table 6.5: Semantics of AspectKBL+ (auxiliary).

l ::w P1 | P2 ≡ l ::w P1 || l ::w P2

l ::w ∗P ≡ l ::w P | ∗P
l ::w P ≡ l ::w P || l ::w 0

l ::w 〈
−→
l 〉 ≡ l ::w 〈

−→
l 〉 || l ::w 0

N1 ≡ N2

N || N1 ≡ N || N2

Table 6.6: Structural Congruence.

In rules [Rule − read] and [Rule − in], if the action is granted, the localised
state of location ls might be modified, changing the historical component of its
annotation by the least upper bound of the previous value and the security level
of the target location lt. This follows the suggestion of Equation 6.1.

In rule [Rule− out], if the action is granted then the location now holding the
data has an historical component on the annotation that is the least upper
bound of the previous value in the location lt and the security level of the
process location ls that has written the data. It can of course happen to result
as the same as in the original lt if the least-upper bound calculations result in
that. It is worth noticing that only the part of the location lt holding the data
can increase its historical component and not the part holding the process Q.
Indeed, process Q has not received any new information so nothing could be
leaked from it.

To simulate the log-in of a subject in a lower level than its clearance, a process
can be annotated with a value for γC lower than the γS . This value will then
never change, just as with the γS and γO components of the localised state. Note
also that the enforcement mechanism em never changes either, and this is due
to the well-formedness condition imposed on nets inherited from AspectKBL.

For an explanation of the remaining parts of each rule from Table 6.4, please
refer to the explanation of Table 4.1 in Chapter 4.

6.2 Framework for history-sensitive security 153

match(!u,
−→
`λ ; l,

−→
l) = [l/u] ◦match(

−→
`λ ;
−→
l)

match(l,
−→
`λ ; l,

−→
l) = match(

−→
`λ ;
−→
l)

match(ε ; ε) = id
match(· ; ·) = fail otherwise

Table 6.7: Matching Input Patterns to Data.

As it is evident by the grey, Tables 6.5, 6.6 and 6.7 are exactly the same as
previous Tables, in this case Tables 4.2, 4.3 and 4.4 respectively. Therefore,
please refer to Chapter 4 for an explanation of these.

Example Let us recall Example 2.3 and modify it slightly to show how the
historical information is updated according to the semantics. Assume now that
in the HealthCare Data Base, the tuples corresponding to Private Notes have a
higher security level than those corresponding to Care Plans. Assume we use the
set of natural numbers as our lattice L. Then, the NetData could be redefined
as:

NetData′ = EHDB ::<<γ
S
EHDB,γ

C
EHDB,1,1>,emEHDB>

〈Alice, CarePlan, alicetext〉
||
EHDB ::<<γ

S
EHDB,γ

C
EHDB,2,2>,emEHDB>

〈Bob, PrivateNotes, bobtext〉

where we omit the specific values of some parts of the annotation.

Assume our Doctor Hansen now has two processes, one for reading Alice’s in-
formation and the other for reading Bob’s. We could redefine it as:

NetHansen′ = Hansen ::<<100,0,0,γO
Hansen>,emstaff>

read(Bob, PrivateNotes, !content)@EHDB. P1

|
read(Alice, CarePlan, !content)@EHDB. P2

where we also omit the specific values of some parts of the annotation, and we
assume the Doctor Hansen has a very high clearance (γSHansen is 100), but he
decided to log into the system with the lowest one (γCHansen is 0).

154 Framework extended: History-sensitive policies

Now, the evolution of the processes could follow the next fashion:

NetData′ || NetHansen′
→
NetData′ ||
Hansen ::<<100,0,2,γO

Hansen>,emstaff> P1θ1 ||
Hansen ::<<100,0,0,γO

Hansen>,emstaff>

read(Alice, CarePlan, !content)@EHDB. P2

→
NetData′ ||
Hansen ::<<100,0,2,γO

Hansen>,emstaff> P1θ1 ||
Hansen ::<<100,0,1,γO

Hansen>,emstaff> P2θ2

where we omit the labels for the transition relation → and also the details of
the substitutions θ1 and θ2. Indeed, what we want to emphasise is that as soon
as one of the processes in the location performs some action, its historical com-
ponent could be increased. We highlight in red the localised state components
that change in each step.

Moreover, if some action takes place, then if the process location has more
than one process running in parallel, it automatically “splits”6 into two separate
locations, one holding each of the processes7. This certainly occurred in the first
transition, but not in the second one, since the location had just one process at
that point.

It is worth noting that this does not help at all, unless we have some security
policies that use those values to prevent some possibly insecure transitions. For
instance, we could have a policy that forbids writing to certain locations if the
historical component is greater than a certain value, because this might mean
that a reading of some high information has been done.

6.2.3 Evaluation of policies

While the grantL() function we use for this extended AspectKBL+ framework
is the same we have been using, namely the liberal one, the evaluation function
[[.]] changes its definition compared to the one for AspectKBL.

The evaluation function [[.]] (Table 6.8) is defined inductively on the structure
of the (infix) enforcement mechanism. The inductive case, in the second line,

6A similar situation that occurs with rule [Rule − out] distinguishing between one tuple
location and one process location.

7Furthermore, notice the different parallel composition operator.

6.2 Framework for history-sensitive security 155

[[[rec if cut : cond]]](act, lsts, lstt) =
case check(extract(cut) ; extract(act)) of

fail : ⊥

θ :

{
[((rec θ)θ′)] if [(cond θ)]
⊥ if ¬[(cond θ)]


where θ′ = [Ss 7→ γS , Cs 7→ γC , Ot 7→ γO, Hs 7→ γHs, Ht 7→ γHt]
and where < γS , γC , γHs,− >= lsts and < −,−, γHt, γO >= lstt

[[em1 φ em2]](act, st1, st2) = ([[em1]](act, st1, st2)) φ ([[em2]](act, st1, st2)),
(φ ∈ {∧,∨,⊗,⊕, >,⇒L})

[[true]](act, st1, st2) = tt
[[false]](act, st1, st2) = ff

where act = l :: a . P

Table 6.8: Evaluation of enforcement mechanisms in EM for AspectKBL+.

and two of the base cases, the trivial ones in the last two lines, are the same
as for AspectKBL. The other base case, in the first line, changes slightly with
respect to AspectKBL.

As discussed in Section 6.2.2 according to Table 6.4, there are two extra parame-
ters. These two parameters give to the evaluation function [[.]] the localised state
of the two locations involved. Then, the grantL() function will take the 4-valued
Belnap result of performing the evaluation [[.]] and will give a final decision on
whether to grant the action.

The two extra parameters are passed inductively in the 3 last lines of Table
6.8, and this is the only change of these lines with respect to Table 4.5 for
AspectKBL.

As for the first line, the two parameters are pattern matched and some of their
components are used. This is done in the second “where” line. From the subject
location involved in the interaction, the security levels that are considered are
its clearance, its current logging level and its historical component. These values
are stored in the temporary variables γS , γC , and γHs respectively. The object
classification is ignored, as the location is taking the role of a subject in the
current interaction. From the object location involved in the interaction, the
security levels that are considered are its historical component and its object
classification. These values are stored in the temporary variables γHt, and γO.
The clearance and the current logging level are ignored, as the location is taking
the role of an object in the current interaction.

156 Framework extended: History-sensitive policies

check(α,−→α ; α′,
−→
α′) = check(−→α ;

−→
α′) ◦ do(α;α′)

check(ε ; ε) = id
check(· ; ·) = fail otherwise

do(u ; l) = [u 7→ l]
do(!u ; !u′) = [u 7→ u′]
do(X ; P) = [X 7→ P]
do(_ ; l) = id
do(_ ; !u) = id
do(l ; l) = id
do(c ; c) = id
do(· ; ·) = fail otherwise

Table 6.9: Checking Formals to Actuals AspectKBL+.

The most important extension done in Table 6.8 with respect of Table 4.5 is then
in how the decision of the recommendation rec of the enforcement mechanism
is done. Apart from obtaining a substitution θ according to the specific action
being attempted, it used a special substitution θ′. This substitution uses the
values of the security levels stored in the locations involved. The places where
these values will be used within the recommendation rec depend on the five
syntactic constructors Ss, Cs, Hs, Ot or Ht, presented in Section 6.2.1. These
constructors might appear in the recommendation rec being compared to some
constructor or to a constant value of a security level. In all such cases, the
substitution θ′ will make the comparison to be done against a specific security
level stored in the localised states of the locations involved, thereby making
the access control decision depend on the current state and hence on the past
interactions, as we have seen that the historical component is kept updated by
the semantics of Table 6.4.

Please refer to Chapter 4 for an explanation of how substitution θ is obtained,
and what functions extract and check work. This latter function is given in
Table 6.9 for completeness, but as evident by the grey, it is exactly the same as
for AspectKBL, defined in Table 4.6.

6.2.4 Capturing BLP in AspectKBL+

Having developed our formal framework, we will now show how the extended
BLP policy of Section 6.1.2.3 can be elegantly captured. We will also show
that we can easily decide which cases of the example in Section 6.1.1 are secure
and which are not, without losing any precision, unlike the information-flow

6.2 Framework for history-sensitive security 157

approach.

Recall thatAspectKBL+ is a process calculus and, even though in the original
formulation of BLP the compliance with the policy is checked against the states,
here we can just check the transitions. Then, to avoid insecure states, we will
check if a transition might take us to such a state, thereby avoiding the transi-
tion. Also recall that, when describing aspects of enforcement mechanisms, we
are able to use the five syntactic constructors from the syntactic category Lev,
which will later be substituted by the evaluation function [[.]]. So basically using
these features we aim to capture the BLP policy.

The first aspects Let us focus first on the ss-property, which prescribes
that a subject cannot read an object that has higher security level than itself.
The actions that can read information from other locations are the read and
the in actions. So the aspects that capture the ss-property are the following:[

Ss ≥ Ot if ls :: read(−)@lt.P : true
]

(6.3)[
Ss ≥ Ot if ls :: in(−)@lt.P : true

]
(6.4)

Note that each aspect is trapping a particular action, without caring about
the parameters and with a trivial applicability condition. Whenever some of
these aspects trap an action, the recommendation will be considered, granting
access only if the security level of the subject is not lower than that of the
object, since the two syntactic constructors Ss and Ot will then be replaced by
the corresponding security levels of the actual interacting locations, thanks to
Tables 6.4 and 6.8.

For the ?-property.1, which prescribes that a subject cannot write any object
that has lower security level than the level at which the subject currently is, we
have to follow a similar approach. Considering that the write actions are the
out and the in (since deleting data is a form of write, because some implicit
information could be communicated), the aspects are as follows:[

Ot ≥ Cs if ls :: out(−)@lt.P : true
]

(6.5)[
Ot ≥ Cs if ls :: in(−)@lt.P : true

]
(6.6)

Whenever some of these aspects trap an action, the recommendation will grant
access only if the security level of the object is not lower than the one the subject
is currently logged in (note the use of Cs instead of Ss).

The ?-property.2 Now let us consider the ?-property.2, which was the one
that motivated the discussion and later the extension of the BLP model done

158 Framework extended: History-sensitive policies

in Section 6.1, due to the difficulty of capturing it precisely in a distributed
setting. Note that the semantics of AspectKBL+ will keep track of the least
upper bound of the security levels of the objects read by a particular subject
location, because it updates it whenever the subject reads something that is not
lower than the current value. A similar observation can be made for the object
locations.

Let us consider a subject location which might have read some high information
as long as its security level allows it (otherwise either aspect 6.3 or 6.4 would
have denied it). Any subsequent write to a low location must be denied, and
in principle either aspect 6.5 or 6.6 might decide this, unless the subject is
currently logged into the system with a low security level. In any case, using
the localised state that we have in the subject location, and making use of the
Hs syntactic constructor provided by the syntax for expressing aspects of Table
6.2, we define the following aspects:[

Ot ≥ Hs if ls :: out(−)@lt.P : true
]

(6.7)[
Ot ≥ Hs if ls :: in(−)@lt.P : true

]
(6.8)

These can be understood in a similar way to aspects 6.5 and 6.6, with the differ-
ence being that they are considering the localised state of the subject location,
instead of the level at which the subject is currently logged into the system.

Analogous considerations can be made for an object location, and we can define
the following aspects to finish capturing the whole BLP policy:[

Ss ≥ Ht if ls :: read(−)@lt.P : true
]

(6.9)[
Ss ≥ Ht if ls :: in(−)@lt.P : true

]
(6.10)

Combining the aspects After defining these eight aspects, the idea is to
combine and attach them to every location, so every time an interaction is
to take place, the semantics will consider all the aspects before allowing the
interaction to happen.

Since the BLP model says that a state is secure if both properties are satisfied,
then we need to make sure that none of the aspects representing the properties
detects a possible insecure interaction, as that would mean that at least some of
the properties are not satisfied. For capturing this situation, the Belnap operator
that must be used to combine the aspects to attach them to the locations is again
⊕.

Now we are ready to state the following:

6.2 Framework for history-sensitive security 159

Proposition 6.1 If a distributed system could become insecure in the sense
of Section 6.1.2.3 after performing an interaction, then some of the aspects from
Equations 6.3 to 6.10 would deny the interaction.

Proof. It should be clear that if a system could become insecure in the sense
of the ss-property (the clearance of the subject trying to read some data is
lower than the security level of the data itself), then either aspect 6.3 or 6.4
would deny the interaction. Similarly, in the sense of the ?-property.1 then
either aspect 6.5 or 6.6 would do so.

We shall then focus on the ?-property.2. If a system could become insecure in
the sense of Equation 6.2 when the interaction is performed, then we know that
the following predicate, which is of course the complement of the one expressing
security in Equation 6.2, would become tt:

∃(s, o, a) ∈ B : ((a = read ∧ (¬fH(s) ≥ fO(o)
∨ ¬fH(s) ≥ fH(o)
∨ ¬fS(s) ≥ fH(o))) ∨

(a = write ∧ (¬fH(o) ≥ fC(s)
∨ ¬fH(o) ≥ fH(s)
∨ ¬fO(o) ≥ fH(s))))

For the first disjunct, assuming the action is a read (resp. in in our case),
then the first (resp. second) rule in the semantics of Table 6.4 would take
care of making both fH(s) ≥ fO(o) and fH(s) ≥ fH(o) satisfied, by updating
the historical component on the subject location. Therefore, ¬fS(s) ≥ fH(o)
should become satisfied in order to satisfy this disjunct. Since the historical
component cannot be changed for the object location according to the action we
are assuming, the value of fH(o) should be the same just before the interaction,
and therefore aspect 6.9 (resp. 6.10) would avoid the interaction. This shows
the first disjunct cannot become tt.

For the second disjunct, the case of out action follows the same reasoning and
then aspect 6.7 would avoid the interaction, preventing the second disjunct
from becoming tt. There is a small extra argument in the case of in. Indeed,
in such case the historical component can indeed be changed. Therefore, we
may think that ¬fO(o) ≥ fH(s) could be satisfied if the interaction actually
takes place. But we shall show that although fH(s) might have been lower
before the interaction, it still must have been greater than fO(o), in which case
aspect 6.8 would have denied the interaction. Certainly, had fH(s) been lower
than or equal to fO(o), after the interaction it would still be equal (as it is the
result of taking the least upper bound done by the semantics of Table 6.4). This
concludes the proof. �

160 Framework extended: History-sensitive policies

For the converse proposition, we need to make an extra observation, to be
discussed in Section 6.2.4.1.

6.2.4.1 Initialising the historical value

The aspects just defined will check, among other values, the historical com-
ponent γH attached to each location, and that value will be kept updated by
the semantics of AspectKBL+. However, initially, one must give a particular
value for the component. The chosen value will not affect the correctness of the
aspects detecting insecure interactions, but in order to fulfil our requirement
not to lose any precision while doing so (unlike the information-flow approach)
the value should be ⊥ ∈ L. This follows the suggestion of Equation 6.1 and the
observation just after it. Now we are ready to state the converse of Proposition
6.1:

Proposition 6.2 If some of the aspects from Equations 6.3 to 6.10 deny an
interaction, then the hypothetical resulting global state, in the event the interac-
tion was actually allowed, is insecure in the sense of Section 6.1.2.3.

Proof. Let us call the target location of the interaction t. Assume aspect 6.9
denies the interaction (for the other, the reasoning is similar). Then we know
that ¬fS(s) ≥ fH(o) is satisfied. But since fH(o) equals ⊥ ∈ L at the beginning,
this means that fH(o) was increased by the semantics of Table 6.4 due to some
past action. If the aspect is not present and so the interaction is allowed,
then there will be a tuple (s, o, a) where a = read and where fS(s) < fH(o),
not satisfying Equation 6.2. Moreover, any possible past action that increased
fH(o) must have been an out action. This means that in the target location t
there must be some data with security level greater than or equal to fC(s) and
to fH(s) (for any subject s that has written to t). Therefore, allowing a subject
with clearance equal to fS(s) to read from that location is clearly insecure. This
concludes the proof. �

We can now easily verify that the three examples of Figure 6.1 are precisely
captured. It is particularly important to take into account what could happen
after the process in location E writes to location D (Figure 6.1c). For the
process in D to be actually influenced by this, it must explicitly read the data,
since the semantics of AspectKBL+ will put it in another “virtual” location,
with a higher historical component. So if the process is influenced, then at t3

6.2 Framework for history-sensitive security 161

the aspects (actually aspect 6.7) will prevent the write to C, otherwise the write
will be allowed.

6.2.5 Example of history- and future-sensitive combina-
tion

Let us now consider a small example to show how to combine looking to the
future and to the past. Assume an airline has a database containing information
about the passengers. The historical component of the database location is
initialised to ⊥ ∈ L so any process could read from it, but after some data is
written, only some processes could do so, according to the security level of the
data written. The aspect that prescribes this is:[

clearanceu ≥ historyAirlineDB
if u :: read(pass,−)@AirlineDB.P : true

]
(6.11)

As it can be seen, 6.11 is a special case of aspect 6.9, but it is written like this
to emphasise the example.

One of the process locations that will not be allowed to read data from the
database due to the previous aspect is the Government, whose clearance should
not be enough to satisfy the rec of the aspect. Indeed, the historical component
of the database should be high enough since the data written in there might be
sensitive for the passengers.

However, in times of heightened security due to probable threats, the Govern-
ment should be able to audit the passengers, therefore it is necessary to allow
the Government to read the database. At all events, this should be allowed if
the Government, later, will not give the passengers’ data to the Press, to keep
satisfying the right to privacy of the passengers. The following aspect prescribes
this:  ¬(out(data)@PressRelease occurs-in P)

if Government :: read(pass, data)@AirlineDB.P :
test(threatlevel, high)@AirlineDB

 (6.12)

In the presence of this aspect, the Government will be allowed to perform the
read action, as long as there is a tuple < threatlevel, high > in the Airline
database (i.e. the Airline was already notified of the heightened security situa-
tion), and also as long as the Government process trying to read the data will
not leak the data to the Press in the future.

However, one of the conditions is set in the cond of the aspect, whereas the
other is in the rec. The reason is related to the fact that this aspect is a tem-

162 Framework extended: History-sensitive policies

porary one, and the aim is to combine it with the previous one from Equation
6.11. Moreover, the combination should be done in a way that the Government
should actually be allowed to read the database, although the pre-existing as-
pect (aspect 6.11) might deny this. Therefore, the Belnap operator needed for
combining the two aspects is the priority >, and then the whole security policy
for the Airline database would be 6.12 > 6.118.

With this, if the process location is the Government and the heightened security
situation was declared, then aspect 6.12 will be considered. Otherwise, either
the action will not be trapped by the aspect (if the process location is not the
Government) or the condition cond will be ff (if the threat level is not high),
resulting in both cases in a ⊥ ∈ Four for aspect 6.12, considering then the
aspect 6.11.

6.3 Chapter final remarks

Other history-sensitive policies WithAspectKBL+, other history-based
security policies can be encoded. For instance, the Chinese Wall [BN89] security
policy would only need a careful design of the lattice L of security levels and
of the initial level annotations of the locations involved. Indeed, assume there
are two competing companies C1 and C2, and the policy says that a reader R
is allowed to read information from at most one of them. We can set to γC1

and γC2 the security level (γO) of locations keeping information about C1 and
C2 respectively, and to γ0 the clearance (γS) of R. Assuming that γ0 ≥ γC1 and
γ0 ≥ γC2, and that γC1 and γC2 are incomparable, for instance as in Figure 6.3,
the policy is satisfied if the following Aspect is present:[

Ot ≥ Hs if ls :: read(−)@lt.P : true
]

(6.13)

Certainly, as soon as R reads from one company, say C1, the historical com-
ponent will be increased by the Semantics9. Then, if R tries to read from the
other company, say C2, Aspect 6.13 will deny the interaction.

Validating this framework In order to validate global security policies ex-
pressed in the AspectKBL+ framework, the temporal logic ACTLv from
Chapter 5 has to be extended as well. Actually, the extension is not really

8Note that using this policy with the priority, the aspect 6.12 could even remain there,
instead of just being a temporary one, since it will be ignored in most of the cases, as long as
the tuple < threatlevel, high > is removed after the situation is normalised.

9We are assuming that the historical component is initialised to ⊥ ∈ L, as discussed in
Section 6.2.4.1

6.3 Chapter final remarks 163

γ0

γC1 γC2

⊥
�
�
��

@
@

@@

@
@
@@

�
�

��

(a) Partial ordering defined by ≤k

Figure 6.3: An example of lattice L for a Chinese Wall policy with two Com-
panies.

dramatic, just the basic predicates bp from the syntactic category BasicPredi-
cates have to include some new construction. In this case, in order to compare
security levels, either being fixed constants or those coming from the localised
states, there has to be included a comparison construction. This comparison
might be matched by some recommendation rec holding some comparison in
the sense of Table 6.2.

The rest of the logic remains the same as in Chapter 5. Indeed, as it is designed,
in particular Table 5.1, the entire aspect attached to the locations involved is
available for analysis. The label ∈ Lab is certainly accessed completely by the
logic, as long as the semantics of the language create the required label (so far
both Table 4.1 for AspectKBL and Table 6.4 for AspectKBL+ do that).
Then, the semantics of the logic from Chapter 5 will do their work as long as
the necessary basic predicates are available.

Related Work In [SM03], a comprehensive survey on Information Flow is
given, though mainly focused for sequential programs. However, some research
directions on enforcing security for distributed systems are mentioned. [SM02]
develops a type-system-based approach to statically enforcing security in dis-
tributed systems. There, it is argued that the type system is not over-restrictive,
implicitly assuming that some precision might (and must) be lost.

164 Framework extended: History-sensitive policies

Chapter 7

Conclusion

Throughout this dissertation, we provided several arguments to support our
main thesis:

It is possible to provide security to the information travelling around
a closed distributed system by means of combining sets of enforce-
ment mechanisms, each one relevant just to certain communications
within the system.

We discussed some developments over distributed systems, and this brought us
one step towards enforcing security in such systems. In particular, we achieved
the following:

• We presented a framework for developing closed distributed systems and
the use of aspectual enforcement mechanisms to provide security.

We named the framework AspectKBL, which stands for the name of the
original distributed systems framework on which we are based, KLAIM,
and resembles the use of aspects, Belnap Logic, and labels (in the transi-
tions).

There has been some previous work towards the same goal [HNNY08,
YHNN]. However, in our case we do not depend on any central controller

166 Conclusion

to achieve our results. Indeed, the enforcement mechanisms are attached
to the necessary locations, and they become active automatically when-
ever it is relevant. The semantics of AspectKBL take care of this, just
involving the relevant locations and nothing else.
To achieve the intermediate necessary result of logically combining the
relevant enforcement mechanisms, we rely on the 4-valued Belnap Logic.
With this logic, we can keep the internal results of combining the aspectual
enforcement mechanisms, and we can provide a definite 2-valued Boolean
answer on whether to grant or deny the interaction. This shows that it is
possible to provide consistent security in the presence of conflicts.
We have developed a theory around the 4-valued to 2-valued mapping
approaches. With this, it should be possible to provide more precise and
powerful results while analysing what the results of the combination of
enforcement mechanisms will entail at runtime.

• We have shown that, under certain conditions, a distributed system can
enjoy expected global security properties, being partly enforced by the indi-
vidual components of the system.
Using our AspectKBL framework, we developed a logic for analysing
overall global properties of the labelled transition system induced by the
semantics over given networks. With this, a proper assessment of networks
can be done statically to predict if these will satisfy the desired properties.
To overcome the state explosion problem, and also some undecidability
issues, we proposed an alternative way of model checking, borrowing ideas
from the static analysis community. For this, it is not necessary to span
the entire labelled transition system to perform the analysis. Instead, the
network description can be used directly, and this provides a faster way
to model check it. This of course has the drawback of some imprecision
while doing the analysis. However, we have shown that any network that
is certified is indeed secure with respect to the desired property. This
means that our analysis is safe.
We used an aspect-orientation approach for attaching enforcement mech-
anisms to the locations in our AspectKBL framework. This provided us
with large flexibility for modifying systems. Indeed, as we have an efficient
way of model checking our networks, we can approach the design of secure
closed distributed systems iteratively. This means that we can design a
basic system, and then check whether it satisfies the desired properties. If
it does not, then we can modify the system by just changing the aspectual
enforcement mechanisms, and then check again. This iterations are sim-
ple an efficient enough, and they do not need to modify the basic system,
making use of the advantage of aspect orientation.
As our enforcement mechanisms only become relevant to some interac-
tions, they contribute partly to the overall goal of satisfying the global

7.1 Future work 167

security properties. With this, we have shown that it is possible to pro-
vide distributed security. We have restricted ourselves to closed systems,
and we have set some special restrictions to how extent our later analyses
are possible. Still, our work provides ideas towards finding general solu-
tions to the problem of distributed security, and we have indeed moved
one step towards this solution.

• We have shown how our approach can be extended to solve other problems
with security in distributed systems. In particular, we aimed this extension
to capture history-sensitive security policies in distributed systems.

We have shown how the aspect-orientation ideas we have used throughout
the work can provide a secondary advantage while modifying our frame-
work as well. We were able to extend the framework to cover other security
issues not covered by the basic AspectKBL framework. The modifica-
tions we needed to make in order to achieve our goal were minimal, in
part thanks to a smart design of our basic framework and in part also
because the framework uses aspect orientation. We named this extended
framework AspectKBL+.

The extended AspectKBL+ framework extends the basic AspectKBL
framework with some historical ingredients. These extra ingredients are
also represented by means of aspectual information to the locations. This
permits covering history-sensitive security policies, which are not covered
by the basic framework. Then, we were able to show that it is possible to
precisely enforce history-sensitive security policies in distributed systems.
These kinds of policies are traditional for stand-alone systems, but for
distributed systems they are not easily captured.

We based our developments on the Bell-LaPadula model. We have also
shown that without modifying the framework it is possible to capture other
history-sensitive policies, such as the Chinese Wall. Moreover, as we have
shown how adaptable the framework is, it is certainly possible that more
complex history-sensitive policies can be captured by slightly extending
the framework accordingly.

7.1 Future work

During the preparation of this dissertation, we have identified several lines of
work that are related to the work reported in this dissertation. Some of these
should certainly be investigated, and we point here to the main directions to
follow.

168 Conclusion

4-valued to 2-valued mappings approaches In Chapter 3, we mentioned
the four mapping approaches that are possible from 4-valued to 2-valued logic.
Furthermore, we developed a theory around these 4-valued to 2-valued mapping
approaches. We later used just some of these properties to perform our analysis
and further developments, and all of this was done using one particular mapping
approach: the liberal one.

In future work, we might go one step further, by bringing together at least two
or perhaps all the four mapping approaches, and using them in a combined way
to develop some security policies composition. A combination of them should
be possible, but this may lead to some other types of problems. For instance, as
we mentioned, the mapping approach has to be considered while designing the
necessary security policies. If then more than one mapping approach is used,
perhaps some unexpected conflicts might arise, and therefore more developed
techniques will be required.

The assessment of conflict resolution while combining must and cannot policies
may be relevant to this direction, as we could use different mapping approaches
for different types of conflicts. Indeed, throughout this work, we have only
worked with cannot policies that, in some circumstances, forbid an interaction
to happen. Then, solving conflicts is only a matter of making all the policies
happy with the final decision, and this might mean denying the action. However,
in the presence of policies that prescribe some interaction must take place, the
resolution of conflicts can be more tricky. There might be cases where it is
not possible to satisfy each and every policy. Besides perhaps using different
mapping approaches to try to solve these conflicts, other suggestions could be
to use some weighting, or adding probabilities to the resulting system analyses
to aim at obtaining the most secure.

Another direction of future work with the 4-valued to 2-valued mapping ap-
proaches is fully theoretical. Certainly, the developments of Chapter 3 suggest
that some topologic space could be constructed using the 4-valued Belnap values
and their mapping approaches. With this, higher-order theories about combi-
nation of policies and conflict resolution might arise. We did not go into the
details of this, as this was not the main aim of the current work. However, this
is something that certainly looks worth approaching.

Finally, the most mundane of the possible future directions is indeed the most
practical one, and the one that should always be considered while doing any
development with the 4-valued to 2-valued mapping approaches. This is the use
of more of the interesting properties from Chapter 3 to improve the efficiency,
precision and power of the analyses developed in Chapter 5.

While performing our alternative approach for model checking, we are statically

7.1 Future work 169

assessing what the aspectual enforcement mechanisms will decide at runtime.
Their combination at runtime is certainly within 4-valued Belnap Logic, and
only at the very last moment is this mapped into 2-valued logic to decide on
whether to grant the action. However, since our analysis is done statically, and
actually some of the enforcement mechanisms might have ungrounded variables,
we may not perform the very same 4-valued to 2-valued mapping to capture
exactly what will happen at runtime.

We know that operating in 2-valued logic is easier and more efficient, and in-
deed there are several solvers that could do this automatically in different ways.
However, if we map from 4-valued to 2-valued logic too early, then we might be
losing some precision. Still, if we count on valid equivalences to perform this
mapping, we can certainly do it precisely. Moreover, some of our properties re-
late 4-valued expressions, so we could use them to make some formula reduction
to get simpler formulae at the first steps of the analysis.

Improve global properties We have developed in Chapter 5 a logic for
analysing global properties of closed distributed systems. It is clear that this
logic is quite restricted, and it can only detect a limited set of possible security
flaws. In that Chapter, we also presented our alternative approach for model
checking, borrowing some ideas from static analysis. In future work, the logic
must be extended, and more static analysis ideas should be used.

In our ACTLv from Chapter 5, we have a syntactic restriction over the target
location of the labs subscript for an obligation. This is to be sure which are the
aspectual enforcement mechanisms relevant to the given action we are analysing
using our efficient model checking. It is clear that, if one aims at using traditional
model checking spanning the entire LTS, this limitation can be relaxed without
any problem. However, if we aim at relaxing this limitation, some static analysis
ideas have to be applied further, in particular to detect the set of possible
constant values that the variable target location can have. With this, the sets
of possible enforcement mechanisms can be derived, and then some case analysis
can be done over these.

Another direction of improvement of the logic for global properties is clearly
with the basic predicates we can express. Currently, we can only write equality
comparison and test of values within some location. This should be extended
to cover larger sets of basic predicates that might be needed to capture security
properties we might be interested in.

Finally, if planning to improve the logic for global properties, one large very in-
teresting problem that remains unsolved is with liveness properties, for instance

170 Conclusion

making sure the Doctor eventually writes information about the treatment he
did to the patient into the health care database. Again, we could certainly de-
fine EF operators for the obligations, as opposed to the existing AG. Then,
traditional model checking could certainly be done, if decidability issues do not
hinder this, and if state explosion inefficiency does not become an obstacle. How-
ever, aiming at certifying these liveness properties using our alternative model
checking approach is certainly not possible. Indeed, we are using the decisions of
the aspectual enforcement mechanisms, and these can be denying some action,
but never ensuring it. This might change with the addition of must policies
as discussed at the beginning of this Section. However, it is not completely
clear how conflicts will be resolved. So, doing efficient model checking of these
liveness properties is still an open problem.

The last point to mention is about improving the tool that makes the proof
of concept of the efficient model checking of Chapter 5. The tool itself is in
prototype state. Moreover, some implementation details are not completely
smooth. Furthermore, if the theory behind the tool, namely the logic for global
properties, is improved in the ways mentioned in the previous few paragraphs,
the tool should certainly reflect these improvements at some point.

Other directions Other possible research directions that are related to the
one taken throughout this dissertation are the following:

• Our work focuses on distributed systems that are closed. With this re-
striction we are able to perform our developments. In particular, this is
necessary for the developments of Chapter 5, as one needs to know what
the single actions are. In future work, it might be interesting to see how our
developments could be adapted to a setting where the eval and newloc
actions from the original KLAIM are used. Furthermore, a completely
open distributed system might pose other research problems, that could
make the adaptation of our developments a non-trivial task.

• It must be worth researching how aspectual enforcement mechanisms could
be enough to guarantee some overall global security property. This means
that no process at all must be needed to perform this analysis. So, direct-
ing the model checking by inspecting each single action will no longer be
possible. The idea would be to direct the model checking by inspecting
what the aspects prescribe, and what sets of transitions are allowed by
these. With this, sets of possible reachable situations could be obtained.
Then, if some insecure state lies in some of these sets, we could conclude
that the aspects are not enough. On the other hand, if the insecure states
are certainly not reachable, we could conclude that the aspects are enough

7.1 Future work 171

to certify the global property, no matter which processes are running in
the locations where the aspects are.

• Going even one step further, we could imagine the automatic synthesis of
aspects for enforcing given global properties. Indeed, one might design the
desired global property that one expects the system to satisfy, and then
automatically obtain the necessary aspect for guaranteeing the property
is met. Then, once the aspects are there, one can design the basic system
and the global property will be satisfied, no matter what processes are
involved.

172 Conclusion

Appendix A

Proof of properties from
Chapter 3

In this Chapter, we give the proofs to the properties about the various grant()
functions from Chapter 3, Sections 3.2 and 3.3. We divide the current Chapter
into Sections in the same way the original properties are given in Subsections,
namely 3.2.1, 3.2.2, 3.2.3 and 3.3.1.

A.1 Proofs from Section 3.2.1

Proposition 3.1 The following relation holds for every f1, f2 ∈ Four:

grantD(f1 ⊕ f2) = grantD(f1) ∨ grantD(f2)

Proof. Firstly, let us observe that for every f ∈ Four, grantD(f) = tt if and
only if tt ≤k f . Second, let us observe that, since the ⊕ operator is a join in
the ≤k lattice, then tt ≤k f1 ⊕ f2 if and only if tt ≤k f1 or tt ≤k f2. Then, the
result follows immediately, as the left-hand side of the equality will result in tt
if and only if the right-hand side also does. �

174 Proof of properties from Chapter 3

Proposition 3.2 The following relation holds for every f1, f2 ∈ Four:

grantD(f1 ⊗ f2) = grantD(f1) ∧ grantD(f2)

Proof. Firstly, let us observe that for every f ∈ Four, grantD(f) = tt if and
only if tt ≤k f . Second, let us observe that, since the ⊗ operator is a meet in
the ≤k lattice, then tt ≤k f1 ⊗ f2 if and only if tt ≤k f1 and tt ≤k f2. Then,
the result follows immediately. �

Proposition 3.3 The following relation holds for every f1, f2 ∈ Four:

grantL(f1 ⊕ f2) = grantL(f1) ∧ grantL(f2)

Proof. Firstly, let us observe that for every f ∈ Four, grantL(f) = tt if and
only if f ≤k tt. Second, let us observe that, since the ⊕ operator is a join in the
≤k lattice, then f1⊕ f2 ≤k tt if and only if both f1 and f2 are ≤k tt. Then, the
result follows immediately. �

Proposition 3.4 The following relation holds for every f1, f2 ∈ Four:

grantL(f1 ⊗ f2) = grantL(f1) ∨ grantL(f2)

Proof. Firstly, let us observe that for every f ∈ Four, grantL(f) = tt if and
only if f ≤k tt. Second, let us observe that, since the ⊗ operator is a meet in
the ≤k lattice, then f1⊗f2 ≤k tt if and only if at least one of f1 and f2 is ≤k tt.
Then, the result follows immediately. �

Proposition 3.5 For the rigorous and the non-blocking 4-valued to 2-valued
mapping approaches, there does not exist any operator ? that can make the
following relations to hold for every f1, f2 ∈ Four:

granti(f1 ⊕ f2) = granti(f1) ? granti(f2) (if i ∈ {N,R}, then no ? exists)

granti(f1 ⊗ f2) = granti(f1) ? granti(f2) (if i ∈ {N,R}, then no ? exists)

Proof. This can be proven by means of counterexamples. We will split the
proof into 2 different parts, according to each of the 2 mapping approaches. We
will then split each part into 2 different proving steps, according to each of the
2 relations.

A.1 Proofs from Section 3.2.1 175

• Let us start with the rigorous approach.

– Let us take f1 = tt and f2 = >. Then, the left-hand side of the first
relation becomes:

grantR(tt⊕>) = grantR(>) = ff;

meanwhile, the right-hand side of the same relation becomes:

grantR(tt) ? grantR(>) = tt ? ff.

Then, if we assume such ? operator exists, the result of tt ? ff must
be equal to ff .
However, if now we take f1 = tt and f2 = ⊥, the left-hand side of
the first relation becomes:

grantR(tt⊕⊥) = grantR(tt) = tt;

whereas the right-hand side becomes:

grantR(tt) ? grantR(⊥) = tt ? ff.

But, we had found that if the ? operator existed, the result of tt ? ff
must not be equal to tt (it must be equal to ff). This proves that no
? operator can exist which could make the following relation to hold:
grantR(f1 ⊕ f2) = grantR(f1) ? grantR(f2).

– Now, let us continue with the second relation. Let us again take f1
= tt and f2 = >. Then, the left-hand side of the second relation
becomes:

grantR(tt⊗>) = grantR(tt) = tt;

meanwhile, the right-hand side of the same relation becomes:

grantR(tt) ? grantR(>) = tt ? ff.

Then, if we assume such ? operator exists, the result of tt ? ff must
be equal to tt.
However, if now we take f1 = tt and f2 = ⊥, the left-hand side of
the second relation becomes:

grantR(tt⊗⊥) = grantR(⊥) = ff;

whereas the right-hand side becomes:

grantR(tt) ? grantR(⊥) = tt ? ff.

But, we had found that if the ? operator existed, the result of tt ? ff
must not be equal to ff (it must be equal to tt). This proves that no
? operator can exist which could make the following relation to hold:
grantR(f1 ⊗ f2) = grantR(f1) ? grantR(f2).

176 Proof of properties from Chapter 3

So far, we have entirely proven Proposition 3.5 assuming i ∈ {R}.

• Let us focus now on the non-blocking approach.

– Let us take f1 = ff and f2 = >. Then, the left-hand side of the first
relation becomes:

grantN (ff⊕>) = grantN (>) = tt;

meanwhile, the right-hand side of the same relation becomes:

grantN (ff) ? grantN (>) = ff ? tt.

Then, if we assume such ? operator exists, the result of ff ? tt must
be equal to tt.
However, if now we take f1 = ff and f2 = ⊥, the left-hand side of the
first relation becomes:

grantN (ff⊕⊥) = grantN (ff) = ff;

whereas the right-hand side becomes:

grantN (ff) ? grantN (⊥) = ff ? tt.

But, we had found that if the ? operator existed, the result of ff ? tt
must not be equal to ff (it must be equal to tt). This proves that no
? operator can exist which could make the following relation to hold:
grantN (f1 ⊕ f2) = grantN (f1) ? grantN (f2).

– Now, let us continue with the second relation. Let us again take f1
= ff and f2 = >. Then, the left-hand side of the second relation
becomes:

grantN (ff⊗>) = grantN (ff) = ff;

meanwhile, the right-hand side of the same relation becomes:

grantN (ff) ? grantN (>) = ff ? tt.

Then, if we assume such ? operator exists, the result of ff ? tt must
be equal to ff .
However, if now we take f1 = ff and f2 = ⊥, the left-hand side of the
second relation becomes:

grantN (ff⊗⊥) = grantN (⊥) = tt;

whereas the right-hand side becomes:

grantN (ff) ? grantN (⊥) = ff ? tt.

A.2 Proofs from Section 3.2.2 177

But, we had found that if the ? operator existed, the result of ff ? tt
must not be equal to tt (it must be equal to ff). This proves that no
? operator can exist which could make the following relation to hold:
grantN (f1 ⊗ f2) = grantN (f1) ? grantN (f2).

This concludes the entire proof of Proposition 3.5. �

A.2 Proofs from Section 3.2.2

Proposition 3.6 The following relations hold for every f1, f2 ∈ Four, g ∈
{N,R,D,L}:

grantg(f1) ∧ grantg(f2) ≤ grantg(f1 ⊕ f2) ≤ grantg(f1) ∨ grantg(f2) (A.1)

grantg(f1) ∧ grantg(f2) ≤ grantg(f1 ⊗ f2) ≤ grantg(f1) ∨ grantg(f2) (A.2)

Proof. We shall split the proof into 4 different cases, according to which
grantg() function is used.

• Let us take g = D, namely the designated approach.

Firstly, let us observe that for every f ∈ Four, grantD(f) = tt if and only
if tt ≤k f , and analogously grantD(f) = ff if and only if f ≤k ff.
For the first Equation, A.1, the second inequality follows from Proposition
3.1. The first inequality can be proven by assuming grantD(f1) = tt and
grantD(f2) = tt (otherwise the left-hand side is ff and the inequality holds
trivially). grantD(f1) = ttmeans tt ≤k f1 and grantD(f2) = ttmeans tt ≤k
f2. This implies tt ≤k f1 ⊕ f2, thereby resulting in grantD(f1 ⊕ f2) = tt.

For the second Equation, A.2, the first inequality follows from Proposition
3.2. The second inequality can be proven by assuming grantD(f1) = ff and
grantD(f2) = ff (otherwise the right-hand side is tt and the inequality holds
trivially). grantD(f1) = ff means f1 ≤k ff and grantD(f2) = ff means f2 ≤k
ff. This implies f1 ⊗ f2 ≤k ff, thereby resulting in grantD(f1 ⊗ f2) = ff.

• Now, let us take g = L, namely the liberal approach.

Firstly, let us observe that for every f ∈ Four, grantL(f) = tt if and only
if f ≤k tt, and analogously grantL(f) = ff if and only if ff ≤k f .

178 Proof of properties from Chapter 3

For the first Equation, A.1, the first inequality follows from Proposition
3.3. The second inequality can be proven by assuming grantL(f1) = ff and
grantL(f2) = ff (otherwise the left-hand side is tt and the inequality holds
trivially). grantL(f1) = ff means ff ≤k f1 and grantL(f2) = ff means ff ≤k
f2. This implies ff ≤k f1 ⊕ f2, thereby resulting in grantL(f1 ⊕ f2) = ff.
For the second Equation, A.2, the second inequality follows from Propo-
sition 3.4. The first inequality can be proven by assuming grantL(f1) = tt
and grantL(f2) = tt (otherwise the right-hand side is ff and the inequality
holds trivially). grantL(f1) = tt means f1 ≤k tt and grantL(f2) = tt means
f2 ≤k tt. This implies f1⊗f2 ≤k tt, thereby resulting in grantL(f1 ⊗ f2) =
tt.

So far, we have entirely proven Proposition 3.6 assuming g ∈ {D,L}. Let us
focus now on the other half of the proof, namely g ∈ {N,R}. In these cases,
no previous Proposition can be used for any inequality, because the inequalities
are all strict.

• Let us then take g = R, namely the rigorous approach.

– Let us start with the first Equation, A.1.
First, let us prove that grantR(f1) ∧ grantR(f2) ≤ grantR(f1 ⊕ f2)
holds. If grantR(f1)∧grantR(f2) = ff it holds trivially. If grantR(f1)∧
grantR(f2) = tt, it means f1 = tt and f2 = tt. This means f1⊕f2 = tt,
and then grantR(f1 ⊕ f2) = tt.
Second, let us prove that grantR(f1 ⊕ f2) ≤ grantR(f1) ∨ grantR(f2)
holds. If grantR(f1)∨grantR(f2) = tt it holds trivially. If grantR(f1)∨
grantR(f2) = ff, it means f1 6= tt and f2 6= tt. This means that either
f1 ≤k f2 (and then f1⊕f2 = f2) or f2 ≤k f1 (and then f1⊕f2 = f1).
So, f1 ⊕ f2 6= tt. This implies grantR(f1 ⊕ f2) = ff.

– Let us now continue with the second Equation, A.2, still assuming
g = R.
First, let us prove that grantR(f1) ∧ grantR(f2) ≤ grantR(f1 ⊗ f2)
holds. If grantR(f1)∧grantR(f2) = ff it holds trivially. If grantR(f1)∧
grantR(f2) = tt, it means f1 = tt and f2 = tt. This means f1⊗f2 = tt,
and then grantR(f1 ⊗ f2) = tt.
Second, let us prove that grantR(f1 ⊗ f2) ≤ grantR(f1) ∨ grantR(f2)
holds. If grantR(f1)∨grantR(f2) = tt it holds trivially. If grantR(f1)∨
grantR(f2) = ff, it means f1 6= tt and f2 6= tt. This means that either
f1 ≤k f2 (and then f1⊗f2 = f1) or f2 ≤k f1 (and then f1⊗f2 = f2).
So, f1 ⊗ f2 6= tt. This implies grantR(f1 ⊗ f2) = ff.

• Finally, let us take g = N , namely the non-blocking approach.

A.2 Proofs from Section 3.2.2 179

– Let us start with the first Equation, A.1.
First, let us prove that grantN (f1 ⊕ f2) ≤ grantN (f1) ∨ grantN (f2)
holds. If grantN (f1)∨grantN (f2) = tt it holds trivially. If grantN (f1)∨
grantN (f2) = ff, it means f1 = ff and f2 = ff. This means that
f1 ⊕ f2 = ff, and then grantN (f1 ⊕ f2) = ff.
Second, let us prove that grantN (f1) ∧ grantN (f2) ≤ grantN (f1 ⊕ f2)
holds. If grantN (f1)∧grantN (f2) = ff it holds trivially. If grantN (f1)∧
grantN (f2) = tt, it means f1 6= ff and f2 6= ff. This means that either
f1 ≤k f2 (and then f1⊕f2 = f2) or f2 ≤k f1 (and then f1⊕f2 = f1).
This means f1 ⊕ f2 6= ff, and then grantN (f1 ⊕ f2) = tt.

– Let us now continue with the second Equation, A.2, still assuming
g = N .
First, let us prove that grantN (f1 ⊗ f2) ≤ grantN (f1) ∨ grantN (f2)
holds. If grantN (f1)∨grantN (f2) = tt it holds trivially. If grantN (f1)∨
grantN (f2) = ff, it means f1 = ff and f2 = ff. This means f1⊗f2 = ff,
and then grantN (f1 ⊗ f2) = ff.
Second, let us prove that grantN (f1) ∧ grantN (f2) ≤ grantN (f1 ⊗ f2)
holds. If grantN (f1)∧grantN (f2) = ff it holds trivially. If grantN (f1)∧
grantN (f2) = tt, it means f1 6= ff and f2 6= ff. This means that either
f1 ≤k f2 (and then f1⊗f2 = f1) or f2 ≤k f1 (and then f1⊗f2 = f2).
So, f1 ⊗ f2 6= ff. This implies grantN (f1 ⊗ f2) = tt.

This concludes the entire proof of Proposition 3.6. �

Proposition 3.7 The following relations hold for every f1, f2 ∈ Four, g ∈
{N,R,D,L}:

grantg(f1 ∧ f2) ≤ grantg(f1) ∧ grantg(f2) ≤ grantg(f1 ∨ f2) (A.3)

grantg(f1 ∧ f2) ≤ grantg(f1) ∨ grantg(f2) ≤ grantg(f1 ∨ f2) (A.4)

Proof. We shall split the proof into 4 different cases, according to which
grantg() function is used.

• Let us take g = D, namely the designated approach.

– Firstly, let us observe that for every f ∈ Four, grantD(f) = tt if and
only if > ≤t f1. Analogously, for every f ∈ Four, grantD(f) = ff if
and only if f ≤t ⊥.

1Notice that this is the first proof so far that uses the ≤t lattice instead of the ≤k one.

180 Proof of properties from Chapter 3

– Second, let us prove that grantD(f1 ∧ f2) ≤ grantD(f1) ∧ grantD(f2)
holds. If grantD(f1 ∧ f2) = ff it holds trivially. If grantD(f1 ∧ f2) =
tt, it means > ≤t f1 ∧ f2. This implies that both > ≤t f1 and
> ≤t f2 because ∧ is a meet in the ≤t lattice. Then, grantD(f1) = tt
and grantD(f2) = tt, resulting in grantD(f1) ∧ grantD(f2) = tt.

– Third, let us prove that grantD(f1) ∨ grantD(f2) ≤ grantD(f1 ∨ f2)
holds. If grantD(f1 ∨ f2) = tt it holds trivially. If grantD(f1 ∨ f2) =
ff, it means f1 ∨ f2 ≤t ⊥. This implies that both f1 ≤t ⊥ and
f2 ≤t ⊥ because ∨ is a join in the ≤t lattice. Then, grantD(f1) = ff
and grantD(f2) = ff, resulting in grantD(f1) ∨ grantD(f2) = ff.

– The two remaining inequalities are:

grantD(f1) ∧ grantD(f2) ≤ grantD(f1 ∨ f2);

and
grantD(f1 ∧ f2) ≤ grantD(f1) ∨ grantD(f2).

If we observe that grantD(f1)∧grantD(f2) ≤ grantD(f1)∨grantD(f2),
they follow immediately from the 2 previous paragraphs.

We have entirely proven Proposition 3.7 if g = D.

• Now, let us take g = L, namely the liberal approach.

– Firstly, let us observe that for every f ∈ Four, grantL(f) = tt if and
only if ⊥ ≤t f . Analogously, for every f ∈ Four, grantL(f) = ff if
and only if f ≤t >.

– Second, let us prove that grantL(f1 ∧ f2) ≤ grantL(f1) ∧ grantL(f2)
holds. If grantL(f1 ∧ f2) = ff it holds trivially. If grantL(f1 ∧ f2) = tt,
it means ⊥ ≤t f1 ∧ f2. This implies that both ⊥ ≤t f1 and ⊥ ≤t f2
because ∧ is a meet in the ≤t lattice. Then, grantL(f1) = tt and
grantL(f2) = tt, resulting in grantL(f1) ∧ grantL(f2) = tt.

– Third, let us prove that grantL(f1) ∨ grantL(f2) ≤ grantL(f1 ∨ f2)
holds. If grantL(f1 ∨ f2) = tt it holds trivially. If grantL(f1 ∨ f2) = ff,
it means f1 ∨ f2 ≤t >. This implies that both f1 ≤t > and f2 ≤t >
because ∨ is a join in the ≤t lattice. Then, grantL(f1) = ff and
grantL(f2) = ff, resulting in grantL(f1) ∨ grantL(f2) = ff.

– The two remaining inequalities are:

grantL(f1) ∧ grantL(f2) ≤ grantL(f1 ∨ f2);

and
grantL(f1 ∧ f2) ≤ grantL(f1) ∨ grantL(f2).

If we observe that grantL(f1)∧ grantL(f2) ≤ grantL(f1)∨ grantL(f2),
they follow immediately from the 2 previous paragraphs.

A.2 Proofs from Section 3.2.2 181

We have entirely proven Proposition 3.7 if g = L.

So far, we have entirely proven Proposition 3.7 assuming g ∈ {D,L}. Let us
focus now on the other half of the proof, namely g ∈ {N,R}.

• Let us take g = R, namely the rigorous approach.

– First, let us prove that grantR(f1 ∧ f2) ≤ grantR(f1) ∧ grantR(f2)
holds. If grantR(f1 ∧ f2) = ff it holds trivially. If grantR(f1 ∧ f2) = tt,
it means f1 ∧ f2 = tt. This implies that both f1 = tt and f2 = tt
because ∧ is a meet in the ≤t lattice and tt is the maximum element,
so if some of f1, f2 was 6= tt the conjunction would also be 6= tt.
Hence, grantR(f1) = tt and grantR(f2) = tt, resulting in grantR(f1)∧
grantR(f2) = tt.

– Second, let us prove that grantR(f1) ∨ grantR(f2) ≤ grantR(f1 ∨ f2)
holds. If grantR(f1 ∨ f2) = tt it holds trivially. If grantR(f1 ∨ f2) = ff,
it means f1 ∨ f2 6= tt. This implies that both f1 6= tt and f2 6= tt
because ∨ is a join in the ≤t lattice and tt is the maximum element,
so if some of f1, f2 was = tt the disjunction would also be = tt.
Hence, grantR(f1) = ff and grantR(f2) = ff, resulting in grantR(f1) ∨
grantR(f2) = ff.

– The two remaining inequalities are:

grantR(f1) ∧ grantR(f2) ≤ grantR(f1 ∨ f2);

and
grantR(f1 ∧ f2) ≤ grantR(f1) ∨ grantR(f2).

If we observe that grantR(f1)∧grantR(f2) ≤ grantR(f1)∨grantR(f2),
they follow immediately from the 2 previous paragraphs.

We have entirely proven Proposition 3.7 if g = R.

• Finally, let us take g = N , namely the non-blocking approach.

– First, let us prove that grantN (f1 ∧ f2) ≤ grantN (f1) ∧ grantN (f2)
holds. If grantN (f1 ∧ f2) = ff it holds trivially. If grantN (f1 ∧ f2) =
tt, it means f1 ∧ f2 6= ff. This implies that both f1 6= ff and f2 6= ff
because ∧ is a meet in the ≤t lattice and ff is the minimum element,
so if some of f1, f2 was = ff the conjunction would also be = ff.
Hence, grantN (f1) = tt and grantN (f2) = tt, resulting in grantN (f1)∧
grantN (f2) = tt.

182 Proof of properties from Chapter 3

– Second, let us prove that grantN (f1) ∨ grantN (f2) ≤ grantN (f1 ∨ f2)
holds. If grantN (f1 ∨ f2) = tt it holds trivially. If grantN (f1 ∨ f2) =
ff, it means f1 ∨ f2 = ff. This implies that both f1 = ff and f2 = ff
because ∨ is a join in the ≤t lattice and ff is the minimum ele-
ment, so if some of f1, f2 was 6= ff the disjunction would also be
6= ff. Hence, grantN (f1) = ff and grantN (f2) = ff, resulting in
grantN (f1) ∨ grantN (f2) = ff.

– The two remaining inequalities are:

grantN (f1) ∧ grantN (f2) ≤ grantN (f1 ∨ f2);

and
grantN (f1 ∧ f2) ≤ grantN (f1) ∨ grantN (f2).

If we observe that grantN (f1)∧grantN (f2) ≤ grantN (f1)∨grantN (f2),
they follow immediately from the 2 previous paragraphs.

We have entirely proven Proposition 3.7 if g = N .

This concludes the entire proof of Proposition 3.7. �

A.3 Proofs from Section 3.2.3

Proposition 3.8 The following relation holds for every f1, f2 ∈ Four, g ∈
{N,R,D,L}:

grantg(f1 ⇒g f2) = grantg(f1)⇒ grantg(f2)

Proof. We will prove this by case analysis, considering whether grantg(f1)
is tt or ff . This proof will work regardless of which value the subindex g has.
Indeed, we will just rely on the definition of our Belnap implication ⇒g, which
is uniquely related to a specific grantg().

We shall prove that grantg(f1 ⇒g f2) = grantg(f1) ⇒ grantg(f2), so let us call
(1) to the left-hand side of the equality, and (2) to the right-hand side.

• Assume grantg(f1) = tt.

Then, by definition of ⇒g, it holds that f1 ⇒g f2 = f2. Hence, (1) =
grantg(f2).

A.3 Proofs from Section 3.2.3 183

At the same time, because grantg(f1) = tt, it holds that (2) = tt ⇒
grantg(f2), and hence, by property of Boolean implication, (2) = grantg(f2).
We have just proven that if we assume grantg(f1) = tt, then grantg(f1 ⇒g f2) =
grantg(f1)⇒ grantg(f2).

• Now, assume grantg(f1) = ff.
Then, by definition of ⇒g, it holds that f1 ⇒g f2 = tt. Hence, (1) =
grantg(tt), and this is always tt regardless of the 4-valued to 2-valued
mapping approach.
At the same time, because grantg(f1) = ff, it holds that (2) = ff ⇒
grantg(f2), and hence, by property of Boolean implication, (2) = tt.

This concludes the proof. �

Corollary 3.9 For the liberal and the designated 4-valued to 2-valued map-
ping approaches, the following relation holds for every f ∈ Four:

granti(f1 ⇒i f2) = ¬granti(f1) ∨ granti(f2) (i ∈ {D,L})

Proof. From granti(f1 ⇒i f2), we apply Proposition 3.8 and get granti(f1)⇒
granti(f2).

Then, by applying Boolean property of⇒, namely b1 ⇒ b2 = ¬b1∨b2, we obtain
¬granti(f1) ∨ granti(f2). �

Proposition 3.10 The following relations hold for every f1, f2 ∈ Four:

¬c(f1 ⊕ f2) = ¬cf1 ⊗ ¬cf2 (A.5)

¬c(f1 ⊗ f2) = ¬cf1 ⊕ ¬cf2 (A.6)

Proof. We will prove this by constructing the Belnap truth tables.

The following is the truth table of f1 ⊕ f2, with f1 in the leftmost column and
f2 in the top row:

ff tt ⊥ >
ff ff > ff >
tt > tt tt >
⊥ ff tt ⊥ >
> > > > >

(A.7)

184 Proof of properties from Chapter 3

Then, the truth table of ¬c(f1⊕f2) can be obtained by just applying the coupled
negation to each element in the previous table, still with f1 in the leftmost
column and f2 in the top row:

ff tt ⊥ >
ff tt ⊥ tt ⊥
tt ⊥ ff ff ⊥
⊥ tt ff > ⊥
> ⊥ ⊥ ⊥ ⊥

(A.8)

Now, we will show that the truth table of ¬cf1 ⊗ ¬cf2 is equivalent to A.8.

The following is the truth table of ¬cf1:

f1 ¬cf1
ff tt
tt ff
⊥ >
> ⊥

(A.9)

Analogously, the truth table of ¬cf2 is the same, but we write it horizontally to
help our purposes:

f2 ff tt ⊥ >
¬cf2 tt ff > ⊥

(A.10)

Now, the truth table of ¬cf1 ⊗ ¬cf2 is the following, in this case with ¬cf1 in
the leftmost column and ¬cf2 in the top row:

tt ff > ⊥
tt tt ⊥ tt ⊥
ff ⊥ ff ff ⊥
> tt ff > ⊥
⊥ ⊥ ⊥ ⊥ ⊥

(A.11)

Since the truth tables A.8 and A.11 are equivalent, it follows that ¬c(f1⊕f2) =
¬cf1 ⊗ ¬cf2.

In a similar way, it can be proven that ¬c(f1⊗f2) = ¬cf1⊕¬cf2. We leave this
as an exercise for the reader. �

A.3 Proofs from Section 3.2.3 185

Proposition 3.11 The following relation holds for every f ∈ Four:

f ∨ ¬cf = tt

Proof. If f ∈ {tt, ff}, then when making the disjunction f ∨ ¬cf , one of the
operands will be tt. Hence, f ∨ ¬cf = tt.

If f ∈ {>,⊥}, then when making the disjunction f ∨ ¬cf , one of the operands
will be > and the other ⊥. Now, since ∨ is the join in the ≤t lattice, whose
maximum element is tt, it follows that f ∨ ¬cf = tt. �

Proposition 3.12 For the liberal and the designated 4-valued to 2-valued
mapping approaches, the following relation holds for every f ∈ Four:

granti(¬cf) = ¬granti(f) (i ∈ {D,L}) (A.12)

Proof. This proof can be made by case analysis, by considering the 4 possible
values parameter f could take.

• Let us start by assuming f = ff.
Then, ¬cf = tt, and this means granti(¬cf) = tt, for i ∈ {D,L}.
Since f = ff, then granti(f) = ff, and this means ¬granti(f) = tt, for
i ∈ {D,L}, making A.12 to hold.

• Now, assume f = tt.
Then, ¬cf = ff, and this means granti(¬cf) = ff, for i ∈ {D,L}.
Since f = tt, then granti(f) = tt, and this means ¬granti(f) = ff, for
i ∈ {D,L}, making A.12 to hold.

We need to observe now, that for the flexible 4-valued to 2-values mapping
approaches, the following property holds:

granti(⊥) 6= granti(>) (i ∈ {D,L}) (A.13)

• Now, assume f = ⊥.
Then, ¬cf = >, and this means granti(¬cf) = granti(>), for i ∈ {D,L}.
Since f = ⊥, then granti(f) = granti(⊥), and this means ¬granti(f) =
¬granti(⊥), for i ∈ {D,L}. Now, A.12 follows now from observation A.13.

186 Proof of properties from Chapter 3

• Now, assume f = >.
Then, ¬cf = ⊥, and this means granti(¬cf) = granti(⊥), for i ∈ {D,L}.
Since f = >, then granti(f) = granti(>), and this means ¬granti(f) =
¬granti(>), for i ∈ {D,L}. Now, A.12 follows now from observation A.13.

This concludes the proof. �

Corollary 3.13 For the liberal and the designated 4-valued to 2-valued
mapping approaches, the following relation holds for every f1, f2 ∈ Four:

granti(f1 ⇒i f2) = granti(¬cf1 ∨ f2) (i ∈ {D,L})

Proof. First, let us observe that granti(a) ∨ granti(b) = granti(a ∨ b),∀a, b ∈
Four, i ∈ {D,L}.

To show this observation is correct, notice first that grantL(x) = tt if and only
if x ∈ {tt,⊥}. Then, grantL(a ∨ b) = tt if and only if a ∨ b ∈ {tt,⊥}, which is
satisfied if either a or b belongs to {tt,⊥}, which makes grantL(a)∨grantL(b) = tt
as well. In an analogous way, we can show the observation is correct for grantD(),
with the difference that the relevant set is {tt,>} instead of {tt,⊥}.

Now, to proof the current corollary 3.13, from granti(f1 ⇒i f2), we apply Corol-
lary 3.9 and get ¬granti(f1) ∨ granti(f2).

Then, we apply Proposition 3.12 and get granti(¬cf1) ∨ granti(f2).

Now, by applying the observation above we obtain granti(¬cf1 ∨ f2). �

Proposition 3.14 There does not exist any operator ? that can make the
following relation to hold for every f1, f2 ∈ Four:

grantg(f1 > f2) = grantg(f1) ? grantg(f2) (if g ∈ {N,R,D,L}, then no ? exists)

Proof. We shall split the proof into 4 different parts, according to which
grantg() function is used. In each part, we will find a counterexample against
grantg(f1 > f2) being equal to grantg(f1) ? grantg(f2).

A.3 Proofs from Section 3.2.3 187

• Let us take g = D, namely the designated approach.

Assume the following two cases:

1. f1 = ⊥ and f2 = tt

2. f1 = ff and f2 = tt

In both cases, grantD(f1) = ff and grantD(f2) = tt.

However, in the first case, because f1 = ⊥, it holds that grantD(f1 > f2) =
grantD(f2) = tt; whereas in the second case, because f1 6= ⊥, it holds that
grantD(f1 > f2) = grantD(f1) = ff.

This implies that such ? operator cannot exist, because if it did it would
have to obtain different results in 2 different applications with the same
operands.

We have entirely proven Proposition 3.14 if g = D.

• Now, let us take g = L, namely the liberal approach.

Assume the following two cases:

1. f1 = ⊥ and f2 = ff

2. f1 = tt and f2 = ff

In both cases, grantL(f1) = tt and grantL(f2) = ff.

However, in the first case, because f1 = ⊥, it holds that grantL(f1 > f2) =
grantL(f2) = ff; whereas in the second case, because f1 6= ⊥, it holds that
grantL(f1 > f2) = grantL(f1) = tt.

This implies that such ? operator cannot exist, because if it did it would
have to obtain different results in 2 different applications with the same
operands.

We have entirely proven Proposition 3.14 if g = L.

So far, we have entirely proven Proposition 3.14 assuming g ∈ {D,L}. Let us
focus now on the other half of the proof, namely g ∈ {N,R}.

• Let us take g = R, namely the rigorous approach.

Assume the following two cases:

1. f1 = ⊥ and f2 = tt

2. f1 = ff and f2 = tt

188 Proof of properties from Chapter 3

In both cases, grantR(f1) = ff and grantR(f2) = tt.

However, in the first case, because f1 = ⊥, it holds that grantR(f1 > f2) =
grantR(f2) = tt; whereas in the second case, because f1 6= ⊥, it holds that
grantR(f1 > f2) = grantR(f1) = ff.

This implies that such ? operator cannot exist, because if it did it would
have to obtain different results in 2 different applications with the same
operands.

We have entirely proven Proposition 3.14 if g = R.

• Now, let us take g = N , namely the non-blocking approach.

Assume the following two cases:

1. f1 = ⊥ and f2 = ff

2. f1 = tt and f2 = ff

In both cases, grantN (f1) = tt and grantN (f2) = ff.

However, in the first case, because f1 = ⊥, it holds that grantN (f1 > f2) =
grantN (f2) = ff; whereas in the second case, because f1 6= ⊥, it holds that
grantN (f1 > f2) = grantN (f1) = tt.

This implies that such ? operator cannot exist, because if it did it would
have to obtain different results in 2 different applications with the same
operands.

We have entirely proven Proposition 3.14 if g = N .

This concludes the entire proof of Proposition 3.14. �

A.4 Proofs from Section 3.3.1

Proposition 3.15 For the liberal 4-valued to 2-valued mapping approach,
the following relations hold for every f1, f2 ∈ Four, b3, b4 ∈ Two:

grantL([f1 if cut : b3 ∧ b4]) = grantL([b3 ⇒L f1 if cut : b4]) (A.14)

grantL([f1 if cut : b3]⊕ [f2 if cut : b3]) = grantL([f1 ∧ f2 if cut : b3]) (A.15)

grantL([f1 if cut : b3]⊗ [f2 if cut : b3]) = grantL([f1 ∨ f2 if cut : b3]) (A.16)

Proof. We will of course prove each relation separately.

A.4 Proofs from Section 3.3.1 189

• Let us consider Equation A.14.
If cut fails to trap an action, then both aspects give ⊥ and the result
holds trivially. Then, let us assume cut traps the action and produces
substitution θ, to be applied to f1, b3 and b4.
Now, if [(b4θ)] = ff, then both aspects give ⊥ and the result still holds
trivially.
So, let us assume [(b4θ)] = tt. Then:

– if [(b3θ)] = ff, then the leftmost aspect gives ⊥ and then the left-hand
side of equality A.14 is tt. Furthermore, since [(b3θ)] = ff, it holds
that [(b3θ ⇒L f1θ)] = tt, making the right-hand side of equality A.14
to be tt as well.

– if [(b3θ)] = tt, then the leftmost aspect results in [(f1θ)]. For the
rightmost aspect, it gives [(b3θ ⇒L f1θ)], but since [(b3θ)] = tt, it is
the same as [(f1θ)]. Hence, both sides of equality A.14 produce the
same result.

• Let us now consider Equation A.15.
If cut fails to trap an action, then both aspects give ⊥ and the result
holds trivially. Then, let us assume cut traps the action and produces
substitution θ, to be applied to f1, f2 and b3.
Now, if [(b3θ)] = ff, then both aspects give ⊥ and the result still holds
trivially.
So, let us assume [(b3θ)] = tt.
Now, the proof reduces to prove that for any possible combination of
values of [(f1θ)] and [(f2θ)], A.15 holds. These are 16 combinations, but let
us proceed in a logical way.

– Firstly, let us observe that for every f ∈ Four, grantL(f) = tt if and
only if ⊥ ≤t f . Analogously, for every f ∈ Four, grantL(f) = ff if
and only if f ≤t >.

– Let us assume [(f1θ)] ≤t >. Then, we obtain that [(f1θ ∧ f2θ)] ≤t >
because ∧ is a meet in the ≤t lattice. This means that the right-hand
side of A.15 equals ff .
In a similar way, since we have assumed [(f1θ)] ≤t >, the leftmost
aspect in the left-hand side of A.15 equals ff . But this aspect is
combined with another one, using the operator ⊕. However, we can
still obtain that the result of the combination is ff , because ⊕ is a
join in the ≤k lattice, and since one of its operands is ff, the result of
the ⊕ operation is ≥k ff. Hence, the left-hand side of A.15 equals ff .
We have proven that, assuming [(f1θ)] ≤t >, both sides of A.15 equal
ff .

190 Proof of properties from Chapter 3

– In an analogous way, it can be proven that, assuming [(f2θ)] ≤t >,
both sides of A.15 equal ff . We leave this as an exercise for the reader.

– Now, we will prove that if both ⊥ ≤t [(f1θ)] and ⊥ ≤t [(f2θ)], both
sides of A.15 equal tt.
Indeed, if ⊥ ≤t [(f1θ)] and ⊥ ≤t [(f2θ)], then ⊥ ≤t [(f1θ∧f2θ)] because
∧ is a meet in the ≤t lattice. This means the right-hand side of A.15
equals tt.
For the left-hand side, since ⊥ ≤t [(f1θ)], the leftmost aspect equals
tt, and analogously since ⊥ ≤t [(f2θ)], the rightmost aspect equals tt
as well. Now, these are combined with the ⊕ operation, resulting in
tt, and meaning that the left-hand side of A.15 equals tt.

This concludes the proof of Equation A.15.

• Equation A.16 can be proven in an analogous way as Equation A.15, and
it is left as an exercise for the reader.

This concludes the proof of Proposition 3.15. �

Proposition 3.16 For the liberal 4-valued to 2-valued mapping approach,
the following Equations are equivalent for every f1, f2 ∈ Four, b3, b4 ∈ Two,
provided that f1 can never evaluates to ⊥:

grantL([f1 if cut : b3] > [f2 if cut : b4]) (A.17)

grantL([(b3 ∧ f1) ∨ (¬b3 ∧ (b4 ⇒L f2)) if cut : true]) (A.18)

Proof. First, notice there are in total 3 aspects: 2 in A.17, combined using
the priority operator; and 1 in A.18.

The proof is done by case analysis in the condition cond of one of these aspects.

If cut fails to trap an action, then the 3 aspects give ⊥ and the result holds
trivially (recall ⊥ > ⊥ = ⊥). Then, let us assume cut traps the action and
produces substitution θ, to be applied to f1, f2, b3 and b4.

• Assume [(b3θ)] = tt:

then, in A.17, the leftmost aspect applies, and so we inspect the possible
values of [(f1θ)] (leaving out the value ⊥ because it is a condition of the
Proposition that this expression does not have that value):

A.4 Proofs from Section 3.3.1 191

– if [(f1θ)] = tt, then A.17 results in tt, same as A.18 because [(b3θ ∧
f1θ)] = tt;

– if [(f1θ)] = ff, then A.17 results in ff , same as A.18 because [(b3θ ∧
f1θ)] = ff and [(¬b3θ ∧ (b4θ ⇒L f2θ))] = ff (because we assumed
[(b3θ)] = tt);

– if [(f1θ)] = >, then A.17 results in ff (because > > f = > for every
f ∈ Four and grantL(>) = ff). In the same way, A.18 results in ff
because [(b3θ ∧ f1θ)] = > and [(¬b3θ ∧ (b4θ ⇒L f2θ))] = ff (again,
because we assumed [(b3θ)] = tt).

We have proven that, assuming [(b3θ)] = tt and [(f1θ)] 6= ⊥, Equations A.17
and A.18 are equivalent.

• Now assume [(b3θ)] = ff:

– then, in A.17, the rightmost aspect applies, and so A.17 equals

grantL([f2 if cut : b4]);

but this (using the first relation of Proposition 3.15) is equivalent
to grantL([b4 ⇒L f2 if cut : true]). This results in tt if and only if
[(b4θ ⇒L f2θ)] ≤k tt.

– On the other side, since we assumed [(b3θ)] = ff, then [(b3θ ∧ f1θ)] =
ff. This implies [((b3θ ∧ f1θ) ∨ (¬b3θ ∧ (b4θ ⇒L f2θ)))] is equal to
[(¬b3θ ∧ (b4θ ⇒L f2θ))].
Again, since [(b3θ)] = ff, [(¬b3θ)] = tt. This implies, A.18 results in tt
if and only if [(b4θ ⇒L f2θ)] ≤k tt.

This concludes the proof. �

Corollary 3.17 Equation 3.21 is equivalent to both of the following Equa-
tions:

grantL(α ⊗ (β ⊕ χ)) (A.19)

grantL(α) ∨ (grantL(β) ∧ grantL(χ) (A.20)

where α = [b3 ∧ f1 if cut : true], β = [¬b3 if cut : true] and χ = [b4 ⇒L

f3 if cut : true]. And where f1, f2 ∈ Four, b3, b4 ∈ Two.

Proof. Firstly, it will be noticed that Equation 3.21 is the same as Equation
A.17.

Then, we need to prove that Equations A.17, A.19 and A.20 are all equivalent.

192 Proof of properties from Chapter 3

• Let us prove that A.17 is equivalent to A.19.

If we take A.17 and apply Proposition 3.16, we get A.18. Now, if we apply
A.16 (same as 3.20) and then A.15 (same as 3.19), both from Proposition
3.15, we obtain the expected A.19.

• Let us prove that A.17 is equivalent to A.20.

We know that A.17 is equivalent to A.19. Now, if we take A.19 and apply
Proposition 3.4 and then Proposition 3.3, we obtain the expected A.20.

This concludes the proof. �

Proposition 3.18 For the liberal 4-valued to 2-valued mapping approach,
the following Equations are equivalent for every f ∈ Four, b1, b2 ∈ Two:

grantL([true if cut : b1] > [f if cut : b2]) (A.21)

grantL([b1 ∨ (b2 ⇒L f) if cut : true]) (A.22)

Proof. First, notice there are in total 3 aspects: 2 in A.21, combined using
the priority operator; and 1 in A.22.

The proof is done by case analysis in the condition cond of one of these aspects.

If cut fails to trap an action, then the 3 aspects give ⊥ and the result holds
trivially (recall ⊥ > ⊥ = ⊥). Then, let us assume cut traps the action and
produces substitution θ, to be applied to f , b1 and b2.

• Assume [(b1θ)] = tt:

– then, the left of > in A.21 is tt, and so the grantL() results in tt;
– similarly, if [(b1θ)] = tt, then the full rec of A.22 is tt, and so the

grantL() results in tt.

• Now assume [(b1θ)] = ff:

– then, the left of > in A.21 is ⊥, and then the right of > should be
considered, and then (using the first relation from Proposition 3.15)

grantL([f if cut : b2]) = grantL([b2 ⇒L f if cut : true])

and the latter results in tt if and only if [(b2θ ⇒L fθ)] ≤k tt;

A.4 Proofs from Section 3.3.1 193

– similarly, if [(b1θ)] = ff, then in A.22, the rec evaluates to [(ff∨(b2θ ⇒L

fθ))], and this implies that the grantL() results in tt if and only if
[(b2θ ⇒L fθ)] ≤k tt.

This concludes the proof. �

194 Proof of properties from Chapter 3

Bibliography

[AA98] O. Arieli and A. Avron. The value of the four values. Artificial
Intelligence, 102(1):97–141, 1998.

[ACJT96] P. A. Abdulla, K. Cerans, B. Jonsson, and Yih-Kuen Tsay. General
decidability theorems for infinite-state systems. In Proceedings of
the 11th Annual IEEE Symposium on Logic in Computer Science,
LICS ’96, pages 313–, Washington, DC, USA, 1996. IEEE Computer
Society.

[AS86] B. Alpern and F. Schneider. Recognizing safety and liveness. Dis-
tributed Computing, 2:117–126, 1986.

[BBD+05] Chiara Bodei, Mikael Buchholtz, Pierpaolo Degano, Flemming Niel-
son, and Hanne Riis Nielson. Static validation of security protocols.
J. Comput. Secur., 13(3):347–390, May 2005.

[Bel77] N. D. Belnap. How a computer should think. In Contemporary
Aspects of Philosophy, pages 30–56. Oriel Press, 1977.

[BH08] G. Bruns and M. Huth. Access-control policies via Belnap logic:
Effective and efficient composition and analysis. In CSF08, pages
163–176. IEEE Computer Society, 2008.

[BK08] C. Baier and J.P. Katoen. Principles of Model Checking (Represen-
tation and Mind Series). The MIT Press, 2008.

[BL73] D. E. Bell and L. J. LaPadula. Secure computer systems: mathe-
matical foundations. Technical report, MITRE Corp., 1973.

196 BIBLIOGRAPHY

[BLW02] L. Bauer, J. Ligatti, and D. Walker. More enforceable security poli-
cies. In Foundations of Computer Security, Copenhagen, Denmark,
July 2002.

[BN89] D. Brewer and M. Nash. The chinese wall security policy. Security
and Privacy, IEEE Symposium on, 0:206, 1989.

[Dan07] Daniel S. Dantas. Analyzing Security Advice in Functional Aspect-
oriented Programming Languages. PhD thesis, Princeton University:
Computer Science, 2007.

[Esp99] Javier Esparza. Decidability of model checking for infinite-state con-
current systems. Acta Informatica, 34:85–107, 1999.

[Fin90] Alain Finkel. Reduction and covering of infinite reachability trees.
Inf. Comput., 89:144–179, December 1990.

[GBDN07] Han Gao, Chiara Bodei, Pierpaolo Degano, and Hanne Riis Nielson.
A formal analysis for capturing replay attacks in cryptographic pro-
tocols. In Proceedings of the 12th Asian computing science confer-
ence on Advances in computer science: computer and network secu-
rity, ASIAN’07, pages 150–165, Berlin, Heidelberg, 2007. Springer-
Verlag.

[GC92] D. Gelernter and N. Carriero. Coordination languages and their
significance. Communications of the ACM, 35(2):96–107, 1992.

[Gol11] D. Gollmann. Computer Security. Wiley, 2011.

[Her11] Alejandro Mario Hernandez. Globally reasoning about localised se-
curity policies in distributed systems. Technical report, DTU, 2011.

[HHK95] M. R. Henzinger, T. A. Henzinger, and P. W. Kopke. Computing
simulations on finite and infinite graphs. In Proceedings of the 36th
Annual Symposium on Foundations of Computer Science, FOCS ’95,
pages 453–462, Washington, DC, USA, 1995. IEEE Computer Soci-
ety.

[HJ08] K. W. Hamlen and M. Jones. Aspect-oriented in-lined reference
monitors. In PLAS ’08: Proceedings of the third ACM SIGPLAN
workshop on Programming languages and analysis for security, pages
11–20, New York, NY, USA, 2008. ACM.

[HN09] Alejandro Mario Hernandez and Flemming Nielson. Enforcing
mandatory access control in distributed systems using aspect ori-
entation. In 21st Nordic Workshop on Programming Theory –
NWPT2009, pages 62–64, 2009.

BIBLIOGRAPHY 197

[HN10] Alejandro Mario Hernandez and Flemming Nielson. History-
sensitive versus future-sensitive approaches to security in distributed
systems. In ICE2010 - 3rd Interaction and Concurrency Experience
- EPTCS, volume 38, pages 29–43, 2010.

[HN12] Alejandro Mario Hernandez and Flemming Nielson. Position paper:
A generic approach for security policies composition. In Proceedings
of the ACM SIGPLAN 7th Workshop on Programming Languages
and Analysis for Security, PLAS ’12. ACM, 2012.

[HNN09] C. Hankin, F. Nielson, and H. Riis Nielson. Advice from Belnap
policies. In CSF09, pages 234–247. IEEE Computer Society, 2009.

[HNN11] Alejandro Mario Hernandez, Flemming Nielson, and Hanne Riis
Nielson. Designing, capturing and validating history-sensitive secu-
rity policies for distributed systems. Scientific Annals of Computer
Science, 21:107–149, 2011.

[HNNY08] C. Hankin, F. Nielson, H. Riis Nielson, and F. Yang. Advice for
coordination. In COORDINATION08, LNCS, volume 5052, pages
153–168. Springer, 2008.

[KLM+97] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes,
J. M. Loingtier, and J. Irwin. Aspect-oriented programming. In
ECOOP97, LNCS, volume 1241, pages 220–242. Springer, 1997.

[Lam74] B. Lampson. Protection. SIGOPS Oper. Syst. Rev., 8:18–24, Jan-
uary 1974.

[Low95] Gavin Lowe. An attack on the needham-schroeder public-key au-
thentication protocol. Inf. Process. Lett., 56(3):131–133, November
1995.

[NFP98] R. De Nicola, G. Ferrari, and R. Pugliese. Klaim: A kernel lan-
guage for agents interaction and mobility. IEEE Trans. on Soft.
Engineering, 24(5):315–330, 1998.

[NGP06] R. De Nicola, D. Gorla, and R. Pugliese. On the expressive power of
klaim-based calculi. Theor. Comput. Sci., 356:387–421, May 2006.

[NN10] Flemming Nielson and Hanne Riis Nielson. Model checking is static
analysis of modal logic. In Proceedings of the 13th international
conference on Foundations of Software Science and Computational
Structures, FOSSACS’10, pages 191–205, Berlin, Heidelberg, 2010.
Springer-Verlag.

[NNP12] Hanne Riis Nielson, Flemming Nielson, and Henrik Pilegaard. Flow
logic for process calculi. ACM Comput. Surv., 44(1):3:1–3:39, Jan-
uary 2012.

198 BIBLIOGRAPHY

[NV90] R. De Nicola and F. Vaandrager. Action versus state based logics for
transition systems. In Proceedings of the LITP spring school on theo-
retical computer science on Semantics of systems of concurrent pro-
cesses, pages 407–419, New York, NY, USA, 1990. Springer-Verlag
New York, Inc.

[Sch98] David A. Schmidt. Data flow analysis is model checking of abstract
interpretations. In Proceedings of the 25th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, POPL ’98,
pages 38–48, New York, NY, USA, 1998. ACM.

[Sch00] F. Schneider. Enforceable security policies. ACM Trans. Inf. Syst.
Secur., 3(1):30–50, 2000.

[SM02] A. Sabelfeld and H. Mantel. Static confidentiality enforcement for
distributed programs. In Manuel Hermenegildo and Germán Puebla,
editors, Static Analysis, volume 2477 of Lecture Notes in Computer
Science, pages 376–394. Springer Berlin / Heidelberg, 2002.

[SM03] A. Sabelfeld and A. C. Myers. Language-based information-flow
security. IEEE J. Selected Areas in Communications, 21(1):5–19,
January 2003.

[Smi10] Michael J. A. Smith. Compositional abstraction of pepa models
for transient analysis. In Proceedings of the 7th European perfor-
mance engineering conference on Computer performance engineer-
ing, EPEW’10, pages 252–267, Berlin, Heidelberg, 2010. Springer-
Verlag.

[TD11] Cong Tian and Zhenhua Duan. Making abstraction-refinement effi-
cient in model checking. In Proceedings of the 17th annual interna-
tional conference on Computing and combinatorics, COCOON’11,
pages 402–413, Berlin, Heidelberg, 2011. Springer-Verlag.

[Val98] Antti Valmari. The state explosion problem. Lecture Notes in Com-
puter Science: Lectures on Petri Nets I: Basic Models, 1491:429–528,
1998.

[Yan10] Fan Yang. Aspects with Program Analysis for Security Policies. PhD
thesis, Technical University of Denmark, 2010.

[YHNN] Fan Yang, Chris Hankin, Flemming Nielson, and Hanne Riis Nielson.
Predictive access control for distributed computation. To appear.

[YHNN12] Fan Yang, Chris Hankin, Flemming Nielson, and Hanne Riis Nielson.
Secondary use of data in EHR systems. CoRR, abs/1201.4262, 2012.

	Summary
	Resumé
	Preface
	Acknowledgements
	1 Introduction
	1.1 Distributed systems
	1.2 Computer security
	1.3 Closed systems
	1.4 Dissertation outline
	2 Closed Distributed Systems
	2.1 Networks syntax
	2.2 Security
	2.3 A Health Care distributed system

	3 Combinable Access Control
	3.1 A 4-valued logic
	3.2 Mapping 4-valued into 2-valued logic
	3.3 Aspectual enforcement mechanisms
	3.4 Adding security to EpSOS case study

	4 Networks Evolving
	4.1 Reaction semantics
	4.2 Policies involved
	4.3 How semantics work on EpSOS case study

	5 Reasoning about distributed security policies
	5.1 A logic for global systems
	5.2 Using enforcement mechanisms to reason efficiently
	5.3 Global security of EpSOS case study
	5.4 Chapter final remarks
	6 Framework extended: History-sensitive policies
	6.1 History-sensitive security policies
	6.2 Framework for history-sensitive security
	6.3 Chapter final remarks

	7 Conclusion
	7.1 Future work

	A Proof of properties from Chapter 3
	A.1 Proofs from Section 3.2.1
	A.2 Proofs from Section 3.2.2
	A.3 Proofs from Section 3.2.3
	A.4 Proofs from Section 3.3.1

	Bibliography

