Downloaded from orbit.dtu.dk on: Dec 20, 2017

Technical University of Denmark

=
—
—

i

A Fast GPU-accelerated Mixed-precision Strategy for Fully NonlinearWater Wave
Computations

Glimberg, Stefan Lemvig; Engsig-Karup, Allan Peter; Madsen, Morten G.

Published in:
Proceedings of ENUMATH 2011

Publication date:
2011

Link back to DTU Orbit

Citation (APA):

Glimberg, S. L., Engsig-Karup, A. P., & Madsen, M. G. (2011). A Fast GPU-accelerated Mixed-precision
Strategy for Fully NonlinearWater Wave Computations. In Proceedings of ENUMATH 2011 University of
Leicester.

DTU Library
Technical Information Center of Denmark

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

e Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
e You may not further distribute the material or use it for any profit-making activity or commercial gain
e You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

http://orbit.dtu.dk/en/publications/a-fast-gpuaccelerated-mixedprecision-strategy-for-fully-nonlinearwater-wave-computations(043ddc1d-d111-4fe8-be12-cb9959378262).html

A Fast GPU-accelerated Mixed-precision
Strategy for Fully Nonlinear Water Wave
Computations

Stefan L. Glimberg, Allan P. Engsig-Karup, and Morten G. Igexl

Abstract We present performance results of a mixed-precision giyadeveloped

to improve a recently developed massively parallel GPlekcated tool for fast

and scalable simulation of unsteady fully nonlinear fredaze water waves over
uneven depths (Engsig-Karup et.al. 2011). The underlyiagewnodel is based on
a potential flow formulation, which requires efficient sadut of a Laplace prob-

lem at large-scales. We report recent results on a new npkedision strategy for
efficient iterative high-order accurate and scalable smiubf the Laplace problem
using a multigrid-preconditioned defect correction methbhe improved strategy
improves the performance by exploiting architecturaldess of modern GPUs for
mixed precision computations and is tested in a recentlgldped generic library
for fast prototyping of PDE solvers. The new wave tool is aatile to solve and

analyze large-scale wave problems in coastal and offshi@eering.

1 Introduction

Recent development significantly improves the strategp@sed by Li & Fleming
in 1997 [10] to simulate fully nonlinear water waves. A flebeitorder finite differ-
ence algorithm for solving the governing equations in twm{Bam & Zhang [4])
and three space dimensions (Engsig-Karup, Bingham & Lirgipg) enables ef-

Stefan L. Glimberg
Department of Informatics and Mathematical Modelling, fil@cal University of Denmark, 2800
Kgs Lyngby, Denmark, e-mail: slgl@imm.dtu.dk

Allan P. Engsig-Karup
Department of Informatics and Mathematical Modelling, figical University of Denmark, 2800
Kgs Lyngby, Denmark, e-mail: apek@imm.dtu.dk

Morten G. Madsen
Department of Informatics and Mathematical Modelling, fiigical University of Denmark, 2800
Kgs Lyngby, Denmark, e-mail: morten.gorm.madsen@gnuaih.c

2 Stefan L. Glimberg, Allan P. Engsig-Karup, and Morten G .dgken

ficient, scalable and low-storage solution of the equatiBesent developments in
modern many-core hardware and programming tools for geperaose scientific
computing, suggest that a combination could further imprthe overall perfor-
mance.

In recent work [8], we have demonstrated that it is now pdesibsignificantly
reduce the barriers for practical use of full potential flilvedry as the modeling ba-
sis for efficient solution of coastal and offshore enginegproblems. Our strategy
was to do proof-of-concept by utilizing modern Graphicsdessing Units (GPUS)
for massively parallel computations using a heterogen&Rid-GPU hardware
setup. Interestingly, such a hardware setup constituteg wdn be considered an
affordable standard consumer desktop environment.

To establish the model as an efficient massively paralldlw@have both re-
designed and reimplemented the entire algorithm using dyrgsveloped library
for PDE solver proto-typing. The library enables efficietitization of allocated
hardware resources, targeting modern many-core GPUsrifkiguoc efficiency is
achieved by solving the computational bottleneck problematively with a defect
correction method, preconditioned by a robust multigridirod. This strategy gives
more than one order of magnitude in both problem size andipahspeedup (rela-
tive to optimized single-threaded CPU code).

1.1 Governing Equations

We present recent progress on the development of the OceaBWanodel[4, 7]. In
short, the flexible-order finite difference OceanWave3D eliglbased on a unified
potential flow formulation. These model equations can acttar fully nonlinear
and dispersive waves within the breaking limit and underatbsumption of irrota-
tional inviscid flow. The temporal derivatives for the swdavariables, i.e. the free
surface elevation and the velocity potentiap is given by

&n =-0n-0¢+&1+0n-0n) (1)
- 1 -~ o~
dmz—gn—é@mrﬂw—w%l+ﬂn-mn% ()

wherel = [6d)]T, & = d,¢|,—p andg is the gravitational acceleration. In order
to integrate these equations in time, the vertical velooitythe surfaceo, must
be determined from the full potential inside the domain. Téleowing Laplace
equation along with boundary conditions uniquely definedtitl velocity potential

9=, z=n
0@+ 0,0=0, —h<z<n 3)
J.0+0h -Op=0, z=-—h,

GPU-accelerated Mixed-precision Strategy for Nonlineatét/\Waves 3

Whereh is the still water depth. Notice that the Laplace problemfishoee di-
mensions, whereas the surface time integration is only ofdwensions. Thus, the
computational effort to solve the discretized Laplace fob(3) is the most time
consuming part of a numerical solver for this problem. In filowing we focus
on the numerical approach to solve (3) efficiently on mange@PUs. In practice
we actually solve the so-callem-transformed version of (3), in order to avoid time
changing domains and variable finite difference coeffidémm approximating the
derivatives. See [10] or [7] for details on the transformegdagions.

2 Development of a Massively Parallel Wave Analysis Tool

The flexible-order finite difference scheme presented byskgplarup, Bingham,
and Lindberg [7] was originally implemented as a stand-alsgrial code. The tool
was referred to as OceanWave3D. In a recent proof-of-carstegy the algorith-
mic strategy for the OceanWave3D model was first improvedtaad a massively
parallel implementation was carried out and tested on desiB§U [8] with sig-
nificant performance improvements. The flexible-order dinlifference operators
was implemented as matrix-free compact stencil operatomsder to further mini-
mize the memory overhead of storing identical entries aitavg the extra index
tables required by traditional sparse matrix formats. Eigs replicated from [8]
and illustrates linear scalability of absolute timings las problem size increases
along with speedups relative to optimized single-threagdBtd) code. Recently, a
library for high-performance PDE solver proto-typing ha&eb established and the
OceanWave3D strategy was again transferred to this nearyibFhe existing ded-
icated GPU implementation has been used as a referencesuoeamo significant
performance loss using the new high-level library. A shaittioe of the library is
presented next.

2.1 A Library for Fast PDE Solver Proto-typing

Our generic high-performance C++ library is subject to angaevelopment and
improvements within our research group. The purpose isablerfast proto-typing
of efficient massively parallel solvers, inspired by the BEToolkit library [2]. Our
library facilitates massively parallelization through GRomputing and contains
components for various iterative strategies for solutiblame linear systems. The
goal has been to create a portable and reusable framewdrbuwibsing noticeable
performance — a common tradeoff between generality anctdesdi solvers.

The generic nature of our library enables the end users ity easnge solver
parts through type bindings. The backbone of the librarydemeric vector class.
It takes two template parameters to define the containeraigrey with a memory
space identifier, inspired by the Thrust and Cusp GPU libsd#, 3]. The following

s w N R

o A W NP

N

Stefan L. Glimberg, Allan P. Engsig-Karup, and Morten G .dgken

50

40

30

Speedup

20

0
10 100 10° N 16 100 108 160 100 10° 0 16 100 108
(a) Absolute timings. (b) Speedup relative to CPU (single thread).

Fig. 1 Scalability tests and performance comparisons in douldeigipn arithmetic for Quadro
FX 5800 (e —), GeForce GTX 480-A—), C2050 with ECC {H—) and C2050 without ECC
(—4-) versus CPU (single thread) code¥—). Sixth order spatial discretization employed. The
iterative defect correction method has been left-prec@rid with a Zebra Line Gauss-Seidel
V-cycle multigrid strategy on each architecture.

simple example illustrates how to set a vector type defimisioch that the program
uses the GPU for memory storage and computations.

/1 Make a type definition to determi ne the vector type of the comi ng program
typedef vector<float, devi ce_nenory> vector_type;

vector _type x(100); /1 Create vector x in GPU nmenory
vector_type y(100); /] Create vector y in GPU nenory
y.axpy(2.f,x); /] Calc. y = axx +y on the GPU

The above example might seem trivial, but the use of type iiefis can be
taken further, using so called type binders. Setting up e $urface solver looks
similar to the following code example, using the predefirypetbinder class poten-
tial_flow_solvertypes.

/1 Potential flow setup
typedef free_surface::potential _flow solver_types<

vector _type /'l Vector object
, solvers::nultigrid<multigrid_types> /1 Lapl ace sol ver
, integration::ERK4 /1 Tinme integrator

> potential _flow types;

Afterwards, the solver object is instantiated with thisayginder definition given
as template argument. The solver hereby implicitly knowshatessary types to
use within its own implementation. Consequently, partslwareated as building
blocks to make up the entire solver. If for example the usentsvéo use another
time integrator or Laplace solver, the corresponding linedichanged with an alter-
native implementation, either user specific or from thedijgritself. Notice that the
multigrid solver is a template class itself that dependsrmotlzer type binder, also
specified by the user. Concepts of template based progragmsnivell presented in
the book by Vandevoorde and Josulttis [12].

The Laplace equation (3) is solved with an iterative muidigpreconditioned de-
fect correction method. In practice, the defect correctimthod turns out to be as

© 0N O AW N R

GPU-accelerated Mixed-precision Strategy for Nonlineatét/\Waves 5

effective as a reference GMRES solver. Furthermore thectletarection method
has two important properties: i) Constant minimal memomtfoint. ii) Few syn-
chronization barriers. These two properties make it veinaetive from a parallel
point of view. A textbook recipe of the defect correction hwal is given in Algo-
rithm 1. This algorithm is implemented into our library ireteame generic way as

Algorithm 1: DC method for approximate solution 8k = b

1 Choose” /+ initial guess */
2 k=0

3 Repeat

4 rld =b—AxK /* high order defect =/
5 SolveM K = rl |+ preconditioner x/
6 Xkt — x4 5K /+ defect correction */
7 k=k+1

8 Until convergence ok > Kmax

previously described. Building the solver using a predefiype binder class could
look as follows, assuming that proper types for the vectatrix, and precondi-
tioner are set beforehand.

typedef sol vers::defect_correction_types<
vector_type
, matrix_type
, preconditioner_type> dc_types; /1 DC type binder
typedef sol vers::defect_correction<dc_types> dc_sol ver_type;

/1 Create solver, assune vectors (x,b) and matrices (A P) are already created

dc_sol ver _type solver(A); /| Create sol ver
sol ver.set _preconditioner(P); /1 Set preconditioner
sol ver. sol ve(x, b); /l Solve Ax = b

From building blocks in the library, we have set up a 2D timegmation solver
for the fully nonlinear free surface waves. The library hasld for most of the
needed components, such as the time integration scheraer §ml the linear sys-
tem, printing functionality and so on. The main functiobathat the user has to
deliver, is an implementation of the matrix-vector prodirotn the discretization
of (3), required to calculate the residual in line 4 of Algbm 1. Algorithmic effi-
ciency is achieved with a multigrid preconditioning stptéoased on a low-order
discretization of the linearized system matrix (see [7]) a&d-black Gauss-Seidel
smoothening. This smoother must also be made availabletothtigrid solver by
the user.

2.2 Improving Defect Correction with Mixed Precision

In order to further improve the nonlinear free surface solaenixed precision strat-
egy has recently been added to the defect correction schie#meepurpose of the

6 Stefan L. Glimberg, Allan P. Engsig-Karup, and Morten G .dgken

mixed precision algorithm is to reduce the overall compatetl and storage re-
quirements by introducing low (single) precision arithiogt

The advantage from a memory perspective is obvious: sirrgl@gion numbers
take up only half the storage of a double precision numbebi3%/s 64 bits). Thus,
storage and bandwidth requirements are halved. The cotignahdemands are
also reduced. However, this is somewhat more hardware depériMost modern
CPU architectures obtain twice the performance for singgeipion execution com-
pared to double precision, see [5]. On GPU architecturesdtation might be more
distinct. On a TESLA S1070 computing system, single prenisiperations are up
to twelve times faster.

As noted in [1], any refinement process is a candidate to heinefihn mixed
precision computations, since often only the refinemealfiteeeds to be in double
precision arithmetic. Rewriting the defect correctionestie from Algorithm 1 into
a single expression for iterative refinemenkait iterationk + 1 gives

X =M M (b — AXK)). (4)

Assuming that the iterative scheme converges towards tinet s®lution, the correc-
tion termM~1(b— Ax¥) reduces in magnitude for each iteration until an acceptable
accuracy threshold can be met. If batf and the correction term are in single pre-
cision, round off errors naturally occur earlier than theywd in double precision.
The trick is to calculate only the correction term in singteg@sion and do the up-
date in double precision. Since the correction term is agghimg zero, the values
are well represented in single precision and the doublaegioecupdate only suffer
from rounding errors when the correction approaches vaieas- 1016, Thus, we
get a double precision accurate solution, while being abl#ot parts of the calcu-
lations in single precision. Applying this technique to trefect correction scheme,
the preconditioning step in line 5 of Algorithm 1, is simplyeguted in pure single
precision arithmetics.

With this strategy we have been able to further improve theabgé/ave3D
model. Performance results for the mixed precision styatega Tesla C2050 are
givenin Fig. 2. The C2050 has a 2 : 1 ratio on the peak perfoceaor double pre-
cision vs. single precision. However, the algorithm is mgnmund, so we expect
the observed behavior to be caused by the 2 : 1 restrictiotn@miemory band-
width. As expected, a pure single precision iteration tagsroximately half the
time (x1.9 faster) for larger systems. The mixed precisivatsgy is however the
only one that would give a high precision solution and therethe only fair com-
parison to the double precision strategy. Roughly a speetixp.6 is achieved for
large enough systems. Absolute timings and relative spesedlithe Laplace solver
are depicted in Fig. 3. The double precision timings arenflijgoetter than the ones
previously presented in Fig. 1 from [8]. This is not surprgdy since the 3D finite
difference operations in [8] are more expensive than thef@®ations in the present
work. Still, we would expect an extension to 3D of the presatter to give results
in the same range as the dedicated 3D solver. Taking also itteslmprecision ex-

GPU-accelerated Mixed-precision Strategy for Nonlineatét/\Waves 7

1.9
1.8
1.7

S1.6
©
$15
o
n1.4
1.3
1.2

Me 10 10 RET T

Fig. 2 Speedups for a defect correction iteration using singleigian (— v —) and mixed precision
(— e —) relative to double precision. All timings are on a Tesla BRGPU.

tension into consideration, we expect a 3D solver to gaiuathe same xB extra
speedup as well.

10 90
80
10° 70
T 560
2ot @ 50
= [oR
= n 40
102 30
20
3 ; : : : 10 : ‘
Wie 10 10 o 10 100 100 10 1 1 10/
(a) Absolute timings. (b) Speedup relative to CPU (single thread).

Fig. 3 Scalability tests and performance comparisons on Tesl&CR0single precision{A—),
double precision(M-), mixed precision { e —), and CPU (single thread) code ¢—). Sixth
order spatial discretization employed. The iterative diefeorrection method has been left-
preconditioned with a Gauss-Seidel V-cycle multigrid t&tgg on each architecture.

3 Concluding Remarks

The potential flow equations describing fully nonlinearevavaves have been effi-
ciently solved and improved from previous work [8]. A higlggneric GPU-based
library has been developed, not only to solve the presenatems, but also a
broader range of PDEs that can be well discretized in a firfferdnce manner.
The library is still at an early state and under continuodglyelopment. We expect

8 Stefan L. Glimberg, Allan P. Engsig-Karup, and Morten G .dgken

that the library will ease future development of PDE sol¥ers variety of physical
problems and simulations. Results indicate that the §odaes not suffer from seri-
ous overhead, as performance results are comparable tistingxedicated solver
for the same model problem. Future work is to confirm thatitidécation is valid,
by assembling a full 3D solver using library components.

Furthermore we illustrated how to easily extend the defentection method in
order to utilize a fast mixed precision strategy, by commpytihe preconditioning
step in pure single precision arithmetics. This approagegyan additional xB
speedup on the Tesla C2050 GPU architecture. Combining tresailts we are
approaching almost two orders of magnitude in relative dppeompared to the
optimized single threaded CPU reference code from previauk [7].

Ongoing work is also concerned with large-scale modellingyhich the dis-
cretized equations does not fit into the memory of one GPU. Aalo decomposi-
tion strategy is thus necessary to decompose memory acrd8plenGPUSs. In this
case MPIis used for the communication between nodes. Thedop performance
of transferring artificial boundary information betweerdes is to be investigated
in future work.

References

1. Baboulin, M. and Buttarib, A. and Dongarra, J. and Kurzhlkand Langouc, J. and Langou,
J. and Luszczek, P. and Tomov, S.: Accelerating scientifispzgations with mixed precision
algorithms. Comp. Phys. Comri80, 25262533, (2009)

2. Balay, S. and Brown, J. and Buschelman, K. and Gropp, Wn@ Kaushik, D. and Knepley,
M. G. and Mclnnes, L. C. and Smith, B. F. and Zhang, H.: PET8csion 3.2. (2011)
http://www.mcs.anl.gov/petsc

3. Bell, N. and Garland, M.: Cusp: Generic Parallel Alganthfor Sparse Matrix and Graph
Computations, version 0.1.0. (2010)
http://cusp-library.googlecode.com

4. Bingham, H. B. and Zhang, H.: On the accuracy of finiteedéhce solutions for nonlinear
water waves. J. Engng. Math8, 211-228, (2007)

5. Buttari A. and Dongarra, J. and Langou, J. and Langou,d Laszczek, P. and Kurzak J.:
Mixed Precision lterative Refinement Techniques for theuah of Dense Linear Systems.
Int. J. Hi. Perf. Comp. App21, 457-466 (2007)

6. Engsig-Karup, A.P.: Efficient low-storage solution ofsterdy fully nonlinear water waves
using a defect correction method. Submitted for SIAM J. Somp. (2011)

7. Engsig-Karup, A.P. and Bingham, H.B. and Lindberg, O.:eficient flexible-order model
for 3D nonlinear water waves. J. Comp. Phg23, 2100-2118, (2009)

8. Engsig-Karup, A. P. and Madsen, M. G. and Glimberg, S. Lmassively parallel GPU-
accelerated model for analysis of fully nonlinear free acefwaves. Int. J. Num. Meth. Fluids.

2011

9. $—|obezock, J. and Bell, N.: Thrust: A Parallel Templaterhily, version 1.3.0. (2010)
http://www.meganewtons.com/

10. Li, B. and Fleming, C. A.: A three dimensional multigricdodel for fully nonlinear water
waves. Coast. Engng0, 235-258, (1997)

11. Martin, R. S. and Peters, G. and Wilkinson J. H.: Handb®ekes Linear Algebra Iterative
Refinement of the Solution of a Positive Definite System ofdigms. Num. Math8, 203—
216 (1966)

12. Vandevoorde, D. and Josuttis, N. M.: C++ Templates: Thm@ete Guide. Addison-Wesley
Professional, (2002)

