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Chapter 1

Introduction

1.1 Overview

This thesis presents the work done during a one year research visit to the Max Planck

institute for the science of light in Erlangen, Germany led by Professor Gerd Leuchs

and in the Quantum information group (QUIN) at the Physics department in the

Technical University of Denmark (DTU) in Lyngby, Denmark under the supervision

of Professor Ulrik L. Andersen.

The results presented belong to the fields of Quantum communication, Quantum

metrology and Quantum Information.

The thesis is divided in self contained chapters that give a detailed description of the

theory and experimental realizations. Extensive theory is given with the intention

of giving the context, present the state of art and facilitate the presentation and

interpretation of results.

1.2 Thesis structure

The thesis is divided as follows:

Chapter 2: It is devoted to a review of the main concepts in the theory of quantum

optics. It defines among other things, phase space components (field quadratures,

Wigner functions, etc), Gaussian states, generalized preparation of quantum states

through the density operator and generalized measurement using POVMs.

Chapter 3: Discusses the subject of Quantum amplifiers. It gives arguments

to show why perfect amplification is prohibited by quantum mechanics, and presents

mainly two classes of amplifiers: phase insensitive linear amplifier (deterministic) and

1



1.2. THESIS STRUCTURE

probabilistic amplifier. A new proposal to achieve noiseless quantum amplification is

presented and the experimental results are given.

Chapter 4 Gives an excursion trough the classical and quantum characteristics of

phase and its impact in metrology. Evidences the problems in defining a phase ob-

servable, and discusses the difference between measurement and estimation. Avances

in the experimental realization of adaptive phase estimation are presented.

Chapter 5 Quantum state discrimination. The notion of quantum hypothe-

sis testing and basic binary receivers are given and used later to explain a new type

of receiver that doubles the data rate with respect to binary receivers rate and lowers

the error probability compared to standard by using a QPSK alphabet.

2



Chapter 2

Basic Quantum Optics

Contents
2.1 EM Quantization . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Quadrature operators . . . . . . . . . . . . . . . . . . . . . 5

2.3 Homodyne detection . . . . . . . . . . . . . . . . . . . . . 7

2.4 Density Operator (generalized preparation) . . . . . . . 10

2.5 Wigner, P and Q functions . . . . . . . . . . . . . . . . . 12

2.6 Gaussian states . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.7 POVMs (generalized measurements) . . . . . . . . . . . . 17

2.8 Phase probability distribution . . . . . . . . . . . . . . . . 20

This chapter presents a review of the basic ingredients of the theory of quantum

optics that are used in the subsequent chapters. We will mainly focus on the phase

space picture in quantum optics which gives a simple description of quantum states

and due to its importance, is recurrently used throughout this thesis. This phase

space description requires the definition of quadrature operators and Wigner functions

which have an experimental counterpart that we can access through a measurement

technique called homodyne detection. We later present the family of Gaussian states

which plays a major role in the continuous variable quantum information, and show

their most relevant features. Another useful representation of quantum states is the

density matrix, that gives us the most general type of quantum states and enables a

quick calculation of statistical information. We also describe quantum measurements

in their most general form, which is in the formalism of positive operator-valued

measures (POVM). We finally define the phase probability distribution and Holevo

variance.

3



2.1. EM QUANTIZATION

2.1 EM Quantization

In analogy to the classical description of light [69], a quantized electric field operator

can be defined as [68]:

Ê(r, t) = i
∑

k

(
~ωk
2ǫ0V

)1/2 [
âkuk(r)e

−iωkt + h.c.
]

(2.1)

where the annihilation âk and creation operators â†k are related to the classical

(complex) amplitudes α and α∗ respectively. Expression (2.1) represents the quan-

tized electric field, composed of different modes (labeled by k) each of which has a

different frequency ωk and spatial mode1 uk(r). Quantization of the electromagnetic

field is accomplished by choosing âk and â†k to be mutually adjoint operators. Since

photons are bosons, the appropriate commutation relations for these operators are:

[âk, âk′ ] = [â†k, â
†
k′ ] = 0, [âk, â

†
k′ ] = δkk′ (2.2)

Within the scope of this thesis, it will be sufficient to consider only a single mode of

the field. We can therefore drop the index k and rewrite the electric field as2

Ê(r, t) = i

(
~ω

2ǫ0V

)1/2

u(r)
(
âe−iωt + â†eiωt

)
. (2.3)

2.1.1 Heisenberg uncertainty

The Heisenberg uncertainty principle states that if any two observables Â, B̂ satisfy3

[
Â, B̂

]
= Ĉ, (2.4)

then the product of its uncertainties is bounded:

∆Â∆B̂ ≥ 1

2
|〈Ĉ〉| (2.5)

and we use the following definition for the uncertainty of an operator Ô:

∆Ô =

√
〈Ô2〉 − 〈Ô〉2 (2.6)

In short, the Heisenberg uncertainty principle implies that whenever we find a

commutator of the form (2.4) with Ĉ 6= 0, it will be impossible to obtain simultaneous

knowledge about the non-commuting observables Â, B̂ with absolute precision.

1The mode function uk can also contain polarization information.
2In the remainder of the thesis ~ will be set to 1 for convenience.
3Ĉ is frequently just a complex constant times the identity 1.

4



2.2. QUADRATURE OPERATORS

2.2 Quadrature operators

The creation and annihilation operators are not Hermitian and are thus not observ-

ables. However, they can be combined in the following way to create the so-called

quadrature operators, which are in fact Hermitian:

X̂ ≡ 1

2

(
â+ â†

)
(2.7)

P̂ ≡ 1

2i

(
â− â†

)
. (2.8)

Arbitrary quadrature operator

We can generalize the previous definition to account for rotated quadratures X̂Φ,

X̂Φ =
1

2

(
âe−iΦ + â†eiΦ

)
= X̂ cos (Φ) + P̂ sin (Φ) (2.9)

Quadrature operators obey the following commutation relations4:

[
X̂, P̂

]
=
i

2
=
[
X̂Φ, X̂Φ+π/2

]
(2.10)

Figure 2.1: Quadratures in phase space. Left: A coherent state is shown in phase
space, where quadratures X̂ and P̂ serve as coordinates, the uncertainty in the quadra-
tures due to the quantum noise of the state is indicated. Right: (green) Rotated
quadratures, the positive sense of rotation has been indicated for φ and Φ. This
makes the equivalence between rotating the state and rotating the quadrature by the
same amount.

4The definition 2.9 implies that P̂Φ = X̂Φ+π/2.

5



2.2. QUADRATURE OPERATORS

Normalization

It is possible to define the already mentioned quadrature operators in different ways

by using another normalization factor, which is important as this has consequences

in quantities like the quadrature variance or the lenght in phase space. One can write

the expression for an arbitrary normalization factor γ as:

X̂Φ,γ =
âe−iΦ + â†eiΦ

γ
(2.11)

X̂Φ+π/2,γ =
âe−iΦ − â†eiΦ

iγ
(2.12)

In the quantum optics community there are three main conventions for γ: 1,
√
2

and 2. The advantages of each of them are analyzed below. Table 2.1 summarizes

the main results for these cases and serves as a reference. In particular it shows the

mean value and variance of the quadrature evaluated with a coherent state ||α|〉.

Table 2.1: Normalization of Quadrature Operators.

Norm. γ = 1 γ =
√

2 γ = 2

Expression X̂Φ = âe−iΦ + â†eiΦ X̂Φ = 1√
2
(âe−iΦ + â†eiΦ) X̂Φ = 1

2
(âe−iΦ + â†eiΦ)

Commutator
[
X̂Φ, X̂Φ+π/2

]
= 2i

[
X̂Φ, X̂Φ+π/2

]
= i

[
X̂Φ, X̂Φ+π/2

]
= i/2

Mean value |
〈
X̂Φ

〉
| = 2|α| |

〈
X̂Φ

〉
| = 2

√
2|α| |

〈
X̂Φ

〉
| = |α|

Variance ∆2X̂Φ = 1 ∆2X̂Φ = 1
2

∆2X̂Φ = 1
4

Inverse â = eiΦ

2
(X̂Φ + P̂Φ) â =

√
2eiΦ

2
(X̂Φ + P̂Φ) â = eiΦ(X̂Φ + P̂Φ)

relation

� γ = 1

This case has the particularity that the variance of the vacuum fluctuations is ∆2X̂ =

1. It sets the shot noise level (SNL), and therefore refers all the variances to 1. Any

∆2X̂ < 1 will represent squeezing and ∆2X̂ > 1, excess noise.
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2.3. HOMODYNE DETECTION

� γ =
√
2

In this case, direct and inverse relations have the same factor γ.

� γ = 2

This normalization is useful as it allows an accurate phase space representation. For

instance, the last column in table 2.1 shows |
〈
X̂Φ

〉
| = |α|, which implies that we

can directly treat the amplitude of a coherent state as its length in phase space, as

depicted in Fig.2.1. This is in fact the normalization that we will use in this thesis.

2.3 Homodyne detection

Homodyne detection (HD) is an experimental technique that allows us to have direct

access to the field quadratures. We will show that in fact, one can access an arbitrary

quadrature X̂Φ of an input state by controlling the phase Φ of a local oscillator (LO).

Figure 2.2: Homodyne detection (HD): The interference of an input state ρ̂ with a
local oscillator on a BS is recorded by photodetectors. The difference signal gives
information about the quadrature X̂Φ as explained in the text.

If we interfere the input state ρ̂ with a local oscillator on a beam splitter (BS) with

transmittance T as in Fig.2.2 , we get:

ĉ =
√
1− T â+

√
T b̂eiΦ (2.13)

d̂ =
√
T â−

√
1− T b̂eiΦ (2.14)

Let us analyze the case of balanced homodyne detection T = 1/2 = R.
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For simplicity, let us write the field operators as an amplitude plus a noise term

[58]: â = α + δâ. We know that the photocurrent is proportional to the photon

number n̂, so, for each detector we have:

n̂1 = ĉ†ĉ ≈ 1

2

[
|α|2 + |β|2 + 2|α||β| cos(Φ) + |α|(δX̂a + δX̂LO

(−Φ)) + |β|(δX̂LO + δX̂a
Φ)
]

(2.15)

n̂2 = d̂†d̂ ≈ 1

2

[
|α|2 + |β|2 − 2|α||β| cos(Φ) + |α|(δX̂a − δX̂LO

(−Φ)) + |β|(δX̂LO − δX̂a
Φ)
]

(2.16)

given that |β| ≫ |α|, we can approximate the previous to:

n̂1 ≈
1

2

[
|β|2 + 2|α||β| cos(Φ) + |β|(δX̂LO + δX̂a

Φ)
]

(2.17)

n̂2 ≈
1

2

[
|β|2 − 2|α||β| cos(Φ) + |β|(δX̂LO − δX̂a

Φ)
]

(2.18)

and if we take the difference:

n̂− = 2|α||β| cos(Φ) + |β|δX̂a
Φ, (2.19)

we find that the difference of the photon number recorded by detectors D1,D2 (pro-

portional to the current) gives the value of the projection of the state ρ̂ onto the

quadrature X̂a
Φ. This makes the balanced homodyne detection, a very powerful tech-

nique able to perform phase-sensitive measurements. Fig 2.3 (left) shows HD time

traces for different Gaussian states, where the LO phase varies harmonically with

time.
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Figure 2.3: HD time traces (left) and Photon statistics (right) for different states:
a. Vacuum b. Coherent c. Squeezed Vacuum d. Thermal state.
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2.4 Density Operator (generalized preparation)

The state vector |ψ〉 represents the state of a quantum system when it is in a pure

state. However, a pure state is rather a special case and we will need a more general

definition of a quantum state as we will not only deal with pure states. The most

general definition of a quantum state is given by the density operator [43], which for

a pure state |ψ〉, is defined by the outer product:

ρ̂ ≡ |ψ〉〈ψ|. (2.20)

It is clear that in this case, the density operator contains the same information as the

state vector (except for an overall phase). The density operator can represent coherent

superpositions but its power lies in the fact that it can also represent incoherent

superpositions. For example, let {|ψq〉} be a set of states. Then the density operator

ρ̂ =
∑

q

Pq|ψq〉〈ψq| (2.21)

expresses the fact that we do not know which of the states |ψq〉 the system is in, but

we assign a weight Pq to the quantum state |ψq〉 in the mixture defined by ρ̂. The

weights obey ∑

q

Pq = 1 (2.22)

for proper normalization of the density operator, and they can be interpreted as

probabilities. The density operator can represent an ensemble of identical systems in

possibly different states. A state of the form (2.20) is said to be a pure state. One

that cannot be written in this form is said to be mixed.

2.4.1 The Density Matrix

The physical content of the density operator is more apparent when we compute the

elements ρ̂qq′ of the density matrix with respect to a complete, orthonormal basis.

The density matrix elements are given by

ρ̂qq′ ≡ 〈q|ρ̂|q′〉 (2.23)

To analyze these matrix elements, we will assume the simple form ρ̂ = |ψ〉〈ψ|
of the density operator, though the arguments generalize easily to arbitrary density

operators. The diagonal elements ρqq are referred to as populations, and give the

measurement probability of the system in the state |q〉 :

ρ̂qq = 〈q|ρ̂|q〉 = |〈q|ψ〉|2 (2.24)

10



2.4. DENSITY OPERATOR (GENERALIZED PREPARATION)

The off-diagonal elements ρqq′ (with q 6= q′) are referred to as coherences, since they

give information about the relative phase of different components of the superposition.

For example, if we write the state vector as a superposition with explicit phases,

|ψ〉 =
∑

q

|cq|eiθq |q〉 (2.25)

then the coherences are

ρqq′ = |cqcq′|ei(θq−θq′ ) (2.26)

Notice that for a density operator not corresponding to a pure state, the coherences

in general will be the sum of complex numbers corresponding to different states in

the incoherent sum.

2.4.1.1 Expectation Values

The density matrix contains all the physically relevant information that we can possi-

bly obtain and constitutes a general preparation of a quantum state. We can evaluate

the statistical content of a certain state by using its density operator and an observ-

able that describes the quantity of interest Â. The expectation value is given by:

〈Â〉 = Tr[Âρ̂] (2.27)

2.4.1.2 Purity

The purity, γ, of a quantum state is calculted with:

γ(ρ̂) = Tr[ρ̂2]. (2.28)

its range is 1/d ≤ γ(ρ̂) ≤ 1, where d is the dimension of the associated Hilbert space.

For pure states, we notice that

ρ̂2 = ρ̂, (2.29)

so we expect γpure = 1, while for mixed states we will have γmixed < 1.

2.4.1.3 Fidelity

Fidelity is a measure that evaluates how close two given states are. It represents a

real value between 0 (orthogonal) and 1 (maximum fidelity). In the case that both

states are pure, the definition is simply given as the inner product of these states:

F (|ψ1〉〈ψ1|, |ψ2〉〈ψ2|) = |〈ψ1|ψ2〉|2. (2.30)
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2.5. WIGNER, P AND Q FUNCTIONS

When one of them is impure, we can evaluate it as:

F (|ψ1〉〈ψ1|, ρ̂2) = 〈ψ1|ρ̂2|ψ1〉 (2.31)

and the most general definition is:

F (ρ̂1, ρ̂2) =

(
Tr

√√
ρ̂1ρ̂2

√
ρ̂1

)2

. (2.32)

Equation (2.32) is explicitly needed when both states are mixed, but can be used

in the other cases as well.

2.5 Wigner, P and Q functions

It was already mentioned that any quantum state can be completely characterized

by the density matrix ρ̂, since all the statistical information can be extracted from

it. It is possible and sometimes more convenient to give an alternative description

of the state in terms of distribution functions [71] (in analogy to the classical prob-

ability distributions). In this section we present the most common quasiprobability

distributions in quantum optics, which are representations equivalent to that of the

density operator since they contain full information about the quantum states.

P function

The P function is often referred to as the Glauber - Sudarshan P-representation [73]

and has the property that a point in phase space represents a single coherent state, so

the P function of a coherent state |α0〉 is in fact a delta function: P (α) = δ2(α−α0).

The relation between the density matrix and the P function is:

ρ̂ =

∫
P (β) |β〉〈β| d2β. (2.33)

When the P function is positive, it behaves as a classical distribution and in that

case, we can interpret ρ̂ in eq. (2.33) as a mixture of coherent states that follow the

probability distribution P (β).

Q function

The Q function is formed with the diagonal matrix elements of the density operator

in the coherent state basis ρ̂αα :

Q(α) =
〈α| ρ̂ |α〉

π
≥ 0. (2.34)
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This is clearly a non-negative function since ρ is a positive operator. It is a bounded

function:

Q(α) <
1

π
, (2.35)

and can be seen as a Gaussian convolution of the P function:

Q(α) =
1

π

∫
P (β) e−|α−β|2 d2β (2.36)

Wigner function

The Wigner function allows a direct visualization of a quantum state as a distribution

over phase space. The shape of a state’s Wigner function, allows to classify it as either

Gaussian or non-Gaussian. In this thesis we will be mainly interested in Gaussian

states for which the Wigner function proves to be an adequate tool. The definition

of the Wigner function, W (x, p) is [72]:

W (x, p) =
1

2π

∫ ∞

−∞
dy
〈
x− y

2

∣∣∣ ρ̂
∣∣∣x+ y

2

〉
eipy (2.37)

The Wigner function is normalized:
∫ ∞

−∞

∫ ∞

−∞
dx dpW (x, p) = 1, (2.38)

and its absolute value is bounded:

|W (x, p)| ≤ 1

π
. (2.39)

Marginal distributions

The Wigner function is real valued but could be negative. This is the reason why it is

not considered as an actual probability distribution function but rather a quasiprob-

ability distribution. We can, however, extract its marginals that are interpreted as

actual probability distributions:

P(x) =

∫ ∞

−∞
dpW (x, p) (2.40)

P(p) =

∫ ∞

−∞
dxW (x, p) (2.41)

where P(x) and P(p) are probability distributions for X̂ and P̂ respectively. Fur-

thermore, we can extract the marginal distributions along generalized quadratures

(rotated by an angle Φ):

P(x,Φ) =

∫ ∞

−∞
dpW (xcosΦ− psinΦ, xsinΦ + pcosΦ) (2.42)
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Here P(x,Φ) stands for the probability distribution for the arbitrary quadrature X̂Φ.

Interestingly, the Wigner function is a Gaussian convolution of the P function:

W (α) =
2

π

∫
P (β) e−2|α−β|2 d2β (2.43)

Finally we observe that the Wigner function allows the calculation of operator mo-

ments on phase space by making use of the trace rule

Tr[ρ̂Â] = 2π

∫ ∞

−∞
dxdpWρ(x, p)WA(x, p) (2.44)

with Wρ(x, p) being the Wigner function of ρ̂ and WA(x, p):

WA(x, p) =
1

2π

∫ ∞

−∞
dy
〈
x− y

2

∣∣∣ Â
∣∣∣x+ y

2

〉
eipy. (2.45)

2.6 Gaussian states

In many practical cases in the continuous variable (CV) regime, the shape of the

Wigner function is Gaussian,

W (x, p) =
1

2π∆X̂∆P̂
exp

(
−(x− 〈X̂〉)2

2∆2X̂
− (p− 〈P̂ 〉)2

2∆2P̂

)
, (2.46)

and the corresponding quantum states are therefore called Gaussian states [47]. In

this section we will analyze the most relevant cases, which are depicted in Fig. 2.4

(Wigner functions and density matrices) and in Fig 2.3 (HD time traces and photon

number distributions).

2.6.1 Vacuum state

The ground state of the electromagnetic field is called the vacuum state |0〉. This

state has the particularity of not containing photons: 〈0|n̂|0〉 = 0, which in turn

means that it is a number state, free of fluctuations in the Fock basis:

∆2n̂ = 〈0|n̂2|0〉 − 〈0|n̂|0〉2 = 0. (2.47)

Interestingly, this state is at the same time (as we will see) a coherent state with

no amplitude (〈X̂〉 = 〈P̂ 〉=0), and if one performs a quadrature measurement it will

exhibit fluctuations (noise), in fact the variance of X̂ and P̂ quadratures for this state

are found to be:

∆2X̂ = ∆2P̂ =
1

4
. (2.48)

14



2.6. GAUSSIAN STATES

Expression (2.48) implies that the vacuum state is a minimum variance state as it

reaches the bound imposed by the Heisenberg uncertainty relations eq. (2.5). The

vacuum noise is also referred to as quantum noise or shot noise and its variance

constitutes a reference in quantum optics, known as the quantum noise limit (QNL).

2.6.2 Coherent state

The coherent state, first introduced by Glauber in [45] and [46], is the quantum

mechanical state that most closely approximates the classical case, and can be defined

as the eigenstate of the annihilation operator:

â |α〉 = α |α〉 (2.49)

where the fact that â is not Hermitian allows the amplitude α to be complex.

The coherent state of light |α〉 is a minimum uncertainty state, with equal uncer-

tainties in any quadrature X̂Φ. The quadrature variances are therefore identical to

those of the vacuum state. Apart from vacuum, all coherent states contain photons

and their mean number of photons is:

〈α|n̂|α〉 = 〈α|â†â|α〉 = |α|2. (2.50)

Note that this result is independent of the normalization γ studied in sec. 2.2.They

may also be expanded in terms of the number states |n〉 as

|α〉 = e−
|α|2

2

∞∑

n=0

αn√
n!

|n〉 (2.51)

Expression (2.51) can be used to calculate the probability of finding n photons in

a coherent field, which turns out to be Poissonian:

P(n) = |〈n|α〉|2 = e−|α|2 |α|2n
n!

. (2.52)

2.6.2.1 The Displacement operator

Quantum states can be transformed by operators. An elementary transformation

is the translation in phase space which is described by the unitary displacement

operator:

D̂(α) = eαâ
†−α∗â (2.53)
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its inverse amounts to an equal displacement in the opposite direction: D̂−1(α) =

D̂†(α) = D̂(−α). An interesting feature of this operator is the fact that any coherent

state can be created by displacing the vacuum state:

|α〉 = D̂(α)|0〉 (2.54)

2.6.3 Squeezed state

Squeezed states of light were discussed in the 1970s by Stoler [62] and Yuen [63]. The

first experimental demonstration of squeezed light was carried out in 1985 by Slusher

et al. [60] using four-wave mixing in a beam of Na-atoms inside an optical cavity, and

by Wu et al. [61] using an optical parametric oscillator.

2.6.3.1 Squeezing operator

We could define the squeezed vacuum state as [48]:

|ζ〉 = Ŝ(ζ) |0〉 (2.55)

where the squeezing operator is

Ŝ(ζ) = exp

[
1

2
ζ(â†)2 − 1

2
ζ∗(â)2

]
(2.56)

with ζ = reiφ. The parameter r ∈ [0,∞) accounts for the degree of squeezing,

while the phase factor φ defines the squeezing quadrature. The effect of the squeez-

ing operator in eq. (2.55) is to reduce the variance of the vacuum along a specific

quadrature. This implies that (to fulfill the Heisenberg uncertainty relation), the

orthogonal quadrature has to increase its noise. The case of pure vacuum squeezed

is still a minimum uncertainty state.

The number state expansion of the squeezed vacuum is given by:

Ŝ(r) |0〉 =
∞∑

n=0

((
2n

n

)
1

coshr

) 1

2

(
−1

2
tanhr

)n
|2n〉 (2.57)

showing that the squeezed vacuum only contains an even number of photons. Squeez-

ing and displacement can be combined5 to produce the squeezed displaced state:

|α, r〉 = D̂(α)Ŝ(r) |0〉 (2.58)

5They do not commute.
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The mean photon number of such a state is given by:

〈n̂〉 = |α|2 + sinh2(r) (2.59)

Interestingly, we can conclude from the last equation that the squeezed vacuum state

(α = 0) contains photons.

2.6.4 Thermal state

The thermal state is a completely mixed state, with the following density matrix in

the Fock basis:

ρ̂Nth =
1

Nth + 1

∞∑

n=0

(
Nth

Nth + 1

)n
|n〉〈n| (2.60)

where Nth is the mean number of thermal photons. ρ̂Nth contains only diagonal terms,

so the state has no coherences and hence does not carry any phase information. This

fact can also be seen from its Wigner function (in Fig. 2.4) and P function:

P (β) =
e−|β|2/Nth

πNth

(2.61)

which are Gaussian distributions centered in the origin of phase space, with no phase-

dependent features.

2.7 POVMs (generalized measurements)

The idea of measurements in quantum theory is traditionally introduced as it was

formulated by von Neumann [35]. Each physical property O is associated with an

observable Ô, where its eigenvalues are the possible results of a measurement of O.

If the eigenvalues and eigenstates are, respectively, om and |om〉, we can write the

operator Ô in the diagonal form:

Ô =
∑

m

om|om〉〈om|. (2.62)

If the system to be measured has been prepared in the state |ψ〉, then the probability

that a measurement of O will give the result om is:

P(om) = |〈om|ψ〉|2 (2.63)

= 〈ψ|om〉〈om|ψ〉 (2.64)

= 〈ψ|P̂m|ψ〉. (2.65)
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Figure 2.4: Familiy of Gaussian states. Their phase space picture, expression and
density matrix’ absolute values are shown.
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This expression suggests that the probability P(om) can be seen as the expectation

value of the operator P̂m = |om〉〈om|. It turns out that such operators, Pm, are

projectors since:

1. They are Hermitian: P̂ †
m = |om〉〈om| = P̂m

2. They are positive operators 〈ψ|P̂m|ψ〉 ≥ 0, ∀|ψ〉

3. They are complete
∑

m P̂m = 1

4. They are orthonormal P̂mP̂n = δm,n

The kind of measurements that can be done with projectors P̂m are often referred

to as von Neumann measurements. They represent a kind of measurement where the

system is projected onto one of the eigenstates of Ôm, and once the measurement is

done, we end up with complete information about the respective observable. This

projection is known as the collapse of the wave function and there is in principle no

uncertainty as the measurement outcome is the corresponding eigenvalue.

There exist, in practice, other types of measurement were we only get part of

the information about the given state, for example we can reduce the uncertainty

regarding the observable of interest, without removing it completely. To account for

this situations, we need to consider a larger class of measurements where we can

describe measurements that extract only partial information.

POVMS are the most general type of measurements allowed by quatum mechanics,

which include the traditional projective (or von Neumann) measurements. POVM

stands for Positive Operator Valued Measure.

The theory of generalized measurements can be formulated simply by excluding

the 4th requirement for projectors. So, we introduce a set of probability operators

{Π̂m} , and we associate them with a measurement outcome such that the probability

that our measurement gives the result labeled m is:

P(m) = 〈 Π̂m〉 (2.66)

If we keep the first three properties for the projectors, which allows us to maintain

the probability interpretation (2.66), our probability operators have the following

properties:

1. They are Hermitian: Π̂†
m = Π̂m

2. They are positive operators 〈ψ|Π̂m|ψ〉 ≥ 0, ∀|ψ〉
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3. They are complete
∑

m Π̂m = 1

The three properties just described have a remarkable generality since any set

of operators that satisfy these three properties correspond to a possible measure-

ment and likewise, any real measurement can be described by the appropriate set of

probability operators.

2.8 Phase probability distribution

The phase probability distribution P(φ) of a quantum state, is understood here as the

marginal distribution in phase space that uses the phase6 φ as a parameter in a similar

way that marginals P(x) and P(p) along the quadratures use x and p (respectively).

A useful definition for P(φ) in terms of generalized measurements is [18]:

P(φ) = Tr
[
ρ̂F̂ (φ)

]
, (2.67)

where

F̂ (φ) =
1

2π

∞∑

m,n=0

exp(iφ(m− n))|m〉〈n|Hmn (2.68)

is the POVM for a phase measurement with H being a measurement dependent

matrix (positive and Hermitian). Moreover, it is worth noticing that F̂ (φ) obeys:

R̂(θ)F̂ (φ)R̂(−θ) = F̂ (φ+ θ), ∀θ ∈ [0, 2π) (2.69)

with R̂(θ) = exp(iâ†âθ). In the case of a canonical phase measurement:

Hcan
mn = 1. (2.70)

In the case of a Heterodyne measurement, we have:

Hhet
mn =

Γ
(
m+n
2

+ 1
)

√
n!m!

(2.71)

2.8.1 Holevo variance

The traditional measure for variance:

V (A) =
〈
A2
〉
− 〈A〉2 (2.72)

6Refer to Chapter 4 for a more detailed description of the phase in quantum optics.
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presents difficulties when using variables with an inherent periodicity, as is the case of

the optical phase, which is a 2π-periodic variable. The problem is illustrated in Fig.

2.5, where the phase probability distribution function of a coherent state is plotted.

If such a coherent state lies on the positive X axis, or close to it, eq. (2.72) gives

the correct value for the phase variance, while if the state lies close to the negative X

axis, φ ∼ π, the variance is increased to a value close to (2π)2. This clearly makes no

sense since the phase variance of a coherent state is independent of its phase.

Figure 2.5: Phase variance problem. The phase probability distribution function
P(φ) is shown for two coherent states, with phases φ = 0 and φ ∼ π. The standard
deviation σ(φ) =

√
V (φ) obtained by using the traditional definition eq. (2.72) is

indicated.

In this thesis we will use an alternative definition for the phase variance that

avoids this problem: The Holevo phase variance [2], defined as:

V H = |µ|−2 − 1. (2.73)

V H is a function of the state’s phase where µ = 〈exp(iφ)〉, the mean exponential

phase, is known as the sharpness of the distribution, which for a canonical phase

measurement can be obtained either by knowing the full density matrix ρ̂ of the state

or particularily by knowing its phase probability distribution P(φ) as:

〈exp(iφ)〉 =
∫ ∞

−∞
P(φ)exp(iφ)dφ (2.74)

The canonical phase probability distribution P(φ) can be obtained from eq. (2.67)

with H = 1 or equivalently from:

P(φ) =
1

2π
〈φ|ρ̂|φ〉 (2.75)
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with phase states defined as:

|φ〉 =
∞∑

n=0

einφ|n〉 (2.76)

Summary of operators

Table 2.2: Most common operators in quantum optics.

Operator. Name Expression Type

â Annihilation â Non Hermitian

â† Creation â† Non Hermitian

n̂ Number â†â Hermitian

ρ̂ Density ρ̂ Hermitian

X̂ X quadrature 1
2

(
â† + â

)
Hermitian

P̂ P quadrature i
2

(
â† − â

)
Hermitian

X̂Φ Arbitrary quadrature 1
2
(âe−iΦ + â†eiΦ) Hermitian

D̂(α) Displacement exp(αâ† − α∗â) Unitary

D̂†(α) Displacement D̂†(α) = D̂−1(α) = D̂(−α) Unitary

Ŝ(ζ) Squeezing exp
[
1
2
ζ(â†)2 − 1

2
ζ∗(â)2

]
Unitary

R̂(θ) Phase Shift exp(iθn̂) Unitary
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3.1 Introduction

In applications such as Telecommunication, the amplification of a signal is frequently

required. Examples of this can be seen every day: in satellite communication, cell

phone repeater antennae, long distance transmissions through fiber optics, etc.

The function of an amplifier in such a communication scenario is in principle very

simple: it receives a signal (that could be completely unknown in amplitude and

phase), then it has to coherently inject extra energy into it (actual amplification)

and finally send the resulting signal back into a communication channel. This might

appear as an easy task, but surprisingly, deterministic noise-free amplification of an

unknown state is in fact impossible as realized by Haus and Mullen in 1962 [3] and

further studied by Caves in 1982 [4].
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3.1. INTRODUCTION

We know that any physical signal is in essence quantum mechanical, then a con-

tradiction emerges: Amplification is used everyday but quantum mechanics prohibits

its perfect implementation. The way to solve this apparent discrepancy is to realize

that the signals used to carry the information in optical communications are normally

coherent states, as in the fiber optics case. We then consider 2 scenarios:

1. If dim coherent states are used, as it happens after strong attenuation or loss

in the communication channel, the quantum noise of the possible states may strongly

overlap (Fig. 3.1a) that impedes a receiver to distinguish between them. In this

case the classical description fails and perfect quantum amplification is impossible,

as amplifying them will either maintain the overlap or make it worse.

2. A different situation occurs when such states have a moderate to large ampli-

tude before entering the amplifier, then the overlap could practically disappear1 (Fig.

3.1b). Moreover, the increased variance do not explicitly depend on the initial state’s

amplitude but only on the gain, so the effect of the added noise decreases with in-

creasing amplitude and the signals behave just as classical waves, which explains their

familiar behaviour in the cited applications2.

The subject of Quantum amplification has recently attracted a lot of attention and

various groups around the world have proposed and implemented different alterna-

tives to amplification, both deterministic amplification at the ultimate quantum limit

as well as probabilisitic amplification which may beat the standard limits. In this

chapter, the mentioned impossibility of perfect quantum amplification will be de-

scribed, the proposed alternatives will be presented and finally, in section 3.3 a novel

concept of quantum amplification will be analyzed.

X

PP

X

a b

Figure 3.1: Overlap of coherent states before (yellow) and after (blue) amplification.
a. dim coherent states b. coherent states with slightly larger amplitude

1The larger the amplitude, the closer to orthogonal they become: i.e. the overlap between 2
coherent states is given by |〈α1|α2〉|2 = exp

(
−|α1 − α2|2

)
2It is important to notice that even in this case, the amplification produces extra noise, but the

effect of this noise is minimun as a detector can distinguish between the different states.
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3.2. ON THE IMPOSSIBILITY OF PERFECT AMPLIFICATION

3.2 Impossibility of perfect Amplification

It is important to clearly state what is actually impossible3 in quantum amplification

and it can be sumarized as:

It is impossible to noiselessly and deterministically amplify

an unknown input quantum state.

To clarify the terms, noiselessly means that the amplifier should not add noise to

the output and deterministically means that the device should correctly perform the

amplification in a single shot (one output for one input), every time it is used. It is

also important to stress that the state is assumed to be unknown4. The aim of this

section is to explain this impossiblility, first by giving an argument based on a well

known theorem (subsec. 3.2.1), which will be later confirmed with a more general

proof (subsect. 3.2.2), that shows that the output of any deterministic amplifier with

an unknown input, will always be noisy.

3.2.1 No-cloning argument

The no-cloning theorem [32] has been widely discussed and tested over the years and

in fact is now a corner stone in quantum information science. Interestingly, its proof

requires only a few lines:

Lets take two generic states {|φ〉, |ψ〉} and assume that there is a unitary trans-

formation Ucl that can independently make a perfect copy of each of them:

|φ〉|0〉 Ucl−−→ |φ〉|φ〉 (3.1)

|ψ〉|0〉 Ucl−−→ |ψ〉|ψ〉 (3.2)

Now we only need to find the inner product of these states, and use the previous

information to arrive at:

〈φ|ψ〉 = (〈φ|〈0|) (|ψ〉|0〉) (3.3)

= (〈φ|〈φ|) (|ψ〉|ψ〉) (3.4)

= 〈φ|ψ〉2 (3.5)

3 In Physics, the expression “It is impossible to. . . ” has to be used with care, as new experiments
could at any time defy a physical theory so, it should be safer to read it as “The currently accepted

theory states that it is impossible to. . . ” but when facts are so well described by the theory and
experimentally confirmed over years, there is no harm in writing it in the short form.

4If complete knowlege of the initial state were available, perfect cloning would be possible, requir-
ing only a unitary transformation that uses the information about the state. In the case of coherent
states such a transformation is a displacement.
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3.2. ON THE IMPOSSIBILITY OF PERFECT AMPLIFICATION

Now, this means that our assumption has the condition: 〈φ|ψ〉 = 〈φ|ψ〉2 which is

satisfied only if the states are orthogonal or if |ψ〉 = |φ〉, so in general there exists no

such unitary transformation and we can state:

An unknown quantum state cannot be cloned, that is, we cannot deter-

ministically get two identical copies of the original 5.

It is straightforward to show that if perfect cloning is prohibited, deterministic

amplification is also prohibited. Let us consider the case of coherent states: If a

perfect amplifier existed, we could use it with gain g =
√
2 as a first stage in a set up

as in Fig. 3.2, then we would only need to send the ouput of the amplifier to a 50:50

BS and introduce an extra phase flip in one of the outputs. This would produce 2

perfect copies of the original unknown coherent state:

|α〉|0〉 Amplifier−−−−−→ |
√
2α〉|0〉 BS−−→ |α〉|α〉 (3.6)

which clearly violates the no-cloning theorem. Here we conclude that perfect

cloning and amplification belong to the same class of prohibited operations in quan-

tum mechanics.

X

P

j

50:50

b

Cloner

X

P

j

a

X
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j

X
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j
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d

Figure 3.2: A perfect cloner could be built by using a perfect amplifier with gain
g =

√
2 and a 50:50 BS. a. Input, b. Amplified state, c. and d. Perfect clones.

5It is possible, however, to obtain copies with fidelity F < 1. A scheme for optimal cloning of
coherent states can be found in [37]
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3.2. ON THE IMPOSSIBILITY OF PERFECT AMPLIFICATION

3.2.2 Phase Insensitive Linear Amplifier

Dj

X

P

j

Djamp

X

P

j

Dj

Linear

Figure 3.3: Effect of a Linear amplifier on an input coherent state.

The theoretical description of the linear amplifier was originally made by Haus

and Mullen [3] and reformulated in terms of fundamental theorems by Caves [4]. A

simplified description of the linear amplifier is as follows: first, we demand bosonic

modes for both input and output, so the following commutation relations have to be

fulfilled:

[
âin, â

†
in

]
= 1, (3.7)

[
âout, â

†
out

]
= 1 (3.8)

A linear amplifier can be either phase-sensitive or phase-insensitive, however, in

what follows, we are specifically interested in a phase-insensitive linear amplifier

(PILA). The linearity refers to a linear relation between input and output modes, and

phase-insensitive (or phase-preserving) implies that both quadratures undergo equal

amplification, so the simplest expression complying with these conditions would be:

âout =
√
Gâin (3.9)

â†out =
√
Gâ†in (3.10)

where G = g2, (g > 1) is the photon number gain. This clearly does not preserve

the commutation relations since
[
âout, â

†
out

]
= G, and an extra term has to be added:

âout =
√
Gâin + F̂ (3.11)

â†out =
√
Gâ†in + F̂

† (3.12)

where F̂ is an operator associated with the internal modes of the amplifier and

is responsible for the added quantum noise in the amplification process. This noise

may have different origins, depending on the physical processes involved. Examples
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3.2. ON THE IMPOSSIBILITY OF PERFECT AMPLIFICATION

of this noise are spontaneous emission in laser amplification or addition of vacuum

fluctuations of the idler mode to the output signal in parametric amplifiers and four

wave mixers.

This noise is expected to be uncorrelated with the input [F̂, âin] = [F̂†, âin] = 0, and

we get: [
F̂, F̂†] = 1−G (3.13)

Now we can express the relations between input and output variances:

(∆âout)
2 = G (∆âin)

2 +
1

2

〈{
F̂, F̂†

}〉

≥ G (∆âin)
2 +

1

2

〈[
F̂, F̂†

]〉

≥ G (∆âin)
2 +

|G− 1|
2

(3.14)

Here we can see explicitly that the output of every phase insensitive linear amplifier

will contain extra noise as compared to the input, and the quantum limit in linear

amplification is set by the equal sign in (3.14) [4]. As mentioned before, the noise

addition represented by F̂ can be atributed to internal degrees of freedom, and a

simple expression for this is F̂ =
√
G− 1â†int and so we arrive at the well known

formula for the linear quantum amplifier:

âout =
√
Gâin +

√
G− 1â†int (3.15)

0

T

X

P

j

in

Linear Amplifier

50:50

99:1

A
M

P
M

X

P

j

out

g

g

Pm

Xm

Figure 3.4: Example of a linear amplifier setup. A fraction of the input state state is
sent to a 50:50 BS where it is split to measure conjugate quadratures (Xm,Pm). This
information is fedforward to a displacement device composed by an auxiliary beam,
amplitude and phase modulators (AM and PM) and 99:1 BS.
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3.2. ON THE IMPOSSIBILITY OF PERFECT AMPLIFICATION

It is perhaps more appealing from the experimental point of view to express this

noise addition in the familiar form of Hermitian quadrature operators, corresponding

to observables that can be accessed in the lab:

Vout(θ) = GVin(θ) + (G− 1)Vint(θ) (3.16)

where: V (θ) = 〈(X̂θ − 〈X̂θ〉)2〉 and X̂θ is defined as in (2.9).

One experimental realization of this type of amplifier for coherent states, was

carried out by Josse et al. [6]. Their setup is shown in Fig. 3.4 where they remarkably

use only linear optics and feed-fordward. In their case a small fraction of the initial

coherent state is used to identify it, and this information is employed later to make

a displacement operation on the transmitted state to perform the amplification. For

the identification of the reflected state, they measure conjugate quadratures (Xm,Pm)

simultaneously, which implies a noise penalty of 3dB on each quadrature and therefore

the displacement (amplification) will be noisy. The origin of the noise in this case is

the injection of vaccum in the unused input port of the 50:50 BS, that splits the state

to measure conjugate quadratures.

3.2.3 Probabilistic Noiseless Amplifiers

Probabilistic

X

P

j

Dj

X

P

j

Dj

Djamp

Figure 3.5: Effect of a probabilistic amplifier on an input coherent state.

If one gives up the demand for a deterministic behaviour of the amplifier, or in

other words, if one can afford not to have correct amplification for every incoming

state but rather for a fraction of them, then the unwanted extra noise can be reduced

or even eliminated. It is referred to as probabilistic (or non-deterministic) noiseless

amplification. In the following, we describe various different proposals and realiza-

tions of noiseless amplification.
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3.2. ON THE IMPOSSIBILITY OF PERFECT AMPLIFICATION

3.2.3.1 Quantum Scissors approach

The original proposal of quantum scissors [29] and its experimental realization [30],

aimed at teleporting an initial state, but as the resource was an entangled single pho-

ton (asymmetric BS in Fig. 3.6), the actual output had a reduced Hilbert space. The

teleported state belongs to the 2 dimensional Hilbert space given by a superposition

of |0〉 and |1〉 that is conditioned on the outcomes of two click detectors.

Figure 3.6: Quantum scissors approach to quantum amplification. Click detectors
D0 and D1 condition the successful amplification of an initial weak coherent state, as
explained in the text.

Following this idea, Ralph and Lund realized that the quantum scissors’ archi-

tecture could be used as a probabilistic quantum amplifier and made a theoretical

proposal [7]. In short, the operation of the amplifier is as follows: The output will

be heralded under the condition of having a single photon-detection on detector D1

in Fig. 3.6 and none in the other. This detected photon is the result of two indistin-

guishable possibilities: it either came from the input state |α〉 or from the auxiliary

single photon. If the click came from the single photon, the output will be vaccum

otherwise, it is |1〉. Under this condition, as it cannot be told where the detected

photon came from, the output state will be given by the coherent superposition:

|out〉 = r|0〉+ tα|1〉 (3.17)

In this amplifier, the gain can be controlled by manipulating the transmission of the

asymmetric BS as: t/r = g > 1, and the output can be written as6:

|out〉 = |0〉+ gα|1〉 ≃ |gα〉 (3.18)

6It should be noticed that the same result is expected if the role of the detectors is interchanged
and the output is phase shifted.
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3.2. ON THE IMPOSSIBILITY OF PERFECT AMPLIFICATION

In this way, when dim coherent states are used, this amplifier performs approxi-

mately the transformation:

|α〉 → |gα〉 (3.19)

The groups of Grangier [8] and Pryde [9] performed independent experiments to

demonstrate Ralph and Lund’s idea, using different ways to characterize the output

state.

3.2.3.2 Photon addition/subtraction approach

An alternative for achieving probabilistic noiseless amplification is by performing a

specific sequence of photon addition and subtraction[10] [13]. A noiseless quantum

amplifier can be described in terms of a Non-unitary operator :

Ĝ = gn̂ (3.20)

The effect of the amplifier is to transform |n〉 into gn̂|n〉, where n̂ is the photon number

operator. By making an expansion upto N terms we get:

Ĝ =
N∑

k=0

(dn̂)k

k!
(3.21)

Let us we approximate the amplifier by taking the first 2 terms (N = 1). To ensure

that g corresponds to the effective gain, we need: d = g − 1 [13]. In this case the

amplifier is simplified to the following sequence of photon subtraction and additions:

Ĝ = (g − 1)n̂+ 1 (3.22)

= (g − 2)â†â+ ââ† (3.23)

which for g 6= 2 is still very difficult to implement experimentally, so we set g = 2

Ĝg=2 = ââ† (3.24)

and now, this version of the amplifier (N = 1, g = 2) can be realized experimen-

tally, as a similar sequence was demonstrated earlier [33].

If applied to a weak coherent state |α〉 ≃ |0〉 + α|1〉, the noise-free amplification

process and be easily deduced theoretically:

Ĝg=2|α〉 ≃ ââ† (|0〉+ α|1〉) (3.25)

= |0〉+ 2α|1〉 ≃ |2α〉 (3.26)
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3.2. ON THE IMPOSSIBILITY OF PERFECT AMPLIFICATION

The experimental demonstration of this amplifier was carried out by Zavatta et al.[28]

with a setup based on the conceptual diagram shown in Fig. 3.7. The boxes represent

a coherent photon addition, â†-box (experimentally demanding, [33]) and photon

subtraction â-box. To characterize their state, they performed quantum tomography,

and as in the case of Grangier, they looked for the effective gain as a function of the

initial coherent amplitude.

Figure 3.7: Conceptual diagram of the photon addition/subtraction noiseless ampli-
fier. The blue boxes represent individual creation/annihilation operations.

A theoretical comparison of the performance of the scissors’ and photon addition/-

subtraction noiseless amplifiers regarding their effective gain, can be seen in Fig. 3.8.

Here it is evident that the effective gain is rapidly degrading with increasing input

amplitude |α| in the scissors approach whereas the addition/subtraction approach

seems more versatile.
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Figure 3.8: Effective gain comparison. The quantum scissors’ approach (solid green
line) vs photon addition/subtraction (dashed blue line).
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3.3. NOISELESS CONCENTRATION OF PHASE INFORMATION

3.3 Noiseless Concentration of Phase Information

“In order to attain the impossible,
one must attempt the absurd.”

Miguel de Cervantes Saavedra

3.3.1 Introduction

In the previous section, we saw that noise-free amplification is attainable by allowing

for a probabilistic operation. Sometimes the amplification operation does not work

noiselessly in which case the output will be discarded, and sometimes it works in

a nearly noiseless way. Two different experimental realizations were outlined, and

both were quite experimentally demanding as they rely on single photons sources,

photon addition/subtraction operations and complicated interferometric setups. In

this section we will discuss a radically different noiseless amplifier that it is capable

of amplifying the phase information noiselessly without the use of any non-classical

resources or any strong parametric interactions. Remarkably, the source of energy

is a thermal light source, so the noise-free amplifier is based on the addition

of noise! This type of amplifier has been proposed in ref. [10] and its experimental

realization was conducted as a part of this thesis and published in Nature Physics

[49]. In this section, we describe in detail the idea and the experimental realization.

Description

We already mentioned in section 3.2.3.2 that by adding photons coherently to an

initial coherent state and subsequently subtracting them, the state can be amplified

noiselessly. This approach proved to be remarkably difficult to set up experimentally,

because even the most simple case, where the amplifier has the form Ĝg=2 = ââ†, is

experimentally challenging7. But is all this complication really necessary?

Interestingly, it has been realized that there is a more direct procedure, that con-

sists in adding the photons incoherently (instead of coherent addition), followed by a

photon subtraction, which amplifies the state nearly noiselessly [10]. In other words,

by substituting the highly sophisticated coherent photon addition operation with a

thermal source, it is still possible to enable noiseless amplification to a certain extent.

7This is the only case of this type of amplifier demonstrated experimentally [28].
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3.3. NOISELESS CONCENTRATION OF PHASE INFORMATION

Our scheme is illustrated in Fig.3.9. The first operation is the addition of Gaus-

sian noise to a coherent state which produces a displaced thermal state as shown

in the phase space diagram. Next, we tap off a small fraction of the beam in an

asymmetric beam splitter (R ≪ 1) and measuring the reflected part with a photon

number resolving detector (PNRD). We subsequently herald the state based on the

measurement outcomes: If say M photons or more are detected the state is kept,

otherwise it is discarded. This effectively corresponds to the subtraction of M (or

more) photons from the displaced thermal state, and thus the action will increase

Figure 3.9: Sketch of procedure and states.

a. Sketch of the procedure described in the text. b. Phase space distributions of
the input coherent (yellow), displaced thermal (green) and output state (blue). The
dashed lines indicate the phase variance

the amplitude, conserve the mean value of the phase and reduce the phase variance.

Because the mean value of the phase is unchanged and the noise is reduced, the signal

to noise ratio is increased.

For a simple understanding of the operation, let us assume again a small coherent

state |α〉 ≃ |0〉 + α|1〉 with weak Gaussian noise addition followed by single photon

subtraction. The resulting state is [10]

ρ̂ ≈ 1

|α|2 +Nth + 4|α|2Nth

[
|α|2|0〉〈0|+Nth(|0〉+ 2α|1〉)(〈0|+ 〈1|2α∗)

]
(3.27)

with the (canonical) Holevo phase variance (sec. 2.8.1):

V H
amp ≈

1

4|α|2
(
1 +

|α|2
Nth

)
− 1, (3.28)
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3.3. NOISELESS CONCENTRATION OF PHASE INFORMATION

where it is assumed that the average number of incoherently added photons is

Nth ≪ 1. We quantify the performance of the amplifier by the normalized phase

variance, Γ = V H
amp/V

H
in which for a noiseless operation is smaller than one. For the

above approximative example, if |α|2 ≪ Nth, we find that the normalized variance

approaches Γ = 1/4. Another parameter that will be used to evaluate the amplifier

is the gain g = |β|/|α| (where β is the average amplitude of the output state), being

g = 2 for the above example. We therefore see that by simply adding a small amount

of noise to the input state followed by a single photon subtraction it is possible to

create an output state with twice the amplitude and with a reduced phase variance.

3.3.2 Theory

A more detailed theoretical description is as follows. The P function of the initial

coherent state after the addition of thermal noise is represented by:

P (β) =
e−|β−α|2/Nth

πNth

(3.29)

which is a displaced thermal state, containing on average Nth thermal photons

and is centered at the initial coherent state |α〉, in phase space. This P function is

positive, as a thermal state can be seen as a collection of coherent states (Fig. 3.10b),

and therefore it can be interpreted as an actual probability distribution, that dictates

how the ensemble of coherent states is distributed in phase space.

X
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nthreshold

X

P
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b da c

Figure 3.10: Phase space diagram of the following states as seen by the HD detector
(after the tap): a. the input state b. the displaced thermal state c. the displaced
thermal state and the threshold that is imposed by the photon counting sitting on
the other arm (refer to footnote: #8). d. the heralded amplified output.

The second stage of the amplifier should condition the output on the successful

subtraction of M or more photons from this thermal state. To achieve this subtrac-

tion, we tap off a part of the beam with a beam splitter of transmittance T . The

reflected part is then directed to a detector that is able to resolve the amount of
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photons it receives (PNRD) as mentioned before. The conditioning is made on the

outcomes of the PNRD and the complete POVM (detector+conditioning) reads:

Π̂M
1 =

M−1∑

n=0

|n〉〈n| (3.30)

Π̂M
2 =

∞∑

n=M

|n〉〈n| (3.31)

which represents a binary decision on a threshold detector, whereM is the number

of detected photons. Every time that less than M photons are detected (i.e. sub-

tracted from the transmitted beam), the output is discarded. The successful operation

is therefore given by Π̂M
2 and as it is applied to the reflected beam we have:

PΠ (β) =
〈√

η(1− T )β
∣∣∣ Π̂M

2

∣∣∣
√
η(1− T )β

〉
(3.32)

This expresses the probability to have M or more detected photons on a detector

with quantum efficiency η, placed on the reflected port of an asymmetric BS (with

transmission T ), when the input is a generic coherent state |β〉. It is now straight-

forward to write the density matrix of the output state as the weighted sum of the

transmitted coherent states, |
√
Tβ〉, conditioned as described above:

ρ̂out =
1

PS

∫
P

(
β√
T

)
PΠ

(
β√
T

)
|β〉〈β| d

2β

T
(3.33)

The normalization PS gives the probability of success:

PS =

∫
P

(
β√
T

)
PΠ

(
β√
T

)
d2β

T
(3.34)

Now we can use this theoretical description along with Fig. 3.10 to understand

qualitatively the operation of the amplifier. As before, the description is in terms of

individual coherent states: The conditioning is indicated in Fig. 3.10c., where the red

circumference represents the threshold of M photons8, as seen on the phase space of

the output state. Only coherent states that are on the circumference or outside it are

likely to produceM or more clicks in the detector. Since the states in the transmitted

and reflected modes are classically correlated, the conditioning we apply (3.32) on the

PNRD, selects the transmitted coherent states with the highest excitation and the

proper direction in phase space. The result is an amplified state with reduced phase

8Note that the threshold suggested by the red line in Figs. 3.10 and 3.12 is just a visual aid to
get some intuition about the effect of PNRD conditioning seen from the output state’s phase space.
It is, however, good enough to understand the behavior at this level.
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variance as sketched in Fig. 3.10d.

Now, to quantitatively evaluate the performance of the amplifier, it is convenient

to obtain an expression for the density matrix (3.33) in the familiar base of Fock

states. Since this is the same representation that we obtain experimentally after doing

tomography, such expression will also allow a direct comparison between theory and

experiment. The density matrix elements (ρ̂out =
∑
ρ̂outnm|n〉〈m|) in the Fock basis are:

ρ̂outnm =

∫
e−|β|2 β

mβ∗n
√
m!n!

P

(
β√
T

)
PΠ

(
β√
T

)
d2β

PST
(3.35)

where the detection function can be explicitly given by:

PΠ(β) = 1−
M−1∑

k=0

(η(1− T )|β|2)k
k!

e−(η(1−T )|β|)2 (3.36)

The performance of this amplifier is basically characterized by two key quantities:

the gain and the phase variance. We can use the density matrix to calculate them

which as follows:

Gain (g)

Our gain is defined as the ratio between the average amplitudes of the output with

respect to the input state. To evaluate these amplitudes we use the quadrature

operator along the input state’s phase X̂Φ:

g =
Tr[ρ̂outX̂Φ]

Tr[ρ̂inX̂Φ]
(3.37)

The performance of the gain with respect to the added noise is presented in Figure

3.11a.
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Figure 3.11: Theoretical gain and normalized phase variance vs. the mean number
of added thermal photons: a. The gain generally grows with the number of photons
in the added thermal noise and the threshold M of added thermal photons for an
input coherent state of amplitude |α| = 0.48. b. The canonical variance normalized
to the corresponding variance of the input coherent state.
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Normalized Holevo variance

The normalized Holevo variance (Γ) is given by:

Γ =
V H
out

V H
in

(3.38)

where the Holevo variance9, V H (subsect. 2.8.1) is defined in terms of the density

matrix as:

V H =

∣∣∣∣∣Tr
[ ∞∑

n=0

|n〉〈n+ 1|ρ̂
]∣∣∣∣∣

−2

− 1. (3.39)

In particular, V H
in can be written explicitly as [49]:

V H
in =

∣∣∣∣∣αe
−|α|2

∞∑

n=0

|α|2n
n!
√
n+ 1

∣∣∣∣∣

−2

− 1. (3.40)

If we have access to the amplitude of the initial state (keeping the phase still un-

known), there are still two parameters that we can use for a fine tuning of this

amplifier, and these are the mean number of thermal photons Nth and threshold M .

Fig. 3.11 shows the dependence of the gain and the phase variance on the mentioned

parameters. It can clearly be seen in this figure how to choose values for Nth and M ,

depending on what quantity needs to be optimized (e.g. minimum phase variance,

maximum gain, etc.).

9The Holevo variance of relevance in this case is the canonical, which corresponds to eq. (3.39).
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Figure 3.12: Normalized Holevo phase variance of the output state and phase space
pictures associated with three different noise additions. Straight lines in the insets
indicate the phase variance of the input (dotted) and the output states (solid).

In figure 3.12 we have a closer look at the effect of increasing the thermal noise.

This figure is based on Fig. 3.11b in the case M = 1. The dashed-dotted line repre-

sents the phase variance of the input state. For reference, the input state (small dotted

circle), the thermal state (dashed circle) and the remaining states after postselecting

on M photons (refer to footnote #8) are plotted in the insets. As we noted before,

the phase variance has a minimum for a certain amount of added Gaussian noise Fig.

3.12a. When noise is added beyond this optimal value, the dashed circle becomes

larger and more states are accepted. This results in an increased phase variance in

the output state (see Fig. 3.12b). Any further increase of noise after the intersection

with the dashed dotted line (Γ=1), will result in a noisy phase amplification as shown

in Fig.3.12c.
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3.3.3 Experimental implementation

The setup is depicted in Fig. 3.13. The source is an external cavity diode laser with

λ = 809nm, whose output is spatially cleaned through a single mode fiber and moni-

tored to ensure quantum-noise-limited signal states. Subsequently the major part of

the beam is split off and guided to a homodyne detector to serve as a local oscillator.

Signal preparation

The residual part of the beam is used to create the coherent signal state as well as

the noise, which powers the concentration process. Both, the signal and the noise,

are generated by a combination of amplitude and phase electro optical modulators

(EOM) and a half wave plate (HWP). The modulators displace the signal state (S)

using the orthogonally polarized auxiliary oscillator mode (AO), which is relatively

bright [23]. After the modulators’ calibration, we can displace the signal state to any

coherent state with a maximum photon number corresponding to the mean photon

number in the AO mode nmax = |αAO|2. The signal mode can be chosen to be in an

arbitrary mixed state, provided that the state’s P-function is positive. We can there-

fore generate the displaced thermal state applying a suitable modulation sequence

to both EOMs. The state is modeled with a finite set of (more than) 103 coherent

states, randomly picked from a 2D normal distribution. The random modulation

sequence is varied and repeated throughout the measurement. The resulting signal

state resides in a polarization mode orthogonal to the input. This allows us to sep-

arate the signal from the spare part of the beam simply via a polarizing beam splitter.

Conditioning and verification

A small portion (20%) of the generated state is tapped off by an asymmetric beam

splitter (corresponding to that in Fig.3.9) and guided to a fibre coupled avalanche

photo diode APD, operating in an actively gated mode. The dead time of the APD

(50ns) is much shorter than the pulse duration (800ns), which allows for multiple

detection events.For small mean photon numbers the measured detection statistics

exhibits a linear behavior, such that the APD can be used as a photon number re-

solving detector. The detected number of clicks in the APD is forwarded to a PC,

where it is used for the heralding process. To verify the enhanced phase information

of the heralded states, we perform a full tomography of the transmitted part of the

state.

For this, we use a homodyne detector, which measures the signal with oscillator

whose phase is varied harmonically with a by a piezoelectric transducer (PZT) to allow
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for quadrature measurements at arbitrary phase angles. The scanning frequency for

the PZT is chosen to be 21mHz, leading to an effective phase drift of only 1.6mrad

within the modulation sequence. This value is negligible from an experimental point

of view so that the LO’s phase is considered constant within a single modulation

sequence. The phase angle needed in the tomography was estimated with a series of

phase calibration signals prepended to the modulation sequence. The main source of

error in the setup is the drift of the modulators. To compensate for this drift, the

calibration point was continuously adjusted.

Figure 3.13: Experimental setup: A diode laser with fiber mode cleaning (FMC)
acts as the source for the experiment and is split into a local oscillator (LO) and an
auxiliary oscillator. The signal is prepared by a combination of two electro-optical
modulators (EOM), a half-wave plate (HWP) and attenuation (Att.). A PBS re-
moves the auxiliary oscillator. Part of the signal is tapped by a 82:18 beam splitter
and coupled via a multimode fibre into the photo number resolving detector. This
measurement is conditioning the output state, which is characterized by a homodyne
measurement. The phase of the LO is controlled by a piezoelectric transducer (PZT).

As the homodyne detector (HD) is not a part of the phase concentration scheme

itself but only implemented in the setup to prove the effect of the scheme, we do

not want to take its imperfections into account in the analysis. We assume therefore

perfect detection. The amplitude of the coherent input state |α| is then inferred from

the measured mean photon number values in the imperfect PNRD and the ideal HD

|α|2 = |αHD|2 +
1

ηPNRD

|αPNRD|2 (3.41)

where the PNRD’s quantum efficiency was calibrated to be ηPNRD = 0.63± 3% using

the overall quantum efficiency of the HD. This procedure is preferable as it does not
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demand an accurate knowledge of the input coherent states amplitude, the splitting

ratio and the losses in the HD.

With the acquired tomographic data, we reconstruct the states’ density matrices

via a maximum likelihood algorithm [21], [22]. From the reconstructed density ma-

trices, we calculated the Wigner functions, which are shown in Fig. 3.15. We infer

the density matrix of the coherent input state by considering the attenuation of the

tap measurement. The phase variance of the inferred input is then compared to the

phase variances of the heralded states.

3.3.4 Results

Density matrices and Wigner functions

It is possible at this point to make comparisons between theoretical and experimental

results. In order to calculate the appropriate theoretical density matrices, we use

the theory presented in sec. 3.3.2, along with the parameters shown in table 3.1,

which are: input coherent amplitude |α|, mean number of added thermal photons

Nth, transmittance T of the BS in the tap and PNRD’s quantum efficiency η. The

values for T and η are measured directly in the setup, and the other parameters

are obtained from the tomographical result in the experiment. These parameters

represent our case of study in all the analysis presented. It is imporant to notice that

we use density matrices of order 9 (photon numbers from 0 to 8), where the last term

ρ8,8 is typically in the order of 10−7. This contains all relevant information as will be

shown below.

Table 3.1: Experimental Parameters.

|α| Nth T η

0.431 0.148 0.822 0.630

We first investigate the norm, purity and fidelity of our reconstructed data which is

is presented in table 3.2. The norm of all our states is unity, Tr[ρ̂] = 1, which confirms

that they represent physical states. The purity shows that our experimental coherent

is really a pure coherent state and the rest are of course mixed states and we expect

Tr[ρ̂2] < 1. Finally the fidelity between experimental and theoretical density matrices

is very good, higher than 0.98 for all cases, implying that our theoretical analysis

gives an accurate representation of these states. For a visual confirmation of these
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good fidelities we present the absolute value of the density matrices (theoretical and

experimental), and their populations in Fig. 3.14. The colorbar has been excluded

for space limitations, but the populations (ρ̂nn) give the reference for the heights.

Only photon numbers from 0 to 5 are shown, althought all calculations are made

with nmax = 8.

Table 3.2: Norm, purity and Fidelity for reconstructed density matrices (nmax = 8).

Inferred Thermal M=1 M=2 M=3
coherent

Exp. Norm 1. 1. 1. 1. 1.
Exp. purity 1. 0.7668 0.7297 0.7039 0.7127
Fidelity 0.9983 0.9974 0.9982 0.9965 0.9840

From Fig. 3.14 we can extract 3 qualitative conclusions:

1. Small coherent state

The populations show that our coherent excitation is very small, it essentially spans

a 2 dim Hilbert space. This particular case even validates the assumptions for the

simplest theory presented in the begining of the section with |α〉 ≃ |0〉+ α|1〉.
2. Small thermal addition

The fact that this is a weak Gaussian noise addition Nth ≪ 1 is seen in the similarity

of the densities for thermal and coherent states and the relatively small increase of

variance for X̂ and P̂ quadratures in its Wigner function (Fig 3.15). Notice that this

thermal state, unlike the one shown in sec. 2.6.4 (completely mixed), has coherences

different from zero and its Wigner function exhibit phase features, since it has a

preferred axis along that of the coherent excitation.

3. Photon subtraction effect

By looking at the progression of the states (left to right) in Fig. 3.14, we see that

what really redistributes the weights in the populations (shifting to higher photon

numbers) is the photon subtractions, and this progressively increases with M . The

net effect we expect is gain which will be quantitatively analyzed later.
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Figure 3.14: Experimental vs theoretical density matrices and populations.

Top: populations (photon number statistics).

Down: corresponding density matrices . It can be visually confirmed the high fidelity
that exists between theoretical and experimental density matrices. The coherent state
can be approximated to one in a 2 dim Hilbert space, the effect of photon subtraction
is to shift the populations’ weights to higher photon numbers, which expected effect
is gain.
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Figure 3.15: Wigner functions reconstructed from experimental data for the input
state and the heralded state for different thresholds M . For each experimental re-
construction, the mean values and standard deviations for the X and P quadratures
are given with the corresponding measured success probability and canonical phase
variance.

46



3.3. NOISELESS CONCENTRATION OF PHASE INFORMATION

phase probability density function (PDF)

We can express the phase PDF, P(φ), in terms of the density matrix as:

P(φ) = Tr
[
ρ̂F̂ (φ)

]
where F̂ (φ) is a POVM defined in subsect. 2.8.

Fig. 3.16 shows the phase probability distribution function (PDF) derived from

the experimental data (dashed lines) for the measured coherent, the thermal and the

conditioned states. Corresponding theoretical functions (solid lines) were calculated

for states fitting to experimentally derived parameters.

Figure 3.16: Phase probability distribution function comparison between experimen-
tal data (dashed lines) and theoretical calculations (solid lines) for different states.

Very good agreement between theory and experiment is achieved. The effect of

the amplifier on the phase variance is clear: by increasing the threshold, the output

state’s phase PDF gets more and more concentrated as the peak of the distribution

clearly rises, this implies that the phase variance is reduced.
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Holevo phase variance

To calculate explicitly the reduction in phase variance, we can use the expression

already mentioned in (3.39), both for experimental data and theoretical calculations.

Fig. 3.17 shows the comparison in phase variance between the experimental data

(light blue) and corresponding theoretical values (dark blue) calculated for states

fitting to the experimentally derived parameters. The inferred input coherent state

serves as the reference value, and is shown as a red dashed line, calculated from ex-

pression (3.40). The error bars represent the statistical deviations over many different

realizations of the experiment. It is important to notice here, that any bar lying be-

low the red line represents a successful realization of noiseless amplification, and we

conclude that phase variance reduction appear only after the conditioning on M .

Figure 3.17: Theoretical and experimental phase variances for an input coherent
state with amplitude |α| = 0.431 are shown for varying threshold parameter M . A
clear reduction of the phase variance is already achieved for the subtraction of a single
photon.
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Gain (g)

A comparison for the gain is shown as calculated from expression 3.42:

g =
Tr[ρ̂outX̂Φ]

Tr[ρ̂inX̂Φ]

The figure clearly shows a progressive increase in amplification gain with increas-

ing threshold M , which show us that unlike the other probabilistic amplifiers shown

before, this allow us to choose from different gains by selecting an appropriate thresh-

old.

Figure 3.18: Amplifier’s gain for different thresholds M .

It is important to notice that the noise addition process does not have any effect

on the amplification gain because the mean value of the resulting distribution in

phase space is centered in the same place, so the amplification really happens due to

the photon subtraction. This is a confirmation of the qualitative analysis from the

populations in Fig. 3.14. We saw there that the effect of conditioning was to shift

the populations’ weights to higher photon numbers which effect is gain.
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Success Probability (Psuc)

Finally, the cost of decreasing the phase variance on a probabilistic quantum amplifier

is a lower success rate. This is perhaps the biggest limitation of this amplifier but it is a

fair price to pay remembering that it is impossible to noiselessly and deterministically

amplifiy a quantum state. The figure below presents the decrease of success rate with

increasing M , so the better the amplifier performs (higher gain and lower phase

variance), the less frequent it happens.

Figure 3.19: Success Probability Psuc for the different states considered.

Final remarks

To optimize the performance of the amplifier - that is, to minimize the phase variance

- the amount of added thermal noise should be chosen appropriately with respect

to the input coherent state amplitude. Furthermore, we note that having detailed

information about the input alphabet, the structure of the noisy displacements can

be tailored accordingly, thereby drastically reducing the amount of energy used to

drive the amplifier. For example if the input is a phase-covariant coherent state

alphabet, the optimized structure of the noisy displacement is also phase covariant.

Such tailoring of the displacements as well as applications of the amplifier will be

interesting directions for future research. Finally, we note that the noise addition

process can be also carried out with a linear amplifier. Such an approach will not
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only add thermal noise to the input state but will also displace it coherently in the

preferred direction, thereby further concentrating the phase information.

A further improvement can be done by inserting several of these amplifiers in

parallel in a multi-path interferometer, in a similar way as it was suggested for the

scissors approach [7]. In this way it is in principle possible to noiselessly amplify an

arbitrary coherent state.

0

T1

0

0

T1

A

A

A

a out

TN

T2 T2

TN

Figure 3.20: Noiseless amplification of an arbitrary coherent state. Several amplifiers
can run in parallel upon an initial spliting in an array of beam splitters. The amplified
states are later recombined to form the output state.

3.3.5 Conclusion

We have presented a device that reduces the phase uncertainty of an input coherent

state of light through noiseless probabilistic amplification. In contrast to previous ap-

proaches to noisefree amplification, the amplifier is neither based on an ample supply

of nonclassical resources nor on strong parametric interactions, but solely on Gaussian

noise addition and photon counting. Due to its pivotal properties such as simplicity

and robustness, it is expected that this approach to probabilistic noisefree amplifica-

tion will be of interest to a large variety of experiments and protocols involving phase

estimation such as quantum metrology and quantum communication.
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4.1 Introduction

Optical Phase is a topic of great importance both, in classical and quantum optics, as

it is an essential component in many different applications. For instance, it is used to

transmit information and it also plays an important role in metrology. Interestingly,

the absolute phase φ1 cannot be measured (not even classically), as it lacks a meaning

before we relate it to a known reference, so what we could in principle measure is

a phase difference ∆φ1. In metrology, by choosing a proper transducer, one can

1to simplify the notation, we will use φ in the rest of the chapter to denote a phase difference.

53



4.1. INTRODUCTION

relate a phase difference to a physical quantity of interest. The canonical example

is an interferometer, where fringe position (phase difference) can be mapped into a

measurement of length, frequency, temperature, displacement, etc.

Unfortunately, this phase difference cannot be measured directly by currently

available detectors (sometimes called square module detectors), as they are only sen-

sible to electric field intensity2 I ∼ |E|2. The common solution to resolve the phase

is to interfere the signal of interest with a reference beam, typically called the lo-

cal oscillator (LO), producing intensity modulations I(φ) that can be registered by

our detectors. Figure 4.1 illustrates this process of measuring a physical quantity λ

through the use of optical phase. A transducer maps the physical quantity of interest

λ, into the phase of an optical field that is then mixed with an LO and detected. The

phase is inferred from the recorded intensity and the value of λ can be finally recov-

ered. A typical example of such a transducer is a mirror mounted on a piezoelectric

actuator, which by changing the optical path length changes the phase of the beam

and produces a phase-dependent-displacement: φ = φ(d).

Figure 4.1: Phase Metrology.

If one wants to go further and try to reach the precision limits, a Quantum mechan-

ical description of the problem is required. This complicates the picture of phase

metrology in Fig.4.1, as it imposes limits on how well we can measure incompatible

operators (through Heisenberg uncertainty relations), and in some sense3, optical in-

tensity (proportional to photon number) and phase are incompatible. So by resorting

to an intensity measurement, we are fundamentally limited in the determination of

the phase. It is then worth finding an observable for the phase, no matter how compli-

cated it is to construct in practice, as it would allow for a direct phase measurement

and eventually reach the ultimte precision limits. The quest for a phase observable is

the subject of the next section.

2another reason is that optical frequencies are extremely fast to be detected ( f ∼ 1014Hz).
3this point will be discussed later.
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On the Hermitian phase operator.

4.1.0.1 Observables

In Quantum mechanics, if a physical quantity can be measured in practice, it needs

to have a counterpart in the theory in the form of a Hermitian operator. The result of

a measurement is therefore, a real number as the eigenvalues of a Hermitian operator

are real. So, as the annihilation operator:

〈α|â|α〉 = α (4.1)

gives complex amplitudes of the field, it is clearly not Hermitian. It is however possible

to construct Hermitian operators as combinations of â and â†; X̂ = (â + â†)/2 and

P̂ = i
(
â† − â

)
/2, known as quadrature operators with expectation values (for a

coherent state):

〈α|X̂|α〉 = |α| cos(φ) = Re{α} (4.2)

〈α|P̂ |α〉 = |α| sin(φ) = Im{α} (4.3)

as shown in last column in Table 2.1. Quadrature operators are therefore observables,

and they correspond to the real and imaginary parts of the electric field. Moreover,

the simultaneous measurement of the two conjugate quadratures can give phase in-

formation but this kind of measurement is not optimal with respect to a phase mea-

surement (Fig. 4.2). Let us study different approaches to define a proper Hermitian

phase operator.

4.1.0.2 Dirac approach

Dirac [11] proposed a phase operator φ̂ in terms of a polar decomposition of creation

and annihilation operators:

â = eiφ̂
√
n̂ (4.4)

â† =
√
n̂e−iφ̂ (4.5)

which seems natural as
√
n̂ would represent the amplitude and φ̂ the phase of the

electric field. Now by imposing the bosonic commutation relation
[
â, â†

]
= 1, we get:

eiφ̂n̂e−iφ̂ − n̂ = 1 (4.6)

where we have explicitly assumed φ̂ to be Hermitian. We can evaluate this expression

with the aid of the Baker-Campbell-Hausdorff (BCH) formula ??, and we get:

n̂+ [iφ̂, n̂] +
1

2!
[iφ̂, [iφ̂, n̂]] · · · − n̂ = 1 (4.7)
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Figure 4.2: Simultaneous measurement of conjugate quadratures. The state is divided
on a 50:50 BS and sent to two independent homodyne detection stages whose local
oscillators’ phases are shifted by π/2. An effect of this measurement is to have
extra noise as illustrated in phase space. Top left: Wigner distribution (yellow) and
measured distribution (blue), Top right: corresponding marginals. A phase estimate
can be obtained by φ̃ = arctan(P/X) which has the correct mean value but higher
variance.
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To satisfy the condition 4.7 it is enough to impose:

[n̂, φ̂] = i (4.8)

The commutator 4.8 becomes the condition for this phase operator to be Hermitian.

This commutator has a nice form that allow us to think of n̂ and φ̂ as canonically

conjugated quantities, and we can now express their Heisenberg relation by using eqs

2.4 and 2.5:

∆φ̂∆n̂ ≥ 1

2
(4.9)

Let us analyze this result. The spectrum of the operator φ̂ is continuous and pe-

riodic, φ ∈ [0, 2π), while the spectrum of n̂ is discrete and bounded from below

n ∈ {0, 1, 2, . . . ,∞}. We can see that this relation is problematic because the max-

imum uncertainty for the phase is ∆φ̂max = 2π, which imposes a limit for the un-

certainty in the photon number ∆n̂ ≥ 1
4π

but this does not seem to be justified4.

Moreover, if we evaluate eq. 4.8 with fock states |n〉, |m〉, we obtain:

〈n|
[
n̂, φ̂

]
|m〉 = i〈n|m〉 (4.10)

〈n|n̂φ̂|m〉 − 〈n|φ̂n̂|m〉 = iδnm (4.11)

(n−m)〈n|φ̂|m〉 = iδnm (4.12)

which leads to the absurd result 0 = i, and we can conclude that a Hermitian

phase operator (if it exists) cannot be written in the form 4.4.

4.1.0.3 Susskind-Glogower phase operator

Another approach was followed by Susskind and Glogower [67], where they proposed

an exponential (SG) phase operator:

êxp(iφ) ≡ (n̂+ 1)−1/2â = (ââ†)−1/2â (4.13)

êxp(iφ)† = â†(n̂+ 1)−1/2 = â†(ââ†)−1/2 (4.14)

which can be written in terms of Fock states:

êxp(iφ) =
∞∑

n=0

|n〉〈n+ 1| (4.15)

êxp(iφ)† =
∞∑

n=0

|n+ 1〉〈n| (4.16)

4for example, any Fock state |n〉 will have ∆n̂ = 0. Notice, however, that it is plausible for
coherent states with large amplitude.
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This definition of the phase exponential operator seems right, since it can be shown

that its eigenstates are the well known phase states |φ〉:

|φ〉 =
∞∑

n=0

einφ|n〉, (4.17)

furthermore, its eigenvalues are complex exponentials of φ as :

êxp(iφ)|φ〉 = eiφ|φ〉. (4.18)

Unitarity is the condition for this exponential operator, which is equivalent of Her-

miticity on a phase operator. Let us check this:

êxp(iφ)†êxp(iφ) = 1 (4.19)

êxp(iφ)êxp(iφ)† = 1− |0〉〈0| (4.20)

and we find that êxp(iφ) is not unitary due to the extra term |0〉〈0|.

4.1.0.4 Other approaches

Other approaches to find a Hermitian phase operator have been tried, but all of them

have difficulties. One successful definition that avoids the mathematical complications

has to do with extending the Fock space to negative photon numbers [66]:

êxp(iφ) =
∞∑

n=−∞
|n〉〈n+ 1| (4.21)

êxp(iφ)† =
∞∑

n=−∞
|n+ 1〉〈n| (4.22)

With this definition we find that the operator is unitary:

êxp(iφ)†êxp(iφ) = 1 = êxp(iφ)êxp(iφ)† (4.23)

The problem with this last operator is in the physics rather than in the mathematics,

as negative Fock states are unphysical. We can at this point look for alternatives to

avoid the difficulties of a phase observable, which is discussed in the next section.

It is important to notice that the problems shown above do not prevent us from

using phase states |φ〉 as defined in eq. 2.76. They are complete:

1

2π

∫ 2π

0

dφ|φ〉〈φ| = 1

and we can still use them to evaluate the phase probability distribution of a given

state ρ̂:

P(φ) =
1

2π
〈φ|ρ̂|φ〉
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4.1.1 Measurement vs Estimation

The difficulties previously presented in defining a Hermitian phase operator can be

avoided if we reformulate the problem of obtaining the value of the phase of an optical

state. Instead of thinking of the phase as a physical measurable quantity, one can

think of it as parameter of a certain operator that needs to be estimated. Here we

will use the phase-shift operator which depends parametrically on φ:

Û(φ) = exp(iφn̂) (4.24)

We can think of the phase of a given state ρ̂φ, as a phase shift φ imposed on an

initial state ρ̂0:

ρ̂φ = Û(φ)ρ̂0Û
†(φ) (4.25)

this can be seen as the state preparation stage5 as shown in Fig.4.3, and since this

preparation is inaccessible to us, the phase φ is unknown. To estimate the parameter

Figure 4.3: Phase estimation scheme. The state ρ̂φ is prepared by phase shifting the
initial ρ̂0, where φ is an unknown parameter representing the phase shift. Phase esti-
mation is done by performing homodyne detection and controlling the local oscillator
phase Φ.

φ, one needs to relate it to an actual measurement. Here we chose homodyne detection

as it is experimentally accessible (represented by the quadrature observable) and

because the measurement outcome depend on the unknown phase φ of the state.

Such a measurement also depends on the phase Φ of the local oscillator that serves

as a reference. In this case we have total control over Φ and we will use this ability

in order to estimate φ. The precise form of the control we will use is discussed later

5this can be an actual state preparation made by a sender in a communication channel or the
effect of a transducer in a metrological setup as discussed before (Fig.4.1).
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in section ??. The remainder of this section gives some useful definitions related to

the phase estimation problem.

4.1.2 Phase estimation classification

Ab initio phase estimation vs Phase sensing

Phase estimation presents two scenarios regarding the initial knowledge that we have

about the phase. One of them is when we have some a priori information; perhaps

we know that the phase lies in a small range and what we want is to reduce this

uncertainty and obtain a value with a higher precision. We call this case phase sensing.

The other possibility is when the value of the phase is absolutely undetermined, and

we have no way of guessing its value before the measurement is performed. This case

is known as Ab initio phase estimation.

Single shot vs Repeated measurements

Single shot measurement does not necessarily mean a single measurement. In fact

one could have several (partial) measurements inside the duration of the pulse that

define the state or even a continuous measurement record as in Fig. 4.4. The term

single shot refers to the measurement of a single copy of the system. It is also possible

(and normally easier) to perform phase estimation with several copies of the system,

it is the case of HD tomography [21], Bayesian phase estimation [57], etc.

Adaptive vs Non-adaptive

In homodyne detection, we have complete control over the local oscillator’s phase,

Φ. For phase estimation, we can change Φ in real time as a function of the HD

photocurrent as suggested by Fig. 4.3. In such a case the measurement can be

progresively Adapted to optimize the measurement of the state. It is also possible to

drive Φ independently on the HD. This case is known as Non-adaptive measurement

and is similar to open loop control [77].
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Table 4.1: Phase estimation classification. Different phase estimation strategies that
will be discussed in this chapter are classified according to the previously presented
criteria.

Class Adapt. No-Ad. Sensing Ab init. 1 shot. Repeat.

Mark I, II X X X
Heterodyne X X X X
HD Tomography X X X
Bayes X X X X

4.2 Semiclassical theory

The traditional treatment in quantum optics of quadratures and homodyne detection

as given in sections 2.2 and 2.3 is usually sufficient to discuss fixed quadrature mea-

surements, but it is not enough to account for time dependent situations. Since we

are interested in real time feedback schemes, we will need to extend the theory given

there. In this section we describe a semiclassical theory for time dependent homodyne

measurements, and we start by writing the single mode electric field:

E(t) =

(
2~ωu(t)

ǫ0V

)1/2

Re
{
αe−iωt

}
, (4.26)

where u(t) is a real valued temporal mode function and α is the field’s complex

amplitude. The power of such a field is P = ǫ0V 〈E2(t)〉, where 〈E2(t)〉 is an average

over many cycles. We can write the rate of photoelectron production as:

λ(t) =
ǫ0V 〈E2(t)〉

~ω
=

|α|2
τ
, (4.27)

which represents the electrons produced in a detector corresponding to the average

number of incoming photons (|α|2) per time τ 6: the photon flux of the signal beam.

4.2.0.1 Local oscillator (LO)

In order to maximize the visibility of the interference between the signal beam and

the LO as required in homodyne detection, it is important to use a local oscillator as

6In this chapter, we denote by τ the duration of the state, which also corresponds to the duration
of a single shot measurement.
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similar as possible to the signal beam. We then assume for the LO, the same mode

function u(t)

ELO(t) =

(
2~ωu(t)

ǫ0V

)1/2

βRe
{
e−iωt+iΦ(t)

}
, (4.28)

where the LO amplitude β is real and its phase Φ(t) is slow7.

We can write the rate of photoelectron production on each detector in the HD due

to the interference:

λ±(t) =
1

2
|α± βeiΦ(t)|2u(t)

As usual we require β ≫ |α|. If we take a homogeneous pulse with temporal

duration τ , we find:

λ±(t) =
1

2

|α± βeiΦ|2
τ

(4.29)

Let us now consider the interval [t, t+δt) where δt is small compared to the lenght

of the pulse, τ , but longer than the mean time between photodetections:

τ

β2
< δt < τ (4.30)

We can consider the number of photodetections to follow a Poisson distribution

[70] with mean λ±δt:

P(n) = e−λ±δt
(λ±δt)

n

n!
(4.31)

We know that the amplitude of LO, β, is large so we expect several photodetections

in [t, t + δt), in that is: λ± · δt > 1. In this case, one can approximate the poisson

n ∼ Poisson(λ±δt) to a Gaussian distribution n ∼ N(µ = λ±δt, σ =
√
λ±δt), and

the number of photodetections in the interval [t, t+ δt), for each detector will be:

δn±(t) = λ±(t)δt+
√
λ±(t)δW±(t) (4.32)

Here the last term represents white noise with variance λ(t)δt. We can rewrite

this expression in terms of known quantities:

δn±(t) =
|α± βeiΦ|2

2τ
δt+

|α± βeiΦ|√
2τ

δW±(t). (4.33)

To obtain an expression for the time dependent homodyne detection photocurrent,

we need to evaluate the following limits for the photodetection difference:

I(t) = lim
δt→0

lim
β→∞

δn+(t)− δn−(t)

βδt
(4.34)

7In what follows, this condition is always fulfilled as at optical frequencies ω ∼ 1014Hz and in our
case t . s. compared to ωt
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the result is conveniently expressed as:

I(t)dt =
4|α|
τ

cos[Φ(t)− φ]dt+
dW (t)√

τ
. (4.35)

which gives the time dependent stochastic [41, 42] variation of the photocurrent in

homodyne detection. Eq.(4.35) is the simplest expression that captures all the de-

tails we are interested in: First, it changes continuously in time and gives the explicit

dependence of each quantity on time. Second, it implies that the photocurrent mean

value is proportional to a quadrature measurement, in fact, if we allowed Φ(t) to

vary, it would correspond to the rotated quadrature: X̂Φ(t). Finally we notice that

the noise dW is additive and Gaussian, as it should be for a coherent state.

Figure 4.4: Single shot homodyne measurement: A single copy of the state
defined in [0, τ) is measured. Left: Pulse shape and duration, stochastic variation
of the HD photocurrent and LO phase are shown. The mean photocurrent 〈I〉 is
proportional to the quadrature X̂, and it is constant in this case since |α|, φ, and
Φ are all constant in time. Right: Corresponding Phase space picture of the state
|α〉 = ||α|eiφ〉. A single shot measurement corresponds to a single point on that
distribution.
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Figure 4.4 illustrates the case of photocurrent recording in a static situation (Φ=0).

The temporal mode of our state (and LO) is constant and defined in a time interval

∆t = τ , which gives the temporal extent of the state and therefore, the measurement

time for a single shot. This is the type of outcome that one would expect in the lab

by locking the phase of the state and LO without imposing any other control over

the phase Φ. In section ?? we analyze an estimation strategy where an active control

of Φ is needed.

4.3 Quantum theory

The results shown in the previous semiclassical derivation seem correct, as it suc-

cessfully models the basic characteristics observed experimentally. By quantizing the

field, we will find essentially the same result:

I(t) = lim
δt→0

lim
|β|→0

δn̂1(t)− δn̂2(t)

|β| δt (4.36)

∼
〈
âe−iΦ(t) + â†eiΦ(t)

〉
+ ξ(t) (4.37)

But we could go further and use this result for the photocurrent (which is essen-

tially a classical quantity), to describe what happens to the state in the course of a

measurement and for this we need to use quantum measurement theory.

We will now focus on the way to extract relevant information about the measured

quantum states through the measurement record I[0,t) corresponding to the HD pho-

tocurrent in the interval [0, t). We can express the probability of obtaining I[0,t), given

the state ρ̂ and the local oscillator history Φ[0,t) as:

P
(
I[0,t)|ρ̂,Φ[0,t)

)
= Tr[ρ̂F̂t] (4.38)

where F̂t is then, the positive operator-valued measure POVM for I[0,t) (parametrized

by the continuous variable t). Wiseman [85] has evaluated this POVM as:

F̂t = F̂ (At, Bt) (4.39)

= P0(At, Bt)Ĝt(At, Bt). (4.40)

where P0(At, Bt) is an ostensible PDF [85] and Gt is a positive operator given by:

Ĝt(At, Bt) = exp

(
1

2
Btâ

†2 + Atâ
†
)
· exp

(
−â†ât

)
· exp

(
1

2
B∗
t â

2 + A∗
t â

)
. (4.41)
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At and Bt are functionals of I[0,t), they are explicitly given by:

At = At[I[0,t)] =

∫ t

0

eiΦ(s)e−s/2I(s) ds, (4.42)

Bt = Bt[I[0,t)] = −
∫ t

0

ei2Φ(s)e−s ds (4.43)

and contain all the useful information about the measurement, in fact this result for

F̂t is very general and can be applied to different cases of photodetection in the large

LO limit. In particular, F̂t can describe the effect of the feedback loops, and we will

use it to estimate the phase of an input quantum state.

4.4 Feedback

We already showed the case of heterodyne detection, which is a technique to simul-

taneously measure both quadratures X̂ and P̂ and thus to estimate the phase of

the input field with the problem of having extra noise. The origin of that noise is

precisely the effect of the simultaneous measurement of non commuting operators,

obeying Heisenberg’s uncertainty principle (sec. 2.1.1).

Homodyne detection would be a better choice as one is measuring only one quadra-

ture, but to estimate the phase correctly one normally needs repeated measurements

at different phases, as in the bayesian estimation or in quantum tomography.

We want instead to use HD for the estimation of the phase in a single shot. The

idea will be to adaptively control the phase of the LO,Φ(t), based on a partial estimate

φ̃(t), in such a way that at the end of the measurement, the LO is orthogonal to the

initially unknown signal in phase space. To this end we just need to impose the

following condition onto the LO:

Φ(t) = φ̃(t) + π/2 (4.44)

We will follow the proposal of Wiseman to calculate the partial and final estimates,

which are based on the Av and Bv coefficients mentioned earlier.

During the course of the single shot we will do a realtime feedback with the partial

estimate given by:

φ̃(t) =

∫ t

0

I(t)√
t
dt (4.45)

and for the final estimates, we have two posibilities:

1. Mark I: consists of just taking the estimate at time t = τ , which of course depends

on the whole photocurrent history. This corresponds to φ̃I = argAτ

2. Mark II: corresponds to φ̃II = φ̃I + arg(1 + Cτ ), where Cτ = BτA
∗
τ/Aτ
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4.5 Simulations

We have performed stochastic simulations to evaluate the behaviour of our feedback

system. Fig. 4.5 shows a single realization of the feedback algorithm. The expected

effect is found, the photocurrent has to be around Zero and the phase estimate φ̃

converges to the real value of the phase φREAL.

Figure 4.5: Simulated feedback. Homodyne Photocurrent I(t) and Phase estimate
evolution

We found during the simulations that the convergence of the feedback is linked to

the feedback gain, as is shown in figure 4.6. This is a very important detail that has

to be taken into account for an experimental realization. Note that there are cases

where one could have a small standard deviation but a wrong final estimate, so it is

more useful to increase the feeback gain until one ensures that the estimate converges

deterministically to the actual value of the phase.

After performing intensive simulation, we find a collection of trajectories followed

by the phase estimate and accumulate them. In Fig. 4.7, we present the range of vari-

ation of those trajectories in time (maximum and minimum values) as a green area,

their standard deviation (orange curves) and mean value (black line). Notice that for

66



4.5. SIMULATIONS

Figure 4.6: Effect of feedback gain in the convergence and standard deviation of the
simulated feedback.
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the gain selected, the convergence of the estimate trajectories to the real phase value

(red horizontal line) is very fast. From those trajectories we can extract the last value

that correspond to the final estimate, as is plotted in the center of the figure. One

can also plot a histogram of those individual estimates and we found a Gaussian-like

distribution. We can repeat this process for different coherent amplitudes, and as

can be seen in the upper right corner, they tend to the same mean value. The phase

variance depends on the amplitude and it is shown in the lower right corner, where

the phase variance of the simulation follows the theoretical asymptote (orange) and

the black line corresponds to the ultimate quantum limit.

Figure 4.7: Summary of simulations. Trajectories, Estimates their varinaces and
histogram.
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4.6 Experiment

4.6.1 Setup

The experimental setup is shown in Fig.4.8. The light source is a CW Nd:YAG laser

operating at 1064nm whose output is spectral and spatially filtered through a mode

cleaning cavity (MCC), which minimizes the excess noise in the field and produces

a clean TEM00 mode8. The MCC output is then sent to a beam splitter (BS) with

variable transmission, composed of a half wave plate (HWP) and a polarizing beam

splitter (PBS), where the power ratio between signal beam and local oscillator is set.

State preparation

We choose to prepare our quantum states at the sideband modes (±10MHz) of the sig-

nal beam [58], since this allows us to avoid classical noise at low frequency originated

from mechanical instabilities and low frequency noise in the laser. The sidebands of

our signal beam (after the MCC cleaning) are in a vacuum state (quantum noise lim-

ited) before we impose any modulation onto it. For the preparation, we use a pair of

electro-optical modulators (EOM) which allow us to generate pure sideband coherent

states by transferring energy from the optical carrier to the vacuum sideband. The

EOMs are independently driven by two phase-locked RF signal generators running at

10MHz, giving independent control on the phase and amplitude of our signal states.

The amplitude modulation is achieved by preparing the signal beam in circular polar-

ization (by a combination of HWP and QWP) which is sent through a birrefringent

electro-optic crystal (first EOM in Fig.4.8). This results in a polarization modulated

beam, which is mapped into amplitude modulation by sending it to a PBS that will

select only the horizontal component of the field. The phase modulation requires only

this linearly polarized beam to be sent through the crystal(s) of the second modulator.

Local Oscillator

An essential component of the experiment is the local oscillator, with which we set the

phase reference (direction of the X̂ quadrature) and control the feedback loop for the

adaptive measurement. Our LO is a bright coherent beam with an optical power of

about 12mW while the sideband states are typically of only few pW. We control the

LO phase, Φ, by sending it through a wave guide phase modulator (WGM), driven

with an FPGA as will be described later. The input and output of the WGM are

8Further details about the MMC, regarding performance and control are omitted as they are not
relevant for the current discussion.
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Figure 4.8: AdaptiveSetup
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connected to polarization maintaining fibers (PM-fibers) that allow us to precisely

control the polarization of the beam. The use of the WGM9 implies an insertion loss

of 4dB added to the incoupling losses into the fiber, but we chose it and use it due to its

remarkable speed that outperforms by far all our modulators. Moreover, these losses

are not critical since no quantum features are lost, and the output power (12mW)

output is more than enough to drive the experiment. The clearance of the SNL over

the electronic noise on the homodyne detectors, while performing the experiment is

about 17dB.

Detection

The LO and signal beam are interfered on a BS formed by a combination of two

PBS and a HWP, and adjusted to be 50:50 as indicated in Fig.4.8. Homodyne fringe

visibility:

V IS =
Imax − Imin
Imax + Imin

(4.46)

is a measure on how good the interference is. Imax and Imin are respectively, the max-

imum and minimun of the optical intensity in the interference fringes. The visibility

(VIS) needs to be maximized, to minimize the losses. Several factors are detrimental

for the visibility, in particular:

1. Direction mismatch of the beams, which is solved by beam walking10

2. Non parallel polarization, solved by rotating the polarization with HWPs.

3. Non perfect overlap that is solved with mode matching lenses.11

After optimizing these aspects, we obtain for our setup a visibility of 97%. The

interference is finally sent to the individual detectors which consist of Epitaxx500 In-

GaAs PIN photodiodes. Each of these two photodiodes is internally connected to a

transimpedance amplifier that converts the photocurrent to voltage. The detectors’

bandwidth is approximately 20MHz. Their quantum efficiency of the diodes is about

ηPIN = 90 ± 5% which results in an overall detection efficiency12 of ηoverall = 85%.

The HD photocurrent is internally divided by our detectors on AC and DC compo-

nents13, the first of which will contain the measurement information (in the mentioned

sidebands) and the second is used to phase lock the HD to a specific quadrature.

9Technical specifications of the WGM can be found in Appendix 2.
10It is an experimental technique consisting in steering a pair of mirrors to fully control the

direction of a beam.
11Extra optical components used for mode matching the beams, incoupling into the modulators,

cavity and focussing into the detectors are excluded for simplicity.
12ηoverall = ηPIN · V IS2

13Notice that what we call DC, has reality a BW of few Hz to resolve the interference fringes.
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Figure 4.9: Time traces for a. Locking and b. Scanning the phase of LO. traces 1
and 2 are individual detectors in HD. 4. PI controller locking monitor. The ’fringe
range’ at HD detectors is indicated.
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We measure the subtraction of the AC homodyne on a SA, resulting in a common

mode rejection of about 30dB. The subtracted signal is then Band-passed filtered with

fBPFmin = 2MHz to cancel low frequency noise coming from the relaxation oscillations

of the laser and (fBPFmax = 21.4MHz) that eliminates any effect from the MCC locking

frequency (33.5MHz). The signal is then mixed with an electronic local oscillator at

f = 10MHz from a RF signal generator. This produces 2 beating signals of which we

retain only the low frequency component by using a low pass filter (fLPFcut = 5MHz)

. Note that the last filter is the limiting factor for the speed of the FPGA loop.

Lock

The DC part of the homodyne signal is used to stabilize the interference between

signal beam and LO. For this purpose, we use a PI controller in a DC lock, that give

us the possibility to monitor the fringes, as seen in the 4th trace in Fig.4.9b, and also

to set the lock point in the fringe (4th trace in Fig.4.9a) This lock is used to maintain

a fixed relative phase over long periods of time compared to the pulse duration. We

can make several single shot measurements on the same state’s phase to construct

statistics and calibrate our device. This is intended to be a relatively slow lock with

a bandwidth (BW) of just few KHz, so that it is not affected by very fast oscillations

like those caused by the fast FPGA loop, hereby avoiding conflict between both loops.

The limiting factor for the speed of this lock is the High voltage amplifier (HVA) used

to drive the piezo, whose BW is approx. 1KHz.

LO control (FPGA)

For an active control of the local oscillator’s phase, we needed an electronic controller

capable of signal processing at a very high speed, in such a way that could perform

a feedback faster than the pulse duration, which is an essential condition for the

adaptive single shot measurement we are interested in. The best candidate for this

task is a field programmable gate array (FPGA) that is a powerful electronic device

consisting of a silicon chip with reprogrammable digital circuitry [86]. The downside

of this technology is that the user has to define and configure every single component

used, their interconnections, clock management, etc. This is generally specified using

a hardware description language (HDL), such as VHDL. This makes it harder to use

than, for instance, microcontrollers but they are generally slower and more restricted.

So, FPGAs are not a “plug and play” technology but their versatility pays off when

they are used for demanding tasks as ours.
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We selected a Virtex 5 FPGA board and an analog interface card14 that performs

conversions: digital to analog and vice versa through ADC and DAC converters that

sample input and output respectively, at 100MSPS15. The converters we use have a

discretization of 14bits, allowing in principle to divide input and output signals into

16384 voltage levels. The main components of our FPGA system are depicted in

Figure 4.10 and described below.

Figure 4.10: Main components of the FPGA: timing control elements (light orange
boxes), DSP block and connection to external hardware. These digital elements and
their connections are defined in VHDL hardware programming and downloaded to
the chip.

Timing

The original clock in the board runs at 50MHz which is not enough to run the system,

so we set our global clock to run at 100MHz and drive the ADC and DAC converters,

by using two elements: a phase locked loop (PLL) and digital clock manager (DCM)

[87]. We later create a clock at 50MHz dedicated to drive the digital signal processing

14FPGAs boards are digital, if the use mixed signals (analog and digital) is needed as in our case,
one has to find an appropriate analog card specifically designed for the FPGA board and they are
normally scarce for the speed we required.

15more details about the board are found in the Appendix ??
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(DSP) block and a pulse generator that will output a digital signal used to define the

state and the time between measurements. This digital pulse is split to be used also as

a trigger to collect the data and to make the required π/2 phase shift on the estimate

φ̃. The synchronization of the components is important to perform the calculations

on time but its details along with those for enabling and resetting the elements after

each pulse are omitted for simplicity.

DSP block

One needs to understand that FPGAs are very fast devices but the only thing they are

able to do, is bit operations on strings of 1’s and 0’s according to digital logic. They

do not “understand” mathematics the way we do. We therefore have to translate or

approximate those operations that are natural for us (negative numbers, decimals,

multiplications, integrals, etc.) into binary language, in order to correctly perform the

processing of our signals. This is important because as we use hardware programming,

one has to take these details into account.

Our DSP block (shown in Fig. 4.10) runs at 50MHz, and is configured to receive

a signal and multiply it by a function proportional to 1/
√
t that we store in a ROM

memory. This product is later sent to an element that approximates an integral of

its input and the result is sent to the board’s output. Other extra blocks are needed

in order to translate binary formats between converters and signal processing.

Let us analyze this operation. We are taking an input HD measurement point,

multiply it for an exotic function of time, integrate and deliver it, all of this every

20ns back into the system16. It cannot be stressed enough the difference between

doing this real time feedback (where a delay of some 10’s of ns could spoil the result)

and standard protocols of common use in quantum optics (like post-selection), that

normally have the option to analyze the data offline, this is, at anytime and even in

a computer.

From the FPGA, we define our pulse to be of 4µs long, Fig. 4.11, LPF in down

mixed HD remains constant during 200µs and we perform operations at 50MHz,

which give us the possibility of over sampling the data.

4.6.1.1 Adaptive feedback loop

Finally, our feedback loop is composed of the HD, FPGA and WGM. The HD mea-

surement is sent to the FPGA to be processed by the DSP block that gives a partial

16of course we do not use all this BW in the optical system due to the Low pass filter in the
measurement that limits the speed of the loop.
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Figure 4.11: Time scales, Orange square: the pulse defining the state τ = 4µs,
White: minimum resolved part of the state due to LPF (∼200ns) Blue: calculation
time (∼ 20ns).

phase estimate φ̃(t). The algorithm, eq. (4.44), requires the addition of π/2 to that

estimate, which is done by an analog sum with a digital pulse whose voltage corre-

sponds to the proper phase shift on the WGM. This sum acts on the LO via the

WGM as shown in Fig.4.8. In addition to this, we need to care about the different

gains in the feedback:

1. FPGA input gain (analog): It has to be adjusted to cover the full dynamic range

of the input, in order to minimize errors due to discretization.

2. FPGA output gain 1 (analog for digital pulse): It has to be tuned to reach π/2 in

the WGM (as explained above).

3. FPGA output gain 2 (analog for estimate): It needs to cover 2π in the WGM.

4. FPGA internal gain2 (digital): has to set to adjust the overall feedback gain (see

simulations) at the same time as avoiding to saturate the integrator.

4.6.2 Experimental Results

In Fig.4.12, we present typical time traces obtained while running our experiment.

The temporal definition of the pulse is shown in the orange trace, that is set by the

FPGA as previously explained. At the same time, it sets the measurement period

(high voltage intervals) of 4µs and the time between measurements is 10µs. This

figure presents 4 different single shot measurements of a fixed phase.

The phase estimate trace (purple) shows a clear spike at the end of every measure-

ment period. It is mainly caused by the switching off of our integrator that produces

a sudden change in the FPGA output. We were not concerned about it, because it

does not affect our measurement record (it happens between measurements) but also

because we consider it beneficial for this protocol as it helps randomizing the initial

phase estimate (beginning of the pulse) which emphasizes the ab initio character of
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Figure 4.12: Time traces. Orange: time definition of the pulse, Green: Downmixed
HD photocurrent, I(t) , Purple: the phase estimate φ̃(t) and Blue: DC HD monitor.
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our phase estimation. The red circles on top of this trace indicate the last phase

estimate and we can see that it consistently ends around the same phase. The green

trace, shows the AC HD photocurrent, I(t), and we notice that during the measure-

ment, the FPGA forces the system to take this current to zero, indicated by the blue

circles which means that we end with the LO orthogonal to the signal. During the

period between measurements, the FPGA does not act and the state returns to the

original position set by the DC lock, which is also observed in the figure through

the HD current I. The blue trace is the DC signal from one of the HD that helps

monitoring the performance of the lock which in this case is very good. In general

we observe that it keeps the lock over long enough periods to perform thousands of

measurements. We now proceed to measure a large amount of pulses and observe

Figure 4.13: Estimates Analysis. a. Extraction of measurement information from
the full time trace. b. Phase estimate trajectories for 10 different pulses, where the
vertical lines indicate the position of the last estimate. c. Collection of estimates
after performing 15000 single shot estimations. d. Histogram of the estimates shown
in c.

the statistical behavior of the estimate. Figure 4.13 presents the analysis of the data

after performing 15000 single shot estimations. First, we extract the measurement
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information from the full time trace and eliminate the rest (a), we extract the tra-

jectories followed by the phase estimate φ̃(t) in each run and take the final estimate

given by the last point in the measurement and indicated in the figure by a pair of

vertical red lines (b.). Now with the collection of final estimates (c), we can proceed

to construct a histogram (d). The histogram has a Gaussian-like distribution and

this is the confirmation that the estimate consistently sets at the same point. We can

now go further and do the same analysis for different phases by locking the system at

different fringe points. The result is shown in figure 4.14, where we took 4 different

phases. Here we see that the qualitative behavior of the estimation is correct, as the

distribution presents a different phase shift estimate for every prepared phase. We

also notice a different variance for the estimates depending on the position of the

lock on the fringe and we attribute this to the variable sensitivity of the system that

depends on the lock position. The system has a higher phase sensitivity at midfringe

(steeper slope) and therefore responds better to the FPGA loop as in 4.14b and c,

while performing worse in the fringe extrema a and d, because the system responds

slower and the FPGA control is less effective which results in a larger dispersion of

the estimates.

Final remarks and future plans.

Until here we see that qualitatively the system behaves as expected, since:

1. The photocurrent is set to zero at the end of the measurement period

2. The phase estimate settles consistently to the same value when keeping the phase

constant.

3. Different prepared phases produce estimates with different mean values.

The next step would be to quantify the performance of the controller via estimates

for different amplitudes and phases and this requires a careful preparation of the

states, a very precise calibration of their phases and larger amounts of data. Due to

time limitations, we decided to try to calculate a rough values for the estimates and

their variances based on the data we had and leave a more detailed system calibration

for another time. We took an arbitrary state and assigned phase zero when locked

at the lower fringe point and π when locked at the top and used this as a reference

for the other states. The result is shown in fig4.15, where the yellow boxes represent

coherent states of definite amplitude and measured at different phases. The reference

is state 2. The tendency we observe with this rudimentary procedure is again that

when we lock close to midfringe (90 degrees in the figure), the variance is smaller.
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Figure 4.14: Phase Estimates at different phases80
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Figure 4.15: variance of estimates with different state amplitudes

In order to perform a detailed calibration, it is needed to eliminate some power

fluctuations that the system has over long periods, and we relate them with a non

optimal performance of the MCC, that will affect our lock. Other steps that would

help to improve the system would be to recalibrate frequently (not only once) and

use a different locking technique that is independent of power fluctuations.

The preparation has to be done at a single lock point the one we identify with

minimum variance: midfringe and control the modulators to generate the phase shifts

and check the performance for: a. states with equal amplitude and different phases

b. states with different amplitude

In the future: we plan to have a better phase control caring specially on eliminating

any excess noise source to later perform the experiment with squeezed states with

which one presumably beats the SQL.

4.6.3 Conclusions

We started the study of adaptive feedback in quantum optics and acquire understand-

ing of a very general theory of phase estimation via homodyne measurements. We

have shown experimentally the basic components of the most complicated version of

phase estimation, that is to estimate the phase with a single copy of the state (single
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shot) without any initial reference (ab initio) by progressively aquiring information

via HD. This was done by combining a quantum optical setup with very high speed

control, which is technically demanding. It is important to stress that the theory

presented as well as the experimental ingredients shown, can account for most (if

not all) the phase estimation (given the appropriate experimental tuning and con-

trol policy) protocols: single shot/repeated measurements, adaptive/nonadaptive, ab

initio/phase sensing and combinations.
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Quantum State Discrimination
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5.1 Introduction

The field of Quantum Communication [51] deals with the preparation, transfer and

reception of quantum states. It allows for the secure transmission of secret infor-

mation [50, 54] and can be used to increase the capacity of transmission channels.

The information carriers are quantum states that can vary in complexity from sin-

gle photons or coherent states to exotic entangled states. We will focus on coherent

states as they have proven to be a very robust system, they are easy to prepare and

compatible with current technology. Moreover, this type of states is of interest in

quantum communication as they allow for unconditional secure information transfer

between two parties in a network, which is a result of the impossibility of perfectly

discriminating different coherent states.

In a standard communication scenario, there is a specific set of quantum states

{ρ̂0, ρ̂1, . . . , ρ̂N} called the alphabet, that is used to encode the information to be
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transmitted. This set is known by both parties: sender and receiver. The task of a

detector is to decode the information by identifiyng which of the states was sent.

This task of state discrimination, however, is not trivial when the alphabet is com-

posed of non orthogonal quantum states. In fact, quantum mechanics in this case

forbids any physical device to identify with certainty which state is received. In prac-

tice, this means that every detector will unavoidably make errors1, and the field of

quantum discrimination aims at using the tools of quantum mechanics to minimize

these errors.

The aim of quantum state discrimination (QSD) is not necesarily to acquire all the

information about a state by a precise measurement of it (as in quantum estimation)

but rather to construct a measurement apparatus that can distinguish a state within

the given alphabet with minimum error.

In this chapter, we will present some examples of measurement devices that dis-

criminate states in a coherent state alphabet and present their corresponding error

probability. First, binary discrimination is discussed which is later extended to the

case of 4 states in a new proposal.

Hypothesis testing

In QSD, a detection device has to make decisions based on measurement outcomes.

This can be formally stated as a hypothesis testing procedure, by associating a given

decision with a possible measurement outcome of the detector.

When there are different options to chose from, one can organize them as a set of

hypotheses: H = {H0, H1, . . . , HN} and express the overall probability of error as:

Perr =
∑

k 6=l
P (Hk|Hl)P (Hl). (5.1)

The conditional probabilities P (Hk|Hl) are associated with wrong decisions: they

refer to the probability of selecting hypothesis Hk, given that the correct option was

Hl. They are weighted by the priors P (Hl), which are probabilities that we assign to

the occurrence of the event Hl based on information previous to the measurement.

1 This impossibility of perfectly distinguish non-orthogonal quantum states in other contexts can
be used as an advantage, for example it powers the field of quantum key distribution [53] where it
is possible to identify when an eavesdropper tries to acquire information as this disturbes the state.
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In quantum discrimination, we are given the alphabet A = {ρ̂0, ρ̂1, . . . , ρ̂N}, and
a set of a priori probabilities:

P (ρ̂k) = pk,
N∑

k

pk = 1 (5.2)

so, we can directly assign a hypothesis Hk to its k-th element, ρ̂k. As there is no

ambiguity in this context, we use the notation P (ρ̂k) to express P (Hk) and P (ρ̂k|ρ̂l)
for P (Hk|Hl). To calculate the probability of error in eq. (5.1), we need to define

the measurement procedure in terms of a POVM2, and finally apply Born’s rule, as

it will be shown later.

5.2 Binary decision problem for coherent states

Let us imagine a scenario where we want to transmit binary information, i.e. strings

of 1’s and 0’s. The simplest way to do this is to transmit one bit3 of information per

state, so, the minimum number of states required is two and the alphabet would be

given by: A = {ρ̂0, ρ̂1}. This alphabet is illustrated in Fig.5.1.

P

X

´1´´0´

Figure 5.1: Binary state comunication, where quantum states ρ̂0, ρ̂1 represent classical
bits 0, 1

For example, if the sender wants to transfer the message {0, 1, 0, 0, 1, 1, 0, 1}, she
will prepare and send the following sequence of states: {ρ̂0, ρ̂1, ρ̂0, ρ̂0, ρ̂1, ρ̂1, ρ̂0, ρ̂1}.

The receiver faces a binary discrimination problem where the aim is to discriminate

ρ̂0 from ρ̂1 with prior probabilities p0 and p1 = 1− p0. These probabilities are known

to the the receiver. We then state the hypothesis as:

2POVMs are introduced in section 2.7.
3It is important to note that these are classical bits encoded in quantum states, as opposed to

quantum bits or qubits that are also used in quantum comunication and computation [44].
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H0: the state ρ̂0 was sent.

H1: the state ρ̂1 was sent.

The error probability takes in this case a simple form:

Perr = P (ρ̂1|ρ̂0)p0 + P (ρ̂0|ρ̂1)p1. (5.3)

and we can now express it in terms of measurements. As there are 2 possible

outcomes, we can simply use a two-element POVM {Π0,Π1}. The conditional prob-

abilities are given by P (ρ̂k|ρ̂l) = Tr[Π̂kρ̂l] and the error probability is then:

Perr = P (ρ̂1|ρ̂0)p0 + P (ρ̂0|ρ̂1)p1 (5.4)

= p0Tr[Π̂1ρ̂0] + p1Tr[Π̂0ρ̂1] (5.5)

= p1 + Tr
[
(p0ρ̂0 − p1ρ̂1)Π̂1

]
. (5.6)

5.2.1 Detection Schemes and Helstrom bound

We now proceed by evaluating the error probabilities for different detection schemes.

In the following we will assume that the sender prepares the following coherent states:

ρ̂0 = | − α〉〈−α|
ρ̂1 = |α〉〈α| (5.7)

with equal priors: p0 = p1 = 1/2.

5.2.1.1 Helstrom bound

Helstrom [31] demonstrated the minimum error probability that can be achieved when

discriminating between states ρ̂0 and ρ̂1 with a priori probabilities p0 and p1 = 1−p0,
which implies a minimization over all possible POVMs:

min
Π̂
Perr =

1

2
− 1

2
‖p0ρ̂0 − (1− p0)ρ̂0‖1 (5.8)

which, for the coherent states in the original aphabet A (5.7), reduces to:

min
Π
Perr =

1

2

(
1−

√
1− e−4|α|2

)
(5.9)

a physical implementation was proposed by Dolinar [38] and demonstrated re-

cently [39].
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5.2.1.2 Kennedy receiver

The states in the initial alphabet A = {ρ̂0, ρ̂1} cannot be distinguished by direct

photon counting, since their only difference is a phase factor that cannot be seen by

such a detector. A way to distinguish them is to perform a displacement D̂(α) before

the photon counting, so that one of them is shifted to vacuum ρ̂0 → ρ̂′0 = |0〉〈0|, while
the other doubles its amplitude ρ̂1 → ρ̂′1 = |2α〉〈2α|. Whenever the photon counter

receives ρ̂′0 = |0〉〈0|, no errors will occur, P (ρ̂1|ρ̂0) = 0. The detector will make errors

if it wrongly decides for H0=ρ̂0 when it actually received ρ̂1:

P (ρ̂0|ρ̂1) = Tr[Π̂K
0 ρ̂1] = |〈−α|α〉|2 (5.10)

This is because any coherent state has a finite probability of not producing a detection

event. This type of receiver was originally proposed by Kennedy [52], and its POVM

(displacement+photon counting) is given by:

Π̂K
0 (α) = D̂†(α)|0〉〈0|D̂(α) = | − α〉〈−α|

Π̂K
1 (α) = 1− Π̂K

0 (α). (5.11)

Finally, we find that the error probability for the kennedy receiver is:

PK
err = P (ρ̂1|ρ̂0)p0 + P (ρ̂0|ρ̂1)p1 (5.12)

= 0 +
1

2
|〈−α|α〉|2 = 1

2
e−|4α|2 . (5.13)

5.2.1.3 Optimal displacement receiver

A recent proposal [23, 55] demonstrated that it is possible to do better than the

kennedy receiver, in fact a near-optimal probability of error can be achieved by using

the same resources: fixed displacement and photon counting. The associated POVM

for this proposal is:

Π̂OD
0 (β) = D̂†(β)|0〉〈0|D̂(β) = | − β〉〈−β|

Π̂OD
1 (β) = 1− Π̂OD

0 (β) (5.14)

where β is the optimized displacement given by the condition [55]:
√
Tα = βtanh

(
2
√
Tαβ

)
(5.15)

The displacement is obtained by interfering the signal states with an auxiliary coher-

ent state on an asymmetric BS with transmittance T ≈ 1. The error probability for

this optimized displacement receiver is found to be:

POD
err =

1

2
− e−(T |α|

2+|β|2)sinh
(
2
√
Tαβ

)
. (5.16)
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P

X

P

X

P

X

P

X

a b

c d

Figure 5.2: Detection schemes and alphabets in phase space:

a. Original alphabet. b. Kennedy receiver: The original states are first displaced so
that one of them becomes a vaccum state, and they are later measured with a photon
counter. c. Optimal displacement receiver: An optimized displacement is performed,
followed by photon counting. d. Homodyne receiver: phase space is divided into two
areas: X ≥ 0 and X < 0, and every positive outcome selects ρ̂1.
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5.2.1.4 Homodyne receiver

A homodyne receiver can be used to discriminate states from the alphabet A, by the

following hypothesis:

H0: If the HD outcome is X < 0, ρ̂0 was sent.

H1: otherwise, the state ρ̂1 was sent.

This is captured by the following POVM:

Π̂HD
0 =

∫ 0

−∞
|x〉〈x| dx,

Π̂HD
1 = 1− Π̂0 (5.17)

and the Homodyne error probability is:

PHD
err =

1

2

(
1− erf

√
2|α|

)
. (5.18)

To sumarize, we can find in Fig. 5.2, the states used in the presented detection

Figure 5.3: Error probabilities vs |α|2: Blue: Kennedy receiver Green: Homodyne
Red: Optimized receiver Black: Helstrom bound.

schemes, illustrated in phase space. The error probabilities are found in Fig. 5.3,

where they are plotted against the signal mean photon number |α|2. The Helstrom

bound which is here the ultimate bound, is shown as a continuous black line. It can

be seen that homodyne detection (green) performs better than Kennedy (blue) for

|α|2 . 0.4 and this situation is reversed for higher |α|2. The optimized displacement

detector error (red) outperforms the previous two: POD
err < PHD

err and POD
err < PK

err in

the interval shown.
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5.3 Discrimination of a QPSK alphabet via a

hybrid receiver

5.3.1 Introduction

Previously in this chapter, the description of different types of receivers for the dis-

crimination of binary alphabets was given. The main focus was in the case of binary

phase shift keying (BPSK) applied to coherent states, which allowed to encode one

classical bit per state, using the alphabet ABPSK = {|α〉, | − α〉}. A lot of attention

has already been devoted to the development of optimal and near-optimal discrimi-

nation strategies for this binary encoding [78, 79]. A more interesting situation and

perhaps less studied in quantum communication, is when the alphabet is increased

to 4 states as in the case of quadrature phase shift keying (QPSK). This type of

encoding is more efficient, because the reception of one state gives directly 2 bits of

information, effectively doubling the data rate.

QPSK is used for instance by the HSDPA protocol in UMTS networks for mobile

phones [80] and in digital satellite communication. The QPSK alphabet comprises

four states equally separated by a phase of π/2, AQPSK = {|α〉, |iα〉, |−α〉 |−iα〉}. The
minimal error rates for the discrimination of the QPSK alphabet have been derived

by Helstrom [31]. It has been shown that the feasible secret key rates of quantum

key distribution systems can be largely improved by optimizing the receiver scheme

[25, 26]. In particular, this has also been shown for the QPSK alphabet [54, 81–83],

such that optimized QPSK receivers are very promising and of great interest for the

quantum key distribution community.

In this section, we present two novel discrimination schemes. We use a hybrid

approach which means that we consider both fundamental representations of our

quantum states: the particle and the wave representation. We proof in theory that

the standard scheme - heterodyne detection - can be outperformed for any signal

amplitude and provide experimental evidence.

Let us discuss different discrimination strategies for the QPSK alphabet. Besides

heterodyne detection, there are two other advanced discrimination schemes, based on

a photon counting detector and feedback that were proposed by Bondurant [83]. In

all these receivers, the measurement is performed by a single detection stage. In con-

trast, it is also possible to divide the state into parts which can be distributed among

serveral detection stages. This method is for instance utilized in dual homodyne de-

tection, where the received state is inferred by first splitting it on a balanced beam
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splitter and subsequently measuring the projections along two orthogonal quadratures

via two homodyne detectors. However, the retrieved information in a dual homodyne

measurement and in a heterodyne detection is identical such that the error rate is

not reduced by the additional detection stage.

Our strategy is to perform two successive measurements on parts of the quantum

state, whereat the result of the first measurement reveals partial information about

the state and is used to optimally tune the receiver for the second measurement. A

schematic of the discrimination procedure is presented in Fig.5.4. The first measure-

ment is performed by a homodyne detector and hence addresses the wave nature of

the state. The homodyne measurement under a proper quadrature allows us to dis-

card half of the possible states by making a binary decision based on the quadrature

projections of the signal. The homodyne result is forwarded to a photon counting

receiver, which finally identifies the input state by discriminating between the two re-

maining states. This task is performed near-optimally by an optimized displacement

receiver [23, 84], which as we previously saw, is an advancement of the Kennedy re-

ceiver [52]. We implemented the hybrid scheme employing both the Kennedy receiver

and the optimized displacement (OD) receiver. The comparison with the heterodyne

scheme shows that the performance of the HD-Kennedy receiver beats the standard

scheme for signal powers above a threshold (around |α|2 ≈ 1.6). However the HD-OD

receiver outperforms the Gaussian approach for any signal power.

5.3.2 Description and Theory

We are given a quadrature phase-shift keyed (QPSK) coherent alphabetA = {ρ̂1, ρ̂2, ρ̂3, ρ̂4},
with ρ̂n = |αn〉〈αn|, where αn = |α| ei(n− 1

2
)π
2 , and having equal a priori probabilities

pn = 1/4. As before, the receiver, based on measurement outcomes, has to choose one

of the n hypothesis Hn related to the reception of the state ρ̂n. The quantum limit

- the Helstrom bound [31]- for the discrimination of these signals is asymptotically

given by PHel
err = 1

2
e−2|α|2 for |α|2 ≫ 1. For simplicity, we will refer to the states in

the alphabet directly by the corresponding ket |αn〉 since all ρ̂n are pure states.

We will analyze two cases of a hybrid receiver:

HD+K: composed of Homodyne detection and kennedy receiver.

HD+OD: Homodyne detection and optimal displacement receiver.

Each of these hybrid receivers require the input signal to be divided and sent si-

multaneously to the individual binary receivers (HD and K or HD and OD). This

splitting is done on an asymmetric beam splitter (ABS) with transmittance T = t2

91



5.3. DISCRIMINATION OF A QPSK ALPHABET VIA A HYBRID RECEIVER

and reflectivity R = r2 = 1− t2. First, one performs a homodyne detection along the

P̂ quadrature in phase space and makes a decision whether the signal is in the upper

or the lower half plane. The result is forwarded to the other receiver, which is then

tuned for the discrimination of the remaining pair of states, as shown in Fig.5.4.

Figure 5.4: Schematic of the hybrid discrimination scheme. First a homodyne detector
distinguishes between pairs of states. The result is forwarded to a click detector stage,
which is tuned for the discrimination of the remaining binary state.

QPSK error probability for hybrid detectors

Let us recall the expression for the error probability in hypothesis testing (5.1):

Perr =
∑

m 6=l
P (Hm|Hl)P (Hl)

In the case of 4 states, this expression contains 12 terms corresponding to detection

errors expressed by conditional probabilities P (Hm|Hl). In order to calculate Perr, it

will be more convenient to first evaluate the individual success probabilities for the

binary receivers4 P ind
succ(m) = P (Hm|Hm) and then simply find5: Perr = 1−P hyb

succ, which

has only 4 terms. In the case of the hybrid detectors analyzed here, the probability

of success of the individual binary receivers is independent, and we can write:

PHD+K
err = 1−

∑

m

pmP
HD
succ(m)PK

succ(m) (5.19)

PHD+OD
err = 1−

∑

m

pmP
HD
succ(m)POD

succ(m) (5.20)

Let us illustrate the procedure to calculate these probabilities in more detail, by

assuming that the signal is prepared in the state |α1〉 as indicated in Fig.5.5. After

4ind=HD, K or OD
5hyb=HD+K or HD+OD
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the splitting, the reflected part |rα1〉 is guided to the homodyne detector. The POVM

elements for the homodyne detection along the P̂ quadrature are:

Π̂HD
0 =

∫ ∞

0

|p〉〈p| dp,

Π̂HD
1 = 1− Π̂HD

0 , (5.21)

Figure 5.5: Illustration of the hybrid receivers in phase space. The HD projects the
states onto the P̂ quadrature and forwards the measurement outcome to the click
detector stage. Based on the forwarded information, the displacement prior to the
click detector is tuned for the discrimination of the remaining pair of states.

and the success probability to observe the outcome p > 0 when sending |α1〉 is

then given by:

PHD
succ(m = 1) =

∫ ∞

0

|〈p|rα1〉|2 dp =
1

2

(
1 + erf

√
2
|rα|√
2

)
. (5.22)

Note, that due to the projection onto the P̂ quadrature, the effective signal am-

plitudes in the homodyne detection are reduced by a factor of 1/
√
2. Assuming that

the homodyne measurement was successful, the next task is to discriminate between

|tα1〉 and |tα2〉 via the Kennedy or the optimal displacement receiver.

Homodyne-Kennedy receiver

The signal is displaced such that one of the remaining candidate states is shifted to the

vacuum state |0〉, while the other state gets amplified to an amplitude of |
√
2tα|. In

the scenario depicted in Fig.5.5(center and right), the displacement was (arbitrarily)

chosen to shift |tα1〉 to the vacuum. Therefore, the hypothesis is |α1〉, whenever no
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click was detected, whereas the input state is identified as |α2〉 if a detection event is

recognized in the click detector.

The corresponding POVM elements of the Kennedy receiver (diplacement+photon

counting) are in this case:

Π̂K
0 (α) = D̂†(tα1)|0〉〈0|D̂(tα1) = | − tα1〉〈−tα1|

Π̂K
1 (α) = 1− Π̂K

0 (α) (5.23)

As the vacuum state is an eigenstate of the photon number operator (n̂ = â†â),

the state shifted to the vacuum state will never generate a click and the success

probability PK
succ(1) is unit. The success probability P

HD+K
succ (1) for correctly guessing

|α1〉 is then given by

PHD+K
succ (1) =

1

4
PK
succ(1) · PHD

succ(1) =
1

4
PHD
succ(1) (5.24)

If instead the input signal was |α2〉, the success probability of the Kennedy receiver

is PK
succ(2) = 1−e−2|tα|2 , where the errors originate from the remaining overlap between

the displaced state and the vacuum state. The total success rate for the detection of

|α2〉 is given by

PHD+K
succ (2) =

1

4
PK
succ(2) · PHD

succ(2) =
1

4

(
1− e−2|tα|2

)
PHD
succ(2) (5.25)

Note, that the same error rates follow for the other signals (n = 3, 4). Conse-

quently, the total error probability (5.19) for the HD+Kennedy hybrid receiver is

PHD+K
err = 1− 1

2

(
PK
succ(1) · PHD

succ(1) + PK
succ(2) · PHD

succ(2)
)

(5.26)

= 1− 1

2

(
1− 1

2
e−2|tα|2

)
(1 + erf[|rα|]) (5.27)

Homodyne-Optimal Displacement receiver

The error rates for the HD+OD receiver follow directly by exchanging the Kennedy

success rates PK
succ(1, 2) for the success rates of the OD receiver. The optimal displace-

ment parameter β for the QPSK signal can be derived by separating the displacement

into two elementary steps as illustrated in Fig.5.9. First, the states are displaced to

the quadrature. The situation is then equivalent to a binary state discrimination

problem for two states with amplitude |α|√
2
.

The optimal displacement γ for these states is given by the solution of the tran-

scendental equation:
tα

2
= γtanh

(√
2tαγ

)
(5.28)
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Figure 5.6: Sketch illustrating the two elementary displacement operation from which
the optimal displacement for the QPSK alphabet is derived.

At the optimized displacement γ, the error rate is equal for both states and has

the form:

POD
err =

1

2
− exp

(
T |α|2
2

+ |γ|2
)
sinh

(√
2tαγ

2

)
. (5.29)

The optimal displacement amplitude |β| and phase ϕ for the QPSK signal are:

|β| =
√

|tα|2
2

+ |γ|2 (5.30)

ϕ = atan

( |tα|2√
2|γ|

)
, (5.31)

and the OD receiver is described by the POVMs:

Π̂OD
0 (β) = D̂†(β)|0〉〈0|D̂(β) = | − β〉〈−β|

Π̂OD
1 (β) = 1− Π̂OD

0 (β) (5.32)

The optimal displacement parameters for the Kennedy receiver and the OD re-

ceiver are shown as a function of the transmitted signal in Fig.5.7. The displacement

in the OD receiver is clearly increased for small signal powers and has a minimum

value of |β|2 = 0.5 in the limit of very low signal powers. Asymptotically, the dis-

placement of the OD receiver approaches the values of the Kennedy receiver, which

is identical to the transmitted signal power. The phase ϕ describes the direction of

the displacement in phase space as sketched in Fig.5.9. In case of bright signals,

both detectors displace the states towards the vacuum state, which corresponds to

a phase of ϕ = π/4. With decreasing signal power the phase in the OD receiver is

asymptotically approaching ϕ = 0, which corresponds to a displacement parallel to

the X̂ quadrature.
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Figure 5.7: Optimal absolute values for the displacement |β|2 and optimal displace-
ment phases ϕ in dependence of the transmitted part of the signal |tα|2 .

Besides of the displacement parameter β, the transmittance t2 of the beam splitter

can be optimized to minimize the error rate. The optimal parameters are shown in

Fig.5.9. In case of small signal powers |α|2 ≈ 1, the quantum state in the HD+OD

receiver is distributed nearly equally among the two receiver stages t2 ≈ 0.5. With

increasing signal power the share of the photon receiver is monotonically decreasing.

In contrast, the optimized transmission for the HD+Kennedy receiver shows a distinct

maximum around |α|2 ≈ 0.5, but approaches the optimal transmission parameter of

the HD-OD receiver asymptotically with increasing signal power. In the limit of very

high signal powers |α|2 ≫ 1 (not shown in the figure), the share of the photon receiver

tends to t2 = 0. This reflects the increasing imbalance between the performance in

binary state discrimination of the photon receivers compared to HD detection [23].

In this regime, the photon counting receivers’ performance is (in theory) exceedingly

superior to the quadrature measurements, which thus constitutes the main source of

errors. The total error is minimized by allocating the major share of the state to

the HD detector. Practically however, the performance of click detectors in the high

amplitude regime is limited by dark counts.
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Figure 5.8: Optimal parameters for the transmittance to the photon detection stage
in case of the Kennedy- and the optimized displacement receive

5.3.3 Experiment

We proceed with a description of the experimental setup, which is shown in Fig. 5.9.

Our source is a grating-stabilized diode laser operating at a wavelength of 809 nm. The

laser has a coherence time of 1 µs and is measured to be shot noise limited within the

detected bandwidth. First, the beam passes a single mode fiber to purify the spatial

mode profile. Subsequently, the beam is split asymmetrically into two parts: a bright

local oscillator (LO), which is guided to the HD stage and an auxiliary oscillator

(AO), which is used both to prepare the signal states and to realize the displacement

at the photon receiver stage. Directly after the first beam splitter, the AO passes

an attenuator (Att.) to reduce its intensity to the few photon level. The use of of

electro-optical modulators (EOMs) and wave plates allows to generate signal states

as pulses of 800 ns and at a repetition rate of 100 kHz in the same spatial mode as

the AO but with an orthogonal polarization.

The signal is split on a beam splitter and the parts are guided to the homodyne

detector HD and the photon receiver, respectively. In the HD path, the signal mode

is separated from the AO via an optical isolator aligned to absorb the remaining

AO. Moreover, the isolator avoids back-propagation of photons from the LO to the

photon counting receiver. Subsequently, the signal is spatially superposed with the

LO on a polarizing beam splitter (PBS). Up to this point signal and LO are still

residing in orthogonal polarization modes. The required interference is achieved by a

combination of a HWP and a PBS. The wave plate is aligned to rotate the polarization

axis by an angle of π/4. At this point, the signal and the LO have equal support on

the principal axis of the subsequent PBS, such that they are split symmetrically and

the interference is achieved. The measured quadrature in the HD is adjusted via a
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feed back controlled piezo-electric transducer in the LO path. The measured visibility

between the signal and the LO is V = 95% and the quantum eficiency of the photo

diodes is measured to be ηdiodes = 92 ± 3%. From this, the total quantum eficiency

of the homodyne detection follows as ηHD = V 2 · ηdiodes = 83± 3%.

Figure 5.9: Experimental setup for the discrimination of the QPSK coherent states.

In the photon receiver path the displacement is generated by coupling photons

from the AO to the signal mode. This is achieved by first rotating the polarization of

the signal and the AO via a HWP, followed by a projection onto the original signal

polarization mode by a PBS. The angle of the HWP, and hence the displacement

strength, is controlled by a stepper motor. If the required rotation angle θ is small,

i.e. for a suficiently bright AO, the disturbance of the signal states is small and

the operation is equivalent to a perfect displacement operation. The displacement

operation can be described as

|α〉|AO〉 HWP−−−→ |α cos θ + AO sin θ〉|AO′〉 cos θ≈1−−−−→ |α + β〉|AO′〉 (5.33)

where |AO〉 denotes the coherent state in the auxiliary oscillator mode. Experi-

mentally however, increasing the AO power results in an increased dark count rate

originating from the limited extinction ratio of the EOMs, which is measured to be

C ≈ 1/500. We therefore adjusted the mean photon number in the AO to optimize

the trade off between state disturbance and dark count rate, which leads to an AO

with about 20 photons. Finally, the displaced signal is coupled to a multi-mode fiber

connected to an avalanche photo diode (APD). The APD is operated in an actively

gated mode and has a measured quantum eficiency of ηAPD = 63± 3%.

We probe the receiver with a sequence of test signals. Each sequence is composed

of an initial block of phase calibration pulses used to lock the quadrature in the

homodyne measurement, followed by 9 blocks of probe pulses. Each block contains
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the full QPSK alphabet for 34 different amplitudes in the range |α|2 ∈ [0, 1.8]. The

stepper motor controlling the displacement is actuated after every 4000 runs of the

sequence to vary the displacement |β|2. The results of the individual measurements

are sent to a computer and saved. The feed forward is emulated in the post-processing,

where only the data in which the adjusted displacement concurred with the result

of the HD measurement is evaluated. A limitation in performing the displacement

by means of a HWP is that the direction of the displacement is restricted along one

specific quadrature, depending on the relative phase φ of the AO with respect to

the signal mode. However, in order to fulfill the optimality criterion in the HD+OD

receiver, the direction of the displacement has to be adjusted depending on the signal

amplitude (see eq. (5.31) and Fig.5.7). To account for this requirement, the signals

in the probe blocks are generated with an equidistantly varying relative phase to the

AO in the range φ ∈ [0, π/4].

The aim of the experiment is to provide a proof-of-principle demonstration of the

hybrid receivers’ performance unaffected by any imperfections of the implemented

hardware, but only limited by the physical concept. In the analysis of the experimen-

tal data, we therefore assume unit quantum eficiencies for the individual receivers.

Losses and detection ineficiencies, which can also straightforwardly be described as

loss, merely result in a linear rescaling of the states’ amplitudes. By combining this

with the linearity of a beam splitter interaction, we can assign the detection ineficien-

cies to the state generation stage. This trick has proven to ease the understanding

of the protocol by removing unnecessary prefactors. The assignment leads to a beam

splitter with an effective splitting ratio: T → T ′ = ηAPDT/(ηAPDT + ηHDR) and

R → R′ = ηHDR/(ηAPDT + ηHDR).

5.3.4 Experimental Results

We measured the error rates for both the HD-Kennedy receiver and the HD-OD

receiver at an effective splitting ratio of T/R = 53/47. The results are compared to the

performance of an ideal heterodyne receiver in Fig. 5.10a. The solid curves correspond

to the theoretical error rates under ideal conditions, whereas the dashed curves include

the detrimental effects of dark counts, which occurred with the probability of 2, 72%.

The error bars were derived by error propagation of the experimental uncertainties

in the input amplitude ∆|α| = 0.01 and the displacement amplitude ∆|β| = 0.039

as well as the fluctuations among repeated realizations of the experiment which were

around 0.5%.
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a

b

Figure 5.10: a. Experimental results for the error rates of the hybrid receivers com-
pared to a perfect homodyne detector. The dashed lines correspond to the theoretical
prediction including the detrimental effects of dark counts. b. Dependence of the
hybrid receivers’ error rates on the displacement amplitude for a input state with
|α|2=0.97. The curves differ in the direction of the displacement in phase space.
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We find the error rates for the HD+Kennedy receiver by evaluating the data where

the signal power of the displaced state |α − β|2 is minimal, i.e. when one state has

been displaced to the vacuum. The error rates for the HD+OD receiver are derived

by minimizing the error rate over the range of measured displacements |β|2 and dis-

placement phases ϕ. The results for both receivers are in good agreement with the

theoretical predictions. The measured error rates for the HD-OD receiver are below

the corresponding error rate of the ideal heterodyne detector for any input amplitude.

Moreover, most of the measurements beat the heterodyne receiver’s performance with

a significance of more than one standard deviation.

The essential difference between the HD+Kennedy and the HD+OD receiver is il-

lustrated in Fig. 5.10b., where the dependence of the error rates over the displacement

is shown for an input signal with mean photon number |α|2 = 0.97. The curves differ

in the respective displacement angles in the two receivers. While the HD+Kennedy

receiver was measured at ϕ = π/4, the phase in the HD+OD receiver was adjusted

to fulfill the optimality criterion ϕ = 0.62. The configurations for the HD+Kennedy

(|α|2 = |β|2 ) and the HD+OD receiver (minimal error rate) are highlighted. Ob-

viously, the performance of the HD+Kennedy receiver can already be enhanced by

increasing the displacement amplitude |β|2, however the minimal error rates are only

achieved if both the displacement amplitude and phase are optimized. The corre-

sponding error rate for the standard heterodyne receiver is shown as a reference and

is surpassed by the HD+OD receiver for a wide range of displacement amplitudes.

The curvature of the error rate around the minimum is remarkably flat, such that the

dependence on the absolute amplitude of the displacement |β|2 is low.

The relative error rates p̃err of the hybrid receivers, normalized to the error rates

of heterodyne detection are shown Fig.5.11. Additionally, the relative error rates of

the before mentioned Bondurant receiver [83] is shown. Bondurant had proposed

two similar discrimination schemes which he termed type I and type II, respectively.

The curve shown in the figure correponds to the Bondurant reveiver of type I, which

provides the better performance in the considered region. While this receiver outper-

forms heterodyne detection and also our hybrid approaches for conventional signal

amplitudes, it can not provide an enhanced performance in the domain of highly at-

tenuated signals. The HD+OD receiver provides to the best of our knowledge the

hitherto minimal error rates for signals with mean photon numbers |α|2 ≤ 0.75.
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Figure 5.11: Comparison of the error rates from different receivers normalized to the
standard scheme - heterodyne detection. Solid lines correspond to the error rates
under ideal conditions, while the dashed lines include the detrimental effects of dark
counts.

5.3.5 Conclusion.

We have proposed and experimentally realized a hybrid quantum receiver for the

discrimination of QPSK coherent signals. We showed experimentally, that our novel

receiver can outperform the standard scheme - heterodyne detection - for any signal

amplitude.
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Chapter 6

Conclusions

Here we briefly summarize the main conclusions of the thesis. We presented 3 main

results:

1. We have presented a probabilistic noiseless amplifier, capable of reducing the

phase variance of coherent states without the need for nonclassical resources or strong

parametric interactions, requiring only Gaussian noise addition and photon counting.

Area: quantum communication and quantum metrology.

2. We proposed and experimentally tested a hybrid quantum receiver for the dis-

crimination of QPSK coherent signals. We showed experimentally, that our novel

receiver can outperform the standard scheme - heterodyne detection - for any signal

amplitude. Area: quantum communication.

3. We started the study of adaptive feedback in quantum optics and showed experi-

mentally the basic components of the most complicated version of phase estimation:

adaptive single shot ab initio phase estimation. We obtained very promising results

that open interesting perspectives on this field. The theory presented as well as the

experimental elements at disposition, can account for most (if not all) of the phase

estimation protocols: single shot/repeated measurements, adaptive/nonadaptive, ab

initio/phase sensing and other combinations. Area: quantum communication and

quantum metrology.

We expect the first two results to have an immediate impact in the field of quan-

tum information, while the third opens a new field of study in our labs, adaptive

measurement, whose impact will be seen in the near future.
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Appendix 1: FPGA

� FPGA board technical details:

Xilinx FPGA XC5VSX95T-FF1136

SRIO(Serial Rapid I/O)

PICMIG AMC(Advanced Mezzanine Card) standard card edge (1 group)

PCI Express : x1 PCI Express cable interface

SMA Connector : High speed interface of 4-pare of each input/output

XGI Connector : XILINX ML402 VIODC (Video IO Daughter Card)

Use SAMTEC connector

DDR2 SDRAM : 2-group Micron DDR2 SDRAM (1group data 32bit, 128MB)

SRAM/Flash Memory : GSI technology SRAM and Intel Flash Memory

EIA-232C : Debug interface

GPIO : 2x 7-segment, 3x LED, 1x 8-pole DIP, 4x PUSH switch

Analog board:

Sub-board has 2 channel ADC/DAC

ADC : 14bit @max 155MSPS (National Semiconductor ADC14155)

DAC : 14bit @max 135MSPS (National Semiconductor DAC14135)

� FPGA specifications

Figure 1: FPGAspecs.
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� FPGA analog filter

Here is the transfer function of the analog card in the Paltek FPGA board. It was

measured by using a signal generator and an oscilloscope that recorded both input

and output signals. The FPGA here, does not perform any calculation apart from

formatting the binary, and it was internally programmed to send the input directly

to the output. The Amplitude shown is a relative amplitude normalized with respect

to the input. It is clear that the phase in the plot has a contribution from the latency

of the board that we have estimated to be around 100ns.

This spectrum has clearly the behavior of a High pass filter, which became obvious

when I checked the analog board and discovered a capacitor in series with the input

and connected to a transformer. The cutoff frequency (3dB attenuation) is about

70KHz.

Figure 2: FPGAfilter. High pass filter in the input and output of FPGA
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� Digital board

Figure 3: Digitalboard.

� Analog board

Figure 4: Analogboard.

� User Constraints File (UCF) for the Virtex 5 XC5VSX95T FPGA
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Appendix 2: Wave guide
modulator (WGM)

Table 1: WGM characteristics

Phase modulator PM1060
Central wavelength: 1060 nm
Opt. bandwidth: +/-60nm
Half wave voltage (@1 kHz): app. 10 V
Insertion loss: app. 4 dB
Modulation frequency: up to 1 GHz (sinus)
Rise time 10/90: app. 200 ps
Maximum optical input power: 200 mW cw
Fibers: 1 m PM-fiber at input and output
Fiber Connector FC/APC-connectors
Polarization (output fiber): > 18 dB
Polarization (chip): > 30 dB
Electrical connection: SMA(f) - connector
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Appendix 3: Electronic schematics

Here are some of the electronic circuits specially built for this thesis.

Figure 5: Isolation switch.

Figure 6: Variable gain fast amplifier.
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Figure 7: PID Controller.
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