

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 20, 2017

A Fast GPU-accelerated Mixed-precision Strategy for Fully NonlinearWater Wave
Computations

Glimberg, Stefan Lemvig; Engsig-Karup, Allan Peter; Madsen, Morten G.

Published in:
Proceedings of ENUMATH 2011

Publication date:
2011

Link back to DTU Orbit

Citation (APA):
Glimberg, S. L., Engsig-Karup, A. P., & Madsen, M. G. (2011). A Fast GPU-accelerated Mixed-precision
Strategy for Fully NonlinearWater Wave Computations. In Proceedings of ENUMATH 2011 University of
Leicester.

http://orbit.dtu.dk/en/publications/a-fast-gpuaccelerated-mixedprecision-strategy-for-fully-nonlinearwater-wave-computations(043ddc1d-d111-4fe8-be12-cb9959378262).html

A Fast GPU-accelerated Mixed-precision
Strategy for Fully Nonlinear Water Wave
Computations

Stefan L. Glimberg, Allan P. Engsig-Karup, and Morten G. Madsen

Abstract We present performance results of a mixed-precision strategy developed
to improve a recently developed massively parallel GPU-accelerated tool for fast
and scalable simulation of unsteady fully nonlinear free surface water waves over
uneven depths (Engsig-Karup et.al. 2011). The underlying wave model is based on
a potential flow formulation, which requires efficient solution of a Laplace prob-
lem at large-scales. We report recent results on a new mixed-precision strategy for
efficient iterative high-order accurate and scalable solution of the Laplace problem
using a multigrid-preconditioned defect correction method. The improved strategy
improves the performance by exploiting architectural features of modern GPUs for
mixed precision computations and is tested in a recently developed generic library
for fast prototyping of PDE solvers. The new wave tool is applicable to solve and
analyze large-scale wave problems in coastal and offshore engineering.

1 Introduction

Recent development significantly improves the strategy proposed by Li & Fleming
in 1997 [10] to simulate fully nonlinear water waves. A flexible-order finite differ-
ence algorithm for solving the governing equations in two (Bingham & Zhang [4])
and three space dimensions (Engsig-Karup, Bingham & Lindberg [7]) enables ef-

Stefan L. Glimberg
Department of Informatics and Mathematical Modelling, Technical University of Denmark, 2800
Kgs Lyngby, Denmark, e-mail: slgl@imm.dtu.dk

Allan P. Engsig-Karup
Department of Informatics and Mathematical Modelling, Technical University of Denmark, 2800
Kgs Lyngby, Denmark, e-mail: apek@imm.dtu.dk

Morten G. Madsen
Department of Informatics and Mathematical Modelling, Technical University of Denmark, 2800
Kgs Lyngby, Denmark, e-mail: morten.gorm.madsen@gmail.com

1

2 Stefan L. Glimberg, Allan P. Engsig-Karup, and Morten G. Madsen

ficient, scalable and low-storage solution of the equations. Recent developments in
modern many-core hardware and programming tools for general-purpose scientific
computing, suggest that a combination could further improve the overall perfor-
mance.

In recent work [8], we have demonstrated that it is now possible to significantly
reduce the barriers for practical use of full potential flow theory as the modeling ba-
sis for efficient solution of coastal and offshore engineering problems. Our strategy
was to do proof-of-concept by utilizing modern Graphics Processing Units (GPUs)
for massively parallel computations using a heterogeneousCPU-GPU hardware
setup. Interestingly, such a hardware setup constitutes what can be considered an
affordable standard consumer desktop environment.

To establish the model as an efficient massively parallel tool we have both re-
designed and reimplemented the entire algorithm using a newly developed library
for PDE solver proto-typing. The library enables efficient utilization of allocated
hardware resources, targeting modern many-core GPUs. Algorithmic efficiency is
achieved by solving the computational bottleneck problem iteratively with a defect
correction method, preconditioned by a robust multigrid method. This strategy gives
more than one order of magnitude in both problem size and practical speedup (rela-
tive to optimized single-threaded CPU code).

1.1 Governing Equations

We present recent progress on the development of the OceanWave3D model[4, 7]. In
short, the flexible-order finite difference OceanWave3D model is based on a unified
potential flow formulation. These model equations can account for fully nonlinear
and dispersive waves within the breaking limit and under theassumption of irrota-
tional inviscid flow. The temporal derivatives for the surface variables, i.e. the free
surface elevationη and the velocity potential̃φ is given by

∂tη =−∇η ·∇φ̃ + ω̃(1+∇η ·∇η) (1)

∂t φ̃ =− gη −
1
2
(∇φ̃ ·∇φ̃ − ω̃2(1+∇η ·∇η)), (2)

where∇ = [∂x ∂y]
T , ω̃ = ∂zφ |z=η andg is the gravitational acceleration. In order

to integrate these equations in time, the vertical velocityon the surfaceω̃ , must
be determined from the full potential inside the domain. Thefollowing Laplace
equation along with boundary conditions uniquely defines the full velocity potential

φ = φ̃ , z = η

∇2φ + ∂zzφ =0, −h ≤ z < η (3)

∂zφ +∇h ·∇φ =0, z =−h,

GPU-accelerated Mixed-precision Strategy for Nonlinear Water Waves 3

Whereh is the still water depth. Notice that the Laplace problem is of three di-
mensions, whereas the surface time integration is only of two dimensions. Thus, the
computational effort to solve the discretized Laplace problem (3) is the most time
consuming part of a numerical solver for this problem. In thefollowing we focus
on the numerical approach to solve (3) efficiently on many-core GPUs. In practice
we actually solve the so-calledσ -transformed version of (3), in order to avoid time
changing domains and variable finite difference coefficients from approximating the
derivatives. See [10] or [7] for details on the transformed equations.

2 Development of a Massively Parallel Wave Analysis Tool

The flexible-order finite difference scheme presented by Engsig-Karup, Bingham,
and Lindberg [7] was originally implemented as a stand-alone serial code. The tool
was referred to as OceanWave3D. In a recent proof-of-concept study the algorith-
mic strategy for the OceanWave3D model was first improved andthen a massively
parallel implementation was carried out and tested on a single GPU [8] with sig-
nificant performance improvements. The flexible-order finite difference operators
was implemented as matrix-free compact stencil operators,in order to further mini-
mize the memory overhead of storing identical entries and avoiding the extra index
tables required by traditional sparse matrix formats. Fig.1 is replicated from [8]
and illustrates linear scalability of absolute timings as the problem size increases
along with speedups relative to optimized single-threadedCPU code. Recently, a
library for high-performance PDE solver proto-typing has been established and the
OceanWave3D strategy was again transferred to this new library. The existing ded-
icated GPU implementation has been used as a reference, to ensure no significant
performance loss using the new high-level library. A short outline of the library is
presented next.

2.1 A Library for Fast PDE Solver Proto-typing

Our generic high-performance C++ library is subject to ongoing development and
improvements within our research group. The purpose is to enable fast proto-typing
of efficient massively parallel solvers, inspired by the PETSc toolkit library [2]. Our
library facilitates massively parallelization through GPU computing and contains
components for various iterative strategies for solution of large linear systems. The
goal has been to create a portable and reusable framework without losing noticeable
performance – a common tradeoff between generality and dedicated solvers.

The generic nature of our library enables the end users to easily change solver
parts through type bindings. The backbone of the library is ageneric vector class.
It takes two template parameters to define the container typealong with a memory
space identifier, inspired by the Thrust and Cusp GPU libraries [9, 3]. The following

4 Stefan L. Glimberg, Allan P. Engsig-Karup, and Morten G. Madsen

T
im

e/
Ite

r
[s

]

n
103 104 105 106 107 10810−3

10−2

10−1

100

101

(a) Absolute timings.
n

S
pe

ed
up

103 104 105 106 107 108
0

10

20

30

40

50

(b) Speedup relative to CPU (single thread).

Fig. 1 Scalability tests and performance comparisons in double precision arithmetic for Quadro
FX 5800 (−•−), GeForce GTX 480 (−N−), C2050 with ECC (−�−) and C2050 without ECC
(−�−) versus CPU (single thread) code (−H−). Sixth order spatial discretization employed. The
iterative defect correction method has been left-preconditioned with a Zebra Line Gauss-Seidel
V-cycle multigrid strategy on each architecture.

simple example illustrates how to set a vector type definition such that the program
uses the GPU for memory storage and computations.

1 // Make a type definition to determine the vector type of the coming program
2 typedef vector<float,device_memory> vector_type;
3 vector_type x(100); // Create vector x in GPU memory
4 vector_type y(100); // Create vector y in GPU memory
5 y.axpy(2.f,x); // Calc. y = a*x + y on the GPU

The above example might seem trivial, but the use of type definitions can be
taken further, using so called type binders. Setting up our free surface solver looks
similar to the following code example, using the predefined type binder class poten-
tial flow solver types.

1 // Potential flow setup
2 typedef free_surface::potential_flow_solver_types<
3 vector_type // Vector object
4 , solvers::multigrid<multigrid_types> // Laplace solver
5 , integration::ERK4 // Time integrator
6 > potential_flow_types;

Afterwards, the solver object is instantiated with this type binder definition given
as template argument. The solver hereby implicitly knows all necessary types to
use within its own implementation. Consequently, parts canbe treated as building
blocks to make up the entire solver. If for example the user wants to use another
time integrator or Laplace solver, the corresponding line is exchanged with an alter-
native implementation, either user specific or from the library itself. Notice that the
multigrid solver is a template class itself that depends on another type binder, also
specified by the user. Concepts of template based programming is well presented in
the book by Vandevoorde and Josuttis [12].

The Laplace equation (3) is solved with an iterative multigrid-preconditioned de-
fect correction method. In practice, the defect correctionmethod turns out to be as

GPU-accelerated Mixed-precision Strategy for Nonlinear Water Waves 5

effective as a reference GMRES solver. Furthermore the defect correction method
has two important properties: i) Constant minimal memory footprint. ii) Few syn-
chronization barriers. These two properties make it very attractive from a parallel
point of view. A textbook recipe of the defect correction method is given in Algo-
rithm 1. This algorithm is implemented into our library in the same generic way as

Algorithm 1: DC method for approximate solution ofAx = b
1 Choosex[0] /* initial guess */
2 k = 0
3 Repeat
4 r[k] = b−Ax[k] /* high order defect */
5 SolveMδ [k] = r[k] /* preconditioner */
6 x[k+1] = x[k]+δ [k] /* defect correction */
7 k = k+1
8 Until convergence ork > kmax

previously described. Building the solver using a predefined type binder class could
look as follows, assuming that proper types for the vector, matrix, and precondi-
tioner are set beforehand.

1 typedef solvers::defect_correction_types<
2 vector_type
3 , matrix_type
4 , preconditioner_type> dc_types; // DC type binder
5 typedef solvers::defect_correction<dc_types> dc_solver_type;
6

7 // Create solver, assume vectors (x,b) and matrices (A,P) are already created
8 dc_solver_type solver(A); // Create solver
9 solver.set_preconditioner(P); // Set preconditioner

10 solver.solve(x, b); // Solve Ax = b

From building blocks in the library, we have set up a 2D time integration solver
for the fully nonlinear free surface waves. The library has tools for most of the
needed components, such as the time integration scheme, solver for the linear sys-
tem, printing functionality and so on. The main functionality that the user has to
deliver, is an implementation of the matrix-vector productfrom the discretization
of (3), required to calculate the residual in line 4 of Algorithm 1. Algorithmic effi-
ciency is achieved with a multigrid preconditioning strategy based on a low-order
discretization of the linearized system matrix (see [7]) and red-black Gauss-Seidel
smoothening. This smoother must also be made available to the multigrid solver by
the user.

2.2 Improving Defect Correction with Mixed Precision

In order to further improve the nonlinear free surface solver, a mixed precision strat-
egy has recently been added to the defect correction scheme.The purpose of the

6 Stefan L. Glimberg, Allan P. Engsig-Karup, and Morten G. Madsen

mixed precision algorithm is to reduce the overall computational and storage re-
quirements by introducing low (single) precision arithmetics.

The advantage from a memory perspective is obvious: single precision numbers
take up only half the storage of a double precision number (32bits vs 64 bits). Thus,
storage and bandwidth requirements are halved. The computational demands are
also reduced. However, this is somewhat more hardware dependent. Most modern
CPU architectures obtain twice the performance for single precision execution com-
pared to double precision, see [5]. On GPU architectures this relation might be more
distinct. On a TESLA S1070 computing system, single precision operations are up
to twelve times faster.

As noted in [1], any refinement process is a candidate to benefit from mixed
precision computations, since often only the refinement itself needs to be in double
precision arithmetic. Rewriting the defect correction scheme from Algorithm 1 into
a single expression for iterative refinement ofx at iterationk+1 gives

x[k+1] =x[k]+M−1(b−Ax[k]). (4)

Assuming that the iterative scheme converges towards the exact solution, the correc-
tion termM−1(b−Ax[k]) reduces in magnitude for each iteration until an acceptable
accuracy threshold can be met. If bothx[k] and the correction term are in single pre-
cision, round off errors naturally occur earlier than they would in double precision.
The trick is to calculate only the correction term in single precision and do the up-
date in double precision. Since the correction term is approaching zero, the values
are well represented in single precision and the double precision update only suffer
from rounding errors when the correction approaches valuesnear∼ 10−16. Thus, we
get a double precision accurate solution, while being able to do parts of the calcu-
lations in single precision. Applying this technique to thedefect correction scheme,
the preconditioning step in line 5 of Algorithm 1, is simply executed in pure single
precision arithmetics.

With this strategy we have been able to further improve the OceanWave3D
model. Performance results for the mixed precision strategy on a Tesla C2050 are
given in Fig. 2. The C2050 has a 2 : 1 ratio on the peak performance for double pre-
cision vs. single precision. However, the algorithm is memory bound, so we expect
the observed behavior to be caused by the 2 : 1 restriction on the memory band-
width. As expected, a pure single precision iteration takesapproximately half the
time (x1.9 faster) for larger systems. The mixed precision strategy is however the
only one that would give a high precision solution and therefore the only fair com-
parison to the double precision strategy. Roughly a speedupof x1.6 is achieved for
large enough systems. Absolute timings and relative speedups of the Laplace solver
are depicted in Fig. 3. The double precision timings are slightly better than the ones
previously presented in Fig. 1 from [8]. This is not surprisingly since the 3D finite
difference operations in [8] are more expensive than the 2D operations in the present
work. Still, we would expect an extension to 3D of the presentsolver to give results
in the same range as the dedicated 3D solver. Taking also the mixed precision ex-

GPU-accelerated Mixed-precision Strategy for Nonlinear Water Waves 7

n

S
pe

ed
up

103 104 105 106 107 1081.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Fig. 2 Speedups for a defect correction iteration using single precision (−H−) and mixed precision
(−•−) relative to double precision. All timings are on a Tesla C2050 GPU.

tension into consideration, we expect a 3D solver to gain about the same x1.6 extra
speedup as well.

n

T
im

e
[s

]

103 104 105 106 107 10810−3

10−2

10−1

100

101

(a) Absolute timings.
n

S
pe

ed
up

104 105 106 10710

20

30

40

50

60

70

80

90

(b) Speedup relative to CPU (single thread).

Fig. 3 Scalability tests and performance comparisons on Tesla C2050 in single precision (−N−),
double precision (−�−), mixed precision (−•−), and CPU (single thread) code (−H−). Sixth
order spatial discretization employed. The iterative defect correction method has been left-
preconditioned with a Gauss-Seidel V-cycle multigrid strategy on each architecture.

3 Concluding Remarks

The potential flow equations describing fully nonlinear water waves have been effi-
ciently solved and improved from previous work [8]. A highlygeneric GPU-based
library has been developed, not only to solve the present equations, but also a
broader range of PDEs that can be well discretized in a finite difference manner.
The library is still at an early state and under continuouslydevelopment. We expect

8 Stefan L. Glimberg, Allan P. Engsig-Karup, and Morten G. Madsen

that the library will ease future development of PDE solversfor a variety of physical
problems and simulations. Results indicate that the library does not suffer from seri-
ous overhead, as performance results are comparable to an existing dedicated solver
for the same model problem. Future work is to confirm that thisindication is valid,
by assembling a full 3D solver using library components.

Furthermore we illustrated how to easily extend the defect correction method in
order to utilize a fast mixed precision strategy, by computing the preconditioning
step in pure single precision arithmetics. This approach gives an additional x1.6
speedup on the Tesla C2050 GPU architecture. Combining these results we are
approaching almost two orders of magnitude in relative speedup compared to the
optimized single threaded CPU reference code from previouswork [7].

Ongoing work is also concerned with large-scale modelling,in which the dis-
cretized equations does not fit into the memory of one GPU. A domain decomposi-
tion strategy is thus necessary to decompose memory across multiple GPUs. In this
case MPI is used for the communication between nodes. The impact on performance
of transferring artificial boundary information between nodes is to be investigated
in future work.

References

1. Baboulin, M. and Buttarib, A. and Dongarra, J. and Kurzak,J. and Langouc, J. and Langou,
J. and Luszczek, P. and Tomov, S.: Accelerating scientific computations with mixed precision
algorithms. Comp. Phys. Comm.180, 25262533, (2009)

2. Balay, S. and Brown, J. and Buschelman, K. and Gropp, W. D. and Kaushik, D. and Knepley,
M. G. and McInnes, L. C. and Smith, B. F. and Zhang, H.: PETSc, version 3.2. (2011)
http://www.mcs.anl.gov/petsc

3. Bell, N. and Garland, M.: Cusp: Generic Parallel Algorithms for Sparse Matrix and Graph
Computations, version 0.1.0. (2010)
http://cusp-library.googlecode.com

4. Bingham, H. B. and Zhang, H.: On the accuracy of finite-difference solutions for nonlinear
water waves. J. Engng. Math.58, 211–228, (2007)

5. Buttari A. and Dongarra, J. and Langou, J. and Langou, J. and Luszczek, P. and Kurzak J.:
Mixed Precision Iterative Refinement Techniques for the Solution of Dense Linear Systems.
Int. J. Hi. Perf. Comp. App.21, 457–466 (2007)

6. Engsig-Karup, A.P.: Efficient low-storage solution of unsteady fully nonlinear water waves
using a defect correction method. Submitted for SIAM J. Sci.Comp. (2011)

7. Engsig-Karup, A.P. and Bingham, H.B. and Lindberg, O.: Anefficient flexible-order model
for 3D nonlinear water waves. J. Comp. Phys.228, 2100–2118, (2009)

8. Engsig-Karup, A. P. and Madsen, M. G. and Glimberg, S. L.: Amassively parallel GPU-
accelerated model for analysis of fully nonlinear free surface waves. Int. J. Num. Meth. Fluids.
(2011)

9. Hoberock, J. and Bell, N.: Thrust: A Parallel Template Library, version 1.3.0. (2010)
http://www.meganewtons.com/

10. Li, B. and Fleming, C. A.: A three dimensional multigrid model for fully nonlinear water
waves. Coast. Engng.30, 235–258, (1997)

11. Martin, R. S. and Peters, G. and Wilkinson J. H.: HandbookSeries Linear Algebra Iterative
Refinement of the Solution of a Positive Definite System of Equations. Num. Math.8, 203–
216 (1966)

12. Vandevoorde, D. and Josuttis, N. M.: C++ Templates: The Complete Guide. Addison-Wesley
Professional, (2002)

