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Abstract: A modeling environment and methodology are necessary to ensure quality and reusability of models 

in any domain. For MFM in particular, as a tool for modeling complex systems, awareness has been increasing 
for this need. Introducing the context of modeling support functions, this paper provides a review of MFM 
applications, and contextualizes the model development with respect to process design and operation knowledge. 
Developing a perspective for an environment for MFM-oriented model- and application-development a 
tool-chain is outlined and relevant software functions are discussed. With a perspective on MFM-modeling for 
existing processes and automation design, modeling stages and corresponding formal model properties are 
identified. Finally, practically feasible support functions and model-checks to support the model-development 
are suggested.  
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1. INTRODUCTION 
As a modeling language and as knowledge-base 

for reasoning applications, MFM has been developed 
over many years and its potential for applications in 
several technology domains has been demonstrated.  
The development of an MFM model as well as MFM 
applications requires – or enables – the integration of 
different types of engineering knowledge. This 
property of MFM, the role as a tool for integration of 
knowledge, makes MFM both powerful and difficult 
to apply.  

In modeling practice with MFM there is typically a 
long tool-chain between graphical model develop-
ment and its final application, e.g. in a HAZOP study. 
Model-development in itself is a challenging task and 
both simple syntactic mistakes and more complex 
semantic mistakes occur in the process. As any 
modeling process it requires iterations between 
modeling and application to mature event formally 
correct model. Here a long tool-chain becomes 
tedious and may impact the ability of a modeler to 
focus on essential interpretation tasks. Some of these 
difficulties, however, can be avoided. As the 
feedback collected from model-validation, 
model-building as well as from the failure of certain 
reasoning tasks is experienced as valuable for the 
development of high-quality models, similar 
information could be provided directly in the 
modeling environment.  

In order to motivate the broad scope that a 
MFM-oriented modeling environment ought to 
support, this paper first presents a review of MFM in 
Section 2.  The type of knowledge captured in a 
MFM model and other related domains of knowledge 
are analyzed in Section 3. Focusing on software tools 
for the support of MFM modeling and application 
development, Section 4 presents a global tool-chain 
perspective, integrating modeling with reasoning, 

offline and online applications. In Section 5, the 
modeling process is viewed in a knowledge 
acquisition perspective and divided into stages, 
corresponding to formalized levels of knowledge.  
Finally the realization of support functions in a 
dedicated MFM modeling environment is discussed 
in Section 6.  

 

2. REVIEW OF APPLICATIONS AND 
MODEL REQUIREMENTS 

A review of the existing rather comprehensive 
literature on MFM is not straight forward because the 
contributions of most papers shown in the list of 
references are relevant for more than one perspective 
including modeling concepts and methodology, 
technology domain and model application. We will 
therefore categorize the research contributions along 
these three dimensions in the following. 

  
2.1 Modeling and reasoning methodology 

A significant part of the research on MFM has 
contributed to the development of concepts and 
modeling methodology. Concepts and methodology 
has been evolving over several decades and is still in 
ongoing as part of the application of MFM in 
different technology domains described below. 
Contributions to the foundational concepts are 
presented in [21, 23-26, 28, 30, 32-35, 39]. 
Contributions to modeling methodology are 
presented in [3, 15, 34]. Several research 
contributions address the reasoning capability of 
MFM. These contributions include [1, 4, 17-20, 22, 
31, 38]. The relations between MFM and other 
modeling approaches such as differential equations 
have also been investigated [7]. 

 



 
Table 1 Overview of proven MFM applications 

 

 
Tools for building MFM models have been 

developed by several research groups. These efforts 
are not widely published (see however [49]), also 
partly because they are under development [51].  

 
2.2 Technology domain 

MFM has been used to represent a variety of 
complex dynamic processes including energy 
conversion systems like fossil power plants [17], 
nuclear power generation [9, 12, 34-37], gas turbines 
[48] and ship engines [15]. MFM has also been used 
to model power transmission and distribution systems 
[13, 14, 42] and for chemical engineering systems 
such as oil refineries [8], distillation columns [41] 
and biochemical processes [15]. Ongoing research at 
DTU develops MFM extensions for representations 
of chemical reactions. 

MFM has proven to be able to cover these domains 
and to be robust enough to be able to assimilate 
extensions required for the different domains. MFM 
can in this way highlight both generic features and 
commonalties and differences between domains. 

  
2.2 Model purpose 

MFM are used for a variety of purposes within 
supervision and control of complex automated 
processes. One group of application includes 
situation assessment and fault diagnosis for decision 
support of control room operators. This research 
includes root cause analysis [20, 22, 25, 31, 38] alarm 
design [43] and alarm analysis and filtering [17, 18, 
37]. MFM is also proposed for on-line risk 
monitoring [30, 45-47] and for risk analysis of 
processes in the design phase [41, 44]. Application of 
MFM for planning of control actions have been 
investigated by [16, 40]. Recent promising 
applications of MFM include design of control 
system architectures [13, 14]. Finally, the role of 
MFM in design of Human Machine Interfaces has 
been investigated in [2, 7, 9, 11, 21, 26, 27]. 

 

2.3 Overview of research contributions  

Table 1 categorizes the research contributions 
outlined above in a matrix to illustrate the coverage 
application categories in the different technology 
domains.  

3. MFM IN CONTEXT OF OTHER 
ENGINEERING KNOWLEDGE  

Whereas MFM is focused on the formal expression 
of goal-function-structure information about a 
process, it is important for development of MFM 
models and their use in applications to also 
understand and, if feasible, formally capture its 
relation to other domains of knowledge. To develop 
an overview of these relations, we first identify the 
knowledge embedded in MFM models, and then 
develop an overview of other types of knowledge 
MFM relates to in the engineering process. When 
viewing the development of MFM models and 
applications as part of an engineering process, it 
further becomes relevant to consider embedding and 
progression of MFM models and applications in the 
engineering lifecycle.  

 
3.1 Knowledge specification within MFM models 

Efficient representation of process knowledge is a 
prerequisite for knowledge based systems reasoning 
about complex industrial processes. MFM models are 
efficient for this purpose because they combine 
process knowledge on four interdependent levels of 
specification as shown in Table 2 [31]. These levels 
are relevant both for the reasoning perspective, as 
presented in [31], and the modeling phase, as will be 
seen in Section 5. 

The specification of functional knowledge can 
only be made operational, when its relation to 
physical and structural specifications can clearly be 
identified. Such ‘structural’ knowledge is captured in 
common domain-specific representations, and is not 
by itself part of MFM. 

Application  
Category 

 
 

Technology Domain 

Process 
Analysis  
& Design 

Control 
Structure  

A&D 
Risk Analysis 

Visualization 
& Decision 

Support 

On-line 
Diagnosis  

& Risk 
Monitoring 

Chemical Engineering [5][50]  [41] [8]  
Nuclear Power Plants [34][35][36]  [44] [9][45] [12][37][46] 

[47] 
Electric Power Systems   [13][14][16] 

[42] 
   

Other energy conversion [48]    [15] 
General [6][23][24] 

[26][27][8] 
[30][32][38] 

[39] 

[19][29][33] [31] [2][7][10] 
[21][40] 

[4][17][1] 
[20][22][25] 

[31][43] 



Table 2 Four levels of knowledge specification 
embedded in MFM models [31].  
Level Knowledge categories 

4 Event propagation paths 
3 MFM Patterns 
 Influence patterns Means-end and 

control patterns 
2 Influence 

relations 
Means-end and 
control relations 

1 State dependency relations 
 
The function-structure, relation, however, can be 

considered part of the MFM modeling language and 
has been formulated in detail in [30]. Using an 
action-role concept with explicit role-entities, also 
design features such a structural redundancy can be 
modeled.  

 
3.2 Knowledge embedding in Automation Design 

In the engineering process for technical systems, 
various types of knowledge representation are 
relevant. Detailed design specifications are, during a 
system design phase, developed from high-level 
design goals. Here, repeatedly design choices from 
one engineering domain have to be translated into 
requirements for another. Figure 1 illustrates this 
basic design step and explains the role of design 
patterns in mediating between requirements and 
design solutions – the focus is on the structured 
representation integration 
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Fig. 1 The step between Requirements Analysis 

and Design Synthesis can be supported by design 
patterns, which are patterns in the design domain 
characterized by a set of properties in the 
requirements domain [14].  

 
With a perspective on automation design, an 

embedding of design knowledge representations can 
be established, from core-process knowledge toward 
knowledge about enabling technologies: 

 
1. Process knowledge  

o Technology domain representations  
(e.g. PI-diagrams) 

2. Functional requirements knowledge 
(incl. goal and function knowledge) 
o Threats and Requirements for safety  
o Control structure and behavioral 

knowledge Performance 
3. Instrumentation knowledge  

(e.g. measurement and actuation) 
4. Communication and computation technologies  

Each of these layers thus derives requirements 
from the layer above, and its functions are enabled or 
potentially enabled by the layers below. For example, 
given a process structure, objectives and require-
ments are specified and have to be translated to a 
control strategy with detailed control objectives, loop 
pairing, etc. A fully specified control system would 
then in turn pose requirements to instrumentation, 
communication and computation, etc. 

The functional representations offered by MFM 
can be related to layers 2 and 3, where process 
analysis, control structure design and diagnosis are 
specific application considerations. Note that the 
layering of such knowledge does not necessarily 
imply a rigid sequence. For example, an 
opportunity-driven approach would be focused on the 
impact of enabling technologies. 

Note that process fundamental knowledge such as 
knowledge about physics, chemistry, etc. is general 
phenomena knowledge and cannot be categorized 
meaningfully into a means-ends hierarchy. 

 
3.3 Engineering Lifecycle 

The engineering lifecycle considers the overall 
product development cycle from initial requirements 
to the deployment and disposal of a process. Stages 
of an engineering lifecycle have been described in the 
so-called Waterfall Model: 

o Definition Study/Analysis   
o Basic Design   
o Technical Design/Detailed Design   
o Construction     
o Testing           
o Integration  
o Management and Maintenance.  

MFM applications outlined above seem to relate 
particular into the earlier and later phases. The actual 
work process in systems engineering relates to the 
specification and analysis phase (see Fig. 2).  
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Fig. 2 Systems Engineering. Adapted from [14] 
 
Again, the formal structure of the waterfall model 

describes sequential stages, in Rapid Application 
Development, it has proven practical to organize the 
actual work process in a more iterative and 
concurrent fashion. Simplifications, shortcuts and 
rapid iterations are often feasible, e.g. enabled by 
design patterns and experience-based approaches. 



Here, prior knowledge and rapid prototyping 
approaches are employed to more quickly generate 
useful feedback for the designer. 

In this design phase, the main role of MFM models 
is in support of process analysis, control structure 
analysis and design, as well as risk analysis. 

During system operation and for system 
maintenance, the MFM-related functions are in 
support of visualization, decision support, online 
diagnosis and risk monitoring.  

 

4. GENERIC MFM TOOLCHAIN 
The two key operations in working with MFM are 

a) modeling and knowledge representation and b) 
reasoning operations on a given model. In this paper 
we assume that each of these operations requires its 
own development platform. 

As there are a number of applications for MFM 
that have in common the need for reasoning about the 
model a dedicated development environment for 
MFM application development has been developed at 
DTU, called MFM Workbench. The key idea is here 
to provide a platform in which rule-based 
programming for various MFM applications can be 
developed. The MFM Workbench can thus be 
considered a prototyping environment.  
A pure MFM environment helps the focused 
development, but as it has been seen in the 
discussions above, most applications of MFM require 
the integration with other knowledge domains on the 
one hand, and with other tools and data sources on 
the other. 
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Fig. 3 Overview of toolchain in relation to MFM 

applications. MFM tools can be relevant during in 
system specification, analysis and operation phases. 
Fat text indicates core MFM tools and grey arrows 
indicate a MFM-oriented interface. The database 
symbols with f-s on them indicate a need for 
integrating function-structure knowledge at the 
respective interface.  

 
Fig. 3 presents an overview of the MFM model 

editor and MFM workbench in context of the above 
discussed MFM applications in the mapped out into 
different phases of the MFM lifecycle. The objective 
of presenting this figure is to describe the purpose 
and function of MFM oriented tools in relation to 
other specialized application tools. In each specific 

application, MFM oriented tools only support the 
primary application objectives. It becomes clear that 
tools focused on working with MFM would have to 
satisfy a range of requirements and offer a number of 
interfaces for dealing with specific applications.  

The MFM-oriented tools are composed of three 
primary functions: 

• Development and maintenance of MFM 
concepts  

• MFM model development  
• Prototyping and deployment of MFM-based 

reasoning functions 
The primary development tool for MFM at DTU 

has been the MFM Workbench. The MFM concept 
development as well as model development used to 
be supported by MS Visio®. Whereas the graphical 
support functions of MS Visio have been powerful 
for concept development, the weak object orientation 
and scripting in this environment has increasingly 
been perceived as a barrier. In a current collaboration 
between DTU and IFE Halden, a dedicated modeling 
tool, the MFM Editor, is being developed, building 
on IFE Halden experience with modeling tools for a 
variety of purposes [51]. At the same time, the MFM 
Workbench is being re-engineered to support a more 
robust prototyping of reasoning modules and 
interfacing with external applications. Both MFM 
model editor and MFM Workbench are based on 
JAVA, which facilitates a seamless integration. In a 
further step MFM concepts shall be extracted from 
their separate implementation in each tool toward a 
more appropriate ontology representation in order to 
facilitate maintenance and development of a MFM 
concept ontology. Note also that MFM workbench is 
presented in within both design phase and operation. 
Each of these contexts presents very different 
requirements, but it is believed that an appropriate 
software design may enable a common prototyping 
platform for either application category. For real-time 
applications, a specialized deployment architecture 
might have to be developed.  

For the remainder of this paper the focus will be on 
the need and feasibility of modeling support 
functions which would be integrated as assistance 
modules in the MFM model editor. Its focus is on 
supporting the human modeler in the graphical model 
development, to store and retrieve models as well as 
to provide meaningful support functions.  

In particular, it is anticipated that with the 
presented architecture, modeling support functions 
can be developed as a side-gain from the 
development of reasoning tools for other applications. 
For this to be enabled, a specialized interface 
between the Model Editor and Workbench shall be 
developed (refer to Fig. 3: the box ‘Model Checks’).  

A support function anticipated in the figure might 
require another type of software interface. It is related 
to the mapping between technology domain 
knowledge representations) and MFM patterns (to be 
discussed in the following section).  
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Fig. 5 Exemplification of formally distinct stages of MFM model development.  
 

5. MODEL DEVELOPMENT STAGES 
Modeling is encoding of knowledge. As part of it 

is creative interpretation, there is no principled 
straightforward path from the modeling intention to 
an application-ready model. However, as in any other 
work process, specific modeling tasks can be 
identified and related to a modeling process that 
outlines the path from first steps toward a formally 
correct and meaningful model.  

Figure 4 presents an outline of model development 
stages in relation to the level of the embedded 
knowledge as discussed in Section 3. The stages are 
thought from the perspective of modeling an existing 
process, and arrows indicate meaningful iterations 
through the stages.  
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Fig. 4 Model development stages in relation to 

knowledge level and formally testable features. 
 
It has been found that each of these stages can be 

related to formal properties of the model which can 
be checked in a rather straightforward fashion if the 
graphical partial model is translated to its formal 
representation.  

The concept of the modeling stages is based on the 
idea that knowledge is added incrementally and 
iteratively to an MFM model. Whereas the modeling 
process might not develop homogeneously for the 
complete model, a certain level of completion is at 

least locally always the basis for a following stage. 
These stages of completion also relate to a specific 
level of process understanding that has been achieved 
and captured in the model. Note that Fig. 4 also 
includes the modeling of relations to the process 
under study (noted as function-structure knowledge), 
which has been discussed in [30]. First the formal 
properties of the knowledge levels will be discussed, 
and then the relation of MFM models to process 
domain knowledge and MFM applications will be 
addressed. 

 
5. 1 Formal Interpretation of Stages  

Fig. 5 illustrates some of these different stages on a 
simple MFM model. The MFM model represents a 
water-circulation process powered by a pump. The 
stages are presented in a pure form which is meant to 
convey the formal (and incremental) properties 
associated with these stages: 

• Process Analysis (Level 1): identify mass-flow 
and energy-flow processes and connected 
abstract functions.  
Formal completion of this stage is achieved 
independently for each flow-structure when all 
functions within a flow structure are 
connected syntactically correct (FLOW-
COMPLETE).  

• Means-Ends Assembly (Level 2): identify 
objectives and goal-directed interactions 
between flow-structures.  
Formal completion: All flow-structures are 
interconnected and objectives and 
main-functions have been identified at all 
levels (MEANS-ENDS ASSEMBLED). 

• Influence Pattern Analysis (Level 3): identify 
influence relations [38] for all connections and 
ensure consistency of influence patterns.  
Formal compl.: All function connections have 
been typed into either participant or 
influencer; the patterns are formally consistent 
[13] (CAUSAL ROLE REFINED). 

• Control Opportunities Analysis (Level 4): 
identify those functions whose state is subject 



to external influence, such as actuation, 
disturbance or (adjustable) fixation; assign 
control functions to objectives and actuation.  
Formal compl.: At least all influencer-free 
transports have been assigned an external 
agent-role; all control functions have a 
specified actuation path (event propagation to 
objective) [13] (CONTROLREFINED). 

This concludes the formal stages illustrated in Fig. 
5, and also the points for which straightforward 
model-checks can be defined at present. However, as 
indicated in Fig. 4, further stages can be identified 
and supported: 

• Model Abstraction Specification: Control 
encapsulation and other types of 
abstraction-effects relevant for the application 
are identified and are supported by meaningful 
and consistent function-structure relations.  

• Physical State and Instrumentation Mapping: 
This stage is meant to prepare the deployment 
of a model for respective application purposes. 
During model development it is not a chief 
concern to relate measurements and other 
observable states to MFM functions. For any 
concrete application in operation, however, the 
definition of both the concrete physical 
variables to be represented by a function as 
well as the bounds to capture abnormal 
function-states is essential. Failure in 
identification of these mappings could result 
from a modeling mistake in a previous stage. 

• Application testing: This stage is an integral 
part of the model maturing process. For any 
application, test-cases should be defined. The 
failure of a model to support a test case is a 
strong indicator for an incomplete, inaccurate, 
or in another way inappropriate model.  

The above stages and model checks include 
straightforward syntactic checks, but also checks for 
semantic consistency, such as tests for influence 
patterns and event propagation-  

 
5.2 From Technology Domain to MFM Model 

The essential creative step in modeling is the 
interpretation of given technology domain knowledge 
in terms of MFM functions and relations.  

The intuitive approach for creating a new model is 
to start with an energy/mass-flow analysis and to 
simply do the modeling from scratch, function-by-
-function, relation by relation. More systematic 
approaches have been proposed in [24], [3] and [15]. 

If other models in the same domain exist, it can be 
helpful to begin on given model and to work by 
modification – an approach that would save time, but 
might reduce the necessary attention to detail.  

Yet, it has been found that –for a given technology 
domain – certain patterns of MFM functions can be 
found to re-occur, consistently with patterns in the 
technology domain [34,13]. This observation has led 
to the idea of a pattern-based model-creation 

approach.  
In a simple and only mildly formal approach, a 

domain-specific pattern library can be build. The 
library can be extended with every new model 
created. Here it would be essential to co-document 
the related technology domain feature that has been 
modeled, in the sense of Design Patterns discussed in 
Section 3.1. 

In a more formal and automated approach, the 
same idea can be applied if a structured formal 
representation of the technology domain is available 
and a strict pattern-mapping has been established [13]. 
It has been demonstrated that – in the case of electric 
power systems – a completely formalized MFM 
model could be created by execution of a script, thus 
enabling also the generation of large-scale models. 
Further research is required to identify whether such 
an approach is feasible also in other technology 
domains. 

 
5.3 How do Stages Support the Modeling Process? 

The formal stages identified above are, analog to 
the engineering lifecycle discussed in Section 3.3, 
characterized by sequential dependency, but  equally 
allow alternative pathways and overlapping stages 
within the same modeling task. The interpretation of 
these stages is therefore not thought of as a formal 
sequence of modeling steps, but rather as ‘backlog’ 
estimation and ‘debugging’ features.  

If for example a subset of a model can be 
identified as rather complete, whereas other parts 
would be identified as ‘behind’ in the modeling 
process, this information would support the modeler 
in focusing attention: It could for example be 
preferred to finalize a certain subset of the model first 
for prototyping purposes.  

The most practical contribution would however 
come from a minimized debugging effort which 
currently involves iterations through the complete 
application chain.  

A further aspect can be related to a classification 
and navigation of stored models for application 
purposes. For example, not all applications require a 
model completion to Level 4, and it is likely that 
MFM patterns in a pattern library include also Level 
1 and Level 2 patterns. 

In summa, the modeling stages support a lifecycle 
perspective for MFM models. It is clear that the 
creative aspect, the striving for a meaningful and 
relevant model cannot be achieved by formal checks 
alone – but a well-supported modeling process leaves 
attention for meaningful reflections, and rapid 
iterations which will lead faster to more mature 
models.  

6. SUPPORT FUNCTIONS 
The general outline of meaningful support 

opportunities related to MFM modeling stages has 
been presented in the previous section. Here we shall 
focus on the interaction between tool and modeler.  



 
6.1 Build-in and Elementary Support Functions 

Elementary support functions are those build into 
the model editor as modes of interaction with the 
modeling canvas. Some that have been implemented 
in the MFM Editor/ShapeShifter [51] framework 
include:  

- Model-extension: Offering only syntactically 
correct functions  

- Automatic numbering / naming 
- Annotations to MFM entities 
- Marking of connection points indicating 

connectivity, etc  
- Switching relations connectivity view: 

main-function/ target-function connectivity 
for means-function relations can switch 
connection point between flow-structure and 
function, improving overview in larger 
models. 

Further functions considered desirable include: 
- Offering function replacement for 

syntactically equivalent functions (balance – 
storage; transport – bi-transport, etc. 

- Definition of multiple views on a model. 
 

This list is of course non-exhaustive and is only 
meant to illustrate types of interactions, and it 
showed that a good interaction between tool 
developer and users provide a foundation for fruitful 
tool improvements.  

 
6.2 Implementation of Model-Checks 

The modeling stages as discussed in the previous 
section formalize properties of an MFM model that 
can easily be tested. Such a test would be developed 
in the MFM Workbench – in most cases by simply 
creating additional output from already existing 
reasoning functions.  

Once the respective model-check has been 
implemented, it can be made available through a 
dedicated interface between MFM Editor and MFM 
Workbench. The MFM Editor offers available Model 
Checks as executable plug-ins to the 
Model-Developer. Execution of a Model Check will 
then provide state (e.g. success/failure) information 
about the MFM entities in the respective model 
regarding its Model Stage.  

The information returned can then be utilized by 
the MFM Editor, for example to provide graphical 
feedback about the result. Depending on the check, 
the result can be indicated e.g. by color-coding the set 
of functions that passed the check or additional 
annotations.  

Beyond this detailed information about individual 
patterns, the check also results in information 
qualifying the entire model, which can be stored and 
displayed in the MFM Editor as state information 
associated with the model file.  
 

 

6.3 Implementation of Pattern Library 

A pattern library as described above would require 
an association of technology domain data with 
corresponding MFM patterns. A searchable pattern 
library, structured by technology domains would be a 
desirable feature. As the function-structure relation 
modeling has not been included at this point, this full 
library feature is not practical yet.  

Instead, the possibility of selecting a partial MFM 
model and defining a collection of partial MFM 
models has been implemented in a practical fashion.  

Automatic model translation as discussed in 
Section 5.2 is beyond the scope of this paper. It is 
expected that a robust implementation of this type of 
translation will require advanced semantic 
technologies, and also further development of 
respective domain ontologies in the technology 
domains. In Power Systems the domain ontologies 
for data exchange are relatively advanced, consider 
e.g. the ‘Common Information Model’ (CIM) for 
Power Systems, IEC 61970 and related standards. For 
example in chemical engineering, standardization 
efforts are under way but prove difficult (consider e.g. 
efforts toward ISO 15926).  

  
6.4 Model Lifecycle Support  

In general, it is found that an integrated, 
project-oriented approach to modeling and reasoning 
with MFM models is favorable.  

So far, a template structure for different classes of 
MFM related file types has been created and also the 
MFM editor is structured into modeling projects 
rather than single files.  

Further lifecycle support can be achieved with a 
model-maturity tracking system, which can be 
interpreted as meta-information generated for 
example on the basis of the above-discussed 
model-checks. The meta-data would for example 
enable a reasoning system to identify the validity of a 
model for a requested reasoning task. Consider 
keywords classifying the states such as: 

 RAW / DRAFTING  
 PARTIALLY FLOW-COMPLETE  
 BUILDABLE  
 CAUSAL ROLE CONSISTENT 
 FUNCTION-STRUCTURE COMPLETE  

Beyond these formal properties, further 
information can be included that would inform about 
the maturity of a model based on application 
experience. Whether such knowledge can be 
formalized in a meaningful fashion is not clear at this 
time. For example successful (and failed) 
model-applications could however be recorded here. 

A last essential item of meta-information is the 
version of the MFM concepts that have been 
employed in the model development. MFM has been 
and is a work in progress and improved modeling 
concepts will continue to extend and improve 



potential applications. It is therefore essential for the 
model lifecycle for any larger application to keep 
track not only of the model versions but also on the 
version of MFM concepts it has been developed in. 

7. CONCLUSION 
This paper presented an introduction and overview 

to the MFM application context in a broad scope. Not 
the MFM modeling itself has been in focus, but 
rather the applications and contextual requirements of 
the modeling process as knowledge acquisition. The 
presentation of an MFM-oriented tool chain picture 
also expresses the interface requirements that will 
have to be addressed in further work.  

It was found that formal checks can support the 
development of formally complete and consistent 
models. Certainly the clarification of representation 
problems or modeling mistakes can not directly be 
assessed by such formal checks. However, as the 
iterations required for modeling become faster, more 
contextual information is available, and correctness 
checks are automatic, a resulting more focused 
reflection about modeling problems is still expected 
to help improving model quality in general.    

Further, the introduction of life-cycle related model 
information and other meta-information should 
simplify the handling of several model versions and 
their relation to different version of the MFM 
concepts. 

In further work on tool development, supporting 
functions for the MFM concept development should 
be addressed. Knowledge representation can be 
considered its own application category – to be 
supported by relevant semantic technologies.  

The discussion on shared interface definitions 
could also be interesting in relation the research and 
development of MFM applications together with 
other, special purpose or technology specific 
application software.  
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