Technical University of Denmark

Uncertainties in models for glacial isostatic adjustment

van der Wal, Wouter; Barletta, Valentina Roberta

Publication date: 2012

Document Version Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA): van der Wal, W., & Barletta, V. R. (2012). Uncertainties in models for glacial isostatic adjustment [Sound/Visual production (digital)]. GGFC Workshop 2012, Vienna, Austria, 20/04/2012, http://www.iers.org/nn_128276/IERS/EN/Organization/Workshops/Workshop2012Programme.html?__nnn=true

DTU Library Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Uncertainties in models for glacial isostatic adjustment

Wouter van der Wal & Valentina Barletta GGFC Workshop Vienna, April 20, 2012

Contents

- Standard GIA Model
- Uncertainty propagation in standard model
 - Earth model parameters
 - Ice thickness
 - Implementation issues
- Finite-element model
 - O 3D viscosity
 - Upper mantle temperature
 - Laboratory measurements on mantle rocks
- How can uncertainty be reduced
- Summary

Standard GIA model

From: Paolo Stocchi, IMAU Utrecht

STANDARD MODEL

Standard GIA model

Uplift rate ICE-5Gv1.2/VM2

Uplift rate from Peltier submission to Special Bureau for Loading website Delft University of Technology

Standard GIA model

Contours: ICE-5G/VM2 Arrows: GPS uplift rates Sella et al. (2007)

van der Wal et al. (Canadian Journal of Earth Sciences 2009)

Guo et al, J. Geodyn. (2012)

Method for uncertainty propagation

Monte Carlo Method:

hundreds of randomly generated input models with a Gaussian distribution with selected sigma around the input reference model P_0

Reference model: Ice and Earth model: ICE5G (incompressible - 5Layer - VM2 – L90)

Uncertainty propagation: viscosity

Uncertainty propagation: ice height

110: Variation of \pm 30% of the Ice thickness for each time and location. Where *l*(t, w) is the same as today, we assumed a \pm 10% variation for the ice< 800m.

Uncertainty: implementation

Difference in uplift rate

Difference in initial sampling of the ice model and the ocean function iversity of Technology

FINITE-ELEMENT MODEL

Uncertainty: lateral variation

van der Wal et al., (in prep.)

Uncertainty: lateral variation

Lateral varying – ICE-5G/VM2

-6.8 mm/year

van der Wal et al., (in prep.)

Uncertainty: mantle deformation

Mantle rocks in the laboratory

$$\dot{\tilde{\varepsilon}}_{ij} = \left(\frac{3A_{n=1}}{2} + \frac{3}{2}A\tilde{q}^{n-1}\right)S_{ij}$$

- S_{ii} deviatoric stress tensor
- \tilde{q} von Mises equivalent stress
- n stress exponent (3.5)

From: Martyn Drury, Utrecht Univ.

Uncertainty: mantle deformation

van der Wal et al., (in prep.)

SOLUTIONS?

Solutions: Benchmark

Solutions: Data

Van der Wal et al. (GJI 2011)

Summary

Standard model: Viscosity - 6.3 mm/a, other Earth model -

1.9 mm/a, ice height - 1.1 mm/a, rotational feedback ??

3D: 6.8 mm/a, Flow law: 2.1 mm/a

Solutions:

- Use uncertainty estimate
- Benchmark
- Use other measurements
- Constrain the model for the region of interest
- Constrain the model with information from other Earth sciences

Acknowledgements

Funded by TOPO-EUROPE, a EUROCORES project from the European Science Foundation

With support by COST Action ES0701 "Improved constraints on models of Glacial Isostatic Adjustment"

BACKUP SLIDES

Glacial Isostatic Adjustment (GIA)

Flow in the mantle determined by viscosity

Results: best fitting mantle viscosities

	η _{υм} [10 ²⁰ Pas]	η _{LM} [10 ²⁰ Pas]
Tushingham & Peltier (1991)	10	20
Mitrovica & Forte (2002	4	80
Kaufmann & Lambeck (2002)	7	200
Wolf et al. (2006)	3.2	160
Paulson et al. (2007)	5.3	23
GPS (ICE-4G)	8	32
GRACE (ICE-4G)	64	256
Historic sea level (ICE-4G)	16	32
Historic sea level (ICE-5G)	16	256

Van der Wal et al (GJI 2011)

Uncertainty propagation: Earth model

Propagation of Ocean Function uncertainties

O2: Variation of \pm 10% of the paleotopography $T(t, \omega)$ for each time t and only in locations (ω) within a belt following the shorelines. From the paleotopography then we compute the ocean function *FO*(t) by setting *FO* = 1 where the paleotopography is negative, and FO = 0 otherwise.

Uncertainty propagation: rotational feedback

Mitrovica & Wahr, Ann. Rev. Earth Planet. Sci. (2011)

Uncertainty propagation: rotational feedback

Uncertainty: rotational feedback

GRACE – Peltier (2004)

GRACE – Paulson et al (2007)

Chambers et al., JGR (2010)

Sensitivity kernels

Van der Wal et al. (GJI 2011)

Model

Hirth & Kohlstedt (2003)

 $d^{-p} f H_2 O^r \exp(\alpha \phi) \exp(\alpha \phi)$ E + pVĖ

- A_D pre-exponent factor
- n stress exponent (3.5)
- d grain size (0.5–4 mm) Kukkonen&Peltonen (1999)
- fH₂O water fugacity

 Φ melt factor (0)

- E activation energy
- P pressure
- V activation volume
- **T** temperature
- R gas constant

30 ka B.P.

Barnhoorn, van der Wal, Drury, Vermeersen (G-cubed 2011)

Uncertainty: 3D temperature

van der Wal et al., (in prep.)