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Preface

This thesis represents the work done during my three years of Ph.D study. The first year of my
study was mainly used on an attempt to discover new nitride materials. This proved to be an
interesting path but immensely difficult, as making nitrides by means of solid state reactions in
furnaces put relentless requirements to both equipment and experience. Due to this fact and the
fact that I am a physicist, the focus naturally changed at the end of the first year from the nitrides
towards the examination of magnetically ordered materials using neutron scattering. Thomas B.
5. Jensen was a major part of this shift, as it was his work on LiNiPOy4 that formed the basis
for a re-examination of LiNiPO4 and the other lithium-ortho-phosphates, especially LiCoPO,4 and
LiMnPO4. Many of the tools and considerations done by him were directly applicable to the open
questions in these two compounds. The very first neutron scattering experiment I made as a SANS-
experiment on superconducting Vanadium. The analysis of that data required knowledge about
vortex lattices generally and knowledge about Reverse Monte Carlo (RMC) specifically, which
was obtained sporadically parallel to the work done on the lithium-ortho-phosphates. Thus, nine
months before the end of my contract I had four more or less finished minor projects which I found
interesting and had invested time in. This thesis is an attempt to wrap it all up.

Since this thesis describes work done on four magnetic systems, concerning two different subjects
in magnetism, it ended up being rather long. As the scope of the thesis broadened, I began to
fear that this might cause a lack of depth and detail. To avoid this, I decided to put some of
the important theoretical concepts and derivations in my thesis as the best way for me to achieve
understanding of a subject is to write everything down in my own way. Therefore, the theoretical
chapters contain many details; which is mainly for my own sake. These detailed theoretical chapters
are chapters 2, 3 and 8; they contain only textbook material, written down as I understand it. Any
experienced reader, who feels confident in the subjects of magnetism, crystallography, neutron
scattering, superconductivity and vortex matter may safely skim or even skip these chapters; they
contain no new information. However, I hope that more unexperienced readers may find these
chapters useful as a supplement to the theoretical textbooks, if stumbling upon the subjects of this
thesis in their own work.

The thesis is organized as follows: First, a short introduction to magnetoelectric materials end
especially the lithium-ortho-phosphates is given. The introduction is followed by a detailed account
of the relevant magnetic interactions as well as a short account of the crystallographic and group
theoretical concepts needed for an analysis of the neutron data. Next, a detailed account is given
of the theory of neutron scattering which is the main experimental method used in this thesis.
After these textbook chapters, the work done on the lithium-ortho-phosphates is described in three
separate chapters concerning the work done on LiNiPOy4, LiMnPOQO4 and LiCoPQy, respectively.

The part of the thesis concerning the investigation of a possible Bragg glass phase in superconduct-
ing Vanadium is a little shorter. The introduction is followed by a short account of BCS theory,
Ginzburg-Landau theory and Bragg glass theory. This is succeeded by a chapter describing the
special experimental SANS setup, a description of the RMC principle and at last ending with an
analysis of the rocking curve intensities as well as the RMC refinement of high resolutions rocking
curves.




1 Magnetic structures of the lithium orthophosphates - introduc-
tion

Since this thesis concerns two subjects in which the only common denominator is the subject of
magnetism and the use of neutron scattering as the central experimental method, the introduction
will be divided into two parts concerning each subject separately.

1.1 The magnetic structures of the Lithium-Ortho-Phosphates

A ferroic material is a material that spontaneously exhibits a static and switchable order parameter.
For instance, a ferromagnetic material can be statically magnetized, with iron being the most
obvious example. The electric counterpart to the ferromagnetic materials are the ferroelectric
materials which can be statically polarized; there is an electric polarization density within the
material giving rise to a static surface charge perpendicular to the polarization vector. On very
rare occasions, a material exhibits both ferromagnetism and ferroelectricity spontaneously (without
external applied fields of any kind) - these materials are called the multiferroics. On less rare
occasions, is is possible to induce one ferroic property by influencing the other ferroic state with an
applied field. Good example of such materials are the magnetoelectric materials, where an applied
magnetic field induces a polarization and an applied electric field induced a magnetization. Figure
1 illustrates the proper nomenclature when the ferroic order parameters in question are magnetic
and electric

— Magnetically polarizable
‘ == Fgrromagnetic
N Electrically polarizable
\ == Ferroelectric
W Multiferroic
7 Magnetoelectric

Figure 1: An illustration of the nomenclature of multiferroics and magnetoelectrics. True mul-
tiferroics exhibits both a spontaneous magnetization and spontaneous electric polarization. The
magnetoelectrics on the other hand are defined by the coupling between the two order parameters;
the spontaneous presence of any of the order parameters is thus not a necessary condition.

The lithium-ortho-phosphates - LiMPQy4, where M = Mn, Fe, Co or Ni - are isostructural or-
thorhombic (space group Pnma - a =~ 10.1 A, b~ 5.9 A and ¢ ~ 4.7 A) magnetoelectric materials
that neither show significant spontaneous magnetization nor electric polarization. These materials
all order antiferromagnetically below temperatures ranging from 21 K (Co) to 50 K (Fe). Apply-
ing a magnetic field along certain crystallographic directions (either a, b or ¢) induces an electric




polarization. The coupling is linear following the formula
P = a;; Hj, (1)

where 4,j = a,b, ¢ and «;; are components of the linear magnetoelectric tensor c. The magneto-
electric coupling in the compounds examined in this thesis have the following form

e - . -9 L]

QLiCoPOs = * & = QLiNiPOy = £ F 8 XLiMnPOy = v e s )
. e + F )
where the large dots mark the non-zero components. There is a difference in the form of the
magnetoelectric tensor of the three compounds, originating from the nature of the magnetic ion.
These differences are significant. Table 1 shows the characteristics of the magnetic ions in the
three compounds examined in this thesis; the meaning of which will be explained in the following
chapters.

Magnetic ion || Electron conf. | L | S | Spin orientation | Ag/g | |maz| [8/m]
Mn?+ [Ar]3d® 0]5/2 a 0 2:107°
Ni2+ [Ar]3d® 3| 1 c 0.1 4.107°
Co?t [Ar]3d” 2% | 372 b 0.3 7.1074

Table 1: Characteristics of the magnetic ions in the three lithium ortho-phosphates examined in
this thesis. The spin and orbital quantum numbers are found using Hund’s rules without taking
the crystal surroundings into account. The spin orientations are found in the literature [1, 2]. Ag/g
determines the strength of higher-order exchange couplings induced by the spin-orbit coupling -
explained in the text. The maximum strengths of the ME-effect are found in [3].

As evident in table 1 there are also substantial difference in the strengths of the ME-couplings found
in the lithium-ortho-phosphates. T. B. S. Jensen thoroughly examined the magnetic structure in
LiNiPOy4 in both zero and applied field. He found a complex phase diagram for fields applied parallel
to the spins, and in zero field he found that the spins are not co-linear but canted. This canting was
found to be facilitated by a second order exchange interaction induced by the spin orbit coupling
- the so-called Dzyaloshinsky-Moriya (DM) interaction - which played a central role in explaining
the ME effect in LiNiPOy4 microscopically [4]. The three systems all display strong in-plane (ab)
exchange couplings and weak out-of-plane couplings. The dimensionality of the magnetic moments,
however, varies a lotin the three systems. This gives rise to three different phase diagrams. This
part of the thesis concerns three smaller projects:

e An investigation into the high field part of the (ugH,T) phase diagram of LiNiPQ, (pseudo-
XY system). It is investigated whether or not the high field low temperature incommensurate
structure is a spiral. Furthermore, the phase diagram is examined at the highest fields
available for neutron scattering - 17.3 tesla. The spin waves has been measured in the hgih
field incommensurate phase.

¢ An examination of the magnetic phase diagram of the isotropic LiMnPQ, (Heisenberg system)
for fields applied along the spin direction, which exhibits a spin flop transition, using both
neutron scattering and magnetization measurements.

e Having obtained evidence for a DM interaction in LiNiPQy this interaction is expected to be
stronger in LiCoPOy (pseudo-Ising system). The magnetic structure has been examined in
both zero and applied field in search for both DM and higher order interactions. Furthermore,
an attempt is made to establish the magnetic phase diagram for fields applied along the easy
direction as well.




2 Elements of Crystallography and Magnetism

In this section, the necessary concepts and results for understanding the lithium-ortho-phospates
are described. Some crystallographic concepts are very useful, since the symmetries present in
ordered systems has profound consequences for the physics contained in these system, as will be
evident. Since this part of the thesis deals with magnetic structures and interactions the necessary
elements of the theory of magnetism will be presented in some detail. Results from non-relativistic
quantum mechanics found in [5, 6] will be used without reference in this section.

2.1 Magnetism

All charged particles exhibit a magnetic dipole moment, since they have intrinsic angular momen-
tum, namely spin. The electrons exhibit the largest magnetic dipole moment of the particles con-
stituting atoms, since they are the lightest of the particles constituting matter and p = — geﬁ«f—f—ese.
Because of this, usual magnetic topics only concerns magnetism of electrons, and this thesis is
no exception. Electrons are fermions, obeying the Pauli principle, stating that any multi electron
wave function are antisymmetric with respect to two-electron exchange, or identically that no two
identical fermions can occupy the same quantum state. This principle lies at the heart of atomic
physics and magnetism. In the following, atomic units are used sothat i=1,c=1,e=1,me =1
(the mass of the electron) and 4meg = 1.

2.1.1 The one electron atom

As is well known, the atom consists of a nucleus, where positively charged protons are glued together
with the neutral neutrons by the strong nuclear force overcoming the coulomb repulsion between
protons, surrounded by the negatively charged electrons. The neutral atom has an equal number
of protons and electrons, the latter of which are bound by the coulomb potential of the nucleus
([7):

ve) = -2, 2.2

where Z is the atomic number and r is the distance from the electron to the nucleus. The eigenstates
for a single electron bound by this potential are found by solving the time-independent Schrédinger
equation for hydrogen atoms:

2Mem ¥

- 2w~ mve) (23)

where mem = % is the reduced mass of the system (M is the mass of the nucleus expressed
in terms of the electron mass), F is the eigenstate energy and ¥(r) is the spatial electronic wave
function. For one electron atoms, the Schrédinger-equation can be solved exactly:

\I’n,l,m(ra qf),ﬂ) = R?!-f(T)YIm(H!¢)} (24)

Where R;(r) and Y;,,(8, ¢) are the radial and orbital parts of the wave function respectively ([7],
[5]). This separation of the radial and angular part of the wave function is possible due to the
coulomb potential being spherically symmetric. R, is a sum of polynomials with n —{ terms, n
being the convenient principal quantum number and ! the well known quantum number describing
the eigenvalue of the L2 operator. The principal quantum number denotes the energy levels of the
hydrogenic atom which are
2
By = A, (2.5)

n2




where R is the well known Rydberg constant which is the ionization energy of hydrogen in its ground
state. For any given energy level with principal quantum number n, it must hold that { < n—1. The
last good quantum number describing the spatial wave function of hydrogenic atoms are the well
known eigenvalue of the f,z-operator - the magnetic quantum number m describing the projection
of the angular momentum vector onto the arbitrarily chosen z-axis. For any given value of I, m
can assume 2[ + 1 values. Thus, the energy eigenvalues E, of the hydrogenic atoms are n2-fold
degenerate, 2n?-fold degenerate if spin is included. The radial part of the wave function depends on
n and [, and the spherical part - described by the spherical harmonics - depends on [ and m. The
values for angular momenta have been given letter names: sforl =0, pforl =1, dfor [ =2 and f
for { = 3. For [ > 0, the electronic distributions assume drop-like shapes with different symmetries.

The third shell
(n=3)

3s 3p 3d

dyz 2 dy2

z
|
|
|
r
|
|
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s |
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= x ~X
= . -
|
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Figure 2: The spatial distribution of an electron in the orbitals possible with principal quantum
number (n = 3). Picture from http://www.sci.uidaho.edu/Chem101/Links.htm

The possible spatial electron distributions for n = 3 are shown in figure 2. This constitutes
the simplest possible model for hydrogenic atoms, without taking any of the many perturbations
shown to have an effect into account. These perturbations include relativistic kinematic effects,
spin-orbit-interactions (fJ . Q), the exotic Lamb shift (electronic coupling to the ground state of the
quantized electromagnetic field) and the hyperfine shifts/splittings (nuclear spin, finite nuclear size
and eventual electric quadrupole effects). Nevertheless, this basic model form the basis of atomic
physics.

2.1.2 Many-electron atoms

In the following, only the electron-nucleus interaction, the electron-electron interaction and the
electron spin-orbit coupling will be considered; all other (and smaller) perturbations are neglected.
Initially including only the electron-electron interaction, the Hamiltonian for an N-electron atom
will be [7]:

N N
_ loe 2 z
Ho— Z[—Ev ]+§j = (2.6)

i=1 j=1




This is the general atomic coulomb Hamiltonian. It is evident from the time-independent Schédinger
equation - U = EV - that the wave function cannot be separated into a radial and spherical part,
due to the inter-electronic potential. In describing the field felt by the Nth electron, assume that
the main effect of the N — 1 other electrons is to screen the nuclear charge, reducing the effective
charge of the nucleus. If this is true, the inter-electronic interaction can be described as being
mainly spherical symmetrical with a small non-spherical correction. This is the basic assump-
tion in the theoretical treatment of many-electron atoms - one that builds a bridge between the
many-electron system and the simple hydrogenic systems - called the central field approzimation.
The residual part of the potential due to the inter-electron couplings is not spherically symmetric,
but can now be assumed to be small, and hence qualifying as a small perturbation subject to
perturbation-theory. Then, the spherically symmetric part of the potential acting on any electron
has the form

V) = ~Z450), (27)

where S(r) is the spherically symmetric part of the inter electronic interaction.The Hamiltonian
can now be written as follows:

- N
{Z (-39 + V) |+ | 20 Z- 550 (28)

i=1 i<j=1 4

= Hep+Ha (2.9)

H

The wave functions satisfying the time-independent Schédinger-equation for the spherically sym-
metric Hamiltonian #s, can now be separated into a radial and a spherical part. The single-
electron orbitals can be found by solving

1
[h§V2+ch(ri)] Unim(r) = Epunm(r), where
Unim(r) = R (r)Yim(0,6). (2.10)

The radial parts of the single-electron wave functions differ from their hydrogenic counterparts, but
the spherical part must be the same - namely the spherical harmonics. The multi-electron solution
of the time-dependent Schédinger can be written as follows:

N

_ 1o y

Hcf\l’c == [;( 2V +1/cf('h))] U,
= K.V, where

N
Hurlilivrli(l'i)- (211)
i=1

¥,

The multi-electron eigenfunctions in the central field are products of all the single electron eigen-
functions, and the eigen energy is the sum of the single electron eigen energies. Besides the three
central field quantum numbers nim, another very important quantum number needs to be included
in the model, namely the additional spin magnetic quantum number. Since the central field Hamil-
tonian does not depend on spin orientation, the spin eigenfunctions can easily be incorporated into
the single electron central field orbitals:

unhn;m_.;(ras) - Rﬁ{(T,)K??IJ(g;QS)X}?z/E' (2‘12)

When including spin, the wave functions proposed in equation 2.11 are not adequate, since they
are not anti-symmetric with respect to exchange of any two electrons. Let «; be the four quantum




numbers n;,l;, my;, and mg;. An antisymmetric multi electron wave function can be written as a
determinant known as the Slater determinant:

Yoy (F1481)  BogP1s81) wov Mgy (ri,8i)

Uy (1‘2 Sg) Uay (1‘2,82) . Uy (1‘2,82)
‘1'6(1‘1,5111‘2}32:'--11'N,SN) = 1 .', ; . N ; . (213)

Ugy (*N,SN) Uy (TVySN) .. Uay (TN,SN)

The eigenfunctions of the central field Hamiltonian are of this form. Note, that if two electrons
are in the same state, that is if a; = «; for some i, 7, then two columns in the determinant are
the same, and the wave function is 0. Hence, no two electrons can occupy the same state. Thus,
only two electrons can be in a n = 1 state, and only if they have different spins. The energy levels
depend on the principal quantum number n and are 2n?-fold degenerate - each of these bundles of
states with the same energy are called shells. For each value of n there is a maximum [-value of
n— 1, just as in the case of hydrogenic atoms. For each of these [-values there are 2(2/+ 1) possible
magnetic states, including spin. These magnetic bundles of states are called sub shells. The first
few shells and sub shells with lowest quantum numbers have been given letter names, see table 2.

-10]1]|2[3|4]|5]|6
-|K|LIM[N|O|P
ls{p|d| f|g|h]|-

Table 2: Shell- and sub shell names.

Due to the Pauli principle, the electrons in many-electron atoms cannot all occupy the same lowest
energy state, the shells are filled from the ground state upwards in energy. This is the empirical
fact that is the basis for all chemical phenomena. As previously mentioned, the central field
Hamiltonian is not adequate for describing many electron atoms. At least two perturbations need
to be accounted for: H; and the spin-orbit coupling. The spin-orbit coupling is coupling between
the orbital angular momentum of the electron and the spin angular momentum - stemming from
the magnetic interaction and interactions due to precession. Including these interactions, the
many-electron Hamiltonian can be written as:

N N
zZ o
Ho= Hep+ | ), ——D S|+ [Z n(ri)l; 'Si] (2.14)
i<j=1 Tij i i=1
= Hep+Hi+He where
i i | chf(’I‘i)
el = 2= ’ 2.15
) = 3 (2.15)
It can be shown that the contribution to H; from filled shells vanishes (intuitively it makes sense,
since every [-state has two electrons with opposite spins). In order for perturbation theory to work,
the two perturbations of the central field Hamiltonian, #; and Hs, must not have equal strength.
It is assumed that #3 << H;, which is only the case when the atomic number Z is small or

intermediate, as Hy scales with Z* ([7]).

Degeneracy removal by the electron correlation Hamiltonian #1

The fact that the electrons are correlated as evident in the perturbation Hamiltonian 7, removes
some of the 2n? degeneracy of the principal quantum states. Intuitively, the electrons want to
be as far away from each other as possible to lower the energy of #;, thereby favoring some
configurations of angular momenta within the unfilled shell. It can be shown that the perturbed




Hamiltonian H. ¢+ H; commutes with both the total orbital angular momentum and the total spin
angular momentum:

[(Hef +H1, L2 =0, [Hep +H1,8% =0 and [Hep+Hi1,J°] =0, where
N N
L=Y1, $=) s and J=L+8 (2.16)
=1

i=1

Thus, both L and S are good quantum numbers. For any closed shell S = L = 0, which means that
only the unfilled shells are relevant in determining the total spin and orbital angular momentum
of the possible electron configurations. In determining the possible values of L and S one needs to
use the rules of addition of angular momenta found in textbooks ([6]), but one also needs to take
the Pauli principle into account for electrons belonging to the same sub shell. This will not be
elaborated here. The eigenstates of the Hamiltonian can be denoted |yLSMjMg), where M}, and
Mg are projections of the total angular momenta onto the z-axis and -y is an additional quantum
number analogous to the principal quantum number. These states have (2L+1)(254-1) degeneracy,
stemming from the fact that an isolated atom has no preferred direction of the angular momentum
vector and hence the energy levels are independent of My, and Mg. The calculation of the ground
state configuration and the energy levels of the allowed configurations is no easy task. There are
empirically based rules though, called Hunds rules ([7, 8]), determining (in many cases) the ground
state configuration of angular momenta of a given atom. The first two rules can be intuitively
understood on the grounds of the electronic coulomb repulsion expressed in Hi:

e Hunds 1st rule: In the unfilled shell, first arrange the configuration of angular momenta to
maximize the spin quantum number S. As the Pauli principle prevents electrons with parallel
spins to be in the same place, this will minimize H;.

e Hunds 2nd rule: After maximizing S, maximize L. Electrons in orbits parallel to one-
another can more easily maximize the distance between them, avoiding coulomb repulsion.

After treating the correlation term of the multi-electron Hamiltonian, the next step is to treat the
weaker spin orbit term.

Degeneracy removal by the spin-orbit Hamiltonian #;

The spin-orbit coupling is the coupling between the orbital and spin angular momenta of a single
electron, favoring the spin direction to be anti-parallel to the orbital angular momentum vector.
This will remove some of the (2L + 1)(25 + 1)-degeneracy of the sub shells described previously.
The term Hs in the many-electron Hamiltonian written in equation 2.15 commutes with the total
orbital angular momentum squared L2, the total spin angular momentum squared S? and with
the square of the total atomic angular momentum J2 = (L + S)? However, Hy does not commute
with the magnetic operators L; nor S; (i = z,¥, 2), the only good magnetic quantum number is
J;. Since H, >> Ho the splitting caused by the spin-orbit term will be much smaller than that
caused by the correlation term. Hence, different LS-multiplets will not mix due to the spin-orbit
perturbation. Therefore, the spin-orbit splitting of each state can be evaluated separately. It can
be proved (done in [7]) that within each LS multiplet,

Ho = ApsL-S, where L= Zli’ S = Zsi, (2.17)
i i
and where Apg is specific for the multiplet. It is worth noting that configurations with either .S = 0
or L = 0 will not be split as L - S will be zero. Recalling that J? is
J2=12+2L-S+8?%
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and switching to the convenient basis |yLSJMj) the spin orbit energy shift can be evaluated as

(YLSJM;|Ha|yLSIM;) = %(«YLSJMHJ? —L? - S?|yLSJM;)

= 281541 - LE+1) - S(S+1)]. (2.18)

Using the rules of addition of angular momenta, the possible values of J are |L — S|,|L — S| +
1,...,L+S. Therefore, the number of values are 25 +1if L > § and 2L+ 1 if L < S. The difference
between energy levels is E(J)— E(J—1) = A;gJ, which is dependent on Apg. Therefore, depending
on the sign of Apg either the state with maximum or minimum value of J will be the ground state.
The sign of Ars depends on whether the sub shell is less than half filled or more than half filled
(precisely half filled results in the state not being split). This results in Hunds 3rd rule, or

e Lande’s interval rule: The state with J = |L — S| will be the ground state if there is a
single open sub shell that is less than half filled. If the sub shell is more than half filled, the
state with J = L + § will be the ground state.

Even when including #; there is no preferred direction in space, so each of these split states still
retains a J(J + 1)-degeneracy representing the possible M; quantum numbers. A level scheme of
the atomic splitting of a p-orbital is shown in figure 3.

L=0,§=0 J=0
S L=1,5=0 =i
’,I—___
1) 1=2,8=0 J=2
1) ot o e e e
! /!
I'l’
I,r,
I’/
I[/
Iy
o
np ¥
__‘\
\
W%« L=0,5=1 I=1
S, — ===
(R
N J=2
\ -
\ vL=1,8=1 i Fy
\ —_—— -~
\ ~<. J=0
\
\
\
3 J=3
WL=28=1 _--""  j=
~e. J=1
H, H+H,

Figure 3: The splitting of the principal multi-electron atomic states. The perturbation accounted
for in the Hamiltonian is shown below. Picture modified from [7].

This concludes the treatment of the free atom. When atoms are bound in crystal structures, a
wide range of magnetic effects and interactions is possible, some of which will be described in the

following.
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2.1.3 Crystal field effects: level splitting, orbital quenching and anisotropy

The lithium ortho-phosphates are systems with ionic molecular bonds, where an electron transfer-
ence occurs. There is a permanent transference of charge between the atoms and with localized
valence electrons. The system is held together by the coulomb force between the ions. Thus, every
ion in the crystal is subjected to an electrostatic field caused by the surrounding ions. The effect
of this crystal field is stronger than the spin-orbit coupling in case of the transition metals ([9]), so
the crystal field perturbs the Hamiltonian #.; + #; causing a splitting of the LS-multiplets. The
ionization state of the magnetic transition metal ions in LIMPOy is M2", and the unfilled shell
is 3d (n = 3, [ = 2). In the following, it is assumed that the crystal field is too weak to mix the
LS ground state with higher energy multiplets; it is assumed that the crystal field Hamiltonian
can be diagonalized within the LS-multiplet subspace. An illustration of the difference in coulomb
energy of different 3d orbitals can be seen in figure 4a. It is clear that given the p-orbitals of the
surrounding oxygen atoms, the d,2_,2 orbital has a higher coulomb energy than the dy. When
describing the crystal field, a simplifying assumption is that the anions surrounding the transition
metal ion can be viewed as point charges not overlapping with the orbitals of the 3d orbitals (a
very crude assumption only valid to first order). The electrostatic crystal field potential and the
corresponding perturbation Hamiltonian for the transition metal ions can be written as:

N
crystal Z |1 _ R | and ’Hcrysial = HCZ Vérystﬂl(rj): (219)
j=1

where R; are the position vectors of the surrounding ions with charge e;, and N is the number of
electrons occupying the unfilled shell of the transition metal ion subject to the crystal field. The
transition metal ions in the lithium ortho-phosphates sit slightly displaced from the center of an
oxygen octahedron (see figure 4). When evaluating the effects of the crystal field, it is useful to
expand the crystal field potential in terms of spherical harmonics - called the multipole expansion.
This allows for a direct application of the symmetry properties of the crystal to the crystal field po-
tential to exclude the terms forbidden by symmetry arguments. Switching to spherical coordinates
-R; = (Ri,0;,¢;) and r — (r,0,¢) - the crystal field potential can be written as follows:

I
Verystal (1, 6,60) = Z Z Khnrlﬁhnl(cosB)efm"f’ where

I m=-l

(I = |m|)! ImI i
Km = 4 +|m|),ZRM (cos 6;)e™? (2.20)

where P,,Im[ is the Legendre polynomial. The terms describe the coupling of the crystal field - which
are described by K}, - with the electrons in the unfilled shell of the magnetic ion of increasing
order in the multipole expansion. The term for [ =0 is Vg = ). e;/R; and is simply the constant
coulomb potential of a charge sitting in the position of the magnetic ion. It is a constant term, not
depending on the angular distribution of the electrons and hence it does not cause any splitting L-
multiplet. If one takes the spherical harmonics as tensor operators, one can use the Wigner-Eckart
theorem to obtain the selection rules ([6]):

('m'|YF|lm) #0 only when g=m'—m and |I' =l <k <V +1 (2.21)

Thus, for a d electron with [ = 2 the maximum value of [ in the sum of equation 2.20 is 4. This is
equivalent of saying that higher multipole orders than four cannot perturb 3d charge distributions.
Due to the time-reversal symmetry of the crystal field, only terms with even [ are finite. Further-
more, if the crystal field expressed with the magnetic ion in the origin has inversion symmetry, only
terms with even m persists. Thus - in the presence of inversion symmetry - only the terms V5, and
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Vy are relevant in the multipole expansion for the crystal field surrounding a transition metal ion.
The values of K, depend on the symmetry of the field. In case of perfect cubic symmetry (the
metal ion sitting in the center of the octahedron), it can be shown that only Vj is non-zero. This
causes a splitting of the 3d orbitals into different multiplets depending on the number of electrons
in the unfilled shell (see figure 4 c) for the case of Fe?" splitting into a triplet and a doublet).
However, in the lithium orthophosphates the octahedron is not perfect but irregular, giving rise to
a non-zero Vo component. Furthermore, the oxygen octahedron is only the dominant part of the
crystal field, there are other ions in the crystal playing a smaller part, and thus the symmetry of
the crystal as a whole - which in the case of the lithium orthophosphates is much lower than cubic
- determines the splitting. The consequence of these facts is that the 3d multiplet will split into a

number of non-degenerate singlets.

(a) Projection of the electron distribution of a transition metal ion surrounded by
oxygen ions onto an zy-plane.

(b) The oxygen octahedron surrounding (c) Splitting of a Fe®* L = 2,5 = 2 state
the M?*-ion in LiMPOy due to a perfect octahedral crystal field

Figure 4: a) Examples of charge distribution of the d-shell transition metal electrons surrounded
by p-shell electrons from the four oxygen atoms in the same plane. b) The actual position of the
transition metal ion (brown) slightly displaced within an oxygen (red) octahedron. ¢) Example of
crystal field splitting of an (3d)® state of an Fe?t-ion.
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Orbital quenching

The electrostatic potential produced by the static position of electric charges is invariant with
respect to time-reversal and is therefore described by a real function. As the crystal field Hamil-
tonian Herystar is real, the eigenfunctions of this Hamiltonian in the subspace spanned by the LS
multiplet must be real. However, the orbital angular momentum operator is purely imaginary:
L= ih(r x V). Therefore, the expectation value of L must be purely imaginary, but since L is
hermitian the expectation value must also be real. Thus, following must hold:

(n|Lln) = (n|L|n)* = —(n|Ljn) =0 (2.22)

This only holds for the diagonal matrix elements. The ground state of the crystal field Hamiltonian
has been argued to be non-degenerate in the previous section. Therefore, the expectation value of
the angular momentum operator is zero:

(0[L]0) = 0 (2.23)

This is known as orbital quenching. It follows from the low symmetry of the crystal field splitting
that the 3d orbitals form non-degenerate singlets. However, the spin-orbit coupling can restore
some of the quenched orbital angular momentum as this perturbation will mix some of the crystal
field singlets. Furthermore, this will result in preferred directions in space (single ion anisotropy)
as will be elaborated in the following section.

Spin-orbit term: Single ion anisotropy and induced orbital momentum

Both the spin-orbit term and the Zeeman energy resulting from an applied magnetic field H is
treated as a perturbation of the crystal field Hamiltonian Ho = Hep + Hi + Hepystat-  Using
equation 2.17, the Hamiltonian is

?{ = HO + Hsg + Hzeernan = H[} + AL,SL ¥ S + 'HBH ' (28 + L) . (2.24)

In the previous section the splitting of different spatial orbitals due to the crystal field splitting
was examined. The potential consisted only of coulomb repulsion between different static charges
positioned in space, and hence the potential was only dependent of the spatial coordinates of
the electrons. Hence, the Hilbert space of the unperturbed electron states can be considered as
a product space between the spatial space and the spin space, as they are independent. In the
following, only the spatial part of the unperturbed electronic wave functions are included in the
matrix elements of the perturbation calculation, leaving the spins as operators to obtain a spin-
Hamiltonian. Since the orbital angular momentum is quenched to first order in the ground state,
the first order ground state energy change is

AES) = 2upH.S, (2.25)

which is merely the Zeeman energy of the quenched ground state. When taking the perturbation
to second order, the ground state is mixed with the crystal field states with higher energy and finite
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orbital angular momentum yielding the second order energy shift:

Ul?isolk)l
Ar® - S K
I; Ey - E,

= ZEO - (Z)\ (0| Ly Sy|k) + 2(0| Hy Sy |k) + (OlHVL,,lk))

k£0

X

(Z A (K| LySyu|0) + 2{k| H,, S, 0) + (k|HuL#IO>)
KB
= [NAwSuSy + 2\ A HuS, + ph A HLHY),  where (2.26)
pv
{01 Ly [n) (2| Ly |0)

Ay, = XL: o — (2.27)

In the above equation x and v represent Cartesian coordinates while Ey and |k) are eigen energies
and eigenstates of the crystal field Hamiltonian. The fact that the spin is left as an operator
and only the orbital parts of the wave functions are considered makes equation 2.27 particularly
simple as terms of the form (n|H,S,|0) vanish as (n]0) = 0. The sum of the first and second order
expansion of the spin-orbit/Zeeman perturbation of the ground state can now be written as a spin
Hamiltonian:

Hso = — Z [QP'BH.M (5.uu - '\Aw/) Sy — ,\QS#A#,,S,, . M?S‘H#A#V‘H”] (2'28)

pv

The first term of this ground state Hamiltonian is an effective Zeeman energy, with the g-factor
replaced by an effective g-tensor:

g;w = 2 (6,m/ - )\Ay.v) . (229)

Thus, the tensor Ay, describes the orbital moment induced by the spin-orbit interaction. In
LiNiPOy for instance, the effective g-value for the magnetic moment of the Ni?* ion is 2.2 even
though the quenched ground state has S = 1 ([4]). The second term in equation 2.28 is the
single ion anisotropy Hamiltonian, which described the splitting of the (25 + 1)-fold degeneracy
caused by the spin-orbit interaction giving a preferred spin direction in space. For simplicity, it is
assumed that the Cartesian axes z, y and z coincide with the principal axes of the crystal system,
and that the A,, can be diagonalized. Using the basis for diagonalization, the anisotropy term
Haniso = —A2 (AES_,% - AyS§ - Asz) can be expressed as follows:

2
Haniso = o (s + Ay + M) S(S +1)

)‘2 2 Az 2 2
- Az——(Am-i—Ay) [352 = (S +1)] - 5 (A — A,) (52 - 57)

= DS?+E(S:-82), (2.30)

where the constant terms involving only 25+ 1 have been discarded since these terms only describe
the total spin of the ground state. The term DS? splits the ground state into doubly degenerate
levels with §, = +5,+£(S — 1),....,£1/2. In case of integer S there is a non-degenerate level
with S, = 0. As S? — 87 = 1/2(5,8; + S_S_) the term E(S2 — S2) has finite matrix elements
with AS, = +2. This can only happen in case of integer spin; therefore this term will only
lift the double degeneracy in case of integer spin, where Haniso is non-diagonal in the basis of
eigenfunctions to the S,-operator. In case of half-odd integer S, Haniso splits the eigenstates of
S, into doublets called Kramers doublets. These degeneracies are lifted by an external field. The
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third term in 2.28 describes a second order Zeeman energy for orbital angular momentum, and
gives rise to an anisotropy of the magnetic susceptibility. It will be given no further attention here.
The effects described in this section arise solely because of the crystallographic surroundings of a
single magnetic ion. However, in many cases the magnetic ions in a crystal can interact with one
another in several different ways, causing correlated magnetism in a macroscopic crystal. Some of
these interactions will be described in the following,.

2.1.4 Exchange interaction

Consider two identical transition metal magnetic ions in proximity to one another, with localized
3d valence electrons as is the case in the lithium orthophosphates. The electronic wave function
of two d-orbital single-electron-states occupying the two ions are denoted ¥(ry) and ¥(rz). The

expectation value of the coulomb potential Vg = % is the inner product

(P RE)Vol2E)¥0) = 5 [ [ 00 V) U)Wy (23)

where z denotes both the three spatial coordinates and the spin state. Let ¢,,,(r) denote a complete
set of orthonormal one-electron wave functions of the nth atom with magnetic quantum number
m and let s be the spin wave function. The electron wave function ¥(r) can be regarded as a
Fermi field in the second quantization. Thus, the Hamiltonian is expressed in terms of electron
state creation and annihilation operators, ¥(r) and ¥'(r), which themselves are expanded in terms
of annihilation and creation operators for the localized orthogonal electron states ¢, (r)

U(r) = Zanmsﬁbmn(r)xs

nms
lIIT(r) = Z a’};msqﬂ;m (r)xs, where (2.32)
nms
{a-nms;a:;-'mrsﬂ} = bun'Ommdsy and {G’Lnls! allmf‘;i} = {anms: an"m’s’} = 0. (2.33)

The nature of the single electron states ¢, (r) are briefly discussed in [10]. They are the so-called
Wannier functions, convenient because Wannier functions localized on different lattice sites are
orthogonal. Equation 2.33 states the usual conditions for fermion creation and annihilation opera-
tors. Substituting equation 2.32 directly into equation 2.31 gives the second quantized Hamiltonian
of the coulomb interaction between two electrons :

He = %Z Z Z Z(nlml,ngm2|r1§|n3m3,n4m4)

n1,Mm1 Ng,Mg N3,M3 N4,M4
1 S92 83 84

(2.34)

X Oy sy Bromasy @namass Gngmysy -

The term where all n are equal describes the coulomb-interaction between electrons belonging to
the same atom. In an ionic crystal, a crude assumption only valid till first order is that each
electron is localized on its respective ion, not being able to switch to another ion. The d-orbitals
are safely assumed to be non-degenerate, so when evaluating the expectation value of H¢ in the
ground state, only the two terms with n; = n3 and ny = n4 or n2 = n3 and n; = ny are non-zero.
This is because only the number operator n,ms = a:ﬂmsanm ¢ for a given state leaves the state it
operates on unchanged, giving a non-zero expectation value. Thus, the two terms are
1 i
He = Z Z(nlmlngmg|Elnzmgnlml)a;ﬂlmman]mlsla]mmmanzmzsz
ni,mi,ne,ma $152

[N R o

1
E : § :(nlm‘lﬂanlzlT_|n1'm‘1n2"?'2)a.rrumlslanimlszajlzmzszaﬂzmzsl' (235)
ni,mi,n2,ma s1582 12
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The terms in equation 2.35 are the product of two distinct number operators, and merely describe
the coulomb interaction between two electrons on different sites with arbitrary spin. The terms
in equation 2.35, however, annihilate an electron on site 2 with the spin of the electron on site
1 and create an electron on this site with the spin of the electron on site 2, and equivalently on
site 1. This term describes the effects of spin ezchange (not to be confused with exchange of the
electrons themselves), originating from the properties of the Fermi operators which are equivalent
of the Pauli exclusion principle. The diagonal part of this exchange Hamiltonian lowers the energy
of the system with parallel spins compared to the case with anti-parallel spins. The spin operators
can be expressed using the single electron creation and annihilation operators:

8 = l CLT +a T a
nm—z — D) nmttnmt — nmL 'nml
: . |
Spm—-z + tSum—y = anmfra'-nml,
Snm—z — zlsnm—y = anml,anm‘i' (236)

Using these identities the exchange Hamiltonian can be rewritten in a very interpretable way (done
in [9]), denoting the matrix element in equation 2.35 J1/m2:

_ mims
Heg = — E Jnﬂm ( + 28pm; - &'ngmz)

ning
mjmsa

= G~ z Jiitny” (2Snimy * Snama) (2.37)

ning
mima

The sign of the matrix elements J;/1}™2 can be evaluated by expanding the coulomb potential in
its Fourier series:

1

| 1 ik:(r;—ra)
= _— _—— ] 2'
¥e 712 (2m)3 ; kze (2:38)

Inserting this Fourier expansion into the expression for J;'1? gives
Jmima 1 1 & i ik-rld ‘
Tl (2m)3 ; k2 Drymy (¥1)@namy (r1)e T
- f qb;zmz (r2)@nym, (l'z)eik‘rz drs
1 1
o (2m)3 %: k2

As evident, J}'1™? is always positive. In this model, the spins are therefore preferred to be parallel,
lowering the exchange energy. The Pauli principle forbids electrons with parallel spins to be in the
same place, and in analog to Hunds 1st rule, the coulomb energy will be lowered when the spins
are parallel. This picture, however, is much too simple to account for the large variety of magnetic
interactions observed in nature. A few more interactions are needed, also in the case of the lithium

orthophosphates.

2
/ By (V)Gnam, (1)< dr| > 0. (2.39)

2.1.5 Super-exchange interaction

In jonic crystals the electrons are described as localized on their respective ions. This description
is valid when comparing ionic insulators to metals in which some of the valence electrons are free
to move throughout the crystal as a whole. In case of completely localized electrons, an interaction
Hamiltonian preferring parallel spins was derived in the previous section. However, the orbital
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overlap between two magnetic ions with an unmagnetic ion in between, is able to facilitate a
probability of electrons jumping between lattice sites, and in that case the exchange interaction
becomes a bit more subtle. Assume that there is only one valence electron pr. ion. Suppose that
some electrostatic crystal field described by the Hamiltonian H,. allows for an electron to jump
from ion n to ion n' with a small probability described by the Hamiltonian

Hkin = Zb;?:;f!’ailsans (240)
nn's
mom’ f G (r — Rt Hothm (r — R}l (2.41)

The suffix n on the wave functions ¢ has been dropped because it is implied by the position
vectors R,, and R,. Since this process involves an actual displacement of the average position
of the electron, the Hamiltonian is kinematic. An electrostatic field Hamiltonian is isotropic in
spin space, and hence the total spin is a constant of motion; the spin cannot be flipped during
this process of electron transference. By introducing this transference probability one introduces
the possibility of two electrons being on the same atom, which has a coulomb energy cost called
U (this is independent on indices n and n' as each ion is identical). In ionic insulators such as
the lithium orthophosphates the electrons are not free to move throughout the crystal; they are
localized. Hence the kinetic term in equation 2.40 must be much smaller than the energy cost of
two electrons being on the same ion, otherwise the electrons would be mobile. Therefore, when
evaluating a Hamiltonian of general coulomb repulsion between electrons on a lattice (equation
2.34) and when including the kinetic term in equation 2.40, the ground state must be the state
with one electron localized on each ion (also justified in [10]). The coulomb energy between electrons
on different ions is omitted, since this term is a constant coulomb energy of the ground state and
only serves to effectively make the barrier U smaller ([10]). Setting all the n’s in equation 2.34
equal and omitting the sum over lattice sites gives the coulomb energy of 2 electrons being on the
same site

1 1
Mo = g 3 S tomnmallnma, nma

mimsa 51892
mamy

X arnnlsl a:rzmgsganmaszanm;sl- (2.42)
It is assumed that the localized electron orbitals are non-degenerate in m, which is justified by the
effects of the crystal field. In principle the electron on ion n can jump to an orbital on ion n’ with a
higher energy, but the lowest energy term will be that of the electron jumping to the same ground
state orbital. However, the Pauli principle requires the spins to be anti-parallel for two electrons
to occupy the same ground state to be possible. Setting all m’s equal in 2.42, taking a sum over
lattice sites and including the kinetic Hamiltonian gives the so-called Hubbard Hamiltonian:

Huuw = Z bg:?ﬂalrsans +U z alTan‘I‘aLJ’an,L (243)
n

nn's

where U = [ f |pno(r1)[21/712|dno(r2)?dridry.  As the kinetic term is much smaller than the
repulsive term, this kinetic term can be treated as a perturbation of the repulsive Hamiltonian.
Since the ground state has one d electron pr. ion the matrix element operator (0[6272,]0) is equal
to bgdpnr, which does not move any electrons. Therefore, the problem reduces to that described in
section 2.1.4. So even though the exchange term is not included in equation 2.43, the first order
shift in energy can be said to be the sum of Nbgy, where N is the number of lattice sites, and by is
the expectation value of the direct exchange term in equation 2.37 in the ground state. The second
order process of one electron jumping from ion n to n’ after which one of the two electron on ion
n' returns to ion 7. In the simple picture of considering only the ground state, this is only allowed
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for anti-parallel spins due to the Pauli principle. The energy shift of this process can be calculated
to be ([9])

}b0_>0,|2
AE(2) = Z n—m ns'an s,aT

n's

(ns- (2.44)

SS

Expressing the fermion ladder operators in terms of spin operators - as in the case with direct
exchange - using equations 2.36, gives an interpretable form of the second order energy shift:

,b{lao |2
AE®) = Z 'Hﬂ ( 25.,1-5,1,). (2.45)

For parallel spins, (1/2 — 2s, -s,#) = 0 as it should. The electron jump matrix elements bn"‘_j’,?," are

non-zero mostly only between nearest neighbor or next-nearest neighbor lattice sites. The physics of
this second order exchange term favoring anti-parallel spins is the following: Neighboring electrons
with anti-parallel spins are able to delocalize - and hence minimize their kinetic energy - by sharing
space with their respective neighbors. This sharing is usually mediated by some anion between
the two magnetic ions, that allows the electrons to jump via overlapping orbitals. Electrons with
parallel spins have to stay on their respective ions. However, this is not necessarily true if the
ground state is degenerate, or if the other orbitals have energies very close to the ground state.
Including the possibility of electrons jumping to other orbitals than the ground state, and omitting
any constant contributions, the sum of the energy shifts from both the first and second order
exchange terms between pairs of electrons is ([9]):

Ibmjm 2
n n !
AEge, = -2 Z Jr?:?g :11 " Sng +4 Z — nl S:; (246)

mm/ mm’

The problem is complicated further by the fact that more than one electron is occupying the unfilled
d-shell in most cases. In treating this complication, the orbital dependence of the inter-electron
coupling is assumed negligible as well as the significance of the off-diagonal matrix elements in
m — m’ of the coulomb-Hamiltonian in 2.34. The cost of having n electrons on the same atom,
can therefore be simplified to be U for every pair of electrons interacting with each other at the
lattice point. Assume that there are n electrons in the unfilled shell of each ion in the ground state.
The number of electron pairs are then given by n(n— 1)/2. The energy cost of moving one electron
from one ion to another is therefore

AE = U (”(”; 1) (o= 1)2(” =3 | 1)) -7, (2.47)

which is the same as with one electron pr. ion. It is assumed that the LS multiplet S is determined
from Hunds 1st rule where the unpaired electrons on a given ion have parallel spins, such that
1
mo= 8. 2.48
The exchange energy between a pair of ions can now be written in terms of a single exchange
constant:

_ B gmm lbiﬂ__ﬁ'ﬂg ¢
ABereh = =201 Bny » Bngy where dpiny = 2.5')2 Z el T ] (2.49)

mm'

This exchange constant depends on the surrounding ions as well as the conditions under which the
electron transfer occurs, called the ezchange path. The transfer can go through an intermediate
single ion or a whole chain of ions, and hence exchange couplings can be very complicated theoret-
ically. An important point is that the exchange constant J,,,,, can be both positive and negative,
favoring either parallel or anti-parallel spin orientation of the ion pair considered.
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2.1.6 Dzyaloshinsky-Moriya interaction and anisotropic exchange

In section 2.1.3 an orbital momentum induced by the spin-orbit coupling was described. The spin
orbit interaction can cause exotic exchange interactions as well. Within the multiplet split by the
crystal field, the spin orbit-interaction and the exchange interaction can be treated as a perturbation
of the two-ion system ([9])

H' = AL; - S1 + ALy - S2 + Vezen. (2.50)

When both the spin-orbit and the exchange interaction are included a second order process involving
both these interactions is allowed. Consider the four processes in which ion 1 is excited from the
ground state g to some state n; by the spin-orbit interaction, after which the exchange interaction
acts between ion 1 and 2 and de-excites ion 1. This same process can happen on ion 2 (g2 and
ny). The two additional second order processes in which the exchange interaction excites the ion in
question and the spin orbit-interaction deexcites the ion should be included as well; four processes
in total. To evaluate the energy shift resulting from this perturbation, second-order perturbation
theory is used. The goal is to describe the magnetic interaction resulting from processes involving
both the exchange coupling and the spin-orbit coupling, processes in which one ion is excited and
de-excited by the same interaction are of no interest as they are treated in sections 2.1.3 and 2.1.5.
Thus keeping only the terms in |{g1g2|H’'|n1g2)|? and |{g1g2|H'|n1g2)|? involving both interactions,
results in a second order shift in energy of

AE(?) _)\(Z <91|L1 ¢ Sl|”1)(nlg2|%ﬂ:ch,glg2> + <9192|I/ezch'nlg2)<n1|Ll 2 Sllgl)

En-1 - Egl

1

n z (g2|Ly - Sana) (g1n2|Vercnlg192) + (9192|Vezenlg1n2) (n2]|La - S2|g2) . (@251)
na En2 - Egz

As in the case with the perturbation calculation of the single ion anisotropy from the spin-orbit
perturbation, the unperturbed electron state space is a product space of the orbital space and
the spin space. Therefore, a spin Hamiltonian can be written from the second order energy shift
by using only the orbital part of the wave function in the matrix elements, leaving the spins as
operators. This results in the equalities

(ﬂlgz|Vemch19192) = '](n192y9192)sl 52 and (n1[L1 ) Sl|91) = (n1|L1|91) - 81, (2-52)

where J(n1g2, g192) is the exchange integral taken from equation 2.49. Using the additional fact the
L is purely imaginary, the spin Hamiltonian of the so-called Dzyaloshinsky-Moriya (DM) interaction
can thus be written as ([9])

Hpu = 2X) { 3 J (192, 9192)(91|Lu[n1)[S1p, (S1 - S2)]
"

n Enl - EQ'I
J(g1n2, g192){92|Liayu|n2)[Sau, (S1 - S2)]
2.53
+ % B, — B, , (2.53)

where p represents Cartesian coordinates and [Sj,, (S; - S)] (i = 1,2) is a commutator. The
relation [Sq, (81 - S2)] = —iS; X Sg reveals the nature of the DM interaction as equation 2.53 can

be rewritten as
Hpy = D-(S;x8S3), where (2.54)
: {g1]La|m1) (g2|Lz|n2)
D = -2 B — B ; 2.55
zA( En B - EQLJ (n192, 9192) B, — B, J(g1n2, 9192) (2.55)

na




20

Two important features of this interaction are that D is antisymmetric with respect to ion exchange,
and that the DM interaction - when present - favors perpendicular spin pairs. Thus, when an
exchange or super-exchange coupling - favoring either parallel or anti-parallel spins - co-exists with
the DM interaction in a given compound there will be a competition between them. When dealing
with (partially) quenched transition metal ions in low symmetry surroundings, the DM interaction
is the weaker interaction which serves to slightly cant the spins away from the co-linear directions
prefelred by the exchange interaction. The strength of the DM interaction can be estimated to
be 22 . b [11], where b is the electron transference matrix element mentioned previously which is
proportional to the strength of the super-exchange interaction. The fact that the DM interaction
is an antisymmetric two-ion interaction puts some restraints on which systems and magnetic ions
can even exhibit a DM-interaction, as will be evident in section 2.2.3.

Anisotropic exchange

In principle higher order terms in the spin orbit coupling can be considered, in which more than one
process induced by the L - S term is involved. However, the strength of these terms will decrease
heavily upon increasing the order. Here, only the term which is second order in the spin orbit
coupling (DM can be considered to be first order in the spin-orbit coupling) is considered called
anisotropic exchange. The term is treated in [9, 11] and is on the following form:

Han ZS I 8y (2.56)

where 7'57.2) is a tensor of rank 2, describing the coupling between the spins on ionic positions i and
J. This coupling can be anisotropic and couple different spin components. The strength is very
dlfﬁcult to calculate especially in the many-electron case, but it can be estimated to be of the order
( 9)2p, which is a fraction of the strength of the DM interaction in most cases.

O

(a) LiAMfPOy viewed along the high symmetry b direction ~ (b) The LiMPO, unit cell with four formula units

Figure 5: The structure of the lithium orthophosphates as determined from powder x-ray experi-
ments ([12, 13, 14]).
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2.2 Crystallography

Solid states of matter consist of a systematic arrangement of the huge number of constituent atoms
in a repeating pattern in all three dimensions. These systems are described by their symmetries.
A symmetry is defined as geometrical operation on a system that leaves the system unaltered or
invariant while preserving the distances between all points of the body. The directions for which
there are translational symmetry are all possible axes for a coordinate system useful to describe the
system. Three linearly independent axes can be arbitrarily chosen among these directions, with
the distances of translation as choice of unit lengths. This unit length is usually chosen as the
minimal distance for translational symmetry along a given direction (in some cases a multiple of
these distances if convenient). This essentially describes a box of atoms of which infinitely many
identical boxes are closely packed in all three crystallographic directions to describe the system.
This box with unit volume is known as the unit cell. The unit cell of the lithium-ortho-phosphates
is shown in figure 5.

The shape of any unit cell has to be one which is able to voidlessly fill three dimensional space
when stacked. Therefore only, certain symmetries are possible. For instance, a unit cell with 5-fold
rotational symmetry is not allowed simply because the unit cells cannot be stacked to voidlessly
fill three dimensional space (this is somewhat analogous to the problem of mapping the globe on a
rectangular piece of paper - the two geometries are in different classes). For any given compound,
the symmetry elements of the structure comprises a group. A group is a mathematical set with a
defined operation between elements, which satisfies the following criteria:

e Identity: The group G must contain an identity element e such asVgc G:e-g=g.
o Associativity: Vg1,92,93 € G: (91-92) - 93 = g1 - (92 * 93)-

Inverse: All elements in the group must possess an inverse element within that group:
VgeG3g'lcG:glg=e

Closure: The result of any two elements operating on each other must remain within the
group: Vg,g2 € G:g1- g2 € G

The operation defined in the group is not necessarily commutative; if it is, the group is said to
be Abelian. Upon further analysis of the possible structures which are able to fill space, there are
230 unique space groups in total, each containing a different set of symmetry elements. Obvious
symmetry elements are any translation of integer lattice units - T = na + ma + [c, the number
of which are infinite for an infinitely large crystal. These are the trivial symmetry elements,
and they are not included in the space groups - although they are still there of course. More
significant are the crystallographic point groups, which are the groups of symmetries which take
at least one lattice point onto itself. These are the inversions - (z,y,2) — (—z,—y, —z) - the
mirror planes - (z,y,z) — (x, —y, z) - or the rotations - (z,y,%) — (z, -y, —2). In many cases the
symmetries are point group symmetries combined with a small translation of a given fraction of
a unit cell. For instance, a so-called 2-fold screw azis is a 180° rotation around an axis followed
by a translation. One can use the International Tables for Crystallography! to find the symmetry
elements of a given group. Excluding the lattice translations the set of symmetry elements of the

Yhttp://it.iucr.org/
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lithium orthophosphates - G - are as given below:

1 Identity
(=,9,2) = (2,9,2) (2.57)
27 2-fold screw axis at (z,0.25,0.25)
(z,y,2) = (405,05 —y,05 — 2) (2.58)
2, 2-fold screw axis at (0,,0)
(%,9,2) = (—2,0.5 +y,—2) (2.59)
2, 2-fold screw axis at (0.25,0, z)
(%,9,2) = (0.6 —2,—y,0.5 + 2) (2.60)
I Inversion in (0,0,0)
(z,y,2) = (&, —y,—2) (2.61)
My Mirror plane at y = 0.25
(z,9,2) = (2,0.5 — y,2) (2.62)
my, : Glide plane at z = 0.25 with glide vector (0.5,0,0)
(z,9,2) > (£ +0.5,y,0.5 — 2) (2.63)
my, : Glide plane at = 0.25 with glide vector (0,0.5,0.5)
(z,9,2) = (0.5 — 2,y + 0.5,z 4+ 0.5) (2.64)

The symmetry group of the lithium orthophosphates is thus G ® G, where G is the group of
integer lattice translations - Go = {Tv|T = na + mb + lc}. The primes in equations 2.59-2.64
denote that the symmetry element is a combination of a point group symmetry element and a finite
translation, and therefore does not leave any point fixed. The point group from which the sym-
metries above is generated is called Dy, = {1,2;,2y,2;, I, Mgy, my,, My, }. The unprimed elements
are thus 2-fold rotation axes and mirror planes, respectively. The crystallographic point group can
also be said to contain the macroscopic symmetry elements, which are the operations that can be
seen from a macroscopic point of view. A translation of a few lattice units is microscopic opera-
tions not noticeable on a macroscopic scale. It is thus the point group that determines the possible
macroscopic physical properties, such as birefringence, pyroelectricity or magnetoelectricity. For
instance, zero field electric polarization is forbidden in the lithium orthophosphates because of the
mirror planes and especially the inversion symmetry in Dg,. That some of the mirror planes has
to be followed by a microscopic translation in order to actually be a symmetry does not change
this physical situation. Furthermore, in order to have magnetoelectricity, these symmetries must
be broken upon applying a field.

2.2.1 Irreducible representations of the symmetry group

The symmetry of the crystal system has a profound significance when describing and determining
the magnetic structure. As neutron scattering experiments are always interpreted in the framework
of reciprocal space, the mathematical description of the magnetic structure is best done in terms
of the Fourier transform of the spin operators. In all the lithium ortho-phosphates there are four
magnetic ions in the unit cell situated on the 4c position in the Pnma space group:

ri = (0.254¢,0.251-0)

ry = (0.75+¢,0.25,0.5 + 6)

r3 = (0.75 —¢,0.75, )

ry = (0.25-¢,0.75,0.5 — 8), (2.65)
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where § and ¢ are displacements specific to the magnetic ion in question. The relevant spin operators
are the ones describing each Cartesian component j of the spin of each magnetic ion ¢ in the n’th
unit cell S;;(R,) = §;(Ry, +1;) for ¢ = 1,2,3,4 and j = 2,y,2. R, is the position vector of the
n'th unit cell. The Fourier transforms of the spin operators are

N
1 ;
Sz](k) - ﬁ ZSij(Rn-)ezk.R": i=1,2,3,4 and j=2,y,2. (266)

n=1

If the magnetic unit cell is the same as the crystallographic unit cell, there are only 12 degrees
of freedom in the magnetic system completely determining the magnetic structure. This is the
so-called commensurate or uniform case, where Fourier transformed spin components are only
non-zero in case of k = (0,0,0). Then the Fourier transformed spin operator is just the average
Cartesian spin component on the given site. If there is a modulation of said spin component along
a particular direction k;c, a phase factor e’*®» is merely multiplied onto the spin component. So
in case of a single k structure, the 12 Fourier transformed spin compoenents are only non-zero when
k = ki.. In both cases the structure can be completely and uniquely described by the 12 Fourier
transformed spin components and hence the spin space is spanned by these basis vectors in both
cases.

The basic objective achieved by using the co-called representation group theory is to find a con-
venient set of basis vectors for the vector space spanned by the twelve Fourier transformed spin
operators. This basically means 12 different spin structures or spin symmetries that transform in
a simple manner when applying the symmetry operations in G, and where as many basis vectors
as possible transform identically under all the symmetry operations in the symmetry group. This
is advantageous in two different ways:

e The spin Hamiltonian has to be invariant under the symmetry operations of G ® Gr. This
is simply a consequence of the indistinguishableness of the two physical situations before
and after the application of the symmetry operation (which holds by definition). As will be
elaborated later, any Hamiltonian quadratic in spins (as all the Hamiltonians treated in 2.1),
will have terms consisting of products between basis vectors transforming identically.

e The irreducible basis vectors facilitates a much easier interpretation of neutron data. Using
these basis vectors, chances are that different points in reciprocal space reflect a single spin
symmetry or basis vector, rather than a mix of basis vectors. This enables one to say a lot
about the magnetic structure from just a few peaks, both those that show magnetic scattering
and those that do not. This will be a fundamental tool for analyzing the neutron scattering
data presented in this work.

The set of all the linear operations in the space spanned by the 12 Fourier transformed spin operators
can be expressed by 12 x 12 matrices, and can be shown to form a group which could be called
L(S). By expressing a certain relation between L(S) and G in a clever way, the group L(S) can
be said to represent G. Such a relation is called a homomorphy:

A single valued mapping T : G — G’ between two groups G and G’ is said
to be @ homomorphy if V91,92 € G: T'(g192) = I'(91)T'(g2). (2.67)

Thus, a homomorphy can be said to produce an image of the group G in G’. The definition of a
representation as used in analyzing magnetic structures is as follows:

Given the vector space S and the group G, the group of linear operations
on S - L(S)- is a representation of the group G with the
representation space S if there ezists a homomorphy I' : G — L(S). (2.68)
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When dealing with crystallographic problems, the vector space L(S) can always represent the
symmetry group G. The usefulness of the representation lies in reducing the representation. Since
there are 12 magnetic degrees of freedom in the lithium orthophosphates, a representation I'(g) of
any element g from the symmetry group G must be a 12 x 12 matrix. Reducing the representation
is done by changing the basis of the representation space S (|1) — [12) — |1’} — |12}), so the
representations I'(g) has the same block matrix form for all group elements g € G, for instance:

(a1 a2/ 0 0 0 0 0 0
az; ax| 0 0 O 0 O 0
0 0 (b1 bia bis| 0 0 0
1 sve 1w 0 0 [bai b2 bp3| 0 O 0
I'(g) = Pl : | 0 0 [by b3y bzz| 0 0O 0 (2.69)
) 0 0 0 0 0 |er ero 0
Bl s T 6 0 0 0 ©0|ey e 0
: : : : B : 0
| 0 0 0 0 0 0 O Ju

This reduction means that the representation space S has been divided into subspaces 51, Sa, ..., S;
spanned by these new basis vectors. In the rather arbitrary example above, the first subspace is
spanned by |1’) — |2}, the second subspace by |3') — |5’} and so forth. Hence, any symmetry element
is represented in each subspace of the representation space, for instance:

e byt bz bis
F](g) = [ 1 12 ] c L(Sl), or Fg(g) = bgl bzg b23 = L(Sg) (2.70)
as1 Q22
b31 b3z bss

If the reduced representation can not be reduced further - if the subspaces of the representation
space can not be reduced further - the representation is said to be irreducible. Obtaining the
irreducible representations is equivalent to obtaining the simplest way of representing the symmetry
group of the system in question, in the group of linear operations on the vector space spanned by the
magnetic degrees of freedom. This is done by finding the smallest subspaces of the representation
space that represent the symmetry group by virtue of the groups of linear operations on said
subspaces. This tedious point is illustrated in figure 6.

There are two useful points to be made about the irreducible representations, which are not shown
here (shown in [15]):

o Any vector within the representation subspace of a given irreducible representation, is trans-
formed into the same subspace when acted upon by any of the symmetry elements in G

e If the symmetry group G is Abelian, then the number of irreducible representations equals
the number of symmetry elements in G

The irreducible representations has been calculated manually in an instructive way for the lithium
orthophosphates in [15] in case of k = (0,0,0) and k;. = (0, ki,0). They can also be calculated
using the program BasIReps - available on the Internet within the FullProf suite. One needs the
space group of the material, the number and positions of the magnetic ions and the propagation
vector. The two cases - the commensurable and incommensurable - are treated below.

The commensurate case - k = (0,0,0)

Since G is Abelian and has eight group elements, there are eight irreducible representations in the
commensurate case. The basis functions spanning the representation subspaces of these irreducible
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iy

(a) The symmetry group G represented by the (b) The symmetry group G represented by
group of linear operations on S, L(S) several subspaces of L(S) generated by sev-
eral subspaces of the representation space S

Figure 6: An illustration of the concept of irreducible representations.

representations are all on the following form:

A; = 515(0) = 85;(0) — S3;(0) + S4;(0),
Cj = S1;(0) + 82;(0) — S53;(0) — S4;(0),
G; = 51;(0) — 85;(0) + S3;(0) — S4;(0) and
Fi = 5815(0) + S2;(0) + S83;(0) + S4;(0),
where j=um,y,z2. (2.71)

It is worth noticing that the basis vectors are collective spin structures for the whole system with
one polarization; having 4 magnetic ions in the unit cell, there are three possible antiferromagnetic
structures and one ferromagnetic structure for any given polarization. The irreducible vectors are
exactly these. The magnetic structure of the lithium ortho-phosphates has been roughly determined
in [1, 16] to be a C-type structure with polarization along a for LiMnPOy, along b for LiCoPO4 and
along ¢ for LiNiPQy. If one shifts the crystallographic unit cell by (—0.25,—0.25,0) and removes
all but the magnetic transition metal ion, the magnetic ions sits only slightly displaced from a face-
centered orthorhombic structure. Using this cell it is easy to depict the irreducible basis structures
- see figure 7.

As evident, the established C-type structure is an antiferromagnetic structure consisting of fer-
romagnetic planes in the ac-plane alternating in polarization along the b direction. The eight
irreducible representations, and how the basis vectors transform under the symmetry operations in
G are given in table 3 (reproduced from [15]).

In table 3 it is worth noticing that the irreducible representations with basis vectors along y
have only one basis vector. This is due to the fact that there is a high symmetry mirror plane
perpendicular to the b-axis. It is also evident that A and C or F and G type structures are in the
same representation subspaces, while A and G or F' and C are not.

The incommensurate case - ki, = (0, ki, 0)

In case of the magnetic structure being an incommensurate modulated one along b - with ordering
wave vector ki. = (0, ke, 0) - the symmetry group forming the basis for the irreducible representa-
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Figure 7: Four of the twelve commensurate irreducible basis structures related to the three AFM
symmetry classes (A, G and C) and the ferromagnetic class (F'). Only one of the three possible
polarizations (z,y, z) is shown for each one of the four different classes.

1 2 2, 2, I mj, my m, | Basisvectors
It 4 1 1 1 1 1 31 &,
Pelll 4 4 <L 3 & <1 % F,,G,
rs|1 -1 1 -1 1 -1 1 -1 :
's|1 -1 -1 1 1 1 -1 -1 G, F,
Is|1 1 1 1 -1 -1 -1 -1 Cr A,
Bell T 4 =L -1 L & 1 A,
r;{1t -1 1 -1 -1 1 -1 1 A,,C,
Tell <1 41 1 <L 4 1 1 T,

Table 3: The eight irreducible representations of the symmetry group excluding translations in the
lithium orthophosphates and how they transform under the symmetry operations of G. The basis
vectors for the representation space of each irreducible representation is given as well.

tions is greatly reduced, as only the symmetries leaving k;. invariant are considered. This is due
to the fact that the relevant spin operators are the 12 operators S;;(k;.) where i = 1,2,3,4 and
J = z,y,2z. Wanting to stay within this representation vector space Sy, , symmetry operations
altering k;. are discarded. As the modulation is along b, the symmetry elements reversing the
sign of y also reverse the sign of k;. and should not be considered. Thus, the group of symmetry
elements leaving k;. invariant is

Gkic = {1’ glyﬂngzym;z} ) (272)
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which is known as the little group of k;.. In the incommensurate case, the basis vectors have been
calculated in [15] to be

A; = Sij(kic) — Saj(kic) — BS3;(kic) + BS4j(kic),
C; = Sijlkic) + Saj(kic) — BS3(kic) — BS4j(kic),
G; = Sijlkic) — Saji(kic) + BS3j(kic) — BSs;(kic) and
F; = Sy(kic) + Saj(kic) + BS3j(kic) + BSs5(kic),
where j=uz,y,2 and f = e (2.73)

The little group Gk, is Abelian, and therefore there are only 4 irreducible representations since
there are only four elements in the little group. These representations and their transformation
properties are listed in table 4.

1 2, my, m,, | Basis vectors
1-‘1 1 6 1 ﬁ A:cn Gy; Cz
F2 1 “ﬁ 1 _ﬁ Fz} G.’L‘1 Ay
(1 B =] -p Fy-; Cey A,
ry|1 -g -1 B Fy Oy G

Table 4: The four irreducible representations of the little group Gy, in the lithium orthophos-
phates and how they transform under the symmetry operations of Gy, . The basis vectors for the
representation space of each irreducible representation is given.

Even though the ordering wave vector differs (and hence the basis vectors), comparing table 3 and
4 reveals that removing symmetries from the group to be represented results in fewer irreducible
representations containing a larger number of basis vectors. This has physical consequences, as
becomes evident in the next section.

2.2.2 TIrreducible basis vectors and the quadratic spin Hamiltonian

The space of all single ion spin operators is spanned by the irreducible basis vectors, both in the
commensurate and the incommensurate case. It is therefore possible to write any quadratic spin
Hamiltonian - notice that all the Hamiltonians mentioned in 2.1 are quadratic in spin - as a sum
of products of irreducible basis vectors

He= Y kin (2.74)
ij
where ; € Ty, y; € T; (2.75)

and where &;; is some coupling constant. Is is easily seen from tables 3 and 4 that if I'; # I';, then
it is possible to find a symmetry element under which the two basis vectors in the term in question
transform differently. That would change the sign of that particular term in the Hamiltonian,
and hence the Hamiltonian would not be invariant under the symmetries of the system which it
is required to be by definition. Therefore, any term consists of products between basis vectors
from the same irreducible representation. Thus, the representations given in tables 3 and 4 have
direct physical meaning. They are classes of magnetic structures likely to appear together, as their
basis vectors can be combined to form quadratic spin Hamiltonians that are invariant under the
symmetry operations of the crystallographic system.
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2.2.3 Symmetry and the Dzyaloshinsky-Moriya interaction

When analyzing the possibility of a Dzyaloshinsky-Moriya (DM) term in the spin Hamiltonian it is
imperative to know what happens to the magnetic ions and their spin components when subjected
to the symmetry operations of the space group. In most cases the magnetic ion in question is moved
to another position in another unit cell - for instance 2;1'12;7 — 19 + 001. These transformations
and the transformation of spin coordinates have been calculated in [15] and are given in table 5.
The unit cell translation is omitted.

G|1 20 20 20 I mf, mg, m,

zY
Iy i} Iy Irs ry Irs ) 1] Ty
I ] g r r4 Is ry ry I'a I3
rg | I's ry Iy Ty r r4 rs )
T4 Iy I3 ) r I s ry Iy

S:E S’n S:c "Sa: -S:E S:L' ‘Sa: 'S:t: Sa:
S, |8 S S, -5 8 -5 B8, -5,
S, |S, -8, -8, S, S, S, -5 -S

Table 5: Transformation properties of the magnetic ions in the lithium orthophosphates and their
spin under the symmetry operations of the Pnma space group.

The microscopic origin of the DM interaction as treated in 2.1.6 was first thought of by Toru
Moriya in [11]. In that paper he estimated the order of several higher order (in the spin-orbit
coupling) interactions, and treated the crystallographic aspects of the DM interaction. Since the
DM interaction is anti-symmetric, a crystallographic space group of high symmetry will not leave
much room for DM interactions. Magnetic ions with considerable orbital contribution situated in
crystallographic environments with low symmetry, however, leave plenty of room for DM interac-
tions - the lower the crystal symmetry the better. Moriya derived the following rather simple rules
governing the nature of the DM coupling pseudo-vector D 45 between ions at A and B:

e If there is an inversion center in the point C bisecting the line AB, the D 3 = 0.
e If a mirror plane perpendicular to AB passes through C, then D 1 AB.
e When there is a mirror plane including A and B, then D L mirror plane.

e When a two-fold rotation axis perpendicular to AB passes through C, then D L two-fold
axis.

In addition to these rules, Thomas B. S. Jensen derived a much more quantitative criterion in
the case of the lithium orthophosphates in his thesis [15]. If one performs any of the symmetry
operations R € G in LiMPO4 on a DM term D 43, the following identity holds:

R[Dap-(Sa xSp)| RN = RDagR' - (Spant X Srunrt) - (2.76)

Thus, at least in the lithium orthophosphates, performing a symmetry operation on a DM term
is equivalent to transforming the constant D 4,; pseudo-vector, and transforming only the ionic
positions while keeping the spin components unaltered. Crudely speaking, the pseudo-vector trans-
formation applied to the spin pseudo-vectors can be transferred to the DM coupling pseudo-vector
(which is not an operator). Generally the overall Hamiltonian needs to be invariant under the sym-
metry operations; so a Hamiltonian containing a DM term - #pjs must also contain RH parRT.
This is possible if and only if the transformed DM-term between the untransformed positions A
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and B is identical to the untransformed DM-term between the transformed ionic positions RAR!
and RBR':

R[Dap- (Sa x8p)] R' = Dpaptrurt - (Srart X Srprt) - (2.77)
Collecting equations 2.76 and 2.77 results in a straightforward condition for a non-zero DM coupling:
RDpR' = Dpupirpri (2.78)

Using these rules, it is possible to get a binary answer to whether or not there can be a DM coupling
between two magnetic ions - and if there are - which spin components are coupled. For instance
- the magnetic ions situated at r; = (0.25 + ¢£,0.25,1 — §) and ry = (0.75 + ¢£,0.25,0.5 + &) both
lie in the y = 0.25 plane - which is a mirror plane in the lithium orthophosphates. Thus, if these
ions are coupled, then the DM pseudo vector points along y and a DM term can have the form
(0, D{,,0) - [S1 x S3]. Therefore it is seen that if a DM term between these two ions exists, then
only the a and c directions can be coupled. In LiNiPO4 the main AFM spin symmetry is polarized
along the ¢ direction, and is precisely such a DM that causes the spin canting observed in [4, 15].
The strength of the coupling is very difficult to calculate, and these rules only give information
about the possible existence of DM terms.
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3 Neutron Scattering

Neutron scattering is a direct, global and non-destructive probe used to study a wide range of
phenomena in solid state physics. Its unique strengths compared to other experimental techniques
justify billion euro facility construction costs several places around the world, and it is by far the
most important tool used to study magnetic order and dynamics. Neutron scattering is a highly
specialized technique, requiring both knowledge and practical experience in order to make use of its
full potential. In this chapter, the foundational concepts of neutron scattering and instrumentation
will be described. Results from basic non-relativistic quantum mechanics will be used without
reference in this chapter, they can be found in textbooks such as [6].

3.1 Properties of the neutron

In this section the basic properties of the neutron will be described as well as the scattering of
neutrons by means of the strong and electromagnetic forces.

3.1.1 Basic properties

The neutron is the neutral subatomic particle responsible for holding together the nucleus by
virtue of the strong nuclear force, against the repulsive coulomb interactions between the positively
charged protons. The neutron is only stable in its nuclear bound state; as a free particle it decays
to a proton, an electron and an anti-neutrino with a half life of roughly 15 minutes (the mass of
the neutron is comparable to, but slightly larger than that of the proton, namely 939.57 MeV /c?).
In itself the neutron is a composite particle, it consists of one up-quark and two down-quarks,
which gives the neutron a fermionic ground state. Thus, ignoring gravitational effects, the neutron
interacts with its surroundings due to two fundamental forces:

e The strong nuclear force: The neutron interacts strongly with every nuclei, but the
magnitude of the cross section and sign of the phase shift varies from element to element,
and even from isotope to isotope.

e The electromagnetic force: The spin of the neutron gives it a dipolar magnetic moment,
which interacts mainly with the unpaired electrons of the surrounding atoms due to the
magnetic dipole-dipole interaction. There is no coulomb interaction, which makes the neutron
an ideal probe of atomic magnetism as it ignores the charge of the electrons.

Because of the large neutron mass, a Maxwell-Bolzmann distribution of neutrons at 300 Kelvin
will mainly consist of neutrons with a de-Broglie wavelength of around 1 A and a kinetic energy of
around 100 meV. These are the order of magnitudes of the inter atomic distances and vibrational
excitation energies in solid state compounds respectively, making the neutron such a unique tool.
The magnetic moment f,, of the neutron is given by the neutron magnetogyric ratio () and the

nuclear magneton:
eh

fn = YUN = ~1-913mp, (3.1)
where e is the elementary charge and m, is the proton mass. Because it is a neutral particle,
the neutron interacts weakly with its surroundings compared to x-rays and electrons for instance.
Therefore, thermal neutron radiation penetrates several centimeters into all materials except a few
containing special isotopes, which allows for a direct measurement of collective properties of a bulk
sample, but at the expense of the demand for large samples. In the next two sections the relevant
interactions of the neutron with its surroundings will be described.




32

Note on cross sections

When describing neutron interactions, a formalism suitable for scattering experiments is used. One
takes the neutron to be incident on the scattering particle and thus, one would like to describe the
initial and final states of the neutron in terms of the scattering potential. In a neutron experiment,
one irradiates a sample with beam of neutrons with a well defined momentum vector and incoming
flux and measures the scattered neutrons in some angle using a detector covering a finite spatial
angle. When relating the measured neutron intensities to theory, one is interested in the probability
for a neutron to be scattered into the spatial angle covered by the detector. The probability for a
neutron to be scattered in any direction is given by the neutron scattering cross section:

= lﬂ, (3.2)
® dt
where @ is the incoming neutron flux in units of (area-time)~?, and 4 is the number of scattered
neutrons per unit of time. Thus suitably, the unit of cross sections is an area and is measured in
units of barns, 1 barn = 1072 cm?. When measuring a small spatial angle with a detector, the
relevant quantity is the differential cross section % When measuring dynamics using neutrons,
one is interested in the energy loss of the neutron and thus a given channel only measures a narrow
energy interval. In this case, one is interested in the partial differential cross section: dﬂd By where

Ey is the final neutron energy. The relations between these quantities are simple:

_1dN .

3.1.2 Nuclear interactions

In the following, all neutrons will be assumed to have a wavelength relevant for neutron scattering,
which is between 1-20 A. To be able to derive the scattering cross section, two basic assumptions
need to be made:

e The neutron and the scattering nucleus - or system of nuclei - is described as being in a very
large box of volume Y. This makes the energy levels of the neutron discrete and allows for a
calculation of the density of states. This is a well known assumption called boz normalization,
and it works as long as the resulting equations are independent of the box volume.

e The nuclear potential can be described as spherically symmetric point scatterer, mathemat-
ically described by a Dirac delta function. This is justified by the large wavelength of the
neutrons compared to the size of any nucleus. This assumption results in the nuclear form
factor being independent of neutron momentum transfer, which is also what is observed.

There is only one neutron in the box, so the neutron density is 1/Y". Ignoring the spin of the neutron
the neutron wave function is a solution to the free particle Schrédinger equation (H = 2m) and
can be described as a plane wave with a wave vector k:

1
Up(r) = —exp(ik - r 34
where —= is the normalization factor, k is the wave vector of the neutron and r is a position vector.

When calculatmg the transition rate from the initial neutron state to the continuum of final states,
denoted W;_, s, Fermi’s Golden Rule is used:

2m A
Wins = 5 pie (B (2 |V )2, (3.5)
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where p,(E) is the density of states, ¥; and ¥y are the initial and final states of both the neutron
and the scattering system, Ey is the final energy comparable to the initial energy and V is the
scattering potential. When we evaluate the density of states, a restriction to an infinitesimal solid
angle dQ) is convenient. For a free particle in a box, we have the well known energy-wave vector
relation:

R2k:  dE W’k
om,  dk  my’
where m,, is the neutron mass and k is the length of the wave vector. In case of a free particle in a
box, the de Broglie wavelength of the particle needs to be periodic in the box. Otherwise the wave
function would be nonzero at the box edges, and the wave function would be discontinuous. This
requirement of periodicity results in a discrete set of allowed wave vectors; a lattice in k-space. The
unit cell (smallest box with corners on lattice points) volume of this lattice is:

o )
Y

Consider a volume in k-space, consisting of the interval of wave vectors with energies in the interval
[E : E + dE] and pointing in the direction of the solid angle df2. The number of states in this
infinitesimal volume (given in states pr. unit volume) is exactly the density of states, which is by
definition py,(E)dE:

E= (3.6)

(3.7)

1
Pie(E)dE = U—kkfdkm (3.8)

Combining this with equation 3.7 and 3.6, gives an expression for the density of states as a function

of the length of the wave vector:
Y Mp

Pkt = Gom)s f 5z 0 (3.9)

This is dependent of Y and has no physical meaning, but it provides a useful framework for calcu-
lating the desired transition rate induced by the nuclear potential. This is clear when evaluating
the differential cross section. The incoming neutron flux is the product of the density of neutrons

and the velocity:
h

®=—F 3.10
Yo (3.10)

Using this relation, equation 3.4 and the definition of the cross section (equation 3.2), the differential

cross section can be derived, assuming that the state of the nucleus is not changed by the scattering

process; then the initial and final states to consider are just the states of the neutron:

Ym, ,  dN
do .= ity
do _ kf My \2 e ik (2
(dﬂ)kﬁkf Tk (27rﬁ2) L 4 Ll (3.11)

where %—r is exactly the transition rate described by Fermis Golden Rule. The scattering potential
is assumed to be symmetric and point like and is thus described by the Fermi pseudo potential,
which is a real number (imaginary numbers represent absorption) multiplied by the 3-dimensional
Dirac delta function. Assuming that the nucleus is placed at position vector rj, the potential has

the following form:

2 h?

Vi(r) = bid(r —1y). (3.12)

n
The form of the prefactor has been chosen for convenience. The evaluation of the matrix element

is straightforward:
i o ikir 2mh?
(e~ k1T |V |elkiTy = :TZL b; / exp(—ike - )8(r — r;) exp(ik; - r)d®r

n

omh?
= ; bi exp(iT - 1), (3.13)

n
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where 7 = k; — ky. This leads to a simple differential cross section for nuclear scattering. It is
assumed that the nucleus scatters the neutron elastically, meaning that the lengths of the incoming
and outgoing wave vector are the same. In this case the differential cross section for scattering by

a single nucleus is:
do 9
(E) =" (3.14)

which is independent of the arbitrary chosen volume Y.

Incoherent nuclear scattering

In a system of nuclear scatterers, different isotopes of the same element can have different scattering
lengths. This can be due to nuclear spin or the presence of different isotopes of the given element.
The average value for b and b® are:

b= fibi b_2=2fibi2 (3.15)

Where f; in the relative frequency of occurrence for the scattering length value b;. These variations
are assumed to be completely uncorrelated. Therefore, when calculating the scattering cross section
for a system consisting of a large number of nuclei (done in [17]), a term appears which only depends
on the temporal correlation between the position of a single nuclei leaving out interference effects.
This term scales with the incoherent cross section:

Gine = Am (Bf - (5)2) (3.16)

This is the variance squared of the distribution of cross sections.

3.1.3 Magnetic interactions

As mentioned in section 3.1.1 both the neutron and the electron have a magnetic dipole moment,
giving rise to a magnetic interaction between the two particles. If the electron has angular momen-
tum there is a magnetic moment associated with this as well. A similar approach as in the nuclear
case is adopted - describing the incoming and outgoing neutron plane waves as they scatter off a
potential. The value of the intrinsic magnetic dipole moment of the electron is

eh

Yo = —2p4pS., where up= (3.17)

2m,

is the Bohr magneton, m, is the electron mass, e is the electron charge and S is the spin operator.
The vector potential and magnetic field from the magnetic dipole at a point R from the electron is

_Mop xR po p xR
As =B By =Dy Bz, (3.18)

where R is a unit vector in the direction of R. However, in addition to the intrinsic magnetic
moment, electrons can cause magnetic fields by simply moving (a dipole moment in case of circular
or elliptical motion). If the electron carries momentum p there is a current giving rise to a magnetic
field. The infinitesimal current element Idl for the electron is:

Idl = ﬁilp = g, (3.19)
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where I is the current, dl is an infinitesimal path in space and p is the electron momentum. The
magnetic field at a point R from the infinitesimal current element follows from the Biot-Savart law:

o dle{_;to?.pgpxﬁ
4r” R® 4w h R?

In principle, using the Biot-Savart law - which holds only for steady currents - on a point charge is
problematic since a point charge does not constitute a steady current. Integrating over the electron
path is also problematic in a quantum mechanical system. However, for non-relativistic electrons,
the Biot-Savart law is accurate, and the orbital angular momentum L = p x R is well described in
atomic systems. As evident from equation 3.20, By, is the magnetic field resulting from the orbital
momentum of the un-paired electrons of the magnetic atom in question. Thus the magnetic field
from the localized electrons of atoms has two origins - spin and orbital momentum. The magnetic
potential of a neutron in such a field is

By = (3.20)

S. x R IpxR
Vin(R) = —pin - (Bs(R) + B(R)) = _5—73'7#NﬂBSn : (V X ( 7 ) 4 ﬁpRg ) ,  (3.21)

where S,, is the spin of the neutron and S, is the spin of the electron. The partial differential cross
section is a natural combination of equation 3.11 and 3.21:

d2 k i IWAY 2

(m)km\waw 4 ( - hﬂ) (K &' N [Vin ko N 28(Ex — Ey + hw), (3.22)
where o is the spin of the neutron which is orthogonal to the spatial part of the wave function,
and the delta function represents the physical constraint of energy conservation of the neutron
scatterers system as a whole; energy absorbed in the scattering system comes from the neutron
and vice versa. Using mathematical results proven in [17]? and temporarily focusing only on the
wave vector part of the wave function, (k’|Vs|k) is evaluated, where Vs is the spin potential of an
electron situated at r;:

ik! . Ha X R
(K'|Vs[k) = je"k [Vx'}#

= f/ T x (Se x q)e' T Rdqdr

= Ane’™T [ x (Se x )], (3.23)

e‘!k'r dr

where r = r; + R, and R is the distance between the neutron and the scattering electron (making
integration over R or r equivalent), and 7 = ky — k; is the momentum transfer vector of the
neutron. The same can be done with respect to the orbital potential Vi, situated at rj, using
another result from [17]*:

_pxR
K|VLlk) = / et S
_ 1 iT-ry irRP xR
= he e 2 dR.
47ri 11'1
= — 3.24
—e M (px7) (3.24)

In case of more than one scatterer, one just adds the potential from each of the scatterers; hence
for a general system of scatterers the following definition comes naturally from equations 3.24 and

v x SxR — L [ax (S xd)e'dq
8 He'mRdR = 4mit
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3.23:
= —1—- / o iTr |4 » A ._iv__ . "
Q.= = Z;:(k Vs + Vilk) = Zi:e [-r X (SixT)+ = (pi % ‘r)] (3.25)

Collecting the constant factors in 3.21 and 3.22 the partial differential cross section can be written
in terms only of the initial and final spin states of the neutron and the initial and final states of
the scattering system:

d*o ) okp,,
ST = L' No - oA 25E—E,+rw, 3.26
(deEf aAsa’ N (7o) ki e X]e - QuloAl"o(Es A w) ( )

where 7 is the classical electron radius (rg = 2.818 x 10~!%m). The operator Q, deserves some
attention. The spin part of Q; can be written as

Qis = Ze”"i [Fx (SixF)]=%x(Qg x7), where (3.27)
i
QS — Zeﬁ--risi-
i
Qs has a direct physical meaning. Is is the Fourier transform of the electron spin density:

Qs = fps(r)e“"rdr, where (3.28)

ps(r) = Z 8(r —1;)8;.

As the relationship between spin and magnetization is simple Mg(r) = —2uppg(r), Qs can be
defined in terms of the Fourier transform of the spin magnetization:
1, .
Qus = —5 —7 x (Ms(7) x 7) (3.29)
“B

Conveniently, a similar result holds in for the orbital momentum part, by treating the current
density in a similar way. The derivation found in [17] will not be given here. The orbital part of
Q. can be written as:

1
Qi = ——7Fx(My(r)x7), where (3.30)
2up

My, (T) 21501 = fML(l')eiT"'dl'

Il

This enables a definition of total magnetization for a general system of electrons - both spin and
orbital:

M(7) = fM(l‘)eiT'rdl‘, where (3.31)
M(r) = Ms(r) + My(r)
The operator Q; can now be written in terms of the Fourier transform of the total magnetization

of the system:

1
Qi(T) = ——Fx(M(1)x 7). (3.32)
2up
The fact that both the spin and orbital part of Q, can be collected in the form presented in
equation 3.32 and that it represents the total magnetization of the system of electrons, spawns two
facts directly used in the interpretation of neutron scattering experiments:
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e As Q) reflects net magnetization only unpaired electrons - giving rise to net magnetization -
can interact magnetically with neutrons.

e Q only reflects the projection of the magnetization vector onto the plane perpendicular to
7=k f— ki.

In the calculation of the matrix element, the next step is to take the neutron spin into consideration.
First, the following definition is convenient

Q = Qs+QL=—2MiBM(r). (3.33)

Ql + Q. can be expressed conveniently in terms of Q:

QM QL = ) (Bap — 7a™s) QLG (3.34)
af

where @, 8 = z,y, 2 and d,g is the Kronecker delta (1 if & = 8 and 0 otherwise). It is clear that
Q| is the projection of Q onto the plan perpendicular to 7. The partial differential cross section
describes the probability of scattering a beam of neutrons consisting of a set of initial states into a
spatial angle. All final states which scatter into that spatial angle are counted. Thus, we need to
sum over the final states and average over the initial states of the neutron. Essentially, this is the
following sum:

Zpal(a’/\'kr - QuloN)|? (3.35)

oa’

The vector operator dot product o - Q) = 0,Q14 + 0,Q1y + 0.Q 1, allows for a separation of
variables, since o only depends on the spin of the neutron, and Q, only depends on the spins and
positions of the unpaired electrons. The two sets of coordinates are independent, so:

(0'NowQLaloA) = (0”|ow|o)(N|QualN) (3.36)

When multiplying ¢ - Q| with its complex conjugate, all terms have the following form since o is
hermitian:

(oloalo’) (o' |oalo) AR LIN YN QLalN (3.37)

As we sum over all the final spin states in equation 3.35, the following is true (the closure relation):
for a=p4: Z(a|aa|a’)(a'|aﬁ|a) = (o|d2|o)
o.l

for a#B: Z(a|aa[a’)(a'|aﬁ|a) = (oloaop|o) (3.38)

Along any given direction the neutron can only have spins :i:% in units of . Using the standard
basis, let | 1) and | |) denote spin up and spin down states along the z-direction. Expressing
the Pauli spin operators using standard raising and lowering operators (o, = ST + S~ and 0, =
—i(8*T — §7)), the inner products in equation 3.38 can be evaluated:

Va € {z,y,2}: (Toal 1) = (Llogld) =1
Va,B € {z,y,2} [a#B: (Tloaoglt) = —(|oaogll) =i (3.39)

In this work, only unpolarized neutrons are used, which makes the evaluation of the summation in
equation 3.35 particularly simple because of the sign change when mixing different Pauli-matrices
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seen in equation 3.39. For unpolarized neutron the probability of being in a spin up or spin down
state is py = p, = %, therefore:

Vo€ {@,5,2} 1 ) pololodle) = 1 and
Vo, B € {z,y,2} |a#B: Zp,,(a|aaag|cr) = 0 =

D polie'No - Qulon? =Y (R INHNIQLalN) (3.40)

aa’ o
when combining equations 3.40 and 3.26, an expression is obtained for the partial differential cross
section for scattering of unpolarized neutrons by a general system of unpaired electrons:

d? k .
(dﬂd(;?f) = (WRO)Qrf;PAg(AIQLIA)(AIQLQIMJ(E,\—Ex+ﬁw) (3.41)

As it is more directly physically interpretable to use Q instead of Q, because Q directly expresses
the electron magnetization, equation 3.41 can be reformulated using equation 3.34:

dQ(J . gkf o
(dﬂdEf) = (Of) E%(%—mm)

> pAAQLIXNY(N1QaINS(Ex — B + fw) (3.42)
Y%

X

3.2 Scattering from ordered systems

The general description of the magnetic interaction between neutrons and systems of unpaired
electrons can be restricted to large ordered systems of atoms. In section 2.2 a description is given
of the concepts convenient to describe such systems. As previously mentioned, a perfect crystal
can be described by infinitely many identical unit cells closely packed in all three crystallographic
directions, consisting of a so-called basis of one or more formula units. As previously described,
elements in the iron group have quenched orbital momenta, resulting from the electric field of the
crystal environment. There are effective alterations of the spin moments due to the spin orbit
coupling (only the ground state has L = 0), but this is a minor correction assumed to be of dipolar
nature. Therefore, a case with scattering from spin only is assumed. Let Ry be the position of the
atom in the lth unit cell at atomic position d, and 7, be the position of the vth unpaired electron
of that particular atom relative to the nucleus. These electrons are assumed to be localized close to
the ions only perturbed by thermal fluctuations. The goal is to develop a description of the neutron
scattering off the crystal as a whole, where the symmetries of the system and the constituent atoms
are conceptually separated from the internal arrangement of scatterers in the individual ion. To
meet this end, it is necessary to assume that the spins of each unpaired electron (S,) within the
ion combine to form a single resultant spin for the ion (S;). This allows for a separation of the
7-dependency of the scattering within the individual types of magnetic ions from the sum over
states in equation 3.42. Inserting r; = Ryq + r,, into the expression of Qg in equation 3.28 gives

Q — QS — Z ei‘l"-R[d Z ei‘l’-ry Sia (3‘43)
1d v(d)
which can be inserted directly into the matrix element from equation 3.42, giving
(/\','Qlf\)l'd — (/\Ilei‘roRld Zeir-rusul)\)
v(d)
(Nlgia Y £u8u|A), where (3.44)
v

f, =T and g = e Ta,
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The closure relation ((i|AB|f) = >_,(i|Alj){j|B|f)) can be used to rewrite equation 3.44:

Mg Y f808) = DD NN YN giaSu|A)

Ao
= D NIAINYN g Y SulA) (3.45)
b v

The last step in equation 3.45 is due to the Pauli principle stating that any multi-fermion quantum
state needs to be anti-symmetric with respect to electron exchange. Therefore the spatial part of the
electron states are either symmetric or antisymmetric (since the spin part is also either symmetric
or anti-symmetric). Therefore, the matrix element (X|f,|\”) is independent of the electron index
(this can be shown for for any operator depending on position and for any multi-electron spatial
function [17]). The energy of the neutron is of the order meV which is usually not enough to
change neither the spin quantum number nor the spatial part of the electronic state of the ion.
Thus, the states relevant for the summation in equation 3.42 only differ in spin orientation and
nuclear position. Since f, only depends on the position of the electrons, both the nuclear position
and the electronic spin parts of the states |A’) and |\”) must be identical for (N|f,|A") to be
non-zero (they are orthogonal and not affected by the operator f,). Equation 3.45 then becomes

Ngia 3 580N = VAN N g 3 SulN)- (3.46)

Since the spatial part of the electronic states is the same, (X|f,|N) = (A|f,|A). The nuclear position
and electronic spin parts of (A| are orthogonal, and since the matrix element is independent of v,
(N'|fu|A') is essentially the spatial Fourier transform of the unpaired electron density divided by
the number of unpaired electrons. In mathematical terms:

XIIN) = [ G = Futr) (3.47)

where (4(r) is called the normalized unpaired electron density and Fy(r) the magnetic form factor
for the ion at unit cell position d. An important point is that unlike the nuclear case where the
scattering length is independent of neutron momentum transfer, the magnetic form factor has a
7-dependency due to the finite extent of the electron wave functions compared to the wavelength
of the neutron. It is very important to know the 7-dependency of this form factor since it directly
determines how strong the magnetic scattering is as a function of the neutron momentum transfer.
The actual form factors for four relevant ions are given in section 3.3.6 (simple isotropic case).
Defining Siq = ), S» equation 3.44 can now be written as follows:

()\le|/\> _ Z(Afleir.ﬁldzeir-rysyl/\)

id v(d)
= Y Fy(r)(N|eTRag)\). (3.48)
ld

Putting this directly into equation 3.42 gives the cross section for the ordered system as a whole:

% :
(dngf) - (’YRO)?'% gﬁ: (50,6' - faﬁ@) Z Z FJ(T)Fd(T)

i'd" Id

> PAQe™ TR S XY N T RUSEING(Ey — Ex +hw) - (349)
AN

X

In further calculations Fy(7) will be replaced with % gFy(7) to account for an eventual L-S coupling
altering the effective spin quantum number. The Lande splitting factor g* has the value of 2 in

4 S(5+41)—L{L+1 L(L+1)—5(5+1)
1k ¢ J()J+l()41 2 % + : 2J%J+§)
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case of no L - S correction. The form factor in case of both spin and orbital angular momenta is
treated in [18]. The probability py is dependent on temperature T’ and is given by the Boltzmann
distribution:

E E
pr = %e_ﬁff, where Z = Ze_EfAT_, (3.50)

A
where kp is the Boltzmann constant. Defining the thermal average and writing the time-dependency
of an operator as

iHt ﬁ —iHt

(A) =>"pr(AAIN) and Sp(t) =e'v Sher (3.51)
A

one can rewrite the summation over X and average of A in equation 3.49 using two results from
[17])° © in the following way:

sz\ )\|e‘”' Rygr Sa |AI)</\f|eir RldSM,/\>6(E/\ —Ey+ ﬁw) (3_52)
AN
1 * —iT Ry (0) ox it Ryat) of —iwt
= ﬁ (6 1'd Sl"d‘ (0)8 1 S,d(t))e dt. (353)

The above integral is over time only, which makes it convenient to separate the static part of the
atomic positions from the dynamic part. Therefore, let

Riyg =1+d + uy(t), (3.54)

where 1 is the unit cell position vector of unit cell {, d is position vector of ion d within the unit
cell and wy,(t) is the time-dependent atomic displacement from the static equilibrium position.
Assuming that the spin orientation interacts weakly with the atomic position, one can separate
the phase factors from the spin operators and insert the result into equation 3.49 to obtain the
magnetic partial differential cross section for a crystallographic system of magnetic ions:

Ha (Ro)* !”f im-(L+d—1'—d’)
(deEf)mug ok Z (Oap — TaTp (;’M 9 9aFy (1) Fy(T)e

X / (e~ urar @gimualy (ga , (0)SP ())e ™ dt. (3.55)

This cross section is of course model-dependent but within that given model, this cross section
describes virtually any magnetic interaction between unpolarized neutrons, the lattice of magnetic
ions and the orientation of the spins. In case of nuclear scattering, the same procedure of summing
over X', averaging over A and using the integral representation of the d-function for energy can be
used to obtain the coherent nuclear partial differential cross section for a crystallographic system
of nuclei:

d?a ) 1 ky Z ' o : »
= b b el (14+d—1'-d’) f (e iT-up g (0) ezr-ugd(t) )6 lwtdt, (356)
(deEf omh ki o s

where b is the average over isotopes and nuclear spin of the nuclear scattering lengths. In equations
3.55 and 3.56, t represents a time interval, since we take thermal averages of the product of two
operators each at two different times. These averages are in fact time dependent pair correlation
functions, and represents the correlation between the positions of two atoms separated in time
(t) and space (Rig — Ryar (generally, but not always; the two points could be the same). The

S§(Ex — By + hw) = 5h [ el(Ex—Ex)t/hiutgy
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term (e~ Wwa(0girwa®)) eyident in both the nuclear and magnetic cross section represents the
correlation of the phase factor of the scattered neutron between the two points caused by the
corresponding correlated displacement of the scatterers from the equilibrium position (nuclei or
electrons). A correlation of this sort is a wave of atomic displacements (stationary or propagating)
known as a phonon. They are the collective discrete modes of resonant atomic displacements for
the whole crystal. Phonons exhibit particle like behavior since they can have both well defined
momentum and well defined energy, and can be created and annihilated by neutrons. There
are several kinds of such collective particle-like modes of different physical origin, and they are
rightfully called pseudo-particles. Measuring the phonons by measuring the energy- and momentum-
transfer of the neutrons creating and annihilating phonons provides information of the inter atomic
couplings. However, the phonons also cause an effective reduction of the scattering cross section
even at zero energy transfer, since each individual atom has an average displacement from its
equilibrium position by its own right. This can be seen from the following. Let

(e—i'r-u,:df (O)Bi'rﬂu;d(t)) — (6U6V>, where

U=—ir- ulrdr(O) and V =it U(d(t). (357)

Assuming that the displacement behaves like a harmonic oscillator the displacement probability
function is a Gaussian. Using only this physical assumption, it can be proven ([17]) that

2 s2
(eVeV) = B e Y (3.58)

The zero point of time and therefore t is arbitrarily chosen; what matters in the pair correlation
functions is the time interval t. Therefore, the terms eV*)/2 and e(V*)/2 are time independent -
they are two snap shots at times 0 and ¢ of a time independent quantities originating from the
thermal average of the absolute atomic displacement of the individual atoms, which is a function
of temperature. The term e!UV) however, describes the pair correlations in space and time and
hence the propagating phonons. Measuring phonons is well without the scope of this thesis, so the
working assumption is that the atomic displacements are uncorrelated meaning that (UV) = 0 and
elUV) = 1. This removes the time dependency and hence energetic pair correlations left for the
neutron to create or annihilate; there is no energy transfer between the system and the neutron
and the lengths of the initial and final wave vectors are the same (k = k). This is known as
elastic scattering. Furthermore, the range of any interaction between two atoms is assumed to be
negligible compared to the size of the crystal. Thus, the surroundings are exactly the same for
every unit cell, meaning that for every value of I, the summation over I’ is the same. The sum over
Il is therefore equivalent to N times the sum over [ from some initial unit cell I’ = 0. The cross
section then becomes:

o0

dzo' 1 kf ir-1 e iT (d df) 1‘;‘:’ W it
ERYInH = g i I ) N - ot Tt A .
(deEf) wwe  2mhE; o Z:: ¢ ;bd”d i ¥ f_ _e (3.59)

where Wy = 1/2-((7-wq)?). The term e~"V¢ is called the Debye- Waller factor and describes the loss
in the elastically scattered intensity due to the thermal smearing of the individual atomic positions
which are induced by phonons. Describing these vibrations can be very difficult in practice, since
they are in principle different for each atom in the unit cell and can be anisotropic. In [17] it is
shown that

f e~ “tdt = 2mhid(hw), (3.60)

—00

which confirms that the cross section is elastic. The sum over dd' is a sum of complex numbers,
which can be simplified to be the complex amplitude squared of a simple expression unique for the
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unit cell:
2

Z Dby e -4 g=Wag—War  _
dd'

Z B deWa
d
= |Fy(m) (3.61)

where |Fy(7)|? is called the unit cell structure factor. Since the integral over all energies of this
delta function in energy is 1 and k = &/, the nuclear elastic differential cross section becomes:

do < ¢ do ;
(d_Q)nuC B 'L (dﬂdEf)nHCdE

= N e Fy(r)]. (3.62)
)

Turning to the magnetic partial differential cross section in equation 3.55, the same displacement
pair correlation function describing the phonons is present along with the spin pair correlation
function. It is actually possible to induce a phonon via the magnetic interaction with a neutron,
but again this is beyond the scope of this thesis. As in the nuclear case, we extract the time-
independent Debye-Waller factors and neglect the contributions to the scattering involving phonons.
In the lithium-ortho-phosphates, there is only one magnetic ion (Fe®*, Co?*, Ni%*, Mn’t). When
this is the case, the Debye-Waller factor is a mere constant prefactor which can be taken out of the
summation. Using this restriction and the same unit cell summation trick as in the nuclear case,
the magnetic partial differential cross section can be somewhat simplified:

i (YRo)* Ky o 1 2g=Wa §° 3 e b
= — —_ F —¥rd sl iT. lT'(d d }
(dndEf)mag orh  k; le?,g (T)l e 2 (Jaﬁ TO,T‘B) [ e zd'd:e

X
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where Ny, is the number of magnetic unit cells. The term (S, (O)Sﬁ(t)) is the time-dependent
pair correlation function of the spin directions. It describes the correlations separated in time and
space of the direction of the spin dipole moment of two magnetic atoms. As in the case of phonons,
a small change in the spin direction is a collective excitation of the whole magnetic system. Like
phonons, these excitations are propagating waves with energy and momentum and they too can be
created and annihilated with neutrons. They are called magnons or spin waves. If the correlation
time interval is increased to infinity (¢ — co), the value of the spin correlation function describes
static and hence time-independent correlations:

Jim (S5 (0)SE(8)) = (Se)(Ska- (3.64)

Moving from unit cell 0 to unit cell { is equivalent to performing a lattice translation symmetry
operation shifting from one ion in unit cell 0 to the equivalent ion in unit cell [ with the exact same
crystallographic surroundings. Therefore, the spin direction of the two ions must be the same and
hence (Sg;) = (Sf%). Putting the static unit cell spin components outside of the integral in equation
3.63, results in the same delta function in energy as in the nuclear case. Thus, the elastic magnetic
differential cross section can be calculated:

= = f (L)
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This can be slightly reformulated using equations 3.32 and 3.34, and defining a structure factor for
the magnetic unit cell:

do = 2 Nyl 2,-Wa N il |4 i ‘
(dﬂ)mag B (’YRD) leggF(T)' £ zf:e IT X (E‘.I(T) X ’T’)' 5 where

Fy(r) = ) em4(Sa) (3.66)
d
Fy(7) is the magnetic unit cell structure factor.

3.2.1 Bragg’s law and reciprocal space

In both the elastic nuclear and magnetic cross section (equations 3.62 and 3.66), there is a sum of
neutron phase factors for all the unit cells which is called the lattice sum. The number of unit cells
is huge, so for any arbitrary momentum transfer vector T the complex phase factors will cancel out

in the sum, unless
T-1=n2r

for all [ and integer n. This coherence condition is only satisfied for specific momentum transfer
vectors. In fact, is is possible to define a 3-dimensional space of lattice points where any vector
between two lattice points satisfies the coherence condition using the crystal lattice vectors as a
starting point. Let a, b and ¢ be the translational symmetry vectors chosen to describe a unit cell.
The reciprocal lattice is defined using the following basis:

2

0 (cxa) c*= Fo(a x b), where (3.67)

2m 2m
:—b)( b*:-—
1/0( C)

a*

Vo=a-(bxc) (3.68)

is the volume of the unit cell. As 1 = ngza + nb + n.c is any crystallographic lattice vector,
it follows from equations 3.67 and 3.68 that if 7 = G, where G is any reciprocal lattice vector
G = ha* + kb* + lc*, then

T 1= hn. 27 + knp2m + In2m = n2w. (3.69)

It is shown in [17] that

N o= () > o(r-G) (3.70)
o 45 '

I

This formulates the condition 7 = G which is known as the Laue condition and is an elegant
formulation of the scattering condition. The scattering is indeed off crystal planes in real space,
which can be seen by the following([19]). Define a crystal plane by the plane with intercepts 7,
b and ¢ seen from the unit cell origin. The indices h, k and [ are called Miller indices. Knowing
these intercept vectors, one can easily define two linearly independent vectors in the crystal plane
c a a b

i = gl

4 7% and u TR (3.71)

The crystal plane can be spanned by these basis vectors v = njuy + naus. The dot product of G

and v is

G-v

b
(ha* + kb* + Ic*) - ((ng - nl)% - my +n1%)

= 27 (712 —ny—n2+b) =0, (3.72)
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and hence G and v are perpendicular. This is exactly what a reciprocal lattice vector G = (h, k,1)
describes: A crystal plane in real space perpendicular to G that intercepts 5 % and § from the unit
cell origin. The distance from the plane to the origin d is the projection of any vector connecting
two planes (origin to plane) projected onto any unit vector perpendicular to the plane (é for
instance):

G a 2n 27
d= — . == — = |@| ==, 3.73
G| h |G| Gl d (3.53)
Using that 7 = k;—ky and for elastic scattering |k;| = |k/|, the Laue condition can be reformulated
=k i
T= G ---------------
0
kg
(a) The scattering triangle (b) Bragg’s law

Figure 8: (a) The scattering triangle in reciprocal space fulfilling the scattering condition. The
yellow circles are reciprocal space lattice points and 26 is the neutron scattering angle. (b) Braggs
law visually expressed in terms of in-going and out-going waves and the interference between them
caused by diffraction from the crystal planes.

as
G? = 2G - k;.

As G-k; = 2ksin(0), where 6 is half the angle between the incoming and outgoing wave vector, the

Laue condition can be reformulated in terms of plane distance, neutron wavelength and scattering

angle:

nA = 2dsin(9) (3.74)

where n is any integer. This is the famous Bragg’s law, describing the scattering condition for a
stack of infinitely many crystal planes. This law can be derived in a much simpler way using a
real space wave picture (see figure 8b). For wave interference to occur between the scattered waves
from each crystal plane, the increase in wave travel distance from one plane to another (2dsin())
must be equal to a multiple of the wavelength. The Laue condition is illustrated in 2 dimensions
in figure 8a. When fulfilling the Laue condition, the length of the momentum transfer vector is
[7| = 2k sin(@), which is the reciprocal space version of Bragg’s law. It should be noted that the
Laue condition and Bragg'’s law are simple consequences of the lattice sum over unit cells without
taking the crystal basis into consideration; they are binary statements referring only to where there
can be elastic scattering and where there cannot. The intensities and additional extinction rules
stemming from crystal symmetries are determined by the unit cell structure factor, which is exactly
what needs to be measured and properly interpreted in elastic scattering experiments.

This concludes the description of the interactions of the neutrons with the ordered nuclear and
magnetic potentials in crystals. When performing experiments, there are some important points
worth summarizing:

o Microscopically, a single neutron sees the spatial Fourier transform of the scattering potential.
The transformed magnetic potential depends on momentum transfer, while the transformed
nuclear potential does not.
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e Macroscopically, a beam of neutrons probes collective properties of a large single crystal; the
cross section depends on a sum of thermal averaged pair correlation functions between atoms,
which are Fourier transformed in both time and space.

e Magnetically, the neutrons interact with the unpaired electrons giving rise to net magnetiza-
tion and only the projection of the magnetic moment vector onto a plane perpendicular to
the momentum transfer vector 7.

3.3 Neutron instrumentation

Neutron instrumentation is a vast subject; there is a variety of techniques and tricks resulting from
theoretical considerations, simulation but mostly plain practical experience. The experimental
work presented in this thesis is the result of numerous different neutron experiments. The purpose
of this section is to establish the concepts necessary to discuss and interpret the data presented in
the thesis. A more detailed and broad description of neutron diffraction and spectroscopy can be
found in textbooks such as [20] and [21].

3.3.1 Neutron sources

A high flux of neutrons can presently be produced in two ways: 1) It is possible to utilize the high
neutron flux present in the core of fission reactors. There is a steady equilibrium in these reactors,
resulting in a constant neutron flux which is quite stable. One experiment presented in this thesis
was performed at a reactor source at the HMI in Berlin. 2) By generating an intense beam of
high energy protons (roughly 1 GeV) and directing it towards a target consisting of some neutron
abundant heavy elements, it is possible to peel off several neutrons from the heavy nuclei in a process
called spallation. Accelerators generate pulsed high energy beams, which means that the neutron
flux is also pulsed. This can be utilized in time-of-flight measurements. Most experiments presented
in this thesis were performed at the spallation source at the PSI in Villigen, Switzerland. Since
the free neutrons are generated by nuclear processes, the energy of the neutrons are several MeV'’s
and are called fast neutrons. In order for neutrons to have the proper wavelength of 1 — 5 A, the
neutrons need to be slowed down. This is done by using a so-called moderator, where the neutrons
are brought into thermal equilibrium with a substance consisting of light atoms - such as light
water. The flux distribution as a function of neutron velocity (v) and of moderator temperature
Ty is a Maxwellian distribution (or a combination of Maxwellians):

mp U2

®(v) o v2e FpTm, (3.75)

Since fast neutrons are able to penetrate shielding and reach the neutron detectors of the instru-
ments, it is preferable to place the neutron spectrometer as far away from the source as possible.
In order to avoid the 1/r? flux drop-off with distance from the source of the thermal neutrons,
considerable efforts have been made to invent guides for the neutrons optimized for transmitting
low energy neutrons. These guides can reflect neutrons for sufficiently low scattering angles, thus
keeping the neutrons with low incident angles in the guide. There is a critical scattering vector Q.,
above which the reflectivity drops below 1 ([22]). There is typically an interval above @, where the
reflectivity is above 0.5 after which it drops rapidly to some infinitesimal value. The consequences
of the critical scattering vector is that high velocity neutrons get absorbed by the guide unless they
have a very low incident angle (Nickel is a typical guide material Q. n; = 0.0219 A_l). In effect,
after traveling through a long guide, most of the high velocity neutrons have been absorbed.
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3.3.2 General concepts and components

In this section, the most widely used concepts and components used in designing spectrometers
will be described, as they will be used frequently in the sections describing the data analysis.

e Mosaicity: A macroscopic single crystal is very rarely perfect in terms of perfect alignment
of the crystal planes. Each crystal plane is perfectly aligned with its neighbor, but throughout
the crystal the normal vectors of the crystal planes do not coincide perfectly, they are dis-
tributed around some mean vector. Conceptually, this distribution is assumed to be Gaussian
in any given direction, and the width of this Gaussian is called the mosaicity.

e Monochromator/Analyzer: The white beam exiting a guide consists of a wide distribu-
tion of wavelengths (possibly with a low wavelength cutoff due to the guide), but in most
instruments a monochromatic beam of neutrons is needed. This is achieved by placing a
crystal - a monochromator - just after the guide and adjusting the rotation of that crystal
and the placement of the sample table so that the setup fulfills the scattering condition for
the wavelength desired. The same principle is used when one wants to single out a specific
reflected energy from the sample. Allowing the reflected neutron to hit a rotatable crystal -
an analyzer - and adjust the detector position to measure the chosen energy. Usually, crys-
tals with a finite mosaicity are used, which allows for a wavelength distribution satisfying the
scattering condition, thus increasing the flux at the sample and decreasing the resolution.

e Divergence: The geometry of any instrument accepts an finite angular distribution of neu-
trons. The extent of this angular distribution (FWHM) is called the beam divergence.

o Collimator: In many cases it is desirable to be able to control the beam divergence in order
to be able to control the resolution function and minimize the background. To this end
collimators are used, of which there are two mainly used types: 1) A series of apertures made
from neutron absorbing material separated by some distance collimates the beam traveling
in them as they set a natural limit of the divergence. Circular apertures give an isotropic
divergence. 2) A series of neutron absorbing plates placed parallel to the beam and separated
by some distance, collimates the beam only in the direction perpendicular to the plates. This
is desirable in cases where an open geometry is accepted in some direction due to the need
for high neutron flux.

o Resolution function: The geometry of a spectrometer is always more or less open in the
sense that the spectrometer accepts distributions of wave vectors to reach both the sample
and the detector. The monochromator is designed to reflect a narrow but finite distribution of
neutron wavelengths onto the sample, and the aperture/collimator systems before and after
the sample are designed to allow for a finite beam divergence. So even when scattering off
a perfect crystal, moving the instrument just a little away from the scattering condition
will still result in scattering reaching the detector because of the finite resolution. The
function describing this resolution is called the resolution function, and is three-dimensional
for elastic scattering and four-dimensional for inelastic scattering. The three parameters
for elastic scattering are the width of the distribution of wave vector lengths and the two
divergences. The three distributions are generally assumed to be Gaussian. In reciprocal space
the resolution function is an ellipsoid through which one moves the reciprocal lattice vector
to reach the scattering condition. In most cases the calculation of the resolution ellipsoid is
quite complex and requires detailed knowledge of the geometry of the spectrometer.

e Filters: When using a monochromator, the Bragg's law for any given wavelength may also
be fulfilled for neutrons with half that wavelength if present in the white beam. These second
order neutrons will pass through to the detector causing erroneous measurements as two
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different scattering conditions can be fulfilled at the same time. To avoid this, one can put in
energy filters to choose one of these well separated narrow bands of energy to be used in the
spectrometer. For instance, polycrystalline Be only transmits neutrons with a wavelength
above 3.9 A with a very sharp transmission curve. When working with 4 A neutrons, one can
remove 2 A neutrons by using a Be filter.

e Monitor: When measuring and comparing data, it is necessary to know how many neutrons
are actually hitting the sample for any given setup of the instrument so that one can normalize
the final detector count. As the source output can and will vary from time to time it is
necessary to have a detector that transmits almost all neutrons but detects a small fraction of
them. This is called a monitor, and putting one before the sample allows one to electronically
start and stop collecting neutrons when a certain amount of neutrons has been detected by
the monitor.

3.3.3 Two-axis diffractometers - TriCS

In a single crystal there is an almost infinite number of different stacks of scattering planes to scatter
from; one for each reciprocal lattice vector. From a few peaks one can gain a lot of information
about a system, the lattice parameters, some information about the symmetries of the system as
well as the rough orientation of the spins. However, when one wants to create and test a model of
the system as a whole - exact atomic positions, Debye-Waller factors, exact spin configuration and
moment size, one needs as much information on the system as possible. This is gained by collecting
the diffracted intensity from as many crystal planes as possible. Any model can then be tested and
refined using hundreds of reflections, until the model fits the data. The reflections can be collected
using a single crystal neutron diffractometer such as TriCS at the PSI, see figure 9.
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(a) The principle of a neutron diffrac- (b) TriCS @ PSI
tometer.

Figure 9: (a) Layout of the principle of neutron diffractometry. (b) The TriCS spectrometer at the
PSI. There are two different monochromators and possibility of using a 2D detector array.

Knowing the unit cell parameters, a few representative peaks are used to create a rough computer
model that connects the reciprocal lattice points to the geometry of the instrument. This called
a UB-matriz, and it allows for an automatic collection of all the reflections reachable by the in-
strument. TriCS uses thermal neutrons (coming from a source with T' = 300K with a wavelength
of 1 A, and has a quite wide geometry. This causes the instrument to have a broad resolution
function, which is desirable since one will still get a credible reflection intensity measurement if the
UB-matrix is a little off (which it always is). Since the sample has a finite mosaicity, in principle
one should scan a whole volume around the reciprocal lattice vector to obtain a correct measure
of the intensity. However, in practical experiments one has an open geometry vertically usually
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catching the full 7-distribution in that direction. TriCS has a relaxed resolution in 26 for small
T where one performs only a scan of the sample rotation @ through the reflection to collect all
the intensity. For large 7 one performs a 6 — 26-scan. TriCS also has the possibility of using a
2D-detector and of tilting the position of the 1D-detector. Without an analyzer, TriCS accepts
all energies reaching the detector from the sample and sample-holder. Furthermore, since TriCS is
designed to measure the integrated intensity of many elastic reflections, the detector shielding does
not have top-priority as usually one can model the background and still get a good measure of the
integrated intensity. Therefore, the background of diffractometers is rather high.

3.3.4 Cold triple-axis spectrometers - FLEX and RITA-II

A triple axis spectrometer is a bit more complicated; it uses an analyzer after the sample (see
figure 10 a)) so that the path between the sample and analyzer and the path between the analyzer
and detector satisfies Bragg’s law for a given wavelength. In doing this, one can measure a length
difference between the neutron wave vector incident on the sample and the wave vector leaving the
sample - inelastic scattering. One can actually measure the wave vector (gy,,) and energy (AE,,;) of
the propagating spin waves as the neutron creates and annihilates collective excited states within
the sample.

Flexible / Position
radial Sensitive
collimator, ,'i Detector

Incoming
Neutron beam T i

(a) IN14 @ ILL (b) Analyzer of RITA-II

Figure 10: (a) Layout of a conventional neutron triple-axis spectrometer (IN14 at ILL). (b) The
unique analyzer setup of the RITA-II spectrometer at the PSI. A 2D-detector is also called a
position sensitive detector. 0,4 denotes the collective rotation of all 7 analyzer blades and 20,4
denotes the scattering angle of the middle blade.

There is a possibility of the sample having several different branches (in (7,,, AE,)-space) of spin
excitations close to each other. Furthermore, it is desirable to be able to measure low energy
excitations, which means that the elastic signal should not stretch too far into the energy transfer
regime due to the resolution function. Therefore, cold neutrons are used. The neutrons come from
a cold moderator 7" = 35 K, which means that the Maxwellian flux distribution as a function of
neutron wavelengths is narrower and higher. This makes it possible to have a narrow distribution of
wavelengths coming from the monochromator while maintaining a reasonable flux. Therefore, the
resolution of cold spectrometers is better than for thermal diffractometers. The FLEX spectrometer,
which in this thesis is used for diffraction at 17.3 T, is a conventional triple-axis spectrometer
principally built as outlined in figure 10 a).
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The RITA-II spectrometer is unconventional; hence the name: Re-Invented Triple Axis spectrome-
ter. The neutrons scattering off spin waves scatter in all directions with different energy transfers.
Therefore, the RITA-II uses seven rectangular tall analyzers, individually and collectively rotat-
able, and a 2D-detector array, to be able to scan the energy transfers of seven different wave vector
transfers at the same time with a high resolution (see figure 10). The inelastic scattering cross
sections are several orders of magnitude smaller than the elastic cross sections, causing the signal
to be very weak. In order to be able to measure anything, a low background always has top-priority
when building triple-axis spectrometers. The RITA-II spectrometer is excellent in this respect; the
whole analyzer-detector setup is placed in a large shielded box. The background from the target
station reaching the detector is as low as 0.2 counts pr. minute.

Most of the elastic scattering experiments presented in this thesis were performed at the RITA-
II triple axis spectrometer. This is for two reasons: 1) The RITA-II spectrometer has a 15 T
cryomagnet option, allowing one to probe the phase diagram at such fields. Furthermore, as
magnetic cross sections scales with the square of the moment, an eventual field induced magnetic
signal is much easier to discover at 15 T than at 5 T for instance. 2) Small details of the magnetic
structure are difficult to discover if the background is high, since the small magnetic signal simply
drowns in the noise. Using the analysis presented in 2.2, one can gain a lot of information by
looking at a few key reflections, and the setup provided by RITA-II allows for detection of quite
small signals originating from quite large physical effects.

3.3.5 Small angle neutron scattering - SANS-II

Diffractometers and triple-axis spectrometers are designed to probe structural and magnetic or-
dering on the scale of inter atomic distances. Ordering in a much larger scale of course occurs in
nature, and in order to probe correlations between points 600-2000 nm apart, small angle neutron
scattering (SANS) can be used. In order to measure correlations on such a long length scale, the
momentum-transfer vector 7 must be very short, compared to that of aforementioned spectrom-
eters. This can be ensured by designing the instrument to measure very small scattering angles,
hence the term small angle neutron scattering. To do this with a decent precision, the neutron
needs to be very well collimated ensuring a low divergence. Therefore, SANS instruments have very
long collimation sections between the beam port and the sample (see figure 11 a). To maximize
the |r|-range of the instrument, a 2D-detector detects the signal at a specified distance from the
sample (typically between 1 m and the collimation distance). Thus, SANS-instruments are very
long (10-60 m) and very simple. Since the requirement for collimated neutrons is so crucial, it
is preferable to widen the incoming wave vector distribution. Furthermore, it is an advantage to
have more control of the average wavelength for flexibility reasons. This is done elegantly by the
velocity selector, which is a rotating cylinder with separated neutron absorbing blades being tilted
vertically (see figure 11 b). In order for a neutron to pass through the cylinder, the time-interval for
the neutrons to travel the path length s needs to match the time it takes for one channel between
two blades to pass the point of entry. The equations determining the mean wavelength and the
relative FWHM of the wavelength distribution are the following:

h
A = T tan(e)
Al d
X stan(a)’ Ry

It is easily seen that tuning the tilt and angular velocity of the cylinder, one can adjust the mean
and relative width of the wavelength distribution. All of the SANS experiments analyzed in this
thesis are from the SANS-II instrument developed at Risg and positioned at the PSI. It has a 6
m long collimation section, with a possible aperture inset for every 1 m. The detector-tank is 6 m
long, and the 2D-detector has 128 x 128 pixels of size 4.345 mm.
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(b) Principle behind a velocity-selector

Figure 11: (a) The general layout of a small angle neutron scattering instrument. (b) A velocity
selector cylinder with dimension d x R rotating with angular velocity w. The blades are separated
by a distance d, and tilted an angle o away from horizontal. Pictures from [23].

3.3.6 Magnetic form factor

In order to use magnetic intensity measurements they need to be corrected for effect due to the
magnetic form factor. For the ions in the iron group, these are monotonic curves with a maximum
at 7 = 0. The shape of the curve can be calculated from the radial distribution of the unpaired
electrons in a given shell. An approximate description is given by the following function (taken
from [24]):

f(8) = Ae=®" + Be™b* 4+ Ce™" 4+ D, (3.77)

where a, b and ¢ are parameters to be looked up in [24], and s = sin(@)/A. The possible values of
the form factors in a typical TriCS experiment (A = 1.18 A) for the four iron group ions relevant
in this thesis are given in figure 12 as a function of 6.

3.3.7 Lorentz factor

As previously mentioned, when measuring the integrated intensity, it is necessary to rotate the
crystal through the scattering condition. This scan is called a rocking curve. This will measure the
mocaicity of the crystal; if the mosaicity is smaller than the width of the resolution function (as
is often the case in neutron scattering), one will obtain a nice Gaussian representing a convolution
of the resolution function with the angular distribution of reciprocal lattice vectors in the crystal
in the direction of rotation. However, there is a systematic effect that needs to be accounted for
when measuring rocking curves. Inserting the sum of reciprocal lattice delta functions (equation
3.70) in the elastic nuclear scattering cross section gives

do s
(E) nue - NT %:J(T - (;)IEPN(‘,”)|2 (378)

In doing elastic scattering on the spectrometers described above, one has a fixed incident wave
vector with a well defined wavelength hitting the sample fixed in space. Let w be the angle between
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4 Field- and temperature-induced magnetic phase transitions in
LiNiPO4

Due to competing antiferromagnetic exchange interactions combined with an XY-type single ion
anisotropy, LiNiPOy exhibits a very rich phase diagram with both spontaneous and field induced
incommensurate (IC) order. The phase diagram for pgH < 14.7 T' was mapped out using neutron
scattering by T. B. S. Jensen et. al. [4], where both the zero field IC and the high field IC
structures were suggested to be the same linearly polarized structure due to lack of evidence to the
contrary. Using the exchange interactions derived from inelastic neutron scattering experiments
[25], Jens Jensen from the University of Copenhagen predicted that the IC structure at high fields
and low temperature cannot be linearly polarized but should rather be a spiral. This part of the
thesis describes the experimental confirmation of this prediction and it is shown that the phase
diagram consists of three different IC phases for fields below 17.3 tesla - a high temperature linearly
polarized phase, a low-temperature and high field spiral phase as well as a pseudo-commensurate
phase at low temperatures and magnetic fields larger than 16 tesla.

7 1 5 14-L'N"'04 Ic
6
I, 41 12 P
i #
3 4 q o 10
© z
= 3 4 ~ S
=T =
‘O’ T, ' | %E' .
2 3
1 l l 4
0 )|
120 140 160 180 200 " ; ; j L} AsRrO-IC
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Figure 13: Left: Phase transitions in LiNiPO4 measured by pulsed magnetization. The large peak
at 120 kOe shows the increase in magnetization due to the C-IC transition. A minor peak is evident
at 160 kOe. Right: The phase diagram of LiNiPO4 up to 14.7 T as determined by T. B. S. Jensen
et. al. [4]

LiNiPQy exhibits spontaneous long range IC magnetic order [26] with general ordering vector
Tic = (0,q1¢,0) at Tye < T < Ty = 21.7 K - where Tv¢ and Ty is the commensurate and incom-
mensurate ordering temperature, respectively - and short range correlations in the temperature
range Ty < T < 40 K. The low temperature commensurate (C) canted AFM order undergoes
a field induced first order C-IC transition at magnetic fields 12 T < ppH < 13 T depending on
temperature [4]. Figure 13 (left) shows pulsed magnetization measurements performed by V. M.
Khrustalyov et. al. [27] at low temperatures. The aforementioned field induced phase transition is
clearly visible as a large peak in the differential magnetic susceptibility (%) The next transition
at 2 K occurs at ugH =~ 16 T and has a much smaller peak than the C-IC transition.

Jb Jc Jab Jac ch Da Db
0.670(9) -0.05(6) 0.30(6) -0.11(3) 1.04(6) 0.339(2) 1.82(3)

Table 6: The exchange interactions and single ion anisotropies as given in [25]. All units are in
meV
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Figure 14 (left) shows the anomalous dispersion measured in [25]. Two shallow minima are evi-
dent at non-integer J{, suggesting competing interactions. A model for the exchange interactions
was established by T. B. S. Jensen in [25], based on and successfully describing the spin wave
excitations of LiNiPOy. Figure 14 (right) depicts the relevant interactions shown in the magnetic
pseudo face centered orthorhombic unit cell (which is just the crystallographic unit cell shifted
by (—0.25,-0.25,0) ). The strength of the interactions as well as the single ion anisotropies are
given in table 6. As evident in figure 14, the two strongest exchange-interactions Ji. and J; are
antiferromagnetic, of comparable strength and cannot both be satisfied. This is the reason for the
spontaneous IC order in this system.

(0.K.,0)

hw [meV]
[T N

S B FU T

0 0.5 | 1.5 2
K [r.L.u]

Figure 14: Left: The anomalous dispersion as measured in [25] Right: The five exchange interactions
in LiNiPOQy, from [25].

The main reason that the low temperature IC structure should be a spiral in LiNiPOy is the
relatively weak anisotropy along the a direction compared to the anisotropy along b. The thermal
mean values of the spins (S) are large at low temperatures. Shortening the spin lengths costs an
exchange energy that exceeds the cost of slightly changing the spin angle in the easy ac-plane,
as long as this angular change is small (meaning a spiral with large modulation along k). This
is not the case at higher temperatures where the spin lengths are much smaller. Close to Ty it
is energetically favorable to modulate the spin length (with a small length change between unit
cells as the lengths are already small), instead of the angle resulting in the linearly polarized spin
structure depicted in figure 15 (right)

o> > O
9 © @

Figure 15: Left: Spin canting in zero field and in applied field along ¢ [4]. Right: The linearly
polarized IC spin structure proposed in [4]. Pictures from [15].
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LiNiPOy also exhibits a zero field spin canting. Using the analysis presented in section 2.2, Jensen
suggested that this canting is caused by the Dzyalyshinsky-Moriya (DM) mechanism, and developed
a model for the ME effect using the established Hamiltonian [4]:

1 L.
H= 5 !_ZJ_J(%J)Si 8;+Hpym + ZDang, (4.1)

o,
where the DM Hamiltonian is given by

Hom =Dig Y [S.(10)S,(45) — S,(19)S,(45) + S,(38)S,(25) — S, (31)S,(25)] (4.2)

ijen.a.

where the ion numbering is given in equation 2.65. The sum over 7 and j are over nearest neighbors
only. In principle the same spin canting can be caused by a similar coupling between ions 1 —2 and
3 — 4; the two cannot be distinguished by the present experiments. The strength of the proposed
DM interaction cannot be determined from the spin wave analysis, but from the canting angle. It
has a strength as large as 0.3meV which is very large for a second order interaction (it is actually
comparable to the exchange energies).

The irreducible basis vectors in case of a propagation vectors k. = (0, k;,0), are different from in
the commensurate case. There is an additional phase factor of 8 = ei™ic due to the modulation
of the moments and the basis vectors are as follows: Ay = (+,—, —8,+8), Ga = (+,—,+8,-5),
Co = (+,+,—B,—8) and F, = (+,+,+8,+8). There are only four irreducible representations in
the incommensurate case [15]

[y: {AmGy;Cz} [y {G;I:aAyst}
Ty {CFnda} Ty {Fa, Oy G} (4.3)

Evidence for a C, and an A, component was found [15, 4], both in the zero field high temperature
IC structure and in the high field low temperature IC structure. The proposed linearly polarized
structure is a canted IC structure modulated along b. The modulation itself was found to vary
heavily on both field and temperature. This indicates that the modulation is a central adjustable
parameter for the system to lower its energy upon changing both temperature and field.

4,1 Experimental setup - RITAII

In the RITA-II experiment a 5 X 5 X 9 mm single crystal was used. Both elastic and inelastic
neutron scattering experiments were performed on the RITA-II triple-axis spectrometer at the
Paul Scherrer Institute (SINQ, PSI) with the crystal oriented on an aluminum sample holder with
the ¢ axis vertical in a 14.9 T Oxford cryomagnet. No collimation was used. The diffraction studies
were performed with 4.04 A (6 meV) neutrons using only the central blade of the analyzer.

4.2 Evidence of a low temperature spiral and a second order transition to a
linearly polarized structure

The previously determined high-field IC structure with ordering wave vector (0, k;., 0) had basically
C, symmetry with a small A; canting plus small commensurate F, and G; components induced
by the field.[4, 15] In order to check for spiral components, the temperature dependence of three
magnetic IC peaks (0,1 + k;,0), (1,%,0) and (1,2 + k;,,0) at 14.7 T was measured.

As shown in Fig. 16 a), the extension of the neutron diffraction experiments has now shown that
there is intensity in the (1, k;,,0) reflection. This reflection derives mainly from an A, or an A,
component according to table 7. The intensity disappears below and not at Ty =~ 20.8 K indicating
the presence of a second magnetic phase transition at 17.7 K. Referring to Eq. (4.3) it is seen that the
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FZ i Fg FE [ P2 P P
(1, &, 0) 0 156 04 0 |0.09 091 1

LIk (o

(1,2+#k,,0)| 0 156 04 0 [093 007 1

1c?

Table 7: Squared structure (¥') and polarization (P) factors for the three IC peaks used to establish
the spiral structure in terms of the irreducible representations. The structure factors are normalized
to unit spin lengths of the spin components. k;, = 0.18 rlu have been used, but note that small
changes of ki have no effect on our conclusions.

order parameter between 17.7 K and Ty belongs to the irreducible I'; representation, whereas the
new order parameter appearing below 17.7 K has the symmetry of the I', or the I'; representation
depending on whether the (1, k;;,0) peak is due to an A, or an A, component, repectively. In order
to check this, the temperature dependence of the strong peak intensity at (0,1 + k;;, 0) is depicted
in Fig. 16 c). Table 7 shows that the two components C, and C, are weighted equally and are the
only ones appearing in this scan. The abrupt increase shown by the (0,1 + k;,, 0) peak intensity at
17.7 K for decreasing temperatures allows a clear choice between the two possibilities for the new
order parameter. A I'; order parameter, which contains a C, component, contributes directly to
the (0,1 + k;;,0) peak, whereas the possibility of a I, order parameter can be dismissed since it
has no effect on this scan. The behavior of the (1,2 + k;., 0) intensity as a function of temperature
shown in Fig. 16 b) and c) is consistent with this result. This peak intensity reflects the A, and
A, components, and for increasing temperatures it shows a rapid drop at 17.7 K indicating a
vanishing A, component. The intensity, which remains above 17.7 K, is due to the A, component
being non-zero up to Ty. Table 7 shows that both the (1,k,0) and the (1,2 + k;;,0) peak may
contain contributions from the possible G components. However, since none of the peaks which are
dominated by the G components have been seen, they may safely be neglected here, where their
contributions are weighted with an intensity factor of 1/40 compared with the A components.
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Figure 16: a)-b) Neutron-diffraction scans through the (1,%;,0) and the (1,2 + k,0) peaks at
14.7 T applied along the ¢ axis at temperatures close to the transition temperature at 17.7 K. The
two peaks reflect, respectively, the A, (neglecting A, as discussed in the text) and the weighted
sum of the A, and A, components of the spiral structure. The A, component disappears above
17.7 K while the A, component persists. c) Integrated intensities of (0,1 + k;,0), (1,;,0) and
(1,24 k;,0) as functions of temperature at 14.7 T applied along the c axis. The integrated intensity

from the (1,k;,0) and the (1,2 + k;,,0) peaks have been multiplied by a factor of 140 and 170,
respectively. The onset of an additional order parameter below 17.7 K is evident.

In the present case the system may approach a circular polarization of the moments by either
combining the C; component with a C, or with a C,, component. The unique identification above,
that the new order parameter below 17.7 K belongs to the I'; representation, shows that the
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Figure 12: Calculated magnetic form factors for the four magnetic ions Ni**, Co?*, Mn?* and
Fe*t using equation 3.77.

some reciprocal lattice vector (moving with the sample) and the incident wave vector. Then,
defining the vector p =k — G, |p| = p, equation 3.78 can be integrated as ([17])

(27?)

Ornue =N —|E (G)|?6(G? — 2kG cosw). (3.79)
Assume that the reciprocal lattice vector is oriented horizontally and can be rotated about a vertical
axis. This is actually a requirement for G to lie in the plane spanned by k; and kg, which is called
the scattering plane. Set the scattering angle 20 to satisfy Bragg's law, thus only rotating the
sample through the scattering condition without moving the detector. The counting rate for the
reflection G as a function of omega can be expressed as follows:

® / Tnucdw
2

= @N( ) |Fy (G)|2f Z 8(G? — 2kG cos w). (3.80)

R

[l

The integration is done by substitution, putting z = 2k7 cosw, and due to the delta function
putting p = k and 7 = 2k cosw (the equivalent of the Laue condition)
v_ A

R = —® )P 81
m; smBl Fn(G)I5, (3.81)

where V = Nuyg is the volume of the crystal (which is easy to obtain). Note the peculiar A3-
dependency - the wavelength of the neutrons matters. Usually one compares two peaks, and in
order to do this, the difference in scattering angle needs to be accounted for:

Ri _ En(Gi)*/sin
Ry  Fy(Gg)|?/sinfy’

(3.82)

The factor of sin @ is usually called the Lorentz factor.
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system chooses the first one of the two possibilities. This choice is consistent with the fact that
the anisotropy parameters derived from the spin-wave analysis ([25]) identifies the ac plane to
be the easy one. Experimentally, it is difficult to measure the Cy component directly but the
analysis above, where the irreducible representations, or symmetry arguments, are utilized in the
interpretation of the experiments indicates that I'y, and thereby the C;, component, is probably
zero. Even though a non-zero C, component cannot be directly disproved, it is not necessary to
explain the data, and it makes little sense to have an additional cycloidal component given the
single ion anisotropies.

In conclusion, LiNiPO4 shows two continuous phase transitions at decreasing temperatures in the
presence of a c-axis field larger than 13.5 T. The ordered state just below Ty is described by an IC
order parameter belonging to the irreducible representation I';, with the dominating component C,
being slightly mixed with A,. At about 17.7 K there is a new second-order phase transition, where
the additional order parameter belongs to the I'; representation and may be described as being the
C, component slightly mixed with the A, component. The diffraction experiments do not allow
a determination of the phase difference between the two order parameters, but the only relevant
possibility is that the phases of the two components differ by 90°, since an elliptical polarization
minimizes the variation of the lengths of the ordered moments. Had the two C-type components
been in phase, the structure would just be a rotation of the linear IC structure towards a harder
direction, which must be energetically unfavorable. The phase boundary between the linearly and
elliptically polarized IC phases has been determined up to a field of 17.3 T. The two IC structures
are illustrated in Fig. 21 a) and c), and the observed phase boundaries are shown in the phase
diagram in Fig. 26.

4.3 Experimental setup - FLEX

4.04 A neutrons were used on the V 2/FLEX spectrometer, with a PG monochromator and analyzer.
A 2 x 2 x 3mm single crystal was used. In order to conduct the experiment the sample had to be
aligned within 0.5° in a small open aluminum cylinder with height of 4 mm and a diameter of 6
mm clamped between two dysprosium magnets.

4.3.1 Alignment problems

The relatively complicated setup of having a sample holder in which two dysprosium pieces are
clamped around the sample using mechanical springs, and fitted into a rod of only 20 mm in
diameter filling the entire sample space caused some problems. Although there was control over
the A3 motor for the sample rotation (or w), the position sometimes slipped in an unreproducible
manner, producing usable but irregular peaks as shown in figure 17. What caused these errors in
sample rotation remains unresolved. It could have been casual jamming of the sample stick causing
the A3 motor being off. On FLEX, the A3 angle is not absolute and there is no encoder, so a failure
to rotate would cause the UB matrix to be off. The best solution to this problem was to discard
the UB matrix entirely, and align on each measured peak using an iterative 4-step scan/centering
procedure. Starting with an omega scan centered on the peak position according to the UB-matrix
and performing an A3-A4 scan, another A3 scan ending with an A3-A4 scan, driving to the peak
center after each scan, one should be able to iteratively end up on the peak position, irrespective
of any offset in A3. To obtain the incommensurate modulation, both symmetry connected peaks
74+ =(0,1+¢,0) and 7— = (0,1 — ¢, 0) were used employing the formula

Fel=lE

This procedure improved the determination of the modulation, but the peak shapes were still
irregular yielding non-negligible systematic errors. Some improvement was achieved by simply
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fitting the last A3-A4 scan to a Gaussian, and removing any point more than 4 standard deviations
away from the fitted curve, refitting the reduced data points and using the obtained peak center
as a slightly better measure of the true 26 value of the IC peak. The relatively modest but still
desirable effect of doing this is shown in figure 17.

Gaussian fit before point removal Gaussian fit after point removal
0.05} 0.05} G
= 2 g i 2. .
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Figure 17: 8 — 20 scan before and after removal of points lying more than 4o way from initial fit.
On this scan only the encircled point is affected, and green points are not used for fitting. There
is a small shift in the determined peak center. It is important to emphasize that even though the
uncertainty of the physical A4 position is probably larger than the shift presented above, assuming
a statistical error in A4, the error in peak position of en entire scan will still be well below this
shift.

These procedures really decrease the amount of data obtainable on a 7 day beam time, but it was
still a small price to pay for doing neutron diffraction at 17.3 tesla, and determine the structure of
the second field induced incommensurate phase.
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Figure 18: Left: (0 1+ ¢ 0) and (0 1 —¢ 0)+ (0 0.4 0) plotted together so a comparison between the
symmetry connected peaks is possible. Similar behavior of the two peaks is clearly evident, which
is as it should be. Right: k;, as obtained from formula 4.4 as a function of applied field along ¢ at
2 K. It is clear that the modulation stabilizes at k;, = 0.2 for fields larger than 16 T.
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4.4 Evidence of high field commensuration of the magnetic structure

Using the previously described method of obtaining the incommensurate modulation k;,, the mod-
ulation was measured as a function of field at the base temperature 2 K. The results are shown in
figure 18. The modulation increases linearly as a function of field up to poH = 16T, where |k;|
stabilizes at 0.2 - corresponding to a quintupling of the crystallographic unit cell. Thus, increasing
the field in the low temperature IC phase at base temperature tends to squeeze the spiral in real
space up until attenuation at 16 tesla, where the spiral is a quasi-commensurate quintupling of the
unit cell. To examine how stable this phase is upon increasing temperature, |k;,| was measured as
a function of temperature at 17.3 tesla, which is shown in figure 19.
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Figure 19: Top left: (0 1+ ¢ 0) and (0 1 — g 0) + (0 0.4 0) plotted as a function of temperature
at poH = 17.3T. The position of the two symmetry connected peaks has substantial systematic
variations but the sign and size of the shift from ¢ = 0.2 are comparable below 10 K. Thus the
difference between 7 and 7_ has a stable value of 0.4 below 10 K. Top right: The integrated
intensities of (01 —¢ 0) and (0 1+ ¢ 0) as a function of temperature. They are both very irregular
but still display the expected power law. Bottom left: |k; | as a function of temperature at 17.3
T. The commensurate quintupling of the unit cell persists until incommensurability sets in at
T = 10 K. Bottom right: The average integrated intensity of the symmetry connected (0 1+ ¢ 0)
and (0 1 — ¢ 0) peaks. A power law is evident within errors.

As evident in figure 19 (top left) the peak position has some systematic displacements from 0.2
as a function of temperature. However, the sign and size of the shifts are comparable for the two
symmetry connected peaks, so the average modulation is 0.2 up to 10 K where k;, starts to drop
rapidly. At temperatures close to T, k;, rises rapidly up to almost 0.2 before the system enters
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the paramagnetic phase. Two more points on the phase boundary were measured at 5 and 8 K
respectively, giving evidence of a phase boundary almost parallel to the C — IC boundary at
lower fields (see figure 26). Both in figure 18 and 19 the error bars are smaller than the markers.
Using the calculated error of the determined peak center position of the Gaussian fits made, the
modulation values deviate more than their respective errors from 0.2. However, even without
the systematic errors present in the presented data, any instrument will have some systematic
errors when compared to the very small error of determined peak positions. Especially due to the
systematic errors in this data set, it makes little sense to regard a determined modulation of 0.201
as significantly above 0.2. In spite of the insufficiency of the statistical errors, the author would
anyway like to point out that the average of all the measured values of the modulation in the 1/5
phase shown in figure 19 (bottom left) and 18 (right) is kijc—qug = 0.19994 £ 0.00009, and that an
actual quintupling of the unit cell is a solid interpretation.
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Figure 20: k-scans of the (1, ki., 0)-peak at T’ = 2K (left) and T' = 16K (right). These scans were
made before the alignment issue was resolved, so the intensities are not correct. The binary results
that the peaks are there, of course, holds.

To firmly establish that the high field commensurate phase is indeed a spiral, the (1, k;., 0)-peak
was measured at 2 K as well as above 10 K at pgoH = 17.3T. Since the crystal used was 20
times smaller than the one used for the RITA-II experiment and with a considerable increase in
background due to the amount of glue, the counting times were rather long. It was confirmed
that the peak was observed at 2, 10 and 16 K. This was done before the alignment issue was
resolved, so the intensities from the k-scans are faulty. It is confirmed however, that the high field
commensurate structure is indeed a spiral.

In conclusion, the two high field neutron diffraction experiments at RITA-II and FLEX show that
there are three distinct incommensurate magnetic phases below 17.3 tesla applied along ¢. At low
temperatures the structure is a canted spiral rotating in the easy ac-plane and propagating along the
b-direction. Upon increasing field one twists the spiral in real space. For magnetic fields above 16
tesla and for temperatures below 10 K, the canted spiral reaches a quasi-commensurate quintupling
of the unit cell along b. At temperatures between 17.3—17.8 K the canted spiral undergoes a second
order transition to a linearly polarized canted IC structure. The phase boundary for this transition
seems to follow the Ty phase boundary. The full phase diagram can be seen in figure 26.
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Figure 21: The three magnetic IC structures shown by stacking six unit cells along b. Only the
four magnetic Ni?* ions are shown in each unit cell. a) Magnetic IC spiral at 2 K and poH = 13
T applied along ¢. The circles around the lower left ion marks the rotation plane of the spins and
the black line marks the spiral itself. b) Lock-in commensurable spiral pgH > 16 T and T < 10 K.
The 1/5 modulation is evident by comparing the 1st and the 6th unit cell. ¢) Linearly polarized
IC structure; the line marks the sinusoidal modulation. In the phase diagram for fields along c,
shown in Fig. 26, the three structures are denoted as IC,., 1/5-C and IC,, respectively.
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4.5 Magnetization measurements

Magnetization measurements were performed for fields applied along all three crystallographic
directions. Jens Jensen from the University of Copenhagen has developed a mean field theory
for LiNiPO4 using the model established in [15, 25]. This enabled a straightforward comparison
between theoretically and experimentally determined susceptibilities. Confirming the magnetic
structural phase transition at 17.7 K from bulk magnetization data would also firmly establish the
existence of the two IC phases. Unfortunately, the CFMS system at Risg is not able to go above
16 tesla, so the high field commensuration of the spiral could not be confirmed by magnetization
measurements.

A CRYOGENIC cryogen free measurement system (CFMS) at Risp DTU was used to perform
vibrating sample magnetization (VSM) measurements. The way the magnetization is measured
is simply placing the sample in an external DC field and performing small vibrations parallel to
the field. This vibration of magnetized material induces a current in two pickup coils which is
proportional to the magnetization. Magnetic fields 0 < pyH < 16 T were applied along all three
principal axes for temperatures 2 < T' < 300 K. Susceptibilities are measured at pgH = 1 T, which
lies within the linear regime of magnetization vs. field as evident in figure 23. There is evidence
of a small amount of magnetic impurities when looking at the temperature-scans with an applied
field of 1 and 16 tesla applied along b (see figure 22). At low temperatures, there seems to be a
rather drastic increase of magnetization at 1 tesla which is not there at 16 tesla. This could be
caused by the divergent susceptibility of impurities (most probably from unreacted nickel) at low
temperatures, which is not there at 16 tesla. This is due to the fact that the impurity magnetization
will have saturated at 16 tesla, and therefore, the fractional contribution is less (the magnetization
in figure 22 is normalized to applied field).
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Figure 22: The magnetization in 52—~ at 1 and 16 tesla applied along b. The Curie tail is
evident at 1 tesla but not at 16 tesla.

Trying to level out the low field curves and comparing the susceptibilities with the results from
[28], an impurity concentration of ¢ = 0.0035 free nickel atoms pr. bound nickel atom was found to
be a suitable value. Thus, from all the magnetization data a paramagnetic impurity magnetization
from § =1 and g = 2.2 free nickel ions had to be subtracted using the formula [8]:

28+1 25 +1 1 1
Mipp = ch( 95 coth(a 55 )—gcoth (Q-‘S—;a)),

stSyolt 1

where o =

This formula is directly applicable when using the unit pp/Ni-atom. Figure 23 (left) shows the
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magnetization as a function of field at 5 K applied along all three crystallographic axes. A linear
behavior at low fields is evident for all three axis, whereas in the full field range the magnetization
increases a little more slowly. The critical field for the C — IC transition has been determined by
performing field scans at constant temperature. A typical field scan at 13 K can bee seen in figure
23 (right). The differential magnetic susceptibility dM/dH is shown in the inset, and it is clear that
a very precise peak determination can be done by eye. As the peak is not symmetric a Gaussian
fit would not give a correct peak value, and it is the author’s opinion that peak determination
by eye is as free of systematic errors as any other reasonable method. The hysteresis loop at 5
K is shown in figure 23, and it is evident that a hysteresis of around 0.15 tesla is present at low
temperatures. In this work, the C' — IC phase boundary obtained from field scans is defined as
the field of maximum differential magnetization upon increasing the field (as in [15] and [4]).
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Figure 23: Left: Field scans at T = 5 K for all three crystallographic directions. The magnetization
curves for fields applied along a and b are almost linear with a slightly decreasing susceptibility.
For field along ¢ the susceptibility is much lower than along the other two directions, and there is
a clear jump at the C' — IC transition. The inset shows the hysteresis loop. Right: A field scan
at 13 K. The inset shows the differential magnetization allowing for a precise determination of the

critical field.
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Figure 24: Left: Temperature scan at poH = 16 T applied along b. Ty can be determined with low
precision from the small peak in differential susceptibility preceding the larger peak that reflects
Tnc Right: The temperature dependence of the magnetization at 12.5 T applied along the ¢ axis.
Two clear jumps in magnetization indicates the commensurate ordering temperature and the re-
entrance into the IC phase upon cooling. The insets show the differential magnetization upon
cooling with an additional focus on the kink at T}y .
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For the sake of completeness, the phase diagram along b and ¢ has been determined from magneti-
zation measurements. Figure 24 (left) shows a typical temperature scan used to determine the two
transition temperatures Ty and Ty ¢. The phase diagram is rather featureless and shown in figure
27. That the IC phase is much easier to magnetize along ¢ is clearly evident in figure 24 (right),
where the magnetization drops while cooling into the C' phase after which is rises rapidly upon
entering the IC phase again. This scan also directly confirms the dome-shaped C — IC phase
boundary exhibited near T' = 10 — 15 K. The second order transition from a linearly polarized IC
structure to a spiral rotating in the ac plane can also be seen in magnetization temperature scans
if one knows where to look (as one does from neutron data). Figure 25 shows the magnetization
as a function of temperature at 16 (left) and 14 tesla (right). At 16 tesla a kink is directly evident
at 17.3 K, giving rise to a clear peak in the differential magnetization. Since the neutron data
provide exact knowledge of the nature of the phase transition and the phase boundary, this kink is
readily interpreted as a result of the decrease in magnetization along ¢ due to the spins starting to
be polarized along both @ and ¢. At 14 tesla no kink is directly evident in the magnetization data.
The differential magnetization, however, displays the same behavior as at 16 tesla, so the small
peak at 17.5 K is interpreted as the phase boundary. This interpretation of the 14 T is doubtful
though, and only reasonable in light of the neutron data and the 16 tesla kink.
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Figure 25: Left: Magnetization as a function of temperature at 16 tesla. A kink is clearly evident
at 17.3 K. The inset shows the differential magnetization where a peak is very clear at 17.3 K Right:
A temperature scan at 14 T. No kink is directly evident but the differential magnetization (inset)
facilitates a determination of the phase boundary.

These magnetization data enable a very precise determination of the C' — IC phase boundary,
and in conjunction with the neutron data a very thorough phase diagram can be presented for the
magnetic phase of LiNiPQy4 for up to 17.3 tesla applied along c.

4.6  (pol,T) phase diagrams of LiNiPQO,

The phase diagram for fields along ¢ is shown in figure 26. The main features of the phase diagram
were already determined in [4]. The dome-shaped C — IC phase boundary is clearly confirmed
by magnetization measurements. The phase boundary between the spiral phase and the linearly
polarized phase seems to be parallel to the incommensurate ordering phase boundary, which is
clearly evident at higher fields. Furthermore, the phase boundary between the spiral and the
1/5 phase seems to be parallel to the C — IC phase boundary. As also indicated in the pulsed
magnetization measurements performed in [27] the dome-shape should also hold for the 1/5 phase.
The triple point between the two IC phases and the C phase shown in figure 26 has not been
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confirmed by direct measurements. It is just a consequence of keeping the linear-spiral phase
boundary parallel to the ordering phase boundary. Should the triple point be there, it could be
interesting since the two phase transitions are of 1st (C' — IC') and 2nd order (linear-spiral). Figure
27 shows the featureless phase diagram as measured by applying field along b. The incommensurate
and commensurate ordering temperatures are only slightly less at 16 T than at zero field. The phase
diagram for fields applied along a is almost identical.
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Figure 26: (uoH,T) phase diagram of LiNiPOy for poH > 10 T applied along the c axis. The black
circles mark the C-IC phase boundary as found using magnetization data, supported by neutron
diffraction data taken from [4] (stars). The diamonds mark the lock-in phase boundaries found
using V2/FLEX data. The squares mark the boundary of the IC spiral phase found at RITA-II
(below 15 T) and V2/FLEX (above 15 T), while the two right-pointing triangles indicate the phase
boundary detected by VSM measurements. The linearly polarized IC ordering temperatures are
taken from [4] (up-pointing triangles) supported by a measurement from V2/FLEX (down-pointing
triangle). The errors on the VSM measurements are much smaller than the markers, while the error
bars on the neutron-diffraction measurements are comparable to the marker size if not explicitly
given. IC, denotes the IC structure linearly polarized mainly along ¢, while IC,c denotes the IC
spiral in the ac-plane.

4.7 Spin excitations in the high field spiral phase

It should be emphasized that spin excitations have not been a major focus of this work. In LiNiPOy,
the zero field spin waves were thoroughly measured by Thomas B. S. Jensen. He proposed a model
for the exchange interactions based on said spin waves, which is well described in [15] and published
in [25]. That model is the basis for the Random Phase Approximation (RPA) calculations performed
by Jens Jensen. Since no spin wave calculations have been done by the author, no theoretical
emphasis has been given to this interesting subject. The RPA - described in [29] - aims to directly
calculate the two point spin correlation functions in 3.55, assuming that the thermal mean value
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Figure 27: Phase diagram for poH||b as determined from magnetization measurements. The zero
field transition temperatures seem to extent almost vertically upwards up to 16 T. The phase
diagram for fields applied along a is identical within error.

of the spins are close to the saturation value. These correlation functions are directly coupled to
the inelastic neutron scattering cross section. Assuming a spiral structure at 13.5 Tesla with a
modulation of 1/7 along b, Jens Jensen used the RPA to predict the spin excitation spectrum in
the high field IC phase from the zero field spin Hamiltonian derived in [15, 25]. The measured spin
excitations presented in this chapter have thus been directly compared to those calculated by Jens
Jensen; they have not been fitted to any function with free parameters.

When measuring the dispersion along k, the so-called imaging mode was used; the angle of each
blade is adjusted to the blade position with respect to the sample in a way so as each blade is set
to reflect the same neutron energy. The reflected neutrons from each blade hit a designated area
on a 2D neutron detector. Cross-talk between the seven channels is eliminated by a set of separate
collimators. The dispersions measured in this work were done by performing energy scans; the
incoming neutron energy was varied while the neutron momentum transfer Q and the final neutron
energy was fixed (measuring the magnon creation cross section). A Be-filter was placed before the
analyzer to remove higher order neutrons (absorbing all neutrons with a higher energy than the
fixed outgoing energy of 5 meV). In imaging mode, one can only control the position of the central
blade. So when measuring the dispersion along (0, ¢,0), the blades are positioned to measure seven
points in reciprocal space forming a line parallel to the K axis. Along K an energy scan is thus
effectively seven energy scans at seven different constant values of K. However, when measuring
along H the blades still span a line along K, so when measuring the dispersions along (g, 1,0) and
(g,1+ k;,0), the intensity from only the three central blades was collected.

Figure 28 shows a typical scan along (0,14 ¢,0), the K values given as @ are indicated. Two peaks
are evident in all scans, confirming that there are two separate branches along K. Four different
energy scans were performed along K, giving the dispersion shown on the upper part of figure 29.
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Figure 28: A single energy scan as measured by all 7 analyzer blades along (0,1 + g,0). The
resolution in ¢ is very good along k, which allows for thorough measurements of the dispersion

along k.

If LiNiPOy4 were completely isotropic in the ac-plane instead of having a weak preference along ¢, the
ground state would have been a spiral also at zero field. In this hypothetical isotropic case; before
settling on any magnetic structure, the ac-plane would have exhibited a continuous symmetry,
namely any rotation around the b axis. When cooling into the spiral phase, the structure settles
into a spiral (in principle two types of spirals with different chirality) and this continuous symmetry
is spontaneously broken. A pseudo-particle spectrum follows from this symmetry breaking with
modes with arbitrarily low energy. These modes are called Goldstone modes. In this case we have
no continuous symmetry to begin with as there is anisotropy in the ac plane, but as evident in figure
29 the spin wave energies approach zero energy at the IC peak position within the resolution of the
spectrometer. The physical reason for these low-energy excitations is as follows. Any translation
along b merely results in a phase shift of the spiral. A local phase shift away from the IC modulation
costs energy and can propagate like a spin wave, but an arbitrarily small phase shift is possible
with a resulting arbitrarily low excitation energy. These modes are called phasons and this is what
is observed.

The dispersions in the high field IC spiral phase at 2 K along (H,1 + k;,0) and (H,1,0) were
also measured. Again, there are two branches. Along (H,1,0), these branches merge or become
indistinguishable at high H values. Again, there is excellent agreement with the RPA calculations.

In conclusion, all measured spin wave dispersions are as predicted in the RPA calculations performed
by Jens Jensen. This confirms that LiNiPOy is very well understood.
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Figure 29: Dispersion measured along (0,1 + K,0) for 13.5 tesla applied along ¢. Top: The peak
values from Gaussian fits such as those depicted in figure 28. The purple line represents the RPA
calculation. Bottom left: Calculated spin wave intensities along K. Bottom right: Color plot
representing the measured spin wave intensities. An excellent agreement is clearly evident.
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Figure 30: Spin-wave dispersions in the IC-phase at 2 K and 13 T along (H,1+k;

1c?

0) and (H,1,0).




69

4.8 Magnetoelectricity in the high field spiral phase

No magnetoelectric effect has been observed in the linearly polarized IC phase of LiNiPOy4 [26, 30].
In the spiral phase two irreducible representations - or order parameters - co-exist. It has been
shown for cycloid structures in NigV2Og [31] and TbMnOj [32] that a so-called trilinear term can
be responsible for magnetoelectricity. Let o; and o; be the magnetic order parameters belonging
to irreducible representations I'; and I'j, respectively. Terms in the free energy expansion could
have the following form:

V= €iju0i(k)o;(—k) Py, (4.6)
ijp

where P, is a polarization vector along pu = z,y,2. Without elaborating further on the Landau
theory of the free energy expansion, such terms need to be invariant under the symmetry operations
in the little group Gy, . It is clear that this is only possible if the product of the two irreducible
representations transforms identically with at least one polarization vector under all the symmetry
operations. If this is the case, the term in equation 4.6 is invariant under the symmetry operations
of Gy,., and a non-zero ¢;;, is possible. The character tables for the four irreducible representations
I'1 — Iy, the product I'1I's and the three polarization vectors P, p = @,y, z are given in table 8.

(a) Character table of the four irre- (b) Character table of the three

ducible representations polarization vectors
I 2 mi, ™, 1 2 m, 9%,
I 1 B 1 i} P |1 -1 1 -1
I's 1 -8 1 -3 Bl 1 1 1
I's 1 B -1 - P, |1 -1 -1 i
| 1 -5 -1 B
i) # <G -8

Table 8: How the four irreducible representations and the three polarization vectors transform
under the symmetry operations of Gy;,_.

From tables 8a and 8b it is evident that no term of the form in 4.6 is possible when the order
parameters are represented by I'; and I's. This concludes the description of the work done on
LiNiPQy4. Three IC magnetic phases have been identified and the phase boundaries mapped out.
The spin excitations in the spiral phase have been measured and found in almost perfect accordance
with the spin wave calculations of Jens Jensen.
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5 Continuous spin flop and bicritical fluctuations in
isotropic LiMnPOy,

5.1 Introduction

LiMnPOQy, differs fundamentally from the other lithium orthophosphates in two ways. The magne-
toelectric tensor describing the coupling is diagonal; a;; # 0 and «;; = 0 for ¢ # j. In addition,
the Mn?* jon hasan L =0 ground state which means that to leading order there is no possibility
of DM-interactions and no single ion anisotropy term. In spite of this, however, there will still
be some anisotropy. This is due to the fact that even though the orbital momentum quantum
number is said to be zero in Mn?*, this is only an approximation - a very good one - since [ is
not a good quantum number. There is no continuous rotational symmetry due to the crystal field,
and there will be some mixing of different LS multiplets, even though this mixing should be very
weak. The spin waves in LIMnPOy4 have been measured in [33], where a Hamiltonian with a single
ion anisotropy term has been used. Due to the spin-only nature of the ground state of Mn?t,
this is a bit misleading. However, since a small anisotropy is expected, the anisotropies extracted
from the spin waves will have some merit, even though the cause of anisotropy is not necessarily
straightforward. These anisotropies and the exchange parameters are listed in table 9.

Jp I Jab Jae Jpe . Dy
0.20(4) 0.076(4) 0.036(2) 0.062(3) 0.48(5) 0.007(1) 0.009(1)

Table 9: The exchange interactions and anisotropies in LiMnPOy as given in [33]. All units are in
meV

Note that all the exchange constants are antiferromagnetic in nature, and that the anisotropies
are two orders of magnitude smaller than those of LiNiPO4. LiMnPO4, has an antiferromagnetic
ordering temperature of T = 33.8 K, and the magnetic structure has been determined to be a
C-type structure polarized along the a-axis [16]. At zero temperature, the thermal mean value of
the spins is § = 5/2 which is seen by maximizing the spin of the 5 electrons in the 3d obeying
Hund’s first rule.

" (PJB "\O@C‘O/

Figure 31: Spin flopping in LiMnPOy. Right: The low field spin structure of LiMnPOy4. The spins
are colinear and pointing along a. Right: The flopped spin state. The AFM spin configuration is
probably a C-type polarized along ¢ as expected from the anisotropy constants. This state is easy
to magnetize by simply canting the spins along the field; which gains Zeeman energy on all four
spins. This canting is resisted by the exchange interaction.
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Applying a field along the a-axis at zero temperature leaves little room for magnetizing the material,
as this can only be done by changing the thermal mean value of spins anti-parallel to the field.
However, by flopping the spins perpendicular to the field (see figure 31), magnetizing the material
is much easier as the system can gain Zeeman energy by canting the spins an angle 6 (see figure
31). This canting has an exchange energy cost of the order J - cos(f), and the flopping itself costs
anisotropy energy. At some critical field, when these costs are balanced out by the gain in Zeeman
energy, the system chooses to flop along the easiest of the two axes perpendicular to the field, and
the canting angle (as defined in figure 31) gradually decreases with field until saturation. A spin
flop in LiMnPOy is nothing new, it was discovered by J. H. Ranicar and P. R. Elliston in 1967
using magnetization measurements [34], where the critical field as a function of temperature was
also measured with an uncertainty of 0.1 tesla. They found the critical flop field to be 4 tesla at
4 K. In this work, the flopped structure is thoroughly determined using neutron diffraction. The
nature of the (puoH,T') phase diagram is determined with high precision near the bi-critical point,
where the two antiferromagnetic phases join with the paramagnetic phase. Lastly, increased static
fluctuations near the bicritical point are observed and reported.
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Figure 32: The instrumental setup in the TriCS experiment on LiMnPQy4. The magnetic field is
vertical and parallel to the a axis. The detector can be tilted out of the scattering plane to reach
reflections out of said plane.

5.2 The TriCS experiment - continuous spin flop and structure determination

In this section, the first diffraction experiment on LiMnPO, is described and interpreted. The
magnetic structure in the spin flop phase is thoroughly determined both by analysis of a few key
peaks and by a full structural refinement.

5.2.1 Experimental details

To examine the structure of the spin flop transition, a neutron diffraction experiment using the
TriCS diffractometer at the PSI was performed. A single crystal of very irregular shape - best
described by a wedge - and a weight of 220.14 mg was used. The crystal was aligned within 0.5° on
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a x-ray Laue camera and glued to an aluminum sample holder, mounted with the crystallographic
a axis vertical. A 6 T Oxford cryomagnet was used with a vertically enlarged neutron window to
allow outgoing wave vectors significantly out of the horizontal plane. The experimental setup is
shown in figure 32.

The vertically enlarged window allows for TriCS to measure reflections out of the scattering plane
since the 1D detector at TriCS can be tilted by an angle —10° < v < 40°, see figure 32. In this
setting, since the long crystallographic axis is vertical (and hence the short axis in reciprocal space),
three non-equivalent scattering planes can be measured in relatively strong magnetic fields. Sadly,
there was a problem with the magnet, which had a tendency to quench when going above 4.5 tesla.
This prevented the author to examine the whole phase diagram in this experiment. 40’ both vertical
and horizontal collimation was used between the sample and the monochromator. The incoming
beam propagates in a nose which ended in a 10 mm circular slit in this case. 80’ collimation was
used between the sample and the detector.

5.2.2 TFlopped structure determined using key peaks

One of the magnetic peaks reflecting the C, symmetry is (010). The structure factor is zero for all
other spin structures than C, and C,. This peak and another peak reflecting C type components
along all three crystallographic directions is an obvious place to start. To get a good idea of the
flopped structure, the integrated intensity of three different C-type peaks as a function of field -
(010), (012) and (230) - was measured. The structure factors for the nuclear cross section and for
the magnetic basis vectors are given in table 10.

F, Fi F; Fiz | P P; P:|Fj
(0,L,O)] 16 0 0 0O 1 0 1 [ o
(0,,2) | 4 2 0 0 1 08 014] 0
(2,3,0)|136 0 0 24 [087 013 1 | 20

Table 10: Squared structure (F') and polarization (P) factors for the three peaks used to establish
the flopped structure in terms of the irreducible representations. The structure factors are normal-
ized to unit spin lengths of the components. The structure factor of the strongest nuclear peaks is
4000 for comparison.

Figure 33 shows the integrated intensity of the (010) peak as a function of field and A3 scans of
(012) at 0 and 4.5 tesla, respectively, measured at 2 K.

The intensity of the (012) reflection decreases drastically when ramping through the spin flop
transition, far beyond what can be explained by a spin flop along b. In addition, the integrated
intensity of the (010) peak is constant over the measured field range. So the structure is C type
in both AFM phases and polarized in the ac plane in the flopped transition. The only reasonable
explanation is that the spins flop in the ac-plane from being polarized along a to being polarized
along ¢. To firmly establish this, the integrated intensity of the (230) peak was measured as well,
as the intensity should increase about 15 percent upon entering the flopped phase, which is indeed
evident in figure 34. It is important, however, not to over interpret the intensities of a few peaks,
as we have a fairly large crystal with a large moment. Therefore, it is probable that there is
extinction in the strong magnetic peaks. Furthermore, LiMnPQy4 contains lithium which has a
large absorption cross section. So when dealing with an irregular shaped crystal - as in this case -
absorption effects could be significant as well, due to a difference in neutron paths when measuring
different peaks. In spite of this, the general picture is quite clear though. Note that the critical
field increases with temperature; an increase of up to 0.5 T in the measured temperature range of
2-20 K.
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Figure 34 shows the integrated intensities of the three peaks as a function of field, consistent with a
spin flop C;; — C. The heavily decreasing peak (012) has been used for determination of the critical
field; all the used scans are shown in figure 34. The critical field has been defined as the maximum
value of dI/dH as determined by eye, with manually estimated uncertainties. Figure 34 also shows
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Figure 33: Left: Integrated intensity of (010) as a function of field. The intensity is constant over
the entire field range within errors. Right: A3 scans of (012) at 0 and 4.5 tesla. A drastic drop in
intensity is evident.
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Figure 34: Top left: Peak intensity of (012) as a function of field at various temperatures; these
are the scans used for phase boundary determination. Bottom left: Integrated intensities of the
(010), (012) and (230) peaks as a function of field. The data are consistent with a C-type flop of
polarization from @ to ¢, using table 10. Top right: Peak intensity of (012) as a function of both
increasing an decreasing field - no hysteresis is evident Bottom right: Slope of the intensity vs. field
curve for increasing field as given above, used for determination of critical field.
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the peak intensity of (012) as a function of both increasing and decreasing field. Interestingly, no
hysteresis is evident at all. This lack of hysteresis warrants an important comment.

Angular range of the spin flop as a first order transition

The importance of field alignment when inducing a spin flop has been investigated in [35, 36, 37].
In the very simple case of one antiferromagnetic interaction between two sub-lattices of strength
Jez and an anisotropy energy of Eqj, the critical angle ¥, below which the transition is first order,
and above which the transition is a second order spin flop like transition can be estimated as

E
U (T = 0) = 28.6° J‘*" [deg.] (5.1)
exr

o~

The dominating exchange parameter determining the C-type structure in LiMnPOy is Jy. =~
0.48 meV. The very weak anisotropy is D, = 0.007 meV. Substituting these values into equa-
tion 5.1 yields

LiMaPOs (1 — 1) » 0.42° (5.2)

This critical angle decreases as a function of temperature going to zero at the so-called bi-critical
point at Hy, and T, (note that T} # Tu), where the spin flop (SF) and antiferromagnetic (AF)
phases join with the disordered paramagnetic phase at higher temperatures. The temperature
dependency of the critical angle is

vr) ~ 08— L)

(5.3)
It is worth mentioning that these results were obtained from mean field approximations, which
are not valid at the critical temperature. Nevertheless the necessary degree of alignment is easily
obtainable.

5.2.3 Structural refinement of the TriCS data

The structure of the spin flopped phase of LiMnPQ4 has been determined by Rietveld refinement of
the single crystal diffraction data using the FullProf open source package, available on the Internet.
To obtain the integrated magnetic intensity of all reachable peaks, omega scans of these reflections
were performed at 4.5 T/2 K and 0 T/60 K respectively. These omega scans were fitted to single
Gaussians with constant background, and the integrated intensity taken to be the area of said
Gaussian. The magnetic intensity is thus the difference between the areas of the fitted curves
in the SF and paramagnetic phases respectively, corrected for the Lorentz factor. Some of the
measured peaks, however, need to be discarded for various reasons.

Figure 35 shows two typical discarded peaks (left and middle scans) compared to an accepted peak
(the right scan). The leftmost figure shows a very irregular peak shape which was found in some
of the reflections. The alignment-scans performed on a two-axis alignment instrument (Morpheus
at the PSI) showed no such irregularities, so since they cannot be ascribed to the mocaicity of the
crystal, they can be discarded. When doing magnetic neutron scattering of a relatively large single
crystal (roughly 300 mg) of a S = 5/2 compound, the problem of eztinction can occur. Extinction
can have several causes; the one considered here is merely the possibility that a large fraction of
the incoming beam is diffracted, so that the incoming neutron flux is not constant throughout the
crystal. With the current collimation setup before the monochromator, the incoming neutron flux
on the sample position is 9 - 105n/em?/s (the relevant data is on the TriCS web site). The crystal
cross section is never more than 0.25 ¢m?, so roughly 2 - 10° neutrons hit the sample pr. second.
This is without taking the bulky magnet into consideration which stops a large fraction of both
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Figure 35: Left: Erroneous peak shape with a very irregular shape Middle: The strong (010)
reflection. Right: The (032) reflection. All plots have been normalized to 50000 monitor which
corresponds roughly to 2 seconds of measurement time at maximum source flux.

the incoming and outgoing neutrons. In addition, the collimation between the sample and the
detector also absorbs a large fraction of the diffracted neutrons; reducing the signal but reducing
the background even more. Due to the vertically focusing mode - providing a very broad vertical
resolution function so that the diffracted intensity is less dependent on the angle v in figure 32 -
not all the diffracted intensity is measured in an omega scan. So one can assume that these effects
can be absorbed in a reduced incoming neutron intensity of say 5 - 10* neutrons pr. second. The
middle plot in figure 35 shows an omega scan of the very strong (010) reflection normalized to 50000
monitor which roughly corresponds to 2 seconds. The peak intensity is thus roughly 5000 neutrons
which is 10 percent of the incoming flux - a large fraction, especially due to the fact that the
strongest magnetic peaks will have the smallest relative uncertainties and hence the largest weight
in a refinement procedure. Therefore, peaks with a peak intensity of more than 1000 neutrons pr.
second have been discarded.

The refinement has been done using the 49 peaks left after implementing this selection procedure,
using the single crystal option in FullProf. Due to the fact that the (010) reflection has a constant
intensity throughout the spin flop transition, the only reasonable trial vector to refine in the flopped
phase is ¢; - C, + ¢3 - F;, where ¢; < ¢;. FullProf varies the parameters ¢; and ¢y and calculates
the structure factor as well the parameter

2
(=)
obs,n cale,n
M=>" - , (5.4)
n

where n is the observation index (a total of N reflections) and Fyp; , and Feglen are the square of
the observed and calculated structure factors respectively. o, is the statistical error of observation
n. The observed structure factors are deduced from the integrated intensities by correcting for the
Lorentz factor (done by the author) and the magnetic form factor (done by FullProf). Thus, M
is a measure of the x? which is exactly what FullProf minimizes. FullProf returns the following
parameters:

Yon Ve — Pt
RFQ — 100 - n [ obs,n E catc,n ] RwF2 =100 - Agz i
En Fobs,n Zn .Lo_hnzs_a.’l.
Zrt [ FObS:” - Fczalc n j‘ M
Rp = 100- = and x’=——, 5.5
: zn Fobs,n & N — P ( )

where p is the number of parameters to refine. x? is thus actually the reduced x? which is the
most widely used indicator of the goodness of the fit. Figure 36 shows the observed structure
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factors of the 49 peaks as a function of sin(8)/A (essentially T in a diffraction experiment) plotted
along with the calculated structure factors after refining the two parameters ¢; and ¢, in the vector
¢y + C, + ¢y F;. The absolute difference |Fyps — Feqic| is plotted below so that the goodness of fit
for each individual peak can be evaluated. There seem to be substantial deviations of the observed
structure factors from the calculated ones, but the error bars on the observed structure factors are
merely statistical. Absorption effects, minor extinction effects, effects stemming from the sample
not being centered on the axis of rotation and the bulky magnet have not been accounted for in
these error bars. Therefore, reduced x? values of any refinement areeszpected to be significantly
above 1.
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Figure 36: Top: Integrated intensity of all peaks accepted by the author and FullProf as valid
magnetic peaks plotted along with the calculated values. Bottom: Difference between observed
and calculated intensities. There are significant deviations but not enough to doubt the C, + F,
structure in the author's opinion.

Thus, the fit seems reasonable by looking at figure 36. The refined parameters and goodness-of-fit
values are given in table 11.

C1 &)] RF2 RwFQ RF XZ

c1C, +coFy || 3.93(3) 0.37(6) | 32.8 158 324 5.93

c1C, +caFy || 3.93(3) 0.45(12) | 34.6 16.3 34.6 6.31
aC, 3.93(3) : 355 168 37.8 6.42

Table 11: Refinement parameters and goodness-of-fit parameters for three different spin structure
vectors. As evident, the most physical refinement is the one with the low reduced x2.

Table 11 also shows the results from refinements with the vectors ¢, C; and ¢,C; +coFy,. The C-type
structure polarized along z is maintained but the credibility of the refined field induced canting can
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be estimated by performing these two refinements. It is clear that the finite F,, component reduces
the chi square significantly compared to the refinements with y-polarization and with no canting
at all. The refinement with C, + F, components shows a finite F;, component within uncertainty.
However, the structure factors are the same for F), as for F, with the polarization factor as the only
difference. This is therefore as expected - the relative uncertainty of the F, component is much
smaller than that of the F, component and the overall reduced x? of the refinement is smaller.
Actually, introducing a F,, component does not make much of a difference at all compared to the
case where only the C, structure is refined. The prefactors ¢; and ¢; are actually the magnetic
moments, but the value of ¢, is significantly smaller than the expected value of 5up. The relative
magnitude of these constants are determined by the relative intensities of the magnetic peaks,
the absolute magnitude is determined by the scale factor of a refinement of the nuclear structure.
This has been done, and the scale factor has been introduced in the refinements presented above.
However, with such a large crystal containing neutron absorbing lithium, this scale factor cannot be
completely trusted without a refinement of absorption corrections. This is difficult however, since
the crystal shape is very irregular. In this work, therefore, the absolute moment as determined by
the FullProf refinement is discarded and only the relative values of ¢; and ¢y are trusted. This has
little consequence as L = 0 and hence the magnetic moment is not expected to differ from 5 up.
The refinement of the ¢;C, + ¢ F,. vector thus gives a field induced canting angle in the flop phase
of 5.4° £ 0.9° at 4.5 T. Again, this uncertainty is merely statistical.

5.3 Magnetization measurements

Magnetization measurements have been performed on the same crystal as used in the TriCS ex-
periment. The crystal was glued onto a plastic tip, which was mounted in a plastic straw attached
to the sample stick. VSM measurements were performed as a function of both temperature (at
constant field) and field (at constant temperature) and the phase diagram determined.
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Figure 37: Left: Magnetization as a function of temperature at 4.5 T applied along a. At roughly
33 K the magnetization decreases sharply with almost a discontinuous jump in differential magne-
tization (inset). Upon further cooling LiMnPQy enters the flopped phase and the magnetization
rises. Right: Magnetization as a function of field applied along a at 2 K. At low fields, LiMnPOy4
is difficult to magnetize. At 4 T however, the spin flop occurs followed by a heavily increased

susceptibility.

Figure 37 (left) shows a temperature scan at 4.5 tesla applied along a, which is just above the critical
field at low temperatures and just below the critical field at the ordering temperature. The slope
of the phase boundary as found by neutron diffraction is easily confirmed as the magnetization
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shows a drastic increase upon cooling into the flopped phase. A field scan at 2 K is shown in
figure 37 (right). The critical field is defined as the point of maximum slope found by eye on a
differential magnetization plot. The huge difference in susceptibility of the two phases is directly
evident. In both figures a low temperature magnetization at 4.5 tesla of roughly 0.33 pp pr. Mn
atom is extractable (again by eye). Since L = 0 one can relatively safely assume Ag = 0 and
S = 5/2. Assuming this moment, the canting angle due to the Zeeman term is roughly 7.5°
which is higher than the refinement value within error but not alarmingly so, since any systematic
uncertainties have not been accounted for in the error of the refinement canting angle. If one allows
for paramagnetic impurities in the crystal and assumes that the sample holder (bulk plastic) and
glue contribute to the magnetization to some degree, the two canting angles are consistent.

Suitable field- and temperature scans have been made to determine the phase diagram and the
susceptibility was measured in a field of 0.1 tesla. Figure 38 (left) shows the inverse susceptibility
as a function of temperature which is linear in the interval between 50 and 300 K. Thus, the
susceptibility has a 1/T-dependency in this regime before it starts to drop rapidly to zero at
Ty = 33.4 K. The 1/ curve deviates a little bit from linearity at roughly 45 K - somewhat above
Tx - which is expected especially since dynamical magnetic fluctuations has been observed up to

50 K [33].
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Figure 38: Left: The susceptibility for T = 2 — 300 K as measured by VSM in a DC field of 0.1 T
Right: Magnetization as a function of temperature at goH = 5 T' which is above the spin flop field
at all temperatures.

Figure 38 (right) shows the magnetization as a function of temperature at 5 T. This scans shows
how all temperature scans for fields above the high temperature flop field look like; they display
an almost constant magnetization as a function of temperature when cooling below Tx. The
shape of the curve makes it very difficult to define an ordering temperature and to prove that the
experimental criteria for long range order is the same above and below the flop field. This makes it
very difficult to examine details of the phase boundary near the ordering temperature, using only
magnetization measurements.

5.4 Magnetic phase diagram and bicriticality in LiMnPO,

In this section the phase boundaries as measured on the RITA-II spectrometer will be presented
along with the effects seen near the bicritical point.
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5.4.1 Experimental details

To examine the phase boundaries near the point in the phase diagram where the two ordered
and the disordered paramagnetic phase meet - the so-called bicritical point at (T}, H;) - neutron
diffraction has been used for reasons clarified above. The same sample as used on TriCS and
magnetization measurements was used. The triple axis spectrometer RITA-IT at the PSI was used
with the Oxford 15 T cryomagnet. The incoming and outgoing neutron energy was 5 meV, and
there was a 40’ collimator between the monochromator and the sample and a 80’ collimator between
the sample and the analyzer (mounted within the Be-filter). The same plastic sample holder as
used in the magnetization measurement was used in the RITA-II experiment. This could result in
poor thermal contact between the sample and the heater situated near the end of the sample stick
(not the sample holder). Therefore, the heater itself was switched off and only the exchange gas
was used to stabilize the temperature. This took several minutes of waiting time until equilibrium
was reached.

5.4.2 The ordering phase boundary

In order to examine the ordering phase boundary, the integrated intensity of the (010) reflection can
be used when cooling into both the zero field and the flopped phase. Since the neutron scattering
cross section is proportional to the square of the thermal average of the magnetic moments, one
can deduce the sub-lattice magnetization M as simply the square root of the integrated intensity
- MY« Tho. Figure 39 shows the sub-lattice magnetization as a function of temperature for
temperature intervals near the ordering temperature at zero field, the high temperature critical
field - 4.7 tesla - and 12 tesla. These curves have been fitted to the following function:

Mt = AT - TnlP ifT < Ty, (5.6)
0 ifT>Ty ’
H=0T H=47T H=12T
Hlla Hlla Hila
(010) (010) (010)
B =0.151 +/- 0.003 B =0.15 +/- 0.003 B =0.15 +/- 0.003
01r 7, =334 40,007 041 71, =3278+/- 0.005 01F  T,=3278+/-0.005
® 9
0 0 4 0
30 32 34 36 30 32 34 36 30 32 34 36
T (K) T (K) T (K)

Figure 39: Sub-lattice magnetization as a function of temperature near Ty at 0 T (left), 4.7 T
(middle) and 12 T (right). The data have been fitted to the function in equation 5.6 with a fixed
background of 0. As evident, the critical temperature at the flop field is significantly lower than
that in zero field, but the critical exponent is the same.

It is clear that the critical temperature is significantly lower at the spin flop field of 4.7 T" than at
zero field - this is not only due to the errors on the fit parameters but can be seen by eye. Hints of
this shape of the phase boundary were seen by magnetization measurements as well, which was the
main reason for doing the RITA-II experiment. The critical exponents are the same within error.
Above the ordering temperature there is a finite intensity when measuring a rocking curve at zero
energy transfer. This is due to critical fluctuations representing small statically ordered domains
embedded in the otherwise disordered paramagnetic phase above Ty of size - or more correctly
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- correlation length £. A system with infinite correlation length has structure factors which are
sharp delta functions at reciprocal lattice points giving rise to the resolution limited Gaussian
peak shapes. Above T however, there are no long range order and the peaks assume a broad
Lorentzian shape centered at reciprocal lattice points (still to be convoluted with the experimental
resolution) with a peak width inversely proportional to the correlation length. There is a hint that
the intensity of these broad peaks is a little bit higher at the flop field than at 0 and 12 tesla. This
will be elaborated on in section 5.4.4.

5.4.3 The phase diagram

The phase diagram as determined by TriCS measurements, VSM magnetization measurements and
RITA-II measurements is shown in figure 40.
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Figure 40: Phase diagram of LiMnPQy for fields applied along a. The up-pointing orange triangles
represent the critical fields as measured by VSM magnetization measurements. The down-pointing
purple triangles are the critical fields as determined by the TriCS measurements of the (012)
reflection, and the purple diamonds represent the critical fields as determined by the RITA-II
measurement of the (001) reflection as a function of field. The black circles represent the ordering
temperature as found from power-law fits to the integrated intensity of the (010) reflection as
measured on RITA-IL. The spin flop boundary has a modest slope with the critical field increasing
with temperature. The inset shows that phase boundary close to the bi-critical point. The low-
field AFM phase boundaries merge with the spin flop phase boundary tangentially and the ordering
temperature seems slightly suppressed at the critical field.

The spin flop phase boundary has a slope; the critical field increases with temperature. The
ordering phase boundary seems to be a vertical line - with a Neel temperature independent of
field and spin orientation. This is not the case when zooming in on the bicritical point however.
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The ordering phase boundaries form a wedge of paramagnetic phase and they seem to approach
the bicritical point tangentially to the spin flop phase boundary. This phase diagram near the
critical temperature has actually been predicted by Michael E. Fisher, David R. Nelson and J.
M. Kosterlitz [38, 39, 40]. The predicted phase diagram is shown in figure 41 along with the
experimentally determined phase diagram - the similarity is close. So one can say that the phase
diagram near the bicritical point shows no surprises. Similar phase diagrams - with more or less
subtle differences - have been found in [41, 42, 37, 36].

T(K]

Figure 41: Left: Universal phase diagram for a spin flop system given in [38]. The two scaling field
axes § = 0 and £ = 0 are explained in the text. Right: The phase diagram of LiMnPO, with the
asymptotes and points as described in the text,

An analysis of the phase boundaries can be found in [38]. Fisher introduced a scaled temperature
and magnetic field in terms of the bicritical point (T}, Hy)

_T-T

t T,

and g = Hﬁ ~ HZ, (5.7)

where H|| denotes the field parallel to the easy axis. He then introduces the so-called optimum
scaling fields

t=t+qg and §=g—pt, (5.8)

The axes of this scaled ((uoH)?2, T coordinate system - j = 0 and £ = 0 - are calculated and drawn
on the phase diagram of LiMnPQy in figure 41. The axis £ = 0 can be calculated from the zero
field asymptote of the ordering phase boundary and from the dimensionality of the fluctuating spin
components n [38]. In the case of LiMnPOy there is not much difference between the calculated
axes for n = 2 and n = 3. The t = 0 axis is predicted to intersect the H? = 0 field axis in
the middle third of the interval [T} : Tiy| and both axes do. So the two possible dimensionalities
cannot be distinguished using this axis. One could fit the ordering phase boundary to get a fully
consistent theoretical description (in principle), but in this case, there are not enough points on
the phase boundary. Furthermore, the alignment was not under complete control neither in the
RITA-II experiment nor in the VSM magnetization experiment. It is the author’s opinion, that one
cannot just use the plug-and-play sample inserts of neither RITA-II nor the Risg CFMS system if
one wants to be aligned better than 0.1° for instance. Therefore, an unambiguous determination of
the dimensionality of the fluctuations from a fit to the ordering phase boundaries - as proposed in
[38] - is not justified by the data. The phase diagram still displays a remarkable resemblance with
the one predicted. In the next section, the neutron diffraction results from examining the wedge in
the phase diagram are presented.
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5.4.4 Criticality at the flop field H,

On figure 39 there was a hint of increased intensity of the critical scattering near the spin flop field
Hy, =4.7T. This was examined in more detail at the RITA-II experiment. Figure 42 shows some of
the (0 1 L) scans of the (010) peak at temperatures above Ty that were made during the RITA-II
experiment. The critical temperatures at the two fields - 0 T and 4.7 T - differ of roughly 0.65 K.
Note the logarithmic intensity scale. The scans have been fitted to a Voigt function - which is a
convolution between a Lorentzian reflecting the finite size of the domains and a Gaussian reflecting
the resolution. The width of the Gaussian has been fixed to the width of a low temperature Bragg
peak - which is Gaussian within errors. On figure 42 it is evident that relative to the ordering
temperature, there is a substantial increase of intensity at the critical field realtive to zero field.
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Figure 42: Left: Long L-scans at 4 different temperatures above Ty = 33.4 at zero field Right:
Long L-scans at 4 different temperatures above T = 32.75 K at Hy = 4.5 T. The logarithmic
intensity scale tones it down a little bit, but there is a substantial increase in critical scattering at
the bicritical field.

The fit is not very good close to the peak center on both plots at temperatures very close to
Tn (0.1 K). This is probably caused by the onset of long range order causing a narrow Gaussian
superimposed on the Voigt function. The Lorentzian peak shape can be described as I o< 1/ (q2+F2).
The correlation length along the direction in which one is scanning can be extracted as £ = 2x/T,
where I' is readily extracted from the voigt fit parameters.

Figure 43 (left) shows the integrated intensity of the critical scattering as a function of T — T'y.
On that plot it is very clear that intensity at the flop field shows a significant increase both when
comparing to the zero field and the 10 T case. So there is simply more order at the critical field
than there is a both higher and lower fields at temperatures close to T. Figure 43 (right) shows
the extracted correlation lengths along the c-axis for all three fields as a function of temperature.
The correlation length does not show a significant change at the critical field. The correlation
lengths have been fitted to the same temperature-dependency as in [33] (for comparison):

£(T) = AeT=ToF (5.9)

In [33], they used the 2D-XY model found in [43]. The fits are reasonably good, but the data are
not good enough to unambiguously determine the critical exponent or unambiguously distinguish
between models. For example, reasonable fits can be obtained to the data presented in figure
43 with a fixed v anywhere between 0.1 and 0.5. Therefore, little energy has been put into the
interpretation of the temperature dependence of the correlation lengths. A much more dedicated
experiment is necessary to determine the dimensionality of the fluctuations.
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Figure 43: Left: Integrated intensity of the long (010) L-scans as those presented in figure 42 as a
function of T'— Ty at 0 T, 4.7 T and 10 T respectively Right: The domain correlation length along
the crystallographic c-axis as a function of temperature at 0 T, 4.7 T and 10 T respectively. There
is a clear increase of critical scattering intensity at the flop field which is not there at neither 0 T
nor 10 T. The correlation length along ¢ as a function of temperature, however, remains the same

at all three fields within errors.

However, it is peculiar that the increase in neutron scattering intensity is not accompanied by an
increase in average correlation length or domain size. Just for the sake of argument - one could as-
sume that the correlation length is unchanged at the flop field along the two other crystallographic
directions (which is admittedly completely without empirical cause). The only way to have an
increased integrated intensity at the flop field, is that the density of ordered domains is increased.
One could imagine the scenario sketched in figure 44. At zero field and above the critical temper-
ature, there are small volumes with short range order - domains of only C, symmetry - embedded
in a disordered bulk sample. At the critical field the critical temperature is reduced because the
system cannot decide whether to order in a C + F; or C, + F, type structure. Furthermore, at
the critical field, domains from both C, + F, and C, + F, may appear increasing the density of
ordered domains which in turn gives rise to an increase in the critical scattering.

Disorder . Disorder

Figure 44: Left: The proposed zero field case - small volumes of order is embedded in a disordered
bulk material. Right: The density of such domains is allowed to increase a lot more at the critical

field before long range order is established.
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In conclusion, the spin flop phase diagram of LiMnPOy4 has been determined, and the structure
in the flopped phase has been determined to be a C, + F; type structure. Details of the phase
diagram has been determined near the bicritical point, and the phase boundaries have been found
to be as predicted by theory. An increase in critical scattering intensity without a corresponding
increase in correlation length (at least along c) has been observed.
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6 Zero field spin structure and field induced spin canting in
anisotropic LiCoPO,

6.1 Introduction

LiCoPOy is the lithium orthophosphate with the strongest magnetoelectric (ME) effect - 20 times
larger than that of LiNiPOy4 and 40 times larger than in LiMnPOy - coupling the crystallographic
a- and b-axis [3, 44]. It is interesting to note that LiMnPOQy is the lithium orthophosphate with the
weakest ME effect while LiCoPQy4 has the strongest. Applying Hund’s rules, a first approximation
of the Co?" moment is S = 3/2. However, LiCoPOy4 has a strong spin-orbit coupling and hence a
high effective g-factor (Ag/g = 0.3) - much higher than in LiNiPOy - as elaborated on in section
6.1.1. Since all the lithium ortho-phosphates are isostructural with only minor differences in the
location of the ions within the unit cell, the DM-interaction observed in LiINiPQy is likely to exist
in LiCoPOy4 and it is possibly stronger than in LiNiPOg4. The spin arrangement forms a Cy-type
structure below T = 20.8K [1].

The spin waves of LiCoPQ4 have been measured by Wei Tian ef. al. in [45]. The inelastic peaks
observed were much wider than the experimental resolution, and no double peak profile was seen.
Some of the data from [45] can be seen in figure 45
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Figure 45: Left: Energy scan at (010). There are two dispersions of which the authors have only
used the high energy branch to fit the exchange parameters. The data are from SPINS at NIST with
a resolution of 0.28 meV. Middle and right: Dispersions of the high energy branches as measured
by the BT7 thermal spectrometer at NIST with a resolution of 1 meV. The solid lines mark the fit
and the dashed lines the calculated second dispersion.

As evident in figure 45 (left) Tian et. al. observed two distinct branches; both of them have little
dispersion. They used the high energy branch for fitting the exchange parameters - using the same
model as given in [15, 25]. The branch at lower energies was not explained by the authors. The
width of the peaks in the energy scans is much larger than the experimental resolution on SPINS
(roughly 0.28 meV). This can be due to the fact that the two predicted high energy branches have
a weak dispersion and it can be difficult to distinguish the two. It can also be caused by the sample
consisting of two large crystallites which are misaligned with respect to one another and therefore
effectively causes four branches in the same energy regime (spin waves disperse in all directions).
The exchange and single ion anisotropy parameters as given in [45] are listed in table 12 .

Table 12 shows that the dominating exchange interaction Jp. is much stronger than any other
exchange interaction. This has to be stated cautiously though, since the errors of the determined
exchange parameters are quite large. It is also noteworthy that the anisotropies are both of the
order Jp. and almost equal. Thus, the system is Ising-like and has essentially no preferred direction
in the hard plane as in the case of LiNiPO4 which is XY-like.

Two unexpected effects have been seen in LiCoPOy. First of all, non-zero magnetic intensity in
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Jb Jc Jab Jac ch Da Dc
0.11(16) 0.19(13) -0.18(13) -0.16(8) 0.74(19) 0.72(19) 0.8(2)

Table 12: The exchange interactions and anisotropies in LiCoPQy as given in [45]. All units are in
meV. The very large uncertainties on most of the parameters should be noted.

the reflection (010) has been found [46], reflecting a non-zero C, or C, component. Second of
all, weak ferromagnetism along the crystallographic b axis has been discovered. These two effects
are rather surprising, since there is a mirror plane perpendicular to the b axis in LiCoPOy [47].
Furthermore, the original paper by Toru Moriya - the paper presenting a microscopic origin of the
Dzyaloshinsky-Moriya interaction - proposed DM interactions as the origin of weak ferromagnetism
in certain trigonal systems such as MnCO3, CoCO3. However, this is not likely in LiCoPO, under
the assumption of a Pnma space group. The three ezperimentally proven structures Cy, C,/C, and
F,, belong to three different irreducible representations of Pnima, which is not like in LiNiPO, where
the small canting component A, belongs to the same representation as the main spin component
C,.

Magnetization measurements have been performed on LiCoPQy as well. H. Wiegelmann discovered
a field induced magnetic phase transition occurring at roughly 12 T [48]. In 2010, N. F Kharchenko
performed pulsed magnetization measurements for fields up to 30 T and discovered three phase
transitions [49].
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Figure 46: Left: Field induced phase transitions in LiCoPQ4 measured by pulsed magnetization.
Two distinct peaks are evident followed by a constant plateau with a relatively high susceptibility.
Right: Magnetization as a function of field. These magnetization measurements should be estimated
with caution since thermal equilibrium is not reached and the field is strongly time-dependent.
Results from [49)].

Figure 46 (left) shows the differential magnetization as a function of field at 4.7 K. Two distinct
peaks suggest two field induced magnetic phase transitions, the third phase transition being a
second order gradual increase in magnetization until saturation is reached. In [49], it is suggested
that saturation magnetization is reached through three different magnetic phases. Thus the first
phase transition should be a field induced transition from the commensurate phase to a so-called
metamagnetic phase with M = 1/3Mg (Mg is the magnetization at saturation), where some of the
spins are flipped to lower the Zeeman energy (1/6 of the spins of M = Mg). These magnetization
measurements should be taken with a grain of salt, since in a pulsed field, the field is by definition
strongly time dependent and thermal equilibrium is not reached.
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6.1.1 Calculations done by Jens Jensen
In order to evaluate how close the branches are in the spin wave dispersion, Jens Jensen performed
RPA calculations as the ones presented in 4.7. The results are shown in figure 47.
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Figure 47: Spin wave calculations done by Jens Jensen assuming the exchange an anisotropy
parameters reported in [45].

As evident the two branches lie within 0.3 meV, a little too close for a cold triple axis spectrometer,
and way too close for a thermal one. A way to improve the rather important determination of the
exchange parameters is to measure these dispersions on a spectrometer with better resolution, and
on a crystal which has been certified as being monodomain. Jens Jensen also used a realistic model
for the Co?t ion, and calculated the spin and orbital contributions to the ordered moment J, - he
determined S = 1.15 and L = 0.87, and thus an ordered moment of 3.17u5 which is smaller than
the moment reported in [46]. This calculation also implies Ag/g ~ 0.3, which is three times the
value for LiNiPOy4. Thus, both Dzyaloshinsky-Moriya and anisotropic exchange interactions are
expected to be much stronger in LiCoPOy4 than in LiNiPOy. It should be noted, however, that such
a large orbital contribution can not be considered as a simple perturbation of the quenched ground
state. The effective g-value is in reality an effective g-tensor, which can be expected to result in a
highly anisotropic moment.

6.2 Zero field spin structure - the TriCS experiment
6.2.1 Experimental setup

In order to determine the zero field spin structure, the TriCS single crystal diffractometer at the PSI
was used. In many diffraction experiments a high background is accepted since a good background
determination would still allow peak intensities to be well measured. When enough peaks are
gathered, a good refinement of the magnetic structure can be obtained. In this experiment however,
the aim was to prove or disprove very small spin components as small as 0.2up (as in LiNiPOy).
Therefore, a high background is unacceptable. A main cause of background in neutron scattering
experiments is incoherent scattering from the glue used to mount the sample, that almost inevitably
contains a lot of hydrogen which has a very large incoherent scattering cross section. In order to
achieve a low background a very small crystal of LiCoPOy (50 mg) was wrapped in aluminum foil,
twisting the foil until the crystal was fixed and the foil itself made up a rigid rod. This rod was
mounted onto an aluminum sample holder with a small brass bolt.

In the TriCS experiment 1.18 A neutrons were used. Between the source and the monochromator
80’ collimation was used both vertically and horizontally, and there was no collimation between
the sample and the detector. The nose between the monochromator and the sample ended in a 7
mm circular aperture. Since only the zero field structure should be determined, a so-called 4-circle
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setup was used. The 4-circle setup (or Euler cradle) allows the user to virtually reach a spherical
shell of reciprocal space the thickness of which is only limited by the 20-range of the diffractometer
- which is thousands of reflections in practice. The 4-circle works by mounting the sample on a
sample stick which is able to rotate round the axis of symmetry - the angle ¢ - with the sample
centered on that axis. This sample stick is mounted onto the cradle, which is able to rotate the
sample stick in the plane of the cradle with the sample centered on the axis of rotation - called the
angle x. The cradle-sample stick ensemble as a whole is able to rotate in the scattering plane of
the detector - which is the conventionally define w or A3 angle of diffractometers. The 26 angle is
defined as usual and is independent of the 4-circle setup. The angles are illustrated in figure 48.

TP 5

20

Figure 48: The definitions of angles in the 4-circle setup, which are explained in the text.

In the 4-circle setup there are three angles determining the orientation of the crystal, where in
principle only two angles are needed. Often one sets up the software of the diffractometer to have
the cradle plane in the plane bisecting the incoming and outgoing wave vector - containing the
reciprocal lattice vector 7. If this is the case, a x rotation is simply a rotation of the scattering
vector 7 in the plane containing vertical and 7 itself. This is convenient since it simplifies the
intuitive understanding of the angles as well as keeps the poor vertical resolution coupled to only
one angle. In this setup approximately 500 reflections were collected at zero field with very low
background.

6.2.2 Simplification of the possible structure using key peaks

To heavily reduce the set of irreducible basis vectors to be considered in the final refinement of
the zero field magnetic structure of LiCoPOQy, the reflections forbidden by the selection rules of the
Pnma space group were measured with very high statistics. The forbidden peaks with low values
of || were chosen to maximize the magnetic form factor. The monitor preset was a factor of ten
higher compared to what is normally used for low |7| reflections - counting 20 seconds pr. point.
Figure 49 shows 4 such peaks, normalized to 50000 monitor - which is a counting time of roughly
2 seconds.

As evident from figure 49, all four peaks have zero magnetic intensity within errors. The (300)
peak rules out A, and A, components while the (120) reflection shows a vanishing A, component
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Figure 49: The reflections (300), (120), (110) and (310) - central for ruling out the A and G type
components - as measured at 6.5 K and 35 K respectively. The plots show the difference between
the two integrated intensities - AJ - and the calculated structure and polarization factors in terms
of the irreducible representations. Notice the low background of 2 counts pr. 50000 monitor,
compared to 30 counts in the LiMnPQ, experiment.

in zero field. All G type components are ruled out by the (110) and (310) reflections in zero field,
as evident on the two bottom peaks in figure 49. The F-type components are very difficult to
rule out by neutron scattering since the forbidden peaks have a zero structure factor of zero for
ferromagnetic components. They have been ruled out, however, by magnetization measurements,
to the extent relevant for neutron scattering experiments [47]. The weak ferromagnetism found in
[47) is far below what can be expected to be seen in a neutron diffraction experiment. The extent
to which the A and G type components have been ruled out can be estimated by considering the
two reflections (001) and (003) plotted in figure 50.

Figure 50 shows the (001) and (003) reflection as measured by TriCS. Assuming a zero G component,
the intensity observed in these peaks can be ascribed to the non-zero C-type structure factor.
Assuming that the form factor squared is roughly the same when comparing the (300) and (001)
reflection (even though |7| is roughly the same, the form factor could be anisotropic), there would
be an intensity of roughly |F3%|/|F| - If51? = 252[(cts - deg.)/mon] in the (300) reflection if the
structure consisted solely of an A, or an A, component. The zero in the (300) reflection is therefore
determined within an error 0.1 % of the expected intensity in case of an A, or A, structure. The
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Figure 50: The reflections (001) and (003) central for estimating the experimental precision. The
plots show the omega scan measuring the integrated intensity, the difference between the two
integrated intensities - AT - and the calculated structure and polarization factors in terms of the
irreducible representations.

staggered AF'M moment of A type structure is therefore determined to be less than
M} o ~ V0.001 - 3.505 ~ 0.1p (6.1)

This precision is quite respectable for a neutron diffraction experiment and can be entirely at-
tributed to the low background.

6.2.3 Refinement of the zero field magnetic structure of LiCoPOy

In this TriCS experiment there were no irregular peaks as in the LiMnPO, experiment with the
cryomagnet. Like in the LiMnPOy4 the peaks with very high intensity were discarded. The peaks
with a high nuclear cross section were discarded as well. In total 51 magnetic Bragg peaks were
used in the refinement. In the LiCoPQy4 the crystal was much smaller than in the LiMnPO4
(as mentioned in the experimental details). Furthermore, the crystal was more regularly shaped
than the LiMnPOy crystal; the dimensions are comparable in all directions (although the shape
can hardly be classified as spherical). Furthermore, the 4-circle setup is designed for diffraction
experiments, while the magnet used in the LiMnP O, experiment caused some irregular peaks. Allin
all, it can be said that a refinement of the magnetic moment and the magnetic structure is somewhat
more trustworthy in this experiment, due to the aforementioned factors and the low background.
The scale factor to be used in the magnetic refinement (crucial for a correct determination of
the size of the ordered magnetic moments) was obtained from a rough refinement of the nuclear
structure using peaks measured at 35 K. This refinement only has the atomic positions and the
scale factor as refinement parameters; absorption corrections, extinction corrections, Debye-Waller
factors have been left out. The observed and calculated structure factors for such a rough nuclear
refinement are shown in figure 51

As evident in figure 51 the scale factor refinement is not a good structural refinement - with
Rp2 = 23.3 and x% = 111 - but the scale factor seems to be reasonably well determined in the
entire range. Both increase and decrease of the slope of only 10 % worsen the fit considerably. The
peaks used in both the nuclear and magnetic refinements are all from the same quadrant which
ensures that the crystal orientation in the beam is roughly constant - so any absorption effects is
expected to be constant to some extent and therefore absorbed in the scale factor.

As mentioned previously, any A, G or F' components have been thoroughly ruled out by TriCS data
and magnetization data. The relevant components to refine are therefore merely C;, C, and C,.
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Figure 51: Observed and calculated structure factors for the refinement of the nuclear structure.
The solid red line shows the Fyps = Frq. line and the two stapled lines denote a 10 percent increase
and decrease in structure factor, respectively

Therefore, three different magnetic vectors have been refined for comparison: ¢;Cy, ¢1Cy + c2C:
and ¢;Cy + ¢3C,. The results and goodness of fits are listed in table 13

Ci Ca sz Rsz RF X2

a1Cy +c2Cy || 3.32(d) 0.57(10) | 205 204 245 2.06
eCy + ¢2C, || 3.16(4) 0.007(130) | 29.3 224 23.7 249
¢1C, 3.16(4) : 203 224 237 244

Table 13: Refinement parameters and goodness-of-fit parameters for three different spin structure
vectors. As evident, the C;, + C; structure gives the lowest reduced e,

As evident in table 13, the best fit to the data is the ¢;C} + c2C; structure. This spin structure has
the lowest weighted R value and the lowest x2. Even though the Rp2 and R values are actually
smaller when refining with the ¢;C), and ¢,Cy + ¢2C, structures, these values do not take the error
of the peak intensities into consideration. The fact that the ¢;Cy + ¢2C,; does not produce a C,
component within errors makes this structure even more rejectable. From the ruling out of F-,
G- and A-type components, it is therefore straightforward to conclude from the refinement of the
c1Cy + cC; vector, that the zero field spin structure is a 3.3pp - Cy + 0.6pp -C%. This gives a spin
rotation of 8, = 9.5° & 1.7°, which is quite a lot. The observed and calculated structure factors
and the difference between the two is shown in figure 52, along with an illustration of the zero field
magnetic structure in LiCoPQy4 as determined by TriCS.

The angle of rotation is almost a factor of 2 higher than that determined in [46]. In [46], the
authors use elastic peaks (not specified in the text) obtained at a thermal triple axis spectrometer
using A = 2.36 A. So the wavelength used in [46] is twice that used on TriCS. Since R o A%,
the reflectivity will be 8 times that of TriCS. The crystal size is not specified in [46], but if they
had used a crystal larger than 50 mg as that used on TriCS there could have been substantial
extinction and absorption effects. A full refinement of the magnetic structure has not been done in
[46], so there is a probability that these effects could have caused errors in the estimation of canting
angle and total moment. The moment determined in [46] is 4.2 pp which is 30 % larger than the
TriCS result. Overestimating the total moment could result in an underestimation of the angle of
rotation, if the (010) reflection is the only reflection used to determine the angle. The uncertainty
of the angle of rotation as determined by TviCS is quite high: 1.7°. So the TriCS result could be
overestimated. No error of the canting angle is given in [46], but the error could hardly have been
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Figure 52: Top left: Integrated intensity of all peaks accepted by the author and FullProf as valid
magnetic peaks plotted along with the calculated values for a C, + C, refinement. Bottom left:
Difference between observed and calculated intensities. Right: The zero field magnetic structure
of LiCoPQy4. The angle of collinear spin rotation towards the a-axis has been exaggerated for the
sake of illustration.

less than 1° &~ 0.054p5 which must be considered as a reasonable lower limit of what can be seen in
neutron diffraction experiments. So the democratically determined angle of rotation would be:

0, = 7.1° £ 2°, (6.2)

which is still quite a lot.

It is interesting that the refined ordered moment is ,/Cg + C2 ~ 3.35up when comparing to

the prediction of Jens Jensen of 3.17up, which were virtually independent of the strength of the
exchange interactions and therefore robust with respect to the poor quality of the spin wave data.
Therefore, this structural refinement provides experimental support to the theoretical calculation
of Ag/g ~ 0.3 showing significant orbital contributions - and therefore to the probability of strong
DM and anisotropic exchange interactions. If these two effects are much stronger than in LiNiPQy,
the question remains if this collinear rotation of the spins could have been caused by any one of
these interactions. In case of the DM interaction the answer is simply no, since no canting is seen.
However, the strength of the anisotropic exchange Hamiltonian H,, = S; -’T;jz + 8; should be
much stronger than in LiNiPOy4 and the term itself could cause such a coupling. That may be so,
but under the assumption of a Pnma space group, no Hamiltonian gquadratic in spins can cause
such a spin rotation. This is due to the mirror plane perpendicular to the b-axis (m,,, see table
5). This symmetry element transforms r; — r; for ¢ = 1,2,3,4 and takes the spin components
(Sz,8y,8;) = (=84, Sy, —S;). It therefore holds for any Hamiltonian quadratic in spins that

For any Hyore = ZskiijSf : anZHmt’mmiz = —Hyot.z (6.3)
kij

and similarly for a Hamiltonian H,. . rotating the spins towards the c-axis. The general Hamil-
tonian is simply not invariant under the mirror plane symmetry. Therefore, assuming a quadratic
Hamiltonian, at least the mirror plane must be broken below Ty in LiCoPO4. This is also sup-
ported by the fact that all the forbidden nuclear reflections seem to have finite - but very small -
intensity.
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6.3 Magnetic structure of LiCoPO, in field applied along «

To examine the magnetic structure of LiCoPOy4 in applied field, the RITA-II triple axis spectrometer
was used with the 15 T eryomagnet. The low background on a cold triple axis spectrometer, the
longer neutron wavelength and the high field available makes this setup ideal to detect small
changes in the magnetic structure. To reach high || reflections, second order neutrons were used,;
the analyzer was set to reflect 20 meV neutrons and the Be-filter removed. 40’ collimation was used
between the monochromator and the sample, and no collimation was used between the sample and
the detector. Only the intensity from the central blade was used. The crystal was mounted with
the a-axis vertical and the be plane coinciding with the scattering plane of the spectrometer. All
the peaks reachable in a single quadrant of reciprocal space were measured in zero field and at 13

tesla applied along a.
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Figure 53: The integrated intensity of the (021) and (041) reflections at zero field and 13 tesla
respectively. The finite nuclear background recorded at 35 K in zero field is plotted for comparison.
These two reflections reflect the same magnetic symmetries and they both show a significant increase
in intensity - Aly - upon applying field along a. The zero field magnetic intensity Al is shown
as well.

Figure 53 shows a significant increase of integrated intensity in both the (021) and the (041)
reflections, both reflecting G type and a little C' type components normalized to 10000 monitor
which is roughly 10 s of counting time on RITA-II. This is by itself quite peculiar since both €' and
G type components are antiferromagnetic; applying a field along a induces staggered magnetism.
This induced intensity could be nuclear, and using unpolarized neutrons the author possesses no
evidence to the contrary, which is important to underline. After all, magnetoelectricity is exactly
the effect of moving atoms with an applied magnetic field. However, the atomic shifts necessary for
generating the observed polarization are very small. In a field of 13 T, the mazimum polarization
density of LiCoPOy is 11072 uC/em?. Multiplied with the volume of the unit cell in cm -
3.10"%2¢m? - and converting from cm to A and from C to e gives a separation of two ions in
the neighborhood of 1073 A! This is simply not enough to cause an intensity effect in a neutron
scattering experiment - at least not in a simple triple axis setup. Furthermore, if the increase
in intensity is directly understandable in terms of the irreducible representations of the magnetic
structure, chances are that this will be the physical explanation. This is, however - as previously
mentioned - not empirically shown in this work. The intensity increase in figure 53 points towards
an induced G, or a G, component. In principle it can also be a C type component, but if that
was the case, it should be of the same order of magnitude as the size of the ordered, which is
unthinkable.

To conclusively determine the symmetry of the field induced staggered magnetization, the reflections
(001), (032) and (050) were measured at 13 tesla both in applied and zero field. The omega scans
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Figure 54: The integrated intensity of the (001), (032) and (050) reflections at zero field and 13
tesla applied along a respectively. The nuclear background has only been measured on the (032)
peak. As evident the (001) reflection rules out G and G, components, while the (032) and (050)
rule out any C-type components. There is a small increase of intensity in the (050) peak, but
nowhere near enough to be comparable to the field induced signal in the (041) reflection which has
a comparable magnetic form factor.

are shown in figure 54. As evident, there is no field induced intensity in the (001) peak reflecting
G, and G, components. Furthermore, neither the (032) reflection not the (050) reflection has
noticeable field induced intensity. Hence, the C-type components can be ruled out definitively.
The only remaining possibility is that the field induced antiferromagneic order has a G, structure.
Hence, there is a coupling between F, and G, components. This is indeed very possible when
considering the Pnma symmetries; F;, and G, belong to the same irreducible representation - as
evident in table 3 - and therefore terms coupling these two spin structures are allowed in a quadratic
spin Hamiltonian,
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Figure 55: Left: Peak intensity of the (021) reflection as function of field at T = 2 K. The curve
has been fitted to the polynomial I = H? + Ij - the fit is quite acceptable Right: Peak intensity of
the 021 reflection as a function of temperature at ugH = 13.57. The curve has been fitted to an

2
AFM Curie-Weiss (CW) law squared Méw =Iy+ (ﬁﬁ) as well as a CW law for comparison.
In both cases, the background and Neel temperature was fixed to observed values, Iy = 250 and

Tyx = 16 K. As evident, the squared CW law gives the best fit, in agreement to the fact that the
neutron scattering cross section is proportional to the square of the moment.

Figure 55 (left) shows the peak intensity of the (021) reflection as a function of field. If the G,
staggered component is directly proportional to the field induced ferromagnetic moment F, then
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the cross section - and hence the peak intensity - should grow as the square of the applied field.
As evident, this is indeed the case, the fit to the function Ipsy = H 24 Iy is as good as can be
expected. Figure 6.3 (right) shows the peak intensity of (021) as a function of temperature. As
there is a finite ordered F, component in an applied field even above T the peak intensity should
drop off as Igg; ~ 1/T above Ty. Again, this is the case; even above Ty there is a field induced G,
component that drops off as a Curie-Weiss law above T}. This strongly supports the assumption
that this field induced intensity is magnetic in origin.

Normally, the mixing of two different irreducible basis vectors in the structure factor of one reflection
is a bit inconvenient, but in trying to estimate the size of the staggered G-type moment along z
the mixing is immensely convenient as no assumptions about the magnetic form factor is needed
(the two contributions reveal themselves in the same scattering vector). Even better, the Lorentz
factor and the absorption correction cancel out. Since the peak intensity at maximum is below 100
counts pr. second - extinction effects are expected to be negligible. The relationship between the
two magnetic intensities extractable from the (021) data is

2 12
Iy _ ME|FeP|Pf oot = | T Mo, [FelIR P — 0.30 + 0.023 (6.4)
Ir ~ MEIFGPIRE T \ T HIEGPIRE T T

where Iy and Iy is as shown on figure 53. This corresponds to a canting angle of 5.2° £+ 0.35 with
respect to the main C}, component! The uncertainties given here are the statistical ones calculated
by propagation of uncertainties and should be regarded as an absolute minimum. This is a quite
high moment; the zero field canting moment in LiNiPOy is also 0.3 pp but this is a result of DM
coupling proportional to the main spin component with moment 2.2 up. In LiCoPQy4 the staggered
moment of 0.3 up is a result of a coupling which is only proportional to the field induced moment,
which must be much smaller than 2.2 up. The spin structure for strong field applied along a is
illustrated in figure 56.
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Figure 56: Left: Spin structure projected onto the ab-plane showing the C,, C; and F, components.
Right: Projection of the spin structure onto the be-plane showing the C, and the G, components.
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6.3.1 Dzyaloshinsky-Moriya interaction in LiCoP Oy

Thomas B.S. Jensen proposed in [15], that the zero field canting in LiNiPQy is caused by a DM
mechanism coupling either ions 1 <> 4, 2 3 3 or 1 <> 2 and 3 < 4. He applied the symmetry
arguments mentioned in 2.2.3, to exclude all other forms of D than D4 = (0, D'{4,0) =—-Dgog3=D
and Djy = (0, D{,,0) = D34 = D. This would cause DM Hamiltonians on the form (written only
for a single unit cell):

Hpar = Dig-[S1 x S4] — Dy - [Sz x S3]

= DYy, (S{S§ — S{S] — (5555 — 875%)), and (6.5)
Hba = Diz-[S1xSy]+Dig - [S3 x Sy
DY, (S7S3 — ST85 + (555§ — 555%))- (6.6)

In the case of LiNiPOy, this DM interaction favors an A, component since the main spin structure
is C;. In the case of LiCoPOy in an applied field along z, there is a field induced ferromagnetic
component along z - F, - and the spin components along z are the same for all magnetic ions -
S7®. Thus, the DM terms become:

Hpy = DYS™(Si—S;—(S§-53) and (6.7)
Hpa = D¥S™(Sf— S5+ (S5 — 87)). (6.8)

Thus, both these terms favors a (+, —,+, —) symmetry along z in case of a finite ., component,
which is exactly the observed G, component. It can therefore be said that the DM interaction
that was shown in [15] to exist in LiNiPQy also exists in LiCoPQ,. In principle, this DM term
also couples the observed minor C;, component in LICoPO4 to an A, component, but since the C,
component is so small the canting moment would be too small to observe in the TriCS experiment.
In principle, it could be observable in a dedicated experiment with high flux and low background.

This existence of a strong DM term in LiCoPQ, becomes even more interesting in light of the
empirical evidence that some of the symmetry elements of Pnma are broken in LiCoPOy - at least
the mirror plane my,. There is a possibility that the breaking of certain symmetry elements makes
new DM possible, and if so, that the strength of these interactions could be significant since a very
strong DM mechanism is now on firm empirical ground. The possible consequences of a strong DM
interaction and even a strong anisotropic exchange term will be examined in the next section.

6.4 Possible additional DM mechanisms in LiCoPO,

Now that the existence of a strong DM interaction has been proposed as a probable cause for the
substantial field induced staggered moment, it is interesting to evaluate the DM interaction in light
of the accumulated evidence that some of the symmetry elements are simply not there in LiCoPOQy.
In this section, the consequences of a hypothetically broken symmetry in terms of allowed DM
interactions is examined using the same tools as developed in [15]. Scrutinizing these possible DM
interactions may also lead to some insight into which symmetries are broken. It is important to
underline that these considerations are merely speculative and only the DM term proposed in the
previous section has been shown experimentally. For convenience the transformed magnetic ions
and the transformed spin components are re-stated in table 14 (identical to table 5).

The method used to determine possible DM-terms is the same as in [15]. The first and foremost
requirement is that any DM-coupling between two ions needs to be antisymmetric with respect to
ion exchange:

D;j = —Dj; (6.9)
i j
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Table 14: Transformation properties of the magnetic ions in the lithium orthophosphates and their
spin under the symmetry operations of the Pnma space group.

The secqnd requirement is the elegant trick derived in [15]: The transformed pseudo vector compo-
nents D7, of the untransformed ionic sites 1 and 4 - RD‘MRf - has to be equal to the untransformed
pseudo vector components of the transformed sites D;‘f(l) RER()RT> where R € G

RD,R' = Diﬁ(l)nmmmf (6.10)

The last consideration only used once in this section is that if two ions i and 7' have identical
surroundings and two other ions j and j’ have identical surroundings then D;; = Dy if the
exchange path between i and j and between ¢’ and j' are equivalent. This is perhaps not surprising,.
The considerations in the next sections are summed up in the following:

e In section 6.4.1 it is assumed that only the mirror plane - m,, - is broken as suggested using
equation 6.3. This will be shown to have little consequence for the possible DM interactions
in zero field. The transformation tables comparing the left and right hand sides of equation
6.10 for all symmetry elements are given in this section, and used throughout the following
sections.

o In section 6.4.2 the possibility of the DM interaction and the anisotropic exchange interac-
tion causing weak ferromagnetism is examined. Since DM terms causes spin canting and can
therefore not explain the ferromagnetic component parallel to the spins, a possible anisotropic
exchange-Hamiltonian will be suggested as a candidate for causing weak FM. This requires
that several of the Pnma symmetry elements are note there in zero field.

e In section 6.4.3 a possible anisotropic exchange-Hamiltonian will be suggested as a candi-
date for the collinear rotation of the spins towards the z-axis. The symmetry elements that
need to be broken in order for this to be possible are given as well.

e Lastly, in section 6.4.4 The DM interaction is suggested as a mechanism for causing a
magneto-electric effect. It is shown that in an applied field, the system could be able to
use the field induced ferromagnetic component in conjunction with the zero-field magnetic
structure components to lower the DM magnetic energy by facilitating a polarization. In the
case of fields applied along the y axis, this would require the mirror plane m;, to be broken
in order to explain a ME effect. The possible DM-terms is not claimed to be the primary
cause of the ME-effect, but merely suggested as a possible magnetic mechanism for causing
polarization.

6.4.1 Removal of mirror plane - possible DM interactions

In section 6.2.3 and especially in equation 6.3, it was shown that any Hamiltonian quadratic in spins
that couple z and ¥ spin components is forbidden in zero field by the mirror plane perpendicular
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to b, m,. An instructive first step is simply removing this symmetry from the group - G - of
Pnma symmetry elements. Applying the condition in equation 2.78 that RD 43R = D Agt rpgi
needs to be satisfied in order for a DM term to be invariant, results in a straightforward method
to evaluate possible terms.

DM coupling between ions 1 <y 4 and 2 & 3

In the case of a coupling between ions 1 «» 4 and 2 < 3, the transformation table for DM pseudo
vector components (DY, D}, D},) and the ions themselves is given below

z ] 1 2, 2:', 2 I My, Mz m,, ”

RDLRT |Dy D}y -Dj -Dj D, —-Dj -Di, D

D}Cg(l)mn(,;)m D:1E4 D%é D%Z Dfl DgZ D%S Dﬂ Df’fl
RD!{'iRT Dii _Difti Drl{i _Dil D!11‘4 _D?IJ«J Dii —D!l}ti

D?{(1)RTR(4)RT Dh DgB Dgz Dgl Dgz Dg?, Dgl{L Dgl
RD}, R s+ —Dfy Dy Diy Diy Di, -Dj -Dj

Df{(l)RTR(‘;)HT chi DSS D§2 Dfl Dgz DQZS Dii Dil

Table 15: Transformation table for the transformed pseudo vector components (Di,) of the un-
transformed ionic sites 1 and 4 - RDi,R' - and the untransformed eigenvector components on the
transformed sites Dﬁ?il) RIR(AR!" For a DM term to be invariant the two quantities have to be

equal.

As evident in table 15, the mirror plane m,, excludes all but a DY, component. And if such a
component exists, the glide plane my,, requires that there must be a Dj; component as well with
the opposite sign. This is exactly the DM interaction proposed in the previous section to explain
the field induced signal on the (021) and (041) reflections. However, removing the mirror plane m,,
does not change this situation. The glide plane m;, requires that D, = Dj; which is prevented by
the antisymmetric nature of the DM interaction: D, = DI, = —D?, = 0. When this is established,
several other symmetry elements require the z component of the DM pseudo vector between ions
2 and 3 to be zero as well. This can be seen in table 15. Furthermore, the two-fold screw axis 2/,
requires the z component of the DM pseudo vector to be 0, envoking the exact same arguments as
in the case of the  component

I - 1 2, A 2, F oy, m, m,
RDCIUQRf DfZ fZ _D%‘Q _Dir2 Dlx2 _D1$2 HD:ICZ D;f?
D}c{mRtR(z)Rr sz D%l D§4 Di’;’ D§4 D%l Df2 ffB
RDY,R' |DY, -D}, DY, -D}, Dj, -D}, Di, -Dj
D?{(l)RTR(Q)RT D?Z Dgl D§’4 fo;; D§4 Dgl Dillfz DE{S
RDL,R' | Dy Dy, -D}, Df, Df, Df, -Dj, -Dp
DEU)RTR(Q)Rt 1z2 DEZBI D§4 Dis D§4 D§1 sz Di:i

Table 16: Transformation table for the transformed pseudo vector components (Di,) of the un-
transformed ionic sites 1 and 2 - RD{, R - and the untransformed pseudo vector components on
the transformed sites D;'{( DRIR@)R For a DM term to be invariant the two quantities have to be

equal.
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DM coupling between ions 1 <> 2 and 3 + 4

The same procedure is used in the case of a coupling between ions 1 <> 2 and 3 <+ 4. The
transformation table for this type of DM term is given in table 16. Again it is evident that the
removal of the mirror plane m,, from the symmetry group makes no difference. The two screw axes
2, and 2} require that the 2 component fulfills Df, = —D§; = —Dj; which is impossible unless
the @ components of the DM pseudo vector are 0. The same holds for possible z-components of D
which is clear when considering the symmetry elements 2/, and mLz. The only possible component
is DY, = DY, components, which can also explain the observed field induced G, component, by the
way.

DM coupling between ions 1 & 3 and 2 & 4

The case of a coupling between ions 1 <+ 3 and 2 > 4 is especially easy. The transformation table
is shown below:

. | 1 2t 2 2, I ml, mg ml,
RDLR' | Dy Dy -Df, -Diy Diy -Df; -Diy Di
Drayatr@nt | Pls D3y D5 Dy Dy Diy  Diy Dy
RDLR! | Dyy -Dfy Djy -Djy Djy —-Djy Diy -—Di

D?{(l)RiR(g)Rt D?B D§’4 Dgl Dgz Dgl Déﬂ; D%’s foz
RD};R! fs —Dis —Diy Dis Diy Diy -Dijs —Diy
Dewrtr@rt |Pis Di D5 Dy Di Dy Diy D

Table 17: Transformation table for the transformed pseudo vector components (D) of the un-
transformed ionic sites 1 and 3 - RDi;R' - and the untransformed pseudo vector components on
the transformed sites D;'?(l) Rtr@)Rt For @ DM term to be invariant the two quantities have to be

equal.

Like in the other two cases, interactions between these two pairs of ions are not affected by removing
the mirror plane. The inversion symmetry element I requires Di; = D, i =, z,y,z which is
forbidden by the asymmetry of the DM interaction. That this causes any D}, term to be zero can
be seen in the table above.

DM terms coupling ions 1 < 1, 2 <3 2, 3 <+ 3’ and 4 > 4/, where the prime denotes the same
ionic position but in an adjacent unit cell are all forbidden. This is because the two interacting
ions have the same surroundings, and the exchange path between the two ions does not change
when interchanging the ions. Therefore, the interactions between ions on the same position can
not possibly be antisymmetric, and hence DM interactions of this kind are forbidden by symmetry.

In conclusion, the straightforward assumption that the mirror plane m,, is broken does not change
much. No additional DM terms are allowed when removing this symmetry elements. However,
there are other relevant considerations. The collinear spin rotation away from the crystallographic
b axis can not be explained by a DM term. However, the direction of rotation might point to
other broken symmetry elements than just m,.. The same goes in the case of the observed weak
ferromagnetism; establishing a term (not necessarily a DM term) explaining the F, component
might point to broken symmetry elements. Lastly, the polarization of the crystal in an applied
field implies that the symmetry elements forbidding polarization is broken. These considerations
will be given in the following sections.
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6.4.2 DPossible causes of weak ferromagnetism

In LiCoPO4 weak ferromagnetism along the b direction has been observed [47]. The moment is far
too small to be observed in neutron scattering experiments. Actually, the first paper presenting
a microscopic origin of the DM interaction proposes the DM interaction as the cause of weak
ferromagnetism in some trigonal systems [11]. However, since the DM interaction is proportional
to the cross product of the spin pseudo vectors of the two ions interacting, no DM interaction
coupling the main Cy spin component to a F, component is possible. As the largest ferromagnetic
component is parallel to the main spin component it can not be caused by a DM term as the
ferromagnetic component does not constitute a canting. A DM term could couple the observed
minor C; component to a F;, component, but not without inducing an even larger F, component via
the main C), type structure. This has not been observed. However, since the very large Ag/g ~ 0.3
makes anisotropic exchange a viable option, there is still some room for constructing a Hamiltonian
causing (very) weak ferromagnetism. Consider a simple form

HE_px = —Ap(SYSY 4 SYSY — SUSY — SYsSY), (6.11)

which is possible only via anisotropic exchange. This term is zero if the structure can be described
solely by either a F, component or a Cy component. However, inserting a linear combination of
the two: aC\y + bF, = S(a+b,a+ b,—a + b,—a + b), the picture changes. Inserting this into 6.11
gives

Hi_px = —ArS? (2(a +b)? — 2(b — @)?)) = —8ArS%ab (6.12)

Such a term is only invariant under symmetry elements leaving the ions unchanged or interchanging
1 4> 2 and 2 ++ 3. The transformation properties can be evaluated from table 14, and the symmetry
elements satisfying this property are the following

chqpy = {1, 2';:, m;y, m,,;z} . (613)

The author admits that constructing such a term is rather circumstantial. Other anisotropic
exchange terms can be constructed to give a F), component, but the term above only gives an
F, in the presence of an C}, component. In LiNiPQy for instance, weak ferromagnetism has been
observed along the z direction which is also parallel to the main spin component along z. The
presence of the term in equation 6.11 in LiNiPOy does not create an unobserved Fy, component. In
the next section, other anisotropic exchange terms are constructed to try to explain the observed
C, component which has been observed in LiCoPQy .

6.4.3 Hamiltonians that cause spin rotations

In this section, potential Hamiltonians that could cause a Cy, — C,, coupling will be setup to exam-
ine their transformation properties under the Pnma symmetry elements. These are not necessarily
DM terms; in fact, they cannot be, since in order for a C, component to lower the magnetic energy
of the system via a coupling to the main C, component, all terms must have the same sign. How-
ever, since Ag/g ~ 0.3, a possible anisotropic exchange interaction could have a strength of roughly
one third of the DM interaction; so even this weak interaction - second order in the L - S’-coupling
- might still be significant.

By a first glance - four possible simple quadratic spin Hamiltonians come to mind when trying to
make a designer-Hamiltonian with a C, — C, coupling. They are the following:

Hi px = Aia (575 4 SESY 18558+ 835%) (6.14)
Hi px = A2 (STSY -+ S5SY + S3SY + S§SY) (6.15)
Myt px = M3 (STSY + S5SY + S5SY + S7S%) (6.16)

W e = Ay (9288 +5550 15580 4 sE8Y) (6.17)
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The coupling strength A;; has been assumed to be a constant for all the terms. Using table 14 it
can be seen that these four Hamiltonians are invariant with respect to arbitrary true permutations
of the ionic positions. For instance, the permutation ry — rq, vy — r3,r9 — ry, ry — ry does not
change any of the Hamiltonians above. The same holds for the other permutations of ionic positions
in table 14. Hence, it is the change of sign of the spin components under a given transformation that
determines whether or not the four Hamiltonians are invariant. In fact, in that respect, the four
Hamiltonians are exactly the same; they all require (S;, S,) = (Sz,Sy) or (Sz, Sy) = (—Sz, —Sy)
in order to be invariant. The symmetry elements fulfilling these conditions are the following:

Goyc, = {1, 2, ml,, I}. (6.18)

These are the only symmetry elements which allow the Hamiltonians 6.14. There could be other
terms of course, but these are by far the simplest, and they are quadratic in spins as all the magnetic
interactions treated in section 2.1.

6.4.4 Possible DM interactions in applied fields along magnetoelectrically active axes

Lastly, it would be instructive to check which DM interactions are in play when a magnetic field
is applied along a magnetoelectrically active crystallographic direction. Applying a magnetic field
along an axis ¢ = z,y, z introduces a Zeeman term:

Hy = —gug Y H'S], (6.19)
;

where 7 = 1,2,3,4 denotes the ion numbering. Thus, simply by introducing this term in the
Hamiltonian, the symmetry elements taking S’ — —S’ are removing since the Zeeman term is not
invariant under such symmetry operations. Thus, in fields applied along & and y the symmetry
elements left resulting only from the applying a field are:

GH||9, = {152;:1I1 m’yz} (620)
GH”y = {I»QL:I’m;z} (621)

In addition to the Zeeman term, the magnetoelectric property of LiCoPO4 has consequences in
terms of symmetry breaking for fields applied along z and y. The field induces a polarization
perpendicular to the field, which is only possible in the absence of certain symmetry elements. The
polarization is a physical vector P = (P, P, P;), describing a macroscopic property. If there exists
a polarization P; for i = x,y, z any symmetry element taking i — —i will take P, -+ —P;. Such a
symmetry element must therefore be broken if such a polarization is observed.

In this section, the consequences of applying a field along a magnetoelectrically active axis is
examined in terms of the Dzyaloshinsky-Moriya interaction. It is shown that by breaking the
symmetry elements that allows a polarization, the system is able to lower its magnetic energy
by coupling the field induced F; component to either the main C, component of the smaller C,
component via the DM interaction. Thus, the DM terms is shown to be a possible mechanism for
a magnetoelectric effect.

DM interactions in case of a polarization P,

Assume in the following that there is a polarization vector component P, - as in the case of an
applied field along a. In this case, all symmetries taking ¥ — —y must be broken, which leaves the
following symmetries:

Gp, = {1, 2, m,, m),}. (6.22)

Y




104

In addition to this, the field itself causes symmetries to be broken leaving only two symmetry
elements in a field along x:

GiF ={1, wl,] (6.23)

In case of a DM coupling between ions 1 < 4 and 2 <» 3, table 15 shows that the glide
plane mj, forbids any D}, and D, component. However, z components are allowed, and even a
different coupling strength between the two sets of ions - D7, and DZ;. The requirement on the
y component loosened DY, # Dj;. So when assuming that only the symmetry elements in Ggy”x
hold, an additional D* component is allowed.

The DM coupling between ions 1 <+ 2 and 3 <> 4 is changed as well. Table 16 shows that all
three components are allowed with Dyp = (D}, DY,, Df,) = (—D§,, DY, D3y)

The otherwise forbidden DM coupling between ions 1 < 3 and 2 <> 4 opens up when

switching to ngfm. All three components are allowed with D13 = (D¥,, DY5, Df;) = (—D%,, D3,, D%,)

The transformed pseudo vector components concerning Dj,, Di, and Dj, are not given explicitly
in tables 15, 16 and 17, but similar arguments as in the cases D},, D}, and Di; hold.

As evident there is quite a difference between assuming G and assuming Ggy”m. The question
remains if this has any physical consequence. Since the ME coupling in LiCoPQy exists between
the a and b axes, it makes sense to focus on the D* components, which couple exactly = and y
components of the spins. The two allowed DM Hamiltonians in case of a G p, symmetry groups are

Hinr—, = Diy (STSY — S7SY) + Dg; (5354 — 535%) (6.24)
Hiar—, = Di3 (STSY — S38Y + S3SY — S75%). (6.25)
Hpar—. = Diy (STSY — S5SY + 5554 — S75%). (6.26)

Applying a magnetic field along = induces an F, component; all z components have the same sign.
Inserting this F, component into the two first of the above Hamiltonians gives a C, symmetry.
The third Hamiltonian gives a G, component. Thus the DM terms 6.24 and 6.25 can couple the
field induced F type structure to the main zero field structure C and lower the magnetic energy.
Thus, in principle, when applying a field along a the system could be able to lower its energy by
breaking the symmetry elements taking y — —y (causing polarization), which opens up two DM
channels coupling F, and C), type structures. The parts of the DM Hamiltonians causing this could

- z

be written on the form - ‘collecting Dj, + D3 =
Hpit = Diyye [Fz - Gy (6.27)

The Hamiltonians 6.24 and 6.25 couple more basis vectors than just the two written above, but
these are the ones relevant for the coupling conjectured above. So if the system - by displacing the
atoms in a way that polarizes the material along y, can cause the DM pseudo vector component
D~? to increase in absolute value - the DM energy of system can be lowered. The displacements -
in the case of an applied field along a - need to break the same symmetries that need to be broken
in order to allow a finite polarization along ¥.

DM interactions in case of a polarization P,

If there is a polarization vector component P, - as in the case of an applied field along b - all
symmetries taking £ — —x must be broken. The symmetries left are the following:

Gp, = {1, 2, Mgy, mas}. (6.28)
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The field itself causes symmetries to be broken leaving only two symmetry elements in a field along
Y
S B s N (6.29)

In this case, the mirror plane m,,; is very important, as it forbids 2 and z components of D14, D12
and Dj3. There are only two differences between assuming the full symmetry group Pnma and
Gp,. The first is that it loosens the requirement DY, and D}, such that 0 # DY, # D}, # 0. The
second is that the absence of inversion symmetry allows for a DY; = — D3, component. This is not
terribly exciting since in an applied field along b, there is the F,, Cy and the C; component, and
none of these can couple by virtue of the DM terms allowed under Gg;”y. However, the accumulated
evidence that some of the Pnma symmetries are probably broken in zero field, might change this
fact.

DM interactions in case of a polarization P, in the absence of m,,

In sections 6.4.2 and 6.4.3 it was examined which symmetries allowed a term causing the ob-
served weak ferromagnetism (G, c,) and an anisotropic exchange term causing a C, component
(Ga-gx). In the two cases, the symmetries that needed to be broken in zero field were the following

G/Geg,»r, = {2, 2,, I, my»} and G/Gg e, = {2, 2, my,, Maz} (6.30)

As evident from the previous section, the mirror plane perpendicular to b, m., forbids any DM
pseudo vector components along both z and z. In order for any D* term - which is able to couple
F, and C, components - to be allowed by symmetry for fields along y, this mirror plane needs to
be broken in zero field. Luckily, due to the observed C, component, this is indeed very probable as
stated in section 6.2.3. It was shown that any Hamiltonian coupling y and y spin components - the
general term written in equation 6.3 - cannot be invariant with respect to this exact mirror plane.
No assumptions about the origin or nature of the spin coupling - other that it be quadratic in spins
- is necessary to show this. Furthermore, since the observed C, component is rather large, the
absence of this mirror plane is directly observed to have significant consequences for the magnetic
interactions. Thus, in an applied field along y, the only symmetry element that holds is the identity
- 1.

This leaves no requirements on the DM terms allowed in a field along y, and thus, terms of the form
Dy; terms are allowed. As in the case of fields along z, the three relevant Hamiltonians coupling 2
and y components are of the form

Hinr—z = Diy (STSY — 8§8Y) + D3, (S5.5Y — S35%) (6.31)
Hpar—» = Dis (STSY — S38Y) + D34 (S35 — S75). (6.32)
Hpnr—, = Diy (STSY — S58Y) + D3, (855% — §§5%). (6.33)

As evident, the terms above are slightly different from the terms 6.24, 6.25 and 6.26. This is because
the requirements Df; = D3, and D}, = Dj, are lifted. However, this makes little difference.
Inserting an F,, = (S5, S5,5,5) structure reveals that Hamiltonians 6.31 and 6.32, couples this F),
spin structure to a C, structure. Thus, it has been shown that assuming the absence of the mirror
plane mg, in zero field allows for the following Hamiltonian expressed in terms of irreducible basis

vectors:
HYE = Dy [Fe - Gyl + Dy [Fy - Cal (6.34)

Thus, the system could lower its magnetic energy in fields applied along y by creating a polarization
along z. In the following two notes, a summary of this possible DM facilitated ME-effect is given
followed by an evaluation of the experimental evidence for zero field symmetry breaking.
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D?-terms as the cause of the ME effect - summary

In the previous section it has been shown that in an applied field along a, the system can lower
its DM energy by breaking the symmetries that allows for a polarization along y, P,. This energy
gain is facilitated by DM-components along z: Df; = D3, and D%, = D3,, which causes a coupling
between F, — C, and F,, — C, spin structure components. It is more tricky for fields applied
along the b axis, where D7 components are forbidden even when breaking the symmetries that
are impossible in the presence of a polarization P, and a field H,. However, if one assumes that
the symmetry element m,, are broken in zero field, such a DM-facilitated energy gain by electric
polarization becomes possible. That this exact symmetry is indeed broken in zero field is made
plausible by the observed C, component in zero field. It is important to underline that applying a
field along b induces a smaller F}, component than the F, component induced by applying a similar
field along a. This is experimentally confirmed in [46], where the susceptibility for fields along y
is roughly 4/10 of the susceptibility along x. Furthermore, as the TriCS experiment determined
C:/Cy =~ 1/7, the C; component necessary for a DM-facilitated ME-effect for fields along b is
much smaller (1/7) than the Cy component necessary for fields along a. Therefore, the ME-effect
for fields along y should be much smaller for fields applied along b. This is not the case, the ME-
tensor along y is half the value for fields along @ at maximum [44]; which is smaller but not much
smaller. It is the author’s opinion that the DM-interaction is not necessarily entirely responsible
for the ME-effect in LiCoPQy, but it is certainly relevant. It may be one of the reasons why the
ME-effect is so strong in LiCoPQy; perhaps the allowed DM-terms enhance an effect already there.
It should be emphasized that the considerations given in this section merely speculates whether or
nor a coupling is possible; no information about the strength of the couplings is obtained.

Zero field crystal structure in LiCoPO,4

All the considerations concerning the DM interaction and its possible consequences, all rest on the
assumption that the Pnma space group is the symmetry group to start out with and that the true
unit cell is the one proposed by Newnham and Redman in [13] in the 60’s. This is not necessarily
the case at all. As evident in figures 53 and 54 some of the zero field nuclear peaks are there. In
fact, as the author performed more and more experiments on this compound, it was evident that all
of the Pnma-forbidden peaks were there. Checks have been made for second order contamination
and multiple scattering, and these two effects can be ruled out. The peaks were observed both
using A/2 neutrons at RITA-II - where A/4 neutrons are absorbed by the neutron guide - and
at TriCS which has no second order contamination. At TriCS, ¥-scans were made - rotating the
sample around the axis defined by the reciprocal lattice vector in the scattering condition - and
the peaks were still there. Thus, multiple scattering is highly unlikely. The peaks where measured
in a furnace on a 4-circle setup - and they were there at temperatures up to 600 K. So it is not
simply a case of a structural phase transition occurring below 300 K to a structure with a symmetry
group that is some subgroup of Pnma; if these peaks are to be taken seriously (which they are
in the author’s opinion) the assumption of Pnma symmetry is simply wrong at all temperatures.
Therefore, the most important next step in order to progress in the understanding of LiCoPQOy
is determining the right structure. This would be a necessary starting point if the role of DM
interactions and anisotropic exchange is to be understood. The low energy branch in the spin wave
spectrum is also not understood, and a proper determination of the structure is a crucial first step.
The author has performed an initial structural refinement of the high temperature TriCS data, but
without success. A dedicated effort to understand this is necessary and there was not time to do
this in this work.
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6.5 Field induced magnetic phase transition for fields applied along b

As mentioned in the introduction to this chapter, LiCoPO4 has a field-induced magnetic phase
transition at fields around 11 Tesla applied along the spin polarization direction b. This was first
discovered by Martin Wiegelmann in [48] where he examined magnetoelectric effects in strong mag-
netic fields. Before the publication of [49] the author performed a neutron diffraction experiment
examining this phase transition. The results will be described in the following.

6.5.1 The first RITA-II experiment for fields applied along b using a vertical 15 T
cryomagnet

In October 2009, a RITA-II experiment using the same 50 mg crystal as in the TriCS experiments
were used. The crystal was mounted on an aluminum sample holder placed in the Oxford 15 T
cryomagnet with the b axis vertical, and the ac-plane coinciding with the scattering plane of the
spectrometer. There was an 80’ collimator between the monochromator and the sample, and no
collimation between the sample and the detector. The Be-filter was removed and the analyzer set
to 20 meV, in order to use second order neutrons from the monochromator.

Figure 57 (top left) shows the peak intensity of the (301) reflection as a function of field. The inten-
sity drops rather slowly down to a lower value at roughly 10.3 tesla. This is a lower transition field
than observed in [48], but an alignment better than 0.5° is required when using the 15 T cryomag-
net, so 10.3 tesla can be said to be the true critical field. Well into the experiment, it was thought
that the magnetic intensity dropped to zero. After searching thoroughly for incommensurate peaks
along a and ¢, the integrated intensity of all reachable peaks were thoroughly measured at 13.5
tesla and base temperature - well above the critical field - and compared to the intensity at 60 K
and 13.5 tesla. Surprisingly there was a remnant of magnetic intensity at the commensurate AFM
C-type peaks at 13.5 tesla, with roughly 10 % of the zero field intensity (see figure 57 bottom left).
The integrated intensity of this remnant drops as a power law as a function of temperature with a
critical temperature of around 6 K (see figure 57 bottom right). An elegant explanation would be
that the two spins opposite the field decrease to one third of their zero field length, composing a
structure 1/3F, + 2/3C, = (5,5, —1/35,—1/35). This would give a magnetization of 1/3Ms; as
well as explain the unobserved intensity as the ferromagnetic components are mainly reflected in
strong nuclear peaks. Another possible explanation is that the high field structure is incommen-
surate, and that the remnant intensity in the (301) reflection is just a field induced commensurate
ferromagnetic component. If this is the case, the maximum ferromagnetic component would be
1/3F, = (1/3S,1/38,1/38,1/35). The structure factor for these two scenarios and the zero field
structure evaluated in the (301) peak is given in table 18

Structure o
c, 11.72
1/3F, +2/3C, | 5.65
1/3F, 0.44
Fobs 0.8

Table 18: Structure factors evaluated in the (301) reflection for the zero field structure Cy, the
proposed ferrimagnetic structure 1/3F, +2/3C), and a ferromagnetic commensurate magnetization
1/3F,.

As evident in the structure factor calculation, the elegant ferrimagnetic solution - 1/3F, +2/3C), - is
not consistent with the data. The 1/3F) structure has roughly half of the observed structure factor,
which is rather close. A linear polarized (along b) IC structure would give a finite commensurate
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Figure 57: Top Left: Peak (not integrated) intensity of the (301) reflection as a function of field
applied along b. As evident, the intensity drops over a substantial field range at roughly 10.3 tesla.
There is a substantial hystersis of 1 tesla. Top Right: Omega scans of the (301) reflection in zero field
at 2 and 60 K respectively. Bottom Left: The (301) peak at 13.5 tesla at 2 and 60 K respectively.
There is a remnant of magnetic intensity of roughly 1/3 of the zero field intensity. Bottom Right:
Integrated magnetic intensity of the (301) peak as a function of temperature at 13.5 tesla. The
intensity drops off as a power law with a critical temperature of 6 K.

ferromagnetic component. There is a slight possibility of magnetostriction (the atomic positions
are coupled to the applied field in this material) causing the nuclear structure factor to slightly
increase in field. However, there is not enough experimental evidence to make any final conclusions
about the magnetic structure in the this high field phase.

The phase diagram has been obtained by performing field scans and temperature scans of the (301)
reflection. The field induced phase boundary has been defined as the point of maximum slope of
an intensity vs. field curve. The critical temperature is found from fitting the integrated intensity
as a function of temperature to a power law, in both the commensurate and the 'remnant’ phase.
The obtained phase diagram can be seen in figure 59.

Thorough attempts have been made to find the rest of the magnetic intensity of the high field phase
at low temperatures in the ac scattering plane. No other intensity than the remnant was found. In
principle an enlargement of the unit cell (commensurate and truly incommensurate) could occur
along the b-axis. As mentioned previously, pulsed magnetization measurements reported in [49)
found the magnetization to occur in steps of 1/3M,; where a unit cell of dimensions 2b x 3c is
proposed. In order to examine such a modulation at fields higher than 10 T, one needs a quite
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powerful horizontal magnet. An attempt has been made to find this intensity using an 11 T
SANS-magnet on a triple axis spectrometer, which will be elaborated in the next section.

6.5.2 The RITA-IT experiment with an 11 T horizontal field cryomagnet

A very large LiCoPQy crystal of approx. 1 g was mounted on an aluminum sample stick and
placed in the 10.8 tesla SANS cryomagnet mounted on RITA-II, with the crystallographic bc plane
coinciding with the scattering plane of the spectrometer. The SANS 10.8 tesla cryomagnetic has a
very limited geometry. There are narrow two conical openings, allowing the beam to pass, which
are perpendicular to one another. They are +-8° and +15° respectively. Thus only a very limited
portion of reciprocal space can be reached as the range is highly limited by the fact that either the
sample rotation or the 20 angle only has a possible interval of 15", However, the possibility of
changing the incoming energy on a triple axis spectrometer, remedies this fact quite a bit, although
one is still nowhere near the flexibility of a vertical magnet. 40’ collimation was used between the
monochromator and the sample, and no collimation between the sample and the analyzer. Both
first and second order neutrons were used as the energy was varied. The incoming energies used
were 20, 15, 10, 7 and 5 meV. The range of reciprocal space reachable using these energies and
accounting for the limited geometry can be seen in figure 58 (left). It is clearly evident that even
when using the entire energy range (20 meV is the maximum energy due to the fact that the guide
absorbs higher energy neutrons), the range in reciprocal space is still very limited.
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Figure 58: Left:The range in reciprocal space reachable using 5, 7, 10, 15 and 20 meV neutrons on
RITA-II with the horizontal field SANS cryomagnet mounted. Right: Integrated intensity of the
(032) peak as a function of both increasing and decreasing field at 1.5 and 8 K, respectively. It is
evident that the hysteretic behavior only exists in the low temperature phase.

A thorough search for any IC peaks was made in the available portion of reciprocal space. Since
a one-third magnetization suggests that 1/6 of the spins have flipped, emphasis was made on all
reciprocal space points representing unit cells with a number of magnetic atoms divisible by 6. Still,
no intensity was found. To determine with certainty that there are two distinct high field phases,
the integrated intensity of the (032) peak was measured at 1.5 and 8 K respectively, see figure 58.
Substantial hysteresis is again evident in the 1.5 K scan while there is almost no hysteresis at 8
K. This confirms that there are two magnetic phases at high fields. It is interesting that there
is an increase in (032) intensity a 2 K just before the critical field. It is difficult to explain this
without having measured more than one magnetic peak. Such an increase was not seen in the (301)
reflection in the vertical field experiment. This will not be commented further.
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The magnetic phase diagram of LiCoP Oy

The phase diagram as obtained from the measurements on RITA-II using the 15 T vertical field
cryomagnetic is shown in figure 59.
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Figure 59: The phase diagram obtained after performing temperature- and field scans of the (301)
reflection. The black circles denote the phase boundaries found using the commensurate (301),
and the red triangles denote the phase boundaries found from the remnant (301) intensity. The
commensurate phase boundary shows a flat plateau at low temperatures, and a gradual decrease
in critical field at high temperatures. The critical temperature for the 'remnant’ phase remains
constant at fields between 10 and 13.5 tesla. The red pentagrams mark the ordering phase boundary
as found by specific heat measurements in [50].

The limits of the high field phase are taken as the critical temperature for the remnant of the (301)
reflection. Unfortunately, the structure at high fields has not been determined in this work. In
addition, the author stumbled upon an article measuring the ordering phase boundary of LiCoPOy
using specific heat measurements - a few weeks before handing in this thesis. These phase bound-
aries are several degrees above those measured by means of neutron scattering - as marked by the
red pentagons in figure 59. These measurements could suggest that there is a high temperature
incommensurate phase at most fields; perhaps even a spontaneous IC phase. Upon measuring the
IC ordering temperature in LiNiPOy, it was seen that the change in magnetization upon cooling
into the IC phase was not big; perhaps it was missed in previous work. This whole phase diagram
is certainly something to follow up on and understand in the time to come. A linearly polarized
IC structure is certainly possible in this Ising-like system, and precisely due to the Ising like na-
ture of the single ion anisotropies, the system cannot be expected to conform to a spiral at low
temperatures. The cost in anisotropy energy is simply too large.

This concludes that description of the work done on LiCoPQy. The zero field structure has been
thoroughly determined to be a 3.35u5C, + 0.543C;. Evidence of a very strong DM interaction
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has been found, and possible consequences of this evaluated in terms of an empirically plausible
loss of symmetry in zero-field. The DM mechanism has been proposed as being involved in causing
the ME-effect. The phase diagram of LiCoPOy4 has been determined; the nature of the magnetic
phase at low temperatures and high fields has not been established. Further work would be figuring
out the nature of the high field phase, thorough investigations of field induced AFM structures for
fields applied along b and a search for a possible high temperature IC phase.
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7 The study of the Bragg glass phase of vortex matter - introduc-
tion

After he was able to liquify helium, H. K. Onnes discovered superconductivity in 1911. Upon mea-
suring the electrical resistance of Mercury at the low temperatures reachable using liquid helium, he
discovered a rapid drop of the electrical resistance at T, & 4.22K to an unmeasurably low value (see
figure 60), instead of following the T° proportionality curve which was found to be valid at higher
temperatures. In later experiments, the limits of conductivity in this superconducting state was
sought by magnetically inducing a persistent current in a superconducting solenoid and measuring
the decay of the trapped magnetic field over time. The decay time has been found to be more than
100000 years [61], so the resistivity is truly zero. Zero resistivity in zero field is a characteristic
macroscopic property of the superconducting state in the so-called type-I superconductors which
occurs in many metals, alloys and ceramics.
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Figure 60: Left: The resistance of mercury near the superconducting transition temperature as
measured by H. K. Onnes in 1911 [52] Right: The heat capacity of aluminum in the normal state
and in the superconducting state - with 7, = 1.1 K [53].

This thermodynamical phase transition has other distinguishing macroscopic characteristics. The
specific heat shows a sharp increase upon cooling into the superconducting state at the critical
temperature 7, after which it drops exponentially (e“A/ "'BT), drastically different from the linear
temperature dependency of the normal state (see figure 60). The superconducting state also shows
a drastical decrease in the thermal conductivity compared to the normal state (an indication of the
fact that less conduction electrons are able to carry entropy [54]). The most central macroscopic
characteristic relevant to this thesis is the superconductor’s ability to completely expel a weak
magnetic field, only allowing a finite field to penetrate a certain small depth - the penetration
depth X - into a bulk superconductor. This is the so-called Meissner effect [55], which is not an
obvious consequence of perfect conductivity (magnetically induced eddy currents), since even a
stationary field applied in the normal state gets expelled upon cooling below 7. This implies that
superconductivity resists magnetic order, and hence that by applying a high enough magnetic field
- H, - the superconducting state will be destroyed, since the energy density of the magnetic field
will exceed the energy density of the superconducting condensation energy. The two remarkable
electromagnetic effects exhibited by the superconducting state were first described by the so-called
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London equations: (using cgs units)
.

E= E(AJS)’ and (7.1)
H=—¢cV x (AJs) = V?H = % (7.2)

where A is an phenomenological parameter and J; is the superconducting current density. The
first London equation describes the uninhibited acceleration of charge upon applying an electrical
field, and the second equation (after combining it with Maxwell’s laws) describes the exponential
screening of a magnetic field from a bulk sample, as depicted in figure 61.

Figure 61: Left: The field penetrating the material in its normal state. Right: The Meissner
effect: The superconductor expels all magnetic field from its interior when cooled through the
superconducting transition. (Illustration from http://www.cm.ph.bham.ac.uk)

The second part of this thesis focuses on superconductors in an applied magnetic field. In some
superconductors, upon applying a field strong enough, magnetic flux is able to penetrate the super-
conducting sample in the form of flux quanta or fluz lines. These superconductors are called Type-II
superconductors. As will be evident in later chapters, the properties of these flux line ensembles
are strongly linked with the electron transport properties of most useful superconductors.

A basic understanding of these ensembles of quantized magnetic flux is interesting by itself though.
They constitute a two-dimensional ordered array of one-dimensional objects embedded in a three-
dimensional condensate. The ordered flux lines interact with one another and hence the ensemble
can be described as elastic. In addition, the flux lines can interact with normal volumes in the
superconducting condensate which are caused by crystallographic defects and impurity inclusions.
Thus, as will be evident in subsequent chapters, the flux line ensembles are systems in which a
lattice with finite elasticity is subject to random forces. Taking the pinning force as a perturbation
of the vortex lattice, such systems can be shown to have no long range order - the displacements
of the flux lines simply increase linearly with flux line separation. When including the possibility
of several metastable states, the displacements increase much more slowly - but still there is no
long range order. This changes when taking into account that the pinning potential is random,
and that the Fourier components commensurable with the lattice perturb the ensemble differently
than the other Fourier compoents. It can be shown that when taking the periodicity of the vortex
lattice into account long range order is restored - in theory. This results in a glassy-like system
with quasi-long-range order in which it is possible to change the lattice constant and the elasticity
by simply changing the applied field - the so-called Bragg glass. This thesis aims to test the Bragg
glass theory by performing Reverse Monte Carlo simulation on high resolution SANS data.

The following two chapters concern the work done on the vortex lattice of vanadium. The next
chapter collects various theoretical concepts in some detail, while the last chapter describes the
analysis of the obtained SANS and VSM data.
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8 Conventional superconductivity and the Bragg glass phase of
vortex matter

This chapter focuses on describing the theory necessary for understanding superconductors in gen-
eral and flux line ensembles in particular. First a brief account will be given of some central features
of the microscopic theory of conventional superconductivity developed by J. Bardeen, L. N. Cooper
and J. R Schrieffer, the so-called BCS theory [56]. This has little importance for the interpretation
of the results in this thesis, but the theory provides a framework for the understanding of the
phenomenological origin of superconductivity and is treated for the sake of completeness. This is
followed by a short description of the more practical Ginzburg-Landau theory of superconductivity,
which is also derivable from the BCS theory. This leads to the possibility of type-1I superconduc-
tors and the possibility of a lattice of vortex lines. Next, a short account of the relevant theories
for the vortex lattice and the so-called pinning of vortex lines will be given. Lastly, a description
of the Bragg glass theory amongst others will hopefully establish the concepts needed for an inter-
pretation of the results shown here. Concepts from quantum field theory will be sporadically used
in this chapter, an introduction can be found in [57].

8.1 BCS theory of superconductivity

In conducting materials electrical current is carried by the conduction electrons which are not
bound by any single atom, but feel the periodic potential of the whole atomic lattice. This enables
the electrons to delocalize and carry a macroscopic current [58] when subjected to an external
electrical field. These conduction electrons will collide with and scatter from anything that can
interact with the electron allowing them to transfer kinetic energy to the lattice (phonons or
impurities), generating heat. The proportionality between the electrical equilibrium current and
the applied electrical field can be shown to be

Ferit LR, (8.1)

Me

where 7 is the average collision time, n is the density of free electrons and m, is the electron mass.
Equation 8.1 is the well known Ohm’s law, where ne?r/m, is the electrical conductivity inversely
proportional to the resistivity. If one purifies the metal in question to an extreme degree and cools
the sample to helium temperatures, the mean free path of the electrons can be in the centimeter
range, resulting in a very low resistance or a very high conductivity. The superconducting phase
transition however, completely changes the way the electrons interact with each other and the
lattice, having a huge impact on the heat capacity, heat conductivity and the electrical conductivity.
The reason for this is that the basic nature of the conduction electrons gets changed upon entering
the superconducting phase. They are somehow able to attract each other and form pairs with
one another, forming composite pseudo-particles called Cooper pairs which - due to their pseudo
integer-spin nature - behave like bosons. In the next chapter a description of the simple electron
gas will be given, in the absence of interactions between electrons. This is followed by an inclusion
of possible interactions and the resulting fermi-liguid will be described, after which the origin of
the attractive interaction will be discussed. Lastly, a brief account of the superconducting gap will
be appropriate since this has a direct link to the more applicable Ginzburg-Landau theory. This
description of BCS theory follows that given in [59)].

8.1.1 Non-interacting electron gas

In a perfect crystal lattice of ions - without imperfections or phonons - free non-interacting conduc-
tion electrons moving in the periodic potential of the lattice can be described by plane waves. In
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the second quantization picture, the electronic Hamiltonian is simply a counting of occupied states
with a given energy:

H= Zekcli,ackla, (82)
k,e

where €y is the energy of the state assumed independent of the spin o, while ¢y, and c;rw are
annihilation and creation operators respectively. This simple system of electrons has a well-known
collective ground state, namely the state where all the states with lowest energy/momentum are
occupied in accordance with the Pauli principle up to an energy level defined by the number of
electrons in the gas, namely the Fermi energy £r. The probability amplitude of an electron initially
in the state (k,o) at the time ¢ of being in the state (k’, o) at time ¢’ is described by the so-called
non-interacting single particle propagator:

Go(k, k', t —t') = Go(k,t — ')k w (8.3)

The equality follows simply from the lack of any interaction changing the initial wave-vector. Gy
denotes the propagator in the absence of interactions. The Fourier transform of the above is:

1

_— 4
w—6k+iék’ (8 )

o0
Go(k,u)) —/ dteiwrGg(k,ﬂ =
—00
where ¢ — ¢’ has been conveniently replaced by ¢, 8 is an infinitesimal number with the same sign
as (ex — €5) and gy is the dispersion relation. The pole is w = &y — id. The imaginary part of
the propagator can be interpreted as the lifetime of the single particle excitations, which in this
case must be infinite due to the lack of interactions; hence the infinitesimal imaginary part. The
momentum distribution is given by a Heaviside step function:

n(k) = O(er - &), (8.5)
which is 1 for ep — € > 0 and zero otherwise.
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Figure 62: Left: Feynman diagram of an elastic electron-electron scattering event conserving spin.
The timely axis is the vertical one while the spatial axis is horizontal. The propagator or matrix
element is denoted by the dashed line. Right: The impact of the propagator residue on the
momentum distribution is to lessen the discontinuity at the Fermi surface. Picture from [59].
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8.1.2 Interaction between electrons and fermi-liquids

By allowing the electrons to interact in any way, the physics gets a little more interesting. Consider
a simple elastic two-body electron-electron interaction of any kind, scattering two electrons in states
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(k,o) and (k’, ¢’) into states (k + q,¢) and (k' — q,¢”) conserving spin (see figure 62). In addition
to the single electron energy, the interaction energy needs to be added, resulting in the Hamiltonian:

= T 1 1
H = ZEkalaCk’a + Z Vk:kriqck_i_qldck,_q,a,ck,ack:‘af (86)
ko k.k’,q,0,0’

The propagator including this interaction is the following:
Gl (k,w) = Gyl (k,w) — Z(k,w), (8.7)

where X(k,w) is called the self-energy of the propagator, i.e. the energy of the propagator quasi
particle due to the system it is part of. The real part can be interpreted as the excitation spectrum
- or a shift of the spectrum of the non-interacting electron gas by an amount of X . The imaginary
part represents the lifetime of the propagator - the time in which the propagator behaves as a quasi
particle, or alternatively, the lifetime of the electronic state when subjected to the interaction.
Assuming that the imaginary part of the self-energy is finite, but much smaller than the real part,
the propagator of the interacting system of electrons can be written as:

Clkw) = ﬁ where (8.8)
€k =
% -t 1 »(k, &
B = (1——R ) T (8.9)
Ow lw=é, Tk T %ﬂ
wW=Ey

In the above equations, 7y is the aforementioned lifetime of the electronic state and & = g +
X g, where ey represents the excitation spectrum of the free electron propagator. This looks a
lot like the free energy propagator except for the shift in the energy spectrum and the finite
interacting electronic state lifetime. The so-called residue 2y is an overall reduction of the free
electron propagator. It is a reduction because "%:—w” is expected to be negative; the interaction
energy shift of the excitation spectrum should decrease with increasing energy as fast electrons
have less time to interact than slow ones. The residue evaluated near the Fermi wave vector
gives information about to which degree the excitation spectrum of the interaction propagator
resemble free particles with well defined energy and momentum. The effect that the interaction
between electrons has on the momentum distribution of electrons is that the discontinuity at the
Fermi surface lessens, and electrons occupying states with momentum near kg leak out of the
fermi-volume at zero temperature (see figure 62) occupying states with k > kp. If z is large
enough to reasonably describe the excitations near the fermi surface as quasi particles similar to
the excitations in the non-interacting case, the electron system is called a fermi liguid. In such a
system one can assume that there is a one-to-one correspondence between the quantum numbers
of the non-interacting system and the system in which there is an interaction. Thus, one can use
the non-interacting Fermi-gas as a starting point for perturbation theory. This is usually the case
for repulsive interactions such as the Coulomb interaction; the effect of introducing the interaction
is small and the free electron propagator is a good starting point for describing the excitations.
This is, however, not always the case; an attractive interaction of a specific peculiar type is able to
destabilize the fermi liquid as will be evident in the next section.

8.1.3 Attractive potential

Consider a Fermi-gas without any electron-electron interaction. Assume that two additional elec-
trons in states at the fermi-surface interact with each other aftractively through some effective
interaction Vs, but do not interact at all with the fermi-gas. Even more circumstantial, assume
that only electrons on opposite sides of the fermi surface (with initial states |k) and |[—k) and with
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a total two electron energy of 2y > 2z5) have a non-zero attraction and only in a thin shell around
the fermi surface. The two particle wave function can thus be written as

11,2) = > alk,—k), (8.10)
k

resulting in the stationary Schrédinger equation

(Ho+ Vers) Y alk, k) = E ) axlk, —k), (8.11)
k k

where Hj is the initial fermi gas Hamiltonian. The matrix element of the attractive potential in
momentum space is assumed to be limited to a thin shell around the fermi surface, taking the
simple form

(k’, —-k’[ch'flk, —k) -V if |€k = EF| < Wp (8.12)

= 0 if |ex —er| > wo. (8.13)

Introducing the positive dimensionless quantity A = VD(g) where D(g) is the density of states
and V is the attractive potential strength defined in equation 8.13, it can be shown ([59]) that the
eigenvalue equation (8.11) leads to the identity

1_ % . 2&)()
X_]ll(1+ A)#Au—el/l\_l, (8.14)

where A = 2ep — F and E is the eigenvalue. This leads to the requirement that the total eigen
energy of the two electrons subjected to this circumstantial interaction is lower than that of two
electrons with the exact fermi energy - E < 2ep. The basic assumption about the energy states
below the fermi energy being filled thus breaks down; the fermi-gas assumption collapses in the
shell near the fermi surface. In fact this bound state pairing energy below the fermi energy should
be prohibited by the Pauli exclusion principle. The two electrons are able to pair up and circumvent
the Pauli principle, gaining energy. This hints to the fact that the pairing fundamentally changes
the fermionic nature of the electrons. This weird interaction causing the instability of the fermi
surface was proposed by Leon Cooper, and the electronic pairs are called Cooper pairs. The
interaction causing the pairs seems too artificial to have any justification in physics, but in fact it
has, which will be evident in the following.

8.1.4 Phonon coupling

One of the very causes for electrical resistivity in materials is the ability of electrons to interact
with the collective vibration modes of the crystal lattice - the phonons. Thus, in addition to
the Coulomb repulsion between electrons there is a third party capable of mediating additional
interactions between electrons. Physically, an electron can create a phonon - or induce a lattice
distortion - which again can interact with a second electron. The phonons are quasi particles
with well defined momentum, energy and lifetime. On the energy scale of the electron-phonon
interactions, the lattice ions move much more slowly than the electrons due to their larger mass;
hinting to the fact that the phonon lifetime is high compared to the speed of the electrons. Hence,
such a third party interaction allows for the two interacting electrons to be well separated in space,
minimizing the Coulomb interaction. Furthermore, it is natural to expect the Coulomb interaction
to be minimized for electrons with opposite k for such an interaction - simply to minimize the time
in which the coulomb interaction dominates over the phonon mediated interaction. This physically
justifies some of the assumptions of the above mentioned interaction. Dealing with two interactions
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one can write a second quantized Hamiltonian for the interacting electron gas:

2
_ i e’ 3 f 1 i
H = E EkCy 5Cko + E Seol Cltq,0 Ck/—q,0" Ckio CK' 0" + E My (a_q + aq) Cietq,0Ckio

ko k,k!,q,0,0' k,q,c¢
(8.15)

where aL and aq are creation and annihilation operators of a phonon with momentum q, satis-
fying the boson commutation relation: a:g,aq - aqa:rlf = 0q,q- Mg is the matrix element of the
electron-phonon interaction describing the strength of the coupling while CL , and cx, are the
aforementioned fermionic electron creation and annihilation operators. The two simple first-order
processes mediating the interaction are drawn in figure 63.

k+q,0 k-q,0

ko k,o

Figure 63: Feynman diagrams of phonon emission (right) and absorption (left) by electrons. The
strength of the interaction is given by M. Picture from [59].

The matrix element is difficult to calculate within any usable precision but it can be shown that
the following holds:

lim My =0 d Mg~q. 8.16

b Al W q~4q (8.16)
So the interaction is dipole-like - the induced and absorbed phonons can be described as local
propagating electric dipole moments. Also, standing waves do not interact - at least to first order -
with electrons. The two processes depicted in figure 63 can be combined to describe the combined
process of one electron emitting a phonon and another electron absorbing the same phonon, causing
the two electrons to effectively interact. The dashed line between the two electrons is the free
phonon propagator which can be derived ([59]) to be

D(q,w) = — il (8.17)

2 gl | gt
w* —wg + 1

where wq is the phonon frequency and 7 is infinitesimal. This gives an effective electron-electron
interaction described by

2| My |w
Vess(a,w) = —5 11, (8.18)
¢ w?—w?

where q is the momentum transfer between the two interacting electrons and w is the energy
transfer. Two important points are that for w? < w?l, the interaction is attractive - with the
aforementioned consequences near the fermi-surface - and that the interaction potential is diverging

for w — wq and hence has the potential to dominate over the Coulomb potential for arbitrary small
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values of |Mq|2, in principle. The low-frequency requirement in equation 8.18 in order to achieve an
attractive interaction reflects the fact that the electron supposed to absorb the previously emitted
phonon needs to wait a little for the phonon initiating electron to pass before being able to be
sucked in by the dipole moment of the local lattice distortion; hence there is an upper frequency
cut-off. The sum of the two electron-electron interaction potentials is shown in figure 64.
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Figure 64: Left: The realistic sum of the phonon-mediated and the photon-mediated electron-
electron interaction at fixed q. Right: The crude BCS simplification of the total electron-electron
interaction for low energies. Picture from [59].

It is seen in figure G4 that for low energy transfers the interaction is repulsive; for long enough
timescales the attractive nature of the phonon-mediated interaction disappears. Thus the conditions
have to be just right in order to have an effective two electron attraction, but it can happen. A
very crude simplification of this potential was made by Bardeen, Schrieffer and Cooper, justified
by the following. In section 8.1.2 it was shown that a small repulsive interaction has a relatively
little effect on the otherwise free electrons near the Fermi surface; the quasi particles induced by
the interaction very much resemble the free electron propagators. It was shown in section 8.1.3
that an arbitrary weak attractive interaction causes a collapse of the Fermi surface. Therefore, the
repulsive part of the total effective two-electron interaction is neglected and the attractive part is
approximated by a square well, as evident in figure 64. If one assumes that the frequency range
of the attractive interaction is much smaller than the corresponding Fermi energy, the energy of
the two electrons in both their initial and final states needs to lie within a thin shell of the Fermi
surface. For a thin shell this requirement simply amounts to the requirement that the two initial
wave vectors need to have opposite direction - k = —k’, as illustrated in figure 65.

Figure 65: Left: The case of non anti parallel wave vectors under the assumption that the thin
shell requirement is fulfilled for one of the electrons Right: The only case where all four considered
electron states are within a thin shell of the Fermi surface. Picture from [59].

It can now be seen that a weak attractive electron-electron interaction exactly of the nature con-
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sidered in 8.1.3 can be justified physically, and hence also justifying the existence of the composite
bosonic Cooper pairs near the Fermi surface. The realistic effective two-electron interaction po-
tential depicted in figure 64 hints that the attraction can only occur on a specific short time-scale
and hence also in a specific short spatial range. It is then natural to enforce opposite spins on the
two interacting electrons due to the Pauli principle. Enforcing anti parallel spins and momentum
vectors and neglecting the repulsive part of the interaction gives the BCS electronic Hamiltonian:

Hpcs = ZEkCLGCk,ng Z Vk,k’CL,aCtk,_aC—k’,—aCk’,a- (8.19)
k,o kk',o

The ladder operators in the last term annihilate the two electron state |—k’, —o; k', o) and create the
state |k, o; —k, —0), only leaving matrix element of the form (k,0; —k, —o|Vess|—k', —0; k', o) non-
zero, satisfying the above requirements and implementing the simple constant interaction potential
Vk k' in the narrow frequency range as described previously. This is the BCS Hamiltonian; the
foundation for the description of conventional superconductivity.

8.1.5 The BCS gap function

The above BCS Hamiltonian very much resembles the simple XY-Heisenberg model for magnetism
with an applied field along the z-direction. This can be shown by replacing the spin operators o+,

o~ and o*
Ty ClClr Tk c_kCk+ and Ty Ce 1CL | (8.20)

Replacing this into the BCS Hamiltonian yields

1
Hpes-xy = ZEk ("‘"12 H l) + 1 Z Vi ('rli’r;ir + 'r]g'rﬁ;) (8.21)
k I, k!

In this analogue, spin lattice sites are replaced by k-space lattice sites. Due to the fact that the
phonon-mediated attractive interaction has short range, fluctuation effects can be assumed to have
little significance and a mean field approach can be fruitful as it has been in the case of the magnetic
counterpart. The electron is treated as being in the average field of its surroundings. In this case,
an average Cooper pair density might be a good number to describe the superconducting state.
Using this assumption, one can rewrite the Hamiltonian in terms of expectation values of Cooper
pair creation and annihilation operators

b = (Cr-k,l,ck,‘i‘) and b;r( = i LTCT—R,J-) (8.22)

The operators themselves can then be written on the form c_y e+ = bk + dby, whereas the
fluctuations can be written as dbx = c_i ekt — b, Inserting this into the BCS Hamiltonian,
keeping only first order terms and introducing the so-called gap-parameter

Al ==Y Vb, AL ==Y Viwb, (8.23)
k K
yields the Hamiltonian
Hpes = ESkCLUCkIU - Z (ALC—R,J,Ck,T + Akc;r:,‘i'cik,l. - bLAk) . (8.24)
k,o k

This has now formally been reduced to a one body Hamiltonian with k-dependent cooper pair
creation and and annihilation terms. Thus, this Hamiltonian is not in diagonal form. To do this,
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one must define new pseudo particle creation and annihilation operators by making a clever unitary
transformation (the so-called Bogoliubov transformation) of the old ones

cx = cos(f)m — sin(f)y and cT_k = sin(@)nk + cos(0) k. (8.25)
By ignoring the phase fluctuations of the complex gap parameter setting Al = Ay, one can choose
0 as tan(20) = Ay/ey, yielding the diagonalized BCS Hamiltonian

Hpgs = Z (Ek + Akb;‘() + z Ey (n;r(nk - vlqk) where Ej = /e + |[Ax[2. (8.26)
k

k,o

Due to the transformation which allowed for a diagonalization of the Hamiltonian, the two emerging
fermionic pseudo particles can be interpreted as electron-hole singlets with § = 0 with identical
excitation spectra. This spectra - Ey - has an energy gap - Ay - which is directly connected to the
expectation value of the Cooper pair annihilation (creation) operators - the order parameter of the
superconducting state. The magnetic analogue of this order parameter is the expectation value of
the spin operator which is zero above the magnetic ordering temperature and non-zero below. The
first term of the Hamiltonian is a constant term, while the second term involves excitations. The
partition function for this system can then be written, yielding the free energy F' of the system

Z = exp ['éﬁ > (ek + Aka'k)} I1 (1 + e—ﬁEk) (1 3 eﬁEk) = exp(—BF), (8.27)
k k

where 8 = 1/kgT. The problem is to find the stationary point of the free energy F in the zero-
temperature limit with respect to the gap parameter(s) Ay and AL‘ This results in the BCS gap
self consistency equation

Al
X
" tanh BE /2 )
A== Viw A Z(E—kfk/) : (8.28)
kl N )
=x(k')

The fraction involving Eys describes the ability of the system to create Cooper pairs, and is known
as the pair susceptibility. By assuming the simple potential depicted in figure 64 taking the Debye
frequency (maximum phonon frequency) as the cutoff frequency, one obtains a k-independent gap
function Ay — A. Introducing the parameter A = V. D,,(0), where V is the potential strength and
D,,(0) is the density of states at zero energy in the normal state, one obtains from the gap equation
the following results for the transition temperature and gap magnitude at zero temperature

kpT. = 1.13wpe™> and A(T =0) =2wpe™*; hence 2A(T =0) ~3.52kpT..  (8.29)

The coupling constant A is difficult to calculate, but the ratio between the transition temperature
and the superconducting gap at zero temperature is constant. Using the BCS partition function one
can calculate the electronic heat capacity and show a discontinuity at 7, upon cooling followed by
an exponential decrease due to the fact that there is now a minimum excitation energy (the gap) as
opposed to a normal metal (see figure 60). It is important to underline that BCS superconductivity
is a k-space phenomenon, the electrons forming a Cooper pair move in opposite directions and
experience a short range coupling when in the vicinity of one another. It is then reasonable to
imagine that a given electron changes Cooper partner continuously, only being correlated to any
single electron for at certain time or length. A crude estimate of this length can be given by
the Heisenberg uncertainty principle, assuming that the spread in Cooper pair kinetic energy is
0E = 2A. Reasonably assuming that ép = §E /vy one obtains for the coherence length:

ﬁUF ﬁUF

& ne A(0)’ {pcs = 7A(0)" (8.30)
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where the proper BCS definition has been given to the right for the sake of completeness. As previ-
ously mentioned, the finite phonon-assisted attractive coupling strength Vi ) results in a gap in the
pseudo particle excitation spectrum. This is the minimum energy required to break up the Cooper
pair. For a low enough temperature, the Cooper-pairs are able to form without being destroyed
by thermal fluctuations, yielding a non-zero expectation value of the pair creation/annihilation
operators - the order parameter. Electrons near the fermi-surface lower their energy by forming
composite bosons. Due to the energy gap in the fermionic pseudo particle excitation spectrum it
is energetically favorable for all the Cooper-pairs to condense in the ground state, all having the
same phase (reflecting the strong correlation of the electrons). This coherent phase results in an
uncertainty of the ground state occupation number, so the BCS ground state is a superposition of
states with different occupation number (the fractional uncertainty N/N is still small however).
This coherence resembles laser light in the respect that one needs a large number of photons in the
same state to create a propagating electrical field with well defined amplitude and phase. This is
what superconductivity is: a pseudo bosonic condensate of phase-coherent Cooper-pairs reluctant
to interact with their surroundings due to the energy gap in the pseudo particle spectrum near the
Fermi surface. This macroscopic wave function enables one to successfully describe the macroscopic
properties of a superconductor in a simple framework by expressing the free energy as a function
of the spatially varying complex gap function A(r) = |A(r)|e®. This concludes the description of
the BCS theory.
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8.2 Ginzburg-Landau theory of superconductivity

There is a long way from successfully calculating the excitation spectrum of a superconductor
using the BCS theory, to being able to successfully treat cases where an applied field drastically
changes the homogeneity of the condensate, as is the case in a vortex lattice. Some time before the
publication of the BCS theory, V. L. Ginzburg and L. D. Landau (GL), published a macroscopic
and phenomenological theory of superconductivity [60]. They expressed the free energy of the
macroscopic system as an even function of a complex order parameter ¥(r), where |¥(r)|? would
be proportional to the density of superconducting electrons (the free energy is expanded as an
even function since the density is the square of the wave function). Their phenomenological theory
was later derived from the BCS theory for temperatures near 7}, [61], where ¥(r) was found to be
proportional to the BCS gap A(r). From this viewpoint the free energy density should be an even
function of the BCS gap since the free energy should be invariant with respect to a phase change of
the complex gap function. In this section, a short description of the elements of GL theory leading
to the theory of vortex lattices will be given, following the account given in [62]. In this section,
Gaussian cgs units are used, as in [62] and many other books on superconductivity. The proposed
Ginzburg-Landau form of the free energy is
*
(EV—iA)W
i c

where Fj is the free energy in the normal state, m* and e* are the effective mass and charge of the
superconducting electrons and A is the vector potential of an external electromagnetic field. The
temperature dependence of the two expansion parameters can be found from BCS theory near T,
[63]:

2 2
+ i, (8.31)
8w

1
2m*

B

F = F[] +C(|‘I’|2 + 5|"I’|4 +

o(T) = NO)L=Le and (1) = 033020 (8.32)

T Apcs(0)?’

where N(0) is the density of states at the Fermi-energy and Apcs(0) is the BCS gap at zero
temperature. Note that at T > T,, a > 0 and the global minimum of free energy is at |¥|?> = 0 -
the normal state. The last term in equation 8.31 is the energy density of an applied field and the
fourth term describes the effect of gradients and fields on the order parameter ¥. In the absence of
fields and gradients the last two terms vanish and the free energy of the superconducting electrons
can be written as

R:F—%:amﬁ+§M% (8.33)

These two terms are equivalent to a series expansion in ¥ retaining only the first two terms. In
order to have a finite minimum in free energy, # must be positive, and therefore the minimum can
only be non-zero if « is negative in the superconducting state. This gives a minimum at

v 2=-2 8.34
| 3 (8.34)

Inserting this in equation 8.33, the thermodynamical critical field can be estimated as

2
H? — i (8.35)

B

Above the critical temperature a(T') must be positive, resulting in a free energy minimum at & = 0.
It can be shown [62], that the three important parameters of this theory can be evaluated from
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measurable quantities in the following way:

2

n me
|\I;°0|2 T e e e

2 SweerH
o) = H2(T))\eff(T)

lﬁﬂ'e
ﬁ(T) = m2et Hz(T))\eff( ) (8'36)

H.(T) and A.5f(T) can both be measured or calculated from the BCS theory, and are the only
free parameters of the theory. The notation A has been used not to confuse it with the London
penetration depth. The effective penetration depth depends on the amount of impurities and the
dimensions of the sample. Using the empirically found forms of H.(7") and Acs¢(T'), the critical
behavior of the three parameters near 7, are roughly:

[Tool? o 1—t*md(l—1t)
a(T) « 1—t ~l—t
1
B(T) « -(—172)2 Az const (8.37)

These simple forms are valid under the assumption that only the leading order in the Taylor
expansion has significance, which is true near T.. The free energy expression in equation 8.31 and
the relations 8.36 eztends the BCS theory and provides a powerful tool to deal with gradients in
¥(r) and fields.

8.2.1 The Ginzburg-Landau differential equations

In the case described by equation 8.33 - the case without gradients or fields - the minimum energy
is just the case with ¥ = ¥, everywhere. It gets much more complicated, when one has to take
the fourth term of equation 8.31 into account. The system adjusts the order parameter so as to
minimize the overall free energy. This minimum can be found by using the variational principle,
setting the variation of the overall free energy 6 [ FsdV to zero. This leads to two central equations
describing the superconducting condensate:

1 & 42
ol + B|T2T + (?—?v = e—A) T =0 (8.38)
2m* \ 1 c
e*h . *‘2 .
= i (‘I’ AVAV IRV AVA Y/ )# \Il TA, (8.39)

where J describes the super current. An instructive first step in understanding these equations is
to allow gradients in ¥(r) and set the field A(r) to zero. Evaluating equation 8.38, all imaginary
terms thus vanish and one can take ¥ to be real. Focusing merely on the one dimensional case and

normalizing the order parameter f = % one obtains

n o df

e 3 —_— .
2m*|a| da? Hr=r=o (8.40)

This normalized zero-field GL equation defines a characteristic length scale for the variation of ¥(r)
(equivalent to A(r) in the BCS theory), namely the so-called coherence length

h? 1

2m*|a(t)] = 7 1 (841)

£(I) =
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The value of the coherence length in terms of the measurable and derivable H.(T) and A.z¢(7") is

‘I’(} he

&) B HoT) o (1) where @ 9" (8.42)
As evident from the nature of the Cooper pairs themselves, magnetic field and superconductivity
are to some extent mutually exclusive. The superconducting condensate expels magnetic fields,
and strong enough magnetic fields destroy superconductivity - there is a competition between the
two order parameters. Thus, in this macroscopic free energy treatment of superconductivity there
are characteristic length scales for the two order parameters. The penetration depth describing the
decay length of a magnetic field at the normal/superconducting interface and the coherence length
describing the decay length of a perturbation in ¥. This allows for a calculation of the surface
energy associated with an interface between the superconducting and normal phases of matter.

8.2.2 Domain wall energy

A convenient parameter characterizing the interface between the superconducting and normal states
is the relationship between the penetration depth and the coherence length

_ 2ess(T)

#(T) = £(T) (8.43)
which is a dimensionless characteristic number for a given superconductor. This parameter can be
readily interpreted using figure 66. A small x implies that there is an interval where the magnetic
field is fully suppressed at the cost of diamagnetic energy yet the superconducting order parameter
is still below its optimal value ¥, at £ — co - resulting in a positive surface energy. In case of a
large x, there is an interval where the superconducting order parameter is optimal, but still allowing
a finite field density. This results in a negative condensation energy which has consequences at high
enough fields.

2% A
—
1, > H,
h v
v h
» X > X
< » «—>
3 3

Figure 66: A one-dimensional illustration of the relevant region near an interface between the
superconducting state and the normal state (a domain wall), in the two cases where A > £ (k> 1
- right) and A € € (k < 1 - left)

Going back to the differential equations 8.38 and 8.39, figure 66 imposes two natural boundary
conditions on the differential equations:
V=0 and h=H, for 2 - —
=", and h=0 for z — +oo.
Using these boundary conditions it is possible [62] to get the following expression for the surface

energy v as a function of the magnetic field &, which is essentially the excess in Gibbs free energy
Gy over what it would be if there was no interface and ¥ = ¥, — G = f, everywhere:

Y B hH, _ P B h — H,)?
v—[mGSH—fsdw—[mfsﬂm e - puto= [ { Do+ P g ()
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Upon normalization to the magnetic energy density at critical field H2 /8 one obtains:

L [-8- @)

In this last expression the competition between the energy required to facilitate the diamagnetic
response and the condensation energy of the superconducting condensate is clearly revealed. It
can be shown that the value of k marking the crossover from negative to positive surface energy
is exactly at k = 1/v/2. In case of a negative surface energy, it must be favorable to create many
normal regions within the superconductor when applying strong enough fields, maximizing the
domain wall surface. A finite field density should be allowed within these normal regions. So
qualitatively one would expect that applying a strong enough field on a & > 1/v/2 superconductor,
would result in a phase in which there are small normal tubes of width 2¢ parallel to the field
carrying a magnetic flux. This would result in a non-zero magnetization of the superconducting
sample, at least from a macroscopic point of view. Superconducting materials with k > 1/ V2
and hence negative surface energy are called Type-II superconductors, and are characterized by
their ability to allow a strong enough magnetic field to penetrate the condensate in the form of
quantized flux lines, which will be evident in the following section. Superconducting materials with
k<1/ V2 - Type-I superconductors - has positive domain wall surface energy and only allows a
field to penetrate in the normal state above H..

Flux quantization

In order for the GL theory to make sense, the complex superconducting order parameter - ¥(r) =
| (r)|ei®(") - must be single valued for any r. This is supported by the fact that the GL theory
can be derived from the BCS theory with ¥ proportional to the gap A(r). This requires that the
phase of ¥ is required to change by a multiple of 2 through any closed path:

th}ﬁ ds =2mn = j{% (m*vs + eCA) - ds (8.46)

The last equality follows from the third term of the GL free energy expansion, which describes the
kinetic energy of super current (see [62]). By choosing a path far away from the normal region allows
for a neglection of the superconducting current, and by invoking Stokes theorem - ® = § A - ds -
one obtains '

r !
21m:e_—j£A-dS=><I’=En (8.47)
fic 2e
This means that the normal regions of a type two superconductor can only carry discrete values of
flux, integer multiples of the fluzoid - ®; = hc/2e. Since as many normal flux tubes are created as
possible - to minimize the interface surface energy - it is reasonable to expect that the flux tubes

will carry only one flux quantum,

8.2.3 The linearized Ginzburg-Landau equation and the Abrikosov vortex state

In order to be able to transparently investigate the bulk magnetic properties of a Type-II supercon-
ductor theoretically, it is instructive to assume a relatively small order parameter, |¥|? < [¥|% =
—&_ This allows for a neglection of the S-term in equation 8.38, resulting in the linear differential

B
equation

vV 2rA\? 2m*a
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which is equivalent to the Schrédinger equation for a free particle in a magnetic field. Consider an
infinite superconducting sample in a magnetic fleld H || 2, with a choice of gauge such that A, =Hz
(Landau gauge). Substituting this into equation 8.48 and expressing it using the coherence length

& gives

4 a onH \? 1
V2 e () 2le== 4
[ -I—cDDH'Lay—i—(@O) ’L:]‘I’ Ez‘I', (8.49)

As the vector potential only depends on the x-coordinate, a trial function could be on the following
form

U = ethuveihaz f(g), (8.50)
which after inserting the trial function into equation 8.49 results in

32
- 9a?

k, @

2
f@) + (%) (z — z0)%f = (fiz - kg) f, where zg= 2.7TH. (8.51)

This is the Schrédinger eigen energy equation of a harmonic oscillator - A = 1/2d? /da? + 1 /222 -
with the following eigen energy

1 2eld
E, = (n + 5) h (m*c) ) (8.52)
which leads to the quantized field flux
s By 1 2 - - Py _
H('n.,kz) = m (52 ’l"z) = Hmax = H(0,0) = 271’62(’1-1) = Iic9. (853)

It is worth noticing that the assumptions leading to equation 8.49 are very valid at fields close to
H.y where the magnetic field has considerably reduced |‘If|2 So there is a maximum field above
which superconductivity cannot exist and just below which the field density decreases in discrete
steps. The eigenfunction f to equation 8.51 is

(z — mg)?
f(z) = exp [— e | (8.54)
which is a Gaussian slice of superconductivity centered at z = x5 with a width of £. Furthermore,
it can be shown that [62]

H. = V2kH,, (8.55)

confirming that the limiting value of k separating Type-I from Type-II superconductors is indeed
at K = 1/v/2. Despite that this solution is only valid at fields close to H.2, equation 8.55 also hints
that there are (at least) two magnetic phases in a Type-II superconductor. A phase below H,
which excludes all magnetic field from its interior, and a phase for fields H, < h < Hg, where a
field is allowed to penetrate the sample in the form of quantized flux lines. In a bulk sample there
are thus an infinite number of solutions at H.s of the form:

. _ )2 ;
P = M f(z) = e exp [— %} , where ap = % (8.56)

Each of these solutions is local. A global space-filling solution to the linearized GL-equation can
be achieved sensibly by enforcing periodicity on the solution as this is expected to be energetically
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favorable compared to a random solution. Choosing k to be discrete with the period ¢ = 27/Ay
gives

ngPo

kn =ng, Tn=
This constructed solution has translational invariance along the & and y direction perpendicular to
the field with primitive unit cells each containing one flux quantum. A general form of the solution
is

U, = Z C, exp(ingy) exp [— (1;5—12’1)2] ; (8.58)

where the coefficient C,, determines the structure of the lattice. This solution is constructed to be
periodic in y, and should also be periodic in  in order to achieve two-dimensional periodicity. This
is the case if C,, is periodic in n. A square lattice is described by the case C, ;1 = C},, while the
case Cp+1 = iC), describes a triangular lattice. Actually, these two solutions have almost the same

Y position (nm)

-1000 -500 ] 500 1000
X position (nm)

Figure 67: The hexagonal close-packed vortex lattice for an applied field of 130mT

free energy, and in order to calculate which space-filling solution is expected to be observed the full
GL-equations need to be considered, including the S-term. It has been shown that in the absence
of effects due to the underlying crystal lattice, the triangular vortex lattice is the most favorable
one [64]. This agrees with what one would expect intuitively - since the hexagonal close packed
lattice is the densest way of packing circles in 2D - in this case the structure that maximizes the
number of flux lines. An example of the triangular lattice is shown in figure 67. Assuming that
each unit cell carries exactly one flux quantum, the area of the unit cell A, and the applied field
are inversely proportional B = ®y/A,, leading to the following relation between the applied field
and the lattice constant a:

2®q
V3B

This description of the vortex lattice is oversimplified. There are two important interactions that
need to be accounted for, the interaction between flux lines and the interaction between vortex lines
and parts of the superconductor which for some reason are in the normal state - called pinning.

A, = a?sin(60) = ®y/B = a = (8.59)

8.3 Forces acting on and between flux lines

It is reasonable to expect that the field density within a flux tube in the normal state will decay
outside the tube as the distance from the volume in the normal state increases - with the penetration
depth as a characteristic length. When two flux lines are far away from each other they can be
treated as two isolated flux lines, as the field far away from a flux line would vanish due to the




130

diamagnetic nature of the superconducting condensate. However, when the distance between the
flux lines becomes comparable to the penetration depth, the field distribution of the two flux lines
perpendicular to the field direction begins to overlap and thus one would qualitatively expect a
repulsive interaction due to the increase magnetic energy of the overlap region. To quantify this it
is necessary to determine this field distribution more accurately.

8.3.1 Structure of an isolated vortex

Assuming that the flux tube structure is independent of the z coordinate parallel to the field, the
problem reduces to finding the field and order parameter distribution as a function of the radial
distance from the flux tube, denoted h(r) and ¥(7) respectively. When the applied field is exactly
H¢y, the Gibbs free energy should be the same in the presence as in the absence of one flux line.
Taking € to be the flux line energy pr. unit length, this can be expressed as

38y =Ry A B,

G, = G, .60
one vortex 4 {560y

no flux

Equating [ hdr to ®L, one can express the lower critical field H,; as a function of the flux line
energy

Hy==—" (8.61)

Finding the radial field and order parameter distributions is in general difficult and requires nu-
merical methods. It is instructive, however, to express the radial distribution of the vortex line
order parameter in the form

U = Ueof(r)e®, (8.62)

where 6 is an angle describing the direction of » in the (z,y)-plane. The angle & can be introduced
due to the fact that the order parameter is single-valued and the phase of ¥ must change by a
multiple of 2 when completing a closed circuit. This fixes the gauge choice to

A=A@rb, A(r)= G) fo : ' h(r")dr' (8.63)

Using these definitions and the two GL differential equations (the non-linearized), it can be shown
that a good approximation to f is [62]:

f(r) = tanh (%) (8.64)
In evaluating h(r) it is instructive to examine the high-x limit. In this limit the coherence length is
much smaller than the penetration depth, so it can be assumed that f — 1 on a scale much smaller
than the scale of variation of the field. So treating the case of a non-varying order parameter of
magnitude |¥|? = |¥,|? greatly simplifies equation 8.39 since the gradient term disappears. This
results in a simple equation outside the core

VxJ+h=0 (8.65)

The above equation gives zero flux for any path encircling the core, so the zero on the left hand
side must be replaced with the expression Z®4(r), to force the contained flux to be & and hence
compensate for the fact that this equation does not hold near the core containing the flux. In [62]
it is shown that this gives an exact solution for the field distribution at high :

D 7
hr) = 537 Ko (X) , (8.66)
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where Kj is the so-called zeroth order Hankel function. The two relevant limiting cases are:

(D(] TA —r/A
h(r) — 27r)\‘2\/ L for r— o0 (8.67)
N Do 1 A
hir) ~ vl Ll e +0.12 for EKr€ A (8.68)

The case for k = 8 is shown in figure 68
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Figure 68: Radial dependency of both the superconducting order parameter £ and the magnetic
field h taken from the center of the flux line for k = 8. Picture from [62].

Flux line energy

An instructive expression for the free energy pr. unit length of a flux line can be found by excluding
the core. In that case only the free energy from the field energy and from the kinetic energy of the
super currents contributes, yielding

€= gl;r f (h* + N*|V x h|?) dS. (8.69)
Using this and equation 8.68 it can be shown that
oy \? H
€~ (w_) In(k) or em gllﬂf In(k), (8.70)

under the assumption that & 3> 1. Since H, is the field density of energy equal to the energy
density of the condensate, the line tension energy in this approximation is a factor of 4 In(k) larger
than the condensation energy lost in the core of cross-sectional area &2, It is now possible to get
the proper lower critical field H,; for a Type-II superconductor, the field at which the flux starts
to penetrate the sample

Hg=—e~—In(k) (8.71)

8.3.2 Interaction between flux lines

The total field from two flux lines located at ry and rs respectively for field applied along z can be
expressed using the high-x expression for A(r) in equation 8.66:

ha(r) = h(lr — ri]) + A(Jr — ra)) (8.72)
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The free energy of these two flux lines pr. unit length can be calculated in the same way as for a
single flux line using equation 8.69, neglecting the core energy, to be

o ¢
€ria = b () + 2 (r2), (8.73)

where the first term is the isolated line energies from the two flux lines, while the second term is the
interaction energy. The two flux lines are identical and the hence energy is invariant with respect
to flux line interchange. So one can express the free energy from the interaction between two flux
lines as a function of the distance between them in the (2,%) plane

o= 20K (’ﬂ) (8.74)

27 gr2xz 0\ /) '
where Kj has the same limits as described in equations 8.67 and 8.68. The force between the flux
lines is the derivative of Fiy with respect to the distance between the flux lines. Doing this and
combining with Maxwells 4. law - V x h = 4nJ /c - gives the following expression describing the
force on flux line 2 due to the super current imposed by flux line 1:

B0
fy = Jl(l‘g) X %Z (875)
This can be generalized to the force felt by a vortex f due to the super current from all other
vortices J, including possible transport currents:

P 3, % 208 (8.76)
C

In a perfect triangular lattice, the super current at any flux line position due to the the surrounding
flux lines would cancel due to the symmetry of the lattice. However, if there is a macroscopic
transport current, the lattice as a whole would experience a net force. This is actually the cause for
an effective non-zero electrical resistance in the vortex phase of a perfectly clean superconductor.
The force perpendicular to the transport current causes the flux lines to move with a velocity v,
inducing an electrical field

E—Bx % (8.77)

which is perpendicular to the transport current. This causes a resistance at any finite transport
current if no mechanism is present that opposes flux line movement. Dissipation of energy can also
be caused by the normal cores being dragged through the condensate allowing the transport current
to flow through the normal region (discussed in [62]). Since any transport current would create a
magnetic field, restraining the vortices is an important aspect of creating usable superconductors
so that a field below H. and not H,; defines the critical current boundary. This restraint can be
caused by flux line pinning, described in section 8.3.4.

8.3.3 Intermediate mixed state

In the previous sections, the geometry of a finite sample was not taken into consideration. When
applying a small (H < H,;) magnetic field on the sample, the total field is 0 inside the sample and
H far away from the sample. This change occurs mainly near the sample edge, giving rise to a
demagnetization factor. The free energy to minimize is thus not only the energy of the condensate
in an applied field, but the free energy of the system as a whole including the demagnetization
factor. For Type-I superconductivity, this can be shown ([62]) to result in an intermediate state
near H. where there are co-existing macroscopic domains in the Meissner phase and the normal
phase respectively.
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Figure 69: Intermediate mixed state in niobium as observed in [67].

This phase separation can also happen in Type-II superconductors - called the intermediate mized
state. Even though GL theory is actually a valid decription for a larger part of the phase diagram
that one would naively expect, as derived in [65], BCS corrections are necessary for low fields and
temperatures. A recent treatment of this intermediate mixed state is given in [66]. Such corrections
are significant for 0.71 < K < 1.5 and they lead to an attractive interaction between fluc lines at
large distances. Thus, the intermediate mixed state consists of large domains of Meissner phase and
large domains of vortex lattice with an equilibrium lattice spacing ar,. This intermediate mixed
state has been observed in Bitter decoration experiments for a clean niobium disc [67] - as shown
in figure 69. As the characteristics of the superconducting state in vanadium are very similar to
those of niobium, such an intermediate mixed state could be possible near H; in the sample used
in this work.

8.3.4 Flux line pinning

Assume that for some reason there is a microscopic volume in the superconducting condensate in
which some irregularity enforces the normal state in the absence of any flux line. Crudely speaking,
any normal region costs an energy of VH?2/8x, where V is the normal volume. Above H., it is
favorable to have tubes with normal centers of radius £ carrying magnetic flux, even though there
is a loss of condensation energy associated with creating such tubes. There is a free energy gain,
however, by letting the normal tube center intersect any pre-existing normal region, simply due to
the fact that one normal region is energetically favorable over two normal regions. This energy gain
results in a force acting on the flux lines in the presence of such normal regions. It is reasonable to
expect the range of such a force to be of the order &, since the order parameter of the flux line has
been fully restored at distances r > £ from the normal center, resulting in a vanishing gradient in
the potential.

There can be many causes of such normal regions, depending on the characteristics of the super-
conductor in question. If the normal region is much larger than &2, the flux line would not gain
much by intersecting such a volume since there would be an additional condensation energy loss
from breaking up Cooper pairs in the regions with a finite order parameter. A normal region much




134

smaller than &3 is not even possible due to the fact that the superconducting order parameter can-
not change much on scales less than £. The possible nature and distribution of pinning potentials
can therefore be entirely different when looking at different superconductors.

Pinning forces enable the actual application of superconductors, and they pose some of a challenge,
theoretically. Assumptions have to be made about the nature of the pinning, and the validity
of such assumptions can vary from superconductor to superconductor and even from sample to
sample. When the center of a flux line is within 7 & £ of a pinning center, an attractive force will
act between the pinning center and the flux line section nearest to it. This will be opposed by the
lattice since the movement away from the equilibrium position will cost energy. Generally speaking,
one is faced with the problem of an ensemble of tubes with a finite elasticity being perturbed by -
more or less - random forces. It is even possible to change the lattice spacing in the flux line system
and hence the elasticity constants, which makes the problem very interesting not only from the
perspective of superconductor physics but from a perspective of random perturbations of elastic
lattices in general. This difficult subject will be elaborated in the next section.

8.4 Collective properties of the vortex lattice: The Bragg glass theory and
proposed phase diagrams

If the pinning forces are assumed to be randomly distributed throughout the sample, it is straight-
forward to argue that pinning cannot occur for a perfectly rigid lattice. The lattice as a whole
would not be subject to any net force as every pinning force would be canceled out by another
pinning force opposing it, due to the random nature of the distribution. If the lattice is elastic
however, individual flux lines would be able to deviate from their ideal position, minimizing con-
densation energy at the cost of elastic energy. It is therefore appropriate to describe the lattice
as elastic, allowing deformation at the cost of ’spring’ energy. The assumptions made concerning
pinning throughout this chapter are the following:

e The pinning forces acting on flux lines are point-like (as opposed to one-dimensional line
segments or surfaces) - called pinning sites.

e The pinning sites are randomly distributed and static - often called quenched.

e The pinning strength is weak compared to the elasticity of the lattice.

These assumptions are by no means universal; in fact their validity can be dependent on the sample
or the field and temperature condition. Whenever discussing generic vortex lattice phase diagrams,
the pinning mechanism is always an obstacle, as there can be several reasons for pinning which
in principle can co-exist and thus make a theoretical description difficult to generalize. These
assumptions are assumed to be valid in the vanadium sample investigated in this work. Vanadium
is an element, and therefore it is possible to make clean single crystals. The pinning sites are
therefore expected to be a low density of impurity atoms causing small point-like normal volumes
of size 4/3m€3.

The randomly distributed weak pinning forces influence the elastic vortex lattice. It is assumed
that the elastic energy can be expressed in terms of the resistance of the lattice to three kinds of
deformations, compression, tilt and shear (see figure 70). The free energy change associated with
a deformation of the vortex lattice can be described as a sum of spring energy terms

1 1 1,
0F = 50118% + 5044834 + 50(368%5, (8.78)

where the stress coefficients s11, s44 and sgg describe the level of deformation from the equilibrium
configuration of compression, tilt and shear respectively. The configuration of the vortex ensemble
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Figure 70: Top left: Compression - an applied force changes the lattice constant. Top right: Two
forces of opposite direction acting on two different z-coordinates tilt the flux lines at the cost of
flux line energy. Bottom: An illustration of shear - a displacement of one chain of flux lines from
its neighboring chain. Picture from [59].

thus depends on the balance between accommodating the energy landscape produced by the pinning
sites and minimizing the deformation energy. A good initial theory successfully describing critical
current effects near H.o was proposed by A. I. Larkin and Yu. N. Ovchinnikov in 1979 [68] and
will be outlined in the next chapter. In the following let u(r) be the displacement vector u of the
flux line situated at r = (r, 2) for fields along z.

8.4.1 Phenomenological description of the elasticity

In equation 8.70 the flux line energy was shown to be proportional to the condensation energy
lost in the core. It is reasonable to expect that the cost of extending a flux line would decrease
as a function of temperature lessening the tilt and compression moduli. Another important point
is that the flux line repulsion is proportional to the field overlap and hence the lattice constant.
Thus, at very low fields, the flux lines are almost isolated and little interaction occurs resulting in
a very soft lattice. Upon increasing the field the interaction grows leading to a harder lattice as
the spring constant between the flux lines grows. However, when the field is increased further and
the lattice constant is of the order of the coherence length a ~ 3¢ the order parameter does not
reach full height between the flux lines resulting in a decrease of flux line energy, and results in a
softening of the lattice - extending and bending a flux line becomes less costly.

8.4.2 Larkin-Ovchinnikov theory

If every single flux line moved away from its equilibrium position throughout the entire flux line
length - accommodating the pinning energy landscape in its vicinity - the cost in elastic energy
would be high. Considering the assumed randomness of the pinning landscape it is reasonable to
expect a collection of flux lines to keep their elastically optimal lattice configuration and collectively
displace to a pinning energy minimum for the entire ensemble. This is the so-called collective pinning
approach for correlated volumes.

The basis for this finite volume treatment of the pinning problem comes from the assumption that
long range order is destroyed when the perfect elastic lattice is subjected to weak random forces. In
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the general case of a continuous symmetry order parameter (as is the case with the superconducting
order parameter), it can be shown that formation of domains or any type of disorder is energetically
favorable in the presence of weak random forces when the dimensionality of the system is less than
or equal to 4 (The so-called Imry-Ma argument [69]). The size of these domains depend on the
magnitude of the random force but no matter how weak the force, in principle it will destroy order
on a long enough scale. In the case of a vortex lattice in the presence of randomly distributed
pinning sites, Larkin used perturbation theory to show that long range order cannot persist [70].
In fact, defining the displacement correlator

B(r) = ([u(r) - u(0))*), (8.79)

where () and — define the thermal and disorder average respectively, he showed in [68] that B(r)
grows linearly with =, completely destroying the ordered lattice at large enough distances. An
appropriate choice of volume is where the displacements are less than the range of the pinning
force - 7y - described by two length scales R ||ry and L||z. The relative displacements are then
S44 = rf/ L. and sgg = 1§ /R, and neglecting the effects of compression the increase in elastic free
energy can be written:

1 1
(SFE[ = 5—044 (T’f/LC)2 + 5665 (T‘f/Rc)2 ¥ (880)

The pinning centers are randomly distributed, and thus any chosen pinning center close to a flux
line will act on the ensemble as a whole in a random direction. There are nV, such pinning centers
in the correlation volume V, where n is the density of pinning sites. The resulting force acting on
the correlation volume can then be described as a random walk with Gaussian distributed step size
(Gaussian distributed force strength) - which scales as y/nV. The Lorentz force density induced by
the transport current scales with the current density J;, so the total Lorenz force scales with J; V.
This actually means that in a perfect rigid lattice, any transport current can de-pin the vortices
as the critical de-pinning current density (where the two forces are equal) scales with Vc_l/ %, So
for a perfectly rigid lattice J, —» 0 as V, — co. This is not the case in Larkin-Ovchinnikov theory,
as one has finite correlated volumes. The resulting random force is proportional to fv/nV,, and
with range 7y the resulting potential energy from the pinning forces is ~ r;f\/nV;. The potential
energy per unit volume can be directly inserted into equation 8.80 to yield the total free energy
difference as a result of both elastic and pinning energy:

1 1 n
6Fy = =Cys (ry/Le)* + =Cos (v /Re)* — friy ] — (8.81)
2 2 V.
This can be minimized to obtain the dimensions of the correlated volume,
3
2C 14 Cggr? v2C1,Ci.r? 4C3,Césr8
L= ﬂ, Ry = YT snd il (8.82)
nf2 nf? n3 f6

In this model, the pinning force density is f1/n/V,.. When the Lorentz force density resulting from
transport currents exceeds this value, the individual correlated volumes begin to move, dissipating
energy. This critical current density J. is then described by the equation [71]

J.B  nif?
c - 20440625614?

(8.83)

So the softer the lattice, the larger the critical current, since the cost of conforming to the pinning
energy landscape is smaller for the flux lines making the correlated volumes smaller. The exact
calculation of the elastic moduli is tedious but necessary to predict the critical current. In [68]
Larkin and Ovchinnikov were able to explain the so-called peak effect near H,y where the critical




137

current suddenly rises before dropping to zero at the melting line in the (H,T) phase diagram. Close
to H.s the flux lines are close enough for the super current for any given flux line to be screened by
the super currents from the neighboring lines, lessening the interaction and softening the lattice (or
minimizing the correlation volume) - which leads to an increase in critical current. When nV, ~ 1
each individual flux line is able to deform, conforming to the pinning landscape in its vicinity and
resulting in a large critical current. Although the Larkin-Ovchinnikov theory deals with elasticity
and pinning forces in an elegant and transparent manner yielding an easily interpretable expression
for the critical current, it is far too simple to accurately describe the configurations of the vortex
lattices. The reason for this is that at large scales, there is not necessarily a single ground state.
The space of possible configurations explode at large scales, and several metastable configurations
will be possible. Perturbation theory is unable to take several metastable states and the fluctuation
between them into account, as it deals with one ground state [72]. So at transverse scales larger
than the Larkin length R, the linear increase of the displacement comes to a halt and beyond
this scale order decays much more slowly. In fact, some degree of long range order persists in the
presence of weak disorder, creating diffuse Bragg peaks, while the existence of many metastable
states at long scales mostly resembles glassy states. Therefore, the proposed phase of vortex matter
is called a Bragg glass, which will be the subject of the next chapter.

8.4.3 Bragg glass theory

The Bragg glass theory was developed by Thierry Giamarchi and Pierre Le Doussal (GD) [73, 74],
who extended the work by Thomas Natterman [75], Jean-Phillipe Bouchaud, Marc Mezard and
Jonathan S. Yedidia [76, 77] to describe the nature of the disorder of vortex lattice at large scales,
making specific predictions about the correlations. Natterman predicted a logarithmic rise of the
displacement correlator or roughness instead of the linear increase suggested by Larkin, while
Bouchaud, Mezard and Yedidia applied the so-called replica field theory to the problem. This had
previously been applied to the general problem of random manifolds by Marc Mezard and Giorgion
Parisi[72]". The existence and importance of metastable states were recognized by Feigel’man et.
al. [78], who predicted a powerlaw increase of the displacement correlator B(r) ~ 'r?/ ? Ugéﬁ , where
Uro is the displacement correlator suggested by Larkin and Owvchinnikov. So there were many
suggestions that flux line correlations might not drop off as fast as suggested in LO-theory. In this
chapter, two important quantities describe the flux line pair correlations as a function of length
scale - the displacement correlator B(r) given in equation 8.79 - and the so-called translational

correlation function

Cy(r) = (Ko lulr)-u(O)]), (8.84)

where K is the reciprocal lattice vector of the perfect lattice. This function describes disorder
average of the spatial coherence for the given length scale. Cy(r) has a value of 1 for the perfect
lattice at any length scale and 0 in the case of complete disorder. The linear increase of flux line
displacement as a function of distance suggested in LO-theory results in an exponentially decaying
translational correlation function [74].

The main reason for the existence of long range order - as mentioned previously - is the existence
of many metastable states for large ensembles of flux lines. The proper way to deal with such

"The vortex lines themselves can in principle bend around in three dimensions, but on a small enough scale
they can be said to be straight lines; an euclidean space of one dimension. Such an object which locally, but not
necessarily globally, has the properties of euclidean space in a given dimension is called a manifold. The perfect
Abrikosov lattice is thus a case of one-dimensional manifolds embedded in a 3-dimensional space (the condensate),
which are ordered in two dimensions. The problem of weak quenched pinning is thus a subset of the problem of
n-dimensional manifolds ordering in d-dimensional space with m = d — n-dimensional lattice vectors subject to a
quenched weak disorder potential. This general class of problem has been studied extensively in different forms,
but using almost the same language. For instance the displacement correlator defined in equation 8.79, is usually
referred to as the roughness.
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a diversity of states is by using the rather abstract replica field theory. Another crucial point
recognized and implemented by Giamarci and Doussal was the importance of the periodicity of the
lattice. The random nature of the pinning force results in a broad range of Fourier components.
It is reasonable to expect that the Fourier components of the pinning potential with wavelengths
close to the periodicity of the lattice have a different effect on the ensemble than that of the long
wavelength components. The discrete symmetry of the perfect vortex lattice and its consequences
for pinning is then accounted for, and can be shown to restore long range order. The details of this
theory is beyond the scope of this thesis but a short account for the approach is given below.

Replica field theory and replica symmetry breaking

Consider a symmetric elastic Hamiltonian in three dimensions with identical moduli for shear, tilt
and compression respectively

H, = %c f Bx[Vu(z)]?, (8.85)

where Vu(z) is the relative deformation costing elastic energy and z is a 3-dimensional vector. The
pinning potential is described as a random Gaussian potential V(z) which is slightly correlated
in the transverse direction (with respect to the field applied along z) but not in the longitudinal
direction described by

V(z)V(z') = A(r —1")d(z — 2), (8.86)

where r and 2 are cylindrical coordinates. A(r) is assumed to be a short range function with a range
of the order of the superconducting coherence length & with Fourier transform A,L. Implementing
the possibility of displacement the flux line density can be written as

p(z) = Zé(f — R —u(R;, 2)) (8.87)

where R; is the flux line position in the perfect lattice and u(R;,2) is its displacement from this
position. Including the potential pinning energy, the Hamiltonian can be written

H, = %C‘/‘(Jlg’sr:[V'ut(zl:)]2 +/d3:cV(sc)p(9:) (8.88)

To be able to implement the existence of many metastable states and the fluctuation between
them, it is favorable to replicate the Hamiltonian n times, simply introducing many copies of the
system. The reason is that one can compute the free energy using the partition function for the
full replicated Hamiltonian and take the limit n — 0

n_
F=an=1imZ 1.

n—0 n

(8.89)

Using this trick, it is possible to take all metastable states into account and calculate the true
disorder average. GD introduced the replicated pinning Hamiltonian

Hypin= —% /.dS:vd?’w’A(v‘ —7Y8(z — 2')p* () p*(z) (8.90)
a,b

where a and b are replica indices ranging from 1 to n and T is the temperature. The other important
trick performed by GD was to express the flux line density in a form that is invariant under lattice
translations, and hence respects the periodicity of the lattice and allowing for a more macroscopic
treatment of the pinning potential. GD introduced a slowly varying auxiliary field

d(z) =1 — u(d(r, 2),2) (8.91)
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allowing for the flux line density to be approximated by an expression invariant under lattice
translations

p(x) =~ po |1 — Bpua(o(z)) + Z K pi(z)|, where py(z) = U], (8.92)
K#0

This allows for a re-expression of the pinning energy term in which the Fourier components of the
pinning potential with periodicity close to that of the lattice is separated from the long wavelength
part of the pinning potential:

/dsa;V(:n)p(:a:) = —pg/dsﬂ'..V(.‘L)aaﬂﬂ +pg/d3 Z V_kpi(z),

K#0
where Vi (z) = V(z)e". (8.93)

The last term on the right hand side of equation 8.93 couples to the short scale spatial variations
of the pinning potential and had been omitted in previous works. These short scale variations are
indeed relevant. In the case of imperfections in the crystal lattice causing the pinning sites the scale
of which the pinning site density varies are of the order of 107!? —10~% m; two orders of magnitude
less than the typical vortex lattice spacing. Since only the Fourier transform of the transverse part
actually varies an effective replica Hamiltonian can be written as a function of the long wavelength
transverse Fourier components of the pinning potential Ay and the short wavelength components
Ax

Hepp = —/d%[Vu /d3 '00 Oaau O ﬁ+ Z P()2TK cos (I( [u®(z) — ub('n)])
K#0
(8.94)

This is the Hamiltonian used by GD to derive the Bragg glass correlation functions. They employed
the same approach as Mezard and Parisi in [72]; applying variational theory using a general trial
replica Hamiltonian of the form®

1 a4
Hy = §/WG® ua(q) - up(—q), (8.95)
where Gy is the replica field propagator on the form
1
R (599

The form of the propagator Gy is assumed to take the above form, where o, is a self-energy,
constant for a given set of replica indices. The problem is now to minimize the free energy

Fiar = (Heff - HU)Hm (897)

which - defining the connected part of the propagator as G;1 =3, G;bl(q) - gives the saddle point
equations

1

GC(Q)=-C?, and aa;ébzg—;ffci’-e—ff/wabm), (8.98)
K

where pp has been absorbed into Ay, Ax = poAx and Bgy(x) is a displacement correlator between
replicas

By 1) _([“a — ub(O)IQ)- (8‘99)

8Mezard and Parisi considered a more general case of random manifold which has been simplified by GD
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The displacement correlator in this framework is the disorder average diagonal in replicas which is
the average of the diagonal B,,(z) denoted

- o
B(z)= 5([1;(3:) —u(0)]?). (8.100)
using the density defined in equation 8.92 the translational correlator can be written as

Ck () = (pk (z)px (0)), (8.101)

which in the above treatment of the Hamiltonian can be easily related to the displacement correlator
by the expression

2 .
Ci(x) = e~ T80, (8.102)

The physics of this rather abstract theoretical framework lies in the replica symmetry. If one
assumes replica symmetry - which implies that G,(¢) = Gy(g) and B,(z) = By(z) for all a,b - one
can solve the saddle point equations (equation 8.98) to yield the displacement correlator

B(z) ~ =, (8.103)

which is the Larkin result for all distances. So if all replicas are exactly the same - meaning that
the self-energy of all the propagators between replicas are the same - all replicas have the same
energy and are in fact identical. In reality, there is only one stable state - namely the ground
state. Therefore perturbation theory is a valid way of treating the problem and the Larkin result is
naturally reproduced. In fact, GD argued that the replica symmetric solutions are unstable if the
dimensionality d of the system is between 2 and 4; the modes of the interaction between replicas -
the replicons - have negative eigenvalue. They argued that replica symmetry must be broken in the
case of 2 < d < 4. GD assumes in the case of d = 3 that replica symmetry is broken and constructs
a hierarchy of replicas by a parametrization of the propagator between replicas Ggp(z) = G(z,v)
where v € [0 : 1. The self-energy between replicas is assumed to be an arbitrary function of v
at low values up until a critical point v, after which the self-energy is constant. GD focuses on
the pairs of replicas with low self-energy and argues that these replicas determine the long-scale
behavior of the disordered vortex lattice [74]° - in fact they argued that the relevant scale L is
determined by L oc T/v. In the following, the predictions of the Bragg glass theory relevant for
this experimental work are outlined leaving out the details.

8.4.4 Predictions of Bragg glass theory

Keeping only the K = K terms in the pinning potential which can be argued to be appropriate at
large distances, the asymptotic behavior of the disorder averaged displacement correlator can be
shown to increase logarithmically with distance

2

e In|z| yielding Cp,(z) = |z (8.104)
0

B(z) =
which is a very slowly increasing function leading to quasi-long-range order and a power law decay of
the translational correlation function - Cx (z) o< |z| ™" with 7 = 1. This exponent is obtained using
the variational method; in [74] GD also applied functional renormalization theory (not elaborated in
this thesis) leading to a predicted exponent 7 = 1.1. Simon Borgner, Thorsten Emig and Thomas
Natterman predict a non-universal exponent npgy € [1.145 : 1.16], depending on the relationship
between shear and compression moduli ¢gg/c11, by taking all elastic modes of the lattice into account
- not restricting themselves to K = K [79] when treating order at long distances.

page 1248 - section I11.C.1
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When keeping only the X' = Kj term in the Fourier expansion of the disorder potential, one
ignores the higher harmonics of the interaction potential. Thus the part of the potential which
varies on a spatial scale smaller than the lattice spacing is not taken into account. This is called
the single cosine model, and the consequence of the simplification is that there are two regimes in
the displacement correlator as a function of distance, the Larkin regime and the asymptotic regime
with some crossover between the two occurring at a distance {. However, when one includes the
higher harmonics of the potential the disorder can vary strongly between lattice spacing, resulting
in a new regime at intermediate distances between the Larkin (B(z) ~ «) and asymptotic regime
(B(z) ~ In(z)), the so-called random manifold regime. In this more complicated model, the
crossover between the random manifold regime is supposed to occur at a length R, much longer
than a. In the present case with a three-dimensional condensate and a two-dimensional lattice
vector one has

2&402 lT . a
a 3 and VR, ( 4 ) a, (8 05)

where A is NyAg,, Ny being the number of reciprocal lattice vectors with minimal norm. C
is the elasticity constant from equation 8.85. The hierarchical placement of this length is vg,
which is a function of the crossover length, the lattice spacing a, R, and the Lindeman length Iy
describing the fractional strength of the thermal fluctuations. vg, is much less than 1 which means
that the crossover between random manifold regime and asymptotic regime belongs to the replica
symmetry broken part of the replica pair self energy function o(v). GD derived the following form
of the displacement correlator

. 1
B(T‘) ~ Ad,m’ga:zu Ad,m,n ~ 2382 for v= -6- (8.106)

where Ag,, 0 is a constant depending on the dimensionality of the condensate d the lattice m
and the volume of the unit cell £ (which is actually a constant describing the symmetry of the
lattice). For triangular symmetry, d = 3 and m = 2, v is equal to 1/6 and the displacement
correlator grows as the cube root of » with an amplitude of approximately 2.382. This is of course
under the assumption of an isotropic elasticity which will not hold in a realistic case, but the point
is clear: In the Larkin regime, the displacement grows linearly with 7, in the random manifold
regime the displacement correlator slows down growing as a power law with an exponent less
than 1, while at long distances the displacement correlation between flux lines has a very slow
logarithmic increase with distance. Introducing this more complex pinning potential and hence the
random manifold regime, while retaining the isotropic elasticity, leads to slight alterations in the
translational correlator for long distances

e TR,

a 8.107
nlz| (8.107)

Creo(z) =

where -y is the Euler constant « ~ 0.577.

An important point to underline when discussing the Bragg glass theory, is that the assumption that
we have weak disorder acting on an elastic lattice needs to be valid. In practice this is equivalent
to stating that the lattice needs to be mainly dislocation free in large areas. A dislocation is
when a flux line in some given length interval §k along the field direction z completely wanders
away from the lattice position wu(r,dl) > a. This happens when the pinning is strong and the
lattice is soft; the vortex line is able to explore the energy minima in a very large volume which
dominates over the elastic energy of the lattice. It is clear that in the presence of a large fraction
of dislocations the very assumption of 2D ordering breaks down, and elasticity theory becomes
invalid. The lattice near a given flux line is defined by its nearest neighbors, so a dislocation
free configuration amounts to stating that the displacement variation must be small - hence the

displacement gradient ((Au)?) <« 1. In the Bragg glass theory, the displacements are calculated,




142

and if these show a violent variation of displacements on small scales, the assumptions of the theory
breaks down leading to a fundamental inconsistency. However, it can be shown that

By = 2% (Mf (8.108)

271‘21 \/ga, ' '
where [ is the cross-over length to the asymptotic regime, a is the lattice constant and Iy is the
Lindemann length. This is much less than 1 assuming that the onset of the asymptotic regime
occurs at large distance and for a reasonable Lindeman length. If the LO theory holds, then
dislocations would be preferred even at small scale beyond the Larkin length. GD argues, however,
that this slow increase in displacements would result in very large dislocation free areas, which has
actually been observed in decoration experiments [80, 81].

In [74, 82] the crossover length between the random random manifold regime and the asymptotic
regime is calculated using a more realistic anisotropic elastic Hamiltonian suitable for the flux line
lattice. R, was shown to be proportional to the following expression containing the two elastic
moduli ey4 and cgg, the lattice constant a and the global vortex line density pg
4.3/2 1/2
a*che
R, oc —986 44 (8.109)
Po

As the density of lines is proportional to 1/a?, py must be proportional to the field density B
following equation 8.59. Using the dispersionless versions of the expressions for the elastic moduli
given in [74]'° the following holds

cys < B? and egg x B. (8.110)

Using these expressions the rough dependency of the crossover length R, on the magnetic field
density is
—-213/2( R2\1/2

B BJ;Q(B )" _ g (8.111)
As will be evident later on, one of the goals of using the Reverse Monte Carlo method in this
thesis is to gain direct access to the correlation functions at different fields. A more experimentally
reachable prediction can be achieved by taking advantage of the translational correlator. Since the
Bragg glass theory does not describe systems with infinite correlation length, defining a structure
factor for a unit cell and taking a lattice sum would be rather useless. Thus, the structure factor for
the entire system is used. Returning to the expression for the structure factor in equation 3.56 and
splitting up the reciprocal space coordinates into a discrete transverse part k£, and a longitudinal
continuous part k, (along the field) gives the structure factor [79] averaged over dynamical disorder

S(q) - /Zeiqzqulu (e(iql[u(rl,z)—u(ﬂ,ﬂ)]>| (8.112)
2 p

R, x

This exposes the very useful form of the translational correlator and the reason for implementing
it. In the vicinity of a reciprocal lattice vector G, the structure factor in equation 8.112 can be
expressed in terms of the translational correlator

S(q) = f Pret-* L og(r) (8.113)

In [79] they showed a slight non-universal value of 5, but only varying a few percent. Assuming
a universal n the field dependency of the translational correlator can be estimated by collecting
equations 8.111 and 8.107

B-3/2

nlx|

Y¢quation 4.26 on page 1257 - the expression for cy4 given in [82] is erroneous.

Ci,o () = S(Ko) xx B~3/2, (8.114)

o
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Assuming a constant peak width this amounts to saying that the peak structure factor drops off
as a power law with applied field with an exponent of 3/2. It should be noted that in principle n
depends on the elastic moduli and hence the magnetic field. In spite of this, a quantitative but
very imprecise agreement with this prediction was found by Klein et. al [83]

In this thesis, the experimental methods for examining the vortex lattice of superconducting Vana-
dium are magnetization measurements and small angle neutron scattering. Thus, the information
extractable from the data are global averages. Therefore, individual dislocations can not be directly
measured; only the magnetization and flux line order (assuming there is a signal). A vanishing
signal in neutron scattering experiments indicates the disappearance of static order, but gives no
information about the nature of the phase in question - be it either a static configuration full of
dislocations (vortex glass) or a vortex liquid. Therefore, little effort is made in this text to de-
scribe these phases. However, several generic (H,T') phase diagrams have been proposed for type-1I
superconductors having weak random disorder. Some of these will be outlined in the following
section.

8.4.5 Proposed phase diagrams

Once agreeing on the existence of a Bragg glass phase, the question remains under which conditions
this phase is stable. GD argued that a good measure is the value of the displacement correlator for
nearest neighbors [82]. For displacement larger than a certain value - well known as the Lindeman
criterion ¢y, - the lattice breaks down and the assumptions underlying the Bragg glass theory no
longer holds. The stability criterion can be written as follows

B(r =a) < cia?, (8.115)

where a is the lattice spacing. GD used this criterion as a basis for estimating the melting phase
line of the Bragg glass phase (see figure 71 right) in the (H, T)-phase diagram. The framework of
GD says little about what the Bragg glass melts into, just that it is a disorder induced melting
that causes the absence of Bragg peaks. In the work of Jan Kierfeld and Valerii Vinokur [84]
a nice attempt to remedy this is made by expressing the free energy in terms of the dislocation
density - pp - which is inversely proportional to the spacing Rp between dislocations. In the Bragg
glass, the free energy minimum is at Rp = oo — p = 0. Kierfeld distinguishes the vortez glass
from the vortex liguid by pointing out that in the vortex liquid, all flux lines are dislocated on
average (Rp = a) while the low temperature vortex glass is not saturated with dislocations and
has Ry = R, where R, is the crossover length to the logarithmic regime. Their vortex glass is
thus a Bragg glass, but where the asymptotic regime providing the long range order and hence
the Bragg peaks are disturbed by dislocations entangling the flux lines and destroying long range
order.

Gautam I. Menon suggested that there is so-called multi domain glass phase separating the Bragg
glass phase from the disordered liquid phase in all of the (H, T)-phase diagram [85]. Contrary
to the suggestion of Kierfeld it is not possible directly to melt a Bragg glass into a liquid. He
makes a conjecture that this multi domain glass has no long range order but a correlation length
which is upper bounded by the crossover length to the asymptotic regime Rp < R,. Thus he
conjectures domains or fractures of finite size in which there is rigid order, the size of which would
vary with the degree of disorder being smallest at large and small fields. Also, there should be a
finite temperature interval in the vicinity of T in which there is no Bragg glass phase at all for
any field.

This concludes the discussion of superconductivity, vortex lattices and the Bragg glass phase.
As is evident the problem is immensely complicated, with a huge number of poorly understood
adjustable variables and mechanisms. The Reverse Monte Carlo technique provides a flux line
ensemble consistent with the data, that will serve as a source for extracting correlation functions.
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Figure 71: Top Left: Generic phase diagram modified from [84]. There is a low temperature,
low field Bragg glass phase which undergoes a field induced 'melting’ into the vortex glass, which
itself can melt into a vortex liquid upon increasing the temperature. The phase line between the
two disordered phases ends in a high field critical point and there is a co-existence point at low
fields and high temperature. Top Right: Phase diagram proposed by Menon - the Bragg glass is
surrounded by a multi domain glass. Bottom: The phase diagram proposed by Giarmarchi and
Le Doussal, quite similar to the Kierfeld diagram. The rightmost dotted line corresponds to the
melting line for a pure system without disorder and the leftmost line corresponds to a melting of
the low-temperature phase lying quite close to that of the pure system.

These will - along with magnetization measurements and the intensity of neutron Bragg peaks - be
compared to the Bragg glass predictions in the next chapter.
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9 Reverse Monte Carlo simulation of the vortex lattice in super-
conducting Vanadium

In this part of the thesis, an attempt will be made to investigate the validity of the Bragg glass theory
in superconducting Vanadium in a finite field- and temperature range by using Reverse Monte
Carlo (RMC) refinement of SANS data with high angular resolution and by analyzing the field
dependence of the integrated rocking curve intensity. The superconducting (H, T) phase diagram
will be established for the Vanadium sample examined in this work using VSM magnetization
data forming a framework for discussing the neutron scattering data. The magnetization data also
reveal a rapid drop in the critical current close to H.o where there is no measurable long range
static order, as observed in our SANS experiments. A straightforward alteration of the RMC code
is necessary to successfully fit the data: a slow decrease of the acceptance probability - called
simulated annealing (SA) - increases the probability of reaching the global minimum in the x*
landscape. The results of the simulations will be discussed and interpreted in light of the Bragg
glass theory, and cautious suggestions for the causes of the specific peak shapes observed in this
sample - which are not explained by the Bragg glass theory - will be given. The work presented
here is a continuation of the RMC work done by Mark Laver et. al. [86]; the code used for the
simulations is written by him.

This chapter will start out with the experimental details. The form factor of a flux line and its
dependency of field will be described. This is followed by a description of the crucial experimental
geometry that enables an extraction of the correlation functions. A short description of the gen-
eral principles behind Reverse Monte Carlo refinement and Simulated annealing is in order before
outlining the structure of the RMC code. After this, the field dependency of the integrated in-
tensities as recorded at 1.55 K will be analyzed and shown to be consistent with the Bragg glass
prediction. This is succeeded by a presentation and analysis of the high statistics rocking curves
recorded at 1.55 K and a presentation of the results of the SA simulations. The field dependency of
the integrated intensity was measured at two additional temperatures (7' = 2.66 K and T = 3 K),
establishing the boundaries of static long range order in the phase diagram. A high statistics rock-
ing curve was recorded near this phase boundary, which will be analyzed as well. Lastly, the VSM
magnetization data will be presented along with a suggested phase diagram and a description of
the phases.

9.1 Experimental details

The crystal structure of Vanadium is cubic with a space group I'm —3m, and cell parameter 3.03 A
Vanadium is one of the rare elements (along with niobium and technetium) which is intrinsically
a Type-II superconductor. It is superconducting below 5.47 K and is only a marginal Type-II
superconductor with sr—7. = 0.78. In the clean limit, the coherence length is 46 nm and the
London penetration depth is 37.4 nm at zero temperature. Two experiments were performed on
a cylindrical sample of vanadium (with a length of 10 mm and a diameter of 5 mm) in 2008 and
2010 respectively. In this section the details necessary for an analysis of the rocking curves will
be described along with the rather important experimental details. A description of the RMC and
simulated annealing methods leads up to the section dealing with the results of the simulations.

9.1.1 Setup geometry

The small angle neutron scattering experiments were performed at the SANS-II instrument at the
PSI. As mentioned in section 3.3.2, the SANS instruments accept a finite angular range and a finite
range of wave vector lengths, so whenever rotating a Bragg peak into the scattering condition, the
resolution ellipsoid needs to be taken into account to be able to model the angular distribution
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of scattered neutron intensities. Since the attenuation slit near the velocity selector is a circular
aperture, the size of the resolution ellipsoid has the same order of magnitude in the two directions
perpendicular to the beam, providing the sample aperture is not completely one-dimensional. In
the direction parallel to the beam, however, the resolution function of a SANS instrument is very
narrow. The structure factor of the vortex lattice is not expected to resemble a delta function, but
a peak shape with algebraically decaying tails. The sample has been chosen with this in mind; so
the intrinsic peak shape of the vortex lattice is rather broad. If the width of the resolution function
is comparable to the width of the peak in a scan, the poor resolution smears out all details of the
rocking curve. Thus, one cannot probe the details of the structure factor since the broad resolution
function smooths everything out; the resolution is low. If the width of the resolution function is
much smaller than the peak width, however, the two distributions still need to be convoluted, but
the recorded peak shape will reflect the structure factor, not the resolution function, and minor
details will reflect the physics of the vortex lattice; the resolution will be high. To probe the
structure factor of the vortex lattice with a high resolution the Bragg peak needs to be rotated in
the direction parallel to the beam. This rotation can be about both a vertical and horizontal axis.
However, since only horizontal magnets were available for the SANS-II instrument, the field was
chosen to be horizontal and perpendicular to the beam, see figure 72.

Lg
Attenuator
shit Sample G ji
slit f
Velocity I k. I 20
selector _—l s Y .

Detector

Figure 72: The setup used in the two SANS experiments. The field is perpendicular to the beam
and horizontal. The reciprocal lattice vector G is shown artificially extended, and the angle w
marks the direction of rotation. The vector k; denotes the scan direction in reciprocal space in a
rocking curve. The cyan ellipse illustrates the rough cigar shape of the resolution function when
projected onto the plane perpendicular to the present field direction. The resolution in the direction
of rotation in this figure is determined by the size of and distance between the attenuator slit and
the sample slit L. as well as the sample-detector distance L;. When rotating the sample - bringing
G closer to the Bragg scattering condition - progressively shorter k, are measured.

In the following, the angular FWHM of the resolution function in the direction of rotation w is
denoted by W, = 2.3550,,, where o, is the standard deviation of the assumed Gaussian resolution
function. W, is estimated in [87]'}. In the two experiments, circular attenuation apertures with
diameters of r; = 8 and 16 mn was used, and the two relevant lengths in figure 72 were L, =
6450 mm and Lg = 6287 mm, respectively. The two angles referred to in [87] are almost identical

Uformula 13 on page 324 using figure 2 a)
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and the FWHM of the resolution function in the direction of rotation is thus

2
W, m% ~ 0.078° for 1 =4 mm, and

c

W, = 0.16° for 71 =8 mm. (9.1)

The structure factor of the disordered VL ensemble extends out in two dimensions centered at the
scattering condition G. When rotating the sample through the scattering condition (w = wyp) one
performs a scan perpendicular to G for small angles so the resolution in reciprocal space is

1 (i e 0) =i (o0 — i) @] = % ~ W, [rad.] = 0.0014, 9.2)
which is excellent. There is a disadvantage of using this setup. Since no vertical field cryomagnet
was available, the cryostat itself needs to rotate about a fhorizontal axis. Such a rotation is usually
limited by the geometry of the SANS setup. Obviously, there needs to be vacuum in both the
collimation section and the detector tank in order to optimize flux, and the two vessel endpoints
are close to the cryostat windows for the same reason. Therefore, there is little space to rotate the
cryostat more than a few degrees. To remedy this, Asger B. Abrahamsen at Risg designed a brass
sample mount which is able to rotate an arbitrary angle inside the cryostat. A rotatable rod is
situated inside the sample stick with a thread in place on a cogwheel situated on the sample holder
and with an electrical stepper motor mounted on the rod at the top of the sample stick. In this
way, one is able to rotate the sample without moving the cryostat itself. The sample stick is shown

in figure 73.

Figure 73: Brass sample stick used to mount and rotate the sample. The cogwheel in contact with
the rod inside the sample stick is clearly visible. The disc on which to mount the sample is mounted
on a second cogwheel which is connected with the aforementioned cogwheel below the mounted
brass plate.

Such an unorthodox setup caused some problems during the two experiments which were the
following:

e Due to the unavoidability of having a rod establishing direct thermal contact between a hot
electric motor outside the eryostat and the sample holder, it is difficult to cool the sample
down to 1.5 K. The only way to reach 1.5 K was to increase the exchange gas pressure until
we flooded the sample space with liquid helium. This solution did not work in the 2010
experiment, since there was a leak in the 11T' magnet, preventing an increase in the exchange
gas pressure.

e It is difficult to use lubricants at 1.5 K, so the cogwheel contacts are metal on metal. Thus the
sample holder can be expected to have a finite lifetime, simply due to scratches on the moving
surfaces in contact. This happened in the 2010 experiment, when substantial polishing was
necessary to get the sample mount rotating.
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Using the definition of the structure factor given in 8.112, the scattering cross section is the Fourier
transform of the field density distribution in the sample. This can be described by

() x 5@ xIFP 0)
where F'(q) is the form factor for a single flux line. In fact, this only holds if the flux lines can
be considered as isolated. Thus, aiming to evaluate the field dependency of the structure factor,
knowledge of the form factor is needed. Calculating the form factor for a single flux line requires
knowledge of the field distribution, which requires knowledge about both the coherence length and
the penetration depth. These are temperature dependent parameters that are not the same for
all vanadium samples - they depend on the impurity concentration. In the next two sections an
attempt is made to obtain the form factor at all relevant fields and temperatures. First, an estimate

of the impurity concentration is obtained using previous results found in literature. This is followed
by a calculation of the form factor for an isolated flux line at the three relevant temperatures.

9.1.2 The vanadium sample used in this work

In order to evaluate the field dependency of the form factor correctly it is necessary to obtain
information about the amount of impurities in the sample. The impurity dependence of the su-
perconducting properties of vanadium was thoroughly examined by E. Moser, E. Seidl and H. W.
Weber (MSW) in [88], where the characteristics of the purest vanadium-sample ever examined
(with an electronic mean free path of as much as 2700 nm) are also reported. The clean limit #(7)
of vanadium is 0.78 - which is only slightly over the limit for type-II superconductivity. The clean
limit London penetration depth and GL coherence length are 37.4 nm and 46 nm, respectively at
zero temperature. In [89]'2, a useful expression can be found linking the electronic mean free path
£ with the effective reduction in GL coherence length:

0744 0.7565 "3
4 = = (1+ : ) , (9.4)

where 6t = (T, — T')/T,. Using equation 9.4 and 8.53 an expression linking the upper critical field
of a Vanadium sample to the mean free path:

H!his—work 62' —_— 07550
Af‘zs"i‘if—clean (T) = Ag = (T) =1+ 71 (95)
HCZ Ethis—wark

where the assumption £eq, = co has been conveniently used. The upper critical field of the vana-
dium sample is extracted from magnetization measurements. VSM magnetization measurements
have been performed on the sample, which will be presented in detail in section 9.3.9. In this
section, an initial phase diagram for this sample is shown in figure 74 left. The values of H.p
are defined as the point where the hystersis loop shows no hysteresis and 7} is found by linear
extrapolation of the H  phase boundary. When having obtained a good measure of the electronic
mean free path, the penetration depth and coherence length can be calculated using equation 9.4
and the following expression for A found in [89):

A0 0.75¢0 \ 2
NT) = m(u : ) . (9.6)

Table 19 shows the calculated electronic mean free paths (which should be the same), the penetra-
tion depth and the coherence length for the three relevant temperatures in the sample used in this
work.

12page 49
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T K] [ T/T. | 6t [ HE* "% /HYS" = T ¢ [nm] [ A [nm] [ £ [nm]
1.55 | 0.30 [ 0.70 177 45 | 42.05 | 306
2.7 || 0.51 |0.49 1.71 39 | 494 | 37.8
3.0 || 0.57 | 0.43 1.88 49 | 55.29 | 37.86

Table 19: Table of central GL parameters at the three relevant temperatures. The determined
electronic mean free paths agree roughly within 10 percent of the average £ = 44 nm

From magnetization measurements presented in succeeding sections, the critical temperature of the
sample used in this work is roughly 5.25 K. Using the table given in [88]'3, this value has a T¢
of roughly the sample V23 presented in [88], which has roughly the same impurity concentration
as the sample used in this work. Thus the critical temperature is consistent with the impurity
concentration found using H.» measurements. In conclusion, the characteristics of our sample fit
the picture presented in [88] and will be used to calculate the form factor, as explained in the next
section.

9.1.3 Magnetic form factor of a flux line

A simple model for the vortex core was given by J. R. Clem [90]. In convenient cylindrical coor-
dinates he expressed the order parameter as U = (p/R) exp(—i¢), where R = /p? + £2, p is the
radial distance from the vortex core center and ¢ is the angle in the plane perpendicular to the
vortex. He used £, as a variational parameter minimizing the GL free energy equations, yielding
results that were consistent with exact and numerical GL results within a few percent. The advan-
tage of Clem'’s approach is that his model yields a simple expression for the Fourier transform f(g)
of the magnetic flux density of a single flux line b,(p), which is given as

flg) = f d®pb.(p)exp(—iq - p)

= $oK1(Q6y) where Q = {/¢%+

QAK1(€/N)’
where K| are the modified Bessel function of the second kind, ¢ is the wave vector, A is the
penetration depth and &, is the variational coherence length (the same as the GL coherence length
within a few percent). Using the parameters in table 19, the form factor in the field range 50-300
mT has been plotted for the three relevant temperatures. These are shown in figure 74 along with
the phase diagram of vanadium as determined from VSM measurements. In the high-x limit the
form factor effectively has power law dependence of applied field with an exponent of 1. In the low-
& limit the drop-off of the form factor is faster than a power law, especially at higher temperatures.
Having calculated the form factor, what remains is to describe the method of RMC refinement
used to fit the rocking curves that were recorded with high statistics. This is done in the following
section.

1

= 07

9.2 Reverse Monte Carlo refinement

The goal of performing any experiments is getting data that are good enough to be able to compare
different models of the system to the data and to conjure up new models based on the data. Having
today’s vast amounts of computer power at hand, it is possible to tackle many body problems in
many ingenious and new ways. When examining disordered systems, computer power is very useful,
since it is possible to deal with large ensembles of physical quantities in a random manner. One of

¥page 592
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Figure 74: Left: Phase diagram of Vanadium as determined by VSM magnetization measurements.
The insert shows a typical hystersis loop recorded to find H.; and H,y. Right: Magnetic form factor
as a function of field at the three relevant temperatures in table 19 as a function of field in the range
100-300 mT. Two power law decays of B with exponents -1 and -2 have been plotted for reference.
The form factor is shown to fall off quicker than the high k power law for all temperatures.

the methods for fitting experimental data using a real physical ensemble is Reverse Monte Carlo
modeling (a review is given in [91]).

The central idea of RMC is to create a large ensemble consisting of N units of the physical quantity
examined possibly using periodic boundary conditions. No periodic boundary conditions can be
employed in this work, since large scale disorder is examined and no unit cell can be defined. One
then uses a data set to define a cost function of all the configuration variables F(C) — x2, where
C = (¢1,¢2,....,cn) and ¢; are the free variables for each unit. The goal is to minimize this function
by randomly perturbing or moving random units within the ensemble enforcing useful physical
constraints. The calculated experimental output of the two ensembles before and after the move is
compared to the data by simply calculating x? for both ensembles or configurations. If the move
decreases x? the move is accepted, but if the move increases x? the move is accepted with the
probability

P (accept) = exp [— Asz] ; (9.8)

In usual RMC algorithms p = 1/2, but in the present case it is kept as a variable. The specific
scheme applied to the flux line system is outlined in the flow chart in figure 76. Thus, the probability
for accepting moves that increase cost is a decreasing exponential function of the cost increase, the
decay rate of which is determined by p. A very high p facilitates an acceptance of almost every
move regardless of the comparison with data, and the ensemble configuration becomes more and
more random and disordered. In contrast, a very low p causes a rejection of every move increasing
x?, and the configuration quickly converges towards whichever local minimum is nearest the initial
configuration. This problem is known to anyone who has fiddled with simple versions of least
squares fitting; a poor initial guess of the function parameters prevents a proper optimization, even
when dealing with a few parameters.

The purpose of the RMC is to fit to the data using a large ensemble which is as unbiased as
possible. The number of parameters is usually huge, so it is crucial not to be restrained to local
minima, being a slave to the initial configuration. In order to be able to probe different minima
and hopefully reach the global one, a value of p should be used which is high enough for the
configuration to be able to escape local minima and low enough to actually fit the data and not
just increase disorder until the end of time. In a way the acceptance probability is comparable
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to a temperature of the ensemble in the sense that a high p promotes randomness, disorder and
symmetry. After convergence, any finite p will naturally cause the configuration to oscillate between
ensembles having some finite interval of x? over the true global minimum. Thus, for any p there
is a minimum x? achievable simply due to the fluctuations between configurations facilitated by
the finite acceptance probability. It is possible to employ a cooling scheme, starting out at a very
high p and stepwise decreasing the 'temperature’ while allowing the ensemble to achieve thermal
equilibrium (a stable x2?) at each step or temperature. Doing this allows the configuration to
migrate far away from the initial configuration since the configuration is not initially subject to the
local geometry of the cost function. This process is called simulated annealing (a review is given
in [92]). An illustration of the different schemes is given in figure 75, where the process of rejecting
every move increasing x? is called simulated quenching (again using the temperature analogy).
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Figure 75: a) Simulated quenching immediately minimizes the cost function and the configuration
goes to the nearest local minimum. b) Using the RMC algorithm several minima can be probed
since an increase in cost function is accepted. c¢) In simulated annealing stable values of the cost
function is reached at different temperatures allowing the configuration to migrate.

In the case of addressing the problem of a triangular lattice of vortices being perturbed by weak
random forces, the RMC (and similar) approach seems appropriate, especially when probing the
lattice using neutron scattering. This is for several reasons:

e The RMC algorithm is basically a process of introducing disorder in an ordered ensemble,
while minimizing a cost function. The Bragg glass theory predict a large amount of disor-
der while still retaining quasi-long-range order. Therefore, introducing a certain amount of
disorder is desirable.

e As described in chapter 3, neutron scattering actually just measures a sum of pair correlation
functions. Describing pair correlations is a major result of Bragg glass theory, so neutron
data is a well suited form of data to fit using an RMC approach to achieve an ensemble with
realistic pair correlation functions.

e Using the RMC method on neutron data gives a way of interpreting neutron rocking curves
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without enforcing any paradigms - one can simply achieve a model consistent with data
without bias and test it against the Bragg glass hypothesis.

The last point in the above list can be reversed to a criticism of the RMC method, replacing the
word bias with the word thought. In this work, an ensemble of roughly 10° VL’s with 2 degrees
of freedom each will be modified to fit a data set of maximum 70 points. Thus, the solution is
hardly unique and we do not apply any physical criteria separating one well-fitting ensemble from
another - who knows if we have the right one? This is a variant of the more general uniqueness
critique dealt with by McGreevy in [91], the point is given here anyway. The uniqueness critique
is in principle applicable to any many body problem subjected to experiment, the same applies in
case of the refinements presented earlier in this work - not all peaks in reciprocal space have been
measured, so any model conceived is simply only valid within the scope of the limited dataset. In
this case, it is (mainly) the correlation functions that are interesting, and while there is no one to
one correspondence between shapes of Cy; and ensemble configurations, the degree of freedom of
the correlation functions when subjected to the demands of the neutron data must be quite limited,
as the rocking curve directly reflects C;, (this is essentially what is being measured). Precisely for
this reason, emphasis has been laid on analyzing the simulated correlation functions and not the
real space flux line ensembles, since these are subject to a uniqueness critique.

A much more relevant critique follows from the central assumption necessary to describe the flux
lines using only two coordinates:

It is assumed that the flux lines are effectively almost straight rods and that contracting the
longitudinal dimension into the discretely ordered XY -plane is a valid description

In principle, the validity of this assumption is up for debate - even though the existence of Bragg
peaks suggests the existence of large dislocation free areas. In most cases, a 2D lattice is a very good
describtion. However, one has to be careful when using RMC results to speculate on a transition
to the vortex glass state, the RMC result shows how a dislocation free ensemble could be arranged
to give the observed rocking curve. The vortex glass described by Kierfeld for instance can not be
mimiced by the RMC.

9.2.1 The RMC code used for analyzing the high resolution rocking curves

The RMC code is written in standard C by Mark Laver. In this section, a short overview of
the approach will be given. The code retrieves the data in ASCII-format in simple column form
[(w—wp)[deg.] Intensity Intensity Error|, where (w — wg) denotes the angle relative to the peak
center. In addition to the data, additional information needs to be given in an initialization file:

e Size of vortex ensemble

e Magnetic field

e Number of initialization moves

e Number of accepted moves after which to stop

e Number of generated moves after which to print information on screen

e Number of generated moves after which to calculate correlation functions and
save information to files

e Resolution FWHM

e Maximum move distance in units of lattice constants
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e Boolean to indicate whether or not to implement a minimum approach distance
e Value of minimum approach distance

Boolean to indicate whether or not to implement plenarity constraint

Acceptance probability

Interval width in k-space within which to calculate the structure factor

Step size in k-space with which to calculate the structure factor

Create initial Read initial
lattice of parameters
size N and the data

Initialize

the lattice

First
calculate
structure factor
and then 32

Start the
loop over
moves

Generate move
and calculate 32

x2
decreases
Save info

Quit

X2

inereases

Accept move Reject move

Check for quit
conditions

occasionally

Figure 76: Flow chart describing the main features of the RMC code used in this work. The squares
with a yellow star in the upper right corner mark actions that will be elaborated in the text below.

The main features of the RMC approach are outlined in the flow chart in figure 76. This simplifica-
tion, however, leaves out some details that might be important in a discussion of the result, which
will be elaborated in the following. The boxes in the flow chart marked with a star are explained
below.
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Initializing the lattice

Once the specified number of flux lines is retrieved, the two dimensional array of flux lines is
arranged to form a circle. It is favorable and time-saving to start with some disorder in the system,
since, to some extent, a disordered ensemble is what one wants to end up with. As will be evident
later on, the minimum probed can depend on the starting conditions if the algorithm is not able
to overcome all barriers in the configuration landscape. The reason for initializing the lattice is
exactly this, to start out a little closer to the global minimum, but still without doing anything
biased. Every flux line is simply moved the number of times specified in the initial file - n - resulting
in the average initial displacement of 0.5\/n7max, Where rmax is the maximum move displacement
(assuming a random walk). An example of a initialized lattice before running the RMC loop is
shown in figure 77. As evident, even after 10 random moves, the lattice is still close to perfect
hexagonal.
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Figure 77: Left: Initialized ensemble of 80000 flux lines at pgH = 130 mT. The circular arrange-
ment is near perfect. The small red square denotes the section shown to the right. Right: A small
section of the ensemble after 10 initialization moves. As evident, the lattice is still near perfect
illustrating the infinitesimal maximum move size.

Generating a move

The function MoveGenerate takes an integer input - specifying the index of the vortex line to be
moved. If the input integer is —1, a random line will be chosen. The displacement vector of the
move is determined by choosing a completely random angle between 0 and 27 and a random length
in the interval specified in the initialization file (between 0 and the maximum). If the move brings
the flux line nearer than the minimum approach distance of any other flux line, the disallow flag is
set (if the minimum approach constraint is enabled). The same happens if the move brings the line
out of planarity (if enabled). The planarity constraint is constraining the vortex line in question
to the cage defined by its nearest neighbors (which are the same six flux lines throughout the
simulations even though their positions change). Thus, planarity constraint prevents dislocations
of entire flux lines (not segments) in the ensemble. If the disallow flag is set, another move will be
attempted. If more moves than a given limit is disallowed, another flux line will be chosen.
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Calculating the structure factor and x?

The structure factor is treated in different ways depending on the information needed - mainly
to save time. After initializing the lattice, the whole structure factor needs to be calculated from
scratch. This is done in the function StrucCalcAll, which has an integer input which is a set label
denoting the sets before and after a move. For the set in question, there is a loop of every point
in which to calculate the structure factor (the data point - or if one chooses - including artificial
interspersed points). For each point, the sum over flux lines of both the imaginary and real part of
the phase factor is saved, not only for the single point but for all points in the interval of k-vectors
parallel to G defined in the initialization file. The saved structure factor is thus a four dimensional
array [set, point, imaginary/real, KMag], where KMag is the index of scattering vectors parallel to
G. Evidently, this is time-consuming.

In calculating the intensities, the resolution function needs to be taken into account. First of all,
the amplitude is calculated for each point by summing the squares of the real and imaginary parts
of the phase for all parallel k-vectors, KMag. Then the contribution from the neighboring points
due to the resolution is calculated out to three times the resolution width and added to this value.

After moving a flux line, the function StrucCalcMod subtracts the phase factor for the given flux
line before moving it - for all points and all k-vectors parallel to G - and adds the phase factor for
the flux line as it is after the move. The result is saved in a new four dimensional array as the
one created by StrucCalcAll, resulting in two arrays with phase factors before and after the move.
Calculating the intensity for each set and renormalizing the structure factor allows one to compare
the two values of x? using the well-known definition:

74 — 1)?
X2:Z(la21) , (9.9)
1

i

where I? and I¢ are the measured and calculated intensities respectively and o; is the error of the
measured intensity.

The information saved - calculating the correlation functions

After a given number of moves, the RMC code calculates and saves the correlation functions using
the code given in CorrLib.c. The initial lattice is recreated, and the displacements are readily
calculated for each VL index. Then a loop over all possible pairs in the ensemble is performed.
The pairs are divided up into bins, one for each unit of lattice spacing between the pairs in the
initial perfect lattice. For each bin the average displacement correlator and average translational
correlator (averaged over all 6 reciprocal lattice vectors) is directly calculated. Thus, the large
real space ensemble allows for a direct calculation of the two correlators as a function of distance
between flux lines. This takes a lot of time due to the N? loops that need to be done, and should
only be done when absolutely necessary.

9.3 The vortex lattice of superconducting Vanadium

In this section the experimental evidence for the existence of a Bragg glass phase and its extension
in the phase diagram is presented. First, the field dependency of the integrated intensity will be
analyzed and compared to the predictions of the Bragg glass theory. This is succeeded by an
initial analysis of the raw high statistics rocking curves; effects near the peak center which are not
consistent with Bragg glass theory will be shown, and analyzed using an (over)simplified model.
Next, the correlation functions outputted from the RMC algorithm will be analyzed and shown
to be in accordance with Bragg glass theory, at least for pair separations less than 80ap. This
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is followed by an analysis of the field dependency of the intensity at 2.7 and 3 K, respectively,
determining the boundaries of long range order in the phase diagram of the sample. Close to this
boundary, a rocking curve with reasonable high statistics was recorded; it will be shown to be very
wide - perhaps giving a little insight into the crossover to the more disordered part of the VL phase
diagram. Lastly, an experimental phase diagram is presented along with a proposed interpretation.
Both SANS experiments were performed on the SANS-II instrument at the PSI, using the 11 T
horizontal field cryomagnet and the brass rotatable sample mount. The same cylindrical single
crystal of Vanadium is used in both experiments having a diameter of 5 mm and a length of 10
mm. In both cases, the distance from the attenuator slit to the sample was 5800 mm, and the
distance from the sample to the detector was 6290 mm. In both cases, the crystal was mounted
with the crystallographic (111) direction parallel to the field, which was perpendicular to the beam
and horizontal. In both experiments 10.6 A neutrons were used, and therefore the beam stop was
left out, having the direct beam hitting the detector. The detector array of the SANS-II instrument
consists of a circular ensemble of pixels measuring 4.345 x 4.345 mm with a radius of 64 pixels.

The GRASP data analysis package

The GRASP package is an open source data analysis package developed at the ILL. It can be found
and downloaded at the ILL homepage!?. It is designed for visualizing the 2D data output of SANS
instruments, and it has the specifics of most European SANS instruments as optional parameters,
including the SANS-II instrument at the PSI. The instrument details of the SANS-II spectrometer
can be found on the PSI web page!®. The GRASP package offers an elegant way of extracting
the rocking curves. At the applied field in question, a rocking curve is measured by recording 2D
detector images with angular intervals and fixed monitor counts determined by the user. As derived
in section 8.2.3, the lattice constant is a function of the applied field; which means that the Bragg
reflection from the vortex lattice will hit the almost the same area of the detector for all angles in
the rocking curve for any given field, at least at small angles with respect to the scattering vector.
Therefore, the SANS detector images can be ’stacked’ with the 'angle axis’ perpendicular to the
detector plane. Then, one can define an area encircling the spot of the Bragg reflection and plot
the integrated intensity hitting that area as a function of rocking curve angle. The way this is done
using GRASP is illustrated in figure 78

Using this convenient tool, obtaining the rocking curves directly from the raw data was an easy
task. These rocking curves will be presented in the following.

9.3.1 The SANS-II experiment in May 2008

The first experiment performed on Vanadium was in May 2008. In that experiment - inspired by the
results presented in [86] - as narrow a resolution function as possible was aimed for. Therefore, the
attenuation slit (or source aperture) was set to a diameter of 8 mm - corresponding to a resolution
angle of 48 = 0.079° (FWHM). This is a very narrow resolution as the rocking curves are several
degrees wide. Throughout the experiment, the exchange gas pressure in the sample space was kept
at a very high level in order to maintain a stable temperature of 1.55 K. Whenever a rocking curve
was recorded, a field cool procedure was used: Warm up to 6.5 K > Ty — change field — cool to
base temperature. In addition, the sample aperture was rectangular, measuring 4 X 8 <;mm. The
dimensions of the sample aperture was deliberately kept smaller than the sample size, to reduce
effects from the demagnetization factor near the sample edge. The usable data recorded in this
experiment consist of the following

“http://www.ill.eu/instruments-support /instruments-groups/groups/lss/grasp/home/
®http://kur.web.psi.ch/sans2/
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Figure 78: Right: The collected intensity from the entire rocking curve recorded at pugH = 130 mT
projected onto the detector plane. A mask has been laid over the area where the direct beam
hits the detector in order to be able to estimate the area where the Bragg spots hit the detector.
The rectangular areas where intensity is collected are marked in the figure. Left: The extracted
intensities as a function of rocking curve angle as determined by GRASP; the z-axis are file numbers
each of which corresponds to angle intervals of 0.2 degrees. The center of the two rocking curves
differs by an angle of 26 as determined by A = 2dy, sin(f). Both figures are direct outputs from
the GRASP package.

e Rocking curves with low statistics recorded at 80, 130, 200, 240, 260, 280 and 300 mT. This
was done to determine the field dependency of the rocking curve integrated intensity. The
angular step interval was 0.2° in all cases.

e Rocking curves with high statistics recorded at 115, 180 and 230 mT, respectively. These
rocking curves ware recorded for the RMC simulations, and done in steps: The middle part
of the curves was recorded with a narrow angular interval, and the outer part on both sides
were recorded with a large angular interval in order to save time.

The collected intensity of the entire rocking curves as projected onto the detector plane, is shown
in figure 79. As evident, the distance of the Bragg spots from the direct beam center (in the center
of the frames) increases with field, but not in a linear manner. This is consistent with the ¢ ~ VB
law. At somewhere between 280 and 300 mT, the Bragg spots disappear completely and no long
range order can be detected by this experimental setup above this field.

Before starting the RMC refinement of the rocking curves with high statistics and discussing cor-
relation functions, there is an important Bragg glass prediction to test - namely the prediction
that near the rocking curve peak, the field dependency of the structure factor should fall off as a
power-law with S(Kg) o« B~3/2 as stated in equation 8.114. Figure 80 shows all the rocking curves
obtained with low statistics as well as the middle part of the rocking curves recorded for RMC
fitting. Before evaluating the field dependency of the peak intensity, the rocking curves need to be
evaluated. As evident, the rocking curves obtained at 80 and 115 mT have tails extending far out
in angle space. An obvious reason is that any given step in angle is a shorter step in reciprocal
space at 80 mT than it is at 240 mT, due to the shorter lattice constant.

However, as evident on figure 81 (left), this is not enough to explain the increase in width. There
are physical reasons for this as well. Close to H,; the demagnetization factor is able to facilitate
a phase separation between domains in the Meissner phase and domains in the Abrikosov vortex
state, the intermediate mized state. This would explain the large width as a finite size effect. If this
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Figure 79: Collected intensity from the rocking curves recorded at T = 1.55 K with low statistics
projected onto the detector plane. 80 mT is very near the Meissner phase (and possibly intermediate
mixed state) at H, in the (poH,T) phase diagram and flux lines start to appear. As evident, the
Bragg spots are very close to the direct beam. The scattering angle 26 increases with field. At 280
mT, the Bragg spots are very weak; a reasonable rocking curve can not be obtained, and at 300
mT, there is no measurable intensity.

were the case, the total intensity of the ensemble would be lessened compared to what it would be
if the entire sample volume was in the Abrikosov state, simply because there are less scatterers. If
the width at low fields - in reciprocal space and not in angle space - is much higher than at slightly
higher fields, the obtained integrated intensities will not be used for fitting the I(H)-curve.

The rocking curves depicted in figure 80 have been fitted to single Gaussian functions. It is clear
that the rocking curves are not Gaussian, but varies in shape. However, one needs a basis for
comparison. Fitting to a Voigt function for instance, leaves two free parameters which are coupled
to the width of the rocking curve. When the curve shape is changing as a function of field, it is
difficult to compare widths. As evident in figure 80, the integrated intensity is quite well determined
at least for fields larger than 115 mT.

Another important feature of the rocking curves is that - as in [86] - there seems to be a flat plateau
of slowly varying intensity at the peak center. According to the Bragg glass theory, the structure
factor should have a power-law dependency of the intensity as a function of angle (or k but that
does not make much difference at these small angles), diverging at the peak center. This divergence
would, in a real experiment, be limited by the resolution function causing a smooth peak center.
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Figure 80: The rocking curves recorded in May 2008 fitted to single Gaussians. The curves obtained
at 80, 130, 200, 220, 240, 260 and 280 mT are the curves obtained with low statistic with the purpose
of obtaining a measure of the width and integrated intensity of the rocking curve. The curves at
115, 180 and 230 mT are the curves obtained with high statistics to be used for RMC fitting. Only
the central part of these scans have been plotted and fitted (the Gaussian function does not fit the
tail of the curves anyway). The zero point in angle has been chosen to be the center of the fit to
the top spot data. The narrow peak in the center of the curves of the top spots, is a Gaussian
representing the angular resolution width of the setup. The fits to the data recorded at 220 and 260
mT have been obtained by fixing the background to zero in order to avoid an unphysical negative
background. The Bragg spots are far enough away from the direct beam for this to be reasonable.
The data obtained at 280 mT do not really constitute a rocking curve (The peak was not measured
using a broad enough angular interval), and should not be used for fitting. It should be underlined,
however, that there is intensity at 280 mT as evident in figure 79.
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"The resolution width in this experimental setup is, however, much smaller than the angular range
of the plateau at the peak centers in figure 80. This could be caused by a large mosaic spread in
the vanadium crystal used, but this has been checked on the instrument ORION at the PSI, where
the rocking curve width of the crystallographic (01-1) peak was not found to be significantly above
the resolution width of 0.33 degrees. This suggests that the structure factor does not diverge at the
peak center, and that the smoothing is due to the structure factor and not the resolution function.
The may lead to the conclusion that the Bragg glass picture is not sufficient to describe the vortex
lattice in this sample. Since the peak intensity is now not necessarily a good measure to test the
Bragg glass hypothesis, the integrated intensity will be used. The prediction S(Kg) o« B~%/2 was
derived in section 8.4.4 for k-vectors near the Bragg peak center. Since the rocking curves (at least
for fields larger than 115 mT) have a FWHM of only a couple of degrees, the assumption that the
B~3/2.dependency is valid for the entire rocking curve seems to be reasonable.
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Figure 81: Right: Integrated intensity of the rocking curve as a function of field. The insets
show log(I) vs log(poH) and log(I) vs ugH. As evident, the intensity seems to drop off faster
with field than a power law, most probably due to the form factor. Left: The Gaussian width of
the rocking curves as a function of field. The widths have been converted to reciprocal space by
sin(ay,)|qi0(po H)|, where o, is the width from the fits in figure 80 and qyo(uoH) is the reciprocal
lattice vector. As evident, the peak width decreases strongly with field until it reaches a plateau
at 130mT < pgH < 220mT after which the width starts increasing again. The insert shows the
rocking curve widths in angles.

Figure 81 (left) shows the integrated intensity of the rocking curves as a function of field - with
the insets showing double logarithmic and single logarithmic plots respectively. The plots point to
a power law or exponential decay of the intensity versus field, with a slight preference towards an
exponential decay. This could be due to the form factor which in case of a low x superconductor
falls off faster than a power-law. It could also be caused by the intensity actually being zero as
some finite angle - which would cause an otherwise power law decay not to be a straight line on
a log-log-plot. The Gaussian peak width as a function of field is plotted in figure 81 (right). The
widths are relatively high at low fields and drop to a minimum at 130 mT. Between 130 and 200
mT the peak width is relatively constant, after which the width increases as a function of field until
the point where the rocking curves become unmeasurable above 260 mT. The wide rocking curves
at low fields may (or may not) be attributed to finite size effects caused by the system being in the
intermediate mixed state. Close to H,; the demagnetization factor is expected to have significance
anyhow. Since this is a possibility the intensities at 80 and 115 mT are discarded. The width is
increasing at fields larger than 200 mT. However, since the entire sample is expected to be in the
Abrikosov state, and since the full integrated intensity is used these intensities will be accepted. A
derivation of the reflectivity analogous to that given in 3.3.7 can be done in case of a 2D lattice.
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The form factor is constant in equation 3.81 and is therefore not contained in that equation. This
is not the case for flux line lattices where the form factor strongly depends on applied field. The
reflectivity from a flux line lattice is given in [23] as

2
_ i L 2
IVL =2 (4‘1’[}) A2 TCOS T]T)l | /S w)dw (910)

where v is the gyromagnetic ratio, L is the length of the sample parallel to the field, A, is the
area of the unit cell, 7 is the length of the reciprocal lattice vector, 7, is the angle between the
scattering vector and the axis of rotation, |F'(7)| is the flux line form factor and S(w) is the structure
factor as a function of angle. Notice that the structure factor is not squared; this is due to the
slightly different definition of the structure factor from that defined for crystallographic magnetic
structures. Removing all the factors which are roughly constant in all scans made in this work, the
integrated intensity is proportional to three factors: A geometrical factor, the form factor and the
structure factor integrated over the rocking curve:

1 7
Iyt o o IF(R)P / S(w)dw o« BY2.|F(r)- f S(w)dw (9.11)
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Figure 82: Left: The uncorrected intensity as directly extracted from the fits - fitted to a power law
with unfized background (A and C are free parameters). Right: The correction factor as calculated
using Clems form factor and the geometrical factor - fitted to a power law with the background

fixed to 0.

The calculated form factor from section 9.1.3 needs to be multiplied with the geometrical B%/2
dependence in order to obtain the true correction factor - CF(H) = H3/? . |F(v(H))|?. After
correcting for these factors, the exponent needs to be fitted, which can be done in several ways. Due
to the fact that at some finite field below H.s, the order becomes unmeasurable on the instrument,
the fitting function needs to intersect the field axis. The increasing rocking curve width points to
the fact that there is a gradual transition to a disordered phase, but the crossover has not been
measured well due to the weak scattering cross section. However, the magnetization measurements
presented in 9.3.9 hint to the fact that nothing drastic happens at 290 mT. Furthermore, the peak
value of the finite intensity at 280 mT (see figure 80) is roughly half the value at 260 mT, which
indicates a slow decrease of intensity close to the zero-point field. Therefore, a 'business-as-usual’
function has been fitted to the data - a power-law decay - I(H) = AH? 4 C - only with a finite (and
negative) background facilitating the necessary intersection with the field axis where the measurable
intensity goes to zero. Other functions facilitating a slow and gradual intensity falloff - for instance
AHP. tanh(1 — H/Hy) - give the same exponents as the power law with background. On the other
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hand, functions with a rapid drop of intensity - AH? . \/1 — H/H, - gives poor fits if the field of
zero intensity Hy is forced to be between 290 and 300 mT. The uncorrected intensities and the
calculated correction factor using the Clem form factor are shown in figure 82.

As evident in figure 82, the uncorrected intensities fall off with an exponent of roughly -3, and
the correction factor with an exponent of roughly -3/2. The fit to the correction factor has been
done with a fixed background of 0, since the correction factor is well defined to arbitrary large field
values with the field axis as an asymptote. The intensity can be directly corrected for geometrical
effects as well as the form factor as calculated in the Clem approximation to obtain the structure
factor integrated over the rocking curve as a function of field. This is shown in figure 83.
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Figure 83: Corrected integrated intensity as a function of field fitted to a power law - I(H) =
AHP + C - with variable background C. The exponent is roughly -1.4 which is quite close to the
Bragg glass prediction. The statistical error of the exponent is unreasonably low. The re-evaluated
error is explained in the text. However, the extrapolation of the fitted curve to higher fields is
consistent with the observation of very little intensity at 280 mT and the lack of intensity at 300
mT.

These corrected intensities have been fitted to a power law with variable background, and an
exponent of B = —1.374(6) is obtained. It is the author's opinion that this statistical error does
not reflect the true uncertainty at all. Figure 83 shows - in addition to the fit with all parameters
free - two fits to power-laws with fized exponents -2 and -0.6, respectively. These curves fit the data
reasonably well, although they are not consistent with the observation of intensity at 280 mT and
the lack thereof at 300 mT. The truth is that removing just a single point from the data to be fitted
has quite a large effect on the determined exponent §. The reason for this is that the exponent
and the necessary background are quite coupled in the fitting function, especially with sparse data
near the point of zero intensity. Removing the point at 130 mT results in an exponent of -2.16,
for instance, while removing the data point at 230 mT gives an exponent of -1.04. In this work,
the determined exponent is decided to be the average exponent of 8 fits - one with all data points
and 7 fits each with a different point removed from the set - with the uncertainty given as o/+/8,
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where sigma is the standard deviation of the set of exponents. Thus, the power-law exponent of
the integrated structure factor versus field is determined as

I H?, where f=—1.4240.12. (9.12)

This value lies quite close to the predicted value of § = —1.5. The uncertainty should still be
regarded as a minimum. This determined exponent is consistent with the Bragg glass paradigm,
but it should by no means be regarded as a solid proof of the theory. The sensitivity of the
determined exponent to the slightest data reduction is one thing, but there have been made several
assumptions that might be flawed. They are the following:

e The assumption that the § = —1.5 result holds for the entire rocking curve - and not just
the peak of the curve - might not be true.

e The fact that the structure factors seems not to diverge at the peak center, as predicted, could
point to the fact that the Bragg glass scenario might not be sufficient to describe the vortex
ensemble. If this is the case - a consistency of the exponents might just be a coincidence. The
B = —3/2 prediction is a consequence of an algebraically diverging structure factor, which is
directly observed not to be the case entirely.

e The form factor derived by Clem is for an isolated flux line. Especially in low-x Vanadium, the
field distributions from the flux lines are overlapping - the lattice parameter is between 95-135
nm while the penetration depth is 40 nm. The difference between minimum and maximum
magnetic field in the ensemble - which in some sense is proportional to the form factor -
cannot be expected to be constant as a function of field. Furthermore, due to field dependency
of the overlap of flux line field distribution - the Clem solution for the field density might
not in itself be true. Thus, the form factor might be expected to fall off even quicker than
predicted by Clem.

e The only field-dependent parameter in the Clem form factor is ¢ o< sqrtB. However, if the
superconducting order parameter has decreased significantly in the field regime investigated,
the amplitude of the field distribution from an isolated flux line could decrease as well, re-
sulting in a form factor smaller than that described by Clem at high fields. The last valid

intensity was recorded at 260 mT, where the lattice constant is a%ﬁo & 96nm = 3&r—155K.

So this effect could also diminish the form factor as compared to the Clem result.

These objections being stated, the fact that there are Bragg peaks - and hence long range order -
and that the overall corrected intensity drops off roughly as predicted, within error, shows that the
Bragg glass theory might be a good starting point for describing the flux line ensemble. Setting the
details aside - the predicted S8 = —1.5 exponent is roughly a prediction of how quickly the order of
the ensemble decays as a function of field. In this work, the decay of order must be said to have
been proven to be consistent with Bragg glass theory, at least at 1.55 K. The decay of intensity
with field is a very indirect way of confirming the Bragg glass hypothesis, especially in this work.
If the effects listed above have significance, the observed decay of intensity is actually slower than
predicted. There is no quick answer to how one can account for the effects above; it is the author’s
opinion that when fitting to only 7 data points, any theoretical suggestion cannot be backed up by
the data presented here anyway. To it would be grossly overestimating the data if one claims this
drop off to be a proof of the Bragg glass theory. The shape of the rocking curve however, is directly
proportional to S(7); and an analysis of these rocking curves could provide much more reliable
insight into the nature of the flux line order. This analysis is described in the following section.
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9.3.2 Initial analysis of the rocking curves with high statistics

The rocking curves with high statistics were done at 115, 180 and 230 mT. When revisiting the
low statistics data, it is clear that the 130 mT data actually contain very good statistics. When
evaluating the measurement of the intensity versus field, the 115 mT data were discarded as having
been recorded at a field to close to H,. Therefore, this rocking curve will initially not be considered
valid. In doing RMC simulations, it is important to have data as free of statistical error as possible
especially in the tails, as these tails will form the experimental basis for determining the exponent
of the expected power law dropoff. Therefore, in order to obtain rocking curves with as high
statistics as possible, the average of the rocking curves from top and bottom spot is taken. This
is done by re-setting the angular zero-point of each curve to center of the curve as obtained from
a Gaussian fit (as long as the peak is symmetric around the center, this center will be properly
determined), and simply adding the counts using the same angular binning as in the rocking curve
scan. Before employing the powerful tool of RMC fitting, an initial analysis of these high statistics
rocking curves is in order, and will be given in the following section.
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Figure 84: Top Left: The rocking curves as extracted from the top and bottom Bragg spot on the
2D detector, respectively. As expected, the two curves are very similar. Top Right: The average
of the top and bottom rocking curve. The curve is much more smooth as the errors are smaller,
and very useful for RMC fitting. The dashed line represents the Gaussian width of the resolution
function. Bottom: The average observed intensity as a function of absolute angle plotted on a
double logarithmic scale. As evident, the tails of the rocking curves decay as a power law. However
- as observed in [86] - the intensity starts to smooth to a constant value at an angle much higher
than the angular width of the resolution function.
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The rocking curve at 130 mT

Figure 84 (top left) shows the rocking curves obtained at 130 mT, and the resulting average rocking
curve (top right). The bottom part of figure 84 shows the observed intensity as a function of angular
deviation from the peak center (Jw — wg| = |w| as wy = 0) on a double logarithmic plot. As evident
the intensity drops off as a power law indeed, but only for angles larger than 1°. This is exactly as
what was observed by Laver et. al. in [86], where a fractured Bragg glass was conjectured from the
RMC results. A possible reason is that the power law dependence of the two point translational
correlator only holds up until a certain pair separation distance, above which the flux lines start
to de-couple faster than predicted by the Bragg law. This results in large domains of the Bragg
glass which are decoupled from each other to a larger extent than as predicted by Bragg glass
theory. Since the rocking curve directly reflects the two-point translational correlator this must be
a reasonable interpretation.

Setting aside the smoothing of the power law intensity dependence at angles larger than expected,
the high angle power law dependence of the intensity versus angle is a very uplifting result. The
power law form of the structure factor is yet another Bragg glass prediction that stands the test of
experiment.

The rocking curve at 180 and 230 mT

Figure 85 shows the high intensity rocking curves recorded at 180 and 230 mT, plotted in a similar
way as for the curves at 130 mT. Notice that the angular steps in these rocking curves are smaller
than at 130 mT. It is evident that the rocking curves at 230 mT (which took almost a full day
to record at SANS-II), start to show substantial statistical deviations. The monotonic behavior
evident in the 130 mT data is not always there at 230 or 180 mT due to statistical fluctuations. Even
so, the same trends as in the case of 130 mT are clearly evident. Again, there is a nice power law
dependence of the intensity at high angles, and a smooth transition to a constant intensity at angles
far above what is dictated by the resolution function. It is thus directly shown experimentally that
the structure factors display a high angle power law dependency in a fgeld interval of at least 100
mT, in which the structure factor drops off as a power law with S o B72. It is very interesting that
the ezponent of the power law drop off is lower at 130 mT than at both 180 and 230 mT. It should
be noted that the rocking curves at 180 mT and 230 mT can be successfully fitted to Gaussians
as well. It is difficult, however, to put too much weight into whether or not the structure factor
drops off exponentially or as a power law, unless the statistics are good enough to unambiguously
distinguish between the two. This is what the RMC hopefully will resolve later on. The intensities
as a function of reciprocal Angstroems are shown in figure 86.

As previously mentioned, the power law exponent is significantly less at 130 mT than at 180 and
230 mT. Furthermore, the cutoff angle - where the power law ceases to hold - seems to increase as
a function of field. But so does the length reciprocal lattice vectors. This suggests that the critical
quantity is the number of fluz lines in a domain, and not the absolute size of the domain. That
at all fields, there is a critical number of flux lines in each domain, above which the correlations
start to decrease rapidly. Perhaps the high field increase in rocking curve width is caused by a
reduction in domain size until the point where long range order ceases to exist. This cutoff is
difficult to determine by fitting; but an attempt can be made. First of all fitting the rocking curve
to a Voigt function makes little sense as the parameters cannot be directly interpreted. One needs
a function incorporating a high angle power law and a low angle smoothed cutoff to a low angle
pseudo-constant behavior. To do this the following simplified function is considered:

_ﬁ ’8 .
I(w) = (ch )w if |w| > we 9.13)
A if |w| < we
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Figure 85: The rocking curves at 180 mT and 230 mT respectively, plotted along with the calculated
average rocking curve. As evident even the average rocking curve at 230 mT displays substantial
statistical fluctuations. In this case - since these rocking curves were meant for RMC fitting, the
angle interval in the high intensity area is smaller than at 130 mT. As evident on the plots of the
intensities as a function of absolute angle, the power-law divergence at the peak center - which
should only be limited by the resolution function - is terminated at angle well above what the
resolution function dictates. At higher angles, however, the intensity falls off as a power law in
both cases, with comparable exponents.
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Figure 86: Intensity as a function of |k, | at 130, 180 and 230 mT respectively. The fall off exponent
of the power law fits is comparable at 180 and 230 mT, but significantly lower at 130 mT. It seems
that the cutoff point at which the power law seems to hold increases with field (but only in reciprocal
space). This could be because of the larger unit cell; perhaps the cutoff length in real space is a
constant multiple of the lattice constant.

which is simply a constant function up to a critical angle w,, where the intensity decreases as a
power law. This transition from the constant peak value to the high angle power law decay is
not smooth, which would fit badly to the observed rocking curves. In order to smooth over the
transition between the constant regime and the power law regime (not necessarily only due to the
resolution function), the function 9.13 is convoluted with a Gaussian of unity amplitude, a center
at zero but keeping the width as a free variable - G,(w) = ew*/205, Thus, the function used to fit
the intensity is on the form

I(w) = (O % Gy) (w). (9.14)

The width is kept as a variable since other effects that have nothing to do with the resolution
function can cause a smooth transition between the power law and constant regimes. Whatever
the reason, it is assumed to be able to incorporate into the width of the Gaussian with which the
function 9.13 is to be convoluted. So the variable parameters in the fitting function is the amplitude
A, the cutoff angle w,, the exponent 3, the Gaussian convolution width o, and the background. In
the fitting function 9.14, there are three parameters determining the behavior of the curve at small
angles - A, w. and o,. As A can be easily determined from the curve by eye, it is kept fixed to try
to minimize the errors of the fitted w. and o, coeflicients. Fixing the peak center to be 0, this leaves
only a reasonable four fitting parameters including the peak center. The convolution has been done
numerically in Matlab (The code is presented without further elaboration in Appendix A. Since
|k1| = sin(w)|qio|, the intensity plotted as a function of rocking angle is already normalized to
reciprocal lattice units. Therefore, the critical angle can be used to find a critical length in units
of ap - £:/ag = 1/sin(w.). Figure 87 shows the fits to the three rocking curves using the fitting
function described above (top), and the extracted values of coefficients (excluding the background)
as a function of field.

As evident in figure 87 bottom left, the critical angle is roughly constant as a function of field. The
Gaussian smoothing width is very large and increases as a function of field. The smoothing widths
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Figure 87: Top: The fits to the rocking curves using the function described in the text. The fits
and the x?’s are reasonable. Bottom left: The extracted cutoff angles as a function of field which
are roughly constant within errors. Bottom middle: The smoothing widths o, as a function of field
which shows an increase as a function of field. Bottom right: The fitted exponents as a function of
field. These are larger than those determined from merely fitting the tails of the rocking curves.

exceed the critical angles, this underlines that the power law cut off is not a sharp effect but very
gradual. This is also directly visible from the rocking curves. A bold interpretation would be that
£./ag = 1/ sin(w,) represents the average pair separation distance above which the power law decay
of the translational correlator ceases to hold. Then, £min/ap =~ 1/sin(w. + o,) would represent the
minimum pair separation distance (on average) at which this becomes relevant and starts to alter
the Bragg glass behavior. Using these simple interpretations, the length scales are

£, =~ 173 ap for all fields (9.15)
30~ 76 ag
028~ 70ag
€2m31?1 ~ 63 [#7]

It should be noted that using this fitting function might not be justified at all, it is just the author’s
way of extracting interpretable parameters from the near-peak part of the rocking curve - the part
that does not fit the predictions of the Bragg glass theory. The author can think of two distinct
physical situations that could cause this high-separation-drop-off of the translational correlator.

e There are dislocations at all fields with some distribution of separations around a mean
value (£.7). As the field increases, the flux line tension energy decreases, allowing the flux lines
to bend around conforming to the pinning landscape. At some field the density of dislocations
start to slowly increase - widening the rocking curves and decreasing the range of order - slowly
decreasing the intensity. This is the picture given by Kierfeld. Dislocations are shown to be
excluded from the Bragg glass picture as mentioned in section 8.4.4. Furthermore, an increase
in dislocation density should be accompanied by an increase in the average pinning, as the
flux lines are more easily able to conform to pinning sites. This may have an effect on the
critical current at higher fields, if the change in dislocation density is large and occurs rapidly.
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The RMC offers no information (and can even be misleading) about such dislocations as they
are assumed not to occur in the algorithm.

e There are large dislocation free fractures of Bragg glass with some distribution of
fracture sizes distributed around some mean value (€.7). The correlations between these
fractures are significantly smaller than those within the fractures which decay as a power
law. This would cause the translational correlator to show a more rapid drop-off at pair
separations larger than the fracture size. This increase in drop-off exponent would probably
be gradual, judging by the rocking curves. In principle, the RMC should be able to mimic
this scenario, which is more or less the proposal of Menon.

In general, the RMC is only suited to mimic the fractured Bragg glass scenario, and even if a nice
fractured ensemble came out, one could always object that this is only hold under the assumption
of the absence of dislocations. It would just be an answer to how a 2D-ensemble would fit the data
and not how an ensemble full of dislocations would look.

The exponents of the fits using this very simplified model differ from those obtained from merely
fitting the tail to a power law. It therefore seems that the fitted exponents of the rocking curves
are dependent of the model one chooses to use for the rocking curve as a whole. As the power
law exponents of the translational correlator are one of the central parameters to determine, this is
unfortunate. The RMC, however, is able to give an unbiased fit to the data resulting in a real space
flux line ensemble from which the translational correlator can be directly calculated. The results
of the RMC/SA simulation will be presented in the following sections, starting with a description
of the problems that occurred during the simulation work.

9.3.3 Problems with the simulations - Simulated Annealing

Fitting the recorded rocking curves using the RMC code was not an easy task. Upon realizing
that the first try failed, there are several parameters which can be reasonably varied quite a lot
to remedy the situation. The simulations were run on a multi node server called Sauron - which
had 16 independent processors available. So dozens of simulations were ran in parallel for several
months (each simulation took from 1 to 3 days), in the process of solving various plentiful problems.
To give a full and detailed account of all the simulations and considerations would be unfruitful,
and uninformative. In this section, two central problems are described as these are fundamental
and very important for future studies.

When recording the data the attenuation slit was set to only 8 mm in order to make the resolution
function as narrow as possible. The point of this was to - in the case that a cutoff was observed -
better be able to extract information from the peak center. When the RMC evaluates the structure
factor in a given point, it includes the contribution from all adjacent points within 3 times the
angular width of the resolution function. However, the calculated width of the resolution function
is 0. &~ 0.034°, which is roughly one third of the minimum rocking curve angular step of 0.1° (in
the 130 mT data the step is 0.2°). Due to the fact that the width of the resolution function is
much smaller than the angular steps in the rocking curve, each point is virtually decoupled from
its nearest neighbors in the rocking curve. The RMC simply does not need to take the neighboring
point into account when fitting the curve to one particular point; there is almost complete local
freedom to adjust the structure factor in any arbitrary way to fit the point in question. This has
severe consequences for the results, as evident in figure 88.

Figure 88 shows the results of RMC simulations with the ensemble size of 40000 with varying
move acceptance probability, and simulations with different ensemble sizes, done with the same
very high acceptance probability of x? increasing moves. The data are shown along with the
calculated structure factor (red curve) after RMC convergence along with the calculated rocking
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curve obtained after convoluting the structure factor with the resolution function (blue curve).
The three simulations done with a 40000 flux line ensemble all show unphysical variation on short
angular scales that are not dictated by the data. The extent and frequency of these variations
decrease with increasing move acceptance probability.

The intrinsic width of the SINQ function (sin(N * w)/(Nw) describing the sum and product of
phase factors for a finite ensemble of N isotropic scatterers is 1/v/N. When the simulation is done

4000 v 800 y T .
= Structure factor == Structure factor

3500 Simulated curve 700f\= Simulated curve

3000 600} HD H=130mT
5 5 =
‘ﬁ-' 25001 K, H=130mT RMC o 5001 paccep: 0.5
g" 2000 =1 é‘ 400 T=1.55K
g Paccept =™ Size: 40000 a ,
8 1500 8 300f Size: 40000
=]
~ 1000 A 200f RMC

5001 > 100
0'caoaEaeERr . S5acesge A ; : A
=4 z o 1.5 2 25 3 35 4
Angle [deg.] Angle [deg.]
4000 T T 4000 T :
== Structure factor = Structure factor

3500 Simulated curve 3500F = Simulated curve
—, 3000 =
d =1
o 26800 B, H=130mT RMC -,
E\ 2000 B g,
8 Py~ 282 Size: 40000 @
3] 3]
—— =
| =

1000
500
94 """"""""
Angle [deg.]
4000 :
=== Structure factor
3500 Simulated curve

(o]

Intensity [a. u.]

10'

Angle [deg.] Generated moves/vortex ensemble

Figure 88: Top plots and middle left: The RMC structure factor (red line) and rocking curve
(blue line) as outputted from the RMC algorithm for two different acceptance probabilities for an
ensemble of 40000 flux lines. Substantial local variations are evident decreasing with acceptance
probability. Middle right and bottom plots: The RMC fitting of the 130 mT data for ensemble
sizes of 40000, 60000, and 80000 respectively. There is a natural increase of local fluctuations with
ensemble size. The evolution of x? as a function of normalized number of moves is shown as well.
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with a very high acceptable probability, the RMC attempts to fit the curve while introducing a very
high degree of randomness or disorder. Increasing the disorder of the ensemble will serve to smooth
the curve as peaks in the structure factor widen with disorder. However, even when accepting 85 %
of the moves increasing x? the rocking curve obtained using a 40000 flux line ensemble still shows
irregularities. The results shown in figure 88 for P,ceept = 0.85 for different ensemble sizes can
be said to be the smoothest curves obtainable using the RMC code with the calculated resolution
function. As evident, there are variations in the structure factor which is not at all dictated by the
data due to this lack of inter-point coupling. As the ensemble size increases to 80000 - and thereby
the angular interval within which the structure factor is able to change - these variations increase
to a point when they are comparable with the difference between the background and the peak
amplitude. As evident on the evolution of the x? curve for the high-p simulations, the x? value
stabilizes at around 130, which is quite a lot. This is due to the very large degree of unphysical
randomness that is maintained by accepting virtually every move even though convergence has
been reached. Such high values of x? should not be accepted; as the ensemble is hovering at a high
x? fluctuating between configurations with this particular x? value.

Similar unphysical variations were observed in the simulations of 180 mT and 230 mT curves.
Simply decreasing the ensemble size until these variations cannot occur, is not a viable option. The
intrinsic peak width of an 20000 flux line ensemble is roughly 0.4° compared to 0.2° for an 80000
flux line ensemble. Since physical effects are causing an increased curve width of roughly 0.5°, it
makes little sense to use an ensemble size where this curve width is an intrinsic property.

The first attempt to fit the 130 mT data using an ensemble size of 80000 flux lines, was using the
simulating annealing technique described previously in the text. Starting at a very high acceptance
probability and slowly 'cooling’ the ensemble might serve to smooth the structure factor even more
and perhaps reach the global (and hopefully physical) minimum of the x? function. Even though
this gave considerably lower x? values, it did not solve the problem with the fluctuations. Perhaps
this is caused by the RMC algorithm lowering the x? values by simply creating different ordered
minor ensembles within the larger one, orientationally displaced from each other such that a peak
in the structure factor is created at or between each data point in the rocking curve. This would
enable the algorithm to minimize the x? to very low values, so perhaps the global minimum for the
cost function is this unphysical 'sharks teeth’ curve. If this is true, it is no fault of the algorithm;
if adding 'sharks teeth’ costs no energy (or x?) the algorithm cannot be expected to avoid them.

The only way to solve this was by using a brute force method. Interpolated points - using the spline
interpolation method - are simply but in between the real data points, with an equal weight. This
does not pose as big a problem as one might think; the interpolation point(s) placed between two
data points are placed well within the area spanned by the two error bar endpoints. It is the authors
opinion that the error introduced by this method is un-biased and introduces less systematic error
than the statistical errors already caused by the counting statistics. The interpolated point used
for the 130 mT curve - which is the curve with the best statistics - is shown in figure 89.

In summary, the two most important steps undertaken to achieve converging simulations with
reasonably low values of x? while achieving physically acceptable rocking curves were the following:

e The method of simulated annealing was used. One starts out with a very high x*-increasing
move acceptance probability, after which one slowly decreases said probability at well defined
points in the simulation. This is a process of slowly cooling the ensemble and probably the
best way of reaching the global minimum.

e However, due to the very narrow resolution function, the algorithm does not need to take
the adjacent points into consideration when fitting the structure factor to any given point.
Therefore, the algorithm can just make peaks in the structure factor between any two points
and adjusting the peak characteristics until the curve fits perfectly. The possibility of doing
this increases with simulation ensemble size. This actually means that the global minimum in
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Figure 89: Left: The 130 mT data (circles) plotted along with the interpolated points (dots) Right:
A zoom on the left hand tail of the rocking curve plotted along with the area spanned by the error
bar ends (red dashed lines). As evident, the interpolated points are well within the rocking curve
statistics - which are quite good to begin with.

configuration space is unphysical. The only way to remedy this is to introduce artificial points
as described in the text. The errors of doing this are arguably smaller than the statistical
errors introduced by the counting statistics.

9.3.4 The intrinsic finite size problem

Due to computational limitations, the ensemble size to be fitted to the data is much smaller than
the ensemble created in the SANS experiments - figure 77 shows an ensemble radius of 20 um for
80000 flux line ensemble which is 1/1000 of the sample radius. Since no obvious periodic boundary
conditions can be enforced; as no unit cell can be defined - the should be no translational symmetry
in the ensemble after convergence. The similarity between the simulated ensemble and the real one
only holds when the flux line pair (from which to calculate the correlation) is far away from the
ensemble edge. This is illustrated in figure 90.

The displacement correlator calculated from the ensembles returned from the RMC/SA algorithm
after convergence showed a drop at pair separation distances larger than roughly half the ensemble
radius. The following is a possible explanation given in retrospect. In order for a pair correlation
between two flux lines separated by d to mimic the pair correlation for an infinite ensemble, both
flux lines need to have surroundings resembling those for an infinite ensemble at distances up to
d. Thus, the joined width of the blue and green circles needs to be smaller than the radius of the
ensemble - which means that 3d < 2R = d < 2/3R. Even if this was the case, the only flux line
pairs - out of the N? possible pairs - that mimic the correlations in an infinite ensemble are those
on the circle | P| = d/2 = R/3, where O is a vector from O to any flux line at P. When d < 2/3R,
this circle becomes a shell of width 2R — 3d containing the possible pairs separated by d, which is
described by 2d — R < |P| < R — d. It is proposed that this shell needs to constitute a substantial
fraction of the ensemble area in order for the two-point correlation functions extracted to be free
of finite size effects. This can hardly be said to be the case for separations d = 2/3R. However, as
the pair separations become smaller than R/2, the number of pairs having identical surroundings
resembling those for an infinite ensemble starts to grow rapidly (as evident in figure 90). The
ensemble size used in the RMC simulations presented in this work, is N = 80000. The radius of

the ensemble expressed in lattice units is thus R = 1/v/3N/(2r) =~ 150ag, using A = N&,/B and
a=4/2®0/(v3B. Here, A is the unit cell area and a is the lattice constant. Thus, for an ensemble
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Figure 90: Illustration of the proposed finite ensemble effect. The black circle centered at O
represents the circular array of flux lines. Two flux lines positioned at O and a distance |P;| =
Ry = R/2 from O (where R is the ensemble radius) both have surroundings resembling that for
an infinitely large ensemble for distances smaller than R;. Thus, for pair separations of R; all
correlations between pairs in the green circle mimic those for an infinite ensemble. Two flux lines
at O and P; do not have identical surroundings at distances Ry. The only flux line pairs separated
by R having similar surroundings which are valid to an infinite ensemble are those on the circular
shell 2Ry — R < |P| < R — R; all of which further than Ry from the ensemble edge - as explained
in the text. The number of flux line pairs separated by R3 that are further than Rz from the edge
- and hence mimic correlations in an infinite ensemble - is very large.

size of 80000 flux lines, the RMC/SA algorithm is only expected to give credible results for pair
separations larger than roughly 80 ag. This is a bit unfortunate, as the rocking curve analysis
9.3.2 suggests effects at these exact separations. But since the computation time scales with N?
it was difficult to redo the simulations in the limited time available, once this was realized. In
the next sections, the results of the RMC/SA simulations are presented. It will be evident that
the displacement correlator starts to drop for pair separations larger than roughly 80 ag - which is
unphysical.

9.3.5 Results of the simulations

In this section, the results of the simulated annealing runs performed on the rocking curves -
with interpolated points as described previously - will be presented. The simulations have been
done enforcing neither planarity constraint nor minimum approach distance, in order to put as
few constraint as possible on the algorithm. Similar results as those presented here were obtained
enforcing these constraints. The calculated structure factors and rocking curves will be presented
with the actual data, and an analysis of the correlation functions is given. Fitting the correlation
function has to be done using several regimes, and in order to do that some rather circumstantial
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functions need to be used.

As described in section 8.4.4, the displacement correlator has three regimes: The Larkin regime
(B(z) ~ ), the random manifold regime (B(z) ~ z'/?) and the asymptotic regime (B(z) ~ log(z)).
If one assumes the crossover between two regimes to occur over just a few lattice spacings, one needs
functions going from 0 to 1 and vice versa in just a few lattice spacings in order to describe said
crossover in a reasonable way. The function f(x) = 1/2 +1/2 - tanh(z — zg) does exactly that, as
described in [86]. An appropriate function for describing all three regimes is the following function
which is denoted as a B(z) three piece function:

Blz) = p1+(pzw)-:v‘_(m)+(psfvﬁ)-wi(ﬂs)mz_(wH(p4log(w)+ps)-wi(:c),

1 1
where 2(z) = 3 + 3 tanh (2 — 2,,,) and
1 1
ai(z) = 3 + 3 tanh (2 — Tasymp) - (9.16)

The background parameter in the function above is unphysical since B(0) = 0. The three-piece
function is to be viewed as an attempt to fit three regimes to the data. It should be noted that
when the RMC calculates the structure factor, it normalizes the intensities. Therefore, it is the
shape of the correlators that are fitted to the data and not the absolute size of the displacements.
In this fit, the parameters @, and @.symp are interesting. However, the displacement correlator
might not be able to be obviously divided into three regimes. Therefore, it might be interesting
to collect the Larkin and random manifold regime into one power law with variable exponent for
comparison, denoted as a two piece function in this work:

B(x) = pi+ (paaf) 22 (a) + (s log(e) +pa) - 42 (a), (9.17)
with 2 (z) and 2% (2) defined as in equation 9.16. It is very important to analyze the decay of the

translational correlator with distance. For that purpose, the translational correlator can be fitted
to the following three- and two-piece functions which are direct consequences of equations 9.16

¢
Cy(z) = prexp(—z)-z(z) +poexp (— ,,;i) czh (2)22 (z) +p3 (277) -2l (z) (9.18)
x%
Cy(z) = prexp (—g) -22 (z) + p2 (277) - 22 (), (9.19)

also with 2% (z) and 22 (z) defined as in equation 9.16. These are the functions used to evaluate
the correlation functions that are the main output of the SA algorithm.

Rocking curve at 130 mT

Using the recorded SANS data at 130 mT (both spots) including interpolated points, the simulated
annealing algorithm converged nicely. The calculated structure factor, rocking curve and the actual
data are shown in figure 91 along with the evolution of x? and the fitted correlation functions.

As can be seen in figure 91, the rocking curve is fitted very well and the structure factor is monotonic
on each side of the peak and shows no rapid variations. The x? starts out at a very high value
where it stays up until each flux line has been moved roughly 200 times, after which it starts to
drop rapidly. After roughly 600 moves x? starts to be stable after which it decreases in jumps when
the acceptance probability is lowered. The displacement correlator (see figure 91 bottom left) has
been fitted to both a two-piece and a three-piece function, and there is not much difference; they
both show a very good agreement with a logarithmic rise of the displacement correlator at large
distances and reproduce the short distance behavior rather well. However, when looking at the
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Figure 91: Top left: The fitted structure factor (red line), the calculated rocking curve (blue line),
the actual data (hollow circles) and the interpolated data points (black dots). The ensemble size
is 80000 flux lines. As evident, the rocking curve is fitted as well as reasonably expected. Top
right: The evolution of x? as function of number of moves pr. flux line. After 200 moves with
high acceptance probability, the fit starts to converge rapidly. After 500 moves pr. flux line, the
x? is simply determined by the acceptance probability - or the temperature. Bottom Left: The
displacement correlator B(7) as a function of distance between flux lines in units of a@y. The points
have been fitted to both a two piece (red) and a three piece (blue) function. The two are almost
identical, but zooming in on short distances two kinks are slightly evident. The logarithmic rise at
large distances is clearly evident though. At distances larger than 80ag, the displacement correlator
starts to drop. Bottom right: The translational correlator Cy(r), fitted only to a two-piece function
(inset). A power law at large distances is clearly evident with a fitted exponent of = 0.9.

inset of the figure, two very slight kinks are evident at » = 8ag and r = 18aq both fitted very well
by the three-piece function. It looks like there are separable linear and power law regimes at short
distances. The cross-over lengths and the fitted power law exponent are

ZTrm = 800 Tasymp ~ 18ag [~ 0.37. (9.20)

The value of 3 is very close to the predicted value of 0.33 as stated in equation 8.106. However,
other values of 8 can easily fit the correlation functions rather well with only minor changes in
regime boundaries z,,, and Zssymp. The power law exponent of the two-piece fit is 8 = 0.27, which
is also rather close to the random manifold prediction.

The lower right part of figure 91 shows the translational correlator on both linear and double loga-
rithmic scale. As is somewhat suggested by the almost equivalency of the two-piece and three-piece
fits to the displacement correlator, only two regimes are directly evident on this plot. Therefore,
the two-piece fitting function for the translational correlator has been used. At distances larger
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than roughly 10ag, the drop off of the translational correlator exhibits a power law behavior up to

a distance 100aq as evident on the double logarithmic inset. The fitted exponent is:

Which is at least 10 % less than any of the predicted falloff exponents between 1 and 1.18 from

section 8.4.4, but definitely in the same ball-park.

Field Rocking angle | Angular Number of Monitor | File-numbers
span [deg.| | Step [deg.] | curves recorded
180 mT [3.0:5.0] 0.25 2 2500 2718-2735
180 mT [6.25:8.75] 0.1 1 2500 2736-2771
180 mT | [9.0:12.0] 0.25 2 2500 | 2772-2797
180 mT [6.25:8.25] 0.1 2 2500 3223-3284

Table 20: List of scans performed at 180 mT in the 2008 SANS-II experiment.

Rocking curve at 180 mT

During the course of the 2008 experiment, an attempt was made to get as many RMC-worthy
rocking curves as possible at different fields. During this process the rocking curves were recorded
several times with low statistics to be added together later on in order to get a rocking curve with
high statistics. Furthermore, the goal was both to measure the rather long tail with good enough
statistics to properly measure the background and at the same time measure the peak with small
enough steps to have a hope of resolving the effects near the peak center. Therefore, several scans
were made with large angular steps in the tail and small steps near the peak center. In the case of
the 180 mT curve, a total of 8 scans comprises the final curve. The nature of these scans are listed
in table 20.
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Figure 92: Left: The full rocking curve as obtained from the scans (circle) including the interpolated
points (dots). Right: Zooming in on the tails, the two deviating points with low statistics are clearly
evident.

If one looks closely at table 20, it can be seen that a clear error has been done in the choice of
scans. The interval [5.25 : 8.25] has been measured with 7500 monitor (3 -2500), while the interval
[8.25 : 8.75] has only been measured with 2500 monitor. In addition, the interval [5.0 : 5.25] has
not been measured at all. This would be fine if these intervals were far out in the tails, but they
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are exactly where the intensity starts to rise. Figure 92 shows the rocking curve with interpolated
points both at full scale and zoomed in on the tail. The count rate just where the intensity starts
to rise is as low as 5 counts pr. 2500 monitor, which is too low a count rate for the count to be
considered equal to the high statistics counts. This switch of statistics facilitated two points with
very low counts in the middle of the tails as evident in figure 92 (right). These two low points will
have significant consequences for the SA output, as they are at the same angular distance from
the peak center. The algorithm can and will fit to any point regardless of the error, due to the
vast number of free parameters. Thus, there would be a substantial reduction in the translational
correlator at specific distances, changing the fitted exponent. Since there is a clear reason for these
low counts, and since they are so clearly deviating from the rest of the curve, they have been
removed. The SA output for the unaltered rocking curve can be found in appendix B. The SA
output after the removal of these low statistics points is shown in figure 93.
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Figure 93: Top left: The fitted structure factor (red line), the calculated rocking curve (blue line),
the actual data (hollow circles) and the interpolated data points (black dots). Top right: The
evolution of x? as function of number of moves pr. flux line. Convergence is reached after roughly
800 moves pr. flux line. Bottom Left: The displacement correlator B(r) as function of distance
between flux lines in units of ag. The points have been fitted to both a two piece (red) and a
three piece (blue) function. Again, a logarithmic rise up to 80ag is evident. Bottom right: The
translational correlator Cy(r), fitted only to a two-piece function (inset). A power law at large
distances is clearly evident with a fitted exponent of # = 1.14. The translational correlator exhibits
a bump at roughly 90ay. The ensemble size is 80000 flux lines.

As in the case at 130 mT the fit converges nicely. The x? starts to converge after roughly 200 moves,
and goes from roughly 160000 to 5 after 1000 moves pr flux line. The displacement correlator B(r)
shows the same features as at 130 mT including a gradual decrease at distances large than 80ag.
It has been fitted to both a two- and three-piece function again with almost complete similarity.
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The three piece function gives the following parameters:
Trm & 11 ZTasymp = 20 [ = 0.54, (9.22)

while the two piece function gives Zasymp & 19 and 8 = 0.33. There is quite a difference in the RM
exponent of the two fits, where the exponent of the second fit matches perfectly the predicted value
of 0.33. The translational correlator has a clear power law falloff for distances between 10ag and
80ag. At roughly 90ag there is a bump (on a logarithmic scale), but this is after the displacement
correlator has started to drop. The translational correlator has been fitted to a two-piece function
for distances between ag — 80aq as in all cases and the exponent is

Thso ~ 114, (923)

which is on the lower edge of Borgner, Emig and Nattermans prediction taking the anisotropic
elasticity into account, the non-universal ezponents obtained from renormalization group theory.

5

10
300 — Struclll.lre factor
~— Simulated curve 4 %
107 H=230mT Y
250 0 o
e T=1.55K Size: 80000 T=155K
= 200 1 10°h Size: 80000 9
<, By H=230mT SA st o
o SA %
ot 150 1 o1 102 | o
=
8 >
E 100 0%
i1
10F i
50 %Oo:
- b
:::;'."_'_“ 8 ‘ Beeaes 10“ " n i L
L, -2 0 2 % 0 200 400 600 800 1000
Angle [deg.] Generated moves/vortex ensemble
0.24 T T . .
=~ Two piece
— Three piece
P 018
= o
m
0.12 0 1P)istam:c [:i:]’0 .

20 40 60 80 100 120
Distance [ao] Distance [au]

Figure 94: Top left: The fitted structure factor (red line), the calculated rocking curve (blue line),
the actual data (hollow circles) and the interpolated data points (black dots) at 230 mT. Top
right: The evolution of x? as function of number of moves pr. flux line. After 400 moves with high
acceptance probability, the fit starts to converge rapidly. Bottom Left: The displacement correlator
B(r) as a function of distance between flux lines in units of ag. The points have been fitted to both
a two piece (red) and a three piece (blue) function, which are almost identical. The logarithmic
rise at large distances is clearly evident though until it starts to drop at 80ag. Bottom right: The
translational correlator Cy(r), fitted only to a two-piece function (inset), with an exponent of p = 1.
The translational correlator exhibits a rapid drop at only 65a,.
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Rocking curve at 230 mT

Using the rocking curve for both spots obtained at 230 mT including interpolated points, the
SA algorithm was able to converge nicely - starting out with a x? increasing move acceptance
probability of 99 % and ending at roughly 40 %. The simulated structure factor and rocking curve
are presented along with the x? evolution and the correlation functions in figure 94.

The fit is very acceptable as in the previous cases, and the x? evolution resembles those for 130 and
180 mT, respectively. The displacement correlator shows the exact same dependency on distance
as in the case of 130 mT. The displacements start to drop around 80ag as in the other two cases.
The displacement correlator has been fitted to both a two-piece and a three-piece function. The
three-piece function yields the following parameters:

Trm B9 Tasymp = 20 B =~ 0.44, (9.24)
while the two piece function yields Zasymp =~ 19 and 3 = 0.22. So once again, the two functions
agree on the crossover distance to the asymptotic regime (which is also clearly evident by eye), but
disagree on the random manifold exponent. They are both still somewhat close to the predicted
value.

The translational correlator drops off as a power law between 10ay and 65ay after which is drops
rapidly. This could be due to an onset of fracture size effects or an increase of dislocation density
introducing a fast drop off of the translational correlator at large distances. It could also just
be a consequence of variations near the peak center due to counting statistics. It is peculiar,
however, that the existence of this drop-off below 80aq fits the picture given in equations 9.15. The
translational correlator has been fitted to a two-piece function between ag and 80ap yielding an
exponent

230 ~ 1.02, (9.25)
which is also close to the predicted values. There is some degree of uncertainty on this number
which is difficult to evaluate. But since the power law is quite clear and without too many variation,

the exponent of around 1 seems reasonable. This exponent is in the middle between the exponents
at 130 and 180 mT, which is also suggested by the fitted exponent of the rocking curve power laws.
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Figure 95: Left: Fitted power law exponents n for Cy(r). The values suggested in literature -
explained in the text - are shown as well. Right: Fitted RM exponents 3 compared to values
suggested in literature.
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Comparison of exponents

Since three regimes cannot be distinguished on the plots of the translational correlator and since
the two- and three-piece fits of the displacement correlator are very similar - the two piece function
being the simplest - the two piece function has been chosen as the basis for comparing random
manifold exponents, 8. The Bragg glass power law decay of the translational correlator leaves
little doubt about the fitted exponent 5. There are, of course, errors in the determination of
exponents but they are difficult to evaluate properly. However, for the power law exponent an
obvious candidate for an error is the same fractional error of the determined exponent as in figure
86. These are the errors used both for the RM exponent determined from B(r) and the power law
C, exponents. Figure 95 shows these determined exponents from the SA simulated compared to
suggested exponents in the literature.

The basic origins of the suggested exponents are briefly evaluated below:

e Feigel’'man et al. Modified the LO collective pinning theory, recognizing the existence of
metastable states and predicted a power law increase of the displacement correlator for all
distances with an exponent of 0.4 [78]. The power law prediction can be directly compared to
the short distance behavior of the displacement correlator as outputted from the SA algorithm.
The predicted exponent seems to be too large.

e Giamarchi and Doussal used variational theory as an initial way of making predictions
about the nature of the correlations in the Bragg glass phase. They found an exponent of
f =1/3 and = 1 for the short distance power law increase of the displacement correlator
and the long distance power law decay of the translational correlator [74]. The 180 mT
simulation gives exactly # = 0.33 and the 230 mT simulation gives = 1

¢ Giamarchi and Doussal also used renormalization group theory to make predictions
about the nature of the correlations in the Bragg glass phase. They found an exponent of
n = 1.097 for the long distance power law decay of the translational correlator, which is close
to both the 180 mT and the 230 mT result.

e Bogner, Emig and Natterman (BEN) found non-universal exponents both for the
case of the RM exponent 3 and the Bragg glass exponent 7 [79]. The exponent intervals
are 3 € [0.3474 : 0.3526] and 7 € [1.144 : 1.16]. The 180 mT simulation curve has a power
law decay of the translational correlator that is just what BEN predicted. Actually, BEN
predicted a field dependence of the exponent but given the limited range of their prediction,
this would be unfeasible to test.

The 130 mT simulation shows an translational correlator decay with an exponent of = 0.9, which
is below the predicted values. However, if all the exponents are to be taken at face value, there is a
rather large angular interval of which the power law decay of the translational correlator lies within
predicted values. The random manifold exponents are below the predicted values except at 180
mT where the exponent is just what was predicted using variational theory. In spite of this, since
the long range behavior is so close to what was predicted using quite general models, the ordered
VL phase between 130 mT and 230 mT can be called a Bragg glass phase in the author’s opinion.

9.3.6 The SANS-II experiment in December 2010

The second experiment on Vanadium was performed in December 2010. The purpose of the ex-
periment was to get more rocking curves with better statistics at high fields. In this experiment
the resolution was chosen to be a little more relaxed than in 2008; the attenuation slit was set to
a diameter of 16 mm resulting in a resolution angle of 63 = 0.158°. This experiment experienced




181

severe problems with controlling the temperature. Since at the time of the experiment, the 11 T
SANS-magnet to which the custom sample stick was designed had a leak; the exchange gas pressure
could not exceed a certain limit which was naturally set rather low. Due to this leak, it was not
possible to increase the exchange gas pressure in order to maintain a stable temperature of 1.6 K.
The minimum temperature reached was 2.6 I; this was simply due to the thermal contact between
the top of the sample stick (and the electrical stepper motor) and the sample itself which was
facilitated by the rod supposed to turn the cogwheels on the sample holder. In addition, the brass
parts of the sample holder were worn down to some extent - there were scratches which prevented
the cogwheels from turning smoothly. Therefore, the order of business of the experiment naturally
changed to examining the field dependence of the integrated intensity at temperatures higher than
the base temperature, namely 2.67 K and 3 K. Even though this agenda was not intended at all,
it should provide a basis for a phase diagram of the vortex lattice in the vanadium sample in this
work.

9.3.7 Field dependence of the rocking curve intensities at higher temperatures

The lowest temperature in the sample space reachable was a floating variable throughout the
experiment, since a lot of work was done to remedy and optimize the situation (such as changing
exchange gas pressure, adjusting the PID settings and even removing the sample and try to improve
the thermal isolation). The temperatures at which the rocking curve intensities have been measured
are therefore rather arbitrary; they reflect the minimum temperature reachable at that particular
point in time where the data were recorded. At the beginning of the experiment, the minimum
temperature was 2.55 K.

Over a little less than a day, a collection of rocking curves was measured using the tilt of the sample
table and not the rotatable sample stick for fields between 50 and 210 mT. The cooling was always
done in field just as in the 2008 experiment. Due to the poor coupling between the exchange and the
sample, the sample temperature drifted from 2.55 to 3.0 K during the tilt. This is around 10 percent
of the temperature span of the entire (uoH,T) phase diagram which is completely unacceptable.
However, the entire rocking curve is not necessarily needed for a credible determination of the
integrated intensity. The rocking curves were reduced in the following way: An average temperature
was calculated from the first three points of the scan. Any point where the measuring temperature
exceeds 0.2 K above that mean is discarded. The temperature variation in the peak is thus around
3 % which is much better. The reduced rocking curves and the corresponding Gaussian fits are
shown in figure 96. Only the rocking curves obtained for fields above 80 mT are shown. The
rocking curves between 50 mT and 80 mT had an increased width and were discarded using the
same arguments as in the 1.55 K case.

As evident in figure 96, the Gaussian fits to the reduced data are reasonable. They all have
comparable widths, and the amplitude is well determined. At 2.7 K the penetration depth and
coherence length are different from those at 1.55 K (see table 19), resulting in a steeper field
dependency of the form factor. In order to correct the measured intensities for the geometrical
factor and the form factor, the exact same method is used as in the 1.55 K case. The result is
shown and fitted to various power laws in figure 97. As in the 1.55 K case the error of the fitted
exponent does not reflect the real error. So just as previously, the determined exponent is decided
to be the average exponent of 9 fits - one with all data points and 8 fits each with a different point
removed from the set - with the uncertainty given as o/3, where o is the standard deviation of the
set of exponents. Using this method, the determined exponent is

Ir—ogeic < H?, where B = —1.7+0.065. (9.26)

Again, the error of this estimate is to be regarded as an absolute minimum. This value is quite close
to -3/2; it cannot be said to be significantly less than -3/2 in any case. This determined exponent is
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Figure 96: Rocking curves obtained at an average of 2.66 K using the reduction scheme described
in the text. No intensity was found above 190 mT. An accurate determination of the peak width
and amplitude is possible; the blue lines represent the Gaussian fits which converged nicely. The
counts have been normalized to 2500 monitor

not to be regarded as a proof of the Bragg glass theory - as argued previously. However, the decay
of order with field is again consistent with Bragg glass theory. Thus, one can cautiously say that
this decay of order is as predicted in a finite area of the phase diagram. One could assume that this
is the area of the phase diagram where correlation functions like the ones determined by the RMC
in the previous section hold - to some extent at least. Thus, a Bragg glass-like phase has been
determined at low temperatures which decays into a phase without static order upon increasing
the field.

As the experiment progressed, the minimum reachable temperature continued to climb. Due to
this fact, another set of intensities was measured as a function of field at 3 K. The rocking curves
obtained at various fields are shown in figure 98. The magnetic form factor was calculated using
suitable parameters from table 19, and the intensities were corrected for both the form factor and
the geometrical factor. The results are shown in figure 99 fitted to various gaussians. The exponent
is much higher than those obtained at 1.55 K and 2.66 K, respectively. The data points are far
more irregular though. Employing the same point removal scheme as described in the previous
cases, the average exponent is -1.96 with a standard deviation of 1.3. Therefore, this data set is
too incoherent to produce a credible exponent (this can be due to the lack of counting statistics).
For the sake of completeness the exponent is

Ip_3o0i < H?, where B = —1.96+0.43. (9.27)
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Figure 97: Left: Corrected integrated intensity as a function of field fitted to a power law -
I(H) = AHP +C - with variable background at 2.66 K. The exponent determined by the fit is -1.5.
Right: The rocking curve widths as determined by Gaussian fits.
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Figure 98: Rocking curves obtained at an average of 3.0 K. No intensity was found at 170 mT. The

blue lines represent the Gaussian fits.
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Figure 99: Corrected integrated intensity as a function of field fitted to a powerlaw - I(H) =
AHP 4 C - with variable background at 3.0 K. The exponent determined by the fit is -2.6. These
data are more irregular than at 1.55 and 2.66 K, and removing just a single point has a large impact
on the exponent.

It should be mentioned that no intensity was observed at 170 mT at 3 K where H,y = 250 from
magnetization measurements. Therefore, the fitted exponent of -2.5 can be said to be an absolute
minimum. The trend of the exponent as a function of temperature can be said to be slightly
decreasing if one ignores the errors. However, within errors, the exponent might as well be constant.
A significantly increasing exponent is improbable though. Since the determination of the drop-off
exponents is doubtful, the most important result at these two temperatures is the determination
of the critical field where long range order becomes unmeasurable.

9.3.8 The high statistics rocking curve at high field and high temperature

At the end of the 2010 experiment the sample stick was removed, the brass cogwheels were pol-
ished and the rotatable sample holder was working again. Upon re-inserting the sample stick and
adjusting the PID settings for the cryomagnet the minimum reachable temperature was 2.66 K.
At this temperature - with the retrieved 4w rotation option - an attempt was made to record a
RMC curve just below the critical field above which there is no observable order. This should be
in a region where the rocking curve width has increased considerably, but where the scattering
intensity is still high enough for reasonable statistics. Two days were used to record the rocking
curve, as background measurements were necessary to achieve good statistics. The two rocking
curves obtained and the calculated average are shown in figure 100.

Figure 100 shows some irregularities in the rocking curves especially in the top spot data. Since
the background was irregular at the peak angles, this could be a probable cause. However, since
there is no particular reason for discarding these irregular points, these will be kept for fitting. The
combined rocking curve looks acceptable, though not as nice as the ones obtained at 1.55 K. The
peak center is very interesting in this curve, since it can not be well fitted by neither a Voigt nor a
Gaussian. Only the function described earlier - a powerlaw with a low angle cutoff convoluted with
a Gaussian of variable width - fits the peak center well. The fits and the x?'s are shown directly
in figure 100 (bottom left). Fitting the rocking curve to this power law with a cutoff (keeping the
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Figure 100: Top: The rocking curves of the top and bottom spot respectively as recorded at 2.7
K and 170 mT after background subtraction. Some counts ended up being less than zero after
background subtraction; those have been manually set to be zero. Bottom left: The rocking curve
obtained after combining the rocking curves from the top and bottom spot. The rocking curve
has been fitted to a Voigt, a Gaussian and to the function described in section 9.3.2, denoted as
homemade. It is clear that all function fit the tail of the rocking curve equally well, but that both
the Gaussian and the voigt fail to fit the peak center. However, the homemade powerlaw with a
cutoff fits this peak center nicely. Bottom right: Intensity as a function of absolute angle, fitted
in the same way as previously described. As in all rocking curve the critical angle exceeds the
resolution. However, the critical angle is much larger than the ones determined at 1.55 K.

power law exponent fixed as described earlier) yields a cutoff angle considerably higher than those
found at 1.55 K - namely w, = 0.9° with a smoothing width ¢, = 0.32. The determined values of
£, and £,,;, are

G170 65 a0
c ~

ER-10  ABag (9.28)
Thus, the power law dependency of the translational correlator should cease to hold at roughly
50ag. Perhaps the cause for the increase in rocking curve width at high fields is that the fracture
size starts to decrease (or the dislocation density starts to rise), decreasing what could be called
a mazimum Bragg glass correlation distance. If this is true, the fracture size would continue to
decrease with field causing the maximum correlation length to decrease up to the point where it
becomes comparable to the random manifold cross-over length, after which static long range order
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ceases to exist and the system is well into the fractured vortex glass state (or just the vortex glass
if dislocations are the cause of the plateau). With regard to RMC simulations, since the data in
the tail is quite irregular in this rocking curve, emphasis was laid on the low temperature rocking
curves. In the following section the VSM magnetization data performed on the sample is presented.

9.3.9 VSM magnetization measurements

To determine the field dependency of the critical current, VSM magnetization measurements were
performed at the CFMS magnetization system at Risg. The field was applied along the crystal-
lographic (111) axis just as in the neutron experiments. The main goal of these measurements
was to determine I and H. as a function of temperature using bulk measurements. Thus, the
bulk properties - or phase diagram - serve as a nice framework in which the neutron data can be
interpreted. There was also a hope that some sign was to be seen of the transition between the
Bragg glass phase and the phase without static order - in this work called vortex glass.

As mentioned previously in this work, the amount of flux line pinning in a type-II superconductor
directly influences the critical current. The easiest way of estimating the critical current is actually
via the magnetization curve. Using the so-called Bean model - which is explained in [59] - it can be
shown that the critical current J, is actually proportional to the difference in magnetization AM

in a hysteresis loop
Jo(H) x AM(H) (9.29)

So when performing magnetization measurements on a bulk 0.2 cm?® superconducting sample, the
signal is quite large, and even small changes in the critical current should be resolvable, which
would ultimately give an idea of the amount of flux line pinning as a function of field. This is
assuming that the demagnetization factor does not cause an inhomogeneous field throughout the
bulk sample cause any sharp effects to be smeared out. The sample was placed in the cryostat and
the field increased to the maximum chosen value which is well above H.;. The hystersis loop is
then the magnetization curve upon slowly reversing the field from this maximum to the same value
in the opposite direction and back again. The raw data are shown in figure 101.

As evident on all the hysteresis curves, the critical current is almost constant at small fields. This
makes perfect sense since the Meissner-phase is defined by its perfect diamagnetic response - M = 0
at low fields. This changes when entering the vortex lattice phase (at around 90 mT at 1.6 K)
where the gap between the two curves closes in rapidly as a function of field. Figure 102 (top left)
show the obtained critical current as a function of field at 1.6 K (obtained merely by dividing the
hystersis curve into suitable bins and taking the difference in magnetization between decreasing
and increasing field), plotted on a double logarithmic scale. The onsets of static order, onset of
constant width and absence of order as determined by neutron scattering at 1.55 K are marked on
the plot. The critical current is plotted on a linear scale as well for the sake of completeness.

The critical current drops rapidly not at a specific field but in an entire field region around H,;.
This may suggest that the process of going from the Meissner state into the vortex state is a rather
gradual process and perhaps occurs via an intermediate mixed state. This is also indicated by the
quite wide rocking curves obtained at 80 and 115 mT at this temperature. Note that there is some
degree of static order measurable with neutrons already at 80 mT which is well below the point
‘where the rapid drop in critical current sets in at 1.6 K. This means that there is coexistence of bulk
diamagnetism and statically ordered flux lines. After the rapid drop in the H, region, the critical
current falls off as a power law with field up until 340 mT at 1.6 K. At this field, the critical current
exhibits a very rapid drop in a finite field region to zero. When examining the hysteresis curve at
these high fields, an anomaly is clearly evident (see figure 102 bottom left). It is quite clear from
the hysteresis curve why the critical current drops rapidly; there is a kink in the magnetization
curve for both decreasing and increasing fields after which the gap closes in very rapidly. The
definite kink and the characteristic way in which the §M gap closes - the same is observed at all
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Figure 101: Raw magnetization measurements for both increasing and decreasing field applied
along (111) at various temperatures. It is clear that AM is roughly constant at low fields, and that

it starts to decrease heavily upon entering the vortex state at H.
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Figure 102: Top left: The critical current as directly extracted from AM on the magnetization
curves, plotted with a logarithmic y-axis. At low fields the critical current drops heavily over
a substantial field range, after which it drops off exponentially. At roughly 340 mT - which is
significantly above the field where detectable order ceases to exist at 1.6 K - the critical current
drops very rapidly to zero. Top right: The critical current plotted on a linear scale. Bottom left:
The hystersis loop at high fields. The rapid drop in AM is clearly evident in the magnetization
where there is an anomalous kink for both increasing and decreasing fields. Note that detectable
hysteresis - and hence superconductivity - exists for fields above this anomaly Bottom right: The
differential critical current. Two peaks are evident, one at H,; and one at high fields. The transition
from the Meissner phase to the vortex phase can be said to occur in a critical region rather than a
specific field.

temperatures but 5 K - point to the suggestion that in the field range with a rapid drop the flux
line system is in a very different phase than at lower fields. Since the critical current - and thereby
the pinning - is heavily affected in this phase could be called a de-pinned glass. The effects of
pinning at large fields are greatly diminished with the order parameter. As evident in figure 102
(top left), the disappearing of static order as observed by means of neutron scattering cannot be
observed in the magnetization measurements, neither by a kink in the curve or a change of the
drop off exponent. As mentioned previously, this could be due to the suggested gradual transition
to high field phase without long range order. The falloff exponent of the critical current is also
the same in the Bragg glass phase and the vortex glass phase. Figure 102 (bottom right) shows
the differential critical current as a function of field, supposed to form a basis for determination of
phase boundaries. In this work H,; is defined as the maximum slope of the critical current. The
phase boundary into the 'de-pinned glass’ phase H,, is defined as the onset of the high field rapid
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drop and H,» is defined as the point where the critical current reaches zero. This concludes the
description of the magnetization measurements performed in this work.
9.3.10 Interpretation of the flux line phase diagram

The phase diagram as determined from VSM measurements is shown in figure 103 along with the
suggested boundaries of the Bragg glass phase.

500y

De=-pinned glass

Normal

T (K)

Figure 103: The phase diagram of the Vanadium sample used in this work determined using
magnetization and neutron measurements. The black circles represent H.o - the point of zero
critical current as determined from VSM measurements. The black diamonds represent the onset
of the rapid drop in the critical current - the anomalous kink in the VSM measurements. The pink
stars are the points where the neutrons scattering intensity drops to zero and long range order
ceases to exist. Above these fields, the phase is called a vortex glass (VG). The black squares
represent H,; - the peak in differential critical current - while the stapled black lines denote the
possible boundaries for an intermediate mixed state as suggested by the low fields neutron rocking
curve widths.

A summary of the suggested phases and their justification in experiment is given below:

e The phase transition between the Meissner phase and the Abrikosov vortex phase
is found to occur gradually in a field region. At both 1.55 K and 2.66 K, wide rocking curves
were recorded at low fields where the sample is still largely diamagnetic. A cautious suggestion
might be that in the field interval where the rocking curve width drops to a stable value there
is a coexistence of Meissner phase and long range ordered Abrikosov phase, the so-called
intermediate mized state. It is also important to underline the fact that in the neutron
scattering experiment, the sample was field cooled to the temperature at which the rocking
curve was recorded. When looking at the phase diagram in figure 103, it is evident that upon
cooling to 1.5 K at 80 mT, the sample is cooled into the Meissner state from at mixed phase.
Upon cooling into the Meissner phase, the sample should expel the flux lines, but this is only
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in the absence of pinning. One could image that pinning forces hold the flux line in place
even when cooling to 1.5 K, and perhaps this the cause of the wide rocking curves at low
fields. That being said, the tails of these rocking curves still strongly suggest a finite size
broadening.

Long range flux line order occurs in a finite intermediate field area at low temperatures.
The sum of two point pair correlations is found to drop off as a power law with roughly the
predicted exponent used Bragg glass theory in this area. At 1.55 K SA simulations were
performed in the field range 130-230 mT all with a long distance power law decay of the
translational correlator with the predicted exponents, at least in the interval 180-230 mT.
Therefore, this intermediate field regime is called a Bragg glass.

The three high statistics rocking curves recorded in the field range 130-230 mT
all display the expected power law decay of the intensity in the tail. However, at angles much
larger than what the resolution function dictates away from the peak center, the rocking curve
smoothly approaches a constant value. This could mean that the Bragg glass picture is not
completely valid at large distances. Perhaps there are large domains or fractures which are
decoupled from each other to a larger extent than within the fractures themselves, facilitating
a more rapid drop in the translational correlator at pair separation distances larger than the
fracture diameter. This fracture effect has also been seen in Niobium [86], so perhaps this
picture is a general one for low & superconductors.

The rocking curves are found to increase in width just before the neutron scatter-
ing cross section goes to zero, suggesting a change in the nature of the pair correlations.
This is very gradual and not al all evident in the magnetization measurements. A high statis-
tics rocking curve at 170 mT at 2.7 K which just below the zero intensity field. This rocking
curve had an almost flat and very wide plateau at the peak center. Perhaps the rocking curve
width increases because the domain sizes get smaller and more decoupled, as the system
enters the vortex state where long range order ceases to exist.

The kink in the magnetization measurements - facilitating a very rapid drop in the
critical current suggests that the nature of the vortex lattice has changed and the average
flux line pinning is drastically reduced. This rapid decrease of average pinning very close to
Hy - is called a de-pinned glass.
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10 Concluding remarks

This concludes the work done during the project. This section will shortly summarize the results
obtained in both parts of the thesis.

10.1 Magnetic structures of the lithium orthophosphates

The work done on the lithium-ortho-phosphates can be summed up as follows:

¢ The incommensurate magnetic structure of LiNiPO, in strong applied magnetic
fields has been shown to consist of three distinct phases for 13.5 < ugH < 17.3 T, all
propagating along the crystallographic b-axis. At high temperatures close to Ty the structure
is linearly polarized along c with a slight canting along a. Upon further cooling, the structure
undergoes a second-order phase transition to a canted IC spiral polarized in the ac plane.
At these low temperatures, increasing the field decreases the real-space modulation of the
spiral until pgoH > 16 T where the spiral conforms to a pseudo-commensurate quintupling
of the unit cell. The spin-waves measured in the spiral phase has been shown to be pseudo-
Goldstone-modes in near perfect agreement with the calculations done by Jens Jensen. The
two IC magnetic order parameters present in the IC phase are unlikely to produce a ME-effect.

o The structure in the spin-flopped phase of LiMnPO, has been determined. The phase
diagram has been measured, focusing on the bicritical point, where the two antiferromagnetic
phases join with the paramagnetic phase. A paramagnetic wedge has been found in the phase
diagram which is in accordance with theoretical predictions. The critical scattering intensity
has been found to be significantly increased at the flop field, with no significant increase in
the correlation length along ¢. This could be caused by an increase in the volume fraction of
the domains with short range order.

e The magnetic structure in LiCoPOy has been found to be collinear in zero field and
rotated away from the high symmetry b axis towards the a axis, indicating a lower structural
symmetry than Pnma. Upon applying field along a the field induced ferromagnetic com-
ponent has been found to cause a large antiferromagnetic component along the ¢ direction,
suggesting a very strong DM interaction. This is in accordance with the calculations of Jens
Jensen, suggesting a very large orbital contribution to the pseudo-quenched ground state.
If some of the symmetries are broken in zero field, this DM interaction can be shown to
cause a magneto-electric effect by preferring a polarization in an applied field. An attempt
to determine the phase diagram has resulted in plenty of open questions, subject to further
study.
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10.2 The study of the Bragg glass phase of vortex matter

The properties of the vortex lattice as found in the particular Vanadium sample used in this
work, has been thoroughly examined in the course of two neutron scattering experiments and
magnetization measurements. The field dependence of the structure factor as integrated over the
full rocking curve was measured at three different temperatures. At low fields, the rocking curves
are wide, suggesting some finite size effect - either due to the demagnetization factor or the existence
of an intermediate mixed state. The field dependence of the integrated intensity roughly follows
the S(q) o B~3/2 dependence predicted by Bragg glass theory. However, the data are quite sparse
and many objections are valid upon using this as an indication of a Bragg glass. At higher fields,
the rocking curves start to widen before the intensity drops to zero - or an unmeasurably low value
- at some finite field well below H..

Three rocking curves were recorded with enough statistics and in the right field range, to perform
relevant Simulated Annealing (SA) simulations of the structure factor. They all show the expected
power law decay of intensity at large angles from the peak center. However, they also show a
crossover to a constant angular dependency near the peak center at much larger angles than what
the resolution function dictates. This perhaps suggests that the power law decay of the transla-
tional correlator ceases to hold at some finite pair separation. After implementing the necessary
interpolated points, the algorithm was successfully able to fit all three curves. The displacement
correlator was in all three cases found to rise as a power law for low pair separations, crossing over
to the predicted logarithmic increase for large separations. This logarithmic increase is a major
result of Bragg glass theory, and explains the existence of quasi long range order - and hence the
observed Bragg peaks - in the vortex lattice. The translational correlators - which is what is mea-
sured in these neutron scattering experiments - all show the predicted power law decays at large
pair separations, with exponents 739 & 0.9, m130 &~ 1.14 and 7230 = 1. The 130 mT exponent
is lower than any predicted values, while the two other exponents are exactly as predicted, even
though the two predictions are results from two different methods of calculation. Even so, the
author chooses to call the low temperature intermediate field phase a Bragg glass.

VSM magnetization measurements have been performed on the same sample used in the neutron
scattering experiments, in order to get a phase diagram and search for bulk signs of phase transi-
tions. At 1.55 K, very broad Bragg peaks were observed at only 80 mT where the magnetization
measurements show that the sample is mainly diamagnetic. This could be due to either the demag-
netization factor or the existence of an intermediate mixed state. There was no sign of change at
all near the field where the measurable static order vanishes. This suggests that in this particular
Vanadium sample, the phase transition from a Bragg glass to a vortex glass is very gradual and
results in no increase of critical current. At fields close to H,.y however, the magnetization exhibits
a kink for both increasing and decreasing field, and the critical current drops rapidly to zero. In
spite of the limited evidence available, a high field liquid state is cautiously suggested. This is to
be taken with a grain of salt, since no direct evidence for the lack of even short range order exists.
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A Selected MATLAB-scripts

A.1 Rocking curve convoluted fitting function

The following is the homemade’ function used to fit the RMC rocking curves. It does a numerical
convolution between the function 'powercut’ and a standard gaussian.

function [y, name, pnames, pin]=realpowergauss(x,p,flag)

% glconv : Numerical convolution of a gaussian and a simple powerlaw with a variable
% exponent. Includes a cutoff to account for finite size effects

% function [y, name, pnames, pin]=glconv(x,p)

L)

//

%p=[ Amplitude Centre q_0 Sigma_g exp bgl

% Author: Rasmus Toft-Petersen

if nargin==2;

xint = (max(x)-min(x))/2;

xcen = min(x) + xint;

mini = min(x) - xint;

maxi = max(x) + xint;

sumstep = (max(x) - min(x))/(length(x)*8);
d = mini:sumstep:maxi;

AMP = 1/sqrt(24pi*p(3)*p(3));
for i = 1:length(x)
d2 = d -x(i);
ypow = feval(’powercut’, d, [p(1) p(2) p(3) p(6)1);
ygauss = feval(’gauss’, d2, [AMP, 0, p(4), 0]);
glnew = ypow.*ygauss;
y(i) = trapz(d, glnew) + p(6);
end
y =1y
end

The following is the function 'powercut’ which is simply the powerlaw with a cut-off - I'(w) - as
decribed in equation 9.13

function [y, name, pnames, pin]=powercut(x,p,flag)

% powercut : Clean powerlaw with a cutoff.
% function [y, name, pnames, pinl=(x,p)
%

% p = [Amplitude Centre Cutoff Exp]
% Author: Rasmus Toft-Petersen
if nargin==2;

mini = 2*min(x);
maxi = 2*max(x);
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sumstep = (max(x) - min(x))/(length(x)*30);
d = mini:sumstep:maxi;
a = p(1)*p(3)~(-p(4));

for i = 1:length(x)
if abs(x(i) - p(2)) <= p(3)
y(i) = p(1);
end
if abs(x(i) - p(2)) > p(3)
y(i) = (abs(x(i) - p(2))~p(4))*a;
end
end
end
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B SA results for the unaltered 180 mT rocking curve

In section 9.3.5 it was described how an unfornate recording scheme for the 180 mT rocking curve
resulted in important parts of the rocking curve being recorded with a much lower monitor-rate than
the rest of the curve. The consequence of this was two points in the middle of the tails which had
a much lower intensity than a monotonic curve would have. These points were discarded, simply
because they were explainable and unphysical. However, strictly peaking, there is no predominant
reason for these points not to be taken at face value. Figure 104 shows the results of the simulation
annealing algorithm for the 180 mT rocking curve without removing any points, presented in the
same way as in section 9.3.5.
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Figure 104: Top left: The fitted structure factor (red line), the calculated rocking curve (blue line),
the actual data (hollow circles) and the interpolated data points (black dots) for the case of the
unaltered 180 mT rocking curve. Top right: The evolution of x? as function of number of moves
pr. flux line. Convergence is reached after roughly 1000 moves pr. flux line. Bottom Left: The
displacement correlator B(r) as a function of distance between flux lines in units of ag. The points
have been fitted to both a two piece (red) and a three piece (blue) function. Again, a logarithmic
rise up to 80ag is evident. Inaddition there is a small bump at 25 ag Bottom right: The translational
correlator Cy(r), fitted only to a two-piece function (inset). A power law is evident with a fitted
exponent of 7 = 0.9. The translational correlator exhibits a downward bump at roughly 25aq -
which is suggested to be caused by the two low-intensity points. The power law dropoff exponents is
much lower than when removing the points (1.14) indicated that they are significant. The ensemble
size is 80000 flux lines in this cases.

As evident in both the displacement correlator and the translational correlator there is a bump at
roughly 25ag. An explanation could be that the two low-intensity points - which are both close
to 2 degrees from the peak center - causes an unphysically low translational correlator at 25 ag.
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To support this, the determined drop-off exponent is similar to the exponent obtained from the
simulation of the 130 mT data - namely 0.9. As evident in figure 86, these exponents are not the
same in the rocking curves.
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Left: Field scans at 7' = 5 K for all three crystallographic directions. The mag-
netization curves for fields applied along a and b are almost linear with a slightly
decreasing susceptibility. For field along ¢ the susceptibility is much lower than along
the other two directions, and there is a clear jump at the C' — IC transition. The
inset shows the hysteresis loop. Right: A field scan at 13 K. The inset shows the
differential magnetization allowing for a precise determination of the critical field. .

Left: Temperature scan at ugH = 16 T applied along b. Ty can be determined with
low precision from the small peak in differential susceptibility preceding the larger
peak that reflects Tye Right: The temperature dependence of the magnetization at
12.5 T applied along the c axis. Two clear jumps in magnetization indicates the com-
mensurate ordering temperature and the re-entrance into the IC phase upon cooling.
The insets show the differential magnetization upon cooling with an additional focus
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Left: Magnetization as a function of temperature at 16 tesla. A kink is clearly
evident at 17.3 K. The inset shows the differential magnetization where a peak is
very clear at 17.3 K Right: A temperature scan at 14 T. No kink is directly evident
but the differential magnetization (inset) facilitates a determination of the phase
boundary. . . . . .. e e e e e e e

(itoH,T) phase diagram of LiNiPOy for uyH > 10 T applied along the ¢ axis. The
black circles mark the C-IC phase boundary as found using magnetization data,
supported by neutron diffraction data taken from [4] (stars). The diamonds mark
the lock-in phase boundaries found using V2/FLEX data. The squares mark the
boundary of the IC spiral phase found at RITA-II (below 15 T) and V2/FLEX
(above 15 T), while the two right-pointing triangles indicate the phase boundary de-
tected by VSM measurements. The linearly polarized IC ordering temperatures are
taken from [4] (up-pointing triangles) supported by a measurement from V2/FLEX
(down-pointing triangle). The errors on the VSM measurements are much smaller
than the markers, while the error bars on the neutron-diffraction measurements are
comparable to the marker size if not explicitly given. IC. denotes the IC structure
linearly polarized mainly along ¢, while IC,. denotes the IC spiral in the ac-plane. .

Phase diagram for pugH||b as determined from magnetization measurements. The
zero field transition temperatures seem to extent almost vertically upwards up to 16
T. The phase diagram for fields applied along a is identical within error. . .. ..

A single energy scan as measured by all 7 analyzer blades along (0,1 + ¢,0). The
resolution in ¢ is very good along k, which allows for thorough measurements of the
dispersion along k. . ¢ . v v v ww e sens §ow B e b wa s B B s s b E s

Dispersion measured along (0,1 + K,0) for 13.5 tesla applied along c¢. Top: The
peak values from Gaussian fits such as those depicted in figure 28. The purple line
represents the RPA calculation. Bottom left: Calculated spin wave intensities along
K. Bottom right: Color plot representing the measured spin wave intensities. An
excellent agreement is clearly evident. . . . . . .. .. ... ... .. ... ...

Spin-wave dispersions in the IC-phase at 2 K and 13 T along (H,1 + k;.,0) and

Spin flopping in LiMnPQy. Right: The low field spin structure of LiMnPQOy4. The
spins are colinear and pointing along a. Right: The flopped spin state. The AFM spin
configuration is probably a C-type polarized along ¢ as expected from the anisotropy
constants. This state is easy to magnetize by simply canting the spins along the field;
which gains Zeeman energy on all four spins. This canting is resisted by the exchange
interaction. . . . . . . . . e e e e e e e e
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The instrumental setup in the TriCS experiment on LiMnPQ,. The magnetic field
is vertical and parallel to the a axis. The detector can be tilted out of the scattering
plane to reach reflections out of said plane. . . . . ... .. .............

Left: Integrated intensity of (010) as a function of field. The intensity is constant
over the entire field range within errors. Right: A3 scans of (012) at 0 and 4.5 tesla.
A drastic drop in intensity isevident. .. .. .. ... ... ... . .o

Top left: Peak intensity of (012) as a function of field at various temperatures;
these are the scans used for phase boundary determination. Bottom left: Integrated
intensities of the (010), (012) and (230) peaks as a function of field. The data
are consistent with a C-type flop of polarization from a to ¢, using table 10. Top
right: Peak intensity of (012) as a function of both increasing an decreasing field
- no hysteresis is evident Bottom right: Slope of the intensity vs. field curve for
increasing field as given above, used for determination of critical field. . . .. ...

Left: Erroneous peak shape with a very irregular shape Middle: The strong (010)
reflection. Right: The (032) reflection. All plots have been normalized to 50000
monitor which corresponds roughly to 2 seconds of measurement time at maximum
source flux. . . . ... e e

Top: Integrated intensity of all peaks accepted by the author and FullProf as valid
magnetic peaks plotted along with the calculated values. Bottom: Difference between
observed and calculated intensities. There are significant deviations but not enough
to doubt the C, + F} structure in the author’s opinion. . . . . . ... ... ... ..

Left: Magnetization as a function of temperature at 4.5 T applied along a. At
roughly 33 K the magnetization decreases sharply with almost a discontinuous jump
in differential magnetization (inset). Upon further cooling LiMnPOQ, enters the
flopped phase and the magnetization rises. Right: Magnetization as a function
of field applied along a at 2 K. At low fields, LiMnPQ, is difficult to magnetize. At
4 T however, the spin flop occurs followed by a heavily increased susceptibility.

Left: The susceptibility for 7= 2 — 300 K as measured by VSM in a DC field of 0.1
T Right: Magnetization as a function of temperature at ugH = 5 T" which is above
the spin flop field at all temperatures. . . . ... ... . .. ... ...

Sub-lattice magnetization as a function of temperature near Ty at 0 T (left), 4.7 T
(middle) and 12 T (right). The data have been fitted to the function in equation 5.6
with a fixed background of 0. As evident, the critical temperature at the flop field
is significantly lower than that in zero field, but the critical exponent is the same.

Phase diagram of LiMnPQy, for fields applied along a. The up-pointing orange trian-
gles represent the critical fields as measured by VSM magnetization measurements.
The down-pointing purple triangles are the critical fields as determined by the TriCS
measurements of the (012) reflection, and the purple diamonds represent the critical
fields as determined by the RITA-II measurement of the (001) reflection as a function
of field. The black circles represent the ordering temperature as found from power-
law fits to the integrated intensity of the (010) reflection as measured on RITA-IL
The spin flop boundary has a modest slope with the critical field increasing with
temperature. The inset shows that phase boundary close to the bi-critical point.
The low-field AFM phase boundaries merge with the spin flop phase boundary tan-
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Left: Universal phase diagram for a spin flop system given in [38]. The two scaling
field axes § = 0 and = 0 are explained in the text. Right: The phase diagram of
LiMnPO4 with the asymptotes and points as described in the text. . . ... .. ..
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Left: Long L-scans at 4 different temperatures above Ty = 33.4 at zero field Right:
Long L-scans at 4 different temperatures above T = 32.756 K at Hy = 4.5 T. The
logarithmic intensity scale tones it down a little bit, but there is a substantial increase
in critical scattering at the bicritical field. . . . .. ... .. .. ... ........

Left: Integrated intensity of the long (010) L-scans as those presented in figure 42
as a function of T — Ty at 0 T, 4.7 T and 10 T respectively Right: The domain
correlation length along the crystallographic e-axis as a function of temperature at
0T, 4.7 T and 10 T respectively. There is a clear increase of critical scattering
intensity at the flop field which is not there at neither 0 T nor 10 T. The correlation
length along ¢ as a function of temperature, however, remains the same at all three
fields within errors. . . . . . . . 0 0 e e e e e e

Left: The proposed zero field case - small volumes of order is embedded in a disor-
dered bulk material. Right: The density of such domains is allowed to increase a lot
more at the critical field before long range order is established. . . . . ... . ...

Left: Energy scan at (010). There are two dispersions of which the authors have
only used the high energy branch to fit the exchange parameters. The data are from
SPINS at NIST with a resolution of 0.28 meV. Middle and right: Dispersions of the
high energy branches as measured by the BT'7 thermal spectrometer at NIST with a
resolution of 1 meV. The solid lines mark the fit and the dashed lines the calculated
second diSPersion. . . . . . . . . e e e e e

Left: Field induced phase transitions in LiCoPO,4 measured by pulsed magnetization.
Two distinct peaks are evident followed by a constant plateau with a relatively high
susceptibility. Right: Magnetization as a function of field. These magnetization
measurements should be estimated with caution since thermal equilibrium is not
reached and the field is strongly time-dependent. Results from [49]. .. ... ...

Spin wave calculations done by Jens Jensen assuming the exchange an anisotropy
parameters reported in [45]. . ... ... o

The definitions of angles in the 4-circle setup, which are explained in the text.

The reflections (300), (120), (110) and (310) - central for ruling out the A and G
type components - as measured at 6.5 K and 35 K respectively. The plots show the
difference between the two integrated intensities - AI - and the calculated structure
and polarization factors in terms of the irreducible representations. Notice the low
background of 2 counts pr. 50000 monitor, compared to 30 counts in the LiMnPOy
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The reflections (001) and (003) central for estimating the experimental precision.
The plots show the omega scan measuring the integrated intensity, the difference
between the two integrated intensities - Al - and the calculated structure and po-
larization factors in terms of the irreducible representations. . . . . . ... .. ...

Observed and calculated structure factors for the refinement of the nuclear structure.
The solid red line shows the F,,; = F,.y. line and the two stapled lines denote a 10
percent increase and decrease in structure factor, respectively . . . ... ... ...

Top left: Integrated intensity of all peaks accepted by the author and FullProf
as valid magnetic peaks plotted along with the calculated values for a C, + C,
refinement. Bottom left: Difference between observed and calculated intensities.
Right: The zero field magnetic structure of LiCoPO4. The angle of collinear spin
rotation towards the a-axis has been exaggerated for the sake of illustration.
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The integrated intensity of the (021) and (041) reflections at zero field and 13 tesla
respectively. The finite nuclear background recorded at 35 K in zero field is plotted
for comparison. These two reflections reflect the same magnetic symmetries and
they both show a significant increase in intensity - Ay - upon applying field along
a. The zero field magnetic intensity Al isshownaswell. . .. ... ........

The integrated intensity of the (001), (032) and (050) reflections at zero field and 13
tesla applied along a respectively. The nuclear background has only been measured
on the (032) peak. As evident the (001) reflection rules out G, and G, components,
while the (032) and (050) rule out any C-type components. There is a small increase
of intensity in the (050) peak, but nowhere near enough to be comparable to the
field induced signal in the (041) reflection which has a comparable magnetic form
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Left: Peak intensity of the (021) reflection as function of field at T = 2 K. The curve
has been fitted to the polynomial I = H? + Ij - the fit is quite acceptable Right:
Peak intensity of the 021 reflection as a function of temperature at ugH = 13.5T.
The curve has been fitted to an AFM Curie-Weiss (CW) law squared M2, = Ip +

(m\f‘—m)z as well as a CW law for comparison. In both cases, the background and
Neel temperature was fixed to observed values, Iy = 250 and Ty = 16 K. As evident,
the squared CW law gives the best fit, in agreement to the fact that the neutron
scattering cross section is proportional to the square of the moment. . . ... ...

Left: Spin structure projected onto the ab-plane showing the Cy, C;; and F,, compo-
nents. Right: Projection of the spin structure onto the be-plane showing the C,, and
the G, components. . . . . . . . . . . . i e e e e

Top Left: Peak (not integrated) intensity of the (301) reflection as a function of field
applied along b. As evident, the intensity drops over a substantial field range at
roughly 10.3 tesla. There is a substantial hystersis of 1 tesla. Top Right: Omega
scans of the (301) reflection in zero field at 2 and 60 K respectively. Bottom Left: The
(301) peak at 13.5 tesla at 2 and 60 K respectively. There is a remnant of magnetic
intensity of roughly 1/3 of the zero field intensity. Bottom Right: Integrated magnetic
intensity of the (301) peak as a function of temperature at 13.5 tesla. The intensity
drops off as a power law with a critical temperatureof 6 K. . . . . ... ... ...

Left:The range in reciprocal space reachable using 5, 7, 10, 15 and 20 meV neutrons
on RITA-II with the horizontal field SANS cryomagnet mounted. Right: Integrated
intensity of the (032) peak as a function of both increasing and decreasing field at
1.5 and 8 K, respectively. It is evident that the hysteretic behavior only exists in
the low temperature phase. . . . . . . . .. .. . e e

The phase diagram obtained after performing temperature- and field scans of the
(301) reflection. The black circles denote the phase boundaries found using the
commensurate (301), and the red triangles denote the phase boundaries found from
the remnant (301) intensity. The commensurate phase boundary shows a flat plateau
at low temperatures, and a gradual decrease in critical field at high temperatures.
The critical temperature for the 'remnant’ phase remains constant at fields between
10 and 13.5 tesla. The red pentagrams mark the ordering phase boundary as found
by specific heat measurements in [60]. . . ............ ... . ... ..,

Left: The resistance of mercury near the superconducting transition temperature as
measured by H. K. Onnes in 1911 [52] Right: The heat capacity of aluminum in the
normal state and in the superconducting state - with T, = 1.1 K [53]. . . . . . . ..
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Left: The field penetrating the material in its normal state. Right: The Meissner
effect: The superconductor expels all magnetic field from its interior when cooled

209

through the superconducting transition. (Illustration from http://www.cm.ph.bham.ac.uk)114

Left: Feynman diagram of an elastic electron-electron scattering event conserving
spin. The timely axis is the vertical one while the spatial axis is horizontal. The
propagator or matrix element is denoted by the dashed line. Right: The impact of
the propagator residue on the momentum distribution is to lessen the discontinuity
at the Permi surface. Pietefrom [§9: v v v v s sms s s vvws s s wwmn v v sas

Feynman diagrams of phonon emission (right) and absorption (left) by electrons.
The strength of the interaction is given by Mg. Picture from [59]. . . . .. .. ...

Left: The realistic sum of the phonon-mediated and the photon-mediated electron-
electron interaction at fixed q. Right: The crude BCS simplification of the total
electron-electron interaction for low energies. Picture from [59]. . . . .. ... ...

Left: The case of non anti parallel wave vectors under the assumption that the thin
shell requirement is fulfilled for one of the electrons Right: The only case where all
four considered electron states are within a thin shell of the Fermi surface. Picture
fromi [B9): vvvi s dmi s b s b aE P E BEEY EEEE R EWMEE F B

A one-dimensional illustration of the relevant region near an interface between the
superconducting state and the normal state (a domain wall), in the two cases where
A>E(e>1-night) and A€ (k€1-1eft) . ... oo oo

The hexagonal close-packed vortex lattice for an applied field of 130mT" . . . . . .

Radial dependency of both the superconducting order parameter £ and the magnetic
field h taken from the center of the flux line for k ~ 8. Picture from [62]. . . . . . .

Intermediate mixed state in niobium as observed in [67]. . . .. ... ........

Top left: Compression - an applied force changes the lattice constant. Top right:
Two forces of opposite direction acting on two different z-coordinates tilt the flux
lines at the cost of flux line energy. Bottom: An illustration of shear - a displacement
of one chain of flux lines from its neighboring chain. Picture from [59]. . . .. . ..

Top Left: Generic phase diagram modified from [84]. There is a low temperature,
low field Bragg glass phase which undergoes a field induced 'melting’ into the vortex
glass, which itself can melt into a vortex liquid upon increasing the temperature. The
phase line between the two disordered phases ends in a high field critical point and
there is a co-existence point at low fields and high temperature. Top Right: Phase
diagram proposed by Menon - the Bragg glass is surrounded by a multi domain glass.
Bottom: The phase diagram proposed by Giarmarchi and Le Doussal, quite similar
to the Kierfeld diagram. The rightmost dotted line corresponds to the melting line
for a pure system without disorder and the leftmost line corresponds to a melting of
the low-temperature phase lying quite close to that of the pure system. ... ...

The setup used in the two SANS experiments. The field is perpendicular to the
beam and horizontal. The reciprocal lattice vector G is shown artificially extended,
and the angle w marks the direction of rotation. The vector k; denotes the scan
direction in reciprocal space in a rocking curve. The cyan ellipse illustrates the rough
cigar shape of the resolution function when projected onto the plane perpendicular
to the present field direction. The resolution in the direction of rotation in this
figure is determined by the size of and distance between the attenuator slit and the
sample slit L as well as the sample-detector distance L,;. When rotating the sample
- bringing G closer to the Bragg scattering condition - progressively shorter k, are
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73

74

75

76
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78

79

Brass sample stick used to mount and rotate the sample. The cogwheel in contact
with the rod inside the sample stick is clearly visible. The disc on which to mount the
sample is mounted on a second cogwheel which is connected with the aforementioned
cogwheel below the mounted brassplate. . . . . .. ... ... ... ... . .....

Left: Phase diagram of Vanadium as determined by VSM magnetization measure-
ments. The insert shows a typical hystersis loop recorded to find H,; and Hy. Right:
Magnetic form factor as a function of field at the three relevant temperatures in table
19 as a function of field in the range 100-300 mT. Two power law decays of B with
exponents -1 and -2 have been plotted for reference. The form factor is shown to fall
off quicker than the high « power law for all temperatures. . . . . .. ... ... ..

a) Simulated quenching immediately minimizes the cost function and the configura-
tion goes to the nearest local minimum. b) Using the RMC algorithm several minima
can be probed since an increase in cost function is accepted. ¢) In simulated anneal-
ing stable values of the cost function is reached at different temperatures allowing
the configuration to migrate. . . .. . .. .. ... ... e

Flow chart describing the main features of the RMC code used in this work. The
squares with a yellow star in the upper right corner mark actions that will be elab-
orated in the text below. . . . . . . . . . . .. ..

Left: Initialized ensemble of 80000 flux lines at ugH = 130 mT. The circular
arrangement is near perfect. The small red square denotes the section shown to
the right. Right: A small section of the ensemble after 10 initialization moves. As
evident, the lattice is still near perfect illustrating the infinitesimal maximum move
SIZE. . o e e e e e e e e

Right: The collected intensity from the entire rocking curve recorded at ugH =
130 mT projected onto the detector plane. A mask has been laid over the area
where the direct beam hits the detector in order to be able to estimate the area
where the Bragg spots hit the detector. The rectangular areas where intensity is
collected are marked in the figure. Left: The extracted intensities as a function of
rocking curve angle as determined by GRASP; the z-axis are file numbers each of
which corresponds to angle intervals of 0.2 degrees. The center of the two rocking
curves differs by an angle of 20 as determined by A = 2dy . sin(f). Both figures are
direct outputs from the GRASP package. . .. .. ... .. ... .. ........

Collected intensity from the rocking curves recorded at T = 1.55 K with low statistics
projected onto the detector plane. 80 mT is very near the Meissner phase (and
possibly intermediate mixed state) at H. in the (poH,T) phase diagram and flux
lines start to appear. As evident, the Bragg spots are very close to the direct beam.
The scattering angle 26 increases with field. At 280 mT, the Bragg spots are very
weak; a reasonable rocking curve can not be obtained, and at 300 mT, there is no
measurable intensity. . . . . . . L e
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80

81

82

83

84

The rocking curves recorded in May 2008 fitted to single Gaussians. The curves
obtained at 80, 130, 200, 220, 240, 260 and 280 mT are the curves obtained with
low statistic with the purpose of obtaining a measure of the width and integrated
intensity of the rocking curve. The curves at 115, 180 and 230 mT are the curves
obtained with high statistics to be used for RMC fitting. Only the central part of
these scans have been plotted and fitted (the Gaussian function does not fit the tail
of the curves anyway). The zero point in angle has been chosen to be the center of
the fit to the top spot data. The narrow peak in the center of the curves of the top
spots, is a Gaussian representing the angular resolution width of the setup. The fits
to the data recorded at 220 and 260 mT have been obtained by fixing the background
to zero in order to avoid an unphysical negative background. The Bragg spots are
far enough away from the direct beam for this to be reasonable. The data obtained
at 280 mT do not really constitute a rocking curve (The peak was not measured
using a broad enough angular interval), and should not be used for fitting. It should
be underlined, however, that there is intensity at 280 mT as evident in figure 79.

Right: Integrated intensity of the rocking curve as a function of field. The insets
show log(I) vs log(uoH) and log(I) vs poH. As evident, the intensity seems to
drop off faster with field than a power law, most probably due to the form factor.
Left: The Gaussian width of the rocking curves as a function of field. The widths
have been converted to reciprocal space by sin(o,)|g10(toH)|, where o, is the width
from the fits in figure 80 and ¢o(poH) is the reciprocal lattice vector. As evident,
the peak width decreases strongly with field until it reaches a plateau at 130mT <
puoH < 220mT after which the width starts increasing again. The insert shows the
rocking curve widths in angles. . . . . . . ... o

Left: The uncorrected intensity as directly extracted from the fits - fitted to a power
law with unfized background (A and C are free parameters). Right: The correction
factor as calculated using Clems form factor and the geometrical factor - fitted to a
power law with the background fixedto 0. . . . . ... ... ... .. ... . ...,

Corrected integrated intensity as a function of field fitted to a power law - I(H) =
AHP 4 C - with variable background C. The exponent is roughly -1.4 which is
quite close to the Bragg glass prediction. The statistical error of the exponent is
unreasonably low. The re-evaluated error is explained in the text. However, the
extrapolation of the fitted curve to higher fields is consistent with the observation of
very little intensity at 280 mT and the lack of intensity at 300 mT. . . ... ...

Top Left: The rocking curves as extracted from the top and bottom Bragg spot on
the 2D detector, respectively. As expected, the two curves are very similar. Top
Right: The average of the top and bottom rocking curve. The curve is much more
smooth as the errors are smaller, and very useful for RMC fitting. The dashed
line represents the Gaussian width of the resolution function. Bottom: The average
observed intensity as a function of absolute angle plotted on a double logarithmic
scale. As evident, the tails of the rocking curves decay as a power law. However -
as observed in [86] - the intensity starts to smooth to a constant value at an angle
much higher than the angular width of the resolution function. . . ... ... ...
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85
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90

The rocking curves at 180 mT and 230 mT respectively, plotted along with the
calculated average rocking curve. As evident even the average rocking curve at 230
mT displays substantial statistical fluctuations. In this case - since these rocking
curves were meant for RMC fitting, the angle interval in the high intensity area is
smaller than at 130 mT. As evident on the plots of the intensities as a function
of absolute angle, the power-law divergence at the peak center - which should only
be limited by the resolution function - is terminated at angle well above what the
resolution function dictates. At higher angles, however, the intensity falls off as a
power law in both cases, with comparable exponents. . .. .. ... ........

Intensity as a function of |k | at 130, 180 and 230 mT respectively. The fall off
exponent of the power law fits is comparable at 180 and 230 mT, but significantly
lower at 130 mT. It seems that the cutoff point at which the power law seems to
hold increases with field (but only in reciprocal space). This could be because of the
larger unit cell; perhaps the cutoff length in real space is a constant multiple of the
Tattlee ottty s vwws v sems s sWa s TS E L ESE ¥ ERFI I EFRE F i 6B

Top: The fits to the rocking curves using the function described in the text. The
fits and the x?'s are reasonable. Bottom left: The extracted cutoff angles as a
function of field which are roughly constant within errors. Bottom middle: The
smoothing widths o, as a function of field which shows an increase as a function of
field. Bottom right: The fitted exponents as a function of field. These are larger
than those determined from merely fitting the tails of the rocking curves. . . ...

Top plots and middle left: The RMC structure factor (red line) and rocking curve
(blue line) as outputted from the RMC algorithm for two different acceptance prob-
abilities for an ensemble of 40000 flux lines. Substantial local variations are evident
decreasing with acceptance probability. Middle right and bottom plots: The RMC
fitting of the 130 mT data for ensemble sizes of 40000, 60000, and 80000 respectively.
There is a natural increase of local fluctuations with ensemble size. The evolution
of x? as a function of normalized number of moves is shown as well. . . . . . . ...

Left: The 130 mT data (circles) plotted along with the interpolated points (dots)
Right: A zoom on the left hand tail of the rocking curve plotted along with the area
spanned by the error bar ends (red dashed lines). As evident, the interpolated points
are well within the rocking curve statistics - which are quite good to begin with. . .

Illustration of the proposed finite ensemble effect. The black circle centered at O
represents the circular array of flux lines. Two flux lines positioned at O and a
distance |Pj| = Ry = R/2 from O (where R is the ensemble radius) both have
surroundings resembling that for an infinitely large ensemble for distances smaller
than R;. Thus, for pair separations of R; all correlations between pairs in the green
circle mimic those for an infinite ensemble. Two flux lines at O and P» do not have
identical surroundings at distances Ry. The only flux line pairs separated by Rs
having similar surroundings which are valid to an infinite ensemble are those on
the circular shell 2Ry — R < |P| < R — Ry all of which further than Ry from the
ensemble edge - as explained in the text. The number of flux line pairs separated
by I3 that are further than Rj3 from the edge - and hence mimic correlations in an
infinite ensemble - is very large. . . . . . ... ... .o
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Top left: The fitted structure factor (red line), the calculated rocking curve (blue
line), the actual data (hollow circles) and the interpolated data points (black dots).
The ensemble size is 80000 flux lines. As evident, the rocking curve is fitted as well
as reasonably expected. Top right: The evolution of x? as function of number of
moves pr. flux line. After 200 moves with high acceptance probability, the fit starts
to converge rapidly. After 500 moves pr. flux line, the x? is simply determined
by the acceptance probability - or the temperature. Bottom Left: The displacement
correlator B(r) as a function of distance between flux lines in units of ag. The points
have been fitted to both a two piece (red) and a three piece (blue) function. The
two are almost identical, but zooming in on short distances two kinks are slightly
evident. The logarithmic rise at large distances is clearly evident though. At dis-
tances larger than 80agq, the displacement correlator starts to drop. Bottom right:
The translational correlator Cy(r), fitted only to a two-piece function (inset). A
power law at large distances is clearly evident with a fitted exponent of = 0.9.

Left: The full rocking curve as obtained from the scans (circle) including the inter-
polated points (dots). Right: Zooming in on the tails, the two deviating points with
low statistics are clearly evident. . . . . . . . . ... .o o

Top left: The fitted structure factor (red line), the calculated rocking curve (blue
line), the actual data (hollow circles) and the interpolated data points (black dots).
Top right: The evolution of x? as function of number of moves pr. flux line. Conver-
gence is reached after roughly 800 moves pr. flux line. Bottom Left: The displace-
ment correlator B(r) as function of distance between flux lines in units of ag. The
points have been fitted to both a two piece (red) and a three piece (blue) function.
Again, a logarithmic rise up to 80ag is evident. Bottom right: The translational
correlator Cy(r), fitted only to a two-piece function (inset). A power law at large
distances is clearly evident with a fitted exponent of n = 1.14. The translational
correlator exhibits a bump at roughly 90ag. The ensemble size is 80000 flux lines. .

Top left: The fitted structure factor (red line), the calculated rocking curve (blue
line), the actual data (hollow circles) and the interpolated data points (black dots) at
230 mT. Top right: The evolution of x? as function of number of moves pr. flux line.
After 400 moves with high acceptance probability, the fit starts to converge rapidly.
Bottom Left: The displacement correlator B(r) as a function of distance between
flux lines in units of ag. The points have been fitted to both a two piece (red) and a
three piece (blue) function, which are almost identical. The logarithmic rise at large
distances is clearly evident though until it starts to drop at 80ag. Bottom right: The
translational correlator Cy(r), fitted only to a two-piece function (inset), with an
exponent of 7 = 1. The translational correlator exhibits a rapid drop at only 65ag.

Left: Fitted power law exponents 7 for Cy(r). The values suggested in literature -
explained in the text - are shown as well. Right: Fitted RM exponents # compared
to values suggested in literature. . . . . . . .. ... o o oo

Rocking curves obtained at an average of 2.66 K using the reduction scheme described
in the text. No intensity was found above 190 mT. An accurate determination of
the peak width and amplitude is possible; the blue lines represent the Gaussian fits
which converged nicely. The counts have been normalized to 25600 monitor . . . . .

Left: Corrected integrated intensity as a function of field fitted to a power law -
I(H) = AHP 4 C - with variable background at 2.66 K. The exponent determined
by the fit is -1.5. Right: The rocking curve widths as determined by Gaussian fits.

Rocking curves obtained at an average of 3.0 K. No intensity was found at 170 mT.
The blue lines represent the Gaussian fits. . . . . ... ... . ... ... ... ..
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103

Corrected integrated intensity as a function of field fitted to a powerlaw - I(H) =
AHP + C - with variable background at 3.0 K. The exponent determined by the fit
is -2.6. These data are more irregular than at 1.55 and 2.66 K, and removing just a
single point has a large impact on theexponent. . . . .. .. .. ... ........

Top: The rocking curves of the top and bottom spot respectively as recorded at 2.7
K and 170 mT after background subtraction. Some counts ended up being less than
zero after background subtraction; those have been manually set to be zero. Bottom
left: The rocking curve obtained after combining the rocking curves from the top
and bottom spot. The rocking curve has been fitted to a Voigt, a Gaussian and to
the function described in section 9.3.2, denoted as homemade. It is clear that all
function fit the tail of the rocking curve equally well, but that both the Gaussian
and the voigt fail to fit the peak center. However, the homemade powerlaw with a
cutoff fits this peak center nicely. Bottom right: Intensity as a function of absolute
angle, fitted in the same way as previously described. As in all rocking curve the
critical angle exceeds the resolution. However, the critical angle is much larger than
the ones determined at 155 K. . . . . . . .. ... ... ... ...

Raw magnetization measurements for both increasing and decreasing field applied
along (111) at various temperatures. It is clear that AM is roughly constant at low
fields, and that it starts to decrease heavily upon entering the vortex state at H,;.

Top left: The critical current as directly extracted from AM on the magnetization
curves, plotted with a logarithmic y-axis. At low fields the critical current drops
heavily over a substantial field range, after which it drops off exponentially. At
roughly 340 mT - which is significantly above the field where detectable order ceases
to exist at 1.6 K - the critical current drops very rapidly to zero. Top right: The
critical current plotted on a linear scale. Bottom left: The hystersis loop at high
fields. The rapid drop in AM is clearly evident in the magnetization where there is
an anomalous kink for both increasing and decreasing fields. Note that detectable
hysteresis - and hence superconductivity - exists for fields above this anomaly Bottom
right: The differential critical current. Two peaks are evident, one at H,; and one
at high fields. The transition from the Meissner phase to the vortex phase can be
said to occur in a critical region rather than a specific field. . ... ... ... ...

The phase diagram of the Vanadium sample used in this work determined using
magnetization and neutron measurements. The black circles represent H.y - the
point of zero critical current as determined from VSM measurements. The black
diamonds represent the onset of the rapid drop in the critical current - the anomalous
kink in the VSM measurements. The pink stars are the points where the neutrons
scattering intensity drops to zero and long range order ceases to exist. Above these
fields, the phase is called a vortex glass (VG). The black squares represent H,; - the
peak in differential critical current - while the stapled black lines denote the possible
boundaries for an intermediate mixed state as suggested by the low fields neutron
rockingeurve Wwidths: . w: ; ¢ s o5 5 s s B s s s T E TS T L EBEFF P s
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104 Top left: The fitted structure factor (red line), the calculated rocking curve (blue
line), the actual data (hollow circles) and the interpolated data points (black dots)
for the case of the unaltered 180 mT rocking curve. Top right: The evolution of x? as
function of number of moves pr. flux line. Convergence is reached after roughly 1000
moves pr. flux line. Bottom Left: The displacement correlator B(r) as a function of
distance between flux lines in units of ag. The points have been fitted to both a two
piece (red) and a three piece (blue) function. Again, a logarithmic rise up to 80ag is
evident. Inaddition there is a small bump at 25 ag Bottom right: The translational
correlator Cy(r), fitted only to a two-piece function (inset). A power law is evident
with a fitted exponent of 7 = 0.9. The translational correlator exhibits a downward
bump at roughly 25a¢ - which is suggested to be caused by the two low-intensity
points. The power law dropoff exponents is much lower than when removing the
points (1.14) indicated that they are significant. The ensemble size is 80000 flux
linegdn this cases. « .« w s c v ww v v sw v s s 5w s s s w e v s 4 v 0w Ea 201
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