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ABSTRACT: The thermodynamics of electrolyte solutions has been investigated by many scientists throughout the last century.
While several theories have been presented, the most popular models for the electrostatic interactions are based on the Debye−
Hückel and mean spherical approximation (MSA) theories. In this paper we investigate the differences between the Debye−
Hückel and the MSA theories, and comparisons of the numerical results for the Helmholtz energy and its derivatives with respect
to temperature, volume and composition are presented. The investigation shows that the nonrestricted primitive MSA theory
performs similarly to Debye−Hückel, despite the differences in the derivation. We furthermore show that the static permittivity is
a key parameter for both models and that in many cases it completely dominates the results obtained from the two models.
Consequently, we conclude that the simpler Debye−Hückel theory may be used in connection with electrolyte equations of state
without loss of accuracy.

■ INTRODUCTION
Solutions containing electrolytes are encountered in many impor-
tant industrial processes, such as postcombustion CO2 capture,
acid gas scrubbing, purification of proteins and pharmaceuticals,
and corrosion in wet gas pipelines.1 To describe the phase equi-
librium of mixtures containing electrolytes, it is necessary to
account for the long-range electrostatic forces between charged
molecules.1 The thermodynamics of electrolyte solutions has
been studied by many researchers by adding the long-range
electrostatic forces to an existing model for the short-range
forces in activity coefficient models such as UNIQUAC2 and
NRTL3 and to equations of state such as SRK or CPA4−7 and a
range of SAFT models.8−11

The most commonly used models for the electrolyte inter-
actions are the Debye−Hückel model12 and the electrostatic
part of the mean spherical approximation (MSA).13,14 Both
models use Coulomb’s law to describe the force between two
charges qi and qj:

=
π ε ε

F r
q q

r
( )

1
4

1 i j

r 0 2 (1)

where qi is the charge of molecule i, εr is the relative static
permittivity (or dielectric constant), ε0 is the vacuum permittiv-
ity, and r is the distance between the two charges. The
Coulombic forces are lowered when the relative static permittiv-
ity of the medium increases (e.g., in water with εr = 78 at
25 °C) which enables the dissociation of salts. Another funda-
mental equation is the electroneutrality condition, that is, that
the net charge of a system is zero:

∑ ρ =q 0
i

i i
(2)

where ρi is the density of molecule i. The Debye−Hückel
model12 was first derived by Debye and Hückel in 1923, from a

linearization of the Poisson equation and by treating all ions as
point charges and assuming a minimum distance of di between
the ions surrounding a central ion. The nonrestricted primitive
MSA model was developed by Blum13,14 from statistical mech-
anics, by treating ions as charged hard spheres of different dia-
meters. In the original MSA model, the screening length (2Γ)−1
must be solved for numerically as it is done in this work, but
several simplifications of the MSA theory making it into an
explicit equation of the Helmholtz energy have been presented
in literature.1,8 Figure 1 shows a visual interpretation of the
assumptions of the two models.

Equations of state may be derived from the assumption that
the total residual Helmholtz energy may be determined as a
sum of the contributions from individual energetic interactions
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Figure 1. Illustration of the differences between the assumptions of
the Debye−Hückel and of the MSA model. Debye−Hückel treats ions
as point charges with a minimum separation distance, while MSA
treats all ions as charged hard spheres.
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as shown in eq 3. For example, Inchekel et al.7 formed an equa-
tion of state (EoS) based on the cubic plus association (CPA)
model1 where the short-range forces were calculated using
SRK,15 the effect of hydrogen bonding was calculated by the
association theory from SAFT,16 the effect of ion solvation
using a Born term,17 and the long-range electrostatic forces
were modeled with MSA:13,14

= + + +A A A A Ar SRK association MSA Born (3)

The Helmholtz energy depends on temperature, volume, and
composition, while normally we specify temperature, pressure,
and composition. The pressure may be calculated using

= − ∂
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So to match the specification of temperature and pressure, an
EoS must solve the pressure equation given by eq 4. As the
pressure is a function of all terms in eq 3, the volume becomes a
function of the volume derivative of all models in eq 3. To cal-
culate the equilibrium at a given temperature, pressure, and
composition, we need to calculate the fugacity coefficients using
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−
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where Z is the compressibility factor. Finally, the residual
enthalpy may be calculated using
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Several authors have presented the differences between the
Debye−Hückel and MSA models for use in an equation of
state. Myers et al.5 stated that MSA yields better results for the
thermodynamic properties of electrolyte solutions at high con-
centrations. Along the same lines, Paricaud et al.19 stated that
since the simpler Debye−Hückel theory treats ions as point
charges it is only correct for infinitely dilute solutions and
quickly breaks down at increasing electrolyte concentrations
where the ion−ion and ion−solvent correlations become
important. It has also been stated that the liquid densities are
better described by MSA than Debye−Hückel.8,20 While the
observations of these authors may be valid, it is important to
realize that the liquid densities are obtained through an implicit
function that includes volume and compositional derivatives
from all contributions to the Helmholtz energy to solve for the
bubble point pressure and vapor/liquid volumes. The results
obtained from this procedure furthermore depend on the
method used for parameter estimation and the experimental
data that was used in the parameter estimation. Instead of ana-
lyzing the performance of the complete EoS, we restrict the
analysis to the residual Helmholtz energy from MSA and
Debye−Hückel at constant temperature, volume, and compo-
sition, to perform a fair comparison of MSA and Debye−
Hückel.
The following sections present the highlights of the

derivations for illustrating the physical significance of the param-
eters di and σi of the two models. Following the discussion of the
theoretical differences between the models, the paper presents
the differences between the results for the Helmholtz energy and
its first order derivatives with regards to temperature, volume, and
composition.

■ DISCUSSION AND RESULTS

On the Derivation of the Debye−Hückel Theory. This
section presents parts of the derivation of the Debye−Hückel
theory to illustrate important concepts of electrolyte
thermodynamics that are common to the Debye−Hückel
and MSA theories for long-range electrostatic interactions.
The derivation follows the derivation presented by other
authors.12,21−23

The Poisson equation relates the electrical potential ψi of ion
i with the local charge density ci(r). In spherical coordinates, the
Poisson equation may be written as

∇ ψ = −
ε ε
c r( )

i
i2

0 r (7)

The local number density of the ions surrounding the central
ion may be written as

∑= ρc r q g r( ) ( )i
j

N

j j ij
(8)

where gij(r) is the pair correlation function known from statisti-
cal mechanics21 and ρj is the number density of component j.
Equation 8 may only be solved when gij(r) is a known function
of the potential ψi(r).

24 To arrive at an expression for the
pair correlation function, we define the potential of average
force wij(r):

= −
⎡
⎣
⎢⎢

⎤
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( )
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where kB is the Boltzmann factor and wij(r) is assumed to be
proportional to the electrostatic potential:

= ψw r q r( ) ( )ij j i (10)

Inserting eq 10 into eq 9 gives an expression for the radial
distribution function as shown in eq 11.

= −
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Onsager25 showed that the assumption that the distribution
of ions was given by eq 11 becomes inconsistent for unsym-
metrical electrolytes since the logical requirement that ρjgji(r) =
ρigij(r) is not fulfilled, except for the linearized Poisson
equation. Onsager26 presented a procedure to remedy this dis-
crepancy of the derivation by using higher order corrections of
the Debye length, but this will not be investigated further here.
The charge density function may be formed from eq 11 as
shown in eq 12, and it follows that the Poisson equation is
given by eq 13:

∑= ρ −
ψ⎡
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By linearizing eq 13 and using the electroneutrality condition,
we arrive at

∑∇ ψ = − ρ −
ψ⎛
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Using the electroneutrality condition from eq 2, and
introducing the Debye length κ−1 as shown in eq 15, we arrive
at

∑κ =
ε ε

ρ
k T

q
1 1

i

N

i i
2

B r 0

2

(15)

∇ ψ = κ ψ r( )i i
2 2

(16)

Thus, the electrical potential ψi may be deduced by the
solution to eq 16 imposing the boundary conditions
limr→∞ψi(r) = 0 and from the Coulomb potential of the ion
as presented in the derivation shown in, for example,
McQuarrie21 or Michelsen and Mollerup.22 With both models,
the electrostatic potential of a molecule with fractional charge
λqi may be calculated using eq 17:22

ψ = =
λ

πε ε + λκ
r d

q

d d
( )

4
1 1

1i i
i

r ij ij0 (17)

The total electrostatic potential at r = dij may be related to the
excess Helmholtz energy using the partial charging process,21,22

where the ion with charge λqi is charged from λ = 0 to 1, as
presented in eq 18 and 19:
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where the function χi is given by

χ = + κ − κ + κ
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The complete derivatives of up to second order are provided in
the book by Michelsen and Mollerup.22

Pitzer27,28 discussed how the hard-core contribution could be
included in the Debye−Hückel theory using a statistical
mechanical treatment of the osmotic pressure Π given
by eq 21.

∫∑ ∑Π − ρ = − π ρ ρ
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Using a potential uij for the hard-core ions given by eq 22,
Pitzer27 derived the expression shown in eq 23 by including the
third order Taylor expansion of the radial distribution function
gij from eq 11.
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As pointed out by Onsager,22 methods that use higher
order terms of the radial distribution function will become
inconsistent for unsymmetrical electrolytes as the logical
requirement ρjgji(r) = ρigij(r) is not fulfilled. Pitzer notes that
the method is consistent for symmetrical electrolytes, and
that the inconsistency for unsymmetrical cases is small. Since
the model by Pitzer includes the contribution from hard-core
repulsions, it is not suited as a perturbation for the electro-
static forces in an EoS, as the EoS already contains terms that
account for the short-range interactions.

On the Derivation of the MSA Theory. The fundamental
difference between the derivations of the MSA and the Debye−
Hückel theories is that MSA treats the ions as hard-core
spherical molecules with diameter σi. This gives rise to an
excluded volume that is inaccessible to other ions leading to
different expressions for the Helmholtz energy and screening
length compared to the Debye−Hückel theory.
The lengthy derivation of MSA has been presented by

Blum13,14 and will not be repeated here. The final expression
for the excess internal energy is given by eq 24:
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ρ
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where zi is the charge of the ion, Γ is given by the MSA closure
equation from eq 25, and the parameter η is calculated from
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The distance (2Γ)−1 is the MSA equivalent of the screening
length in the Debye−Hückel theory κ−1, and the auxiliary func-
tion Ω is calculated using

∑ ∑Ω = + π
Δ
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Δ is a measure of the included volume calculated using eq 28
and must be strictly positive and larger than ∼0.26 (the face-
centered cubic packing factor). Note that this term also in-
cludes the contribution from uncharged species in the mixture:

∑ ∑Δ = − π ρ σ = − π σ
N
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n1
6

1
6

k
k k

k
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3 A 3
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The Helmholtz free energy may be calculated using the
thermodynamic relation as follows:

∂
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= Δ−
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The integration shown in eq 29 cannot be performed directly,
but we may use the method by Høye and Stell,29 where the
Helmholtz energy may be expressed from

∫= Δ − Γ′ ∂
∂Γ′

ΔΓ ⎛
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B 0
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Note that taking the derivative of eq 30 with respect to Γ yields
the identity in eq 31:
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The solution to the integral in eq 30 gives the surprisingly
simple result
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Furthermore, as we have eq 31, we may deduce another form of
eq 25:
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The MSA theory has one internal variable Γ which is not
known from explicit relations and must be obtained from
numerical methods. The Supporting Information contains a fast
and robust iterative scheme for solving eq 33 based on second
order minimization.
The Electrostatic Moment Conditions. The solutions to

the four first moments are interesting in terms of analyzing the
importance of the assumptions done in the Debye−Hückel
theory, that is, that the radial distribution function is only a
function of the long-range forces from the electrostatic
interactions. From the Coulombic forces between ions (eq 1)
it is possible to derive a set of statistical mechanical moment
conditions for electrolytes using the Ornstein−Zernike
equation. A derivation of the moment conditions has been
presented by, for example, Attard,23 and his results are
summarized in this paper to illustrate that the Debye−Hückel
theory cannot satisfy the fourth moment condition due to
neglecting the short-range forces. The zeroth moment
condition is shown in eq 34:

∫∑π ρ = −
∞

z r h r r z4 ( ) d
k

k k ik i0
2

(34)

The left-hand side of eq 34 represents integration over all ions
in the vicinity of the central ion. The physical significance of eq
34 is that the total charge in the ion cloud surrounding the
central ion i will be of same magnitude but opposite charge as
the central ion i.14 The second moment is thus the statistical
mechanical equivalent of the electroneutrality condition from
eq 2.
The Stillinger-Lovett second moment condition is given by

eq 35:
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ε ε
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The physical significance of the Stillinger-Lovett second
moment is that for finite size ions, a charge oscillation occurs
in the ionic cloud.23 Note that neither the zeroth nor the
second moment depend on the short-range interactions.
The fourth moment is shown in eq 36:23

= − − −QH Q H C H C I C
1

120
( )( )(4) (0) (0) (0) (0) (0)

(36)

where the matrix Q is given by eq 37, H(0) is from the first term
of the linearization of the indirect correlation function hij(r) in
eq 38, and C(0) is from the first term of the linearization of
the short-range part of the direct correlation function as given
by eq 39

=
ρ ρ

ε εk T

q q
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i j i j

B 0 r (37)

= ρ ρ hH r( ) ( )ij i j ij
0 1/2 0

(38)

= ρ ρ cC r( ) ( )ij i j ij
0 1/2 0

(39)

It is evident that the fourth moment depends on the short-
range interactions, represented by C(0). The fourth moment
condition has been related to the partial ionic structure factors
and the isothermal compressibility of the electrolyte.30,31 The
Debye−Hückel theory assumes that the short-range inter-
actions are negligible, that is, that C(0) = 0, but the MSA
accounts for the short-range interactions by treating the ions as
hard spheres.

On the Relationship between EoS and Activity
Coefficient Models. An EoS will include one of the terms
for the Helmholtz energy from Debye−Hückel (eq 19) or MSA
(eq 32) to account for the long-range electrostatic interactions,
as a perturbation to the reference EoS. Insofar as the efforts to
form a working EoS for mixtures with electrolytes have not
resulted in significant improvements over the activity coefficient
(or excess Gibbs energy) models for electrolyte systems,1 this
section serves to present the relationship between the expres-
sions for the long-range electrostatic forces developed for the
Debye−Hückel and MSA theories, and the activity coefficient
models that are widely used by the industry to predict thermo-
dynamic properties of mixtures containing electrolytes.
The chemical potential may be determined from the com-

positional derivative of either the Helmholtz or the Gibbs free
energy:

μ = ∂
∂

= ∂
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i T V n i T P n, , , ,j i j i (40)

The chemical potential may be split into two terms from the
relation μi = μi

i + μi
E, one term corresponding to the ideal

mixture contribution μi
i, and one term corresponding to the

excess chemical potential μi
E. The activity coefficient may then

be obtained from the excess chemical potential using the well-
known relation ln γi = μi

E/(RT). The chemical potential may be
calculated from either the rational (mole-fraction) or the mola-
lity scale, and may furthermore be given as the unsymmetrical
activity coefficient, tending to 1 as the concentration goes to
zero. Commonly, activity coefficient models for electrolyte mix-
tures use unsymmetrical activity coefficients using the molality
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scale for solutes, and the symmetrical rational activity coefficient
for solvents.
Debye and Hückel12 originally derived a model for the activity

coefficient from the expression of the excess Helmholtz energy
from eq 19 by replacing the molar volume and static permittivity
by empirical correlations, and using the resulting equation as an
expression for the excess Gibbs energy. This procedure has been
used for activity coefficient models.2,3,36,37 Electrolyte equations of
state determine the volume from the pressure equation given by
eq 4. Primitive electrolyte equations of state4−10,18−20,24 determine
the static permittivity from (semi)-empirical solvent-specific cor-
relations while nonprimitive equations of state11 determine the
static permittivity from dipolar interactions. Common to both the
electrolyte EoS and activity coefficient models is that they include
terms that account for the short-range interactions; activity coef-
ficient models determine the short-range forces from local-com-
position models as UNIQUAC2 or NRTL,3 or from Pitzer’s
modifications of the Debye−Hückel theory to include a hard-
core repulsive term shown in eq 23.
Numerical Comparison of the Debye−Hückel and

MSA Theories. The previous section introduced the Debye−
Huckel and MSA models and showed the major differences bet-
ween the assumptions of these two models. It is of interest to
investigate the numerical differences in the excess Helmholtz
energy to determine the differences between MSA and Debye−
Hückel. It was decided to use the same numerical value of the
ion diameter in MSA as in Debye−Hückel to provide a basis for
comparing the two models, thus in this section, σi will be used
as the symbol for the ion diameter and the distance of closest
approach di. Typical Pauling radii are shown in Table 1.

To obtain the complete picture of the differences between
the two models, it was decided to vary the following model
parameters: (i) ion diameter, (ii) ion charge, (iii) temperature,
(iv) volume, (v) composition. Additionally, as has been shown
by several authors,5,7,18,22,33,34 the relative static permittivity or
dielectric constant εr is a function of temperature, volume, and
composition, and that this dependence is of high importance to
the performance of the electrolyte equation of state. To deter-
mine the influence of the static permittivity on the performance
of the two models, the model presented by Michelsen and
Mollerup22 was implemented. According to this model, the
relative static permittivity is calculated using the empirical
expression

ε ̲ = ε ×T V n T E Vn( , , ) ( ) ( , )rr
w

(41)

where E(n,V) is an ion correction factor that effectively
serves to reduce the relative static permittivity. εr

w is the relative

static permittivity of water calculated as a function of
temperature:

ε = ε +
β μ

ε
ρ

−
ρ⎛

⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟
⎞
⎠
⎟⎟T T

N
k

T

T

T

T
( )

2

( ) ( )A
r
w

r
w,0

0
1 w

2

B 0

w w 0

0

(42)

where T0 = 273.15 K is the reference temperature, εr
w,0 = 87.82

is the relative static permittivity at T0, μw = 8.33 × 10−30 C·m is
the dipole moment of water in vacuum, NA is the Avogadro
number, and β1 = 3.1306 is a fitting constant. The density of
water ρw(T) was calculated using

ρ = ρ + ω − + ω − ωT T T T T( ) ( ) ( )w 0 1 0 2 0 3 (43)

where ρ0 = 0.99984 kg/L, ω1 = 1.51782 × 10−4 kg/(L·K), ω2 =
−4.50573 × 10−5 kg/(L·Kω3) and ω3 = 1.55.
The E-factor is given by
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where β2 = 0.160 L/mol, β3 = 0.010 L/mol, ck is the
concentration of species k, and αk is an ion specific constant.
Selected values are shown in Table 2, and an example
calculation for the static permittivity of NaCl and MgCl2 are
presented in Figure 3. The relative static permittivity and
density of pure water are shown in Figure 2.

If not stated otherwise, we will use a constant volume and the
static permittivity of pure water as the basis of the comparison,
and therefore not generally include the effect of the ions on the
static permittivity. This is done to more easily distinguish the
effect of parameters on the models. The first section presents
the important results of the numerical investigation on the
effect of the screening length, while the following section

Table 1. Pauling Radii for Selected Ions32 (Marcus, 1988)

ion Li+ Na+ Mg2+ Ca2+ Cl− SO4
2‑ NO3

−

radii [Å] 0.74 1.02 0.72 1.00 1.81 2.30 1.79

Table 2. Ion Specific Parameters for Calculation of the Dielectric Constant22

ion Li+ Na+ Mg2+ Ca2+ Cl− SO4
2− NO3

−

correction factor [L/mol] 0.12 0.1062 0.1155 0.1097 0.1173 0.0022 0.1104

Figure 2. Temperature dependence of relative static permittivity and
liquid density for water using eqs 42 and 43. Experimental data
indicated by the filled circle (●) are from the Landolt Börnstein
database.35

Industrial & Engineering Chemistry Research Article

dx.doi.org/10.1021/ie2029943 | Ind. Eng. Chem. Res. 2012, 51, 5353−53635357

http://pubs.acs.org/action/showImage?doi=10.1021/ie2029943&iName=master.img-001.png&w=176&h=178


presents the influence on the Helmholtz energy and its first
order derivatives.
Comparison of Screening Length. A comparison of

eq 15 to eq 25 shows that the screening length in the Debye−
Hückel theory is independent of diameter, while this is not true
for MSA. Figure 4 compares the screening length of MSA and
Debye−Hückel at 25 °C.
As shown in Figure 4 the Debye−Hückel theory predicts

an unphysical behavior where increasing the ion size does
not increase the screening length. The difference between the
screening length in MSA and Debye−Hückel depends on the
molality and the ion diameter.
When the volume and static permittivity are kept constant,

the screening length of the Debye−Hückel and MSA display a
linear dependence on temperature, that is, the higher the
temperature is, the higher is the screening length. The
temperature dependence of the screening length at 3 m and
constant volume is shown in Figure 5:
Figure 5 shows that the screening lengths of the two models

display a similar and weak temperature dependence.
The volume does change in the presence of electrolytes,

while this effect was not included in either Figure 4 or Figure 5,
as the comparisons were carried out at constant volume, and

not constant pressure. Figure 6 illustrates the influence of
volume on the screening length:

Figure 6 illustrates that the screening length is proportional
to the volume, but also that the volume dependence of the
screening lengths in the two models is rather weak. Figure 7
illustrates the influence of the relative static permittivity on the
screening length.
Figure 7 shows that both models show similar dependence of

the screening length on the relative static permittivity. A decrease

Figure 3. Effect of salt concentration on relative static permittivity of
NaCl and MgCl2 using eq 44. Experimental data indicated by the filled
circle (●) is taken from the collections of Akhadov36 and Barthel et al.37

Figure 4. Comparison of screening length at 25 °C, a 2.8 L volume, and constant relative static permittivity εr = 78.

Figure 5. Comparison of the temperature-dependence of the
screening lengths calculated with MSA (solid) and Debye−Hückel
(dashed) for NaCl (black) and MgCl2 (gray) at 25 °C, 3 m, and 1.2 L
volume with relative static permittivity εr = 78.

Figure 6. Comparison of volume-dependence of the screening length
calculated by MSA (solid) and Debye−Hückel (dashed) for NaCl
(black) and MgCl2 (gray) at 25 °C, 3 m, and relative static permittivity
εr = 78.

Industrial & Engineering Chemistry Research Article

dx.doi.org/10.1021/ie2029943 | Ind. Eng. Chem. Res. 2012, 51, 5353−53635358

http://pubs.acs.org/action/showImage?doi=10.1021/ie2029943&iName=master.img-002.png&w=174&h=176
http://pubs.acs.org/action/showImage?doi=10.1021/ie2029943&iName=master.img-003.jpg&w=338&h=180
http://pubs.acs.org/action/showImage?doi=10.1021/ie2029943&iName=master.img-004.jpg&w=173&h=118
http://pubs.acs.org/action/showImage?doi=10.1021/ie2029943&iName=master.img-005.jpg&w=167&h=118


in the static permittivity caused by the compositional changes
or due to an increase in the temperature will yield a decrease in
the screening length. Owing to its typical range of values in
aqueous electrolytes as presented in Figure 3, the static per-
mittivity has a larger influence on the screening lengths than
temperature and volume alone.
The two models display the same trends for the screening

length when changing the temperature, volume, ion charges,
composition, and static permittivity. However, only MSA
predicts an increase in the screening length with increasing ion
diameters. We can therefore consider MSA to be a better
choice in cases where the numerical value of the screening
length is important (e.g., for interfacial phenomena).
Comparison of Helmholtz Energy. The Helmholtz

energy and its derivatives are of great importance for equations
of state that incorporate either MSA or Debye−Hückel to
account for the ion−ion interactions. This section compares the
trends predicted by the two models using the same procedure
as presented in the previous section.
Effect of Ion Diameter. Although the ion diameter does

not influence the screening length in the Debye−Hückel
theory, it is important for the calculation of the Helmholtz
energy. Figure 8 compares the Helmholtz energy using the
Debye−Hückel and MSA models for different ion diameters.

Figure 8 and Figure 4 show that an increase in the ion size
leads to an increase in the separation distance between the ions
in both models, thereby reducing the interaction energy and
thus the Helmholtz energy. In all cases MSA yields lower
energies at the same concentration. The larger excluded volume
at higher concentrations contributes to lowering the Helmholtz
energy in the case of MSA, whereas the Debye−Hückel theory
does not account for this effect. Since the Helmholtz energy
from the Debye−Hückel theory is always slightly larger than
the Helmholtz energy calculated using MSA, we may speculate
that choosing an empirical modification of the ion diameter in
the Debye−Hückel and MSA theories as shown in eq 45, would
lead to identical results from the two models:

= ωσdi i (45)

Interestingly, when choosing ω = 5/6, the values of the
Helmholtz energies and their derivatives from both models become
similar (within 5%) for different ion sizes, ion charges, and
temperatures up to 5 m. The largest deviations are observed in the
volume derivative for large ions. It was furthermore found that the
size of the solvent does not change the optimal ω factor signi-
ficantly, but it does have an effect on the value of the volume
derivative. Since the MSA theory accounts for the excluded volume
explicitely and Debye−Hückel does not, the physical significance of
the ω factor is to account for the effect of the excluded volume by
reducing the separation distance of the ions. From this analysis, it
may be concluded that if the ion size is fitted during pure com-
ponent parameter estimation, the two models can perform similarly.
When the static permittivity is calculated from the com-

position using the empirical model given by eq 41, the reduced
Helmholtz energy changes by 50−100% as evidenced by Figure 9.
Figure 9 shows that the static permittivity has a profound

effect on the reduced Helmholtz energy, and in the following
sections the influence of using the empirical model on the
derivatives of the residual Helmholtz energy is investigated.

Comparison of Volume Derivative. Figure 10 presents the
influence of volume, ion charge, and ion size on the volume derivative:
Figure 10 shows that the volume derivative of Helmholtz

energy increases with increasing ion concentration and
temperature. Figure 10 does not include the effect of volume
on the dielectric constant, as this is not included in the

Figure 7. Comparison of the dependence of the screening lengths on
the static permittivity calculated by MSA(solid) and Debye−Hückel
(dashed) for NaCl(black) and MgCl2 (gray) at 3 m, constant volume
at 1 L, and constant temperature at 25 °C.

Figure 8. Comparison of the Helmholtz energy at different diameters with relative static permittivity equal to that of water (shown above the
panels). Volume is fixed at 2.8 L.
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empirical model for the static permittivity of pure water given
by eq 42. However, if we would use the model for the static

permittivity given by eq 41 the volume derivatives are affected
as shown in Figure 11.

Figure 9. Comparison of the Helmholtz energy at different diameters with composition dependent static permittivity. Volume is fixed at 2.8 L.

Figure 10. Comparison of the volume derivative of Helmholtz energy at different diameters at constant temperature and relative static permittivity
(shown above the figure). Volume is fixed at 2.8 L.

Figure 11. Comparison of the volume derivative of Helmholtz energy when eq 41 is used to model the relative static permittivity. Volume is fixed at 2.8 L.
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As the volume derivative is inversely dependent on the static
permittivity, the reduction of εr due to the presence of salts
serves to increase the volume derivative. Additionally a volume
dependency is introduced through the E(n,V) correction
function given by eq 44. Figure 11 illustrates that accounting
for the effect of salts has a substantial effect on the volume
derivative. However, the result shown in Figure 11 is not
necessarily the correct physical behavior, but rather a result of
fitting the empirical model parameters to concentration data
(see eq 44). If the correction factor was depending on molality
or mole fractions rather than concentrations, the volume
dependency would become zero, which would influenced the
behavior shown in Figure 11. Extreme care should be exercised
when using empirical correlations for the static permittivity, as
they may end up including a nonphysical behavior of the
Helmholtz energy expression of the electrostatic models. It is
considered of high importance to have a model for the
permittivity that not only fits the data but actually resembles
the correct physical dependence on temperature, volume, and
composition.

Comparison of Temperature Derivative. The influence
of temperature, ion charge, and ion size on the temperature
derivative is presented in Figure 12.
The same trend is observed for both MSA and Debye−

Hückel in Figure 12 where the absolute value of the tem-
perature derivative increases with increasing ion size and
temperature for both models. Figure 13 shows that when the
temperature derivative of the static permittivity is included
together with the empirical correlation for the static per-
mittivity, the temperature derivative changes sign but is of
the same order of magnitude.

Comparison of Compositional Derivatives. As shown in
eq 5, the fugacity coefficient depends on the compositional
derivatives of the Helmholtz energy. The fugacity coefficients
are used in the calculation of the thermodynamic equilibrium
properties at constant temperature and pressure. In an EoS, the
fugacity coefficients at constant pressure are determined by first
solving for the volume root from the pressure specified in eq 4
and then inserting this volume into eq 5. In Figure 14, we
analyze the contribution to the Helmholtz energy from MSA

Figure 12. Comparison of temperature derivative of Helmholtz energy at different ion diameters. The temperature derivative of the static
permittivity of pure water was set to zero to observe the behavior of the model without including the temperature dependence of the static
permittivity. MSA is black colored, Debye−Hückel is gray. Volume is fixed at 2.8 L.

Figure 13. Comparison of temperature derivative of Helmholtz energy at different ion diameters using the empirical correlation for the relative static
permittivity shown in eq 41. Volume is fixed at 2.8 L.
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and Debye−Hückel at constant volume (e.g., same volume in
MSA and Debye−Hückel), but as evidenced by Figure 10 and
Figure 11, the difference in the volume derivative may lead to a
slightly different volume root and thus somewhat different
results for the activity coefficients at constant temperature and
pressure, depending on the parameters and the other terms in
the EoS. Figure 14 shows that the compositional dependence of
the static permittivity shown in Figure 3 has a large effect on
the compositional derivatives of the Helmholtz energy.
Figure 14 shows that including the compositional depen-

dence of the static permittivity may completely change the be-
havior of the compositional derivatives at higher concentrations
and thus is important to the calculation of activity coefficients.
While Figure 11 showed that we have to be careful about the
model which we used for the static permittivity, Figure 14
shows that it is of great importance to include the com-
positional dependence of the static permittivity. The impor-
tance of the relative static permittivity on the compositional
derivatives was also noted by other authors.5,7,18,22,33,34 As the
empirical model of the static permittivity does not depend
on the concentration of uncharged molecules, only the MSA
model provides a small contribution to the compositional de-
rivative of the Helmholtz energy for water, but this contribution
is very small compared to the contribution of the ions. If the
effect of increasing solvent concentration was included in the
model for the static permittivity, both models would yield a

larger contribution to the compositional derivative of the
Helmholtz energy for water.

■ CONCLUSION

The long-range Coulombic forces may be described by either
the Debye−Hückel or the MSA theories. The MSA model was
derived on the basis of statistical mechanics and includes the
effect of an excluded volume on the electrostatic interactions.
The results with the two theories were compared numerically in
terms of the screening length, the contribution to the residual
Helmholtz energy, and the first-order derivatives. Both models
predict similar trends with regards to temperature, volume, and
compositional dependence of the Helmholtz energy, while only
MSA correctly predicts an increase in the screening length
when the ion diameter is increased. Nearly identical
quantitative results of the two theories are obtained if the
distance of closest approach di of the Debye−Hückel theory is
taken as 5/6 of the hard sphere diameter used in the MSA
model. It is thus concluded that the two theories will perform
similarly if the ion diameter is included as a fitted parameter in
the parameter estimation. The static permittivity was found to
be a key parameter and the effect of temperature, volume, and
composition on the static permittivity will affect the predicted
behavior of ions in the solution. The current models for the
static permittivity are empirical and this makes it difficult to
obtain trustworthy results for multicomponent solutions using
the current equations of state for electrolytes.

Figure 14. Comparison of the compositional derivative of the Helmholtz energy calculated by MSA (solid) and Debye−Hückel (dashed) at constant
temperature using a constant static permittivity (black lines) (shown above the top figure) and the empirical correlation from eq 41 (gray lines).
Results are obtained using a constant volume V = 1.3 L.
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