
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 20, 2017

Optimal dimensioning of low-energy district heating networks with operational
planning
case study for existing buildings

Tol, Hakan; Svendsen, Svend

Published in:
Proceedings of the 11th International Conference on Sustainable Energy Technologies

Publication date:
2012

Link back to DTU Orbit

Citation (APA):
Tol, H., & Svendsen, S. (2012). Optimal dimensioning of low-energy district heating networks with operational
planning: case study for existing buildings. In Proceedings of the 11th International Conference on Sustainable
Energy Technologies  (pp. 113-122)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13795977?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/optimal-dimensioning-of-lowenergy-district-heating-networks-with-operational-planning(9baa0f5b-76a2-4903-9da7-f08ad2f5dd08).html


11th International Conference on Sustainable Energy Technologies (SET-2012) 

  September 2-5, 2012 

Vancouver, Canada 

 

 

OPTIMAL DIMENSIONING OF LOW-ENERGY DISTRICT HEATING NETWORKS WITH 
OPERATIONAL PLANNING - CASE STUDY FOR EXISTING BUILDINGS 

 

Hakan İbrahim Tol1*, Svend Svendsen2 
1PhD Candidate, Building 118, Technical University of Denmark, DK-2800, Denmark 

2Professor, Building 118, Technical University of Denmark, DK-2800, Denmark  
*Corresponding Author: hatol@byg.dtu.dk  

  

 

 

ABSTRACT 
 Low-temperature operation in low-energy District Heating (DH) systems is rewarding for increased 

exploitation of low-temperature renewable energy sources, heightened efficiency at heat extraction, and intensified 

energy efficiency at heat distribution. Success of heat delivery in low-temperature operation such as 55 °C in terms 

of supply and 25 °C in terms of return was achieved through real cases located at Lystrup in Denmark, and 

“Greenwatt Way” project located at Scotland in UK as demonstration of low-energy DH systems being considered 

to supply heat to new houses with low-energy class. In our former study the performance of in-house heating 

systems was investigated for changing levels of supply temperature with consideration given both to current high-

heat demand and future low-heat demand value of an existing settlement. The over-dimensions obtained at in-

house heating systems originally in design stage resulted in satisfaction of heat demand of the house in low 

temperature operation. In this paper the operational planning of the low-energy DH systems was investigated to 

reduce the dimensions of the distribution network with consideration given both to current high-heat and future 

low-heat demand situations. The operational planning was based on boosting (increasing) the supply temperature 

at peak-demand situations which occur rarely over a year period. Hence optimal pipe dimensions of low-energy 

DH systems were investigated based on the dynamic response of in-house heating systems with changing supply 

temperatures ranging between 55 – 95 °C. The boosting level of supply temperature was considered to be 

determined separately for current high and future low heat demand scenarios. As a conclusion it was found that 

91% reduction in the heat loss from the DH network could be reached by use of operational planning in 

comparison to DH network dimensioned according to high heat demand situation. 

INTRODUCTION 
District Heating (DH) systems are essential in the future heating infrastructure planning due to their being energy 

efficient, having high supply reliability, enabling use of any type heat source, and, as a consequence of all, being 

environmental friendly {{42 Olsen,Peter Kaarup 2008; 251 Christiansen,C.H. 2009; 284 Worm, Jacob 2011; 312 

Kristjansson,Halldor 2009; 285 Lund,Henrik; 247 Lund,H. 2010}}. Control philosophies such as increasing the flow 

rate and/or increasing temperature applied during operation of DH systems allows increase in the efficiency of the 

system {{291 Steer,K.C.B. 2011; 346 Serhan,Küçüka 2007; 243 Gustafsson,Jonas 2010}}. In our previous study 

{{344 Tol, Hakan İbrahim 2012}} it was found that the mass flow required satisfying the heat requirements of a 

district could be reduced by means of increasing the supply temperature in the peak coldest periods {{240 

Madsen,Henrik 1994}}. The required overall mass flow for the peak winter condition was found to be reduced by 

means of boosting the supply temperatures due to existing in-house radiators’ being over-dimensioned assigned in 

their design stage. Pressure drop is a function of mass flow which is the main parameter while defining the 
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diameter of the pipe i.e. in case a certain amount of pressure drop value set as maximum the reduction achieved 

in the required mass flow allows further reduction on the pipe diameters at the DH network. Hence an operational 

planning with the control philosophy of boosting the supply temperature in the peak coldest periods could be used 

to lower the mass flow requirement. The lowered mass flow values later can be used as input within the 

optimization algorithm developed in this study, having the basis of the optimization method given in detail at {{322 

Tol, Hakan İbrahim 2011; 323 Tol, Hakan İbrahim 2011}}.  

The aim of this study was formulated to find an optimal network dimensioning for DH networks supplying heat to 

areas with existing buildings, with consideration given to current and future heating demand of them. The idea was 

defined as using the operational planning by boosting the supply temperature in the cold winter periods in case of 

future situation and as well in the current high-heat demands in order to avoid over-dimensions respect to future 

low-heat demands of the same existing district since the existing houses located in the case area are planned to 

be renovated to low-energy class in the future.  

DESCRIPTION OF THE SITE 
A case study was carried out involved in an existing district in the municipality of Gladsaxe, in which an existing 

natural gas grid currently supplying heat to 783 detached single family houses there, each was assumed with the 

same reference house model, and with the same substation layout (Detailed information about the house model 

and substation layout could be found, respectively, in {{344 Tol, Hakan İbrahim 2012}}, and in {{284 Worm, Jacob 

2011; 251 Christiansen,C.H. 2009}}). Unique values of space heating demand of the reference house, considered 

for each house in the case area, were derived as 9 kW, 5.1 kW, and 2.9 kW regarding, respectively, to original 

design, to current, and to future situations. Since the substation planned to be used in the future heating 

infrastructure was defined to be used also in the current situation, the heat demand for domestic hot water 

production was kept same as 3 kW in both of the current and the future heat demand scenarios.  

HEAT LOAD ON THE DH NETWORK 
The heat load determination was based on consumer site, and on network site. The consumer site was focused on 

exploiting the over-dimensions in the existing radiator systems, which was investigated as dynamic response of 

the radiator system with changing supply temperatures while in the network site the consideration was directed to 

the duration of the heat load levels of the DH network in one year period and simultaneity of heat consumption 

determined per each pipe segment in the DH network. The mass flow values were mainly used as input data while 

dimensioning the DH network, which were derived from the heat load values in accordance with the temperature 

configuration of supply and return.  

DYNAMIC RESPONSE OF THE IN-DOOR HEATING SYSTEMS 
The model given in the study {{320 Phetteplace, Gary 1995}} was used to analyze the performance of the existing 

radiator system, of the original heat demand, and of the heat demand of the inquired condition. In this study the 

implicit model based on the log mean temperature difference (LMTD) was used to find the return temperature as a 

function of supply temperature, of which the numerical solution used was given in the Eq. (1). The initial estimate 

for the iterative method for calculating the Eq. (1) was obtained by use of the explicit model based on the 

geometric mean temperature difference (GMTD), given in the Eq. (2) {{320 Phetteplace, Gary 1995}}.  

_
_

⁄ ⁄
_ _ / _

   (1)  
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_ _ _ ⁄ ⁄     (2)  

The flow rate required to satisfy the heating demand of the consumer in terms of space heating requirement was 

calculated by means of heat balance equation assuming the mass of the heat carrier medium in the radiator 

system as control volume. The equation for calculating the mass flow rate was given at Eq. (3), which can be 

applied in any heat demand, supply temperature, and return temperature configuration.  

                           (3)  

The unique mass flow requirement of each consumer was calculated with Eq. (3) based on the substation layout 

with indirect connection of DH network to domestic hot water production unit by means of a sensible storage tank 

of 120 liter and a heat exchanger unit. This substation layout leads the heat carrier medium of the DH network 

being stored in the storage tank of the substation therefore; the temperature of supply from the DH network was 

set as the highest temperature level of the heat carrier medium stored in the storage tank. During the discharge of 

the storage tank (to produce the domestic hot water consumed by the consumer) the lowest temperature level of 

the heat carrier medium stored in the storage tank was obtained by means of heat exchanger unit with domestic 

hot water production capacity of 32 kW in temperature configuration of 10 °C and 45 °C in terms of, respectively, 

water temperature provided by the city water supply system and the required domestic hot water temperature. The 

return temperature from the storage tank was calculated for different levels of supply temperature by use of the 

commercial software SSP G7 with input data of temperature configuration in the consumer domestic hot water 

production side as given 10/45 °C. The maximum charging flow rate of the storage tank was fixed at 75 l/h in the 

primary side of the substation, defined by the control philosophy of the substation (details provided in the studies 

{{284 Worm, Jacob 2011; 251 Christiansen,C.H. 2009; 42 Olsen,Peter Kaarup 2008; 41 Paulsen,Otto 2008}}).  

LOAD FACTOR 
Annual heat consumption profile of the case area was represented by annual load duration curve heading the rate 

of the duration during which the heat load of the district is observed in a certain amount. By use of the data given 

regarding the real case area Lystrup low-temperature DH system {{284 Worm, Jacob 2011}}, annual load duration 

data for this case study was derived, consisting of the magnitude of heat load together with data concerning the 

duration of the magnitude, in a descending order (regardless of the chronological observations of heat load 

occurring in a year-period), as can be seen in Table 1. 

Table 1. Discrete heat load duration data, consisting of the heat load ratio –magnitude of heat load to the peak 
heat load - indicated as Ref. – and of the duration of occurrence of the magnitude.  

  1  2  3  4  5  6  7  8 

Heat Load Ratio [%] 
Current Scenario  144% 128% 107% 77% 57% 43% 25%  10% 

Future Scenario  100% 89%  74%  53% 40% 30% 17%  7% 

Duration [h]    8 19 111 653 1724 1399 1565  3281 

SIMULTANEITY FACTOR 
Consumers in a district neither consume heat at the same time nor at the same level {{256 Winter, Walter 2001; 

322 Tol, Hakan İbrahim 2011}}. The simultaneity of consumption, therefore, was included while determining the 

heat load on each pipe segment as a function of the cumulative number of consumers. The simultaneity factor 
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equations for space heating and domestic hot water for substations with storage tank of 120 liter were given in the 

studies {{322 Tol, Hakan İbrahim 2011; 323 Tol, Hakan İbrahim 2011; 218 Thorsen,Jan Eric 2011; 286 

Vestergaard, Jens Brusgaard 2010}}, being used in this case study as well.   

HEAT LOAD ON EACH PIPE SEGMENT 
A general expression was generated to calculate the mass flow required on each pipe segment to satisfy the heat 

demand of the cumulative number of consumers, consisting of the simultaneity factor and of the heat load ratio, as 

can be seen in Eq. (4). 

  (4)  

OPTIMIZATION 
The same basis used in the optimization method given in our previous studies {{322 Tol, Hakan İbrahim 2011; 323 

Tol, Hakan İbrahim 2011}} was also used in this study with main changes applied in the control philosophy 

directed to use of boosted (increased) supply temperature in peak winter periods, avoiding over-dimensioned DH 

network in respect to the rest periods out of the peak periods, and in the application of optimization, this time 

annual heat loss considered in the objective function of the optimization. In this study the DH network was 

modeled to have different supply temperature levels, separately considered for each of the eight periods, shown in 

Table 1, applied both to current high-heat demand and to future low-heat demand scenarios. The optimization 

method was formed in two steps, consisting of 1) defining different maximum overall mass flow requirements by 

adjusting the supply temperature configurations in each load duration period over the year period and of 2) 

applying the optimization focusing on yearly heat loss calculation in accordance with the overall mass flow 

requirements generated.  

Generating the Mass Flow Levels 
The peak period (the first period of the load duration curve) is the most critique period while determining the lowest 

possible overall mass flow required for the whole DH network. Once the lowest mass flow is determined so as to 

satisfy the overall heat load in the peakest period by means of increasing the supply temperature, the reminder 

periods (with lower heat demands though) can be operated with the same or even lower mass flow supplies. 

Hence five different mass flow levels were generated as a function of supply temperature levels selected in the 

range in between 55 °C and 99 °C, which were the temperature limitations adopted due to the reason, 

respectively, of being the minimum operating temperature for the substations and of being the maximum operating 

temperature for the twin pipes used in the DH network.  

Heat Loss Factor Regression  
The heat loss factor equation was defined by means of the statistical method, the multivariable regression, to be 

used in the optimization method. Several samples were observed by use of the commercial software Online 

Logstor Calculator {{367 Logstor 2011}} with data consisting of dependent variable of heat loss coefficient 

observed as outcome of several temperature configurations of the independent variables of supply temperature, of 

return temperature, and of ground temperature with each temperature configuration applied to the set of pipe 

diameters from Logstor catalogue. The outcome of this analysis was found as an equation for calculating the heat 

loss factor as a function of the independent variables of supply temperature, return temperature, ground 

temperature and pipe inner diameter. The multivariable regression analysis was carried out by use of regression 

analysis tool provided by the commercial software MS Excel {{368 MS Office 2007}}.  
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Several samples of independent variables were generated, each sample then applied to set of inner pipe 

diameters of the commercially available pipes of Logstor, in which independent variables consist of the supply 

temperatures, in the range defined in the section 0, of the return temperatures as dynamic responses to the supply 

temperatures, found by use of the method given in section 0, and of different distinct ground temperatures. 

Samples were generated in a total number of 408 observed as an outcome of temperature configurations with 

supply temperatures in the range of 55 °C and 95 °C, with their equivalent return temperatures, observed in the 

range of 20 °C and 80 °C, and with ground temperatures in 2 °C, 5 °C, and 13 °C. With these limitations used 

(though which the DH network obeyed to), application space for heat loss coefficient expression were generated in 

proper to the predictions expected. Using the samples then in the multivariable regression analysis resulted in the 

expression, given in the Eq. (5). 

4.05459 0.10786    0.10320 0.21097 0.05302                               (5)  

Pressure Drop 
Expression to calculate the pressure drop is directly proportional to the mass flow of the heat carrier medium while 

being indirectly proportional to the diameter of the pipe. Any reduction being achieved in the mass flow of the heat 

carrier medium (in this study by means of increasing the supply temperature) allows a gap to decrease the pipe 

dimension in case the pressure drop through the pipe in question is kept same. 

As already stated in our previous studies {{322 Tol, Hakan İbrahim 2011; 323 Tol, Hakan İbrahim 2011}}, once the 

pump is established in accordance with the pressure drop observed in the critical route, then it can also handle the 

pressure losses occurring in the other routes of the DH network, which was considered also in this study. 

Moreover the pressure drop calculations were analyzed for the peak winter period (the 1st load factor period, first 

column of the Table 1) since pressure losses occurring through the routes of the DH network were observed as 

bigger than the pressure losses occurring through the routes of the DH network in the other load factor periods.  

Optimization Method 
An optimization algorithm was defined with the aim of minimizing the annual heat loss from the DH network, 

occurring in the current high heat demand and future low heat demand situations, by means of reducing pipe 

dimension of each pipe segment until the head lift of the main pumping station was utilized as much as possible in 

connection with each route of the DH network, occurring only in the peak winter period though (details given in 

{{322 Tol, Hakan İbrahim 2011; 323 Tol, Hakan İbrahim 2011; 344 Tol, Hakan İbrahim 2012; 224 Sanks,Robert L. 

1998; 242 Benonysson,Atli 1995}}. This optimization algorithm was then applied to different mass flow values 

which were generated with different supply temperature configurations changing over the year period, to analyze 

the heat loss values of different supply temperature configurations and their consequent mass flow values.  

RESULTS 
In the present paper the effects of using control philosophy –increasing the supply temperature in the peak 

periods– on the pipe dimensioning of the DH network and on the heat loss from the DH network were investigated.  

Mass Flow Levels  
Five different mass flow levels were generated in the range of the available supply temperature values of 55 °C – 

99 °C, yielded in overall mass flow values required to satisfy the heating load of the district as given in Table 2 with 

consideration given to current and future heat demand levels of the same district, by use of the Eq. 5.   
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Table 2. The overall mass flow values generated in the range of the available supply temperatures 

Mass Flow Scenario m1 m2 m3 m4 m5 

Maximum Limit of Mass Flow [kg/s] 107.7 80.0 50.0 20.0 15.3 

The supply temperatures rates, obtained in order not to exceed the mass flow limits (given in Table 2) and the 

return temperatures as a dynamic response from the consumers in the DH network can be seen in Fig. 1 and Fig. 

2, respectively, for the current and the future heat demand situations. 

 

Fig. 1. The supply and return temperature profiles obtained in each mass flow limit, for the current heat demand 
situation 

 

Fig. 2. The supply and return temperature profiles obtained in each mass flow limit, for the future heat demand 
situation 

Heat Loss Factor Regression 
The sample data used for the regression analysis was derived for temperature configurations of supply 

temperature in the range of 55 °C – 95 °C, return temperature in the range of 20 °C – 80 °C, and ground 
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temperatures of 2 °C, 5 °C, and 13 °C; each temperature configuration applied to the pipe diameter set including 

AluFlex twin pipes, steel twin pipes, and a pair of single pipes with inner diameter in between 10 mm – 210 mm. 

The obtained expression, Eq. (5), used to calculate the heat loss factor was interpreted with the statistical data of 

the regression result. The high value of ‘adjusted regression square’, observed as 0.9108 and low value of 

‘significance F’, observed as 6.998e-211, and P-values of the independent variables nearly observed as zero were 

found to be the indicators of the significance of the regression within the boundaries of the application space for 

the regression equation.  

OPTIMIZATION 
After the mass flow values were determined (given in Table 2) by defining the supply temperature profiles for the 

current heat demand situation, as shown in Fig. 1, and for the future heat demand situation, as shown in Fig. 2, the 

optimization method was applied to determine the pipe dimensions of the DH network for each mass flow level, in 

order to analyze the heat loss from the DH network in different supply temperature profiles.  

Although the same optimization method applied on each, the overall length of each pipe type varied differently in 

each mass flow level, as shown in Fig. 3. However, the annual heat loss values obtained in current and future heat 

demand scenarios decreased significantly although the supply temperatures were increased in some certain time 

periods, in which peak demand conditions occurred, as can be seen in Table 3. 

 

Fig. 3. The overall length of pipe diameters obtained as a result of optimization for each mass flow level 

Table 3. The heat loss from the DH network, obtained for current and future heat demand situations [MWh] 

 m1 m2 m3 m4 m5

Current Situation 44.7 30.8 17.1 5.5 4.0

Future Situation 43.8 30.1 16.6 5.3 3.8
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DISCUSSION 
Mass flow values were found to be reduced together with the boosting applied on the supply temperatures in the 

high heat load periods, as can be seen in Table 2. The more the supply temperature boosted the lower mass flow 

levels were obtained more specifically in high load periods. High mass flow values were observed in case the 

supply temperature kept same as 55 °C for the whole year, yielded in overall mass flow of 107.7 kg/s for the 

coldest peak period of the current heat demand situation, which appears in short duration of 8 hours though. Even 

an increase of 1.3 °C for the same coldest peak period of the current heat demand situation yielded in 27% 

reduction of the overall mass flow required and an increase of 43.4 °C in the same period in question yielded in 

86% reduction in the required overall mass flow. Understanding the weighted effect of the supply temperature and 

of the reduction in pipe dimension on overall heat loss from the DH network was the major research challenge 

given in this study. It has to be noticed that the DH network was optimized with each of the mass flow rates 

determined within the same constraint having the same maximum allowable pressure loss limit. Therefore, an 

increase in pumping energy was not considered due to stationary maximum allowable pressure loss applied in 

each mass flow rate, and due to the fact that required overall mass flow rate decreases with increasing supply 

temperature.  

The lowered mass flow allowed dimension reduction achieved in the pipe segments of the DH network, as can be 

seen in Fig. 3. However the pipe reduction, achieved by increase of supply temperature, lowered the heat loss 

from the DH network more than the inverse effect of increment of heat loss caused by the high temperature of the 

heat carrier medium. The heat loss obtained in case the supply temperature kept same 55 °C during the whole 

year was found to be reduced by 91% compared to the case where the supply temperature was defined as 98 °C 

in the coldest peak period for a duration of 8 hours, 90 °C in the following (second) cold period for a duration of 19 

hours, 80 °C in the third period for a duration of 111 hours, 64 °C in the fourth period for a duration of 653 hours, 

and 55 °C in the rest periods of the current heat demand situation. However when the future heat load situation is 

considered, the supply temperatures were found not necessarily to be high as needed in current situation for 

example, following the previous current heat load example, the supply temperatures, in this case, were found as 

68 °C in the first period, 63 °C in the second period, 57 °C in the third period and 55 °C in the rest periods, required 

to satisfy the heat load needed in the future situation.  

CONCLUSION 
The paper has presented operational planning of low-energy DH networks considered with increment applied in 

supply temperatures during high heat load periods, in areas with existing buildings located there. The over-

dimensions in the existing radiator heating systems in the existing buildings allowed satisfaction of the heat 

demand of the building even at low temperature supply such as 55 °C. However the comparatively high mass flow 

requirements could be reduced by means of increasing the supply temperatures, yielding low heat loss from the 

DH network, and, driving from a logical perspective, yielding low investment cost of the network since the piping 

costs are directly proportional to the dimension of the pipe. One should note that significant savings can be 

achieved on pipe dimensions, on heat loss from the DH network, and on pipe investment const by increasing the 

supply temperature during some certain amount of period (cold periods though) throughout a year. 

The aim in the paper has not been to adjudge what the best possible solution is to any of the problems taken up, 

but rather to develop a method for dimensioning the DH network for existing settlements. Therefore a district 

heating network should always be designed in accordance with the thermal characteristic of the existing buildings, 
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with the capacity of the existing radiator heating systems used in the buildings located at the district, and with the 

simultaneity factor best fits with the social structure of the district. It should be noticed that the proposed method 

can be applied in districts where high temperature supply is available from the heat source.    
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NOMENCLATURE 
T temperature, °C 

q heat rate in power, kW 

n empirical parameter for radiators, 1.3 [-] 

� mass flow, kg/s 

hf specific enthalpy,  kJ/kg 

SF simultaneity factor, [-] 

CC cumulative number of consumers, [-] 

U heat loss factor, W/m 

d inner pipe diameter, mm 

Greek Letters 

φ load factor, [-] 

Subscripts 

S Supply 

R Return 

i Indoor 

ML Logaritmic mean temperature 

MG Geometric mean temperature 

HL heat loss 

O Initial condition 

1 current condition 

2 future condition 

Superscripts 

*  initial estimate 
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