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Abstract

This work investigates theoretically and experimentally the phenomenon of parametric amplification in a
macroscale mechanical context, using a base-excited tilted cantilever beam as the model object. It demonstrates
that an optimum mix between selected excitation parameters exists, that parametric amplification is possible
for the second vibration mode, that the detuned case is phase lag insensitive, and that superthreshold pumping
changes the gain/phase lag relationship, the phase lag range for which amplification and attenuation is realized,
the optimum phase lag, and the attainable gain.

INTRODUCTION
Parametric Amplification (PA) is obtained by pumping (adding parametric oscillations to) externally
driven harmonic oscillations [3]. Subthreshold pumping, i.e. pumping below the linear instability
threshold (the transition between the stable and unstable regime wrt. parametric resonance), may be
beneficial, e.g. by lifting a weak signal from the noise floor, effectively increasing the signal-to-noise
ratio. The primary quantity of interest is the gain, which is the ratio between the stationary vibration
amplitudes of the pumped and unpumped system. To advance the insight into the phenomenon of PA,
the present work investigates theoretically and experimentally how various factors influence the gain,
under subthreshold as well as superthreshold pumping conditions.

MODEL SYSTEM
As a representative model system we consider a base-excited cantilever beam. The combined scenario
of direct and parametric excitation is realized by tilting the cantilever beam wrt. the line of excitation x
as depicted in Fig. 1(a). The experimental setup is shown in Fig. 1(b,c). A non-dimensional third-order
nonlinear equation of motion for the amplitude z(t) of the first transverse vibration mode of a cantilever
beam subjected to parametric and direct excitation, imposed at the base with perfect tuning (i.e. 2:1 ratio
of parametric and direct excitation frequencies, also referred to as a degenerate case), can be written [2]:
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)
+ ε

1

2
Ω2γ sinα

(
Â cos (Ωτ + φ) + 4B̂ cos (2Ωτ)

)
z3 = εΩ2η cosα

(
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where the base-excitation along direction x, and its components (ûp, v̂p) along and transverse to the
beam axis, respectively, is:

x̂p = Â cos(Ωτ + φ) + B̂ cos(2Ωτ), ûp = x̂p sinα, v̂p = x̂p cosα, (2)
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and where ε bookmark small terms, Â is the direct amplitude, B̂ the pump amplitude, ζ the damping
ratio, and η, λ, γ, µ and ρ are mode shape integration constants.

STEADY-STATE MODEL RESPONSE

Theoretical predictions
Employing the method of multiple scales yields an algebraic equation for the first-order approximate
stationary value for the first-mode vibration amplitude a of z:[(
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where σ = Ω − 1 is the detuning from direct resonance and ψ=ψ(φ) is a phase lag between
the direct and parametric excitation. A comparison with a steady-state response obtained in [2]
employing the method of averaging, and direct numerical integration of (1) using a fourth-order
Runge-Kutta method, is depicted in Fig. 2(a), alongside a linear response which is found letting
ρ=µ=γ=0 in (3). The linear response is given for an unpumped and a pumped state, of which the latter
yields a higher amplitude, demonstrating that PA increases the gainG≡apumped/aunpumped=a/a|B̂=0.
For perfect excitation tuning (σ=0) all methods yield identical results. The accuracy obtained
by multiple scales appears better compared to averaging but is within the same order of magni-
tude.

Optimal excitation parameters

Direct numerical integration of the linearized version of (1), to find G for various combinations of
damping coefficient ζ, direct amplitude Â, pump amplitude B̂, and tilt angle α in the case of perfect
tuning (σ=0) is illustrated in Fig. 2(b). It appears that larger B̂ increasesG but also the maximizing
α = αopt. This is also the case when reducing ζ.

PA of the second vibration mode

To the authors knowledge, it has not been experimentally demonstrated that PA of the second vibration
mode is possible. The frequency equation for the second vibration mode is similar to (3) in structure,
and can be solved for the amplitude a of that mode similarly. Fig. 3(a,b) reveals an increase in a, both
at the free end and approximately midway of the experimental cantilever beam when utilizing PA. The
largest relative increase in a for these two points yields the largest gainG. However, it might not be
the most appropriate point at which one would like to harvest G due to aspects such as implementation
in the physical setup.

Superthreshold pumping and detuned PA

Superthreshold pumping produced experimental results as depicted in Fig. 3(c), where subthreshold
pumping is shown for reference. The gain G appears, respectively, symmetric and asymmetric wrt.
phase lag when utilizing small-medium and medium-large amplitudes a. This is also reported in
[4], but for subthreshold pumping. The larger a appear to produce a larger G over a larger range of
phase lags, thus increasing the applicability range of PA. Superthreshold pumping increases the signal,
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(a) (b) (c)
Figure 1. Model system; (a) schematic; (b,c) cantilever beam, vibration exciter, fixture, and measurement
sensors.

but also increases the noise floor [1]. Hence, this approach may not be appropriate for e.g. nano-
and microelectromechanical systems. Parametric attenuation becomes more challenging to exploit
for superthreshold pumping, because the optimum phase lag changes, the phase lag range causing
significant attenuation becomes smaller, and the sensitivity wrt. changes in phase lag increases. Thus,
the experiment confirms that the perfectly tuned case is phase lag sensitive, e.g. [2, 3], but also indicates
that the optimum phase lag can change. Also, superthreshold pumping makes it possible to increase G
further, thus partly overcoming the nonlinear saturation effects present for subthreshold excitation [2, 4].
To the authors knowledge, it has not been shown experimentally that the macroscale detuned system
is phase lag insensitive. Experimental results for two detuned systems produce the results given in Fig.
3(d), demonstrating that detuned PA can be phase lag insensitive. The perfectly tuned system yielded
a higher amplitude than the detuned system, except around parametric attenuation. In an industrial
setting, being phase lag insensitive would be advantageous.
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Figure 2. Theoretical results; (a) stationary first-mode amplitude vs. excitation detuning. Direct numerical
integration (×), averaging ( ), multiple scales ( ) and backbone ( ) of (1), ζ=Â=0.05,
B̂=0.005; (b) gain vs. tilt angle for various combinations of Â, B̂, ζ with perfect excitation tuning (σ=0)
employing direct numerical integration of (1). For (a) and (b): φ=φopt=−π/4, α=π/4.
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CONCLUSIONS

It was found that an optimal mix exists between the pump amplitude, damping coefficient, and tilt angle.
This is relevant for the class of systems which can be represented by a cantilever beam (e.g. high towers
and helicopter blades) exposed to PA. It was demonstrated that PA is possible for the second vibration
mode. PA within the parametric instability region yields 1) an asymmetric gain/phase lag relationship 2)
a broader phase lag range for which the gain is realized, whereby the domain of applicability increases
3) a narrower phase lag range for which attenuation is realized 4) a higher gain even though nonlinear
saturation effects reduce it 5) a change in the optimum phase lag. It was confirmed experimentally
that the detuned case can be phase lag sensitive.

The work is in progress, currently involving experimental tests for subthreshold pumping and optimal
tilt angle, and theoretical energy considerations for PA.
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Figure 3. Experimental results; second mode resonant beam vibration with (a) direct excitation or (b)
direct and parametric excitation for α≈4π/9. ( ): max. transverse deflection; (c,d): gain at the first direct
resonance; (c) perfectly tuned system (σ=0) with small-medium (�) and medium-large (©) amplitudes,
respectively, well below and above operation threshold; (d) perfectly tuned vs. detuned systems.
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