

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 20, 2017

On Support Functions for the Development of MFM Models

Heussen, Kai; Lind, Morten

Published in:
Proceedings of the first International Symposium on Socially and Technically Symbiotic System

Publication date:
2012

Link back to DTU Orbit

Citation (APA):
Heussen, K., & Lind, M. (2012). On Support Functions for the Development of MFM Models. In Proceedings of
the first International Symposium on Socially and Technically Symbiotic System

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13796802?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/on-support-functions-for-the-development-of-mfm-models(1ecaae6e-1ad7-4f82-a330-5208b953e6ad).html

On Support Functions for the Development of MFM Models
Kai Heussen1, Morten Lind2

1 Department of Electrical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
(Tel: +45-4525-3542, E-mail: kh@elektro.dtu.dk)

2 Department of Electrical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
(Tel: +45-4525-3566, E-mail: mli@elektro.dtu.dk)

Abstract: A modeling environment and methodology are necessary to ensure quality and reusability of models

in any domain. For MFM in particular, as a tool for modeling complex systems, awareness has been increasing
for this need. Introducing the context of modeling support functions, this paper provides a review of MFM
applications, and contextualizes the model development with respect to process design and operation knowledge.
Developing a perspective for an environment for MFM-oriented model- and application-development a
tool-chain is outlined and relevant software functions are discussed. With a perspective on MFM-modeling for
existing processes and automation design, modeling stages and corresponding formal model properties are
identified. Finally, practically feasible support functions and model-checks to support the model-development
are suggested.

Keywords: Multilevel Flow Modeling (MFM), Model Development, Analysis and Design, Software.

1. INTRODUCTION
As a modeling language and as knowledge-base

for reasoning applications, MFM has been developed
over many years and its potential for applications in
several technology domains has been demonstrated.
The development of an MFM model as well as MFM
applications requires – or enables – the integration of
different types of engineering knowledge. This
property of MFM, the role as a tool for integration of
knowledge, makes MFM both powerful and difficult
to apply.

In modeling practice with MFM there is typically a
long tool-chain between graphical model develop-
ment and its final application, e.g. in a HAZOP study.
Model-development in itself is a challenging task and
both simple syntactic mistakes and more complex
semantic mistakes occur in the process. As any
modeling process it requires iterations between
modeling and application to mature event formally
correct model. Here a long tool-chain becomes
tedious and may impact the ability of a modeler to
focus on essential interpretation tasks. Some of these
difficulties, however, can be avoided. As the
feedback collected from model-validation,
model-building as well as from the failure of certain
reasoning tasks is experienced as valuable for the
development of high-quality models, similar
information could be provided directly in the
modeling environment.

In order to motivate the broad scope that a
MFM-oriented modeling environment ought to
support, this paper first presents a review of MFM in
Section 2. The type of knowledge captured in a
MFM model and other related domains of knowledge
are analyzed in Section 3. Focusing on software tools
for the support of MFM modeling and application
development, Section 4 presents a global tool-chain
perspective, integrating modeling with reasoning,

offline and online applications. In Section 5, the
modeling process is viewed in a knowledge
acquisition perspective and divided into stages,
corresponding to formalized levels of knowledge.
Finally the realization of support functions in a
dedicated MFM modeling environment is discussed
in Section 6.

2. REVIEW OF APPLICATIONS AND
MODEL REQUIREMENTS

A review of the existing rather comprehensive
literature on MFM is not straight forward because the
contributions of most papers shown in the list of
references are relevant for more than one perspective
including modeling concepts and methodology,
technology domain and model application. We will
therefore categorize the research contributions along
these three dimensions in the following.

2.1 Modeling and reasoning methodology

A significant part of the research on MFM has
contributed to the development of concepts and
modeling methodology. Concepts and methodology
has been evolving over several decades and is still in
ongoing as part of the application of MFM in
different technology domains described below.
Contributions to the foundational concepts are
presented in [21, 23-26, 28, 30, 32-35, 39].
Contributions to modeling methodology are
presented in [3, 15, 34]. Several research
contributions address the reasoning capability of
MFM. These contributions include [1, 4, 17-20, 22,
31, 38]. The relations between MFM and other
modeling approaches such as differential equations
have also been investigated [7].

Table 1 Overview of proven MFM applications

Tools for building MFM models have been

developed by several research groups. These efforts
are not widely published (see however [49]), also
partly because they are under development [51].

2.2 Technology domain

MFM has been used to represent a variety of
complex dynamic processes including energy
conversion systems like fossil power plants [17],
nuclear power generation [9, 12, 34-37], gas turbines
[48] and ship engines [15]. MFM has also been used
to model power transmission and distribution systems
[13, 14, 42] and for chemical engineering systems
such as oil refineries [8], distillation columns [41]
and biochemical processes [15]. Ongoing research at
DTU develops MFM extensions for representations
of chemical reactions.

MFM has proven to be able to cover these domains
and to be robust enough to be able to assimilate
extensions required for the different domains. MFM
can in this way highlight both generic features and
commonalties and differences between domains.

2.2 Model purpose

MFM are used for a variety of purposes within
supervision and control of complex automated
processes. One group of application includes
situation assessment and fault diagnosis for decision
support of control room operators. This research
includes root cause analysis [20, 22, 25, 31, 38] alarm
design [43] and alarm analysis and filtering [17, 18,
37]. MFM is also proposed for on-line risk
monitoring [30, 45-47] and for risk analysis of
processes in the design phase [41, 44]. Application of
MFM for planning of control actions have been
investigated by [16, 40]. Recent promising
applications of MFM include design of control
system architectures [13, 14]. Finally, the role of
MFM in design of Human Machine Interfaces has
been investigated in [2, 7, 9, 11, 21, 26, 27].

2.3 Overview of research contributions

Table 1 categorizes the research contributions
outlined above in a matrix to illustrate the coverage
application categories in the different technology
domains.

3. MFM IN CONTEXT OF OTHER
ENGINEERING KNOWLEDGE

Whereas MFM is focused on the formal expression
of goal-function-structure information about a
process, it is important for development of MFM
models and their use in applications to also
understand and, if feasible, formally capture its
relation to other domains of knowledge. To develop
an overview of these relations, we first identify the
knowledge embedded in MFM models, and then
develop an overview of other types of knowledge
MFM relates to in the engineering process. When
viewing the development of MFM models and
applications as part of an engineering process, it
further becomes relevant to consider embedding and
progression of MFM models and applications in the
engineering lifecycle.

3.1 Knowledge specification within MFM models

Efficient representation of process knowledge is a
prerequisite for knowledge based systems reasoning
about complex industrial processes. MFM models are
efficient for this purpose because they combine
process knowledge on four interdependent levels of
specification as shown in Table 2 [31]. These levels
are relevant both for the reasoning perspective, as
presented in [31], and the modeling phase, as will be
seen in Section 5.

The specification of functional knowledge can
only be made operational, when its relation to
physical and structural specifications can clearly be
identified. Such ‘structural’ knowledge is captured in
common domain-specific representations, and is not
by itself part of MFM.

Application
Category

Technology Domain

Process
Analysis
& Design

Control
Structure

A&D
Risk Analysis

Visualization
& Decision

Support

On-line
Diagnosis

& Risk
Monitoring

Chemical Engineering [5][50] [41] [8]
Nuclear Power Plants [34][35][36] [44] [9][45] [12][37][46]

[47]
Electric Power Systems [13][14][16]

[42]

Other energy conversion [48] [15]
General [6][23][24]

[26][27][8]
[30][32][38]

[39]

[19][29][33] [31] [2][7][10]
[21][40]

[4][17][1]
[20][22][25]

[31][43]

Table 2 Four levels of knowledge specification
embedded in MFM models [31].
Level Knowledge categories

4 Event propagation paths
3 MFM Patterns
 Influence patterns Means-end and

control patterns
2 Influence

relations
Means-end and
control relations

1 State dependency relations

The function-structure, relation, however, can be

considered part of the MFM modeling language and
has been formulated in detail in [30]. Using an
action-role concept with explicit role-entities, also
design features such a structural redundancy can be
modeled.

3.2 Knowledge embedding in Automation Design

In the engineering process for technical systems,
various types of knowledge representation are
relevant. Detailed design specifications are, during a
system design phase, developed from high-level
design goals. Here, repeatedly design choices from
one engineering domain have to be translated into
requirements for another. Figure 1 illustrates this
basic design step and explains the role of design
patterns in mediating between requirements and
design solutions – the focus is on the structured
representation integration

”Functional” Requirements

Design Goals Detailed Design

Function Allocation

Requirements - Analysis Design - Synthesis

Requirement
Domains

”Functional” Requirements
initial

design

Design
Domain

Design Patterns

planning
implementation

deployment

Goals /
constraints

”Functional” Requirements

Fig. 1 The step between Requirements Analysis

and Design Synthesis can be supported by design
patterns, which are patterns in the design domain
characterized by a set of properties in the
requirements domain [14].

With a perspective on automation design, an

embedding of design knowledge representations can
be established, from core-process knowledge toward
knowledge about enabling technologies:

1. Process knowledge

o Technology domain representations
(e.g. PI-diagrams)

2. Functional requirements knowledge
(incl. goal and function knowledge)
o Threats and Requirements for safety
o Control structure and behavioral

knowledge Performance
3. Instrumentation knowledge

(e.g. measurement and actuation)
4. Communication and computation technologies

Each of these layers thus derives requirements
from the layer above, and its functions are enabled or
potentially enabled by the layers below. For example,
given a process structure, objectives and require-
ments are specified and have to be translated to a
control strategy with detailed control objectives, loop
pairing, etc. A fully specified control system would
then in turn pose requirements to instrumentation,
communication and computation, etc.

The functional representations offered by MFM
can be related to layers 2 and 3, where process
analysis, control structure design and diagnosis are
specific application considerations. Note that the
layering of such knowledge does not necessarily
imply a rigid sequence. For example, an
opportunity-driven approach would be focused on the
impact of enabling technologies.

Note that process fundamental knowledge such as
knowledge about physics, chemistry, etc. is general
phenomena knowledge and cannot be categorized
meaningfully into a means-ends hierarchy.

3.3 Engineering Lifecycle

The engineering lifecycle considers the overall
product development cycle from initial requirements
to the deployment and disposal of a process. Stages
of an engineering lifecycle have been described in the
so-called Waterfall Model:

o Definition Study/Analysis
o Basic Design
o Technical Design/Detailed Design
o Construction
o Testing
o Integration
o Management and Maintenance.

MFM applications outlined above seem to relate
particular into the earlier and later phases. The actual
work process in systems engineering relates to the
specification and analysis phase (see Fig. 2).

Requirements
Analysis

Synthesis

Functional Analysis
and Allocation

Systems Analysis
and Controlling

Systems Engineering Proceess

Verification

Requirements Loop

Design Loop

Input
Context, Goals,
Technology Base,
Domain standards

Outcome
System Architecture,
Specifications

Trade-offs,
risk analysis,
process management

Fig. 2 Systems Engineering. Adapted from [14]

Again, the formal structure of the waterfall model

describes sequential stages, in Rapid Application
Development, it has proven practical to organize the
actual work process in a more iterative and
concurrent fashion. Simplifications, shortcuts and
rapid iterations are often feasible, e.g. enabled by
design patterns and experience-based approaches.

Here, prior knowledge and rapid prototyping
approaches are employed to more quickly generate
useful feedback for the designer.

In this design phase, the main role of MFM models
is in support of process analysis, control structure
analysis and design, as well as risk analysis.

During system operation and for system
maintenance, the MFM-related functions are in
support of visualization, decision support, online
diagnosis and risk monitoring.

4. GENERIC MFM TOOLCHAIN
The two key operations in working with MFM are

a) modeling and knowledge representation and b)
reasoning operations on a given model. In this paper
we assume that each of these operations requires its
own development platform.

As there are a number of applications for MFM
that have in common the need for reasoning about the
model a dedicated development environment for
MFM application development has been developed at
DTU, called MFM Workbench. The key idea is here
to provide a platform in which rule-based
programming for various MFM applications can be
developed. The MFM Workbench can thus be
considered a prototyping environment.
A pure MFM environment helps the focused
development, but as it has been seen in the
discussions above, most applications of MFM require
the integration with other knowledge domains on the
one hand, and with other tools and data sources on
the other.

MFM
Concepts

Process Design Environment

Process
Analysis &

Design

Control Structure
A & D Risk Analysis Visualization &

Decision Support
On-line Diagnosis
& Risk Monitoring

System Design System in Operation

MFM
Model Editor

Dynamic Simulation

Models &
Represenations
Domain Models &
Representations

Operator Display

SA-
Support

Decision
Support

HAZOP
tools

Online Risk
Assessment

Tools

Specification Integrated Analysis Operation Management

Model-
Checks

Primary Process OR SimulatorStatistical Simulation

MFM Workbench
Model

Mapping of
physical
variables

...

f-s

MFM
Patterns

Control
Options

Event Detection f-sf-s
Data Aquisition

Fig. 3 Overview of toolchain in relation to MFM

applications. MFM tools can be relevant during in
system specification, analysis and operation phases.
Fat text indicates core MFM tools and grey arrows
indicate a MFM-oriented interface. The database
symbols with f-s on them indicate a need for
integrating function-structure knowledge at the
respective interface.

Fig. 3 presents an overview of the MFM model

editor and MFM workbench in context of the above
discussed MFM applications in the mapped out into
different phases of the MFM lifecycle. The objective
of presenting this figure is to describe the purpose
and function of MFM oriented tools in relation to
other specialized application tools. In each specific

application, MFM oriented tools only support the
primary application objectives. It becomes clear that
tools focused on working with MFM would have to
satisfy a range of requirements and offer a number of
interfaces for dealing with specific applications.

The MFM-oriented tools are composed of three
primary functions:

• Development and maintenance of MFM
concepts

• MFM model development
• Prototyping and deployment of MFM-based

reasoning functions
The primary development tool for MFM at DTU

has been the MFM Workbench. The MFM concept
development as well as model development used to
be supported by MS Visio®. Whereas the graphical
support functions of MS Visio have been powerful
for concept development, the weak object orientation
and scripting in this environment has increasingly
been perceived as a barrier. In a current collaboration
between DTU and IFE Halden, a dedicated modeling
tool, the MFM Editor, is being developed, building
on IFE Halden experience with modeling tools for a
variety of purposes [51]. At the same time, the MFM
Workbench is being re-engineered to support a more
robust prototyping of reasoning modules and
interfacing with external applications. Both MFM
model editor and MFM Workbench are based on
JAVA, which facilitates a seamless integration. In a
further step MFM concepts shall be extracted from
their separate implementation in each tool toward a
more appropriate ontology representation in order to
facilitate maintenance and development of a MFM
concept ontology. Note also that MFM workbench is
presented in within both design phase and operation.
Each of these contexts presents very different
requirements, but it is believed that an appropriate
software design may enable a common prototyping
platform for either application category. For real-time
applications, a specialized deployment architecture
might have to be developed.

For the remainder of this paper the focus will be on
the need and feasibility of modeling support
functions which would be integrated as assistance
modules in the MFM model editor. Its focus is on
supporting the human modeler in the graphical model
development, to store and retrieve models as well as
to provide meaningful support functions.

In particular, it is anticipated that with the
presented architecture, modeling support functions
can be developed as a side-gain from the
development of reasoning tools for other applications.
For this to be enabled, a specialized interface
between the Model Editor and Workbench shall be
developed (refer to Fig. 3: the box ‘Model Checks’).

A support function anticipated in the figure might
require another type of software interface. It is related
to the mapping between technology domain
knowledge representations) and MFM patterns (to be
discussed in the following section).

tra1

bal1

sou1

tra2

tra3

tra4

sin1

sin2

obj1

(MFS1)

(EFS1)

Water
circulation

Pumping
sto1

m

mco1

(CFS1)

obj3

Water flow
regulation

A

ξ

tra1

bal1

sou1

tra2

tra3

tra4

sin1

sin2

obj1

sto1

tra1

bal1

sou1

tra2

tra3

tra4

sin1

sin2

obj1

sto1

tra1

bal1

sou1

tra2

tra3

tra4

sin1

sin2

sto1

FLOW-COMPLETE MEANS-ENDS ASSEMBLED CAUSAL ROLE REFINED CONTROL-REFINED
Fig. 5 Exemplification of formally distinct stages of MFM model development.

5. MODEL DEVELOPMENT STAGES
Modeling is encoding of knowledge. As part of it

is creative interpretation, there is no principled
straightforward path from the modeling intention to
an application-ready model. However, as in any other
work process, specific modeling tasks can be
identified and related to a modeling process that
outlines the path from first steps toward a formally
correct and meaningful model.

Figure 4 presents an outline of model development
stages in relation to the level of the embedded
knowledge as discussed in Section 3. The stages are
thought from the perspective of modeling an existing
process, and arrows indicate meaningful iterations
through the stages.

Process Analysis

Pattern Encoding

Assembly

Influence Patterns Analysis

Control Opportunities Analysis

Model Building Stage Formally testable features

Physical State and
Instrumentation Mapping

Model Abstractions Specification

(Function-structure
knowledge)

Mass- / Energy Flows

Knowledge
Level

Complete specification of
state-dependency and
means-ends relations

Consistent influence patterns
Fully specified influence roles

Fully specified causal agency

(Function-structure
consistent model-folding)

Application testing

Level 1

Level 1

Level 2

Level 3

Level 4

Level 4

Level 4
Success / Failure of capturing
application purpose
 e.g. via diagnosis test cases

Fig. 4 Model development stages in relation to

knowledge level and formally testable features.

It has been found that each of these stages can be

related to formal properties of the model which can
be checked in a rather straightforward fashion if the
graphical partial model is translated to its formal
representation.

The concept of the modeling stages is based on the
idea that knowledge is added incrementally and
iteratively to an MFM model. Whereas the modeling
process might not develop homogeneously for the
complete model, a certain level of completion is at

least locally always the basis for a following stage.
These stages of completion also relate to a specific
level of process understanding that has been achieved
and captured in the model. Note that Fig. 4 also
includes the modeling of relations to the process
under study (noted as function-structure knowledge),
which has been discussed in [30]. First the formal
properties of the knowledge levels will be discussed,
and then the relation of MFM models to process
domain knowledge and MFM applications will be
addressed.

5. 1 Formal Interpretation of Stages

Fig. 5 illustrates some of these different stages on a
simple MFM model. The MFM model represents a
water-circulation process powered by a pump. The
stages are presented in a pure form which is meant to
convey the formal (and incremental) properties
associated with these stages:

• Process Analysis (Level 1): identify mass-flow
and energy-flow processes and connected
abstract functions.
Formal completion of this stage is achieved
independently for each flow-structure when all
functions within a flow structure are
connected syntactically correct (FLOW-
COMPLETE).

• Means-Ends Assembly (Level 2): identify
objectives and goal-directed interactions
between flow-structures.
Formal completion: All flow-structures are
interconnected and objectives and
main-functions have been identified at all
levels (MEANS-ENDS ASSEMBLED).

• Influence Pattern Analysis (Level 3): identify
influence relations [38] for all connections and
ensure consistency of influence patterns.
Formal compl.: All function connections have
been typed into either participant or
influencer; the patterns are formally consistent
[13] (CAUSAL ROLE REFINED).

• Control Opportunities Analysis (Level 4):
identify those functions whose state is subject

to external influence, such as actuation,
disturbance or (adjustable) fixation; assign
control functions to objectives and actuation.
Formal compl.: At least all influencer-free
transports have been assigned an external
agent-role; all control functions have a
specified actuation path (event propagation to
objective) [13] (CONTROLREFINED).

This concludes the formal stages illustrated in Fig.
5, and also the points for which straightforward
model-checks can be defined at present. However, as
indicated in Fig. 4, further stages can be identified
and supported:

• Model Abstraction Specification: Control
encapsulation and other types of
abstraction-effects relevant for the application
are identified and are supported by meaningful
and consistent function-structure relations.

• Physical State and Instrumentation Mapping:
This stage is meant to prepare the deployment
of a model for respective application purposes.
During model development it is not a chief
concern to relate measurements and other
observable states to MFM functions. For any
concrete application in operation, however, the
definition of both the concrete physical
variables to be represented by a function as
well as the bounds to capture abnormal
function-states is essential. Failure in
identification of these mappings could result
from a modeling mistake in a previous stage.

• Application testing: This stage is an integral
part of the model maturing process. For any
application, test-cases should be defined. The
failure of a model to support a test case is a
strong indicator for an incomplete, inaccurate,
or in another way inappropriate model.

The above stages and model checks include
straightforward syntactic checks, but also checks for
semantic consistency, such as tests for influence
patterns and event propagation-

5.2 From Technology Domain to MFM Model

The essential creative step in modeling is the
interpretation of given technology domain knowledge
in terms of MFM functions and relations.

The intuitive approach for creating a new model is
to start with an energy/mass-flow analysis and to
simply do the modeling from scratch, function-by-
-function, relation by relation. More systematic
approaches have been proposed in [24], [3] and [15].

If other models in the same domain exist, it can be
helpful to begin on given model and to work by
modification – an approach that would save time, but
might reduce the necessary attention to detail.

Yet, it has been found that –for a given technology
domain – certain patterns of MFM functions can be
found to re-occur, consistently with patterns in the
technology domain [34,13]. This observation has led
to the idea of a pattern-based model-creation

approach.
In a simple and only mildly formal approach, a

domain-specific pattern library can be build. The
library can be extended with every new model
created. Here it would be essential to co-document
the related technology domain feature that has been
modeled, in the sense of Design Patterns discussed in
Section 3.1.

In a more formal and automated approach, the
same idea can be applied if a structured formal
representation of the technology domain is available
and a strict pattern-mapping has been established [13].
It has been demonstrated that – in the case of electric
power systems – a completely formalized MFM
model could be created by execution of a script, thus
enabling also the generation of large-scale models.
Further research is required to identify whether such
an approach is feasible also in other technology
domains.

5.3 How do Stages Support the Modeling Process?

The formal stages identified above are, analog to
the engineering lifecycle discussed in Section 3.3,
characterized by sequential dependency, but equally
allow alternative pathways and overlapping stages
within the same modeling task. The interpretation of
these stages is therefore not thought of as a formal
sequence of modeling steps, but rather as ‘backlog’
estimation and ‘debugging’ features.

If for example a subset of a model can be
identified as rather complete, whereas other parts
would be identified as ‘behind’ in the modeling
process, this information would support the modeler
in focusing attention: It could for example be
preferred to finalize a certain subset of the model first
for prototyping purposes.

The most practical contribution would however
come from a minimized debugging effort which
currently involves iterations through the complete
application chain.

A further aspect can be related to a classification
and navigation of stored models for application
purposes. For example, not all applications require a
model completion to Level 4, and it is likely that
MFM patterns in a pattern library include also Level
1 and Level 2 patterns.

In summa, the modeling stages support a lifecycle
perspective for MFM models. It is clear that the
creative aspect, the striving for a meaningful and
relevant model cannot be achieved by formal checks
alone – but a well-supported modeling process leaves
attention for meaningful reflections, and rapid
iterations which will lead faster to more mature
models.

6. SUPPORT FUNCTIONS
The general outline of meaningful support

opportunities related to MFM modeling stages has
been presented in the previous section. Here we shall
focus on the interaction between tool and modeler.

6.1 Build-in and Elementary Support Functions

Elementary support functions are those build into
the model editor as modes of interaction with the
modeling canvas. Some that have been implemented
in the MFM Editor/ShapeShifter [51] framework
include:

- Model-extension: Offering only syntactically
correct functions

- Automatic numbering / naming
- Annotations to MFM entities
- Marking of connection points indicating

connectivity, etc
- Switching relations connectivity view:

main-function/ target-function connectivity
for means-function relations can switch
connection point between flow-structure and
function, improving overview in larger
models.

Further functions considered desirable include:
- Offering function replacement for

syntactically equivalent functions (balance –
storage; transport – bi-transport, etc.

- Definition of multiple views on a model.

This list is of course non-exhaustive and is only
meant to illustrate types of interactions, and it
showed that a good interaction between tool
developer and users provide a foundation for fruitful
tool improvements.

6.2 Implementation of Model-Checks

The modeling stages as discussed in the previous
section formalize properties of an MFM model that
can easily be tested. Such a test would be developed
in the MFM Workbench – in most cases by simply
creating additional output from already existing
reasoning functions.

Once the respective model-check has been
implemented, it can be made available through a
dedicated interface between MFM Editor and MFM
Workbench. The MFM Editor offers available Model
Checks as executable plug-ins to the
Model-Developer. Execution of a Model Check will
then provide state (e.g. success/failure) information
about the MFM entities in the respective model
regarding its Model Stage.

The information returned can then be utilized by
the MFM Editor, for example to provide graphical
feedback about the result. Depending on the check,
the result can be indicated e.g. by color-coding the set
of functions that passed the check or additional
annotations.

Beyond this detailed information about individual
patterns, the check also results in information
qualifying the entire model, which can be stored and
displayed in the MFM Editor as state information
associated with the model file.

6.3 Implementation of Pattern Library

A pattern library as described above would require
an association of technology domain data with
corresponding MFM patterns. A searchable pattern
library, structured by technology domains would be a
desirable feature. As the function-structure relation
modeling has not been included at this point, this full
library feature is not practical yet.

Instead, the possibility of selecting a partial MFM
model and defining a collection of partial MFM
models has been implemented in a practical fashion.

Automatic model translation as discussed in
Section 5.2 is beyond the scope of this paper. It is
expected that a robust implementation of this type of
translation will require advanced semantic
technologies, and also further development of
respective domain ontologies in the technology
domains. In Power Systems the domain ontologies
for data exchange are relatively advanced, consider
e.g. the ‘Common Information Model’ (CIM) for
Power Systems, IEC 61970 and related standards. For
example in chemical engineering, standardization
efforts are under way but prove difficult (consider e.g.
efforts toward ISO 15926).

6.4 Model Lifecycle Support

In general, it is found that an integrated,
project-oriented approach to modeling and reasoning
with MFM models is favorable.

So far, a template structure for different classes of
MFM related file types has been created and also the
MFM editor is structured into modeling projects
rather than single files.

Further lifecycle support can be achieved with a
model-maturity tracking system, which can be
interpreted as meta-information generated for
example on the basis of the above-discussed
model-checks. The meta-data would for example
enable a reasoning system to identify the validity of a
model for a requested reasoning task. Consider
keywords classifying the states such as:

 RAW / DRAFTING
 PARTIALLY FLOW-COMPLETE
 BUILDABLE
 CAUSAL ROLE CONSISTENT
 FUNCTION-STRUCTURE COMPLETE

Beyond these formal properties, further
information can be included that would inform about
the maturity of a model based on application
experience. Whether such knowledge can be
formalized in a meaningful fashion is not clear at this
time. For example successful (and failed)
model-applications could however be recorded here.

A last essential item of meta-information is the
version of the MFM concepts that have been
employed in the model development. MFM has been
and is a work in progress and improved modeling
concepts will continue to extend and improve

potential applications. It is therefore essential for the
model lifecycle for any larger application to keep
track not only of the model versions but also on the
version of MFM concepts it has been developed in.

7. CONCLUSION
This paper presented an introduction and overview

to the MFM application context in a broad scope. Not
the MFM modeling itself has been in focus, but
rather the applications and contextual requirements of
the modeling process as knowledge acquisition. The
presentation of an MFM-oriented tool chain picture
also expresses the interface requirements that will
have to be addressed in further work.

It was found that formal checks can support the
development of formally complete and consistent
models. Certainly the clarification of representation
problems or modeling mistakes can not directly be
assessed by such formal checks. However, as the
iterations required for modeling become faster, more
contextual information is available, and correctness
checks are automatic, a resulting more focused
reflection about modeling problems is still expected
to help improving model quality in general.

Further, the introduction of life-cycle related model
information and other meta-information should
simplify the handling of several model versions and
their relation to different version of the MFM
concepts.

In further work on tool development, supporting
functions for the MFM concept development should
be addressed. Knowledge representation can be
considered its own application category – to be
supported by relevant semantic technologies.

The discussion on shared interface definitions
could also be interesting in relation the research and
development of MFM applications together with
other, special purpose or technology specific
application software.

8. ACKNOWLEDGEMENT
The present work is part of an ongoing cooperation

between the OECD IFE Halden project and DTU on
the use of MFM for innovative monitoring systems.
The authors acknowledge the contributions of H.
Thunem to specifications of the MFM Editor
discussed here.

REFERENCES
[1] F. Dahlstrand. Consequence Analysis Theory

for Alarm Analysis. Knowledge Based Systems,
15(1), 2002: 27-36.

[2] K. Duncan and N. Prætorius. Flow Displays
representing Complex Plant for Diagnosis and
process Control. Prof. Cognitive Science
Approaches to Process Control (CSAPC), Siena
Italy, October 24-27 1989.

[3] M. Fang. MFM Modeling Method and
Application. Technical Report 94-D-713,

Department of Automation, Technical
University of Denmark, March 1994.

[4] M. Fang and M. Lind. Model-Based Reasoning
Using MFM. Proceedings. Pacific Asian
Conference on Expert Systems (PACES).
Huangshan China, 1995.

[5] K. V. Gernaey, M. Lind and S. B. Jørgensen,
“Towards Understanding the Role and Function
of Regulatory Networks in Microorganisms”.
In: L. Puigjaner and G. Heyn (Eds), Computer
Aided Process & Product Engineering,
Wiley-VCH, Weinheim Germany, 2004.

[6] A. Gofuku, Y. Seki and Y. Tanaka.
Representation of Goal-Function-Structures
Information for Efficient Design of Engineering
Systems. Proc. Int. Symposium. Cognitive
Systems Engineering in Process Control
(CSEPC), Kyoto Japan, November 12-15 1996.

[7] A. Gofuku and Y. Tanaka, “A Combination of
Qualitative Reasoning and Numerical
Simulation to Support Operator Decisions in
Anomalous situations, In: Proc. 3´rd IJCAI
Workshop on Engineering Problems for
Qualitative Reasoning, p. 19-27, Aug 23-29,
1997.

[8] A. Gofuku and Y. Tanaka. Application of
Derivation Technique of Possible Counter
Actions to an Oil Refinery Plant, Proc.4´th
IJCAI Workshop on Engineering Problems for
Qualitative Reasoning, Stockholm Sweden, July
31-August 6, 1999: 77-83.

[9] A. Gofuku, Y Ozaki and K. Ito, “A Dynamic
Operation Permission System for Pressurized
Water Reactor Plants”, In: Proc. ISOFIC´2002
International Symposium on the Future of I&C
for NPP, p. 360-365, Seoul Korea, Nov. 7-8,
2002.

[10] A. Gofuku, T. Ohi and K. Ito, “Qualitative
Reasoning of the Effects of a Counteraction
Based on a Functional Model, Proc.
CSEPC´2004, Sendai Japan, November 4-5,
2004.

[11] A. Gofuku. Support systems of plant operators
and designers by function-based inference
techniques based on MFM models. Int. J.
Nuclear Safety and Simulation, 2011, 2(4).

[12] G. Gola, M. Lind, H. Thunem, A. Thunem, E.
Wingstedt and D. Roverso. Multilevel Flow
Modeling for Nuclear Power Plant Diagnosis.
Proc. European Safety and Reliability
Conference, ESREL2011,Troyes France, Sept.
18-22, 2011.

[13] K. Heussen, A. Saleem and M. Lind. Control
Architecture of Power Systems: Modeling of
Purpose and Function, Proceedings IEEE PES
General Meeting, Calgary Canada, July 26-30
2009.

[14] K. Heussen. Control Architecture Modeling for
Future Power Systems. PhD Thesis, Technical
University of Denmark, Nov. 2011.

[15] S. S. Jørgensen. Fault Diagnosis Using Generic
Multilevel Flow Modelling Models: In Theory
and Praxis. PhD dissertation, Department of
Automation, Technical University of Denmark,
1993.

[16] M. N. Larsen. Deriving Action Sequences for
start-up using Multilevel Flow Models. PhD
dissertation, Department of Automation,
Technical University of Denmark, 1993.

[17] J. E. Larsson. Diagnostic Reasoning Strategies
for Means-End Models, Automatica, 1994.

[18] J. E. Larsson, “Diagnosis Based on Explicit
Means-end Models”, Artificial Intelligence,
80(1), 29-93, 1996.

[19] Lind, M. The Use of Flow Models for Design
of Plant operating procedures. Proc.
IWG/NPPCI Specialists Meeting on Procedures
and Systems for Assisting an Operator during
Normal and Anomalous Nuclear Power Plant
Operating Conditions, Garching Germany,
December 5-7, 1979.

[20] M. Lind. The Use of Flow Models for
Automated Plant Diagnosis, In: J. Rasmussen
and W. B. Rouse: Human Detection and
Diagnosis of System Failures, Plenum
Publishing Corporation, 1981, 411-432.

[21] M. Lind and J. Rasmussen. Coping with
Complexity, European Conference on Human
Decision and Manual Control, Delft The
Netherlands, 1981.

[22] M. Lind. Diagnosis Using Multilevel Flow
Models: Diagnostic Strategies for the P96
Demonstrator. EU-ESPRIT P96, July 1988.

[23] M. Lind. Representing Goals and Functions of
Complex Systems, Technical University of
Denmark: Department of Automation, 1990.

[24] M. Lind. Modeling Goals and Functions of
Complex Industrial Plant, Journal of Applied
Artificial Intelligence, 1994, 8:259-283.

[25] M. Lind, “Interpretation Problems in Modeling
Complex Artifacts for Diagnosis”, In: Proc.
Cognitive Engineering for Process Control
(CSEPC´96), Kyoto Japan, Nov. 12-15, 1996.

[26] M. Lind. Plant Modeling for Human
Supervisory Control, Trans. Inst. Measurement
and Control, 1999, 21(4/5):171-180.

[27] M. Lind, “Making Sense of the Abstraction
Hierarchy in the Power Plant Domain”,
Cognition Technology and Work, 5(2), p.67-81,
2003.

[28] M. Lind. The why, what and how of functional
modeling. Proc. Int. Symp. on Symbiotic
Nuclear Power Systems for the 21´th Century
(ISSNP), Tsuruga Japan, 2007.

[29] M. Lind. A Goal Function Approach to Analysis
of Control Situations, Proc. 11´th
IFAC/IFIP/IFORS/IEA Symposium on Analysis,
Design and Evaluation of Human-Machine
Systems, Valenciennes France, 2010.

[30] M. Lind. Knowledge Representation for

Integrated Plant Operation and Maintenance,
Proc. 7´th ANS International Topic Meeting on
Nuclear Plant Instrumentation, Control and
Human-Machine Interface Technologies
NIC&HMIT, Las Vegas, Nevada, November
7-11, 2010.

[31] M. Lind. Reasoning about Causes and
Consequences in Multilevel Flow Modeling.
Proc. European Safety and Reliability
Conference, ESREL 2011,Troyes France,
September 18-22, 2011.

[32] M. Lind. An Introduction to Multilevel Flow
Modeling. International Journal of Nuclear
Safety and Simulation, 2011, 2(1), 22-32.

[33] M. Lind. Control functions in MFM: basic
principles. International Journal of Nuclear
Safety and Simulation, 2011, 2, June 2011.

[34] M. Lind, H. Yoshikawa, S. B. Jørgensen, M.
Yang, K. Tamayama, K. Okusa. Multilevel flow
modeling of Monju Nuclear Power Plant.
International Journal of Nuclear Safety and
Simulation, 2011, 2(3).

[35] M. Lind, H. Yoshikawa, S. B. Jørgensen, M.
Yang, K. Tamayama and K. Okusa. Modeling
Operating Modes for the Monju Nuclear Power
Plant. Proc. 8´th ANS International Topic
Meeting on Nuclear Plant Instrumentation,
Control and Human-Machine Interface
Technologies NIC&HMIT, San Diego,
California, July, 2012.

[36] J. Liu, H. Yoshikawa and Y. Zhou. Application
of Multilevel Flow Modeling to describe
complex processes in a nuclear fuel cycle.
Proceedings of Cognitive Systems Engineering
in Process Control (CSEPC2004), Sendai Japan,
November 4-5, pp. 114-120, 2004.

[37] J. Ouyang, M. Yang, H. Yoshikawa, Y. Zhou
and J. Liu. Alarm Analysis and Supervisory
Control of PWR Plant. In Proceedings of
Cognitive Systems Engineering in Process
Control (CSEPC 2004). Sendai, Japan,
November 4-5, pp. 61-68, 2004.

[38] J. Petersen. Causal Reasoning Based on MFM,
Proceedings International Symposium on
Cognitive Systems Engineering in Process
Control (CSEPC), Taejon Korea, November
22-25, 2000.

[39] J. Petersen. Countermeasures and Barriers. Proc.
Annual Conference of European Association of
Cognitive Ergonomics (EACE´05), Chania
Greece, September 29-October 1, 2005: 43-50.

[40] E. Souza and M. Veloso. AI Planning in
Supervisory Control Systems, Proc. IEEE Int.
Conf. Systems, Man and Cybernetics, Beijing
China, October 14-15 1996: 31353-3158.

[41] N. L. Rossing, M. Lind, N. Jensen and S.
B: Jørgensen. A Functional Hazop Methodol
ogy, Computers in Chemical Engineering, 2
010, 34(2): 244-253.

[42] A. Saleem and M. Lind. Reasoning about

Control Situations in Power Systems, Proc.
15´th International Conference on Intelligent
System Applications to Power Systems (ISAP),
Curitiba Brazil, November 8-12, 2009.

[43] T. Us, N. Jensen, M. Lind and S. B. Jørgensen.
Principles of Alarm Design, International
Journal of Nuclear Safety and Simulation, 2011,
2(1).

[44] M. Yang, Z. Zhang, M. Peng and S. Yan.
Modeling Nuclear Power Plant with Multilevel
Flow Models and Its Application in Reliability
Analysis, Proc. Int. Symp. on Symbiotic
Nuclear Power Systems for the 21´th Century
(ISSNP), Tsuruga Japan, 2007.

[45] M.Yang, Z. Zhang, H. Yoshikawa, M. Lind, K.
Ito, K. Tamayama, and K. Okusa. Integrated
Method for Constructing Knowledge Base
System for Proactive Trouble Prevention of
Nuclear Power Plant. International Journal of
Nuclear Safety and Simulation, 2(2),
pp.140-150(2011).

[46] H. Yoshikawa, M. Yang, M. Hashim, M. Lind,
and Z. Zhang, “Design of Risk Monitor for
Nuclear Reactor Plants”, International Journal
of Nuclear Safety and Simulation, 2(3),
pp.265-273, 2011.

[47] H. Yoshikawa, M. Lind, M. Yang, M. Hashim
and Z. Zhang. Configuration of Risk Monitor
System by Plant Defense-In Depth Monitor and
Relibility Monitor. Proc. 8´th ANS International
Topic Meeting on Nuclear Plant
Instrumentation, Control and Human-Machine
Interface Technologies NIC&HMIT, San Diego,
California, July, 2012.

[48] Y. Zhou, H. Yoshikawa, W. Wu, M. Yang and H.
Ishii. Modeling Goals and Functions of Micro
Gas Turbine System by Multilevel Flow
Modeling. The Transactions of Human Interface
Society of Japan, 6(1), 59-68, 2004.

[49] Y. Zhou, H. Yoshikawa, M. Yang, J. Ouyang, J.
Liu and W. Wu. MFMS A graphical Interface
Tool for Mulitlevel Flow Modeling. Proc. 9’th
IFAC/IFIP/IFORS/IEA Symposium on Analysis,
Design and Evaluation of Human-Machine
Systems. Atlanta USA, September 7-9 2004.

[50] I. López-Arévalo, R. Bañares-Alcántara, A.
Aldea, A. Rodigues-Martinez, L. Jiménez.
Generation of process alternatives using
abdtract models and case-based reasoning.
Computers % Chemical Engineering. (31)18,
15 August 2007, pp 902-918.

[51] H. Thunem, A. Thunes and M. Lind. Using and
Agent-Oriented Framework for Supervision,
Doagnosis and Prognisis Application in
Advanced Automation Environments. Proc.
European Safety and Reliability Conference,
ESREL2011,Troyes France, Sept. 18-22, 2011.

