
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 20, 2017

Estimation of the FRF Through the Improved Local Bandwidth Selection in the Local
Polynomial Method

Thummala, Prasanth; Schoukens, Johan

Published in:
I E E E Transactions on Instrumentation and Measurement

Link to article, DOI:
10.1109/TIM.2012.2196393

Publication date:
2012

Link back to DTU Orbit

Citation (APA):
Thummala, P., & Schoukens, J. (2012). Estimation of the FRF Through the Improved Local Bandwidth Selection
in the Local Polynomial Method. I E E E Transactions on Instrumentation and Measurement, 61(10), 2833-2843.
DOI: 10.1109/TIM.2012.2196393

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13796713?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/TIM.2012.2196393
http://orbit.dtu.dk/en/publications/estimation-of-the-frf-through-the-improved-local-bandwidth-selection-in-the-local-polynomial-method(88bcea6d-7b63-42b7-b3a8-986e90ede174).html


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 1

Estimation of the FRF Through the Improved Local
Bandwidth Selection in the Local Polynomial Method

Prasanth Thummala, Student Member, IEEE, and Johan Schoukens, Fellow, IEEE

Abstract—This paper presents a nonparametric method to mea-
sure an improved frequency response function (FRF) of a linear
dynamic system excited by a random input. Recently, the local
polynomial method (LPM) has been proposed as a technique
to reduce the leakage errors on FRF measurements. The noise
sensitivity of the LPM was similar to that of the classical win-
dowing methods, while the leakage rejection is improved from
an O(N−1) to an O(N−3). This paper shows a methodology,
to automatically tune the parameter of the LPM, viz., the local
bandwidth that sets how many neighboring frequency lines are
combined in a single-point estimate, to get lower noise sensitivity
by increasing the smoothening of the original LPM, without any
user interaction. The balance between noise reduction and bias
error will be automatically retrieved.

Index Terms—Bias–variance tradeoff, leakage rejection, local
bandwidth, noise rejection, system identification.

I. INTRODUCTION

L INEAR dynamic models are very useful to understand,
control, and predict physical processes and to design new

products [1]–[4]. System identification provides a mathematical
model for a dynamic system starting from measured inputs
and outputs. The nonparametric modeling will be of particular
interest even if a parametric modeling is the final goal for many
reasons. Nonparametric methods are noniterative and require no
user interaction. By providing the user the FRF of the plant and
the power spectrum of the disturbing noise, it is easy to get an
idea about the complexity of the modeling problem [1], [5], [6].
This gives a flexibility to verify the quality of the measurements
at a very early stage of the experiment, giving the user the op-
portunity to improve the experiments if necessary. The FRF is a
very attractive tool for the model validation/selection purposes.
There also is a possibility to check for the presence of nonlinear
distortions and their analysis before starting a more demanding
parametric identification process [4], [7].
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The major problem in estimating the nonparametric FRF and
the noise covariance matrix, using arbitrary excitation, is the
suppression of the system and noise leakage errors while at the
same time, the noise sensitivity should be as low as possible.
The leakage errors are introduced when transforming a finite
number N of the time-domain samples to the frequency domain
via the discrete Fourier transform (DFT). Even without disturb-
ing noise, the FRF measurements are corrupted by these errors
due to the windowing effects: Only a finite record length can be
measured and processed [14]. These problems can be avoided
by measuring an integer number of periods of the steady-state
response of the system to a periodic excitation. This requires
that the system transient response decayed well below the
noise level, which is done at the cost of lost measurement
time since the transient information cannot be used. In many
applications, the user wants to stick to random excitations,
either for technical reasons or by tradition in a given application
field. However, in random excitations, the steady state is never
reached.

Until the 1980s, leakage errors on the FRF measurements
were studied at the input and output signal levels, without
considering the linear relation between the input and output
[1], [8]. In a series of papers [9]–[13], the importance of
this relation was recognized: In FRF measurements, the errors
are due to unknown past inputs and missing future outputs.
Both the effects are highly structured with smooth frequency
characteristics; this key observation leads to a new analysis
of the existing methods and to a better performing method to
estimate the FRF and the power spectrum of the disturbing
noise [14]–[16], called “the local polynomial method” (LPM).

Elimination of the system and noise leakage errors via time-
domain windowing is handled by spectral analysis methods. In
the FRF estimation, we study the linear relation between two
signals, while the spectral estimation is focused on a single
signal [17]. For that reason, spectral modeling methods like
autoregressive, autoregressive moving average are not the first
choice to measure the FRF. A major problem is that the stated
methods do not give an estimate of the phases. To reduce
the noise on the FRF estimates, the record of N samples is
divided into M subrecords of length N/M , which decreases the
frequency resolution from fs/N to Mfs/N , and the results are
averaged over the M subrecords. Hence, choosing M is making
a tradeoff between, on the one hand, the leakage elimination
and the frequency resolution (the larger the M , the larger the
leakage errors and the smaller the frequency resolution) and,
on the other hand, the noise suppression (the variance of the
estimates decreases by M ) [1]. The LPM does not split the data
into subrecords. The basic assumption in the LPM is that the
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system and noise transfer functions are smooth functions of the
frequency, which can be locally approximated by a low-degree
polynomial. The LPM has a maximal frequency resolution
fs/N and suppresses much better the system and noise leakage
errors while maintaining a useful noise averaging effect that is
at least as good as that of the spectral analysis methods, when
making the comparison for a same frequency resolution.

This paper extends the LPM, to automatically tune the pa-
rameters of the LPM, without any user interaction, to get an
improved balance between leakage rejection, noise rejection,
and bias errors. The local bandwidth (n) and order of the local
polynomial approximation (R) are the important parameters to
be tuned in the LPM; between these, the most important pa-
rameter to be tuned is the local bandwidth, which decides how
many neighboring frequencies are combined to generate the
local point estimate. Increasing the local bandwidth reduces the
variance (better smoothening) but increases the bias (increased
interpolation error) so the bias–variance tradeoff is made, to
tune the local bandwidth. If the FRF data are used as the input
of a parametric estimation step, the only valid choice is to keep
the bias errors as small as possible by selecting the smallest
local bandwidth.

In Section II, we briefly describe the LPM. We discuss bal-
ancing of variance–bias in Section III. Next, we discuss how to
select the improved local bandwidth of the method without user
interaction in Section IV and eventually illustrate the proposed
method on simulations in Section V. We made comparison
of the proposed method with the classical windowing method
(Hanning window) in Section VI, followed by the conclusions
in Section VII.

II. LPM

In this section, we first describe the system and measurement
setup in Section II-A; next, we discuss briefly the basic idea
in Section II-B, and we formulate the LPM as a linear least
squares problem that is solved frequency per frequency. Finally,
we discuss very briefly the FRF estimation using a Hanning
window in Section II-C. We refer the reader to [14] for a
detailed theoretical study of the stated LPM.

A. System

In this paper, a linear discrete-time single-input single-output
system G(q) excited with random noise is considered

y(t) = G(q)u(t)

with q−1 being the backward shift operator (q−1x(t) =
x(t− 1)). The exact input u(t) is assumed to be known, while
the output is disturbed with additive noise v(t). The noise v(t)
is assumed to be filtered white noise

v(t) = H(q)e(t).

For an infinitely long data record t = −∞, . . . , N − 1, the
input–output relation is

y(t) = G(q)u(t) +H(q)e(t). (1)

For a finite record length t = 0, . . . , N − 1, as in practical
applications, (1) has to be extended with the initial condition
(transient) effects of the dynamic plant (tG(t)) and the noise
system (tH(t)) [4]

y(t) = G(q)u(t) +H(q)e(t) + tG(t) + tH(t). (2)

Using the DFT

X(k) =
1√
N

N−1∑
t=0

x(t)e−j2πkt/N

an exact frequency-domain formulation of (2) is obtained

Y (k)=G(Ωk)U(k)+H(Ωk)E(k)+TG(Ωk)+TH(Ωk) (3)

where the index k points to the frequency kfs/N with fs
being the sampling frequency, and the generalized frequency
Ωk = ej2πkfs/N . The contributions U(k), E(k), and Y (k) are
an O(N0), and the generalized transient terms of the plant and
noise dynamics, due to beginning and end effects TG(Ωk) and
TH(Ωk), are an O(N−(1/2)). It is most important for the rest
of this paper to understand that (3) is an exact relation [4],
[21]–[23]. The notation O(N−α), called “ordo,” stands for a
variable that goes to zero at least as fast as N−α.

The transfer functions G(Ωk) and H(Ωk) as well as the leak-
age contributions TG(Ωk) and TH(Ωk) are continuous function
of the frequency, and they are described by rational forms in Ω
and, hence, are smooth functions of the frequency.

The LPM makes an optimal use of the smooth behavior of G
and TG to significantly reduce the leakage errors. This results
in superior properties compared with the classical windowing
methods.

B. LPM: Basic Idea and Brief Description

In this section, we give a brief introduction to the LPM. A
detailed description, together with a full analysis, is given in
[14]–[16]. The basic idea of the LPM is very simple: The trans-
fer function G and the transient terms TG and TH are smooth
functions of the frequency so that they can be approximated in a
narrow frequency band, around a user-specified frequency k by
a complex polynomial. The complex polynomial parameters are
estimated from the experimental data. Next, the FRF Gk(Ωk)
obtained from a local bandwidth, centered around frequency k,
is retrieved from this local polynomial model as the measure-
ment of the FRF at the frequency Ωk.

Consider the equivalent relation for the DFT spectra equation
(3), and rewrite it as

Y (k) =Gk(Ωk)U(k) + TG(Ωk) +H(Ωk)E(k) + TH(Ωk)
=Gk(Ωk)U(k) + T (Ωk) + V (k) (4)

where the generalized transient term T (Ωk) accounts for the
leakage of the plant and the noise dynamics with T (Ωk) =
TG(Ωk) + TH(Ωk) = O(N−(1/2)) [4], [21]. The remaining
noise term is V (k) = H(Ωk)E(k). The terms Gk(Ωk)U(k)
and V (k) are an O(N0).

Making use of the smoothness of Gk(Ωk) and T (Ωk), the
following Taylor series representation holds for the frequency
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lines k + r, with r = 0,±1, . . . ,±n

Gk+r(Ωk+r) =Gk(Ωk) +

R∑
s=1

gs(k)r
s +O

(( r

N

)(R+1)
)

T (Ωk+r) =T (Ωk) +

R∑
s=1

ts(k)r
s

+
(
N− 1

2

)
O

(( r

N

)(R+1)
)

(5)

where the remainder term O((r/N)(R+1)) is the polynomial in-
terpolation error. Putting all the parameters Gk(Ωk) and T (Ωk)
and the parameters of the Taylor series gs and ts with s =
1, . . . , R in a column vector θ and their respective coefficients
in a row vector K(k, r) allows (4) to be rewritten (neglecting
the remainders) as

Y (k + r) = K(k, r)θ + V (k). (6)

Collecting (6) for r = −n,−n+ 1, . . . , 0, . . . , n finally gives

Yn = KnΘ+ Vn (7)

with Yn, Vn, and Kn being the values of Y (k + r), V (k + r),
and K(k, r) stacked on top of one another. Observe that the
matrix Kn depends upon U . Solving this set of equations [(7)]
in the unknown Θ, in least squares sense, eventually provides
the polynomial least squares estimate for the FRF Ĝk(Ωk) cen-
tered around frequency k [14], [16]. In order to get a full rank
matrix Kn, enough spectral lines should be combined: 2n+
1 > 2(R+ 1). The smallest interpolation error is obtained for
n = R+ 1.

The LPM can also be used to solve the spectral estimation
of the disturbing noise problem [14], [15]. The residual of the
least squares fit of (7) is

V̂n = Yn −KnΘ = YnPn (8)

with Pn = I2n+1 −Kn(K
H
n Kn)

−1
KH

n being an idempotent
projection matrix and

V̂n = VnPn. (9)

An estimate of the noise covariance matrix CV = cov(V (k))
where V (k) = H(Ωk)E(k) is

ĈV (k) =
1

q
V̂nV̂

H
n (10)

with q = 2n+ 1− 2(R+ 1) = 2(n−R)− 1. The main focus
in this paper is to make an improved bias–variance tradeoff on
the estimated FRF Ĝk(Ωk).

C. Classical FRF Estimation Approach: Hanning Window

The leakage errors on the FRF measurements were also
reduced by the windowing methods to some extent [1], [14],
[15], [18]

ĜHann(Ωk) = G(Ωk) +GleakHann +GintHann (11)

where
GleakHann = O(N−5/2); system leakage error (the leak-

age error is reduced from an O(N−1/2) to an
O(N−5/2) by applying a Hanning window);

GintHann = O(N−1); interpolation error, which dominates
the results.

The disadvantages of this approach are loss in the frequency
resolution [1] and increased leakage errors as explained later in
Section VI.

III. BALANCING OF VARIANCE AND BIAS

The LPM rejects leakage errors quite well when measuring
the FRF. The errors of the LPM are studied in detail in [14]
and [15]. In this paper, we propose a method to reduce also
the noise sensitivity without any user interaction. Increasing the
local bandwidth n of the LPM will reduce the variance on the
estimated FRF but increases the bias on it. We want to retrieve
automatically the balance between the bias error and the noise
rejection (variance error). The goal of this paper is to tune the
choice for the local bandwidth n, without any user interaction
for a fixed polynomial order R, while the system is solved
with different local bandwidths. In Section III-A, we discuss
the bias–variance tradeoff; next, we discuss improved balance
of the bias and the variance in Section III-B.

A. Bias–Variance Tradeoff

The detailed derivations for the bias and the variance are
given in [14]; in this paper, we discuss briefly about them.

The bias on the estimated FRF Ĝk(Ωk) is

E
{
Ĝk(Ωk)

}
= Gk(Ωk) + E{Gleak +Gint +GV } (12)

where
Gleak system leakage error with E{Gleak} = O(((2n+

1)/N)R+2) = O(nR+2). This error is correlated with
the input and, hence, with Kn;

Gint polynomial interpolation error with E{Gint} =

(G
(R+1)
k (Ωk))O(((2n+1)/N)R+1)=O(nR+1). This

error stems from the remainder of the polynomial inter-
polation of the FRF over 2n+1 frequencies. The errors
E{Gleak} and E{Gint} clearly show that the bias error
increases with the local bandwidth n of the LPM;

GV error due to the disturbing noise with E{GV } = 0.
The variance on the FRF estimate Ĝk(Ωk) is

σ̂2
Ĝ
(k) = σ2

GV
(k) + σ2

leakG(k) + σ2
intG(k) (13)

where
σ2
GV

(k) =O(nθ/(2n+1))=O(2(R+1)/(2n+1)); the
variance due to the disturbing noise, with nθ=
2(R+1) being the number of complex parameters
to be estimated in polynomial approximation
expressions using 2n+1 complex equations. The
disturbing noise variance is directly proportional
to the number of parameters to be estimated and
inversely proportional to the local bandwidth used.
Thus, the noise variance is growing proportional
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Fig. 1. Illustration of the behavior of the bias error and variance error with
respect to the local bandwidth (n).

with the number of parameters. If a large local
bandwidth is used, the variance due to the
disturbing noise will be reduced;

σ2
leakG(k) = O((n/N)(2R+3)); the variance of the leakage

error, and it grows with n;
σ2
intG(k) = (|G(R+1)

k (Ωk)|2)O((n/N)2(R+1)); the variance
of the interpolation error, and it also grows with n.

By selecting a larger value of n, the noise sensitivity of
Ĝk(Ωk) will be reduced (assuming that σ2

GV
dominates) at

a cost of a growing interpolation error. The local bandwidth
should be set to the smallest value (the minimal local band-
width), in the absence of disturbing noise.

From Fig. 1, we can clearly understand that the bias error
increases with the local bandwidth (n), and variance error due
to the disturbing noise decreases with it. We need to make the
bias–variance tradeoff so that the improved local bandwidth
(nopt) at the local minimum of the total error can be selected.

B. Improved Balance of Model Errors–Noise (Bias–Variance)

1) Choice of the Polynomial Order R: Assume a fixed
local bandwidth n. The noise interpolation error is E{Gint} =
O(((2n+ 1)/N)R+1), and the ratio ((2n+ 1)/N) � 1;
hence, E{Gint} decreases with R. Thus, increasing R will
reduce the bias errors, but the calculation time increases pro-
portionally as an O(R3) due to the larger number of parameters
nθ = 2(R+ 1) to be estimated. In this paper, we put R = 2.
Optimizing the choice of R is out of the scope of this paper.

2) Choice of the Local Bandwidth n: Assume a fixed
polynomial order R = 2. The bias error E{Gleak +Gint} =
O(nR+1) +O(nR+2) increases with the local bandwidth n,
and the noise variance σ2

GV
(k) = O(2(R+ 1)/(2n+ 1)) de-

creases with it. At each frequency, the improved value of n is
selected. In Section IV, we discuss the choice of improved local
bandwidth with the bias–variance tradeoff.

IV. SELECTION OF THE IMPROVED LOCAL BANDWIDTH

To get a lower noise sensitivity for a fixed polynomial order
R, the local bandwidth n of the LPM has to be tuned. If n
is the local bandwidth of the LPM, then 2n+ 1 neighboring
frequency lines combine to generate the local point estimate
(the FRF Ĝk(Ωk), the estimate of Ĝ at frequency Ωk, ob-
tained from a local bandwidth centered around frequency k).
In Section IV-A, we describe the basic idea of the improved

Fig. 2. Multiple local polynomial estimates for local bandwidth n = 3 (with-
out disturbing noise). (Bold line marked with •) FRF estimate Ĝk(Ωk).
(Dotted lines) FRF estimates Ĝk+r(Ωk+r) with r = [−3, . . . , 0, . . . , 3].

local bandwidth choice; next, we discuss how to estimate the
FRF at the neighboring frequencies and how to compute the
maximum deviation in Sections IV-B and IV-C, respectively.
We discuss the generalized expressions for the FRFs at the
neighboring frequencies and for the maximum deviation in
Section IV-D. Next, we discuss the estimation of the improved
FRF by selecting the improved local bandwidth in Section IV-E,
followed by elimination of spikes in the improved local band-
width choice in Section IV-F.

A. Improved Local Bandwidth Choice: Basic Idea

We have looked for number of principles for the selection
of the improved local bandwidth; the first one is based on
a classical Akaike information criterion (AIC criterion) [3],
[19], [20]. The AIC criterion failed because, in [20], it was
assumed that the variance of the errors does not vary within the
local frequency interval (k + [−n, . . . , n]), but often, the noise
variance varies very fast in the frequency interval particularly if
larger intervals are considered. Thus, we have looked for a more
robust criterion which can also consider the fast variation of the
noise variance. In this paper, we propose a new criterion for the
improved local bandwidth choice, without any assumption and
which works well at all frequencies.

The basic idea for the choice of the improved local bandwidth
is as follows.

1) For a given local bandwidth n, select a frequency
interval k + r = k + [−n, . . . , 0, . . . , n] = [k − n, . . . ,
0, . . . , k + n] (of length 2n+ 1) around a frequency Ωk

of interest, with r = [−n,−n+ 1, . . . ,−1, 0, 1, . . . , n−
1, n] being the neighboring frequency points.

2) Fit a polynomial to input–output frequency data in the
interval using a least squares approach (5) and (7).

3) Compute the maximum of the absolute value of the dif-
ference among the polynomial function/FRF estimated at
Ωk(Ĝk(Ωk)), centered around frequency k, and the FRFs
evaluated at the frequencies Ωk+r(Ĝk+r(Ωk+r)), cen-
tered around the neighboring frequencies k + r, within
the same interval (16) and (17).

4) Repeat steps 1)–3) for a range of local bandwidths nAll =
[n1, n2, . . . , nq−1, nq].

5) Select the improved local bandwidth as the bandwidth
that gives the minimum value in step 3) (20).
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Fig. 3. Multiple local polynomial estimates for local bandwidth n = 3
(with disturbing noise being added). (Bold line marked with •) FRF es-
timate Ĝk(Ωk). (Dotted lines) FRF estimates Ĝk+r(Ωk+r) with r =
[−3, . . . , 0, . . . , 3].

We plot the local polynomial estimates in the interval [k −
n, . . . , 0, . . . , k + n] using the polynomial function evaluated
at Ωk and at the neighboring frequencies. Ideally, without
disturbing noise, the local polynomial estimates merge with
each other (Fig. 2). If the disturbing noise is added to the output,
the local polynomial estimates will not merge (Fig. 3); there is a
deviation among the FRF estimated at Ωk centered around the
frequency k and the FRFs estimated at the frequencies Ωk+r

centered around the frequencies k + r within the same interval.
This paper considers the worst case scenario of the local

polynomial estimates, i.e., estimate the maximum devia-
tion among the FRF centered around frequency k and the
FRFs centered around frequencies k + r in the interval [k −
n, . . . , 0, . . . , k + n], for a range of local bandwidths nAll. This
is the reason for selecting the cost function as the maximum
of the absolute value of the deviation among the FRF Ĝk(Ωk)
and the FRFs Ĝk+r(Ωk+r) in a given frequency interval.
Finally, for the improved local bandwidth choice, consider the
least worst case situation, i.e., minimize the cost function. We
discuss the first two steps in the choice of the improved local
bandwidth in Section IV-B.

B. Estimation of the FRF at the Neighboring Frequencies in
the LPM

Estimate the FRF Ĝk(Ωk) at a frequency Ωk, centered
around a frequency k, using a linear least squares procedure
[by solving (7)]. Consider a frequency interval k + r around
the frequency Ωk. For a given local bandwidth n, the FRFs
evaluated at the neighboring frequencies Ωk+r [(5)] within the
interval k + r, centered around frequencies k + r, are

Ĝk+r(Ωk+r) = Ĝk(Ωk) + g1(Ωk)r + g2(Ωk)r
2. (14)

Similarly, the estimated FRFs at frequencies Ωk+r+i are

Ĝk+r(Ωk+r+i) = Ĝk(Ωk+i) + g1(Ωk+i)(r + i)
+ g2(Ωk+i)(r + i)2 (15)

with r = [−n, . . . ,−1, 0, 1, . . . , n] being the neighboring fre-
quency points. We discuss step 3) in the improved local band-
width choice in Section IV-C.

C. Estimation of the Maximum of the Absolute Value of
the Deviation

The maximum of the absolute value of the deviation, among
the estimated FRF Ĝk(Ωk), at frequency Ωk centered around
frequency k, and the FRFs evaluated Ĝk+r(Ωk+r), centered
around frequencies k + r, is

δĜmax(Ωk) = max (abs (δG(Ωk))) (16)

where δG(Ωk) is the deviation among the FRF Ĝk(Ωk) and the
FRFs Ĝk+r(Ωk+r), at frequency Ωk which is given hereinafter

δG(Ωk) =
[(

Ĝk(Ωk)
)
−
(
Ĝk+r(Ωk+r)

)]
. (17)

Similarly, the maximum deviation at a frequency Ωk+i is

δĜmax(Ωk+i) = max (abs (δG(Ωk+i))) (18)

where

δG(Ωk+i) =
[(

Ĝk(Ωk+i)
)
−
(
Ĝk+r (Ωk+i+r)

)]
.

Fig. 2 shows the multiple local polynomial estimates for a
local bandwidth of n = 3 without disturbing noise (all local
polynomial estimates merge with each other). Fig. 3 shows
the multiple local polynomial estimates with disturbing noise.
From Fig. 3, we can clearly see that, at a frequency Ω319,
2n+ 1 = 7 neighboring FRF estimates combine to generate the
FRF Ĝ319(Ω319). We discuss steps 4) and 5) in the choice of the
improved local bandwidth in detail, in Sections IV-D and IV-E,
respectively.

D. Generalized Expressions for a Given Local Bandwidth ni

To find the improved local bandwidth, we need to estimate
the FRFs and the maximum deviations for a range of local band-
widths ni with i = 1, 2, . . . , q. In this section, we generalize all
expressions in Sections IV-B and IV-C [(14)–(18)], for a given
local bandwidth ni.

We denote the estimated FRF at a given frequency Ωk,
obtained from a linear least squares procedure as Ĝni

k (Ωk).
Following the same notation, the generalized expression for the
FRFs evaluated at the neighboring frequencies Ωk+r within the
interval k + r, centered around the frequencies k + r, is

Ĝni

k+r(Ωk+r) = Ĝni

k (Ωk) + gni
1 (Ωk)r + gni

2 (Ωk)r
2 (19)

with r = [−ni, . . . , 0, . . . , ni] being the neighboring frequency
points. The coefficients gni

1 and gni
2 are estimated for each

local bandwidth (ni) using a linear least squares procedure, as
discussed in Section II.

The generalized expression for the maximum deviation at
frequency Ωk among the estimated FRF Ĝ(Ωk) and the FRFs
evaluated at the center frequencies k + r for a given bandwidth
ni is

δĜni
max(Ωk) = max (abs (δGni(Ωk))) (20)

where δGni(Ωk) is the deviation among the estimated FRF
Ĝni

k (Ωk) and the FRFs evaluated at the frequencies centered



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT

around the frequencies k + r, for a given local bandwidth ni,
and is given hereinafter

δGni(Ωk) =
((

Ĝni

k (Ωk)
)
−
(
Ĝni

k+r(Ωk+r)
))

(21)

with r = [−ni, . . . ,−1, 0, 1, . . . , ni] being the neighboring fre-
quency points for a given local bandwidth ni.

E. Improved Local Bandwidth Selection

Once the maximum deviations for all local bandwidths ni,
with i = 1, 2, . . . , q, are calculated from (20), then, the im-
proved local bandwidth nopt at a given frequency Ωk is that
local bandwidth which produces the lowest value of all the
maximum deviations.

The improved local bandwidth nopt is given by

nopt(Ωk) = argmin
ni

(
δĜni

max(Ωk)
)
. (22)

The improved FRF is estimated as

Ĝimproved(Ωk) = Ĝ
nopt

k (Ωk). (23)

The minimal FRF (FRF calculated with the smallest local
bandwidth, n = 3) at each frequency Ωk is estimated as

Ĝminimal(Ωk) = Ĝ3
k(Ωk). (24)

F. Elimination of Spikes in the Improved Local
Bandwidth at Resonance

At some frequencies, it was observed that the improved local
bandwidth around a resonance frequency suddenly raised to the
maximum local bandwidth used, leading to spikes in the local
bandwidth selection. To eliminate this problem, the end edge
frequencies are eliminated for all local bandwidths. It turned out
from the simulations that this removed the problem of spikes.

V. EXAMPLE

A. Introduction

In this example, we show the improved local bandwidth se-
lection on three simulations. To validate the proposed method,
we solve the system with the disturbing noise added to the out-
put as well as without disturbing noise. Simulation 1 discusses
the effect of the disturbing noise on the improved local band-
width selection, simulation 2 discusses the effect of the dis-
turbing noise on the improved local bandwidth selection with
more data points, and simulation 3 discusses the improved local
bandwidth selection without disturbing noise. The degree R of
the polynomial interpolation is everywhere set equal to R = 2.

B. Simulation Setup

The plant is a resonating fourth-order discrete-time system
with G0(z

−1) = B(z−1)/A(z−1), with numerator coefficients
b = [0.1270, 0.5080, 0.7620, 0.5180, 0.1270] and denominator
coefficients a = [1.0000,−0.6072, 1.3825,−0.6302, 0.8869],
generated with the Matlab instruction [b, a] = cheby1(4, 20,
6(fc/fs)) with fc=0.1fs, b=b× 10, and b(4)=b(4)+0.01.

Fig. 4. Variation of the improved local bandwidth (nopt) as a function of the
frequency (NT = 3072). (Bold black line) G0. (Gray line) Improved window
width 2nopt.

A filtered white noise sequence is used to excite
the system; the coefficients of the generator filter are
the following: bGen = [0.6389, 1.2779, 0.6389] and aGen =
[1.0000, 1.1429, 0.4128], generated with the Matlab instruction
[bGen, aGen] = butter(2, 2(fGen/fs)) with fGen = 0.4fs.

In simulations 1 and 2, the output is disturbed by a
white noise with signal-to-noise ratio at the output of
20 dB for all frequencies; for simulation 3, no disturb-
ing noise is added. The length of simulations 1 and
3 is NT = (1024 + 2048) points. The sampling frequency
fs in all simulations is made equal to the number of data points
excluding the transient data points, i.e., fs = NT −NTrans =
2048. The length of simulation 2 is NT = (1024 + 2048× 4)
points. The first NTrans = 1024 points are used to eliminate the
initial transient effects of all simulations.

The given system is solved with the window widths wAll =
[6, 8, 10, 20, 40, 80, 160] or with the local bandwidths nAll =
[3, 4, 5, 10, 20, 40, 80]. The term window width w is twice of
the local bandwidth, i.e., if n is the local bandwidth, then the
window width is w = 2n. All simulations (in Sections V and
VI) are repeated for 1000 times.

C. Simulation 1: With the Disturbing Noise Being Added to
the Output and With a Simulation Length of NT = 3072

The simulation results for the disturbing noise domi-
nated case are shown in Figs. 4–6. The sampling frequency
fs = 2048 Hz.

1) Results: In Fig. 4, we show the variation of the improved
local bandwidth with respect to frequency. The local bandwidth
drops to minimum value around the resonance frequency where
the FRF varies fast and moves to larger values where the FRF
varies smoothly. It should be emphasized that this automatic
variation in the local bandwidth is obtained without any user
interaction.

Fig. 5 shows the RMS error of the FRF estimates
for improved as well as the minimal local bandwidths
(Eminimal(Ωk) = RMS(Ĝminimal(Ωk)−Go(Ωk))). It clearly
shows that the improved local bandwidth has much bet-
ter noise sensitivity than the minimal local bandwidth. The
zoomed view around the second resonance is also shown,
which indicates that the RMS error for the improved
local bandwidth (Eimproved(Ωk) = RMS(Ĝimproved(Ωk)−
Go(Ωk))) is slightly more than that for the minimal local
bandwidth; the reason for this is a higher bias error for the
improved local bandwidth which is clearly shown in Fig. 6.
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Fig. 5. Comparison of the RMS error of the FRF estimate (NT = 3072).
(Bottom) Zoom around the second resonance frequency. (Bold black line) G0.
(Dashed light gray line) Mean value of the estimated improved FRF. (Dark gray
dotted line marked with �) RMS error for the minimal local bandwidth. (Black
dotted line marked with �) RMS error for the improved local bandwidth.

Fig. 6. Bias error on the estimated FRF. (Bottom) Zoom around the second
resonance frequency (NT = 3072). (Bold black line) G0. (Dark gray dotted
line marked with �) Bias error on the estimated FRF for the minimal local
bandwidth. (Black dotted line marked with �) Bias error on the estimated FRF
for the improved local bandwidth.

2) Discussion: From these results, we can observe that the
automatic selection of the local bandwidth results in the im-
proved FRF. Where the FRF varies slowly, the method selects a
wide frequency band to get a high noise rejection (assuming the
bias error to be very small). Around the resonance frequency,
the method selects the reduced local bandwidth, to keep the
systematic errors under control (Fig. 4). The RMS error in
the frequency band around the resonance frequency with the
improved local bandwidth (nopt) is approximately equal to that

Fig. 7. Variation of the improved local bandwidth (nopt) as a function of the
frequency (NT = 9216). (Bold black line) G0. (Gray line) Improved window
width 2nopt.

Fig. 8. Comparison of the RMS error of the FRF estimate (NT = 9216).
(Bottom) Zoom around second resonance frequency. (Bold black line) G0.
(Dashed light gray line) Mean value of the estimated improved FRF. (Dark gray
dotted line marked with �) RMS error for the minimal local bandwidth. (Black
dotted line marked with �) RMS error for the improved local bandwidth.

of the minimal local bandwidth (n = 3). Around the resonance
frequency, the bias/leakage errors dominate (Fig. 6), so the
errors are large. In the smooth frequency bands, where the noise
error dominates, the RMS error of the improved local band-
width is much better than that of the minimal local bandwidth
(Fig. 5).

D. Simulation 2: With the Disturbing Noise Being Added to
the Output and With a Simulation Length of NT = 9216

Simulation 2 results are shown in Figs. 7 and 8 with a
simulation length of NT = NTrans +N = 1024 + 2048× 4 =
9216 and with the sampling frequency fs = 2048 Hz.

1) Results: In Fig. 7, we show the variation of the improved
local bandwidth with respect to frequency. In this case also,
the local bandwidth drops to its minimum value around the
resonance frequency where the FRF varies fast and moves to
larger values where the FRF varies smoothly.

Fig. 8 shows the RMS error of the FRF estimates for
the improved local bandwidth as well as the minimal local
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Fig. 9. Variation of the improved local bandwidth (nopt) as a function of the
frequency (without disturbing noise, NT = 3072). (Bold black line) G0. (Gray
line) Improved window width 2nopt.

Fig. 10. Comparison of the RMS error of the FRF estimate (without dis-
turbing noise, NT = 3072). (Bottom) Zoom around the second resonance
frequency. (Bold black line) G0. (Dashed light gray line) Mean value of the
estimated improved FRF. (Dark gray dotted line marked with �) RMS error for
the minimal local bandwidth. (Black dotted line marked with �) RMS error for
the improved local bandwidth.

bandwidth. It clearly shows that the improved local band-
width has much better noise sensitivity than the minimal local
bandwidth in all frequency bands. The zoomed view around
the second resonance shows that the RMS error is lower for
the improved local bandwidth than that for the minimal local
bandwidth.

2) Discussion: From the aforementioned simulation results,
we can observe that, with more data points, the proposed
method works very well. The RMS error on the estimated FRF
for the improved local bandwidth is much better than that of the
minimal local bandwidth in all frequency bands. At the sharp
resonance, we got a slight improvement. Also, the number of
frequencies in the 3-dB bandwidth around the second resonance
becomes very small (Fig. 8).

E. Simulation 3: No Disturbing Noise Added to the Output
and With a Simulation Length of NT = 3072

The simulation results for the no-disturbing-noise
case are shown in Figs. 9–11 with a simulation length of

Fig. 11. Bias error on the estimated FRF (without disturbing noise, NT =
3072). (Bottom) Zoom around the second resonance frequency. (Bold black
line) G0. (Dark gray dotted line marked with �) Bias error on the estimated
FRF for the minimal local bandwidth. (Black dotted line marked with �) Bias
error on the estimated FRF for the improved local bandwidth.

NT = NTrans +N = 1024 + 2048 = 3072. The sampling
frequency fs = 2048 Hz.

1) Results: Fig. 9 shows the variation of the improved local
bandwidth (nopt) with respect to the frequency. The improved
local bandwidth automatically becomes minimum, without any
user interaction, in almost all frequency bands. Fig. 10 shows
the RMS error of the FRF estimates for the improved as well
as the minimal local bandwidths. It shows that the improved
and the minimal local bandwidths have almost the same RMS
errors. Bottom one shows the zoomed view around the sec-
ond resonance which indicates that the RMS error for the
improved local bandwidth is slightly more than that of the
minimal local bandwidth. Fig. 11 shows the bias error on
the estimated FRF for the improved as well as the minimal local
bandwidths.

2) Discussion: The proposed method works well for the
no-disturbing-noise case. In almost all frequency bands, the
improved local bandwidth drops to the minimum value except
in very few frequencies (Fig. 9). Figs. 10 and 11 show that the
LPM significantly reduces the leakage errors.

F. Discussion

A comparison of the improved local bandwidth (proposed
method) and the minimal local bandwidth, with and without
disturbing noise, is given hereinafter.

1) With Disturbing Noise: In the frequency bands around a
resonance, the bias error dominates so that the local bandwidth
n automatically becomes smaller (Figs. 4 and 7), and in the
remaining frequency bands, where the bias errors are smaller,
reduced noise sensitivity is obtained by selecting the larger lo-
cal bandwidth. This automatic selection of the local bandwidth
requires no user interaction.
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Fig. 12. (Top) RMS error on the estimated FRF (without disturbing noise,
M = 8). (Bottom) Bias error on the estimated FRF. (Bold black line) G0.
(Light gray dotted line marked with �) Error (RMS/bias) on the estimated FRF
for the minimal local bandwidth. (Black dotted line marked with �) Error
(RMS/bias) on the estimated FRF for the improved local bandwidth. (Dark
gray dotted line marked with o) Error (RMS/bias) on the estimated FRF for
the Hanning window.

a) With a Simulation Length of NT = 3072: By com-
paring the RMS error of the estimated FRF for the improved
and the minimal local bandwidths (Fig. 5), the improved local
bandwidth is much better than the minimal local bandwidth
except at some resonance frequencies, e.g., the bias error of the
estimated FRF at the second resonance for the improved local
bandwidth is higher than that of the minimal local bandwidth
(Fig. 6).

b) With a Simulation Length of NT = 9216: Comparison
of the RMS error of the estimated FRF for the improved and
the minimal local bandwidths shows that the improved local
bandwidth is much better than the minimal local bandwidth in
all frequency bands (Fig. 8). Moreover, we got an improvement
at the sharp resonance.

2) Without Disturbing Noise and With a Simulation Length
of NT = 3072: The improved local bandwidth automatically
becomes minimum at almost all frequencies (Fig. 9). Thus, the
RMS error and the bias error of the estimated FRF for the
improved local and the minimal local bandwidths are almost
equal (Figs. 10 and 11).

VI. COMPARISON WITH LPM AND HANNING WINDOW

The proposed method (modified LPM) is compared with the
conventional FRF estimation method like the Hanning window
[1]. A theoretical analysis can also be found in [14]. The same
system (described in Section V) is used for the comparison,
with a simulation length of NT = 1024 + 2048 points, and the
sampling frequency is fs = 2048 Hz. The full record length of
N = 2048 points is split into M subblocks of length N/M each
for averaging purposes.

A. Without Disturbing Noise

In Fig. 12, we show the comparison of the RMS error and
the bias error for the improved local bandwidth, the minimal

Fig. 13. (Top) RMS error on the estimated FRF (with disturbing noise,
M = 1). (Bottom) Bias error on the estimated FRF. (Bold black line) G0.
(Light gray dotted line marked with �) Error (RMS/bias) on the estimated FRF
for the minimal local bandwidth. (Black dotted line marked with �) Error
(RMS/bias) on the estimated FRF for the improved local bandwidth. (Dark
gray dotted line marked with o) Error (RMS/bias) on the estimated FRF for
the Hanning window.

local bandwidth, and the Hanning window for M = 8. Since
LPM significantly reduces the leakage errors, there is a huge
difference between the RMS errors of the improved local
bandwidth and the Hanning window.

B. With Disturbing White Noise Added to the Output

When there is noise on the output, the noise sensitivity of
the LPM is more or less the same as that of the Hanning
window (when no window width selection is done). The LPM
works at full resolution (fs/N) while the Hanning window
works at a reduced resolution (Mfs/N) in order to average
internally over a number of realizations (M). Due to this aver-
aging, the Hanning window seems to have a variance reduction
of a factor M . In order to make a fair comparison for the
noise sensitivity, this should be done at the same frequency
resolution, and then, the Hanning window needs M times
more data.

For comparison of all the methods with the same frequency
resolution, we made M = 1. However, we are emphasizing in
this paper that it is not a fair comparison for that reason. We can
say that the equivalent gain is about sqrt(8) = 9.03 dB, which
should be compensated for when interpreting these results.
Around the resonance frequencies, the leakage error is still the
dominant one, and the LPM wins again.

In Fig. 13, we show the comparison of the RMS error and the
bias error with white noise for the improved local bandwidth,
the minimal local bandwidth, and the Hanning window (for
the same frequency resolution, i.e., M = 1). Fig. 14 shows the
comparison of the RMS error for all methods with disturbing
white noise for M = 2, 3, and 4.
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Fig. 14. RMS error on the estimated FRF (with disturbing white noise). (Bold
black line) G0. (Light gray dotted line marked with �) RMS error on the
estimated FRF for minimal local bandwidth. (Black dotted line marked with
�) RMS error on the estimated FRF for improved local bandwidth. (Dark gray
dotted line marked with o) RMS error on the estimated FRF for the Hanning
window. (a) M = 2. (b) M = 3. (c) M = 4.

C. With Disturbing Colored Noise Added to the Output

We generate the colored noise by passing the white
noise through a filter generated with the Matlab
instruction [bNoise, aNoise] = cheby1(5, 10, 8(fc/fs)) with
fc/fs = 0.1. The coefficients of the filter are bNoise =
[0.1060, 0.5301, 1.0601, 1.0601, 0.5301, 0.1060] and aNoise =
[1.0000, 1.8963, 1.6917, 0.0613,−0.7006,−0.5562].

We compare all the methods for M = 1 and 4. In Fig. 15,
we show the comparison of the RMS error and the variation of
improved local bandwidth with colored noise for the improved
local bandwidth, the minimal local bandwidth, and the Hanning
window.

D. Discussion

The proposed method is compared with classical windowing
technique (Hanning window) in Figs. 12–15. Without disturb-
ing noise, there is an amazing difference between the RMS and
bias errors of the proposed method and the Hanning method.

Fig. 15. (Bold black line) G0. (Light gray dotted line marked with �) RMS
error on the estimated FRF for the minimal local bandwidth. (Black dotted
line marked with �) RMS error on the estimated FRF for the improved local
bandwidth. (Dark gray dotted line marked with o) RMS error on the estimated
FRF for the Hanning window. (Gray line in the improved local bandwidth
variation) Improved window width 2nopt. (a) RMS error on the estimated FRF
(with colored noise) for M = 1. (b) Variation of the improved local bandwidth
(nopt) as a function of the frequency with colored noise for M = 1. (c) RMS
error on the estimated FRF (with colored noise) for M = 4. (d) Variation of the
improved local bandwidth (nopt) as a function of the frequency with colored
noise for M = 4.

With the disturbing white noise being added to the output,
the proposed method has superior noise sensitivity than the
Hanning window in all frequency bands with the same fre-
quency resolution, i.e., for M = 1 (Fig. 13). The comparison
of the RMS errors with M = 2, 3, and 4 shows that, even
though there is loss of frequency resolution, the proposed
method (improved LPM) works very well compared to the
Hanning window and LPM (Fig. 14). The noise sensitivity of
the improved LPM, for colored noise, is much better than that
of the LPM and the Hanning window (Fig. 15).
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VII. CONCLUSION

In this paper, we have used the LPM to get an improved
FRF estimate using random excitations. Increased frequency
resolution and high leakage rejection are the figures of merit
of the LPM. High leakage reduction results in smaller bias and
variance. In this paper, the algorithm is further extended to get
much lower noise sensitivity by increasing the smoothening of
the original LPM. An improved bias–variance tradeoff has been
made. The proposed method works best when the disturbing
noise dominates the leakage error.

The new method should only be used to produce smoother
plots. If the data are further processed to fit a parametric model,
the local bandwidth should always be selected to its minimum
value in order to keep the bias errors as small as possible. The
noise reduction is then made in the parametric step.

The final conclusion is that the improved local bandwidth
selection yields very good noise sensitivity and very high
quality nonparametric estimates of the FRF by automatic tuning
of the parameter of the LPM without any user interaction.
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