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Abstract 
With the perspective of investigating a suitable control design for autotrophic nitrogen removal, this work 
explores the control design for a SHARON reactor. With this aim, a full model is developed, including the 
pH dependency, in order to simulate the reactor and determine the optimal operating conditions. Then, the 
screening of controlled variables and pairing is carried out by an assessment of the effect of the disturbances 
based on the closed loop disturbance gain plots. Two controlled structures are obtained and benchmarked by 
their capacity to reject the disturbances before the Anammox reactor. 
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1. Introduction 

Complete autotrophic nitrogen removal (CANR) is especially suitable for wastewaters containing 
high concentrations of nitrogen and low organic carbon to nitrogen ratios, such as sludge digestion 
liquor, landfill leachate, or special industrial wastewaters, conventional nitrification-denitrification 
as the needs of carbon addition and aeration Based on it, the SHARON process, which stands for 
Single reactor High activity Ammonia Removal Over Nitrite, (Hellinga et al. 1998), was designed 
first on the following sequences: i) the partial nitrification of the ammonium by aerobic oxidizing 
bacteria (AOB) and ii) the denitrification to nitrogen gas by heterotroph bacteria (HB). An 
alternative option to this second step is the so-called anaerobic ammonium oxidation (Anammox, 
Mulder et al. 1995). The process achieves a total ammonium conversion using equimolar amounts 
of ammonium and nitrite. This process presents some additional advantages, like the lowering of 
gases with greenhouse effect (CO2 and NO2) or the elimination of external carbon sources. Its main 
drawback is related to the low growth rate of Anammox bacteria, involving the use of sludge 
retention systems, e.g. membranes, granular systems. Besides, in order to achieve a high elimination 
of all the nitrogen sources, it must be ensured that the ammonium and nitrite are fed in stable, close 
to equimolar proportions. Therefore, a performing control system is essential to ensure the balance 
between ammonium and nitrite to the Anammox reactor. Some strategies have been applied in this 
field in order to optimize the nitrogen removal costs (Volcke et al. 2005) based in different control 
loops for the key variables in the process, as pH or dissolved oxygen (DO).  The goal of this 
contribution is to assess the most suitable control structures to stabilize the SHARON reactor based 
on an analysis of the disturbances and selection of controlled variables.   
 

2. Methods 
2.1 Reactor description 
The case study used in this work is adapted from an experimental description previously reported 
(Galí et al. 2007). The reactor is a continuous stirred tank reactor (CSTR) with a volume of 4 l and a 
hydraulic retention time of 1 day, with operating conditions 30°C, pH 7.23 and dissolved oxygen 
1.06 g m-3 (the determination of optimal pH and DO is done in section 3.1), which implies an 
nominal kla of 192 d-1 at steady state conditions. The influent composition is 700 N- g m-3 of 
ammonium, 600 C- g m-3 of bicarbonate (equimolar) and 27 g m-3 of inorganic phosphorous.  

2.2 Reactor modelling 
The model used to describe the process is adapted from previously published work by Hellinga et 
al. (1999) and Volcke (2006). The compartment was modeled as a CSTR. Assuming that the reactor 
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hold-up and all the inflows and outflows have the same constant density, the total and partial mass 
balances are: 

1

n
IN OUT

i
i

dV
F F

dt 
     (1) 
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i i i i i iL
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where F stands for the volumetric flows, C for the concentrations, r for the reaction rate and V for 
the volume of the reactor. The subscripts IN and OUT stand for inflow and outflow respectively, i for 
each component and * for the equilibrium concentrations. The individual mass balances developed 
are described for the lumped compounds, i.e. ionized and unionized forms. The components 
considered are: H+, NH4

+, NH3, HNO2, NO2
-, CO2, HCO3-, CO3

2-, H2PO4
-, HPO4

2-, NO3
-, O2, N2, 

ammonia oxidizing bacteria (AOB), nitrite oxidizing bacteria (NOB), heterotrophic bacteria (HB) 
and Z (charge not involved in biological reactions). Absorption or stripping in (2) only applies for 
O2 and CO2. The partition coefficients of O2 and CO2 are determined by Henry’s law (Villadsen, 
Nielsen & Liden 2011).   

2.3 Reaction modelling 
Five different biological reactions are included in the SHARON model. The nitrification process is 
divided in two different steps: the oxidation of the ammonia to nitrite, carrying out by AOB, and the 
oxidation of the nitrite to nitrate, carrying out by NOB. In order to take account of the microbial 
growth in the mass balances, the biomass composition is fixed as CH1.8O0.5N0.2. The stoichiometric 
matrix and the expressions of the process rates for the two reactors appear in the Appendix.  

2.4 Determination of pH 
The microbial activity affects to the pH since the reactions imply a production (partial nitrification) 
of protons. The pH is determined solving the corresponding mass balances (3a-d), equilibrium 
equations (4a-f) and charge balance (5). The resulting system of 13 nonlinear equations is solved by 
a multidimensional Newton-Raphson method adapted from Luff et al. (2001).  
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2.5 Controller modelling 
All the controllers used in this work are proportional-integral controllers (PI). Sensors and actuators 
are modeled as perfect (immediate response with perfect accuracy) given the slow response of the 
system. Unless stated otherwise, the controllers were tuned using the internal model control 
guidelines (Seborg, Edgar & Mellichamp 2004).   
The model was implemented and solved in Simulink environment in MATLAB R2009b (The 
MathWorks, Natick, MA). 
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3. Control structure design 
3.1 Determination of operating conditions 
As a previous step to control design, the optimal operation conditions in the SHARON reactor were 
determined mapping the effect of pH and dissolved oxygen (DO) in the performance of the reactor. 
The bounds considered were between 6.5 and 8 for pH, and between 0 g m-3 and 8.96 g m-3 

(saturation) for DO. For each value of oxygen and pH the steady state was determined and, in 
particular, the ratio between the total nitrite mass (i.e. nitrous acid plus the nitrite anion, TNO) and 
the total ammonium mass (i.e. the ammonium cation plus ammonia, TNH) was recorded. The 
optimal TNO2/TNH ratio in the influent of an Anammox reactor is 1.3 provided that anaerobic 
oxidation is the only reaction taking place (Van de Graaf et al. 1995). The dependency of the 
TNO2/TNH ratio shows a maximum at pH 7.23 and a monotonous increase with DO which 
stabilizes asymptotically for excess of oxygen (Fig. 1). Therefore, in order to operate at minimum 
DO, and as a consequence decrease the needs of aeration, the operating conditions were selected as 
pH=7.23 and DO=1.06 g m-3, corresponding to a ratio TNO2/TNH of 1.3. 

 
Figure 1. Contour plot of the molar ratio TNO2/TNH in function of pH and DO levels at steady state 
 
3.2 Control objectives and degrees of freedom analysis 
As stated earlier, the goal of the SHARON reactor is to provide a stable feed for the Anammox 
reactor of with a molar ratio TNO2/TNH of 1.3. This is the primary objective that can be achieved 
using the molar ratio TNO2/TNH as a control variable or can be approximated by keeping the 
system at the selected operating conditions. If the SHARON reactor is directly fed from a digester, 
the feed flow is a disturbance and therefore the level has to be controlled using the outflow as a 
manipulated variable (MV). As a consequence, there are only two manipulated variables left: 
aeration (represented by kLa) and the acid/base flow. The identified controlled variables (CV) and 
disturbances are summarized in Fig. 2. 
 
3.3 Assessment of disturbance effect and pairing 
One of the main difficulties in the control of the SHARON reactor is the limited number of 
available actuators. Indeed, the four CV cannot be controlled simultaneously. The hydraulic 
residence time (HRT) must be kept above 0.89 days in order to ensure that the NOB are washed out 
at the operating conditions. We decided to keep it uncontrolled but at a nominal value of 1 day to 
ensure that the disturbances in the feed flow would not decrease it below the limit of 0.89 days. Out 
of the three remaining CV, it can be argued that the most important is the ratio TNO2/TNH since it 
is the primary objective of the system, although pH and DO are essential to keep the reactor stable. 
In order to rationally screen the CV to be paired with the available MVs, we assessed the pairings 
that would reject most easily the disturbances at different frequencies by the closed loop disturbance 
gain (CLDG) (Hovd, Skogestad 1992).  

The CLDG is defined as: 
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were proposed for the SHARON reactor, as a first stage in autotrophic nitrogen removal. The 
response to step changes in selected disturbances confirmed the CLDG results and, therefore, a 
cascaded decentralized structure is proposed as a suitable configuration able to supply a stable feed 
to an Anammox reactor. 
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