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We show explicitly how the commonly adopted prescription for calculating effective mode volumes is wrong and
leads to uncontrolled errors. Instead, we introduce a generalized mode volume that can be easily evaluated based on
the mode calculationmethods typically applied in the literature, andwhich allows one to compute the Purcell effect
and other interesting optical phenomena in a rigorous and unambiguous way. © 2012 Optical Society of America
OCIS codes: 000.3860, 230.5750.

Optical microcavities are inherently dissipative and are
typically characterized by a quality factor, or Q-value, de-
scribing the relative energy loss per cycle as well as an
effective mode volume, Veff , which measures the spatial
confinement of light in the cavity [1]. Cavities with high
Q-values and small mode volumes provide enhanced
light-matter interaction and are of both fundamental
and technological interest. Effective mode volumes are
ubiquitous in physics and connect to a wide range of op-
tical phenomena. As a striking example of the use of
mode volumes, an emitter at the field antinode in an op-
tical cavity will experience a medium-enhanced radiation
rate relative to that in a homogeneous medium given by
the so-called Purcell factor [2]

FP � 3

4π2
�λc
nc

�
3
�

Q
Veff

�
; (1)

where λc is the free space wavelength, and nc is the
material refractive index at the field antinode rc. Mode
volumes are often attributed to the physically appealing
idea of a single cavity mode. However, in spite of the
fact that cavity modes are widely used in the literature,
more often than not there is a disturbing lack of a precise
definition, and their mathematical properties there-
fore remain unspecified. The name might suggest that
cavity modes are localized and vanish at large distances,
similar to the bound states of the hydrogen atom. In
fact, the opposite is true—for any finite Q, the cavity
modes necessarily diverge exponentially at sufficiently
large distances. This effectively renders the calcula-
tion of an effective mode volume nontrivial. In particu-
lar, defining ϵr�r� as the relative permittivity and
~fc�r� as the cavity mode, the common (normal mode)
prescription

VN
eff �

Z
V

ϵr�r�j~fc�r�j2
ϵr�rc�j~fc�rc�j2

dr (2)

is inapplicable because the integral diverges. For high-Q
cavities, regularization of the integral in Eq. (2) by intro-
ducing a cut-off has provided good correspondence with
experimental results [3,4], but the mathematical basis
and the limits of such an approach remain unclear.

In this Letter, we introduce a generalized mode vo-
lume, which is defined in a precise and unambiguous
way for cavities with arbitrary Q and which recovers
Eq. (2) in the limit of infinite Q. For general resonant
structures, this provides the proper theoretical frame-
work for the Purcell factor and other optical phenomena
that may be interpreted in terms of mode volumes. In par-
ticular, the generalized mode volume applies also to
structures with complex permittivity for which the lim-
ited validity of Eq. (2) has recently been pointed out
[5]. We first argue that the term “cavity mode” can only
be meaningfully defined as a solution to the wave equa-
tion with outgoing wave boundary conditions. This defi-
nition renders the cavity modes identical to the so-called
quasinormal modes [6], and we show how this definition
complies with two different numerical calculation meth-
ods including finite-difference time-domain (FDTD). In
particular, we elucidate how the modes from both calcu-
lation methods show an exponential divergence. Figure 1
shows a sketch of an example cavity along with the mode
profile. For this cavity mode, we show explicitly how the
integral in Eq. (2) diverges as a function of the integration
volume V , and we emphasize that this will be the case for
all cavities with a finite Q. For high-Q cavities, however,
the divergence in the cavity modes is slow and may not
be discernible in practical calculations due to limited
numerical accuracy.

The electric field satisfies the wave equation with gen-
eral solutions of the form E�r; t� � E�r;ω� expf−iωtg. The
position-dependent field E�r;ω� solves the equation
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Fig. 1. (Color online) Sketch of a photonic crystal (lattice con-
stant a) in a membrane of high refractive index. A defect cavity
is formed by the omission of a single hole. Right: absolute value
of the cavity mode in the planes z � 0 (top) and y � 0 (bottom).
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∇ ×∇ × E�r;ω� − k20ϵr�r�E�r;ω� � 0; (3)

where k0 � ω∕c is the ratio of the angular frequency to
the speed of light. We define the cavity modes as the
solutions to Eq. (3) with outgoing wave boundary condi-
tions (the Sommerfeld radiation condition [7]). This
choice of boundary conditions renders the problem
non-Hermitian with a discrete spectrum. In order to
distinguish from the normal modes of Hermitian eigen-
value problems, we denote the vector eigenfunctions
with a tilde as ~fμ�r�. The corresponding eigenfrequencies
~ωμ � ~ωR

μ � i~ωI
μ are in general complex with ~ωI

μ < 0, and
the Q-value is obtained immediately as Q � −~ωR

μ∕2~ωI
μ.

This, together with the examples below, show that the
above definition is completely consistent with the ex-
pected properties of cavity modes. At large distances,
the boundary conditions force the modes to behave as
outgoing waves of the form ~f�r� ∝ exp�ik0r�∕

���
r

p
[two-dimensional (2D)] and ~f�r� ∝ exp�ik0r�∕r [three-
dimensional (3D)], where r � jrj, and since k0 �
kR0 � ikI0 with kI0 < 0, they diverge exponentially as
r → ∞. Despite their divergence, the cavity modes may
be normalized as [6]

hh~fμj~fλii � lim
V→∞

Z
V
ϵr�r�~fμ�r� · ~fλ�r�dr

� i
�����ϵrp
c

~ωμ � ~ωλ

Z
∂V

~fμ�r� · ~fλ�r�dr � δμ;λ; (4)

where ∂V denotes the border of the volume V . The limit
V → ∞ is calculated in practice by increasing the volume
to obtain convergence. For the systems that we investi-
gate below (and for all systems that we have investi-
gated), the convergence is remarkably fast. For very
low-Q cavities, however, the convergence is nontrivial
due to the exponential divergence of the modes that
may cause the inner product to oscillate around the prop-
er value as a function of calculation domain size. The im-
plicit assumption behind the notion of a cavity mode is
that one mode ~fμ � ~fc dominates the expansion of the
electromagnetic Green’s tensor in the cavity [6]. One
can use this assumption and the normalization in Eq. (4)
to recover Eq. (1) with the effective mode volume

1

VQ
eff

� Re
�
1
vQ

�
; vQ � hh~fcj~fcii

ϵr�rc�~f2c�rc�
; (5)

where the generalized mode volume vQ � vRQ � ivIQ is
complex in general. This prescription provides a direct
and unambiguous way of calculating the effective mode
volume for arbitrary cavities.
For calculations of cavity modes in general structures,

the currently most popular option within the photonics
community is arguably to apply FDTD with perfectly
matched layers to calculate the modes as the resonant
fields that are excited by an initial short input pulse
[8]. Another option is to calculate the cavity modes from
a Fredholm type equation of the form

E�r;ω� �
�ω
c

�
2
Z
V
GB�r; r0;ω�Δϵ�r0�E�r0;ω�dr0; (6)

where Δϵ�r� � ϵr�r� − ϵB and GB�r; r0;ω� is the electro-
magnetic Green’s tensor in the background medium of
permittivity ϵB [9]. For practical solutions of Eq. (6),
we use the expansion technique of [10] with an additional
iteration of k0 to make the solution self-consistent.

We first consider a 2D finite-sized hexagonal crystallite
of high-index rods in air with a single missing rod in the
center. The rods have relative permittivity ϵr � 11.4 and
radius R � 0.15a, where a is the lattice constant, and we
focus on out of plane polarization. TheQ-value of the cav-
ity depends on the number of rod layers N , and for the
case of N � 1, the top panel in Fig. 2 shows the agree-
ment between the two independent methods for calculat-
ing the cavity modes. In particular, both methods clearly
pick up the divergence in the field at large distances.
Figure 3 shows, as a function of the size of the calculation
domain, the effective mode volume in Eq. (5) along with
the common definition in Eq. (2). Whereas VQ

eff converges
quickly to the limiting values, VN

eff clearly increases with
the size of the calculation domain.

The initial linear divergence in VN
eff with the size of the

normalization domain derives from the small but nonzero
field immediately outside the crystallite; cf. Fig. 2. At lar-
ger R, the field, and hence VN

eff , diverges exponentially.
For increasing Q, the linear divergence with domain size
becomes less pronounced, suggesting how the two form-
alisms provide the same result for infinite Q.

(a)

(b)

Fig. 2. (Color online) (a) Field along the x-axis of the cavity
mode in the 2D crystallite for the case of N � 1. Blue solid line
shows the Fredholm type solution, and black circles show the
calculation using FDTD. Inset shows long distance behavior on
a logarithmic scale. (b) Field along the x-axis of the cavity mode
for the case of N � 2. Inset shows the field distribution in the
xy-plane.
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Next, for a practical 3D example, we consider an infi-
nite photonic crystal membrane (ϵr � 12) of thickness
h � 0.5a and hole radius r � 0.275a. A single air hole
is omitted to create a cavity, and Fig. 1 shows the sup-
ported cavity mode calculated with FDTD [11]. For this
cavity mode, Fig. 4 shows both VQ

eff and VN
eff as a function

of calculation domain size. At the cavity mode frequency,
which is within the in-plane photonic bandgap, the photo-
nic crystal prevents in-plane propagation, and therefore
the only way for the field to leak out of the cavity is in the
z-direction. This means that both VQ

eff and VN
eff converge

quickly as a function of width and depth of the calcula-
tion domain, and we therefore focus on the variation in
the effective mode volumes with the height of the calcu-
lation domain. As in 2D, the data shows a fast conver-
gence of VQ

eff , while VN
eff clearly diverges, illustrating

why the use of Eq. (2) is wrong.
Finally, we compare the calculated mode volumes to

independent calculations of the medium-enhanced radia-
tion rate based on the electromagnetic Green’s tensor
[8,10]. In this case, Eq. (1) and the corresponding 2D ana-
log each defines a total effective mode volume, V tot

eff ,
which is not limited by the single mode approximation.
For each of the cavities, V tot

eff is indicated with a circle in
Fig. 3. The estimated maximum absolute error in these
calculations is less than 0.0003�λc∕nc�2. The observable
discrepancies for N � 1 and N � 2 stem from the single
mode approximation and indicate the limited validity of
the Purcell formula for very low-Q cavities. In Fig. 4, the
Green’s tensor was calculated with FDTD as the re-
sponse to an input dipole source at three different do-
main sizes and with estimated error bars as indicated.
These independent calculations confirm that Eq. (5) not
only is unambiguous, but also leads to the correct value.
In conclusion, we have shown that for leaky optical

cavities, the common prescription for the effective mode
volume in Eq. (2) is wrong. The source of confusion can
be traced to a lack of distinction between different types
of modes. We argue that the term “cavity mode” should

be properly defined as a solution to Eq. (3) with outgoing
wave boundary conditions. This changes the properties
of the eigenvalue problem so that common results from
Hermitian eigenvalue analysis do not apply. In particular,
the cavity modes have complex frequencies and exhibit
an inherent divergence at long distances, which makes
the calculation of an effective mode volume nontrivial.
Using a normalization that carefully accounts for the long
distance behavior, it is possible to define a generalized
mode volume in a direct and unambiguous way. In prac-
tical calculations, this in turn provides the correct effec-
tive mode volume for use in Eq. (1) in a straightforward
way using exactly the same cavity modes that are typi-
cally computed for mode volume calculations.

This work was supported by the National Sciences
and Engineering Research Council of Canada, the Villum
Kann Rasmussen Center of Excellence on Nano-
phototonics for Terabit Communications (NATEC),
and The Danish Council for Independent Research
(FTP 10-093651).

References

1. K. J. Vahala, Nature 424, 839 (2003).
2. E. M. Purcell, Phys. Rev. 69, 674 (1946).
3. T. J. A. Kippenberg, “Nonlinear optics in ulta-high-Q

whispering-gallery optical microcavities,” Ph.D. thesis,
(Caltech, 2004).

4. K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter,
Phys. Rev. B 70, 081306R (2004).

5. A. F. Koenderink, Opt. Lett. 35, 4208 (2010).
6. K. M. Lee, P. T. Leung, and K. M. Pang, J. Opt. Soc. Am. B 16,

1409 (1999).
7. P. Martin, Multiple Scattering (Cambridge, 2006).
8. P. Yao, V. S. C. Manga Rao, and S. Hughes, Laser Photon.

Rev. 4, 499 (2010).
9. O. J. F. Martin and N. B. Piller, Phys. Rev. E 58, 3909 (1998).
10. P. T. Kristensen, P. Lodahl, and J. Mørk, J. Opt. Soc. Am. B

27, 228 (2010).
11. Lumerical FDTD Solutions: www.lumerical.com.

Fig. 3. (Color online) Effective mode volumes VN
eff (thick

lines) and VQ
eff (thin lines) for N � 1 (red dash-dotted), N �

2 (green dashed), and N � 3 (blue solid) as a function of radius
R of the calculation domain. Circles indicate reference mode
volumes V tot

eff from independent Green’s tensor calculations [10].

Fig. 4. (Color online) Effective mode volume VN
eff (red dashed)

and VQ
eff (blue solid) for the cavity in Fig. 1 as a function of

height of the calculation domain Lz. Circles indicate reference
mode volumes V tot

eff derived from independent Green’s tensor
calculations [8].
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