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Summary (English)

Optimal Estimation of Diffusion Coefficients from Noisy Time-Lapse-
Measurements of Single-Particle Trajectories

Single-particle tracking techniques allow quantitative measurements of diffu-
sion at the single-molecule level. Recorded time-series are mostly short and
contain considerable measurement noise. The standard method for estimat-
ing diffusion coefficients from single-particle trajectories is based on least-
squares fitting to the experimentally measured mean square displacements.
This method is highly inefficient, since it ignores the high correlations inherent
in these. We derive the exact maximum likelihood estimator for the diffusion
coefficient, valid for short time-series, along with an exact benchmark for the
maximum precision attainable with any unbiased estimator, the Cramér-Rao
bound. We propose a simple analytical and unbiased covariance-based esti-
mator based on the autocovariance function and derive an exact analytical
expression of its moment generating function. We find that the maximum
likelihood estimator exceeds the precision set by the Cramér-Rao bound, but
at the cost of a small bias, while the covariance-based estimator, which is born
unbiased, is almost optimal for all experimentally relevant parameter values.
We extend the methods to particles diffusing on a fluctuating substrate, e.g.,
flexible or semiflexible polymers such as DNA, and show that fluctuations in-
duce an important bias in the estimates of diffusion coefficients if they are not
accounted for. We apply the methods to obtain precise estimates of diffusion
coefficients of hOgg1 repair proteins diffusing on stretched fluctuating DNA
from data previously analyzed using a suboptimal method. Our analysis shows
that the proteins have different effective diffusion coefficients and that their
diffusion coefficients are correlated with their residence time on DNA. These
results imply a multi-state model for hOgg1’s diffusion on DNA.
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Summary (Danish)

Optimal estimering af diffusionskoefficienter fra tidsseriem̊alinger af
enkeltpartikeltrajektorier med m̊alestøj

Enkeltpartikelteknikker gør det muligt kvantitativt at følge enkelte moleky-
lers diffusion. Tidsserier m̊alt med disse teknikker er overvejende korte og
indeholder meget m̊alestøj. Standardmetoden for estimation af diffusionsko-
efficienter fra enkeltpartikeltrajektorier er baseret p̊a mindste kvadraters fit
til eksperimentelt m̊alte mean squared displacements. Denne metode er højst
ineffektiv, da den ignorerer de høje korrelationer mellem disse. Vi udleder
den eksakte maksimum likelihood estimator for diffusionskoefficienten, sam-
men med et eksakt benchmark for den maksimale præcision nogen middelret
estimator kan opn̊a, Cramér-Rao grænsen. Vi foresl̊ar en simpel analytisk og
middelret covariansbaseret estimator, baseret p̊a autocovariansfunktionen, og
udleder et eksakt analystisk udtryk for dens momentgenererende funktion. Vi
finder at maksimum likelihood estimatorens præcision er højere end Cramér-
Rao grænsen, p̊a bekostning af en lille skævhed, mens den covariansbaserede
estimator, som er født middelret, er optimal for alle eksperimentelt relevante
parameterværdier. Vi udvider metoderne til partikler, som diffunderer p̊a et
fluktuerende substrat, s̊asom DNA, og viser at hvis der ikke tages højde for
fluktuationerne, inducerer de en skævhed i de estimerede diffusionskoefficien-
ter. Vi anvender metoderne til præcis estimering af diffusionskoefficienter for
hOgg1 proteiner, som diffunderer p̊a strukket fluktuerende DNA, udfra data,
som tidligere er blevet analyseret med en suboptimal metode. Vores analyse
viser at proteinerne har forskellige effektive diffusionskoefficienter og at deres
diffusionskoefficienter er korrelerede med deres residenstider p̊a DNA’et. Disse
resultater peger p̊a en multitilstandsmodel for hOgg1’s diffusion p̊a DNA.
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Chapter 1

Introduction

Diffusion is ubiquitous in biology and many cellular processes rely on diffusion
as a passive means of transport. Quantitative knowledge of the diffusion coef-
ficient is paramount for the precise understanding of these processes. Recent
developments in fluorescent labels have made it possible to track diffusion of
single molecules, e.g., proteins on biopolymers such as DNA [1, 2, 3] or mi-
crotubules [4, 5, 6], on surfaces [7], in lipid membranes [8, 9, 10] and inside
cells [11, 12, 13], with time-lapse photography. Data mostly consist of rela-
tively short time series with considerable experimental localization error. This
makes it a challenge to determine diffusion coefficients. This challenge is even
higher when individuality of diffusion coefficients is a concern, since one then
cannot average over multiple trajectories of different molecules to reduce sta-
tistical error. The standard approach relies on Einstein’s classic result for the
mean squared displacement (MSD) of a particle undergoing free diffusion. It
estimates the diffusion coefficient and measurement noise by fitting a straight
line to experimental values of the MSD [14]. However, even though the MSD
method gives the right value on average, it does not mean that it is a good
way to estimate the diffusion coefficient. Its precision depends on the num-
ber of points used in the fit [15] and for good signal-to-noise ratio (SNR) the
precision actually decreases the more points we use in the fit [8, 16]. One
can improve the MSD estimator by trying to choose the optimal number of
points to include in the fit [15]. A more rigorous method, generalized least
squares (GLS), takes into account the correlations between the experimental
values of the MSDs in the fitting procedure. The GLS estimator’s non-linear
dependence on the parameters of interest, the diffusion coefficient D and the
variance σ2 of the noise on position determination, means that results about
the optimality of the GLS estimator for linear dependence on parameters [17]
do not hold. The complicated dependence of the MSDs on data makes it more
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than difficult to derive a maximum likelihood estimator based on the MSDs.
We can do better than that, however, with a simpler approach: We calculate
the probability distribution of the individual displacements of the diffusing
particle during a time-lapse [18] and use spectral decomposition to decorrelate
the measurements and construct a maximum likelihood estimator (MLE) for
D and σ2. This estimator is known to be asymptotically optimal in the long
time-series limit, i.e., it is unbiased and reaches the lower limit on the vari-
ance of any unbiased estimator, set by information theory and known as the
Cramér-Rao bound [17]. In this limit, the spectral decomposition reduces to
the Fourier transform and the MLE to a maximum likelihood fit to the power
spectrum [18].

However, for some systems it is difficult or impossible to obtain long time-
series. Most experiments with individual biological molecules are limited
by fluorophore lifetimes, proteins diffuse out of the field-of-view in confocal
microscopy, and proteins, which diffuse on biopolymers, detach. Data pre-
dominantly consist of short time-series, where optimality of the MLE is not
guaranteed. In this range we find that a simple covariance-based estimator
(CVE) is generally to be preferred, since it practically reaches the Cramér-
Rao bound and is unbiased, whereas the more complicated MLE and GLS
estimator are biased. When the amplitude of the positional noise is known a
priori, this information can be used to considerably increase the precision of
diffusion coefficient estimates. In this case, the MLE and GLS estimator are
both unbiased, and the MLE, CVE, and GLS estimator all practically reach
the Cramér-Rao bound.

For diffusion on many cellular structures, the recorded movement also contain
a fluctuating term due to thermal motion of the substrate, e.g., for diffu-
sion on DNA or in lipid membranes. If the time-scale of the fluctuations is
much shorter than the time-lapse, these fluctuations will only contribute to
the movement as a constant-amplitude noise term, which can be absorbed in
the positional noise amplitude σ. If the fluctuation time-scale is comparable
to the time-lapse or longer, however, these fluctuations need to be taken into
account. We extend our methods to diffusion on fluctuating substrates and
derive a MLE, which explicitly accounts for substrate fluctuations and is op-
timal for long time-series. We derive an expression for the bias of the CVE
for diffusion on a fluctuating substrate and show how this can be used to ob-
tain unbiased estimates of diffusion coefficients for short time-series, where the
MLE fails.

We estimate diffusion coefficients of fluorescently marked hOgg1 repair pro-
teins on DNA from time-lapse measurements. The data has previously been
analyzed using MSD-based methods [19]. We measure diffusion coefficients in
the range 0.1 µm2{s-0.5 µm2{s. We show that the DNA fluctuations induce a
bias in the estimates of diffusion coefficients of up to 0.2 µm2{s, i.e, we over-
estimate diffusion coefficients by up to 200%, if the fluctuations are not taken
into account. The increased resolution our methods offer, allows us to inves-
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tigate diffusion coefficients at the single molecule level. Analysis of the data
shows that the identical hOgg1 proteins have different diffusion coefficients
and that protein residence times on DNA follow a non-trivial distribution.
Furthermore, the individual proteins’ diffusion coefficients are correlated with
the proteins’ residence times on DNA. These results suggest a two-state model
for diffusion on DNA as proposed in [20, 21].

The diffusion coefficient is the parameter of interest, since it characterizes the
physical system, while the measurement noise only describes the experiment.
Hence, the focus in this thesis is on the performance of the different methods
in estimating the diffusion coefficient. The methods presented here estimate
the noise as well, however, and their performance at that is briefly addressed
in the results section (Chap. 2).
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Chapter 2

Results

In this chapter the main results of the thesis are presented. The chapter is
divided into three sections: (i) Estimation of diffusion coefficients from single-
particle tracking (SPT) measurements of a particle undergoing free diffusion,
i.e., Brownian motion. Results in this section are also applicable to measure-
ments of a particle diffusing on a stiff substrate such as a microtubule or an
actin filament. (ii) Estimation of diffusion coefficients of a particle diffusing on
a fluctuating substrate, e.g., a stretched flexible or semi-flexible polymer, or a
supported or tethered lipid bilayer. (iii) Application of the methods developed
in the preceding chapters to experimental SPT measurements of hOgg1 repair
proteins diffusing on flow-stretched DNA.

2.1 Diffusion coefficient estimation for free diffusion

In this section we review existing methods for estimating diffusion coefficients
from SPT measurements of freely diffusing particles. We derive exact expres-
sions for the likelihood function of measured displacements and the Cramér-
Rao lower bound, along with a simple and unbiased covariance-based estimator
(CVE).

In Sec. 2.1.1 we present some basic properties of the mean squared displace-
ment (MSD) along with the generalized least-squares (GLS) estimator and
compare it to existing MSD-based estimators. In Sec. 2.1.2 we derive sim-
ple expressions for the exact likelihood function and Cramér-Rao bound, give
a computationally efficient algorithm for the maximum likelihood estimator
(MLE), and compare this to the approximate MLE given in [18]. We show
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that motion blur decreases estimator precision. We propose the CVE and
give exact analytical expressions for its variance and characteristic function.
Section 2.1.3 compares the precisions of the MLE and CVE on Monte Carlo
generated data.

2.1.1 Mean squared displacement-based methods

We review the statistical properties of the MSD and existing MSD-based es-
timators of the diffusion coefficient. We also introduce the GLS estimator,
which properly accounts for the correlations in the MSD.

MSD-based estimation methods are all based on Einstein’s classic result for
Brownian motion in an isotropic medium, derived in his seminal 1905 paper on
the molecular theory of heat [22]. Adding the effects of positional noise, due
to, e.g., the limited number of photons emitted by the fluorophore, and motion
blur, due to the finite camera shutter-time, we find that the expected squared
displacement of a Brownian particle with diffusion coefficient D diffusing in d
dimensions during a time-interval t is@pxptq � xp0qq2D � 2dDt� 2pσ2 � 2RdD∆tq , (2.1.1)

where σ is the amplitude of the positional noise and 2R∆t is the motion
blur [18] (App. A.1). The motion blur coefficient R Ps0, 1{4r is determined by
the particular shutter mechanism of the camera and is defined in App. A.1.2.
For instantaneous camera shutterR � 0, whileR � 1{6 for full time-integration,
where the camera shutter is open for the full time-lapse. Since diffusion is a
scale-free process, the noise amplitude σ sets the scale, while the performance
of estimators (for given time-series length N and motion blur 2RD∆t) is de-
termined by the ratio between diffusion and noise, which we define as the
signal-to-noise ratio (SNR),

SNR �
?
D∆t

σ
, (2.1.2)

where ∆t is the time-lapse between successive measurements. In practical
applications we typically want to keep a signal-to-noise ratio larger than one
to be sure that we actually record what we expect and avoid spurious behavior,
especially when recorded time-series are short.

For diffusion in an isotropic medium, a particle diffusing in d dimensions is
equivalent to d independent particles diffusing in one dimension. So we assume
from now on that d � 1 and note that all results can be generalized to higher
dimensions. The MSD method consists of least-squares fitting a straight line
to the experimentally measured MSDs, identifying its slope with 2Dt and its
offset with 2σ2 � 4RD∆t. The experimental MSDs are usually estimated by

ρn � 1

N � n� 1

N�ņ

i�0

pxi�n � xiq2 . (2.1.3)
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The averaging is done over all possible time-separations n∆t to obtain max-
imal information content in the individual estimate ρn. Since all ρns are
calculated from the same time-series tx0, x1, . . . , xNu, they are highly cor-
related (Fig. 2.1a). Since all ρns are calculated from the same time-series
tx0, x1, . . . , xNu, they are highly correlated (Fig. 2.1a).

Ignoring the correlations between the ρns leads to an estimator that performs
poorly, i.e., an estimator with a precision several times lower than the Cramér-
Rao bound. For a high SNR (SNR ¡ 2) ordinary and weighted least squares
fits (OLS/WLS) actually perform worse the more points are fitted! (Fig. 2.1b.)
This result is counterintuitive if one thinks of more points as more information.
The points pn, ρnq are not independent data points, however, as they all are
based on the same information, the time-series txiui�0,1,...,N . One should think
of pn, ρnq, n � 1, 2, . . . , nmax as a committee of nmax members, who all have
access to the same information, but treat it differently, and less reliably for
larger n. A fit to nmax data points corresponds to a vote by the committee.
Unweighted fitting (OLS) is most democratic and the vote clearly gives a worse
result the larger the number nmax of members in the committee is. Weighted
fitting (WLS) gives more votes to members, which are known to be more
reliable, but even here the result of the vote gets worse the larger nmax is,
since the members influence each other.

For small SNR, some intermediate number of points nmax can be used to obtain
a reasonable fit (Fig. 2.1c). This problem has traditionally been addressed by
fitting to a given number of points tρ1, ρ2, . . . , ρnmaxu, where nmax is chosen ad
hoc (values for nmax ranging from 2 to N{2 have been reported [7, 19, 23, 24,
25, 26, 27, 28, 10]). This approach is clearly far from optimal and the question
of how to choose nmax has recently been addressed [15]. Also, a least-squares
method that deals correctly with correlations already exists in the statistical
literature. It is known as the generalized least squares (GLS) estimator and is
defined in App. A.2. If the covariance matrix of ρ, Σρ, is independent of D and
σ2, the GLS estimator is the best linear unbiased estimator (BLUE) [17] and is
thus guaranteed to outperform all other linear estimators based on ρ, such as
OLS and WLS, no matter how many points are included in the fit. The linear
GLS estimator has lower variance than the OLS and WLS estimators, and
it practically reaches the Cramér-Rao bound (Fig. 2.1b,c). For diffusion with
positional noise, no Σρ independent of D and σ2 exists, and the GLS estimator
should be found using an iterative relaxation algorithm as described in [29].
This iterative GLS is equal to the MLE based on ρ under the assumption that
ρ is Gaussian distributed [30]. This assumption is not correct, however, which
means that the iterative GLS is biased and its variance is significantly higher
than predicted theoretically, see Fig. 2.1d.
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Figure 2.1: a) Experimental MSDs, tρnun�1,...,N , calculated from simulated
Brownian motion trajectories, compared to their expected value.
(Theoretical MSD: full line, black; experimental MSDs: colored
points.) The experimental MSDs are highly correlated and their
variance increases with time-displacement n∆t. b) Variance of
the MSD estimate of the diffusion coefficient D as a function of
the number of MSD points used in the fit for SNR � 10. (OLS
fit to the experimental MSDs: dotted line; WLS fit: dashed line;
GLS estimator, which attains the Cramér-Rao (CR) bound: full
line.) c) Variance of the MSD estimate of D as a function of the
number of MSD points used in the fit for SNR � 1{3. d) Mean
plus/minus standard error of the GLS estimator. (Numerical
results for the iterative GLS: circles, red; Cramér-Rao bound:
grey area.) The GLS estimator is biased and does not reach the
Cramér-Rao bound in practice, except for SNR � 1.
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2.1.2 Methods based on individual displacements

We derive methods based on the set of measured displacements of a freely
diffusing particle, ∆x � p∆x1,∆x2, . . . ,∆xN qT , where ∆xn � xn � xn�1 is
the displacement during one time-lapse ∆t. Since diffusion is translationally
invariant, the displacements are, contrary to ρ, a sufficient statistic, which
means that they contain all the relevant information available in the exper-
imental measurements x. The displacements are Gaussian distributed with
mean zero and covariance matrix Σ∆x [18] (App. A.1),

pΣ∆xqij � r2D∆tp1� 2Rq � 2σ2sδi,j � r2RD∆t� σ2sδi,j�1 . (2.1.4)

2.1.2.1 The exact likelihood function and maximum likelihood es-
timator

The maximum likelihood estimator (MLE) of the parameters D and σ2 is
the set of values which maximizes the likelihood function LpD,σ2|∆xq �
pp∆x|D,σ2q given the measured displacements ∆x, where pp∆x|D,σ2q is
the probability density of ∆x when D and σ2 are given.

We use that ∆x can be transformed to a set of independent variables }∆x �
P�1∆x using an orthogonal transformation P (App. A.3.1). The transforma-
tion matrix P is given in Sec. 3.1. The logarithm of the likelihood function is
then reduced to a sum over independent entries. This allows for computation-
ally efficient maximum likelihood estimation and calculation of the Cramér-
Rao lower bound, which bounds the variance of any unbiased estimator and
approximately gives the variance of the MLE. The Cramér-Rao bound is de-
fined as the inverse of the Fisher information matrix I, given in Sec. 3.1.

If one ignores boundary terms in Σ∆x, which are of order 1{N , the trans-
formation P�1 reduces to the discrete Fourier transform, and we recover the
log-likelihood, MLE, and information matrix given in [18]. This approach is
valid for long time-series, i.e, N " 1. When the boundary terms cannot safely
be ignored the estimators differ. A comparison of the performance of the two
estimators on Monte Carlo generated data for different SNR and time-series
lengths N is shown in Fig. A.1. The numerical analysis gives two important
results: (i) The MLE is biased (Figs. 2.2 and A.1). This bias arises because
we forbid the estimates of D and σ2 to take physically meaningless nega-
tive values in order to avoid numerical problems in the optimization algorithm
(App. A.3.1). (ii) For large signal-to-noise ratio (SNR ¡ 1) the terms neglected
in the approximate MLE based on the Fourier transform are unimportant and
the estimator practically attains the precision of the exact MLE, even for small
N . On the other hand, the approximate MLE performs much worse than the
exact MLE for low SNR, even for relatively large N , i.e., the approximate
MLE only converges slowly to the exact MLE in this regime (Fig. A.1). For
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all parameter values, the exact MLE is more precise than its approximation.
So in the remainder of this section we only consider the exact MLE.

2.1.2.2 Covariance-based estimator

A simple alternative to the MLE and MSD estimators can be derived directly
from the covariance matrix given by Eq. (2.1.4). By combining unbiased esti-
mators for the two first values of the autocovariance of ∆xn (the only, which
are non-zero) we find unbiased estimators of D and σ2 (App. A.3.2). The
covariance-based estimator (CVE) is given in Sec. 3.1 along with its variance
and characteristic function. The characteristic function gives all higher mo-
ments of the estimator and its exact distribution by numerical Fourier trans-
formation and can thus be used to calculate exact confidence intervals for the
covariance-based estimates of D. Examples of the distribution of the CVE
are shown in Fig. A.3b. The CVE has been proposed previously in litera-
ture [31, 32], but its properties have not previously been derived. In [31] it
was proposed as a maximum likelihood estimator based on the faulty assump-
tion that measured displacements are uncorrelated; and in [32] it was used
as part of a bootstrap-based estimator. The CVE is practically optimal for
experimentally relevant values of the parameters, i.e., when the SNR is larger
than one (Fig. A.3a). The question of when the CVE is optimal and situations
where the MLE should be preferred is addressed in detail in Sec. 2.1.3.

The CVE has several advantages over the MLE and MSD estimators: (i) It
is given by a simple analytical expression and is thus orders of magnitude
faster than the MLE and MSD estimators, which are only given implicitly and
must be found by a numerical optimization algorithm; (ii) it is unbiased and
its variance can be calculated exactly, this only holds asymptotically for the
MLE and MSD estimators; (iii) exact confidence intervals for the estimates
and their distributions can be found from the characteristic function of the
CVE derived in App. A.3.2.2, while no such results can be found for the MLE
and MSD estimators, except asymptotically, at N Ñ8.

2.1.2.3 Motion blur’s effect on estimator precision

It has recently been shown that by increasing motion blur while keeping the
SNR constant, one lowers the Cramér-Rao bound in the large N -limit [18].
This result is confirmed by our exact results for all values of N . Thus, one
can theoretically make estimation more efficient by engineering the experiment
to obtain maximum motion blur (Fig. A.3a). Motion blur does decrease the
variance of the MLE and makes it less biased; the MLE becomes effectively
unbiased for N Á 20 for maximal motion blur (R � 1{4). It is a rather surpris-
ing result that more information can be extracted from the measurements by
increasing the noise, and it turns out that it is too good to be true. The result
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relies on the implicit assumption that the motion blur can be increased inde-
pendently of the positional noise. This assumption is not true, since motion
blur increases the width of the measured point-spread function (PSF) emitted
by the recorded particle and thus increases the positional error (App. A.3.1.4).
This means that the Cramér-Rao bound cannot be lowered by increasing the
motion blur (Fig. A.2b). On the contrary, motion blur tends to increase the
Cramér-Rao bound and consequently the variance of estimates of the diffu-
sion coefficient, though only by a negligible amount for most experimentally
relevant signal-to-noise ratios.

2.1.3 Numerical results

We compare the precision of the estimators by using them on Monte Carlo
generated data. In the first part of this section we treat the case when both
D and σ2 must be estimated from the time-series. In the second part we
compare the precision of the estimators when σ2 is known a priori, and only D
is estimated from the time-series. Only data for full time-integration (R � 1{6)
are shown, but results for other values of the motion blur coefficient are similar
and do not change the conclusions.

2.1.3.1 Unknown noise amplitude

Estimation of the diffusion coefficient As shown in Sec. 2.1.1, the MSD-
based estimators are sub-optimal, while the MLE and the CVE are close to
optimal. The MLE and the CVE are compared in Fig. 2.2. The variance of
the MLE is smaller than the variance of the CVE for all parameter values and
actually violates the Cramér-Rao bound for high SNR. This is possible because
the MLE is biased, which means that the total error of the MLE is smaller
than that of any unbiased estimator, but it comes at a cost of a systematic
error in the estimate. This complicates statistical analysis of estimates from
multiple time-series, since averages and other statistics do not converge to
their true values. The CVE is constructed to be unbiased, and, as Fig. 2.2
shows, it practically reaches the Cramér-Rao bound as long as the SNR is
larger than one. In experiments the SNR typically lies in the interval from 2
to 20 [4, 5, 19, 25, 33] where the CVE is the optimal estimator of the diffusion
coefficient.

Estimation of the noise amplitude Even though the positional noise is
not a parameter of main interest, it reports experimental conditions, so one
may want to estimate its amplitude, even if the noise can be estimated from
the measured PSF of the fluorophore (Sec. 3.1.1), since it then provides an
independent check of this estimate. Both the MLE and CVE provide approx-
imately optimal estimates of σ2. However, the Cramér-Rao bound grows as
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a quadratic function of the SNR, and hence as 1{σ2, for a SNR larger than
one. This means that even though the estimators are optimal, they are very
imprecise when noise is low, and cannot in general be used to obtain a reliable
estimate of σ2. (The standard deviation of the estimator for σ2 is larger than
the value of σ2 for a SNR larger than

a
N{10.) Note that when the noise is so

low that it is difficult to estimate its amplitude precisely, it is also irrelevant
to know the precise value of its amplitude.

2.1.3.2 Known noise amplitude

When the particle’s position is estimated by fitting to the PSF, Eq. (3.1.17)
gives an estimate of the amplitude of the positional noise σ, which can be
inserted in the estimation routines for D instead of estimating both D and σ2.
This allows us to use all the information available in the time-series to estimate
the diffusion coefficient D. As shown in Fig. 2.3, a more precise estimate of
D can be obtained by using a priori knowledge of σ2. When the error on the
a priori estimate of σ2 is negligible, the standard error of pD is reduced by a
factor � 1.5 for high SNR (SNR ¡ 5) and for full time-integration (R � 1{6),
and a factor � 1.8 in the absence of motion blur (R � 0). We furthermore
see that the MLE is unbiased when σ2 is known a priori and that both the
MLE and the CVE reach the Cramér-Rao lower bound for SNR ¡ 1. For
SNR   1 the CVE is suboptimal, while MLE almost reaches the Cramér-Rao
bound. When σ2 is known a priori the GLS estimator performs much better
than when σ2 is unknown and almost reaches the precision of the MLE. It is
considerably more complicated than the MLE and much more computationally
demanding, due to the multiple matrix inversions and products performed in
each time-step of the optimization algorithm. So the MLE or the CVE are
always to be preferred.

In most experimental situations (where the SNR ¡ 1) the MLE and the CVE
are both optimal and the moment-based estimator should be preferred due to
its simplicity and analytical tractability.

2.2 Diffusion coefficient estimation on a fluctuating
substrate

In this section we develop methods for estimating diffusion coefficients from
trajectories of single particles diffusing on a fluctuating substrate, i.e., a DNA
molecule or another medium for which we can model its motion, rigorously or
phenomenologically.

In Sec. 2.2.1 we present the theoretical framework, which allows us to model
substrate fluctuations and diffusion on a fluctuating substrate. In Sec. 2.2.2
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Figure 2.2: Mean plus/minus standard error of the MLE and CVE applied
to an ensemble of 1,000 Monte Carlo generated time-series for
unknown σ2. (MLE: connected squares, blue; CVE: full lines,
green; Cramér-Rao bound: grey area.) R � 1{6 for both simula-
tions, which corresponds to full time-integration. a) Time-series
length N � 10 and b) N � 100. The MLE reaches and even sur-
passes the Cramér-Rao bound for high SNR, where it is biased,
and rapidly converges to the Cramér-Rao bound for SNR   1.
The CVE is unbiased and attains the Cramér-Rao bound for
SNR ¡ 1, while it is suboptimal for SNR   1.
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Figure 2.3: Mean plus/minus standard error of the MLE and CVE applied
to an ensemble of 10,000 Monte Carlo generated time-series for a
priori determined σ2. (MLE: connected squares, blue; CVE: full
lines, green; Cramér-Rao bound: grey area.) R � 1{6 for both
simulations, which corresponds to full time-frame integration. a)
Time-series length N � 10 and b) N � 100. For known σ2 both
the MLE and the CVE are unbiased and attain the Cramér-Rao
bound for SNR ¡ 1. For SNR   1 the MLE rapidly converges
to the Cramér-Rao bound, while the CVE is suboptimal.
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we derive a MLE based on the power spectrum of the measured displacement
and present an extension to the CVE derived in Sec. 2.1.2.2, which allows
us to obtain unbiased estimates of diffusion coefficients for short time-series.
Section 2.2.3 investigates the performance of the MLE and CVE on Monte
Carlo generated data.

For experimental measurements of diffusion on cellular structures, one wants
to use fluorophores that are as small as possible to avoid altering the dif-
fusing particle’s movement [34]. Since smaller fluorophores are typically less
bright and bleach faster, photon economy is paramount and measurements are
recorded at full time-integration, i.e., the camera shutter-time τ is equal to the
time-lapse ∆t. We thus only present results for full time-integration. Results
are easily generalized to faster camera shutter (App. B.2).

2.2.1 Statistics of diffusion on a fluctuating substrate

A particle diffusing on a fluctuating substrate is not an isotropic system, con-
trary to a freely diffusing particle. The observed position of the particle will
in general depend both on time t and the particle’s position on the substrate,
sptq,

xpsptq, tq . (2.2.1)

For a flat substrate, e.g., a supported or tethered lipid bilayer, the observed
motion is just the sum of the particle’s diffusion and the substrate’s movement.
For a substrate that is not flat, e.g., a DNA molecule, the substrate’s tendency
to curl up means that the measured displacements of the particle are smaller
than its actual displacements along the substrate.

We assume that the substrate can be described by a linear theory. The assump-
tion of linearity is well substantiated both theoretically and experimentally for
taut DNA pulled by the ends [35, 36, 37], while for DNA stretched by a laminar
flow we expect the linear approximation to be correct on the upstream part
of the DNA, where it is taut [38, 39]. This means that the substrate move-
ment can be modeled as a sum of independent normal modes, of which only
those corresponding to the lowest frequencies (longest wavelengths) contribute
significantly to the measured movement (App. B.1).

Since in general the total diffusion length of the particle is small compared
to the length-scale of the substrate, the substrate movement can be assumed
uncorrelated with the diffusive motion of the particle, and the covariance of
the measured displacements is (App. B.2)

pΣ∆xqi,j �
�

4

3
ζpsq2D∆t� 2σ2

�
δi,j �

�
2ζpsq2D∆t� σ2

�
δi,j�1

�ρ∆xps, |i� j|∆tq , (2.2.2)
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where s is the mean position of the particle in substrate coordinates, ζ �a
xpBx{Bsq2y is the local degree of stretching of the substrate and ρx is the

autocovariance function between the substrate’s displacements (App. B.2).
The form of ζ and ρ∆x depends on the specific substrate, and is given in
Sec. 3.2 for a stretched flexible or semi-flexible polymer, such as DNA.

For diffusion on a fluctuating substrate, we cannot find an exact spectral de-
composition, which completely decorrelates the measured displacements as we
could for free diffusion, but we can use the Fourier transform, which decorre-
lates the data to a very good approximation (to order 1{N). The fluctuations
of the substrate contribute to the measured power spectrum with a sum of
Lorentzian terms, one for each normal mode, where only the lowest one or two
modes contribute in practice (Sec. 2.3.3 and App. B.1). The measured power
spectrum is thus the sum of the diffusive movement, the positional noise, and
the substrate movement (Figs. 2.4e,f).

2.2.2 Estimation

Using knowledge of the statistics derived in the previous section, we derive
methods for estimating diffusion coefficients from the measured displacements
of single particles diffusing on a fluctuating substrate. We present a MLE,
which optimally estimates diffusion coefficients and parameters describing sub-
strate fluctuations for long time-series (Sec. 2.2.2.1). If substrate fluctuations
have been determined a priori, an unbiased CVE can be used, which is optimal
for short time-series (Sec. 2.2.2.2).

2.2.2.1 Maximum likelihood estimation

We can estimate the diffusion coefficient, noise and parameters describing the
substrate motion by maximum likelihood fitting to the power spectrum of the
measured displacements of a diffusing particle (Fig. 2.4e,f). For long time-
series this MLE is optimal (Sec. 2.2.3). For diffusion on a polymer, such
as a DNA strand, we also record the transversal (y-direction) movement of
the strand, which only consists of positional noise and substrate fluctuations
(Figs. 2.4a-d). This movement is coupled to the longitudinal (x-direction)
movement and thus provide additional information about the substrate move-
ment and positional noise (App. B.1). Thus, both the y- and x-direction
power spectra should be included in the MLE procedure (App. B.3.1). For
time-series shorter than around N � 35 (depending on parameter values), the
MLE algorithm may fail to converge. In this case an unbiased CVE should be
used as described below.
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Figure 2.4: Power spectra of measured displacements of different types of
stochastic movement. (Sum of individual contributions to the
power spectrum and fit to measured data: black line; experi-
mentally measured values: red squares; individual contributions
to power spectrum: dashed lines.) a) Composition of position
spectrum of substrate fluctuations measured in presence of po-
sitional noise. b) Experimentally measured power spectrum of
transversal (y-direction) positions of a protein diffusing on DNA.
c) Composition of displacement spectrum of substrate fluctua-
tions measured in presence of positional noise. d) Experimental
measurements of transversal (y-direction) displacements of a pro-
tein diffusing on DNA. e) Composition of displacement spectrum
of diffusion on a fluctuating substrate measured in the presence
of positional noise. f) Experimental measurements of longitudi-
nal (x-direction) displacements of a protein diffusing on DNA.
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2.2.2.2 Unbiased covariance-based estimation

If parameters describing the substrate fluctuations can be determined a priori
they should be used in estimating diffusion coefficient as described in Sec. 3.2.2,
since this increases precision considerably (Sec. 2.2.3). In this case the param-
eters describing substrate motion can be used to calculate the bias caused by
substrate movement for the CVE defined in Sec. 2.1.2. The bias can be sub-
tracted from the CVE to obtain unbiased estimates of diffusion coefficients for
short time-series (Apps. B.3.2 and C.4.1). This unbiased CVE is by construc-
tion unbiased and reaches the Cramér-Rao lower bound for most parameter
values.

For short time-series of particles diffusion on a substrate, where the fluctua-
tions have not been determined a priori and where the MLE described above
fails, the DNA movement parameters estimated from longer time-series can
be used to calculate the bias of the CVE and thus obtain unbiased estimates
of diffusion coefficients even for short time-series. The procedure is described
in detail in Sec. 3.2.1.2.

2.2.3 Numerical results

We test the estimators on simulated data of a particle diffusing on a fluctu-
ating DNA strand. In general, only the lowest mode of the DNA movement
contributes significantly to the particle’s movement (Figs. B.1-B.6 and D.2).
So we neglect higher modes of the DNA motion and only simulate the lowest
mode. Since the mathematical description of diffusion on a fluctuating sub-
strate contains two or three additional parameters compared to free diffusion,
we cannot define a simple signal-to-noise ratio, which defines estimator per-
formance, as we could in the previous section (Sec. 2.1). The signal-to-noise
ratio is a function of the frequency (Figs. 2.4a,c,e) and a complicated interplay
of parameters define estimator precision. Thus, we will in this section not in-
vestigate the whole parameter space, but a subset. A subset which, however,
fully comprises parameter values observed in experimental measurements of
hOgg1 proteins diffusing on flow stretched DNA (Sec. 2.3 and App. C.4). The
lowest mode of the DNA fluctuations is described by three parameters: the
correlation constant c1, the longitudinal amplitude X1,1, and the transversal
amplitude Y1. For the experimental data analyzed in Sec. 2.3, c1X1,1 and
c1Y12 do not change along the DNA, while c1 changes approximately twofold
(Figs. C.12 and C.11). The estimators’ precisions are less sensitive to the val-
ues of D and σ2. So we let the parameters c1X1,1, c1Y2

k , D and σ2 be constant
and equal to the mean of their experimentally determined values for hOgg1
proteins diffusing on DNA (Sec. 2.3).

Measurements of diffusion on stretched DNA are simulated as described in
App. B.4. We set D � 0.3 µm2{s, σ2 � 1500 nm2, c1X1,1 � 2.1 µm{s, and
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c1Y2
k � 0.20 µm2{s, while the correlation constant c1 is varied tenfold, between

10 and 100 Hz. (Simulation results are shown for other values of D and σ2 in
Table. B.1.)

DNA fluctuations induce a bias in the estimates of the diffusion coefficient,
which can be multiple times larger than the diffusion coefficient itself, if these
are not accounted for (Fig. 2.5). The MLE appropriately accounts for the
DNA fluctuations and is practically optimal for long time-series (Fig. 2.5b).
For short time-series both the CVE and the MLE fail to give reliable estimates
of the diffusion coefficient. The MLE performs even worse than the CVE.

When the parameters describing the DNA fluctuations have been determined
a priori both the CVE and the MLE are practically optimal, for both short
and long time-series (Fig. 2.6).

A priori determination of both the DNA movement parameters and the posi-
tional noise gives a slight increase in the precision of the CVE of the diffusion
coefficient, while it induces a bias in the MLE for slow DNA fluctuations
(Fig. 2.7). In this case the CVE should be used. There is, however, almost no
noticeable increase in precision when σ2 is known a priori over the case where
both D and σ2 are unknown for the parameter values examined.

2.3 hOgg1 proteins diffusing on flow-stretched DNA

In this section we use the methods we have developed for diffusion on a fluc-
tuating substrate to reanalyze a data set of hOGG1 repair proteins diffusing
on λ-DNA previously analyzed using MSD-based methods [19]. The human
8-Oxyguanine DNA glycosylase (hOgg1) protein is crucial in the repair of ox-
idative damage of guanine bases in DNA [40, 41, 42]. Our analysis of the data
shows that DNA fluctuations induce a significant bias in the estimated diffu-
sion coefficients if they are not accounted for. The increased precision over
earlier methods and precise knowledge of the estimation uncertainty allows us
to conclude that proteins show different diffusion coefficients and that these
diffusion coefficients are correlated with the proteins’ residence time on DNA.
We show that these results implies a multi-state model for hOgg1 diffusion on
DNA.

In Sec. 2.3.1 we review the experimental setup and preliminary data analysis.
In Sec. 2.3.2 we analyze the distribution of protein residence times on the
DNA, which shows that unbinding from the DNA is not a simple Poisson
process. In Sec. 2.3.3 we employ our methods to estimate the proteins’ diffusion
coefficients. Finally, in Sec. 2.3.4 we show using numerical simulations that
a single-state model for diffusion on DNA cannot account for the observed
distribution of diffusion coefficients and residence times.
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Figure 2.5: Mean plus/minus standard error of the MLE, which accounts
for DNA fluctuations, and the CVE, which does not, applied to
an ensemble of 1,000 Monte Carlo generated time-series of dif-
fusion on a fluctuating substrate, where both positional noise
amplitude σ2 and parameters determining the substrate motion,
(c1,X1,1,Y1), are unknown. (MLE: connected squares, blue; mo-
ment estimator: full lines and diamonds, green; Cramér-Rao
bound: grey area). τ � ∆t for both simulations, which cor-
responds to full time-frame integration. True parameter val-
ues are D � 0.3 µm2{s, σ2 � 1500 nm2, c1X1,1 � 2.1 µm{s,
and c1Y2

k � 0.20 µm2{s. a) Time-series length N � 10 and b)
N � 100.
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Figure 2.6: Mean plus/minus standard error of the MLE and CVE, which
account for DNA fluctuations, applied to an ensemble of 1,000
Monte Carlo generated time-series of diffusion on a fluctuat-
ing substrate, where positional noise amplitude σ2 is unknown,
while parameters determining the substrate motion, (c1,X1,1,Y1),
are known a priori. (MLE: connected squares, blue; mo-
ment estimator: full lines and diamonds, green; Cramér-Rao
bound: grey area). τ � ∆t for both simulations, which cor-
responds to full time-frame integration. True parameter val-
ues are D � 0.3 µm2{s, σ2 � 1500 nm2, c1X1,1 � 2.1 µm{s,
and c1Y2

k � 0.20 µm2{s. a) Time-series length N � 10 and b)
N � 100.
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Figure 2.7: Mean plus/minus standard error of the MLE and CVE, which
account for DNA fluctuations, applied to an ensemble of 1,000
Monte Carlo generated time-series of diffusion on a fluctuating
substrate, where both positional noise amplitude σ2 and pa-
rameters determining substrate motion, (c1,X1,1,Y1), are known
a priori. (MLE: connected squares, blue; moment estimator:
full lines and diamonds, green; Cramér-Rao bound: grey area).
τ � ∆t for both simulations, which corresponds to full time-
frame integration. True parameter values are D � 0.3 µm2{s,
σ2 � 1500 nm2, Kx � 2.1 µm{s, and Ky � 0.20 µm2{s. a)
Time-series length N � 10 and b) N � 100.
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2.3.1 Experimental setup and preliminary data analysis

The experimental setup and a snapshot of raw experimental data are shown in
Figure 2.8. The data consist of hundreds of individual time-series of the longi-
tudinal x- and transversal y-positions of fluorescently labeled hOgg1 proteins
diffusing on λ-phage DNA stretched by a strong shear flow. Experiments are
performed at a pH of 7.5 and the DNA is approximately 90% stretched [19].
The positions of the proteins are obtained by fitting a 2D-Gaussian to the
measured point-spread function emitted by the fluorescent protein.

Time-series, whose transversal (y-direction) motion are not consistent with
DNA motion with positional noise, such as proteins getting stuck on the cover-
slip, have been discarded (see App. C.1 for details). Furthermore, time-series
shorter than N � 12 (t � 0.132 s) have been discarded, since we have no
way of reliably checking whether the measured movement is consistent with
diffusion on DNA for very short trajectories. Also, to ensure homogeneous
conditions for the time-series analyzed, proteins close to the tethering point
and the free end of the DNA are not included in the analysis. Proteins close to
the tethering point tend to get stuck on the coverslip, effectively filtering out
long time-series, while proteins close to the free end also tend to have shorter
residence times on DNA, probably due to increased DNA motion (App. C.1).

2.3.2 Protein residence time on DNA

If the interactions between proteins and DNA are constant during the time
the proteins stay bound to the DNA and are the same for all proteins, the dis-
tribution of residence times will be an exponential distribution (Ap. C.3). As
Figs. 2.9a-b show, the exponential distribution does not account for the spread
observed in the experimentally measured distribution. A goodness of fit test
gives p � 4 � 10�5, i.e., the data do not support the hypothesis that unbinding
from DNA is a Poisson process (see App. C.2 for design of the test). A natural
extension is to consider a constant-rate two-state model for the protein-DNA
interactions, i.e., proteins can switch between two states with different binding
energies between protein and DNA, and the rates for switching between states
are constant. This model predicts that the distribution of the residence times
is a sum of two exponentials (App. C.3). Another simple extension to the
one-state model assumes that proteins bind with different but constant bind-
ing energies to the DNA and that these energies are normal distributed. This
results in log-normal distributed characteristic residence times (App. C.3). A
third extension of the simple one-state hypothesis is to assume that the pro-
tein experiences a rugged landscape of binding energies dependent on base-pair
sequence while diffusing on the DNA as described in [20] (Sec. 2.3.4).

Simulations of the rugged energy landscape model show that this cannot alone
produce the residence time distribution observed experimentally (Fig. 2.12a),
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Figure 2.8: a) Experimental setup. A λ-phage DNA molecule is end-
biotinylated and fused to the coverslip. The DNA is stretched
by a shear flow to approximately 90% of its contour length
(L � 48, 502 base-pairs, equal to 17.9 µm) [19]. Fluorescent
hOGG1 proteins diffusing on the DNA molecule are recorded
using total internal reflection microscopy (a hOgg1 protein is
approximately 5 nm in size). b) Image of fluorescent hOGG1
molecules diffusing on the stretched λ-DNA molecule (image
from [19], the scale-bar is 1 µm).
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Figure 2.9: Distribution of residence times on DNA. Only time-series longer
than N ¥ 12, i.e., t ¥ 0.132 s are included. (Measured distribu-
tion: red bars; theoretical distribution: blue line.) a) Single ex-
ponential fit to distribution of residence times shown on semilog
scale; b) zoom on the first two seconds of the time-axis of a)
shown on linear scale. Pearson’s chi-squared test (goodness of
fit) gives p � 4�10�6. c) Fit to two exponentials shown on semilog
scale; d) zoom on the first two seconds of the time-axis of c)
shown on linear scale. Pearson’s chi-squared test gives p � 0.04.
e) Fit to an exponential distribution with log-normal distributed
characteristic residence times shown on semilog scale; f) zoom on
the first two seconds of the time-axis of e) shown on linear scale.
Pearson’s chi-squared test gives p � 0.02. Akaike-weights for
the two models, which are consistent with data are: w2 � 0.82
for two exponentials and wlogN � 0.18 for log-normal distributed
characteristic residence times, i.e., the two-state model agrees
better with data.
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while both the two-state model (Figs. 2.9c-d) and the normal distributed en-
ergies model (Figs. 2.9e,f) or a combination of the three models may explain
the observed residence time distribution.

Figure 2.9 illustrates another point: It is important to be able to properly
analyze short time-series, since the majority of the recorded time-series are
short, and thus, much of the experimental information is contained in the
short time-series.

2.3.3 Parameter estimation

Measurements of YOYO-labeled DNA and Brownian dynamics simulations
show that the time-scale of longitudinal fluctuations of the free end of the
DNA is of the order of 20 ms [19], i.e., two times the time-lapse. This result
agrees with fits to the measured power spectra (Fig. C.11). This means that
we need to take DNA fluctuations into account when estimating diffusion
coefficients, since the DNA fluctuations do not resemble white noise (Fig. 2.4b).
Ignoring the DNA fluctuations leads to a bias, which can be larger than the
value of the diffusion coefficient itself (Figs. 2.11 and C.15). The mean bias is
bpDq � 0.10� 0.01 µm2{s, while it may be as large as 0.2 µm2{s (Fig. C.15).

We estimate diffusion coefficients from the measured time-series as described
in Sec. 3.2. (Three sample trajectories are shown in Fig. 2.10.) For time-
series longer than N � 35, diffusion coefficients D, positional noise ampli-
tudes σ2, and parameters describing DNA motion (longitudinal amplitude
X1,1, transversal amplitude Y1, and correlation constant c1) are estimated
(App. C.4). The substrate fluctuations are modeled using a single mode. In-
cluding more modes does not affect diffusion coefficient estimates and is only
possible for time-series longer than N � 145 (Fig. D.2). For time-series of
N � 35 or shorter, the MLE algorithm may not converge. For these short
time-series we use the CVE and subtract the bias caused by DNA fluctua-
tions as described in Sec. 3.2. We thus obtain unbiased diffusion coefficient
estimates even for short time-series (Fig. 2.11 and App. C.4).

As Fig. 2.8 shows, multiple proteins diffuse on the DNA at a time. This leads
to infrequent collisions between the proteins. This crowding does not induce
correlations between estimated diffusion coefficients and residence times, nor
does it alter the mean and dispersion of diffusion coefficient estimates consid-
erably (App. C.4.2). This insensitivity to molecular crowding is a specificity
of the displacement-based methods, since these estimators rely on the shortest
displacements, which are least affected by the crowding. This contrasts with
MSD-based estimators, which rely on longer displacements and are thus highly
affected by crowding.

The increased resolution offered by the methods developed in this thesis re-
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Figure 2.10: Trajectories of hOgg1 proteins diffusing on flow-stretched DNA.
Trajectories are set to start at zero. a) Position of the proteins
in the longitudinal (x) direction. b) Position of the proteins in
the transversal (y) direction. The proteins are measured until
they either unbind from the DNA or bleach. Whichever of these
events happens first determines the length of the time-series,
but the time-scale of bleaching is in the experiments much
longer than the proteins’ mean residence time on DNA [19].
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veals a clear correlation between the proteins’ residence times and diffusion
coefficients (Fig. 2.11), and a dispersion in the proteins diffusion coefficients
(App. C.4).

2.3.4 Random walker in rugged energy landscape

A model for protein diffusion on DNA developed in [20] treats the protein-
DNA interactions as a random energy landscape, with uncorrelated normal dis-
tributed binding energies, and the protein as a random walker in this quenched
landscape. This induces correlations between protein residence times on DNA
and effective diffusion coefficients and provides a possible simple explanation
of the observed trend in diffusion coefficients and the residence time distri-
bution observed. However, for experimentally relevant physical parameters,
the random walker’s movement effectively self-averages during a time-lapse.
So neither a trend between diffusion coefficients and residence times, nor a
non-exponential residence time distribution are seen (Fig. 2.12 and App. C.5).
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Figure 2.11: Diffusion coefficient estimates pD versus protein residence time
on DNA t. (CVE, which does not account for DNA fluctua-
tions: green diamonds; MLE, which explicitly takes DNA fluc-
tuations into account: blue squares; CVE where bias due to
DNA movement is subtracted: cyan circles.) The MLE only
works for longer time-series (N ¡ 35), The CVE is biased,
and its bias is uncorrelated with time-series length. Using the
CVE corrected for bias allows estimation for short time-series.
A clear correlation between time-series lengths and diffusion
coefficients is seen.
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Figure 2.12: a) Distribution of residence times for Monte Carlo simulated
data of a random walker in a rugged energy landscape. A
Pearson’s chi-squared test for exponential distribution gives a
p-value of p � 0.38. b) Diffusion coefficient versus residence
time. A chi-squared test for variance to test the hypothesis
that D is constant gives a p-value of p � 0.74.
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Chapter 3

Methods

This chapter reviews the methods developed in the thesis, and explains which
methods should be applied, and how to apply them. In Sec. 3.1 methods
for diffusion coefficient estimation from single-particle tracking (SPT) mea-
surements of a particle undergoing free diffusion are presented. Section 3.2
presents methods for diffusion coefficient estimation from SPT measurements
of a particle diffusing on a fluctuating substrate.

In all cases we assume that data consist of a time-series of N�1 measured po-
sitions tx0, x1, . . . , xNu, possibly in multiple dimensions, of a diffusing particle
recorded at equidistant times t0,∆t, . . . , N∆tu. We denote by N the length
of such a time-series, measured in units of the time-lapse ∆t.

3.1 Free diffusion

Methods presented in this section should be used for diffusion coefficient esti-
mation from SPT measurements of a particle undergoing free diffusion or diffu-
sion on a stiff substrate, e.g., a stiff polymer such as a microtubule or an actin
filament. The methods presented in this section are divided in two subsections:
estimation when the positional noise amplitude is unknown (Sec. 3.1.1); and
estimation when the positional noise amplitude has been determined a priori
(Sec. 3.1.2).
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3.1.1 Unknown noise amplitude

When the amplitude of the positional noise is not known a priori the CVE
described below should generally be used, since it is unbiased and practi-
cally reaches the Cramér-Rao bound for a large range of signal-to-noise levels
(SNR ¡ 1). If long time-series are recorded and the signal-to-noise ratio is
very low (SNR   1) the MLE should be used, since the CVE is not efficient
in this range.

3.1.1.1 Covariance-based estimation

Covariance-based estimator (CVE) The CVE of the diffusion coefficient
D is pD � ∆x2

n

2∆t
� ∆xn∆xn�1

∆t
, (3.1.1)

while the CVE of the positional noise variance σ2 is

pσ2 � R ∆x2
n � p2R� 1q∆xn∆xn�1 , (3.1.2)

where

∆x2
n �

1

N

Ņ

n�1

∆x2
n , ∆xn∆xn�1 � 1

N � 1

N�1̧

n�1

∆xn∆xn�1 , (3.1.3)

and the motion blur coefficient R is equal to R � 1{6 for full time-integration
and R � 0 for instantaneous camera shutter. (For values of R for other camera
shutters, see App. A.1.)

Variance The variance of the covariance-based estimator (CVE) is to second
order in 1{N

Var
� pD	

� 6α2 � 4αβ � 2β2

Np∆tq2 � 4pα� βq2
N2p∆tq2 , (3.1.4)

with α � D∆t and β � σ2 � 2RD∆t (App. A.3.2.1).

The variance of pσ2 and the covariance between pD and pσ2 can be found in
App. A.3.2.1.

For importance weighting, e.g., when calculating the weighted mean, the time-
series length N should be used as weight, since it is known exactly. This
avoids complications such as bias due to correlations between the estimated
parameters and the estimated variances.
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Characteristic function The characteristic function of the moment esti-
mator, rp, derived in App. A.3.2.2, is defined by

ln rppωq � N � 1

2
ln

�
4

A

�
�1

4
ln
�pA� Cq2 �B2

��1

2
pS1,� � S1,� � S2,� � S2,�q ,

(3.1.5)
where

S1,� � N � 1

2
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���1�

gffe1�
�
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2A
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��� , (3.1.6)
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N�1

����� , (3.1.7)

and A, B, and C are functions of ω,

A � 1� 2ω

N
pD �Qq , B � 2ω

N � 1

�
2D �

�
1� 1

N



Q

�
, C � �4ω

N
Q ,

(3.1.8)
with

Q � s2 � 2RD∆t

∆t
.

Higher moments of the CVE are found by differentiating rp w.r.t ω and letting
ω tend to zero, A pDk

E
� ik

Bkrp
Bωk

����
ω�0

. (3.1.9)

The probability density of the CVE of D is equal to the inverse Fourier trans-
form of the characteristic function,

p
� pD���D,σ2

	
� F�1rrppαqs� pD	

. (3.1.10)

Thus, the probability density of the CVE and confidence intervals for covariance-
based estimates can be found by numerical Fourier transformation of rp. This
can be done effectively using a fast-Fourier transform (FFT) algorithm with
corrections for end contributions as described in [43].

3.1.1.2 Maximum likelihood estimation

Maximum likelihood estimator (MLE) The MLE uses the transformed
displacements qd, given by

|∆xk � pP�1∆xqk �
c

2

N � 1
sin

�
πkn

N � 1

�
∆xn . (3.1.11)
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These are independent and Gaussian distributed with variances equal to (Sec. A.3.1)

ψk � 2D∆t�
�

2� 2 cos
πk

N � 1



pσ2 � 2RD∆tq . (3.1.12)

The exact log-likelihood function for the parameters D and σ2, given the data
∆x, is equal to the sum

lnLpD,σ2|∆xq � �1

2

Ņ

k�1

#
lnψk �

|∆x2

k

ψk

+
. (3.1.13)

The MLE is obtained by maximizing the log-likelihood (3.1.13) numerically.
An algorithm for the MLE, which is approximately two times faster, is given
in Sec. A.3.1.2.

Variance The variance of the MLE is to order 1{N

var
� pD, pσ2

	
� I�1 , (3.1.14)

where

I � 1
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2� 2 cos
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Bψk
Bσ2

� 2� 2 cos
πk

N � 1
. (3.1.16)

3.1.2 Known noise amplitude

The positional noise amplitude can usually be estimated directly when the
diffusing particles’ positions are determined as described below. In this case
the CVE should be used for SNR ¡ 1, while the MLE should be used for
SNR   1.

3.1.2.1 Estimating the noise amplitude a priori

An isolated diffusing and freely rotating fluorescent molecule emits photons in
a stochastic manner. If the diffusion length

?
2D∆t of the observed particle

is smaller than or comparable to the width of the PSF (around 100 nm for
green light observed through a 100X oil-immersion objective), the position of
the particle can be estimated by fitting a circular 2D Gaussian plus a constant
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background term to its measured point spread function [44]. This results in a
positional noise with variance

σ2 � s2
a

P

�
16

9
� 8πs2

ab
2

Pa2



, (3.1.17)

for camera pixel width a, background b, measured number of photons P and
s2
a � s2 � a2{12, where s is the width of the measured PSF (Sec. A.1.3).

Since the positional noise is Gaussian distributed, the error on the estimate
of σ2 is Var

�pσ2
� � 2σ4{P , where P is the number of photons recorded per

frame. An even more precise estimate of σ2 is obtained by averaging over the
positional noise of all N � 1 positions in the time-series and, if the different
time-series have the same noise amplitude, averaging over all M time-series, to
obtain an error on pσ2 of Var

�pσ2
� � 2σ4{pN�1qP and Var

�pσ2
� � 2σ4{MpN�

1qP , respectively. Since P is typically on the order of 1000 or more, and M
typically is on the order of hundreds to thousands, the contribution to the
variance of pD from the error on pσ2 is usually negligible.

3.1.2.2 Covariance-based estimation

Covariance-based estimator (CVE) When an estimate of the noise am-
plitude is obtained a priori, the CVE of the diffusion coefficient reduces to

pD � ∆x2
n � 2pσ2

2p1� 2Rq∆t , (3.1.18)

where pσ2 is the estimate of σ2 obtained as described in Sec. 3.1.2.1.

Variance The variance of the CVE is

Var
� pD	

� 2α2 � 3αβ � 4β2

Np1� 2Rq2p∆tq2 �
Var

�pσ2
�

p∆tq2p1� 2Rq2 . (3.1.19)

3.1.2.3 Maximum likelihood estimation

Maximum likelihood estimator (MLE) When an estimate of the noise
amplitude is obtained a priori, the MLE is obtained by maximizing lnLpD, pσ2|∆xq
given by Eq. (3.1.13) with respect to D only.

Variance The Cramér-Rao bound, which approximately gives the variance
of the MLE, is given by

I�1 � I�1
D � I�2

D I 2
D,σ2Var

�pσ2
�
, (3.1.20)
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where

ID � 1
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and

ID,σ2 � 1
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. (3.1.22)

3.2 Diffusion on a fluctuating substrate

Methods presented in this section should be used for measurements of diffu-
sion on a fluctuating substrate, e.g., a supported or grafted lipid bilayer or a
flexible or semiflexible polymer such as DNA. If the substrate’s fluctuations
are considerably faster than the measurement frequency 1{∆t, they only con-
tribute to the noise term σ2 and the methods described in Sec. 3.1 should be
used. The time-scale of the fluctuations should be checked, e.g., by measuring
the position of a fixed fluorophore on the substrate and comparing the power
spectrum of the positions to a straight line (see Fig. 2.4a,b). For diffusion on
DNA or other polymers, the measured transversal positions of the diffusing
particles can be used. The substrate fluctuations are described by a set of
parameters, which we denote φ. The number of parameters and their form
depend on the nature of the substrate fluctuations. Methods presented in this
section are derived for full time-integration, i.e., shutter time τ equal to the
time-lapse ∆t. (For other values of τ see App. B.2.) They apply to diffusion
on DNA or another polymer. For diffusion on a flat substrate, the methods
differ slightly and should be altered as described in Sec. 3.2.3.1.

This section is divided into three subsections: estimation when parameters de-
scribing substrate motion are unknown (Sec. 3.2.1); estimation when param-
eters describing DNA motion have been determined beforehand (Sec. 3.2.2);
and an overview of analytical expressions for the form of the statistics used in
estimation for a selection of experimental setups (Sec. 3.2.3).

Reviews of methods for stretching DNA and visualizing protein-DNA interac-
tions are found in [45, 46].

3.2.1 Unknown substrate fluctuations

When substrate fluctuations cannot be determined a priori they must be es-
timated directly from the measured time-series along with the diffusion coef-
ficient. This is done using the MLE. For short time-series (N   30-40), the
MLE algorithm may fail to converge and the CVE should be used.
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3.2.1.1 Long time-series, maximum likelihood estimation

The MLE procedure uses the power spectra of the measured displacements,
where we for diffusion on DNA measure both the longitudinal (x) and transver-
sal (y) displacements, ∆x and ∆y. The power spectra are calculated as

pPf p∆�q � 1

N∆t
|DFT r∆�sf |2 , (3.2.1)

where DFT is the discrete Fourier transform, which is calculated effectively us-
ing a fast-Fourier transform (FFT) algorithm, and f � 1{N∆t, 2{N∆t, . . . , fNyq.
The Nyquist frequency is fNyq � 1{2∆t if N is even, and fNyq � pN�1q{2N∆t
if N is odd1.

We denote the expected values of the power spectra by P
p∆�q
f .

Maximum likelihood estimator (MLE) The MLE is the set of param-
eter values p pD, pσ2, pφq, which maximizes the log-likelihood function given the
measured power spectra! pP)

f
�

! pPf p∆xq, pPf p∆yq)
f�1{N∆t,...,fNyq

.

The log-likelihood function is given by (App. B.3.1)
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where
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f�1{N∆t

$&%lnP
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p∆�q
f
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The expected values of the power spectra are

P
p∆yq
f � σ2∆t�

M�1¸
m��M

�
1� cos p2πf∆tq
π pf∆t�mq


2 A
Pf� m

∆t

�
yDNApsq�E , (3.2.4)

and

P
p∆xq
f � 2ζpsq2Dp∆tq2 � r2� 2 cos p2πf∆tqs

�
σ2∆t� ζpsqDp∆tq2

3



�

M�1¸
m��M

�
1� cos p2πf∆tq
πpf∆t�mq


2 A
Pf� m

∆t

�
xDNApsq�E . (3.2.5)

1Since the measurements are real numbers, the spectrum is symmetric and we only need
to analyze half of it, i.e., for frequencies in the range f � 1{N∆t, . . . , fNyq.
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The number of aliases M to include in Eqs. (3.2.4) and (3.2.5) should be
large enough to include all aliases, which contribute significantly to the power
spectrum. In general M � 2 is sufficient. The expected power spectral values
of the DNA motion are

@
Pf

�
yDNApsq�D � Ķ

k�1

2ckYkpsq2
c2
k � p2πfq2 , (3.2.6)

@
Pf

�
xDNApsq�D � Ķ

k,l�1

2pck � clqXk,lpsq2
pck � clq2 � p2πfq2 . (3.2.7)

The eigenfunctions Yk and Xk,l, and the local degree of stretching of the
substrate, ζ, depend on the type of the substrate motion and are given in
Sec. 3.2.3. Only the lowest K modes of the substrate movement are included
in the estimation procedure. Since we are not interested in modeling the sub-
strate movement, but to obtain unbiased estimates of diffusion coefficients,
only the first one or two modes need to be included. If no theoretical frame-
work exists, which accurately describes the substrate motion, the modes must
be fitted individually from the time-series data, and only one mode should be
included.

Variance We define θ � pD,σ2,φqT . The variance of the MLE is to order

1{N given by Var
�pθ	 � I�1, where the Fisher information matrix I is

Iij �
fNyq̧

f�1{N∆t
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f
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f

Bθi
BP p∆xq

f

Bθj �
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f

Bθi
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f

Bθj

,.- .

(3.2.8)

The derivatives BP p∆�q
f {Bθi are found by differentiating Eqs. (3.2.4) and (3.2.5)

w.r.t. to the parameters θi with the appropriate eigenfunctions inserted as
given in Sec. 3.2.3.

3.2.1.2 Short time-series, covariance-based estimation

For short time-series the MLE fails. For a diffusing particle with mean position
s on the substrate, estimates of the parameters φ � ptcku, txk,lpsquqT describ-
ing the substrate movement can be obtained by averaging over ML estimates
obtained from long time-series of particles with a mean position close to s. In
the averages individual estimates should be weighted with time-series length
Nm [47]. For the parameter φi,

φi �
°M
m�1Nm

pφi,m°M
m�1Nm

. (3.2.9)
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The variance of the weighted average is estimated by

Var
�
φi
� � °M

m�1Nm

�pφi,m � φi

	2

pM � 1q°M
m�1Nm

. (3.2.10)

The CVE is then calculated as described in Sec. 3.2.2.1 using the averaged
DNA parameter values.

3.2.2 Known substrate fluctuations

When the parameters describing the substrate motion can be determined a
priori, the precision of diffusion coefficient estimates may be significantly in-
creased by using this information. In this case, the CVE corrected for bias
should be used to estimate diffusion coefficients, since it is unbiased for short
time-series, where the MLE may be biased.

3.2.2.1 Covariance-based estimation

When the parameters of the substrate movement have been determined a pri-
ori, an unbiased CVE of the diffusion coefficient can be obtained by calculating
and subtracting the bias caused by the substrate movement (Apps. B.3.2 and
C.4.1)

Covariance-based estimator (CVE) An unbiased CVE of the diffusion
coefficient is given by

pD � ∆x2
n

2∆t
� ∆xn∆xn�1

∆t
� b

�
D
��� pφpsq	 , (3.2.11)

where the bias bpDq is given by

b
�
D
��� pφpsq	 � Ķ

kl�1

�
1� e�ppck�pclq∆t�3 pXk,lpsq2

ppck � pclq2 ∆t3
. (3.2.12)

The form of ck and Xk,lpsq depend on the substrate motion and are given in
Sec. 3.2.3 for different types of substrate motion.

Variance The variance of the unbiased CVE is to order 1{N2 (App. B.3.2)

Var
� pD	

� Var0pD,σ2q �Var1pD,σ2,φq �Var2pφq �VarbpDqpφq , (3.2.13)
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where Var0 is given by Eq. (3.1.4), and

Var1pD,σ2,φq � p6α� 2βqρ0 � 8αρ1 � 4αρ2 � 2βρ3

Np∆tq2

�4pα� βqρ0 � 4βρ2 � 2βρ3

N2p∆tq2 , (3.2.14)
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and

VarbpDqpφq �
¸
ij

BbpDq
Bφi

BbpDq
Bφj Cov

�pφi, pφj	 . (3.2.16)

We have defined

ρj � ρ∆xps, j∆tq � 2ρxps, j∆tq�ρxps, |j�1|∆tq�ρxps, pj�1q∆tq , (3.2.17)

where

ρxps, 0q �
Ķ

kl�1

2 pck � clq∆t� 2
�
1� e�pck�clq∆t

�
∆t2pck � clq2

Xk,lpsq2 , (3.2.18)

and

ρxps, j∆tq �
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kl�1

e�pck�clqpj�1q∆t �1� e�pck�clq∆t
�2

∆t2pck � clq2
Xk,lpsq2 . (3.2.19)

Known noise amplitude If the noise amplitude has been determined a
priori higher precision can be obtained by using the following unbiased CVE
to estimate D: pD � ∆x2

n � 2pσ2

2p1� 2Rq∆t � b
�
D|pσ2, pφ	 , (3.2.20)

where

b
�
D|pσ2, pφ	 � Ķ

kl�1

2pck � clq∆t� 3� 4e�pck�clq∆t � e�2pck�clq∆t

p1� 2Rq∆t3pck � clq2
. (3.2.21)

The variance of this unbiased CVE is

Var
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n
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Var
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�
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3.2.2.2 Maximum likelihood estimation

Maximum likelihood estimation (MLE) When the parameters describ-
ing substrate movement φ have been determined a priori the MLE is found by
maximizing the log-likelihood lnLpD,σ2| pφ, t pPfuq w.r.t. only D and σ2, and

treating pφ as fixed parameters, where lnL is given as in Sec. 3.2.1.1.

Variance We denote by θ � pD,σ2qT the parameter estimate in the maxi-
mum likelihood fit. Uncertainties in the estimates of the substrate movement
parameters induce additional uncertainties in the ML estimates of θ. This
is taken into account by the following formula for the variance of the MLE
(App. B.3.1.1)
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�pθ	 � I�1

θ � I�1
θ IθφVar

� pφ	 Iφθ I
�1
θ , (3.2.24)

where Iθ is the information matrix of pθ � p pD, pσ2qT ,
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and Iθφ is the information matrix describing the covariance between φ and θ,
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(3.2.26)

where Iφθ � pIθφqT .

3.2.3 Statistics of fluctuating substrates

3.2.3.1 Flat substrate

For diffusion on a fluctuating flat isotropic substrate, the movement in the
x- and y-directions are equivalent and the power spectra of the measured
displacements in both directions are given by

P
p∆�q
f � 2Dp∆tq2 � r2� 2 cos p2πf∆tqs

�
σ2∆t� Dp∆tq2

3
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c2
1 � r2πpf �m{∆tqs2 , (3.2.27)
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while the bias of the CVE is given by

b
�
D
���φ	 � �

1� e�c1∆t
�3 Y2

1

c2
1∆t3

. (3.2.28)

The local degree of stretching is equal to one,

ζpsq � 1 .

The free parameters determining the substrate fluctuations c1 and Y2
1 can be

determined by recording a fluorophore fixed to the substrate, and diffusion
coefficients can be estimated as described in Secs. 3.2.1 or 3.2.2.

3.2.3.2 DNA pulled by the ends

For a DNA molecule stretched by pulling at its ends, e.g., using optical tweez-
ers [48, 49] or by fusing its ends to the coverslip [21, 50, 51, 52], the eigenfunc-
tions of the DNA fluctuations are (App B.1.1): For ωk � πk{L,

Ykpsq �
?

2 sinpωksqb
Lω2

kpω2
klp � f0q

, (3.2.29)

and

Xk,lpsq �
sinrpωk�ωlqss

wk�wl � sinrpωk�ωlqss
ωk�ωl

L
b
pω2
klp � f0qpω2

l lp � f0q
. (3.2.30)

For a DNA strand pulled by the ends, the tension is constant along the DNA.
This means that the local degree of stretching is constant and equal to

ζ � xpLq
L

, (3.2.31)

where xpLq{L is the overall degree of stretching of the DNA.

The free parameters determining the fluctuations are the DNA’s persistence
length lp, the normalized external force f0 � F {kBT , and the diffusing parti-
cle’s mean position on the DNA, s. The position on the DNA is determined
by

s � xpsqxpLq
L

.

Optical tweezers directly measure the DNA fluctuations with high precision
and allows very precise determination of the parameters lp � 50 nm and f0.
This can be used in fits to obtain more precise diffusion coefficient estimates.
For DNA fused to the coverslip at the ends, lp and f0 should be determined
from the transverse fluctuations of particles bound to the DNA.
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3.2.3.3 DNA in plug flow

For DNA stretched in a plug flow, the eigenfunctions are given by (App. B.1.2)

Ykpsq � Zkpsq �
d

4kBT

γ‖v

J0

�
αk

a
1� s{L

	
αkJ1pαkq , (3.2.32)

and

Xkpsq � kBT

γ‖v

» s
0

J1

�
αk

a
1� s{L

	
J1

�
αl
a

1� s{L
	

LpL� sqJ1pαkqJ1pαlq ds , (3.2.33)

The parameters determining the fluctuations are κ �
a
kBT {γKv and s. DNA

fluctuations can be probed by attaching a fixed fluorescent marker to the
DNA molecule and observing its motion, thus determining κ. The position s,
however, needs to be fitted individually, since xpsq is not well defined mathe-
matically (App. B.1.2).

For a DNA molecule in a strong plug flow, ζpsq � 1, except near the free end
of the DNA, where we cannot estimate diffusion coefficients reliably.

3.2.3.4 DNA in shear flow

Perhaps the most simple way of performing TIRF microscopy measurements
of diffusion on DNA is by attaching one end of a DNA molecule to the coverslip
and stretching it by applying a shear flow [19, 25, 32, 53, 54].

We do not have a linear theory for DNA in shear flow and cannot describe
the DNA movement globally (App. B.1.3). We can however fit to an effective
one-mode theory locally, where the DNA motion parameters necessarily must
be estimated as well. We let

φ � pc1,X1,1,Y1qT

be free parameters and estimate pD,σ2,φq directly as explained in Sec. 3.2.1.

For DNA in a strong shear flow ζpsq � 1, except near the free end, where
measurements should be discarded.
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Chapter 4

Conclusions

(i) We have derived a computationally simple expression for the exact likeli-
hood function for single-particle tracking measurements of Brownian motion
valid for short time-series. This allowed us to derive an efficient algorithm for
the exact maximum likelihood estimator (MLE) along with an expression for
the Cramér-Rao bound, which bounds the precision of any unbiased estima-
tor. (ii) We propose an unbiased covariance-based estimator (CVE) and show
that it is optimal in the sense that it is unbiased and reaches the Cramér-
Rao bound for experimentally reasonable values of the signal-to-noise ratio
(SNR), i.e., SNR ¡ 1. (iii) We have shown that the standard MSD-based
estimators are suboptimal and that their precision may be many times lower
than the precision the CVE and MLE. (iv) Using Monte-Carlo simulations,
we showed that the statistical error of the MLE is actually smaller than the
Cramér-Rao bound, but at the cost of a small bias, while the ultimate least-
squares estimator based on the MSDs, the GLS estimator, is suboptimal. (v)
We found that motion blur increases the positional noise and (vi) that the
variance of diffusion coefficient estimates can be reduced by a factor of up to
three by estimating the noise amplitude independently. (vii) We have derived
the statistics of single particle tracking of a particle diffusing on a fluctuat-
ing substrate, such as a stretched DNA molecule. (viii) From these we have
derived the Cramér Rao bound and a MLE for diffusion on a fluctuating sub-
strate, optimal for long time-series. (ix) For short time-series we propose an
unbiased covariance-based estimator, which gives precise estimates when the
MLE fails. (x) We showed from both simulated and experimental data that
substrate fluctuations can induce an important bias in diffusion coefficient es-
timates if they are not taken into account. (xi) We have applied our methods
to experimental data of hOgg1 proteins diffusing on DNA and shown that we
are able to see molecular individuality. (xii) The superior resolution that our
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methods offer and the ability to analyze short time-series has allowed us to
show that hOgg1 proteins have multiple diffusion modes on DNA.

4.1 Outlook

We apply the methods we have developed to data of proteins diffusing on DNA
stretched by a shear flow, but the methods work with alternative methods for
stretching as well. In particular, stretching the DNA strand using optical
tweezers allows for direct and precise measurements of the DNA fluctuations,
which in turn increases the precision of diffusion coefficient estimates consid-
erably. Additionally, the degree of extension can be controlled precisely with
optical tweezers. This makes it possible to determine the optimal degree of
extension of the DNA, by varying the force applied by the tweezers. In prac-
tice, we want the DNA to be stretched as much as possible to give an optimal
signal-to-noise ratio when measuring, while we do not want the stretching to
alter the protein-DNA interactions.

We expect that the methods presented in this thesis can readily be extended
to diffusion coefficient estimation of molecules diffusing in lipid membranes,
where substrate fluctuations certainly are present [55]. We expect that our
methods work well for diffusion coefficient estimation of a particle in a crowded
or confined environments, since they only rely on the shortest displacements
and thus are less affected by crowding effects. An important generalization
of this work would be to consider anomalous diffusion, which occurs in many
biological processes, and where data analysis is traditionally performed using
MSD-based methods [56].

Analysis of additional experimental data combined with Monte Carlo simu-
lations of candidate theories can shed light on the specific mechanism hOgg1
employs when diffusing on DNA. Possible models are, e.g., a simple two-state
constant rate model for diffusion as suggested in [21] with an added coupling
between diffusion coefficient and characteristic residence time, or a two-state
protein, which interacts specifically with DNA base-pairs as suggested by Slut-
sky and Mirny [20].



Appendix A

Diffusion coefficient estimation
for free diffusion

A.1 Experimental tracking of a diffusing particle

In this section we review the mathematical properties of free diffusion (Brow-
nian motion). We derive expressions for the statistics of of experimental time-
series measurements of Brownian motion, where we account for positional noise
due to diffraction and motion blur due to finite camera shutter time.

A.1.1 Brownian motion and the Wiener process

Brownian motion is described mathematically by the Wiener process. For a
particle undergoing Brownian motion with diffusion coefficient D, the position
of the particle is given by xptq � ?

2DWt�x0, where Wt is the Wiener process.
The Wiener process Wt has the following defining properties [57]:

i) Wt has independent increments

ii) The increments of Wt are normal-distributed with Wt�Ws � N p0, t� sq.
iii) Wt is almost surely continuous.

iv) W0 � 0.

We shall extensively use i) and ii), while iii) and iv) serve to uniquely define
Wt.
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A.1.2 Motion blur and positional noise

Pictures taken by a camera are not instantaneous snapshots. The camera shut-
ter stays open for a finite time-interval to allow collection of enough photons
for a decent image. This creates motion blur as we know it from photos taken
with a hand held camera in low light conditions. If the shutter time is small
compared to the time-lapse the relative effect of motion blur is small and can
safely be ignored. In fluorescence microscopy, however, the number of photons
that a fluorescent molecule can emit is limited. So one wants to maximize the
number of photons collected. This is usually done by leaving the shutter open
during the whole time-lapse. In this case the camera integrates the particle’s
position over the full time-lapse and we need to take motion blur into account.
Furthermore, diffraction in microscope optics means that we do not measure
the position of the diffusing particle, but a diffuse point spread function (PSF),
approximately 200 nm wide. The average position can be estimated by fitting
a 2D Gaussian function plus a constant background term to the PSF. This
leads to an error σ on position determination, which is much smaller than the
width of the PSF [44].

Combining these effects we find that the position xn of a fluorescent molecule
recorded with time-lapse photography at time tn is

xn �
» ∆t

0
ςptqxtrueptn � t1qdt1 � σξn , (A.1.1)

where ξn is standard white noise and ςptq is a generic shutter function, with³∆t
0 ςptqdt � 1. Since xtrue has normal distributed increments (property ii))

and ξn is normal distributed, the measured displacements ∆xn � xn � xn�1

are normal distributed and their probability distribution is completely charac-
terized by the first two moments, x∆xny � 0, and pΣ∆xqij � x∆xi∆xjy. Using
properties i) and ii) of Brownian motion, we find [18],

pΣ∆xqij � r2D∆tp1� 2Rq � 2σ2sδi,j � r2RD∆t� σ2sδi,j�1 , (2.1.4)

where the motion blur coefficient is

R � 1

∆t

» ∆t

0
Sptqr1� Sptqsdt , (A.1.2)

and Sptq � ³t
0 ςpt1qdt1 [18]. For instantaneous (delta-function) camera shutter

R � 0, and for full time-frame averaging R � 1{6. The maximal motion blur
coefficient is R � 1{4, which corresponds to a double pulse shutter, i.e., two
instantaneous snapshots of the particle, one at the start and end of each frame.
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A.1.3 Width of the point spread function and positional noise
amplitude

The diffraction-limited point spread function (PSF) emitted by a freely rotat-
ing fluorescent molecule or a fluorescent bead recorded by an EMCCD camera
is well approximated by a two-dimensional (2D) Gaussian function plus a con-
stant background term. For an isolated fluorophore of this kind with fixed
position, fitting a 2D Gaussian plus a constant to the PSF allows us to esti-
mate the position of the molecule much more precisely than the width of the
PSF. This results in a positional noise with variance [44]

σ2
0 �

s2
a

P

�
16

9
� 8πs2

ab
2

Pa2



, (A.1.3)

for camera pixel width a, background b, measured number of photons P and
s2
a � s2

0 � a2{12, where s0 is the width of the PSF (s0 � 100 nm).

For a diffusing fluorophore of this kind, the motion blur due to the finite
camera shutter-time makes the measured PSF wider [15, 58]. For a particle
diffusing only in the image plane, the width of the distribution of the particle’s
positions is sD � ?

2RD∆t (Sec. A.1.3.1). Since the PSF of a fixed fluorophore
and the position distribution of a diffusing particle are both Gaussian and are
independent the effective width s of the PSF is given by

s2 � s2
0 � 2RD∆t . (A.1.4)

It should be noted that since diffusion is not a stationary process, the contribu-
tion to the PSF from the diffusive movement is only symmetrical on average,
not for a single experiment. However, as long as the typical diffusion length?

2D∆t is smaller than or comparable to the width of the PSF of a fixed
fluorophore, s0, treating the measured PSF as circular is a good approxima-
tion [59].

A.1.3.1 Derivation of the PSF width

A freely diffusing fluorescent molecule emits photons as a Possion process,
i.e., with a fixed rate. For the moment we forget about the dispersion of the
photons due to diffraction in the microscope, which we assume is independent
of the particle’s position during the time-lapse ∆t and can thus be added
later by convoluting the PSF with the position distribution of the diffusing
particle1. When a photon is emitted we can thus record the particle’s position
xi. Since the photon emission process is independent of the particle’s position
and we only are interested in average behavior, we can assume that the xis are

1This assumption is good when the diffusion length
?

2D∆t is much smaller than the
microscope’s field-of-view.
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equidistant in time. The width of the recorded position distribution is thus
given by the sample variance

varpxq � 1

P

¸
i

ςipxi � xq2 ,

where P is the total number of photons recorded, si is the discrete shutter
function, which determines whether the photon emitted at time ti is recorded,
and x is the average position. Since P is large2 the sum is well approximated
by an integral and the average sample variance is

s2
D �

» ∆t

0
ςptq @pxptq � xq2D dt , (A.1.5)

with x � ³∆t
0 ςptqxptqdt. We insert the expectation value xxptqxpt1qy � 2Dminpt, t1q

into Eq. (A.1.5) and perform partial integration to get

s2
D � 2D

�» ∆t

0
ςptqdt�

» ∆t

0
ςptq

» ∆t

0
ςpt1qminpt, t1qdt1dt

�
� 2D

�
�
» ∆t

0
ςptq

» t
0
ςpt1qt1dt1dt�

» ∆t

0
ςptqSptqtdt

�
� 2D

» ∆t

0
Sptqr1� Sptqsdt

� 2RD∆t , (A.1.6)

where we have used the definition of the motion blur coefficient R, from
Eq. (A.1.2).

A.2 Mean square displacement based methods

This section presents some results about the MSDs and the GLS estimator
based on the MSDs. We derive the covariance matrix of the MSDs. The GLS
is defined and its theoretical variance is derived.

A.2.1 Covariance matrix of the MSD

The covariance matrix Σρ is derived in [15] for full time-integration (R � 1{6).
For other values of the motion blur coefficient, Σρ is derived in the same
manner as described in [15]. This gives: For m� n ¤ N � 1,

pΣρqm,n �
�

8mn2

Kn
� 8npn2 � 1q

3Kn
� 4n2pn2 � 1q

3KmKn



α2 � 16n

Kn
αβ

�
�

8

Kn
� 4n

KmKn
� 4δm,n

Kn



β2 ;

2P is typically in the range 1000-10000.
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and for m� n ¥ N � 1,

pΣρqm,n �
�

4K3
m

3Kn
� 16K2

mn

3Kn
� p8n� 4{3qKm

Kn
� 8mn2

Kn
� 8n3

Kn
� 16n

3Kn



α2

�16n

Kn
αβ � 4p1� δm,nq

Kn
β2 ;

where α � D∆t and β � σ2 � 2RD∆t.

A.2.2 The generalized least squares estimator

The generalized least squares (GLS) estimator is defined as� pDpσ2



� �

ATΣ�1
ρ A

��1
ATΣ�1

ρ ρ , (A.2.1)

where ρ � pρ1, ρ2, . . . , ρN qT , A is a 2 � N matrix with A1,n � 2∆tpn � 2Rq
and A2,n � 2, and Σρ is a weight matrix proportional to the covariance matrix
of ρ.

The variance of the linear GLS estimator is found by taking the expectation
value of the outer product of Eq. (A.2.1),

Var
�pθ	 � pATΣ�1

ρ Aq�1ATVar pρqApATΣ�1
ρ Aq�1

� pATΣ�1
ρ Aq�1 , (A.2.2)

where pθ � p pD, pσ2qT . The iterative GLS estimator uses and estimates pΣρ

instead of the true covariance matrix Σρ. The estimated covariance matrix pΣρ

is correlated with ρ, which means that variance of the iterative GLS does not
reduce to pATΣ�1

ρ Aq�1 as in Eq. (A.2.2), and that the variance of the iterative
GLS estimator is higher than the variance of the linear GLS estimator. The
difference is not of order Opp1{N2q, since ρ is not a stationary statistic, i.e.,
the variance of the GLS estimator does not necessarily approach Eq. (A.2.2)
in the large N -limit.

A.2.2.1 Known positional noise amplitude

When σ2 is known a priori, the GLS estimator is reduced topD � paTΣ�1
ρ�2σ2aq�1aTΣ�1

ρ�2σ2pρ� 2pσ2q , (A.2.3)

where an � 2∆tpn� 2Rq and

Σρ�2σ2 � Var
�
ρ� 2pσ2

� � Σρ � 4Var
�pσ2

�
. (A.2.4)

Even when the noise amplitude σ is known a priori, Σρ depends non-linearly
on the unknown parameter D. So one still needs to use an iterative procedure
to find the GLS estimate.
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A.3 Methods based on individual displacements

In this section we derive results for the displacement-based estimators: the
MLE (Sec. A.3.1) and the CVE (Sec. A.3.2).

A.3.1 Likelihood-based approach

We derive a simple analytical expression of the exact likelihood function. We
derive an effective algorithm for maximum likelihood estimation and inves-
tigate the bias of the MLE. We finally investigate the effect on motion blur
on the Cramér-Rao bound and thus the precision of unbiased estimators, and
show that, contrary to the surprising result reported in [18], the estimation
precision is lowered, not increased, by increasing the motion blur.

A.3.1.1 The exact likelihood function

The covariance matrix Σ∆x (Eq. (2.1.4)) of the displacements is a tridiagonal
Toeplitz matrix and can be transformed into a diagonal matrix ψ � P�1Σ∆xP
by the orthogonal matrix P, which is given by

Pij �
c

2

N � 1
sin

�
πij

N � 1

�
. (A.3.1)

Thus, the transformed displacements }∆x, given by Eq. (3.1.11) are indepen-
dent and Gaussian distributed with variances given by Eq. (3.1.12), and the
exact log-likelihood function for the parameters D and σ2, given the data ∆x,
reduces to Eq. (3.1.13).

A.3.1.2 Effective algorithm for the MLE

Finding the MLE of D and σ2 is a two-dimensional optimization problem, but
it can be reduced to a one-dimensional problem by using the scale-invariance
of diffusion. We can rewrite the log-likelihood by defining the following new
parameters:

λ cos2 φ � 2D∆t , λ sin2 φ � 2σ2 . (A.3.2)

Then ψk � λpφqFnpφq, where Fnpφq � an cos2 φ � bn sin2 φ, and an � 1 �
2R

�
1� cos πn

N�1

	
and bn � 1 � cos πn

N�1 . The log-likelihood can then be

rewritten as

lnLpφ|∆xq � �1

2

Ņ

n�1

� |∆x2

n

λpφqFnpφq � logrλpφqFnpφqs
�

, (A.3.3)
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Figure A.1: Mean plus/minus standard error of the approximate and ex-
act maximum likelihood estimates of the diffusion coefficient D
(approximate MLE based on the Fourier-transformed displace-
ments: connected circles, red; exact MLE based on the trans-
formed displacements given by Eq. (3.1.11): connected squares,
blue; Cramér-Rao bound: grey area). Results are obtained from
an ensemble of 1,000 individual Monte Carlo generated time-
series of lengths a) N � 10 and b) N � 100. R � 1{6 for both
simulations, which corresponds to full time-integration. Both
the exact and the approximate MLEs are biased for high SNR
and approximately unbiased for low SNR. The estimators are
approximately equal for SNR ¡ 1, while the exact MLE con-
verges much faster to the Cramér-Rao bound than the approx-
imate MLE for SNR   1.
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where λ is given by the stationarity condition

λpφq � 1

N

Ņ

n�1

|∆x2

n

Fnpφq . (A.3.4)

The one-dimensional optimization problem is considerably easier to solve than
the two-dimensional problem. Each calculation of the likelihood function takes
longer, however, since it now involves a double sum and calls to transcen-
dental functions. In practice this means that reducing the dimension of the
optimization problem speeds the MLE-algorithm up by a modest factor of
approximately two.

When σ2 is known a priori it is faster to minimize Eq. (3.1.13) directly as
described in Sec. 3.1.2.3, since this does not involve calls to transcendental
functions.

A.3.1.3 Bias of the MLE

The numerical simulations show that the MLE is biased (Figs. A.1 and 2.2).
We here investigate the possible sources of this bias. The MLE may be biased
due to skewness of the likelihood function. By Taylor expansion of the sta-
tionarity condition Bθi lnrLppθqs � 0, where Bθi is the partial derivative w.r.t.
θi, we can derive an approximation of the bias of the MLE. To order 1{N this
bias is

bppθqi � �
¸
jkm

IijIkm
�@BθjBθk lnrLpθqsBθm lnrLpθqsD� 1

2

@BθjBθkBθm lnrLpθqsD
 ,

(A.3.5)
where Iij � pI�1qij . Since L is Gaussian and ψk is a first-degree polynomial
in D and σ2,

@BθiBθjBθk lnrLpθqsD � �2
Ņ

n�1

BθiψnBθjψnBθkψn
ψ3
n

and @BθiBθj lnrLpθqsBθk lnrLpθqsD � Ņ

n�1

BθiψnBθjψnBθkψn
ψ3
n

.

Thus, the bias due to skewness is zero (to order 1{N), but we introduce a
bias when we require pD and pσ2 to be positive. Equations (A.3.3) and (A.3.4)
can help in understanding this. For a given experimental realization of the
measurements ∆x, there is a finite probability that the maximum of lnL lies
outside of φ P r0, π{2s. This probability is not symmetric in φ, the maximum
is more likely to be in the region φ   0 for high SNR and more likely to be in
the region φ ¡ π{2 for low SNR. Since we require 0   φ   π{2 we introduce
positive bias in pσ2 and a negative bias in pD for high SNR, and vice-versa for
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low SNR. Since this bias stems from the dispersion of the measured likelihood
function around its true maximum, we expect this bias to be of the same
order as the standard error of the estimates, i.e., it decreases as N�1{2. This
is confirmed by numerical results (Figs. A.1 and 2.2).

A.3.1.4 Motion blur’s effect on estimator precision

From Eqs. (A.1.3) and (A.1.4) we have that the variance on the position de-
termination is

σ2 � σ2
0

�
1� 2R

SNR2
0

P



� 8πs4

ab
2

P 2a2

�
2R

SNR2
0

P
�
�

2R
SNR2

0

P


2
�
, (A.3.6)

where SNR0 �
?
D∆t{σ0. When the motion blur coefficient or the diffusion

length
?
D∆t is small we recover Eq. (A.1.3) as expected. When the diffu-

sion length is high compared to the width of the fixed fluorophore PSF, sa,
Eq. (A.3.6) shows that the actual SNR may decrease with diffusion length?
D∆t in the presence of motion blur (see Fig. A.2a). This means that the

Cramér-Rao bound is increased, not be lowered, by increasing the motion blur
(Fig. A.2b).

The results derived in this section rely on the assumption that the same av-
erage number of photons per time frame P is recorded with different camera
shutters, and accordingly, different motion blur coefficients. Experiments are
usually performed with full time-integration (R � 1{6) in order to maximize
the photon count, since it ultimately defines the precision of position deter-
mination. With modern stroboscopic techniques and efficient fluorophores,
it is possible to record with almost instantaneous shutter, which is required
for minimal motion blur, but, given the minimal possible gains in estimator
precision obtained by reducing the shutter time (Fig. A.2b), the experimental
setup should be optimized to maximize the number of photons recorded, not
to reduce the motion blur.

A.3.2 Covariance-based estimator

In this section we derive the variance of the CVE and we derive an exact
analytical expression for the characteristic function of the CVE.
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A.3.2.1 Variance of the covariance-based estimator

The variance of the CVE of D is computed directly from Eq. (3.1.1),

Var
� pD	

�
Var

�
∆x2

n

	
4p∆tq2 �Var

�
∆xn∆xn�1

�
p∆tq2 �

A
∆x2

n,∆xn∆xn�1

E
C

p∆tq2 , (A.3.7)

where xx, yyC designates the covariance of x and y. The individual terms of
Eq. (A.3.7) are:

Var
�

∆x2
n

	
� 1

N2

Ņ

n�1

Var
�
∆x2

n

�� 2

N2

N�1̧

n�1

@
∆x2

n,∆x
2
n�1

D
C

� 8α2 � 16αβ � 12β2

N
� 4β2

N2
, (A.3.8)

where we have used that Var
�
∆x2

n

� � 8pα� βq2,
@
∆x2

n,∆x
2
n�1

D
C � 2β2, and@

∆x2
n,∆x

2
m

D
C � 0 for m ¡ n � 1, with α � D∆t and β � σ2 � 2RD∆t as

defined in Sec. 3.1.1.1;

Var
�
∆xn∆xn�1

� � 1

pN � 1q2
N�1̧

n�1

Var p∆xn∆xn�1q

� 2

pN � 1q2
N�2̧

n�1

x∆xn∆xn�1,∆xn�1∆xn�2yC

� 4α2 � 8αβ � 7β2

N � 1
� 2β2

pN � 1q2 , (A.3.9)

since Var p∆xn∆xn�1q � 4pα � βq2 � β2, x∆xn∆xn�1,∆xn�1∆xn�2yC � β2,
and x∆xn∆xn�1,∆xm∆xm�1yC � 0 for m ¡ n� 1;

A
∆x2

n,∆xn∆xn�1

E
C

� 2

NpN � 1q
N�1̧

n�1

@
∆x2

n,∆xn∆xn�1

D
C

� �8αβ � 8β2

N
, (A.3.10)

since
@
∆x2

n,∆xn∆xn�1

D
C � 4pαβ � β2q and

@
∆x2

n,∆xm∆xm�1

D
C � 0 for

m ¡ n.

Inserting Eqs. (A.3.8)-(A.3.10) in Eq. (A.3.7) gives Eq. (3.1.4). The variance
of pσ2, Eq. (A.3.11), and the covariance, Eq. (A.3.12), of pD are derived in the
same manner and are, to second order in 1{N ,

Var
�pσ2

� � 4p1� 4R� 6R2qα2 � 8p1� 2R� 2R2qαβ � p7� 12R� 8R2qβ2

N

�4p1� 2Rq2α2 � 8p1� 2Rq2αβ � p5� 20R� 16R2qβ2

N2
,(A.3.11)
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and

Cov
� pD, pσ2

	
� �p1� 2Rqp4α2 � 4αβ � 3β2q � 2α2 � β2

N∆t

�4p1� 2Rqpα� βq2 � β2

N2∆t
. (A.3.12)

The standard error of the CVE is compared to the Cramér-Rao bound in
Fig. A.3a.

Known positional noise amplitude For known positional noise ampli-
tude, the variance of pD is

Var
� pD	

�
Var

�
∆x2

n

	
4p∆tq2p1� 2Rq2 �

Var
�pσ2

�
p∆tq2p1� 2Rq2

and Eq. (3.1.19) is found by inserting Eq. (A.3.8) above.

A.3.2.2 Characteristic function of the CVE

We derive the characteristic function of the covariance-based estimator of D.
By the definition of the CVE of D and the defining property of the Dirac-delta
function we have the trivial equality

pp pD|D,σ2q �
»
pp∆x|D,σ2q δ

� pD � d2
i � 2didi�1

2∆t

�
D∆x .

We use that the Dirac-delta function can be represented as

δpx� x0q �
» 8

�8

eiωpx�x0q

2π
dω ,

and that
1

2
d2
i �

1

N
∆xT I∆x , didi�1 � 1

N � 1
∆xTC∆x ,

where C � δi,j�1. This gives

pp pD|D,σ2q �
» 8

�8

eiω
pD

2π

»
pp∆x|D,σ2qe� iω

2∆t
∆xT p I

N
� C
N�1q∆xD∆x dω

�
» 8

�8

eiω
pD

2π

»
e�

1
2
∆xT tΣ�1

d � iω
∆tp I

N
� C
N�1qu∆x

p2πqN{2?det Σd
D∆x dω .

We use that both Σd and C can be diagonalized using the orthogonal trans-
formation matrix P. We define

λCpnq � rP�1CPsnn � 2 cos θn
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Figure A.2: a) Actual SNR as a function of SNR0 �
?
D∆t{σ0 for typical

parameter values of the camera setup, a � 20 nm, P � 1000,
b � 10 and sa � 100 nm (R � 0: full line; R � 1{6: dashed line;
R � 1{4: dotted line). The SNR is not an increasing function of
diffusion length per time-frame

?
D∆t in the presence of motion

blur. b) Cramér-Rao bound as a function of SNR0 for N � 10.
The contribution of motion blur to the positional noise means
that the Cramér-Rao bound increases with SNR0 for high SNR0.
Changing the parameters may change specificities of the curves
but not their characteristic form nor their interrelationship.
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Figure A.3: (a) Standard deviation of the CVE (green) compared to the
Cramér-Rao bound (black) for different motion blur coefficients
(R � 0: full lines; R � 1{6: dashed lines; R � 1{4: dotted
lines). Time-series length is equal to N � 10. The CVE prac-
tically reaches the Cramér-Rao bound for SNR ¡ 1 except for
very high motion blur R � 1{4, where its standard deviation
is approximately 30% higher than the Cramér-Rao bound. (b)
Distribution of the CVE for SNR � 2 and R � 1{6 (N � 10:
full line; N � 100: dashed line). The distribution of the CVE
approaches a Gaussian distribution as N increases.
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and

λΣpnq � rP�1ΣdPsnn � 2D∆t� 2pσ2 � 2RD∆tq p1� cos θnq ,

where θn � πn
N�1 . Then,
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where
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. (A.3.13)

The characteristic function of the CVE, rp, is defined as the Fourier transform
of the probability density. So

rppωq � N¹
n�1

tλnpωqu�
1
2 . (A.3.14)

From Eq. (A.3.13) we see that λn is a second-order polynomial in cos θn. So
it can be written on the form

λn � A�B cos θn � C cos2 θn ,

with Apωq � 1 � 2αpD � Qq{N , Bpωq � 2αr2D � p1 � 1{NqQs{pN � 1q,
and Cpωq � �4αQ{N , where Q � ps2 � 2RD∆tq{∆t. The logarithm of the
characteristic function is thus given by

�2 lnrrps � Ņ

n�1

lnrA�B cos θn � C cos2 θns . (A.3.15)

We use that

Ņ

n�1

fpcos θnq � �1

2
pfp1q � fp�1qq � 1

2

2N�2¸
n�1

fpcos θnq

to rewrite Eq. (A.3.15),

�2 lnrrps � �1

2
lnrA�B � Cs � 1

2
lnrA�B � Cs � 1

2

2N�2¸
n�1

lnrλns . (A.3.16)



60 Diffusion coefficient estimation for free diffusion

The last term can be further simplified,

1
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(A.3.17)

where we have defined

a� � B �
a
B2 � 4AC .

To simplify the last two terms of Eq. (A.3.17) we define the sum
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with cβ � b
2 and cp1� β2q � a. This means that
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(A.3.18)

and
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� 1 , (A.3.19)

Using Eqs. (A.3.18) and (A.3.19), we rewrite Spa, bq,
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(A.3.20)

The two last terms in Eq. (A.3.20) can be rewritten as
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The sum
°2N�2
n�1 e�ikθn is equal to zero because its argument makes a full circle

in the complex plane, except when k is equal to an integer times 2N � 2, i.e.,
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Inserting Eq. (A.3.22) in Eq. (A.3.20) gives
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where we have used that β�β� � 1.

We insert this result into Eq. (A.3.17), using Eq. (A.3.16), to get
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,(A.3.23)

with a� � B �?
B2 � 4AC.

A.3.2.3 Computer-friendly expression

While Eq. (A.3.23) is relatively simple and good to work with analytically, it
is not suitable for numerical analysis. In this subsection we look into the cases
that give analytical problems and change the expression to cope with these.
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Zero “measurement” noise When σ2 � 2RD∆t, Q � 0 and the expres-
sions for A, B, and C simplify to

A � 1� 2ωD

N
, (A.3.24)

B � 4ωD

N � 1
, (A.3.25)

C � 0 . (A.3.26)

When C approaches zero it gives rise to numerical problems in Eq. (A.3.23),
since lnC tends to infinity. This problem can be solved by using that 4C �
a�a�{A and thus also 2C{a� � a	{2A. So we can rewrite ln rp as
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Zero frequency When ω approaches zero, so does B and C, i.e., A Ñ 1,
B Ñ 0 , C Ñ 0 and consequently a� Ñ 0, but the rearrangement made in the
previous paragraph to take care of numerical problems when Q � 0 also takes
care of this problem, since

ln rp � N � 1

2
ln 4� 1

4
ln 1� 1

2
ln
�
2N�1

�� 1

2
ln
�
2N�1

�
� 0 , (A.3.28)

and thus

rpp0q � » 8

�8
p
� pD|D,σ2, t

	
d pD � 1

as it should be.
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Handling complex numbers numerically and the square root. The
value of a non-algebraic function of a complex variable is calculated numeri-
cally by rewriting the complex number z � x � iy as z � |z|eiθ, e.g.,

?
z �a

|z|ei 1
2
θ, zq � |z|qeiqθ or ln z � ln |z|�iθ. The angle θ is not uniquely defined,

every angle θ � 2πn is equivalent. The computer handles this ambiguity by
requiring the angle θ to lie in the interval s�π, πs. This means that if we want
to take the square root of a variable that changes angle fast, e.g., z � xN�1,
which will for N big rotate a lot even if x only changes angle a little, we will
end up with a numerical calculation that shows

?
z suddenly changing angle

between �π{2 and π{2, due to the fact that the angle of z is constrained to
the interval s � π, πs.

We should calculate rp as the exponential of a sum of logarithmic terms to avoid
this effect. Furthermore, to avoid other possible numerical complications due
to the angle of some terms changing very fast, we rewrite Eq. (A.3.27) as

ln rp � N � 1
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. (A.3.29)

Here S2,� is very small, so a fast change in angle of this term does not give
any numerical problems (Fig. A.4), and S1,� changes angle slowly.
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Figure A.4: a) Absolute values of Si,� as a function of ω. (S1,�: full line,
blue; S1,�: full line, green; S2,�: dashed line, blue; S2,�: dashed
line, green.) S2,� are much smaller than S1,�. b) Characteristic
function rp of the CVE as a function of ω. (Absolute value of rp:
full line, black; real part of rp: dashed line, blue; imaginary part
of rp: dashed line, red.) Parameter values for both a) and b) are
N � 5 and Q � 0.



Appendix B

Diffusion coefficient estimation
on a fluctuating substrate

B.1 Spectral decomposition of DNA fluctuations

In this section we derive analytical expressions of the thermal movement of a
flexible or semiflexible polymer, such as DNA, using spectral (eigenfunction)
decomposition. We derive general expressions of the statistics of the fluctu-
ations of a stretched DNA molecule based on any linear theory. We apply
the general framework to three different cases of DNA stretched by external
forces: DNA pulled by the ends (Sec. B.1.1); DNA in plug flow (Sec. B.1.2);
and DNA in shear flow (Sec. B.1.3). The results derived in general hold for
any semiflexible or flexible polymer unless otherwise specified.

The DNA’s movement is strongly overdamped. So by the fluctuation-dissipation
theorem [60] the equation of motion for the transversal motion of the DNA
is [61]

By
Bt ps, tq � Lsyps, tq �

d
2kBT

γK
ηyps, tq , s P r0, Ls , t P r0,8r , (B.1.1)

where Ls is a linear operator in s and ηy is standard continuous-time white
noise. We assume that the movement in the other transversal direction, z,
is described by a similar linear model. Equation (B.1.1) has dimensions of a
speed, so Ls has dimensions of frequency and γK of force{pspeed � lengthq. The
parallel friction coefficient is of the order of γ‖ � 1 fN s{µm [62], which means
that γK � 2 fN s{µm2 and thus that kBT {γK � 2 µm3{s.
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In experimental measurements of diffusion on DNA the DNA is extended in
its longitudinal direction to a large fraction of its contour length, but the
stretching forces are not so large that enthalpic contributions to the DNA
movement need to be taken into account [63], i.e., the contour length can be
considered constant. This means that |r1| � |BrBs | � 1, with r � px, y, zqT , and

x1 �
a

1� ppy1q2 � pz1q2q � 1� 1

2

�py1q2 � pz1q2� . (B.1.2)

The general solution to (B.1.1) is

yps, tq �
8̧

k�1

Akptqykpsq ,

where yk is the solution to the eigenvalue problem

rLs � cksykpsq � 0 , (B.1.3)

with given boundary conditions, and

Akptq � e�ckt
�
Akp0q �

d
2kBT

γK

» t
0
eckt

1
ηkpt1qdt1

�

�
d

2kBT

γK

» t
�8

e�ckpt�t
1qηkpt1qdt1 , (B.1.4)

with

ηkptq �
» L

0
ykpsqξyps, tqdt .

The time-dependent parts of the eigenmodes, Ak have dimensions of plengthq3{2
and the space-dependent parts yk have dimensions of 1{?length. Thus, y has
dimensions of length.

The moments of x can be expressed in terms of moments of y and z. Since
y is a Gaussian process it is completely described by its two first moments,
xyps, tqy � 0 and

ρyps2, s1, t2 � t1q � xyps2, t2qyps1, t1qy (B.1.5)

� kBT

γK

8̧

k�1

ykps2qykps1q
ck

e�ck|t2�t2| .

From Eq. (B.1.2) we then have

xxpsqy � s� 1

2

» s
0

�
ρy1psq � ρz1psq

�
ds , (B.1.6)

where we in the notation have omitted repeated variables and variables that
are zero, ρy1psq � ρy1ps, s, 0q. Since y1 and z1 are uncorrelated, Eq. (B.1.2)
gives

ρx1ps2, s1, tq � 1

4

�@
y1ps1, tq2, y1ps2, 0q2

D
C �

@
z1ps1, tq2, z1ps2, 0q2

D
C
�
.
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Using that y1 and z1 are Gaussian we find

ρx1ps2, s1, tq � 1

2

�
ρy1ps2, s1, tq2 � ρz1ps2, s1, tq2

�
,

and
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2
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0
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0

�
ρy1ps, s1, tq2 � ρz1ps, s1, tq2

�
dsds1 , (B.1.7)

Finally, the local degree of stretching of the DNA, defined as ζ �
a
xpBx{Bsq2y,

is

ζpsq � 1� 1

2

�
ρy1psq � ρz1psq

�
,

We define the the weighted eigenfunctions Yk �
a
kBT {γKck yk, Zk �

a
kBT {γKck zk,

and
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The autocovariance functions of a point s on the DNA are then

ρyps, tq �
8̧

k�1

Ykpsq2e�ckt , ρzps, tq �
8̧

k�1

Zkpsq2e�ckt , (B.1.8)

ρxps, tq �
8̧

kl�1

Xkpsq2e�pck�clqt , (B.1.9)

and the local degree of stretching is

ζpsq � 1� 1

2

8̧

k�1

 
Y 1
kpsq2 � Z 1

kpsq2
(
. (B.1.10)

The weighted eigenfunctions have units of length, while ζ is unitless.

The theory can be compared to the an effective one-mode theory employed by
Hatfield and Quake [64], which derives a spring constant from the force-strain
relation of Marko and Siggia [35],

f0pχq � 1

lp

�
1

4
p1� χq�2 � 1

4
� χ



,

where χ � xpLq{L is the degree of stretching of the worm-like chain polymer.
The y-direction spring constant is

kpyq � F pχq
x

� kBT

lpL

�
1

4
χ�1p1� χq�2 � 1

4
χ�1 � 1



and the x-direction spring constant is

kpxq � Bfpχq
Bx � kBT

lpL

�
1

2
p1� χq�3 � 1
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According to this theory the x-direction spring constant kpxq is much higher
than kpyq for highly stretched DNA, while they are equal according to the
theory developed in the section, since cpxq � kpxq{γ‖ and cpyq � kpyq{γK, and
γK � 2γ‖. Hatfield and Quake [64] do not present any experimental verification
of their result, while the experimental data analyzed in Sec. C.4 show that a
factor 2 between the lowest modes as predicted by the theory developed in
this section is reasonable (Fig. C.11).

B.1.1 DNA pulled by the ends

DNA can be stretched by applying a constant force to the ends of the DNA.
This can be done in various ways [45, 46], i.e., using two optical tweezers [36],
using one optical tweezer and a micropipette, binding the DNA ends to biotin-
labeled micro-beads fused to the coverslip, or directly binding the DNA ends
to the coverslip1 [37]. We derive expressions for the DNA’s movement and
statistics based on the worm-like chain (WLC) model.

The DNA experiences a constant stretching force F along its contour and thus
a potential energy in the transversal direction y, of

Erys �
» L

0

#
A

�B2y

Bs2


2

� F

�By
Bs


2
+
ds , (B.1.11)

where A � kBT lp ! F is the bending energy and lp is the persistence length
of DNA. The same potential energy acts on the DNA in the other transversal
direction, z. The linear operator Ls is given as minus the functional derivative
of the energy functional Eq. (B.1.11),

Ls � �δE
δy
rys ,

where the functional derivative is defined as

dE

dzpsqrzs �
dE

dε
rz � εδss

����
ε�0

,

with δsps1q � δps1 � sq. Thus,

Ls � � A

γK
B4

Bs4
� F

γK
B2

Bs2
, (B.1.12)

which gives the following eigenvector equation

�zp4qk psq � qz2kpsq � λkzkpsq ,
1The proximity of the coverslip to the DNA does not alter the eigenmodes consider-

ably [37].
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where q � F {A and λk � γKck{A, and with the boundary conditions

zp0qk � zkpLq � z2kp0q � z2kpLq � 0 ,

i.e., the ends are fixed and there is no bending force at the ends.

Equation (B.1.1) with Ls given by Eq. (B.1.12) is solved by

zkpsq �
c

2

L
sinpωksq ,

where ωk � kπ{L and λk � ω2
kpω2

k � qq, which means that

ck � ω2
k

γK
pAω2

k � F q

� kBT

γK
ω2
kpω2

klp � f0q , (B.1.13)

where we have defined f0 � F {kBT . Thus, since the movement in the two
transversal directions are equivalent, the weighted transversal eigenfunctions
Yk and Zk are equal and are given by Eq. (3.2.29), while the longitudinal
eigenfunction Xk is given by (3.2.30).

The first values of ck are plotted in Fig. B.1a, while the relative contributions of
the lowest couple of weighted eigenmodes to the transversal variance is shown
in Fig. B.1b for slow DNA dynamics, or equivalently, high frequency measure-
ments. The relative contribution of the eigenmodes to the power spectrum
are shown in Fig. B.2. Only the three lowest modes contribute significantly
to the measured movement. The third mode resembles white noise. So it just
contributes to the positional noise and we do not need to take into account
explicitly.

A freely linked chain (FLC) polymer pulled by the ends is described by the
same eigenfunctions as the WLC, while the correlation constants ck are given
by ck � Fω2

k{γK.

B.1.2 DNA in plug flow

The simplest flow we can think of is the plug flow, which has a constant velocity
profile. The plug flow is a good approximation to the center of a Poiseuille
flow, i.e., a flow with a parabolic velocity profile.

Since the DNA is highly stretched, it is a good approximation to neglect
hydrodynamic interactions, such as screening [65]. This is the free-draining
approximation. We furthermore assume that the DNA is so stretched that



70 Diffusion coefficient estimation on a fluctuating substrate

1 10
k

1

10

100

c k

a

0 L
s

0

1

Y k
(s

)2

b

Figure B.1: a) Correlation coefficient ck as a function of mode number k
for DNA pulled by the ends. The correlation coefficients are
normalized such that c1 � 1. b) Relative contributions to the
variance of the transversal motion of the three lowest modes,
Ykpsq2. (1st mode. dashed line, red; 2nd mode: dash-dotted
line, blue; 3rd mode: dotted line, green; total variance: full line,
black.)
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Figure B.2: Relative contributions to of the three lowest modes to the power
spectrum of the measured transversal motion of a DNA strand
pulled by the ends. The time-lapse is ∆t � 4{c1. (1st mode.
dashed line, red; 2nd mode: dash-dotted line, blue; 3rd mode:
dotted line, green: total power: full line, black.) a) Spectrum
near the end of the DNA, s � L{8. b) Spectrum at the middle
of the DNA, s � L{2.
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all parts of the DNA are approximately aligned with the flow. The potential
energy for the DNA is then [66]

Errs � 1

2

» L
0

#
A

�B2rK
Bs2


2

� γ‖vpL� sqBxBs

+
ds ,

where rK � py, zqT is the transverse components of r. We use that the DNA
is highly stretched such that x1 � 1 � rpy1q2 � pz1q2s{2. Thus the y-direction
part of the energy is

Erys � 1

2

» L
0

#
A

�B2y

Bs2


2

� γ‖vpL� sq
�By
Bs


2
+
ds . (B.1.14)

The model is not correct close to the free end, where the force acting on the
DNA locally due to the hydrodynamic drag downstream inevitably is small.
Here the DNA will curl up and neither the approximation that the DNA is
parallel to the flow, nor the free draining approximation, hold. The change in
orientation increases the drag on the DNA, since γK � 2γ‖, while hydrody-
namic screening decreases the drag. So these two effects counter each other
to some extent. Furthermore, for strong flows, the part of the DNA, which is
curled up is small compared to the total DNA length [38], which means that
even if we make an error on the local scale near the free end, the total error is
small on the global scale.

Static properties of this model have been derived by considering the energy E
as a function of the y-direction part of the tangent vector ry, which reduces
E from fourth to second order [67]. However, we are interested in dynamic
properties of the system. So we need to consider the full fourth-order problem
defined by Eq. (B.1.14), since we cannot define a Langevin equation for ry.
From Eq. (B.1.14) the linear operator Ls is equal to

Ls � � A

γK
B4

Bs4
� γ‖v

γK
B
BspL� sq BBs , (B.1.15)

which is self-adjoint with the appropriate boundary conditions:

yp0, tq � y2p0, tq � y2pL, tq � yp3qpL, tq � 0 ,

i.e., the end is tethered at s � 0, there is no bending force at the ends and
no torque at the free end. The movement in the two transversal directions
are equivalent, so we just treat the y-direction here. We need to solve the
fourth-order linear differential equation

rLs � cksykpsq � 0 (B.1.3)

to find the space eigenfunctions yk. There does not seem to be a solution of
this differential equation in terms of known special functions [68, 69]. However,
since we are only able to observe relatively slow behavior in SPT experiments2,

2The time-lapse is on the order of the slowest relaxation time of the DNA.
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only the lowest modes contribute significantly to y. These govern behavior at
long length scales and depend very little on the DNA’s persistence. If we
ignore the persistence term in Eq. (B.1.15), Eq. (B.1.3) for plug flow reduces
to � B

BspL� sq BBs �
Q2
k

4



ykpsq � 0 , (B.1.16)

with the boundary condition ykp0q � 0, where

Q2
k �

4γKck
γ‖v

.

Introducing the variable q � Qk
?
L� s gives

q2y2kpqq � qy1kpqq � q2ykpqq � 0 , (B.1.17)

which is a zeroth-order Bessel differential equation. The solutions to Eq. (B.1.17)
are of the form

ykpqq � NkJ0pqq � BkY0pqq ,
where Y0 diverges at q � 0 and thus cannot be a solution. Furthermore, the
boundary condition at s � 0, implies that Qk � αk{

?
L, where αk is the k’th

zero of the zeroth order Bessel function of the first kind, J0. This gives

ck �
γ‖v

4γKL
α2
k �

v α2
k

8L
.

In order for tzku to be an orthonormal basis, the Nk must satisfy

N�2
k �

» L
0
J0

�
αk

a
1� s{L

	2
ds � LJ1pαkq2 .

So the set of functions

ykpsq �
J0

�
αk

a
1� s{L

	
?
LJ1pαkq

forms an orthonormal basis for the boundary value problem (B.1.1) with Ls
given as in Eq. (B.1.16). This gives the weighted eigenfunctions for DNA
fluctuations, Eqs. (3.2.32) and (3.2.33), and

Y 1
kpsq � Z 1

kpsq �
d
kBT

γ‖v

J1

�
αk

a
1� s{L

	
a
LpL� sqJ1pαkq

. (B.1.18)

One may notice that since we have neglected the persistence, the variance of
y1 is not well defined, i.e, the value of ρy1ps1, s2, tq goes to infinity as t goes to
zero. This means that according to this model a DNA molecule with a given
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extension x must be infinitely long! The DNA is a fractal3. This also means
that the local degree of stretching of the DNA is not well defined. However,
as Fig. B.3 shows the largest part of the DNA is almost completely stretched
and the DNA only curls up at the end, in agreement with the stem-and-flower
model of Brochard-Wyart for polymers in strong flows [38]. This means that
for a highly stretched DNA strand, ζpsq � 1, except near the free end of the
DNA.

The first values of ck are plotted in Fig. B.3a, while the relative contribution
of the lowest eigenmodes to the transversal variance is shown in Fig. B.3b.
The relative contribution of the eigenmodes to the power spectrum are shown
in Fig. B.4. As for DNA pulled by the ends (App. B.1.1), only the two lowest
modes contribute significantly to the measured movement.

B.1.3 DNA tethered to a surface in shear flow

Many experiments measuring diffusion of fluorescent proteins on DNA using
TIRF microscopy are performed by tethering one of the DNA strand to a
coverslip and stretching the DNA by imposing a flow over the coverslip. This
is practical since it assures that the DNA strand is close to the coverslip, where
the evanescent field can excite the fluorescent molecules (Fig. 2.8a). Close to
the coverslip, where the DNA is located, the hydrodynamic flow is to a good
approximation a shear flow. While this setup is practical for experimental
reasons the motion is difficult to treat analytically [67]. The flow is non-
conservative and tends to induce cyclic motion of the DNA [71, 72, 73, 74],
while the presence of the coverslip will couple DNA eigenmodes. However, for
strong shear, i.e, taut DNA, cyclic motion is not observed [73]. This means that
the overdamped linear theory (Eq. (B.1.1)), at least locally, should describe
the DNA motion reasonably well.

The z- and y-directions are not equivalent for DNA in plug flow. The z-
direction motion is asymmetric due to the presence of the coverslip and the
z-dependence of the flow speed. This also means that the y-motion depends
on the z-position of the DNA. We thus start with investigating the z-direction
movement, where we will for the moment forget about the wall, the influence of
which we treat in the following section (Sec. B.1.3.1). The system is sketched
in Fig. 2.8a. As in Sec. B.1.2, we neglect DNA persistence. We assume that for

3This mathematical particularity may be mended in various ways: by approximating the
eigenfunctions of the full problem given by Eq. (B.1.15) by truncated polynomial series. (This
has the disadvantage of being computationally very expensive.); by treating the persistence
as a perturbation and approximating ck by the first order perturbative solution using classical
perturbation theory [70]. (Note that for DNA stretched by the ends, this is actually equal
to the exact solution.); or simply by truncating the infinite sum over modes in Eq. (B.1.18).
(The difficulty here is to properly choose where to truncate.) These strategies are either
impractical or unreliable, but the good news is that we do not need to take this into account
to model the DNA’s fluctuations.
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Figure B.3: a) Correlation coefficient ck as a function of mode number k for
DNA in a plug flow. The correlation coefficients are normalized
such that c1 � 1. b) Relative contributions to the variance of
the transversal motion of the three lowest modes, Ykpsq2. (1st
mode. dashed line, red; 2nd mode: dash-dotted line, blue; 3rd
mode: dotted line, green; total variance: full line, black.)
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Figure B.4: Relative contributions to of the three lowest modes to the power
spectrum of the measured transversal motion of a DNA strand
stretched by a plug flow. The time-lapse is ∆t � 4{c1. (1st
mode. dashed line, red; 2nd mode: dash-dotted line, blue; 3rd
mode: dotted line, green: total power: full line, black.) a)
Spectrum upstream on the DNA (near the tethered end), s �
L{4. b) Spectrum downstream on the DNA (near the free end),
s � 3L{4.
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a given point s on the DNA, the upstream part of the DNA is approximately
horizontal. This assumption cannot, of course, be true everywhere on the
DNA, since this would mean that the DNA stuck to the coverslip. However,
simulations show that the assumption is true for the largest part of the DNA
and that the mean DNA contour looks as as sketched in Fig. 2.8a [65, 75, 76].
Under this assumption the mean force acting on the the DNA at the point s
is

fpsq � γv1
» L
s

@
zps1qD ds1 ,

where γ is an effective drag coefficient and v1 is the shear rate. Since f depends
on z, the associated Langevin equation is non-linear. However, the non-linear
Langevin equation

Bz
Bt ps, tq �

�
B
Bs
fpsq
γK

B
Bs �

d
2kBT

γK

�
zps, tq (B.1.19)

is solved by z1ps, tq � Aptqs. Furthermore, z1 is the only function Aptqzipsq,
which is a polynomial in s, that solves (B.1.19), since

B
Bs
fpsq
γK

B
BsAptqzipsq9

» L
s
zps1qds1 B

2zipsq
Bs2

� zipsqBzipsqBs ,

which is only proportional to zipsq itself if zipsq9s. Encouraged by this result4,
we assume that the force acting on the downstream DNA is

fpsq � γv1pL2 � s2qds1 . (B.1.20)

We have reduced the nonlinear boundary value problem to a linear problem.
With the appropriate boundary conditions, i.e., z must be finite on r0, Ls
and zp0q � 0, this boundary value problem is solved by the uneven Legendre
polynomials normalized on r0, Ls,c

4k � 1

L
P2k�1ps{Lq , k � 1, 2, . . . .

Finally, this gives us that

ck � 2kp2k � 1qγv
1

γK
.

From the assumption (B.1.20) we have that the y-eigenfunctions are the same
as the z-eigenfunctions. So the normalized eigenfunctions for the transversal
motion are

Ykpsq � Zkpsq �
d

kBT p4k � 1q
2γv1Lkp2k � 1q P2k�1ps{Lq2 .

4The lowest and dominating mode is approximately proportional to s, thus we assume
that z is, too. Even though it is not consistent with or initial assumption of approximately
horizontal alignment of the DNA. The fact that the coverslip couples the modes will make
the DNA more horizontal.
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The first values of ck are plotted in Fig. B.5a, while the relative contribution
of the lowest couple of eigenmodes to the transversal variance is shown in
Fig. B.5b. The relative contribution of the eigenmodes to the power spectrum
are shown in Fig. B.6. Both the variance of transversal fluctuations and the
power spectrum of this model for a DNA molecule in a shear flow resemble
those of a DNA strand in a plug flow. The only qualitative difference is that
plug flow tends to stretch the DNA more, in agreement with scaling-based
theories [77].

B.1.3.1 Brownian motion in a truncated harmonic potential

We have above neglected the influence of the coverslip on the DNA move-
ment. We here investigate the effect of the coverslip on the lowest mode of the
DNA’s z-direction motion, and show that due to symmetry the presence of
coverslip does not change the statistics of the lowest mode of the longitudinal
(x-direction) motion. We only see the z-direction motion indirectly through
its contribution to the x-direction motion, where it only enters as z2. We are
thus only able to observe even moments of z The coverslip restricts the DNA
to the upper half of the z-axis. Thus forcing the DNA out into the flow. If
we can only resolve the lowest DNA mode, the observed system is equivalent
to a particle undergoing Brownian motion in a harmonic potential centered
around and truncated at z equal to zero. The position Z1 of a Brownian par-
ticle trapped in a truncated harmonic potential is distributed according to a
truncated Gaussian distribution

ppZ1q �
c

2γKc1

πkBT
e
� γKc1

2kBT
Z2

1 .

Even moments of a truncated Gaussian distribution are the same as for a
regular Gaussian distribution. Thus, the presence of the coverslip does not
affect the lowest longitudinal (x-direction) mode.

B.1.3.2 Higher modes

While the coverslip does not change the properties of the lowest mode of the
longitudinal motion, when multiple modes are considered, the presence of the
coverslip couples the modes. This kills our hopes of deriving a global linear
description of the DNA motion. For DNA stretched by shear flow we must
thus content ourselves with fitting the modes individually and locally. How-
ever, since our objective is not to model the DNA movement, but only obtain
unbiased diffusion coefficient estimates, a local description suffices. Since we
have no theory for the DNA movement, we cannot describe the local degree
of stretching of the DNA, ζ. However, as for DNA stretched in plug flow, the
the largest part of the DNA is almost completely stretched and the DNA only
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Figure B.5: a) Correlation coefficient ck as a function of mode number k for
DNA in a shear flow. The correlation coefficients are normalized
such that c1 � 1. b) Relative contributions to the variance of
the transversal motion of the three lowest modes, Ykpsq2. (1st
mode. dashed line, red; 2nd mode: dash-dotted line, blue; 3rd
mode: dotted line, green; total variance: full line, black.)
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Figure B.6: Relative contributions to of the three lowest modes to the power
spectrum of the measured transversal motion of a DNA strand
stretched by a shear flow. The time-lapse is ∆t � 4{c1. (1st
mode. dashed line, red; 2nd mode: dash-dotted line, blue; 3rd
mode: dotted line, green: total power: full line, black.) a)
Spectrum upstream on the DNA (near the tethered end), s �
L{4. b) Spectrum downstream on the DNA (near the free end),
s � 3L{4.
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curls up near the end [38, 39] (Fig. B.5). Thus ζpsq � 1, except near the free
end.

B.1.3.3 Other models of DNA in hydrodynamic flow

We here discuss other models for DNA in shear flow, which may serve to
explain experimental results or as a starting point for building a simple theory
for the DNA fluctuations. Based on scaling arguments, Brochard-Wyart has
proposed a “horn”-model for DNA in shear flow [77]. The name stems from
the observed form of the DNA, which looks like a horn. In this model the
transverse fluctuations of the DNA scale as pL� sq�1{2. Recent experimental
measurements of DNA in strong shear flow by Laube et al. [39] suggest that the
DNA motion is well described the “Stem-and-flower” model. Another scaling-
based model initially derived for DNA in strong plug flow [38]. That DNA in
shear flow may be adequately described by a plug-flow model is backed up by
recent Brownian dynamics simulations. These suggest an approximate linear
relationship between tensile force and position on the DNA [75] as for DNA
in plug flow.

B.2 Statistics of diffusion on a fluctuating substrate

In this section we derive the statistical properties of a particle diffusing on a
fluctuating substrate. In particular, diffusion on a fluctuating polymer such
as a DNA strand. In Sec. B.2.1 we review general properties of Fourier trans-
forms of data measured with finite time-resolution, and of stationary and non-
stationary processes. In Sec. B.2.2 we derive the power spectra of the transver-
sal and longitudinal movement of a particle diffusing on fluctuating DNA. In
Sec. B.2.3 we derive the autocovariance function for diffusion on DNA.

As discussed in Sec. 2.2.1, the observed position of a particle moving on a
substrate, i.e., the position observed in the lab reference-frame, is the position
in space of the specific point on the substrate contour where the protein is
situated at time t, sptq,

xpsptq, tq . (2.2.1)

The movement on the substrate, which determines s, is a Brownian motion
with diffusion coefficient D, while xps, tq given sptq is a stochastic process
described by the equations of motion governing the substrate movement.
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B.2.1 Power spectra

We review some general properties of the Fourier transform of discretely mea-
sured data. In Sec. B.2.1.1 we derive an exact expression for the power spec-
trum of a continuous process measured discretely with finite camera shutter
time in terms of the power spectrum of the underlying continuous process.
In Sec. B.2.1.2 we investigate the power spectrum of a non-stationary pro-
cess, namely Brownian motion. In Sec. B.2.1.3 we show a derivation of the
distribution of the measured power spectrum.

B.2.1.1 Aliasing and finite shutter time

For experimental measurements the finite shutter time of the camera results
in a low-pass filtering of the data measured. For a “infinite” Fourier transform
F , i.e.,

Frxsf �
» 8

�8
e�i2πftxptqdt , (B.2.1)

Savin and Doyle [78] have shown that the averaging caused by the finite shutter
time just alters the fourier transform by a multiplicative term of the form

F rxs pfq � 1� e�i2πfτ

i2πfτ
Frxspfq . (B.2.2)

We also see an aliasing effect, since our measurements are discrete. Due to
the finite sampling frequency, we are not able to distinguish time-modes with
higher frequency than the Nyquist frequency fNyq. These thus contribute to
the measured (aliased) power spectrum, and for a stationary process we have

P
paq
f �

8̧

m��8
Pf� m

∆t
, (B.2.3)

where P
paq
F is the aliased power spectrum. We expect to see a combination of

these two effects in our data as pointed out by Wong and Halvorsen [79]. Since
the experimentally measured time-series necessarily are of finite length, we
should not compare to the “infinite” idealized Fourier transform, Eq. (B.2.1),
but to the finite Fourier transform5 over the interval r0, tN r. Note, however,
that the difference between the “infinite” and finite Fourier transforms is of
order 1{tN .

From experimental data, we can calculate the Discrete Fourier Transform
(DFT) of the measured motion blurred positions,

Xk � DFT rxsk � ∆t
N�1̧

n�0

e�i2π
kn
N

1

τ

» τ
0
xptn � tqdt . (B.2.4)

5The finite Fourier transforms are equivalent to the Fourier coefficients, except for a
normalization factor of 1{tN .
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We derive the form of the experimental power spectrum from Eq. (B.2.4).

Xk � ∆t

τ

N�1̧

n�0

e�i2πkn{N
» ∆t

0
xptn � tqdt

� ∆t

τ

N�1̧

n�0

e�i2πkn{N
» τ

0

1

tN

8̧

k1��8
ei2πk

1ptn�tq{tN rxk1dt
� 1

Nτ

8̧

k1��8
rxk1 » τ

0
e�i2πk

1t{tNdt
N�1̧

n�1

e�i2πpk�k
1qn{N

� ∆t

τ

8̧

m��8

1� e�i2πkτ{tN

i2π pk{N �mq rxk�mN , (B.2.5)

where we have used the definition of the Fourier series,

xptq � 1

tN

8̧

k��8
ei2π

kt
N rxk ,

where the finite Fourier transforms are given by

rxk � » tN
0

xptqe�i2πkt{tNdt ,

and that
°N�1
n�0 e

i2π n
N
k � 0 except for k � mN andm P Z, where

°N�1
n�0 e

0 � N .
For full time-integration, i.e., for τ � ∆t, (B.2.5) reduces to

Xk �
8̧

m��8

1� e�i2πk{N

i2π pk{N �mq rxk�mN .

Finally, the discrete power spectrum of the positional noise σξ is

pP rξsk � ∆t

N

N�1̧

mn�0

e�i2π
k
N
pn�mq xξnξmy

� σ2 ∆t

N

N1̧

n�0

e�i2π
kn
N

� σ2∆t .

Note that there is no aliasing or time-averaging effects, since the process ξ is
inherently discrete.

We can then express the expectation value of the measured power spectrumpP in terms of the theoretical power spectrum P . For a stationary process
measured with full time-integration, the power spectrum isA pPkE � σ2∆t�

8̧

m��8

2� 2 cos
�
2π k

N

��
2π

�
k
N �m

��2

A
Pfk� m

∆t

E
, for k � 0 , (B.2.6)
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where we have used that expectation value of the Fourier transform of a sta-
tionary process is zero except at zero frequency and the measured power spec-
trum is calculated from data as

pPk � 1

tN
|DFT rtxnunsk|2 .

We see that (B.2.6) is just the combination of (B.2.2) and (B.2.3), i.e., the
result of Wong and Halvorsen [79] is exact.

For diffusion on DNA the y-direction movement is stationary. However the
movement in the x-direction is not, due to the diffusive term.

Non-stationary processes If the process of which we calculate the power
spectrum is not stationary the expectation value of the fourier transform is
not zero and the expectation value of the power spectrum isA pPkE � σ2∆t�

8̧

mm1��8

�
2� 2 cos

�
2π k

N

�� @rxk�mNrx�k�m1N

D
4π2tN

�
k
N �m

� �
k
N �m1�

� σ2∆t� 2� 2 cos
�
2π k

N

�
4π2

� 8̧

m��8

Pfk� m
∆t�

k
N �m

�2 �
¸

m�m1

xrxx�mNy @rx�x�m1N

D
tN

�
k
N �m

� �
k
N �m1�

�
,

This is only one of several problems one needs to be aware of before apply-
ing fourier analysis to non-stationary processes. We will explore additional
problems in the following section.

B.2.1.2 Power spectrum of a non-stationary process

A lot of the neat properties that Fourier transforms have suppose that the
stochastic process, which is Fourier transformed, is stationary. If the process
is not stationary, many of these general results for Fourier transforms do not
hold. In this section we investigate the power spectrum of the simplest non-
stationary stochastic process, Brownian motion. Brownian motion is governed
by the differential equation

9xt � ηt , (B.2.7)

where η is a standard continuous-time white noise. We derive the properties
of the Fourier transform of Brownian motion directly from the differential
equation, Eq. (B.2.7).

We Fourier transform Eq. (B.2.7),

r
9xω �

» tN
0

e�iωtxtdt

� xtN � x0 � iωrxω (B.2.8)

� rηω ,
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where xrηωy � 0 and xrηωrηω1y � tNδω,ω1 . Equation (B.2.8) is rearranged to get@rxωrx�ω1D
tN

� xrηωrηω1y � @pxtN � x0q2
D� xprηω � rηω1qpxtN � x0qy
ωω1tN

.

Since the process is non-stationary, the power spectrum is not a one dimen-
sional, but a two-dimensional quantity, i.e., xpxtN � x0q2y is not zero. For
ω, ω1 � 0,

xrηωpXtN � x0qy �
» tN

0
e�iωt

B
ηt

» tN
0

ηt1dt
1
F
dt

�
» tN

0
� 0

and @pxtN � x0q2
D � tN .

So @rxωrx�ω1D
tN

� δω,ω1 � 1

ωω1
.

The delta function term is what we would expect to see from our experi-
ence with stationary processes and the second term comes from the no-longer-
negligible boundary terms.

This simple example shows several problems with the power spectrum: (i)
the Fourier modes are not independent, which complicates estimation; (ii) we
can no longer expect the power spectrum to be exponentially distributed (see
App. B.2.1.3); (iii) Boundary terms are not negligible in the large N -limit;
and (iv) the (one-dimensional) traditional power spectrum is not a sufficient
statistic, i.e., we throw away information about the data when we neglect the
correlations between modes.

B.2.1.3 Distribution of the power spectrum

We show in this section that for a stationary Gaussian process, the measured
power spectral components of the process is exponentially distributed to order
1{N .

We use that for a Gaussian process y we can write

yn�1 � fpynq � ηn ,

where f is some function and ηn �
³tn�1

tn
gptqηtdt is Gaussian distributed and

has independent increments. If y is stationary then

e�iω∆tryω ��fpyqω � rηω ,
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to order 1{N . The real and the imaginary parts of rη are the cosine and sine
transforms of η and are thus orthogonal on the interval r0, tN s, i.e.,

x<prηωq=prηωqy � p∆tq2
N�1̧

mn�0

cospω∆tmq sinpω∆t1nq xηmηny

� @pηn∆tq2DN�1̧

n�0

cosp2πkn{Nq sinp2πkn{Nq � 0 .

Thus, X � <prηωq and Y � =prηωq are independent and identically distributed,
with variance σ2tN , and their distribution is

ppX,Y qdXdY � dXdY

2πσ2tN
e
�X2�Y 2

2σ2tN

and the marginal distribution of P pyq � |rηω|2{tN � p<prηωq2 � =prηωq2q{tN is

p
�
P pyq

	
dP pyq � dP pyq

2σ2
e�

P pyq

2σ2 ,

i.e., an exponential distribution.

B.2.2 Power spectrum of diffusion on DNA

In this section we derive expressions for the power spectra of a particle diffus-
ing on stretched DNA. We first derive the power spectrum of the transversal
positions in Sec. (B.2.2.1) and then the more complicated expression for the
power spectrum of the longitudinal displacements (Sec. B.2.2.2).

B.2.2.1 Transversal movement

The transversal position of a diffusing particle at time t is

yt � ypsptq, tq .

Its expectation value xyty is trivially equal to zero, where the expectation value
is taken first over the DNA’s movement conditioned on the protein’s position
on the DNA and then over the proteins movement on the DNA6 , i.e.,

xypsptq, tqy �
» L�s0
�s0

e�
psptq�s0q

2

4Dt?
4πDt

xypsptq, tqyDNA dpsptq � s0q .

6There are two ways of calculating the following statistics, we have chosen to use con-
ditional expectations. Another way, using a differential approach, runs into mathematical
complications, i.e., expectation values, which are not well defined, since the DNA movement
is defined by a first-order stochastic differential equation in time.
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The autocovariance function of yt is

xytyt1y � kBT

γK

8̧

k�1

ykrsptqsykrspt1qs
ck

e�ck|t�t
1| .

Since the distance traveled by the protein during the measurement is small
compared to the length of the DNA we can expand the eigenfunctions around
the particle’s mean position on the DNA7, s,

ykrsptqs � ykpsq,

where higher order terms order can safely be ignored, since they are of order
2Dt{L2 ! 1. Thus,

xytyt1y �
8̧

k�1

Ykpsq2e�ck|t�t1| . (B.2.9)

The power spectrum of yt is

xPf ry psqsy � 1

tN

» tN
0

» tN
0

e�i2πfpt�t
1q xxytyt1yy dt1dt

� 1

tN

8̧

k�1

Ykpsq2
» tN

0

�» t
0
e�pi2πf�ckqpt�t

1qdt1 �
» tN
t

e�pi2πf�ckqpt�t
1qdt1



dt

�
8̧

k�1

2Ykpsq2
�

ck
c2
k � p2πfq2 �

�
1� e�cktN

� �
c2
k � p2πfq2�

tN
�
c2
k � p2πfq2�2

�
, (B.2.10)

for f � 0. When cktN " 1, which is usually the case for experimental mea-
surements, the second term in Eq. (B.2.10) can be ignored.

For a stationary process, such as y,

�∆y � F ryptq � ypt�∆tqsf �
�

1� e�i2πf∆t
	 ryf ,

when N is large. So

Pf p∆yq � r2� 2 cosp2πf∆tqsPf pyq . (B.2.11)

Equations (B.2.11) and (B.2.10), along with Eq. (B.2.6) give Eqs. (3.2.4) and
(3.2.6).

7Differentiation of the spatial eigenfunction gives a factor of αk{L, where αk is the
wavenumber and ck is a pq�2qth order polynomial in αk times α2

k, where q is the order of the
differential operator Ls. Thus each following term in the Taylor-expansion is approximately
a factor α2

kDt{L2 smaller than the preceding. This factor is small, since the typical diffusion
length of the protein is very small compared to the length of the DNA (

?
2Dt � 0.1-1 µm

compared to L � 18µm for λ-phage DNA).
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Distribution of the power spectrum The measured transversal position
of the particle on the DNA is a sum of two Gaussian terms: the position of
the DNA yps, tnq and the positional noise σξn. The power spectrum of the
transversal position is thus exponentially distributed.

B.2.2.2 Longitudinal movement

Since the position of the freely diffusion particle is not a stationary process
the power spectrum of the positions on the longitudinal axis, the x-axis, is
not meaningful (Sec. B.2.1.2). Instead we look at the protein’s displacement
during one time-lapse, ∆xptq � xptq � xpt�∆tq, which is equal to

∆xptq �
» sptq

0

Bx
Bs ps, tqds�

» spt�∆tq

0

Bx
Bs ps, t�∆tqds .

Using that the length of the DNA is large compared to the diffusion length of
the particle8 we can Taylor expand ∆x around s to get

∆xptq � Bx
Bs ps, tq∆sptq �

» s
0

"Bx
Bs ps, tq �

Bx
Bs ps, t�∆tq

*
ds

� Bx
Bs ps, tq∆sptq �∆xDNAps, tq , (B.2.12)

where ∆sptq � sptq�spt�∆tq, and ∆xDNAps, tq � xDNAps, tq�xDNAps, t�∆tq
is the displacement of the point s on the DNA contour during one time-lapse9.
We will adopt different strategies for calculating the power spectra of the two
terms in Eq. (B.2.12). Since the DNA movement is assumed to be uncorrelated
with the Brownian motion of the particle, the power spectrum of ∆xptq is just
the sum of the power spectrum of the two terms. The power spectrum of the
longitudinal displacements of the DNA is

Pf
�
∆xDNA

� � r2� 2 cosp2πf∆tqsPf
�
xDNA

�
. (B.2.13)

For the diffusive part of the motion, we use that Bx{Bs and s are uncorrelated.
So from Eq. (2.1.4) the autocovariance of the diffusive part of the observed
displacements is

x∆sm∆sny �
�

2ζpsq2D∆t� 2ζpsq2Dτ
3



δm,n � ζpsq2Dτ

3
pδn,m�1 � δn,m�1q ,

8During both one time-lapse and the whole measurement.
9Equation (B.2.12) is obtained by first order Taylor expansion. If we go to second order

in the Taylor expansion we get the interesting result: xx∆xptqyy � D∆t
@@B2x{Bs2

DD
, i.e.,

the diffusion looks biased on a substrate with asymmetric tortuosity. Only ever so slightly,
though.
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where ∆sn �
³∆t
0 ∆sptn� tqdt{∆t and ζ is the local degree of stretching of the

DNA, given by Eq. (B.1.10), sinceBBx
Bs ps, tq

Bx
Bs ps, t

1q
F

�
�

1� 1

2

�
ρy1psq � ρz1psq

�
2

�1

2

�
ρy1ps, t� t1q2 � ρz1ps, t� t1q2� ,

where rρy1ps, t � t1q2 � ρz1ps, t � t1q2s{2 is negligible, since ρy1psq ! 1. So
the expected values of the aliased power spectrum of the full time-integrated
diffusive displacements areA pPf p∆sqE � 2ζpsq2Dp∆tq2 �

�
2� 2pN � 1q

N
cosp2πf∆tq



ζpsqD∆tτ

3
.

(B.2.14)
Finally, by inserting Eqs. (B.2.13) and (B.2.14) in Eq. (B.2.6) we find the
power spectrum of the measured displacements, Eqs. (3.2.5) and (3.2.7).

Distribution of the power spectrum Using Eqs. (B.2.12) and (B.1.10),
the observed longitudinal displacement of a protein diffusing on DNA can be
decomposed into

∆xn �
a
ζpsq∆sn �∆xDNA

n � σ∆ξn , (B.2.15)

where ∆sn and ∆ξn � ξn � ξn�1 are Gaussian. The x-direction DNA move-
ment is not Gaussian, since it is a non-linear function of the transversal move-
ment10. This means that ∆xDNA

n is not Gaussian. Since its Fourier transform
is a weighted sum over all the measured ∆xDNA

n it is almost Gaussian, how-
ever. Furthermore, the measured Fourier transform is a sum of the Fourier
transforms of the three independent terms given in Eq. (B.2.15), of which two
are Gaussian and one almost Gaussian. The assumption that the measured
Fourier transform is Gaussian distributed is thus a safe bet and we conclude
that the power spectrum of the measured longitudinal displacements is expo-
nentially distributed.

B.2.3 Autocovariance function for diffusion on DNA

In this section we derive the autocovariance function of the measured longitu-
dinal displacements of a particle diffusing on DNA.

As in the previous section we assume that the distance traveled by the protein
on the DNA during the time-lapse ∆t is negligible. From Eq. (B.2.15) we then
have

xdndn�jy � x∆sn∆sn�jy � x∆ξn∆ξn�jy � ρ∆xps, j∆t, τq , (B.2.16)

10In the general univariate case: we let xptq � fpztq, then dxt � f 1pztqdzt� 1
2
f2pztqpdztq2,

using Itô calculus.
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where ρ∆xps, j∆t, τq � 2ρxps, j∆t, τq�ρxps, pj�1q∆t, τq�ρxps, pj�1q∆t, τq.
The autocovariance of the motion blurred positions of the DNA, ρx is given
by:

ρxps, 0; τq � 1

τ2

» τ
0

» τ
0
ρxps, t1 � t2qdt2dt1

�
8̧

kl�1

Xk,lpsq2
τ2

» τ
0

» τ
0
e�pck�clq|t

1�t2|dt2dt1

�
8̧

kl�1

2
pck � clq τ �

�
1� e�pck�clqτ

�
τ2pck � clq2 Xk,lpsq2 ,

for zero time-separation; and

ρxps, j∆t; τq � 1

τ2

» τ
0

» τ
0
ρxps, j∆t� t1 � t2qdt2dt1

�
8̧

kl�1

Xk,lpsq2
τ2

e�pck�clqj∆t
» τ

0
e�pck�clqt

1
dt1

» τ
0
epck�clqt

2
dt2

�
8̧

kl�1

2e�pck�clqj∆ttcoshrpck � clqτ s � 1u
τ2pck � clq2 Xk,lpsq2 , (B.2.17)

for time-separation j∆t.

For full time-integration Eq. (B.2.16) gives Eq. (2.2.2), and Eqs. (B.2.17) and
(B.2.17) reduce to Eqs (3.2.18) and (3.2.19).

B.3 Estimation

In this section we derive properties of the MLE and the CVE for diffusion on a
fluctuating substrate. Maximum likelihood estimation is treated in Sec. B.3.1
and covariance-based estimation is treated in Sec. B.3.2

B.3.1 Maximum likelihood estimation

To extract as much information as possible from experimental data, we want
to fit to both the y-direction and x-direction power spectra for diffusion on
DNA. To do this, we assume that the measured y- and x-displacements are
uncorrelated. This assumption is not true, since the x-direction DNA fluctu-
ations are fully determined by the y- and z-direction fluctuations11 However,
as simulations show (Fig. B.7), the correlations are small and neglecting them
does not influence the estimation significantly.

11Each transversal directions contribute to approximately half of the x-direction fluctua-
tions.
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B.3.1.1 Variance of the MLE for known DNA fluctuations

It is a well known result that the variance of the MLE is given by the inverse of
the Fisher Information matrix asymptotically, i.e., to order 1{N [17]. In this
section we derive an asymptotic result for the variance of the MLE where some
parameters are estimated a priori with given uncertainties on these estimates.

Let φ define the parameters estimated a priori and θ define the parameters,
which we want to estimate using maximum likelihood estimation. When we
use the estimates pφ as fixed parameters in the estimation of θ, the errors onpφ, i.e, the difference between the estimated and true values ∆φ � pφ � φ�,
propagate to pθ. Since pθ is only defined as an implicit function of φ, i.e., by
the stationarity condition

lθi

�pθ�� pφ,x	 � B lnL
�pθ�� pφ,x	
Bθi � 0 , (B.3.1)

we cannot use classical propagation of errors to calculate the variance of pθ.
We can, however, following a derivation similar to the one that shows the
approximate equality between the inverse Fisher information and the variance
of the MLE, derive a first order approximation (in 1{N) to the variance of pθ.

From the stationarity condition, Eq. (B.3.1),

0 � lθi

�pθ�� pφ,x	
� lθi pθ�|φ�,xq � lθiθj pθ�|φ�, Xq∆θj � lθiφkpθ�|φ�, Xq∆φk �Opp1q
� lθipθ�|φ�, Xq � pIθqij∆θj � pIθφqik∆φk �Opp1q ,

since the central limit theorem dictates that

lθiθj pθ�|φ�, Xq � pIθqij �Opp1q ,
where Iθ is the information matrix corresponding to the variance of pθ, Iθφ is

the information matrix corresponding to the covariance between pθ, and pφ, and
we sum over repeated indices. Thus,

∆θm � �pIθqmi
�
lθipθ�|φ�, Xq �

�
Iθφ
	
ik

∆φk

�
�Op

�
N�1

�
where Imi � pI�1qmi, and
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� pIθqmi
� @
lθipθ�|φ�, Xqlθj pθ�|φ�, Xq

D� �
Iθφ
	
ik
x∆φk∆φly

�
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�
Iθφ
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@
lθj pθ�|φ�, Xq∆φk

D � pIθqjn
� pIθqmn � pIθqmi

�
Iθφ
	
ik

Var
� pφ	

kl

�
Iθφ
	
lj
pIθqjn , (B.3.2)

since lθj pθ�|φ�, Xq and pφk are uncorrelated.
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B.3.2 Covariance-based estimation

B.3.2.1 Bias of the covariance-based estimator

The simple covariance-based estimator, which optimally estimates D when
there is no substrate fluctuations, is biased in the presence of DNA fluctuations.
For full frame averaging, the expectation value of the CVE isA pDE

� ζpsq2D � ρxp∆tq � ρxp2∆tq
∆t

,

Thus, the bias of the CVE is12

bpDq �
8̧

kl�1

�
1� e�pck�clq∆t

�3

pck � clq2∆t3
Xk,lpsq2 . (3.2.11)

For fast DNA dynamics or long time-lapse, pck � clq∆t tends to zero and so
does the bias of the CVE, since DNA fluctuations are interpreted as white
noise. One may reduce the bias of the moment-based estimator by adding
higher autocorrelations, i.e.,

pDJ � d2
n

2∆t
� 1

∆t

J̧

j�1

dndn�j .

This estimator has a bias of

ρxpj∆tq � ρxppj � 1q∆tq
∆t

�
8̧

kl�1

e�pj�1qpck�clq∆t � 1� e�pck�clq∆t
�3

∆t3pck � clq2
Xk,lps0q2 .

However, the variance of the CVE increases considerably by including the
higher autocorrelations, similarly to MSD-based methods. Another option,
which is much more precise, is to determine parameters of DNA motion a
priori and use these to calculate and subtract the bias (Sec. 3.2.1). Provided
that the estimates of the DNA parameters Xk,l and ck are reasonably close to
their true values this provides unbiased estimates of the diffusion coefficients,
even for short time-series.

Known positional noise variance When the positional noise variance is
known a priori the CVE is given by Eq. (3.2.20). For this estimator the bias
due to substrate fluctuations is

bpDq � ρxp0q � ρxp∆tq
∆tp1� 2Rq

�
8̧

kl�1

2pck � clq∆t� 3� 4e�pck�clq∆t � e�2pck�clq∆t

p1� 2Rq∆t3pck � clq2
. (B.3.3)

12Neglecting the part of the bias, which is due to incomplete stretching of the substrate.
This part is taken into account as described in Sec. 3.2.
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B.3.2.2 Variance of the covariance-based estimator

From Eq. (3.2.12) the variance of the unbiased covariance estimator is

Var
� pD	

�
Var

�
∆x2

n

	
4p∆tq2 � Var

�
∆xn∆xn�1

�
p∆tq2 �
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n,∆xn∆xn�1

E
C

p∆tq2
�Var

�pbpDq	 . (B.3.4)

The variance of the bias estimate is found by standard propagation of er-
rors and is given in Eq. (3.2.16). The other three terms are calculated as
in Sec. A.3.2, where we must take contributions from DNA fluctuations into
account as well. We define ρj � ρ∆xps, j∆tq, then:
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, (B.3.5)

since
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where we have defined α � ζpsq2D∆t and β � σ2 � ζpsq2D∆t{3;
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(B.3.6)
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since
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since A
∆x2

n,∆xn∆xn�1

E
C
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E
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Combining Eqs. (B.3.5)-(B.3.7) gives Eq. (3.2.13).

B.4 Numerical results

B.4.1 Simulating diffusion on DNA

Since we only simulate the lowest mode of the DNA motion we can simulate
the coupling between the two transversal modes and the longitudinal mode
exactly without having to simulate the entire DNA strand. We can calculate
the DNA’s x-direction motion from its local y- and z-direction motion using
that

xps, tq � s� 1

2

» s
0

�
y1ps1, tq2 � z1ps1, tq2� ds1

� s� 1

2

» s
0

�
A
pyq
1 ptq2 �A

pzq
1 ptq2

	
z11ps1q2ds1

� s� yps1, tq2 � zps1, tq2
2

» s
0

y11ps1q2
y1psq ds

1

� s� X1,1psq
2Y1psq2

�
yps1, tq2 � zps1, tq2� , (B.4.1)
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since the two transversal directions are equivalent13.

Experimental data are usually measured with full time-integration, i.e., with
camera shutter time τ equal to the time-lapse ∆t. So to simulate positions we
need to integrate over the full time-lapse,

yDNA
n�1 � 1

∆t

» tn�∆t

tn

yDNAptn � tqdt , (B.4.2)

We do this by approximating the integral with a sum,

yDNA
n�1 � h

1{ḩ

q�1

yDNAptn � qh∆tq , (B.4.3)

where (B.4.3) approaches (B.4.2) as h Ñ 0. The motion of a transversal
mode is equivalent to the motion of a Brownian particle trapped in an optical
trap. We can thus use the theory of optical tweezers [80] and simulate yDNA

according to

yDNAptm�1q � e�c1h∆tyDNAptmq �∆yhηm , (B.4.4)

where m � 1, 2, . . . , pN � 1q{h, ηn is standard white noise, and

∆yh �
d

Y1 p1� e�c1h∆tq
2c1

.

The y-position of the DNA measured at time tn is thus

yDNA
n � h

ḩ

q�1

yDNAptn{h�qq . (B.4.5)

The diffusive movement of the protein is simulated in a similar fashion,

xDiffptm�1q � xDiffptmq �
?

2Dh∆tζm ,

where m � 1, 2, . . . pN � 1q{h and ζm is standard Gaussian white noise.

We simulate three independent time-series, tyDNAptmqupN�1q{h
m��Q{h, tzDNAptmqupN�1q{h

m��Q{h,

and txDiffptmqupN�1q{h
m��Q{h, where we set xpt�Q{hq � ypt�Q{hq � zpt�Q{hq � 0,

and Q is chosen such that the DNA has time to thermalize before we sam-
ple the time-series. We calculate the longitudinal positions of the DNA xDNA

from Eq. (B.4.1) and calculate the motion blurred positions tyDNAptnquNn�0,
txDNAptnquNn�0, and txDiffptnquNn�0 using Eq. (B.4.5).

We finally sum the movement of the DNA and diffusive movement and add
positional noise to obtain the “measured” positions,

xn � xDiffptnq � xDNAptnq � σξn ,

13At least for the lowest mode.
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where ξn is standard white noise. We also calculate the transversal positions,

yn � yDNAptnq � σξn .

Table B.1 and Figs. 2.5-2.7 present numerical results for the performance of
the MLE, which explicitly accounts for DNA fluctuations, and the CVE, which
does not, for different values of the diffusion coefficient D.

B.4.2 Correlations between transversal and longitudinal DNA
fluctuations

The optimal way to estimate the parameters from the data of a particle dif-

fusing on DNA is to fit simultaneously to both pP p∆yq
f and pP p∆xq

f . To do this

in practice, we assume that pP p∆yq
f and pP p∆xq

f are independent. However, since
the longitudinal motion of the DNA is dependent on its transversal motion,pP p∆yq
f and pP p∆xq

f are not completely independent. We calculate the correlations

between pP p∆yq
f and pP p∆xq

f for an ensemble of 10,000 Monte Carlo generated
time-series of length N � 100. As Fig. B.7 shows, the correlations betweenpP p∆yq
f and pP p∆xq

f are in general small and can globally be ignored.
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D � 0.1 µm2{s

2πfc MLE w/ DNA CVE w/o DNA

Bias rµm2{ss Variance rµm4{s2s Bias rµm2{ss Variance rµm4{s2s
20 Hz 0.004� 0.003 0.0086� 0.0007 0.244� 0.004 0.018� 0.001

(0.0) (0.0100) (0.245)

30 Hz �0.001� 0.002 0.0045� 0.0003 0.120� 0.002 0.0060� 0.0004
(0.0) (0.0053) (0.121)

40 Hz �0.003� 0.002 0.0028� 0.0002 0.067� 0.002 0.0032� 0.0002
(0.0) (0.0037) (0.068)

D � 0.3 µm2{s

2πfc MLE w/ DNA CVE w/o DNA

Bias rµm2{ss Variance rµm4{s2s Bias rµm2{ss Variance rµm4{s2s
20 Hz �0.015� 0.006 0.045� 0.002 0.244� 0.005 0.027� 0.002

(0.0) (0.051) (0.245)

30 Hz �0.018� 0.005 0.021� 0.001 0.120� 0.003 0.00129� 0.0008
(0.0) (0.030) (0.121)

40 Hz �0.019� 0.004 0.0146� 0.0007 0.068� 0.003 0.00092� 0.0005
(0.0) (0.0222) (0.068)

D � 0.5 µm2{s

2πfc MLE w/ DNA CVE w/o DNA

Bias rµm2{ss Variance rµm4{s2s Bias rµm2{ss Variance rµm4{s2s
20 Hz �0.039� 0.008 0.072� 0.003 0.245� 0.006 0.040� 0.002

(0.0) (0.113) (0.245)

30 Hz �0.038� 0.007 0.044� 0.002 0.121� 0.005 0.024� 0.001
(0.0) (0.070) (0.121)

40 Hz �0.039� 0.006 0.033� 0.002 0.068� 0.004 0.019� 0.001
(0.0) (0.053) (0.068)

Table B.1: Bias and variance of the MLE, which explicitly accounts for DNA
fluctuations, and the CVE, which does not. Values are mean
plus/minus s.e.m. obtained from Monte Carlo simulations of an
ensemble of 1,000 time-series of length N � 100. Values in-
side parenthesis are theoretically expected values. The positional
noise variance is σ2 � 1, 500 nm2 and the amplitude parameters
for DNA fluctuations are c1X1,1 � 2.1 m{s and c1Y1 � 0.20 m2{s.
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Figure B.7: Color-coded contour plot, which shows the correlations betweenpP p∆yq
f and pP p∆xq

f . From Monte Carlo generated data with

D � 0.3 µm2{s, c1 � 30 Hz, X1,1 � 0.07 µm, Y1 � 0.08 µm,
and σ2 � 1500 nm. The ensemble size is M � 10, 000 , time-
series length is N � 100, and shutter-time is equal to time-
lapse, τ � ∆t. The plot shows that we do not overall make a

big error when assuming that pP p∆yq
f and pP p∆xq

f are uncorrelated.
The maximal value of the correlations is max ρy,d � 0.47 at the
Nyquist frequency of both y and x, while the mean correlation
coefficient is ρ � 0.0370� 0.0004.
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Appendix C

hOgg1 repair proteins diffusing
on flow-stretched DNA

C.1 Preliminary data analysis

Our analysis and modeling of the experimental data are based on several as-
sumptions, namely that measured proteins undergo free diffusion on the DNA,
that DNA fluctuations does not influence protein dynamics, and that drift is
negligible. In this section we design and apply a series of simple tests designed
to check if data agree with our assumptions, and procedures to deal with data
that does not. In Sec. C.1.1 we test if the recorded transversal movement
of individual proteins is consistent with the motion of a protein bound to a
fluctuating DNA molecule. In Sec. C.1.2 we test the assumption that DNA
fluctuations do not influence protein dynamics. We define an “experimen-
tal” window on the DNA, where this assumption is reasonable. Finally, in
Sec. C.1.3 we check for drift in the longitudinal direction.

C.1.1 Checking individual time-series

C.1.1.1 Test for normality of transversal movement

We test the y-direction movement for normality using D’Agostino and Pear-
son’s omnibus test [81]. This test generally has better power than Kolmogorov-
Smirnov (KS) and chi-squared tests [82]. Normal distribution of the measured
y-position is not the only relevant criteria for checking time-series, and the test
is not very powerful for short time-series (we expect several good time-series
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to show p-values smaller than 0.01, since we have recorded more than 500). So
we combine the test with visual inspection of both the transversal trajectories
and the distribution transversal positions.

Time-series, for which the test gives a p-value of less than 0.001 are discarded.
(We expect a 50% chance for one valid time-series to give a p-value smaller
than 0.001 and a 0.05% chance for two.) If the low p-value is due to a single
outlier at either the start or the end of the time-series, the point is cut away
from the time-series and the rest is used. This is done, since the single outlier
is probably caused by the protein being recorded just before it binds to the
DNA or right after it unbinds.

C.1.1.2 Visual inspection and short time-series

All time-series are inspected visually for proteins jumping in the y-direction (Fig. C.3),
proteins getting stuck (Fig. C.4), and proteins showing drift in the y-direction (Fig. C.5).
Time-series showing a jump at the start or the end are not discarded but are
cropped as described above (Fig. C.2).

Furthermore, time-series shorter than Nmin � 12 (corresponding to a residence
time of tmin � 0.132 s) are discarded from the analysis, since it is impossible to
reliably discern valid and invalid measurements when time-series are too short.
The choice of Nmin is somewhat arbitrary. However, the particular choice of
Nmin does not influence our results significantly (Figs. 2.11 and D.1).

In all, 33 out of 411 time-series longer than Nmin � 12 are discarded, which
amounts to eight percent.

C.1.2 Proteins on DNA

We perform a few simple tests investigate if the proteins interact with the DNA
the way we expect them to. These are all based on the proteins’ positions on
the DNA.

We assume that DNA fluctuations do not affect the proteins’ kinetics. So we
expect, e.g., that the proteins’ mean residence time is the same everywhere
on the DNA. As Figs. C.6 and C.7 show, this is not the case. Upstream
on the DNA, close to the tethering point, proteins have a high likelihood of
getting stuck and then discarded. We thus tend to keep only short time-series,
for which the protein unbinds before sticking to the coverslip. At the opposite
end, near the free end of the DNA, proteins also have a shorter mean residence
time. This is probably because the DNA motion increases appreciably near the
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Figure C.1: An experimental trajectory which shows no anomalies.
D’Agostino and Pearson’s omnibus test gives a p-value of p �
0.88 and does not reject the hypothesis that the transversal
positions are normal distributed. a) Measured trajectory of
transversal movement. b) Distribution of measured transversal
positions y. (Measured distribution: green bars; normal distri-
bution with the same mean and variance as the experimental
trajectory: black line.)

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
Time t [s]

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

P
o
si

ti
o
n
 y

 [
µ
m

]

a

2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7

Position y [µm]

0

2

4

6

8

10

12

C
o
u
n
t

b

Figure C.2: An experimental trajectory showing an abnormal jump at the
beginning of the time-series. The first point is discarded from
the analysis. D’Agostino and Pearson’s omnibus test gives
p � 0.85. a) Measured trajectory of transversal movement. b)
Distribution of measured transversal positions y. (Measured dis-
tribution: yellow bars; normal distribution with the same mean
and variance as the experimental trajectory: black line.)
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Figure C.3: An experimental trajectory that shows a jump in y-position.
D’Agostino and Pearson’s omnibus test gives p � 0.0002, i.e.,
it rejects the time-series. a) Measured trajectory of transversal
movement. b) Distribution of measured transversal positions y.
(Measured distribution: red bars; normal distribution with the
same mean and variance as the experimental trajectory: black
line.)
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Figure C.4: An experimental trajectory of a protein that gets stuck.
D’Agostino and Pearson’s omnibus test gives p � 3 � 10�6. a)
Measured trajectory of transversal movement. b) Distribution
of measured transversal positions y. (Measured distribution:
red bars; normal distribution with the same mean and variance
as the experimental trajectory: black line.)
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free end and thus shakes the proteins off1. Thus to avoid spurious results we
only include time-series with a mean position on the DNA inside the interval
x P r4.5 µm, 11.5 µms. For completeness, results for time-series outside of this
“experimental window” are included in the following plots, marked by open
symbols.

From our assumption that DNA fluctuations do not affect the proteins, we also
expect to see a uniform distribution of the proteins along the DNA (Fig. C.8).
This does seem to be the case of proteins inside the experimental window.
For proteins near the tethering point, however, we clearly see that a lot of
time-series have been discarded. Near the free end we do not see an effect
of proteins being shaken off, since the lower density of proteins on the DNA
is countered by an increase in the observed density of the DNA, due to an
increase in the DNA’s tortuosity.

We finally plot the variance of the transverse fluctuations as a function of the
proteins’ position on the DNA (Fig. C.9). We see that the variance increases
along the DNA, as we would expect. This plot can be compared with the the-
oretical pictures for plug- and shear flows (Fig. B.3 and Fig. B.5 respectively).
They can not be compared directly, however, since Fig. C.9 shows the variance
as function of the x-position in the lab-frame, not the position s on the DNA
contour as in Figs. B.3 and Fig. B.5.

C.1.3 Drift

To check for drift of the proteins, due to the flow, we have calculated the mean
displacement during one time-lapse for the time-series included in the analysis,
i.e., time-series inside the experimental window x P r4.5 µm, 11.5 µms, which
are longer than tmin � 0.132 s (Including all time-series does not change the
results). The mean drift of the proteins is d � p0.0017 � 0.0004q µm, clearly
significant (Fig. C.10). However, the standard deviation of a displacement is
std pdq � 0.099� 0.003, i.e., 60 times higher than the drift. Since the diffusion
coefficient is calculated from a quadratic function of the displacements, the

relative bias due to drift is of the order of d
2{Var pdq � 1{4000.

C.2 Hypothesis testing and model comparison

We use a few statistical tests in the analysis of the experimental data. These
are briefly described here.

1Near the free end the DNA is not taut since the drag force tends to zero. This also
means that our results for the DNA motion are not strictly valid here.
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Figure C.5: An experimental trajectory of a protein showing drift in the
y-direction. D’Agostino and Pearson’s omnibus test gives p �
0.98, it does not reject the time-series. a) Measured trajectory of
transversal movement. b) Distribution of measured transversal
positions y. (Measured distribution: red bars; normal distri-
bution with the same mean and variance as the experimental
trajectory: black line.)
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Figure C.6: Scatter-plot of residence time on DNA versus mean longitudi-
nal position x. Vertical lines mark the experimental window,
x P r4.5 µm, 11.5 µms, where time-series are included in the
following analysis.
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Figure C.7: Mean residence time on DNA plus/minus s.e.m. as a function
of mean longitudinal position of the protein, x. The average
residence times on the DNA are shorter at the ends. (Time-
series inside experimental window x P r4.5 µm, 11.5 µms: filled
circles; time-series outside experimental window: open circles.)
Data support the hypothesis that mean time-series length is
constant on the interval x P r4.5 µm, 11.5 µms. A chi-squared
test for variance for constant mean gives p � 0.10. The mean
time-series length is N � .462� .03 s.
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C.2.1 Pearson’s chi-squared test

Pearson’s chi-square test, also known simply as the goodness of fit test, is used
to compare a measured distribution to a theoretical distribution. We use it
in particular to test our models for the distribution of residence times against
experimental data.

For use in Pearson’s chi-square test the measured data is divided into a number
of bins q. The number of bins should be large enough such that the number of
counts in a bin is Poisson distributed, while on the other hand, the number of
counts per bin, Oi should be large enough such that the Poisson distribution
is approximately Gaussian (as a rule of thumb, Oi ¥ 5). A chi-square test
statistic can then be computed as

χ2 �
q̧

i�1

pOi � Eiq2
Ei

,

where Oi is the observed number of counts and Ei is the expected number of
counts in bin i. This statistic follows a standard chi-squared distribution with
q�1 degrees of freedom and can be used to calculate the support for a theory,
i.e., a p-value, which gives the probability of randomly getting a χ2-value equal
to or higher than the one observed if the theory is true.

We design our test such that approximately 20 observed counts are in each
bin and the number of bins is equal to q � 11.

C.2.2 Chi-squared test for variance

The chi-squared test for variance consist of estimating whether the dispersion
of a number of observed data points pθiqi�0,1,...,q with known variances σ2

i is
consistent with the assumption that the points are normally distributed around
the same mean θ. The chi-square test statistic is given by

χ2 �
q̧

i�1

pθi � θq2
σ2
i

,

and follows a chi-squared distribution with q � 1 degrees of freedom.

In practice we bin measurements and use the sample variances s2
i as estimates

of the true variances σ2
i of the estimated means θi. Thus the test statis-

tic is not exactly chi-squared distributed but follows something in between a
Student’s t-distribution and a chi-squared distribution. However, since the
number of measurements in each bin is large (on average n � 20 or more) the
distribution is much closer to the chi-squared distribution than to the Stu-
dent’s t-distribution, and the difference between the actual distribution and
the chi-squared distribution is negligible.
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C.2.3 Akaike’s information criterion

Akaike’s information criterion is an information-theoretic-based method for
comparing multiple models against each other based on experimental data [83].
It compares how well different models describe data, while taking into account
the number of free parameters in each model to avoid overfitting. It compares
models based on the models’ AIC values, which are defined as

AICi � 2Ki � 2 lnLi
�pθi��x	 ,

where Ki is the number of free parameters in the ith model, pθi is the MLE of
the model’s free parameters and x is the experimental data.

AIC differences and Akaike weights Since the true underlying model is
unknown, the AIC values are only relative. For a set of models tLi,θiui�1,...,R

with associated AIC values tAICiui�1,...,R, AIC differences are defined as ∆AICi �
AICi �minpAICiq, where the best model thus has ∆AIC � 0.

The Akaike weights assign relative probabilities to the individual models, given
the data and the set of R models, and are calculated as

wi � e�∆AICi{2°
j e

�∆AICj{2 .

C.3 Distribution of residence times

In this section we analyze the distribution of residence times of the hOgg1
proteins on DNA. In Sec. C.3.1 we show how a finite lower cutoff for measured
residence times affects the measured residence-time distribution. In Sec. C.3.2
we show that if unbinding from the DNA is a Poisson process, bleaching of the
fluorophores does not alter the form of the observed residence-time distribu-
tion. Finally, in Sec. C.3.3 we derive several candidate models for protein-DNA
binding and compare these to the experimental data.

C.3.1 The problem of real data

We have in our analysis excluded time-series that are shorter than Nmin �
12 (tmin � 0.132 ms). We need to take this into account when we analyze
the residence-time distribution. Since the probability distribution must be
normalized, the density of the residence-time distribution is

ppt|t ¥ tminq �
#

0 , for t   tmin

pptq{Sptminq , for t ¥ tmin

,
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where the normalization constant Sptminq is the survival function at time tmin

Sptminq �
³8
tmin

pptqdt.

C.3.2 The role of photobleaching

For a fluorescent molecule bound to DNA its observed residence time on DNA
is given by the point in time when the molecule either unbinds from the DNA
and diffuses out of the field-of-view, or when it bleaches. Photobleaching is a
Poisson process and we assume that unbinding is as well. The probability that
the protein disappears during the infinitesimal time-lapse rt, t� dtr is then

pptqdt � pkoff � kbleachqSptqdt ,

where the survival function S gives the probability that the protein is still
bound to the DNA and visible at time t,

Sptq � πt0p1� koffdt
1qp1� kbleachdt

1q
� πt0p1� pkoff � kbleachqdt1q
� e�pkoff�kbleachqt ,

where π is the product integral, defined as πt0p1 � fpxqdxq � lim∆xÑ0
±p1 �

fpxiq∆xq. Thus the observed distribution is exponential, but with a higher
rate than if no bleaching occurred k � koff�kbleach. Thus a residence-time dis-
tribution that is different from an exponential distribution cannot be explained
by bleaching only.

C.3.3 Models for protein-DNA binding

C.3.3.1 One-state protein—Exponentially distributed residence times

A protein bound to a DNA with a constant binding energy will have a constant
unbinding rate. The process of unbinding is thus a Poisson process and the
proteins’ residence times are exponentially distributed. When we take into
account that we only observe proteins with a residence time longer than tmin,
the observed distribution is

ppt|t ¥ tminq � 1

τ
e�pt�tminq{τ . (C.3.1)

A maximum likelihood fit to the data gives τ � p0.54�0.03q s. The distribution
is plotted along with the measured distribution in Fig. 2.9(a-b). A Pearson’s
chi-squared test gives a p-value of p � 4 � 10�6.
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C.3.3.2 Two-state protein with fixed switching rates

A protein, which switches between two different states with constant rates
while bound to the DNA, where it has different unbinding rates in each state
is described by the differential equation

d

dt

�� P1

P2

Poff

�
�
���k12 � 1{τ1 k21 0

k12 �k21 � 1{τ2 0
1{τ1 1{τ2 0

�
�� P1

P2

Poff

�
 .

The residence time distribution is the probability density associated with Poff ,

pt � dPoff

dt
� 1

τ1
P1 � 1

τ1
P2 , (C.3.2)

and is, as Poff , determined by P1 and P2, which control the dynamics.

d

dt

�
P1

P2



�

��k12 � 1{τ1 k21

k12 �k21 � 1{τ2


�
P1

P2



. (C.3.3)

The solutions to the characteristic equation for Eq. (C.3.3) are

λ� � 1

2
Tr�

c
1

4
Tr2 �Det ,

where Tr � k12�k21�1{τ1�1{τ2 and Det � pk12�1{τ1qppk21�1{τ2q�k12k21.
Thus,

1

4
Tr2 �Det � 1

4

�
pk12 � k21q �

�
1

τ1
� 1

τ2


�2

� k12k21 ,

i.e., both roots of the characteristic polynomial are real and P1 and P2 are
both a linear combination of two exponential distributions and by Eq. (C.3.2)
so is pt. That is, if the proteins switch between two states with constant rates,
the residence time distribution is a sum of two exponentials, regardless of the
rates. This is the same distribution as for a population of two different proteins
with constant unbinding rates. The observed distribution of residence times
is thus

ppt|t ¥ T q � αe�t{τ1{τ1 � p1� αqe�t{τ2{τ2

αe�tmin{τ1 � p1� αqe�tmin{τ2 . (C.3.4)

A maximum likelihood fit to the data gives τ1 � 0.68 s, τ1 � 0.07 s, and
α � 0.37. The distribution is plotted along with the measured distribution in
Fig. 2.9(a-b). A Pearson’s chi-squared test gives a p-value of p � 0.04.

C.3.3.3 Normal distributed binding energies

If we assume that the free energy of binding for the individual protein remains
constant during the time the protein spends on the DNA and that the observed
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dispersion in the residence times are due to different binding energies of the
individual proteins, then it is natural to assume that these binding energies are
normally distributed, Ei � N pµE , σq. This leads to a lognormal distribution
of the characteristic residence times,

τ � logN pµ, σq ,

where µ � µE� ln τ0, since τ � τ0e
�pE�Uiq. The measured residence times are

then distributed as

pptq �
» 8

0
ppt|τqppτqdτ

�
» 8

0

1?
2πστ2

e�t{τ�pln τ�µq
2{2σ2

dτ

� 1?
2πσ

» 8

�8
ex�e

xt�px�µq2{2σ2
dx , (C.3.5)

where we have defined x � � ln τ The integrand falls off very quickly for
positive x due to the exponential term, while the Gaussian term quickly sup-
presses the integrand for negative x. This makes it rather easy to approximate
Eq. (C.3.5) by a finite integral, which can be calculated numerically. The sur-
vival function is

SpT q �
» 8

tmin

pptqdt

�
» 8

tmin

» 8

�8

ex�ext�px�µq2{2σ2

?
2πσ

dxdt

�
» 8

�8

e�extmin�px�µq2{2σ2

?
2πσ

dx , (C.3.6)

and the probability density is given by ppt|t ¥ tminq � pptq{Sptminq.

Maximum likelihood fitting to the experimental data gives µ � �1.15 kBT
and σ � 0.82. A Pearson’s chi-squared test gives a p-value of p � 0.02.

C.3.3.4 Exponentially distributed characteristic residence times

We can model the characteristic residence time τ as exponentially distributed.
This is the maximum entropy model assuming a distribution of τ -values and
a given mean τ� and has the advantage of being a model with only one pa-
rameter. However, we do not have an underlying physical explanation for the
model.

The conditional probability density of t given τ� is

pτ pτ |τ�q � 1

τ�
e�τ{τ

�
.
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So the distribution of residence times is

ptpt|τ�q �
» 8

0
ptpt|τqpτ pτ |τ�qdτ

� 1

τ1

» 8

0

1

τ
e�t{τ�τ{τ

�
dτ

� 2

τ�
K0

�
2

c
t

τ�

�
,

where K0 is the zeroth order modified Bessel function of the second kind.
Thus,

ptpt|τ�, t ¥ tminq � ptpt|τ�q
Sptmin|τ�q

�
K0

�
2
a
t{τ1

	
?
τ1TK1

�
2
a
T {τ1

	 , (C.3.7)

Maximum likelihood fit to data gives τ� � 0.38 s and a Pearson’s chi-squared
test gives a p-value of p � 0.06.

C.3.3.5 Gamma distributed residence times

A final, simple phenomenological model for the residence times, which seems
to correspond to the measured distribution, is pptq9t�αe�βt, i.e., a gamma
distribution. This distribution is properly normalized by the condition» 8

tmin

ppt|t ¥ tminqdt � 1 ,

thus for ppt|t ¥ tminq � Cptminqt�αe�βt,
1

Cptminq �
» 8

tmin

t�αe�βtdt (C.3.8)

� β�1�α
» 8

βtmin

t�αe�tdt

� Γp1� α, βtminq
β1�α , (C.3.9)

where Γp�, �q is the upper incomplete gamma function. So the probability
density is

ppt|t ¥ tminq � β1�α

Γp1� α, βtminq t
�αeβt .

Finally, the survival function is

Spt|t ¥ tminq � Γp1� α, βtq
Γp1� α, βtminq .
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Maximum likelihood fit to data gives α � 0.97 and β � 0.76 s�1, and a
Pearson’s chi-squared test gives a p-value of p � 0.10.

C.4 Parameter estimation

In this section we provide an in-depth description and analysis of the results
of parameter estimation from experiments. In Sec. C.4.1 we describe how
parameters are estimated from data. We analyze the results and compare them
to a priori expectations we have about the data. In Sec. C.4.2 we investigate
the effect of proteins crowding on the DNA. Finally, In Sec.C.4.3 we show that
for a particle, which switches between fast and slow diffusion, the methods
developed in the thesis estimate the mean diffusion coefficient of the particle,
and that estimator statistics do not change.

C.4.1 Experimental results

We estimate diffusion coefficients D, positional noise s2, and parameters de-
scribing DNA fluctuations φ � pc1,X1,1,Y1qT using maximum likelihood esti-
mation as described in Secs. 3.2.1.1 and 3.2.3.4. Fitting multiple modes does
not alter the estimates of the diffusion coefficients (Fig. D.2). For time-series
of N � 35 or shorter, the MLE algorithm does not always converge and the re-
sults of these fits are not valid. Simply discarding the time-series, for which the
MLE does not converge may induce a bias. So for short time-series (N ¤ 35)
we estimate diffusion coefficients D and positional noise amplitudes σ2 using
the unbiased CVE as described in 3.2.1.2. Estimates of X1,1 and c1 for use in
calculating the bias are obtained from time-series longer than N � 35. Time-
series are divided into bins of size 1 µm on the x-axis, and weighted averages
of pD, pσ2, and pφ are calculated as described in Secs. 3.2.1.2 and 3.2.3.4. Esti-
mates of c1, c1X1,1, and c1Y2

1 for different mean positions s on the DNA2 are
shown in Figs. C.11 and C.12. The correlation constant c1 varies by a factor
two over the experimental window x P r4.5 µm, 11.5 µms (Fig. C.11). This is
probably due to the fact that we only include one mode in fits and that higher
modes contribute significantly to the power near the tethering point and only
the lowest mode contributes near the free end (Figs. B.5 and B.6). The posi-
tional noise is higher near the free end than near the tethered end of the DNA
(Fig. C.13a). This agrees with our conception that the downstream DNA is
farther from from the coverslip on average, where the evanescent field is less
intense and the fluorescent molecules thus emit less photons. Comparing dif-
fusion coefficient estimates with the proteins’ positions on the DNA shows no
correlations between positions and their estimated diffusion coefficients, even
outside of the experimental window (Fig. C.14a). (If the DNA fluctuations

2We show c1X1,1 and c1Y2
1 , since they are constant over the DNA, instead of X1,1 and

Y1, which are not.



C.4 Parameter estimation 111

are not taken into account an apparent increase in diffusivity of the proteins
is seen near the free end, Fig. C.14b.)

Experimental estimates of the bias of the CVE are calculated as the differ-
ence between the CVE and the MLE for time-series longer than N � 35
(Fig. C.15a). The bias varies along the DNA and is higher downstream
where the DNA fluctuations are larger. Theoretical values of the bias of
the CVE are calculated from Eq. (3.2.12) using average values of the esti-
mates of c1 and X1,1 (Figs. C.11 and C.12). The theoretical estimates of
the bias, based on the estimates of c1 and X1,1, agree with the experimen-
tally measured bias, both locally on the DNA (Fig. C.15) and globally. The
average value of the bias is bpDq � 0.104 � 0.014 µm2{s and the mean differ-
ence between the experimentally estimated and theoretically predicted bias is
∆bpDq � �0.014� 0.012 µm2{s.

For time-series longer than N � 35 recorded in the experimental window
we observe a dispersion in estimated diffusion coefficients, which is two times
larger than the standard deviation we would expect if all proteins had the same

diffusion coefficient. The measured sample standard deviation is std
� pD	

�
0.29 � 0.03 µm2{s, while the expected standard deviation due to stochastic
estimation error is xstd pDqy � 0.16 µm2s.

C.4.2 Crowding on the DNA

Collisions between proteins on the DNA could possibly induce an increased
dispersion of diffusion coefficient estimates, and could thus give a simple expla-
nation of the dispersion we observe in the experimentally measured diffusion
coefficients. When two proteins encounter each other on the DNA, we expect
that they reflect if they are on the same strand while they may pass each other
if they are on opposite strands. Besides the fluorescent proteins we record on
the DNA an unknown number of bleached “dark” proteins will be bound to
and diffusion on the DNA. So collisions may occur that we cannot see. The
experiment is optimized to have the least dark proteins possible. So we expect
that the number of dark proteins bound to the DNA is on the order, or smaller,
than the number of visible proteins (5-10)3. Even at concentrations ten times
higher than this dark proteins only induce a slight change in the mean and
dispersion of estimated diffusion coefficients compared to their values for a
free protein (Table C.1). This change is much too small to account for the
high spread we see in the experimental data. Furthermore, collisions between
proteins do not cause a correlation between measured diffusion coefficients and

3Since the sample is illuminated by TIRF, the exciting light intensity is low except very
close to the coverslip surface, thus proteins in bulk are not exposed to much light before
binding to the DNA, and not many proteins are expected to bleach before binding, which
means the number of bleached proteins on the DNA is low, i.e., we expect it to be lower
than the number of visible proteins.
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residence times.

c N D r104 s�1s Var
�
D
� r106 s�1s Var pDq0 r106 s�1s

0.001 10 1.984� 0.005 80.1� 0.8 78.7
100 1.984� 0.005 8.2� 0.2 7.9
1000 1.984� 0.006 0.09� 0.02 0.08

0.03 10 1.910� 0.005 75.5� 0.8 73.0
100 1.910� 0.006 8.8� 0.3 7.3
1000 1.910� 0.006 1.07� 0.09 0.73

0.01 10 1.719� 0.005 66.6� 0.07 59.1
100 1.719� 0.005 8.9� 0.2 5.9
1000 1.719� 0.007 1.4� 0.1 0.6

Table C.1: Results of Monte Carlo simulations to test the influence of molec-
ular crowding on the estimates of diffusion coefficients. Per-
formed on a population of random walkers distributed randomly
on a lattice of 3000 sites with periodic boundary conditions.
Diffusion coefficients were estimated from time-series measured
with time-lapse ∆t � 11 ms. The jump rate of the walk-
ers was adjusted to match the experimental conditions, i.e.,
τ0 � 1{p2Dq � 2.5 � 10�5 s, corresponding to a diffusion coef-
ficient of D � 0.5 µm2{s. The number of sites was chosen to
match the length of the DNA. The DNA length is 48, 500 bp
long and each protein is approximately 15 bp wide, so the lattice
size is l � 48.500{15 � 3000.

C.4.3 Estimation for two-state diffusion

The estimators presented in this thesis have been derived under the assump-
tion that the diffusion coefficient of the measured particle remains constant
throughout the measurement. Our analysis of the experimental data of hOgg1
proteins diffusing on DNA suggests that proteins switch stochastically between
two or more states, in contradiction with our initial assumption. However, if
the switching is independent of protein position the statistical properties of
the estimators do not change. We only estimate the weighted mean of the
diffusion coefficients instead of a single diffusion coefficient. This is due to the
particular mathematical nature of Brownian motion (properties i) and ii) de-
fined in Sec. A.1.1). For a diffusing particle switching between two states with
different diffusion coefficients D1 and D2 the measured displacement during a
time-lapse ∆t is

∆xn �
»
tPTα

a
2D1ηtdt�

»
tPT1�α

a
2D2ηtdt ,

where ηt is continuous-time standard white noise, Tα is the set of times, that
the protein spends in state 1, T1�α is the times it spends in state 2, and
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Tα Y T1�α � rtn, tn �∆tr. The autocovariance of the displacements is then

x∆xm∆xny � 2∆trαD1 � p1� αqD2sδm,n ,

i.e, the same as for diffusion with a constant diffusion coefficient equal to the
weighted average of D1 and D2.

C.5 Random walker in a quenched random poten-
tial landscape

We examine in this section whether a model for diffusion on DNA, which
models the protein on the DNA as a random walker in a quenched random
energy landscape, can reproduce the experimentally measured distributions of
diffusion coefficients and residence times and the observed correlation between
them.

The model, proposed by Slutsky and Mirny [20], assumes that the binding
energies E�Ui between the protein and the DNA are independent and normal
distributed, where E is the unspecific mean binding energy between protein
and DNA, and Ui is the specific part of the binding energy at site i (Fig. C.16).
The rate for moving from site i to a neighboring site i� 1 is assumed to be

ri�1 � 1{p2τ0qe�pUi�1�Uiq{kBT ,

where the characteristic trial time τ0 is the time between successive attempts
to move to a neighboring site, and the unbinding rate of a protein located at
a site i on the DNA is

1{τ � 1{τ0e
�pE�Uiq{kBT .

Approximate expressions for the mean diffusion coefficient and residence time
of the proteins on DNA are derived in [20],

D � 1

2τ0

c
1� 1

2
σ2e�7σ2{4 , (C.5.1)

and

xty � 1

τ0
eE�

1
2
σ2

. (C.5.2)

If we know the values of the diffusion coefficient, the characteristic residence
time, and the characteristic trial time τ0 for a protein on DNA, Eqs. (C.5.1)
and (C.5.2) give us approximate values for the mean binding energy E and the
standard deviation σ of the specific energies. The characteristic trial time sets
the time-scale of protein movement in the energy landscape on the DNA. An
order-of-magnitude estimate of τ0 can be found by assuming that the thermal
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motion of the surrounding fluid is the same on the DNA surface as in bulk and
that the protein does not experience any energy barriers when moving between
sites. This gives τ0 � 1 bp2{Dfree � 10�8 s [20]. This estimate is an approx-
imative lower bound on the characteristic trial time, since we have a no-slip
boundary condition on the DNA and thus that thermal fluctuations are smaller
near the DNA than in bulk. Furthermore, if the diffusion involves barrier cross-
ing between sites, the trial time will be increased further. An upper bound
on τ0 can be estimated from the measured mean diffusion coefficient, since for
a completely flat landscape D � 1{2τ0, we must have τ0 ¥ 1{2D � 10�7 s.
Thus for hOgg1 proteins diffusing on DNA τ0 � 10�8 � 10�7 s.

We simulate an ensemble of random walkers moving in a quenched random en-
ergy landscape using the Gillespie algorithm [84] for τ0 � 10�8 s, τ0 � 2�10�8 s,
and τ0 � 10�7 s. For each Monte Carlo experiment we choose E and σ such
that mean diffusion coefficient and residence time are approximately the same
as observed experimentally. In none of the cases do we see a deviation from
exponentially distributed residence times or correlations between diffusion co-
efficients and residence times. The dynamics are fast enough that the system
effectively self-averages during one time-lapse.

The Monte Carlo simulations show that Eqs. (C.5.1) and (C.5.2) are not accu-
rate for all physically relevant parameter values. In particular they are inaccu-
rate for parameter values corresponding to those measured experimentally for
hOgg1 proteins diffusing on DNA. Equations (C.5.1) and (C.5.2) overestimate
the diffusion coefficient by 75-200% and underestimate the mean residence
time by 30-50%. In general the mean binding energy should be larger than
E � 14 kBT and the standard deviation should be lower than σ � 0.5 kBT for
the expressions to be accurate. A thorough study of when these expressions
apply and if other more accurate expressions can be derived when Eqs. (C.5.1)
and (C.5.2) do not apply, would be interesting, but is beyond the scope of this
work.
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Figure C.8: Spatial distribution of proteins on the DNA. Time-series shorter
than tmin � 0.132 s (corresponding to Nmin � 12 measurements)
have been discarded. A Pearson’s chi-squared test for uniform
distribution over the interval x P r4.5 µm, 11.5 µms gives a p-
value of p � 0.09.
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Figure C.9: Variance of the transversal (y-direction) position of the mea-
sured time-series versus mean position of the proteins on the
DNA. Time-series shorter than tmin � 0.132 s (corresponding
to Nmin � 12 measurements) have been discarded. (Time-series
inside experimental window x P r4.5 µm, 11.5 µms: filled circles;
time-series outside experimental window: open circles.) Perpen-
dicular movement increases as one moves further downstream on
the DNA and closer to the free end.
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Figure C.10: Mean longitudinal displacement of proteins on DNA as a func-
tion of the proteins’ mean position on the DNA. (Mean drift for
time-series inside experimental window x P r4.5 µm, 11.5 µms:
closed circles; mean drift of time-series outside experimental
window: open circles; average time-series inside experimental
window: full line; zero: dashed line.)
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Figure C.11: MLE of c1 for time-series longer than N � 35. (Estimates
inside the experimental window x P r4.5 µm, 11.5 µms: filled
squares, blue; estimates outside experimental window: open
squares, grey.) Chi-square variance test for constant c1 gives a
p-value of p � 4 � 10�5. Error bars are estimated errors on the
mean (s.e.m.) obtained from the weighted sample variances.
The correlation time of DNA fluctuations is τ1 � 1{c1 � 40-
50 ms for the transversal movement, which corresponds to a
longitudinal correlation time of 2τ1 � 20-25 ms. In perfect
agreement with experimental measurements of extension fluc-
tuations of YO-YO dye stained λ-DNA, which reported a lon-
gitudinal relaxation time of 23� 4 ms [19].
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Figure C.12: a) MLE of c1X1,1 for time-series longer than N � 35. Chi-
square variance test for constant c1X1,1 gives p � 0.85. The
average value of c1X1,1 is c1X1,1 � 2.1 � 0.1 µm{s. b)
MLE of c1Y1 for time-series longer than N � 35. Chi-
square variance test for constant c1Y1 gives p � 0.21, and
c1Y1 � 0.20� 0.02 µm2{s. (Estimates inside the experimental
window x P r4.5 µm, 11.5 µms: filled squares, blue; estimates
outside experimental window: open squares, grey.) Error bars
are estimated errors on the mean (s.e.m.) obtained from the
weighted sample variances.
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Figure C.13: a) MLE of positional noise variance σ2, which explic-
itly accounts for DNA motion, for time-series longer than
N � 35. (Estimates inside the experimental window x P
r4.5 µm, 11.5 µms: filled squares, blue; estimates outside ex-
perimental window: open squares, grey.) Chi-square variance
test for constant σ2 gives p � 0.004 b) CVE of σ2, which does
not account for DNA motion, for time-series longer than or
equal to N � 12. (Estimates inside the experimental win-
dow: filled diamonds, green; estimates outside experimental
window: open diamonds, grey.) The DNA fluctuations induce
a bias in the estimates of σ2 of approximately a factor two.
Chi-square variance test for constant σ2 gives p � 0.003. Er-
ror bars are estimated errors on the mean (s.e.m.) obtained
from the weighted sample variances.
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Figure C.14: a) MLE of diffusion coefficients D, which explicitly accounts
for DNA motion, for time-series longer than N ¡ 35. (Esti-
mates inside the experimental window x P r4.5 µm, 11.5 µms:
filled squares, blue; estimates outside experimental window:
open squares, grey.) Chi-square variance test for constant
mean D gives p � 0.29 b) CVE of D, which does not account
for DNA fluctuations, for time-series longer than or equal to
N � 12. (Estimates inside the experimental window : filled di-
amonds, green; estimates outside experimental window: open
diamonds, grey.) Chi-square variance test for constant mean
D gives p � 0.02. Error bars are estimated errors on the
mean (s.e.m.) obtained from the unweighted sample variances.
These underestimate the real dispersion, since errors on indi-
vidual estimates differ due to differing time-series lengths. We
cannot calculate the true error bars, but the errors shown are
lower bounds. Chi-squared testing for variance thus underes-
timates the associated p-values for the hypothesis that mean
diffusion coefficient is constant over the DNA.
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Figure C.15: Bias bpDq of the CVE of the diffusion coefficient for time-series
longer than N � 35. a) Experimental estimate of the bias,
calculated as pDcve � pDmle. (Estimates inside the experimental
window x P r4.5 µm, 11.5 µms: filled squares; estimates out-
side experimental window: open squares) b) Differences be-
tween the theoretical and the experimental estimates of the
bias of the CVE. (Estimates inside the experimental window
x P r4.5 µm, 11.5 µms: filled circles, green; estimates outside
experimental window: open circles, grey.) The theoretical bias
is calculated using weighted means of the estimates of DNA
parameters c1 and X1,1.
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Figure C.16: An example of the energy landscape experienced by a protein
diffusing on DNA. The protein on DNA is modeled as a random
walker on a lattice with normal distributed binding energies
Ei � E � Ui, where Ui � N p0, σq.
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Figure D.1: Diffusion coefficient estimates pD versus protein residence time
on DNA, t, for all time-series. (MLE, which explicitly takes
DNA motion into account: blue squares; CVE where bias due
DNA motion is subtracted: cyan circles; Estimates outside of
the experimental window: open symbols, grey.) Including time-
series outside of the experimental window does not alter results
significantly.
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Figure D.2: Comparison of diffusion coefficient estimates from time-series
longer than N � 145, estimated using an MLE where one DNA
mode is included and an MLE where two DNA modes are in-
cluded. (One-mode MLE: blue squares; two-modes MLE: red
triangles; Estimates outside of the experimental window: open
symbols, grey.) No difference between the estimates obtained
using the one-mode and two-modes theories is observed. Aver-
age diffusion coefficient estimates are D1 � 0.14 � 0.02 µm2{s
for one-mode MLE and D2 � 0.14� 0.02 µm2{s for two-modes
MLE.
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