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ABSTRACT: Infection caused by methicillin-resistant Staph-
ylococcus aureus (MRSA) is an increasing societal problem.
Typically, glycopeptide antibiotics are used in the treatment
of these infections. The most comprehensively studied gly-
copeptide antibiotic biosynthetic pathway is that of balhi-
mycin biosynthesis in Amycolatopsis balhimycina. The
balhimycin yield obtained by A. balhimycina is, however,
low and there is therefore a need to improve balhimycin
production. In this study, we performed genome sequenc-
ing, assembly and annotation analysis of A. balhimycina and
further used these annotated data to reconstruct a genome-
scale metabolic model for the organism. Here we generated
an almost complete A. balhimycina genome sequence com-
prising 10,562,587 base pairs assembled into 2,153 contigs.
The high GC-genome (�69%) includes 8,585 open reading
frames (ORFs). We used our integrative toolbox called
SEQTOR for functional annotation and then integrated
annotated data with biochemical and physiological infor-
mation available for this organism to reconstruct a genome-
scale metabolic model of A. balhimycina. The resulting
metabolic model contains 583 ORFs as protein encoding
genes (7% of the predicted 8,585 ORFs), 407 EC numbers,
647 metabolites and 1,363 metabolic reactions. During the
analysis of the metabolic model, linear, quadratic and evo-
lutionary programming algorithms using flux balance anal-
ysis (FBA), minimization of metabolic adjustment
(MOMA), and OptGene, respectively were applied as well
as phenotypic behavior and improved balhimycin produc-
tion were simulated. The A. balhimycina model shows a
good agreement between in silico data and experimental
data and also identifies key reactions associated with in-
creased balhimycin production. The reconstruction of the

genome-scale metabolic model of A. balhimycina serves as a
basis for physiological characterization. The model allows a
rational design of engineering strategies for increasing bal-
himycin production in A. balhimycina and glycopeptide
production in general.
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Introduction

Amycolatopsis balhimycina belongs to the actinomycetes
group of bacteria that encompass a wide range of antibiotics
producers, of which several are used for commercial
production of antibiotics. Actinomycetes are a group of
Gram-positive bacteria with a high GC content in their
genomic DNA and in recent years the genomes of several
actinomycetes have been sequenced (Bentley et al., 2002;
Oliynyk et al., 2007; Omura et al., 2001; Zhao et al., 2010).
With the many years of antibiotics use, the development of
resistant strains has evolved. Especially, methicillin-resistant
Staphylococcus aureus (MRSA) shows resistance to a wide
range of antibiotics which cause serious clinical problems
(Chamber and Deleo, 2009; Köck et al., 2010). Nowadays,
the antibiotics of last resort against MRSA infection are the
glycopeptide vancomycin and the lipoglycopeptide teico-
planin, which are both in clinical use. However, there have
so far been reported around ten isolated vancomycin-
resistant S. aureus (VRSA) strains (Chang et al., 2003;
Chamber and Deleo, 2009; Gunnarsson, 2004a; Pearson,
2002) and there is hence a need for novel antibiotics. Despite
more than a century of efforts to eradicate or control
bacterial pathogen resistances, infection remains a major
problem and a growing threat to the public health (Chamber
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and Deleo, 2009; Köck et al., 2010; Malabarba et al., 1997;
Süssmuth and Wohlleben, 2004). Thus, in Europe alone,
MRSA infection is estimated to affect more than 150,000
patients annually (Köck et al., 2010), and there is therefore
much interest in alternative glycopeptide antibiotics for
treatment of MRSA infections. The glycopeptide balhimycin
produced by A. balhimycina, which is very similar in its
structure and activity to vancomycin (Chen et al., 2001),
appears to be an attractive antibiotic (Pelzer et al., 1999)
since balhimycin shows higher activity towards anaerobic
bacteria (Nadkarni et al., 1994). Furthermore, the producing
bacterium (A. balhimycina) is amenable to genetic
manipulation, and novel optimized derivatives of the
complex molecule can therefore be generated by genetic
engineering (Pelzer et al., 1999; Wohlleben et al., 2009).
Balhimycin is consequently proposed as a target for future
glycopeptide antibiotic production.

Usually secondary metabolites, in particular antibiotics,
are produced at very low yields and often random
mutagenesis is applied to increase the yield towards the
target metabolite (Baltz, 2000). To improve the yield of the
balhimycin antibiotic production, we seek to use rational
and directed engineering of metabolic pathways using
genomics as a tool (Ayar-Kayali and Tarhan, 2010;
Gunnarsson et al., 2004b; Thykaer et al., 2010). In this
study, a low coverage draft sequence of the genome of
A. balhimycina with an approximately three-fold coverage
was generated by Sanger-Shotgun sequencing. This draft
sequence allowed us to perform sequence assembly and
annotation of A. balhimycina. A genome-scale metabolic
model was reconstructed based on the annotation data
which was integrated into pathway databases and com-
plemented by available literature on the physiology and
biochemistry of this organism. To comprehensively under-
stand the physiological characteristics of A. balhimycina, we
further used the developed model to simulate its phenotypic
behavior. Linear programming applied by flux balance
analysis (FBA) (Orth et al., 2010), quadratic programming
applied by minimization of metabolic adjustment
(MOMA), (Gertz and Wright, 2003) and evolutionary
programming applied by OptGene (Patil et al., 2005) were
used to simulate and predict the phenotypic behavior of
A. balhimycina as well as identify metabolic engineering
targets with the goal to increase the yield of balhimycin
production.

Materials and Methods

Genome Sequencing and Assembly

The genome sequence of A. balhimycina was generated by
Sanger-Shotgun sequencing (Fleischmann et al., 1995) of a
small insert library and end-sequencing of a large insert
cosmid library. Sequencing was performed by MWG-
Biotech AG, Ebersberg, Germany. The raw paired-end data
was assembled using the Phred/Phrap/Consed software

package (Ewing and Green, 1998a; Ewing et al., 1998b;
Gordon et al., 1998).

Genome Analysis and Annotation

The strategy of the genome analysis and annotation for the
A. balhimycina can be described as follows: initially, coding
regions were identified using the gene finder CRITICA
(Badger and Olsen, 1999) with standard parameters and
using three iterations. Homologues of the gene products in
each coding sequence were predicted with BLASTP
(Altschul et al., 1990) against the non-redundant protein
database NR. The predicted gene products of A. balhimycina
were then analyzed and annotated function by comparative
sequence alignment analysis against protein sequences from
related organisms, i.e., Amycolatopsis mediterranei strain
U32 (Zhao et al., 2010), Streptomyces coelicolor strain A3 (2)
(Bentley et al., 2002), Streptomyces avermitilis strain MA-
4680 (Omura et al., 2001), Saccharopolyspora erythraea
strain NRRL23338 (Oliynyk et al., 2007), Mycobacterium
tuberculosis strains H37RV (Cole et al., 1998) and CDC1551
(Fleischmann et al., 2002), and Corynebacterium glutamicum
strain ATCC 13032 (Kalinowski et al., 2003). Towards
functional assignment, we integrated multiple protein data-
bases and sequence analysis tools in the form of a toolbox
called SEQuence annotaTOR (SEQTOR). The toolbox in-
cludes Interproscan (Quevillon et al., 2005), Gene Ontology
in 2010 (The Gene Ontology Consortium, 2010), Pfam
(Finn et al., 2008), KEGG (Kanehisa, 2002; Kanehisa et al.,
2004), TIGRFAMs (Haft et al., 2003), Gene3D (Lees et al.,
2010), SUPERFAMILY (Gough and Chothia, 2002),
PROSITE (Sigrist et al., 2010), and PANTHER (Thomas
et al., 2003). Once our toolbox was used for functional
annotation, a prioritized list of potential candidate genes
encoding for enzyme functions was generated and then used
to reconstruct the metabolic network of A. balhimycina.

Reconstruction of a Genome-Scale Metabolic Network

The reconstruction of a genome-scale metabolic network
aimed at representing the whole metabolism of A.
balhimycina, which consists of primary catabolism of
carbohydrates, biosynthesis of nucleotides, lipids, amino
acids, cofactors and production of Gibbs free energy
required for biosynthesis, as well as of secondary metabo-
lism. Integration of different types of data is indispensable to
achieve a high-quality reconstruction (Henry et al., 2010). In
the reconstruction process, we first collected genes and
enzymes obtained from the genome analysis and annotation
step of A. balhimycina. Then, we linked genes and enzymes
to corresponding reactions via EC numbers. To do this, we
used the earlier related genome-scale metabolic model of
S. coelicolor as a template (Borodina et al., 2005). To further
extend reaction addition in the network reconstruction, we
used protein databases and biochemical pathway databases,
e.g., EFICAz (Tian et al., 2004), PRIAM (Claudel-Renard
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et al., 2003), BRENDA (Scheer et al., 2011), KEGG
(Kanehisa, 2002; Kanehisa et al., 2004), and MetaCyc
(Caspi et al., 2010). The resulting metabolic network
contained several gaps, which meant that there were a
number of metabolic reactions without corresponding genes
or enzymes. To reduce the number of gaps, we performed
gap filling by gene context analysis. This analysis was done
using the concept of gene order conservation (Osterman and
Overbeek, 2003). If a gene could still not be assigned
function based on this, the metabolic network reconstruc-
tion was carried out by manual curation based on the
literature. Here physiological data from the literature were
used to infer the presence of reactions, e.g., when there was
information of presence of a specific enzyme activity
involved in consumption of a given substrate or formation
of a given metabolic product, then the underlying reaction
was added to the network. Figure 1 shows an overall pipeline
for the reconstruction process of the genome-scale
metabolic network of A. balhimycina. During the recon-
struction process, the selection of reaction directionality,
transport reaction and metabolite name were also consid-
ered. Concerning directionality, we specified this for few
reactions where there was evidence from the biochemical
literature, e.g., key kinases in the glycolysis. We mainly
used KEGG (Kanehisa, 2002; Kanehisa et al., 2004) and
BRENDA (Scheer et al., 2011) as reference reaction direction
databases. For metabolite name, we used MetaCyc (Caspi
et al., 2010) in addition to KEGG and BRENDA (Kanehisa,
2002; Kanehisa et al., 2004; Scheer et al., 2011). The biomass
formation reaction is important for having a high-quality
metabolic model (Rocha et al., 2008), and for A. balhimycina
the so-called biomass equation was formulated based on the
macromolecular cell dry weight composition of Streptomyces
species because there was no information available on the

cell dry weight composition of A. balhimycina. The biomass
equation expresses the drain of building blocks into biomass
and takes into account the amount of growth associated
ATP. The references used to specify these equations are
summarized in Table I and further details are given in
Supplementary File 1. The balhimycin synthesis reactions
are another important part of the network. The biosynthesis
of balhimycin includes the synthesis of specific precursors
and many of the reactions to produce them are not
associated with an EC number. As vancomycin only differs
from balhimycin with respect to the glycosylation pattern,
the biosynthetic reactions were written based on KEGG
information (www.kegg.com) about the biosynthesis of
the vancomycin group antibiotics and on additional
literature available for balhimycin and vancomycin
biosynthesis.

Genome-scale metabolic network reconstruc�on

Data source/Tool

Analysis step

KEGG MetaCyc BRENDA

EFICAzPRIAM

Genome sequencing and 
assembly

NR

CRITICA

Phred/Phrap/
Consed

Genome analysis and 
annota�on

Gene 
predic�on

S. coelicolor 
metabolic model

Iden�fica�on of biochemical 
reac�on and metabolic pathway

Gene context 
analysis

Gap filling Literature 
cura�on

SEQTOR

Func�onal 
assignment

Genome Gene Enzyme Reac�on/Pathway Network

Sanger-Shotgun 
sequencing

Assembly process

Figure 1. Illustration of overall pipeline for the reconstruction process of the genome-scale metabolic network of A. balhimycina. Red boxes correspond to the analysis

steps—genome sequencing and assembly, genome analysis and annotation, and genome-scale metabolic network reconstruction. Blue boxes represent the data sources and

tools used in the reconstruction process. [Color figure can be seen in the online version of this article, available at http://wileyonlinelibrary.com/bit]

Table I. Biomass compositions of A. balhimycina. Note that the

measurements compiled from literature account for 91% of the cell dry

weight.

Biomass building

blocks Refs.

Mass

(g/gDW)

Protein Nielsen (1995) 0.412000

DNA Genome sequencing 0.036000

RNA Neidhardt et al. (1990) 0.167000

Phospholipids Wink et al. (2003) 0.027300

Triacylglycerols Wink et al. (2003) 0.018180

Peptidoglycan Borodina et al. (2005) 0.124770

Carbohydrates Borodina et al. (2005) 0.074860

Teichoic Acid Borodina et al. (2005) 0.049910

Total Shahab et al. (1996)

Olukoshi and Packter (1994);

Borodina et al. (2005)

0.910020
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Model Construction and Analysis

Once the metabolic network was reconstructed, it was
converted to a genome-scale metabolic model by imposing
flux balancing of all the metabolites. The resulting model
was analyzed using LINDO1 for flux balance analysis (FBA)
and object-oriented quadratic programming package (Gertz
and Wright, 2003) for minimization of metabolic adjust-
ment (MOMA) calculations. For reaction deletion analysis,
OptGene (Patil et al., 2005) was used aiming at the
optimization of balhimycin productivity (i.e., balhimycin
production� biomass production). FBA and MOMA were
used to compute the fitness of the in silico strains as reported
by Patil et al. (2005).

The A. balhimycina model is available in three formats
(Excel, BioOpt, and SBML) with metabolite name list in
Supplementary File 2. Besides, the A. balhimycina model is
provided in the BioMet Toolbox (www.sysbio.se/BioMet)
(Cvijovic et al., 2010), which it is available for use by
the systems biology and modeling research community. The
model syntax, e.g., BioOpt, and the format instructions are
described in the BioMet Toolbox.

Model Validation

For validation of the model, in silico A. balhimycina model
simulations were compared with experimental data and with
simulations of the S. coelicolor model (Borodina et al., 2005).
The first analysis step was to compare the model behavior
with experimental results of batch fermentation of
A. balhimycina. The model was evaluated by simulating
A. balhimycina cell growth on glucose and comparison of the
simulated data to experimentally determined growth rate and
biomass yield from experimental data (Poli, 2005; Thykaer
et al., 2010). Based on different glucose uptake rates according
to experimental values (Poli, 2005; Thykaer et al., 2010) and
free uptake of inorganic phosphorous, ammonia, oxygen and
ions as input data to the model, the flux distributions
corresponding to optimal growth were calculated by
maximizing the flux of reaction leading to biomass.

Concerning the energetic parameters of the
A. balhimycina model, i.e., ATP requirement for non-
growth associated purposes (mATP), ATP requirement for
synthesis of biomass from macromolecules (KATP) and the
operational ATP formation to oxygen consumption ratio
(P/O ratio), the model simulation was fitted with
experimental data obtained at a specific growth rate of
0.05 h�1 (Poli, 2005) with glucose as the sole carbon source.
The operational P/O ratio was assumed to be 1.5 (Nielsen,
1995), and the energetic parameters mATP and KATP

was hereby estimated to be 3.685mmol/gDW and
40mmol/gDW, respectively.

Besides A. balhimycina model simulations, we performed
a comparison with the S. coelicolor model under the same
condition of minimal medium and glucose uptake rate. The
comparison between these two models was carried out for
production of important precursor metabolites such as,

phosphoenolpyruvate, D-erythrose-4-phosphate, acetate,
malonyl-CoA, leucine, asparagine, tyrosine, prephenate
and b-hydroxytyrosine and essential amino acids. All the
simulations were made using the commercial optimization
package LINDO1.

Improvement of Balhimycin Biosynthesis

Before starting to do reaction deletion for improvement of
balhimycin production, the simulations were carried out to
calculate the theoretical optimal balhimycin production.
The simulations were carried out assuming minimal
medium in which the model could only take up inorganic
phosphorous, ammonia, oxygen, and ions. The main
substrate was glucose and the uptake rate selected enabled
a specific growth rate of 0.1 h�1 without antibiotic
production. In order to predict the theoretical productivity
(i.e., balhimycin production x biomass production), FBA
was used to compute the maximal balhimycin yield for
specific growth rates in a range between 0.01 and 0.09 h�1.
OptGene was set to use a population of 100 mutants
subjected to up 10 deletions during 500 generations, which
were estimated as suitable parameters (Patil et al., 2005), to
define a set of knockouts likely to result in an increased
antibiotic productivity. To reduce the time consumed on
reaction deletion analysis, the model was reduced to only
contain unique reactions (corresponding to reaction
deletion). Moreover, a set of essential reactions was defined
by identifying reactions that resulted in no growth due to a
single reaction deletion. After computing a set of possible
knockout reactions with OptGene, all combinations of
knockouts were tested using LINDO1 and the object-
oriented programming package.

Results and Discussion

Genome Sequencing

A low coverage draft sequence of the genome of
A. balhimycina with an approximately three-fold coverage
was generated based on Sanger-Shotgun sequencing (see
Materials and Methods). In total, 34,156,807 bases were
obtained in 53,213 shotgun reads and further sequences
resulted in an assembly into 2,153 contigs with a total
length of 10,562,587 nucleotides. The genome sequence of
A. balhimycina is registered at the European Nucleotide
sequence Archive (ENA) under the project ID 72785.

Analysis of A. balhimycina Genome

The A. balhimycina genome consists of a circular chromo-
some of 10,562,587 currently estimated base pairs (bp) with
an average GC content of 69.9% and 8,585 predicted open
reading frames (ORFs). These ORFs have an average length
of 308 bp (ranging from 15 to 3,075 bp). To analyze the
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A. balhimycina genome in terms of sequence similarity with
other related organisms, comparative sequence alignment
analysis was performed. All predicted gene products of
A. balhimycina were searched against protein sequences
from related organisms (see Materials and Methods).
As expected, we observed that A. balhimycina and
A. mediterranei has the largest number of orthologues
(i.e., 77.60% for one direction) (Fig. 2). Interestingly, the
analysis shows a very high percentage of homologous
protein sequences between A. balhimycina and S. coelicolor
A3 (2), and about 34.07% of the proteins are orthologues
between these two organisms. This suggests that S. coelicolor
A3 (2) is probably evolutionarily closer to A. balhimycina
than the other organisms considered in this investigation.
Besides, an analysis of homology within each the genome
was performed. As also shown in Figure 2, A. balhimycina
contains the largest number of paralogues (27.01%). For the
other related organisms, A. mediterranei U32, S. erythraea
NRRL23338, S. coelicolor A3 (2) and S. avermitilisMA-4680,
M. tuberculosis strains H37RV and CDC1551, C. glutamicum
ATCC 13032, the number of paralogues are found to be
25.28%, 24.06%, 24.19%, 21.70%, 14.54%, 16.26%, and
9.39%, respectively.

Linking Genes to Enzymes Towards Reconstruction of
Metabolic Network

Using the pipeline for reconstruction of a genome-scale
metabolic network from genome sequence data (see Fig. 1),

we generated a network for A. balhimycina. In the analysis
step of the pipeline, the protein sequences of A. balhimycina
were imported into a SEQuence annotaTOR (SEQTOR) as
our integrative toolbox (see Materials and Methods). Once
the protein sequences were annotated by SEQTOR (see
Supplementary File 3), we then extracted enzyme functions
involved in cellular metabolism, and passed on to the next
analysis step. This step involved a reconstruction of the
metabolic network, where enzymes were linked to reactions
via EC numbers. To perform this, we used the S. coelicolor
genome-scale metabolic model as a template network
(Borodina et al., 2005) because it is evolutionarily closer to
A. balhimycina than the other organisms (see Fig. 2). In
addition, we also used pathway databases such as, KEGG
(Kanehisa, 2002; Kanehisa et al., 2004), BRENDA (Scheer
et al., 2011), MetaCyc (Caspi et al., 2010), EFICAz (Tian
et al., 2004), and PRIAM (Claudel-Renard et al., 2003) for
formulation of biochemical reactions. The network gener-
ating in this way contained several gaps, and we therefore
performed gene context analysis and manual curation based
on the literature for filling the gaps.

Metabolic Network Characteristics of A. balhimycina

The reconstruction process resulted in a metabolic network
containing 583 ORFs as seen in Table II (see Supplementary
File 4 in the form of protein sequences). These ORFs linked
enzymes to metabolic reactions and catalyzed 1,200
reactions of which 634 were unique reactions, i.e., there
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Figure 2. Pairwise comparative BLAST matrix of protein sequences of A. balhimycina and closely related organisms. The figure shows how orthologues and paralogues

existed in the genome of A. balhimycina as well as in the genomes of other related organisms. BLASTP cut-off: E-value (<1 E� 30); % Coverage (>50); % Identity (>40). [Color figure

can be seen in the online version of this article, available at http://wileyonlinelibrary.com/bit]

1802 Biotechnology and Bioengineering, Vol. 109, No. 7, July, 2012



were 566 redundant reactions. The resulting network was
analyzed in terms of its topology and hereby a total of 163
gaps were identified. In the process of gap filling, we then
manually added the relevant reactions to eliminate existing
gaps (Supplementary File 2) in order to enable the model to
produce biomass building blocks, biomass and balhimycin,
to transport metabolites and to define a biological
meaningful respiratory chain. The reactions added for
metabolism, transport and balhimycin synthesis correspond
to 45% of the unassigned reactions and the remaining
reactions contribute mainly to amino acid and cofactor
synthesis. Transport reactions added were linked to the few
genes annotated as metabolite transporters. Alternatively,
transport reactions were added due to the necessity to enable
the model to secrete by-products and amino acids and to
take up amino acids or other nutrients from the medium.
The remaining reactions were added afterwards in order to
ensure that the cells could produce cofactors like coenzyme
A, acyl-carrier protein, NAD, menaquinone, and amino
acids. The amino acid synthesis was distributed into six
families and the most incomplete pathways in terms of gene
annotation belong to the families of aromatic amino acids
and histidine. From the total of 1,363 reactions presented in
the model, 1,267 were biochemical transformations and
96 were transport reactions generating a network of
647 metabolites in which 45 were external metabolites. A
comparison of the A. balhimycina and S. coelicolor models
shows that they share 363 reactions, which represent 57% of
the unique reactions present in the A. balhimycina model
(see Table II).

Experimental and In Silico Model Comparison

The validation of the model is a central step of genome-scale
modeling, and if model simulations agree with experimental
data, then the model can be applied for further prediction of
phenotypic behavior. Here we used experimental data on
biomass yield on glucose for comparison with model
simulations (see Fig. 3). The A. balhimycina model shows a

good agreement with experimental data (Poli, 2005; Thykaer
et al., 2010), but the model required lower glucose uptake
than the experimental data, in particular in comparison with
the data of Thykaer et al. (2010) (see Fig. 3). This deviation
can be explained by the fact that equations for biomass
and macromolecular compounds synthesis were based on
the macromolecular composition of other organisms (see
Table I).

Comparison of Model Simulations for A. balhimycina
and S. coelicolor

A comparison between the model simulations of
A. balhimycina and S. coelicolor was carried out under
minimal medium conditions (see Materials and Methods)
and glucose uptake rate of 0.711mmol/gDW/h (Poli, 2005).
Objective function in the FBA was maximizing biosynthesis
of important precursor metabolites, and the fluxes towards
these key metabolites were identified (directly related to the
yield on glucose as the glucose uptake rate was fixed in all
simulations). The key metabolites evaluated are all involved
in glycopeptide production: phosphoenolpyruvate, D-ery-
throse-4-phosphate, acetate, malonyl-CoA, leucine, aspara-
gine, tyrosine, prephenate, and b-hydroxytyrosine. This
analysis allowed for comparison of the stoichiometric
efficiency in production of these different metabolites in the
two organisms. From Figure 4A, it is evident that there are
no big differences between A. balhimycina and S. coelicolor
models. One of the main reasons is that both models shared
the reactions and the central carbon metabolism and the
biosynthesis of amino acids seems to be conserved between
the two organisms. It is, however, not surprising that there
are some differences between the two organisms. For
example, we found that the S. coelicolor model is not able to
produce b-hydroxytyrosine since it is a non-proteinogenic
amino acid which is one of the precursors for balhimycin
production (Puk et al., 2004; Recktenwald et al., 2002). In

Table II. Main characteristics of A. balhimycina network.

Network characteristics Numbers

ORFs 583

EC numbers 407

Metabolic reactions 1,363

Biochemical transformations 1,267

Transport reactions 96

Reactions with ORFs assignments 1,200

Reactions without ORFs assignments 163

Unique metabolic reactions 634

Metabolites 647

Internal metabolites 602

External metabolites 45

Comparative network

Reactions shared between S. coelicolor

and A. balhimycina models

363
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Figure 3. Comparison of experimental (blue) and in silico (red) yield of biomass

per glucose from different experiments. These experimental data were obtained from

different batch fermentations. Three batches data (Exp-1, Exp-2, and Exp-3) were

taken from Poli (2005) and one batch data (Exp-4) was taken from Thykaer et al. (2010).
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addition, there are some metabolites that show some
deviation, e.g., acetate and glycine. One of the reasons for
this deviation has to do with the fact that a part of glycolysis
is not operational due to the absence of 6-phosphofructo-
kinase in the annotated data of A. balhimycina. Adding these
missing reactions would probably make glycolysis fully
operational as all other enzymes are present and likely to be
active considering the high degree of conservation with
other organisms. Some metabolites like tyrosine and
prephenate have the same yields on glucose because their
synthesis is coupled. For example, prephenate is a tyrosine
precursor and the pathway therefore leads to tyrosine, and
the pathway is conserved between the two organisms
and consequently, the flux towards both metabolites
are the same. The fluxes towards phosphoenolpyruvate
and D-erythrose-4-phosphate have higher values than
towards prephenate synthesis because the synthesis of those
metabolites is associated with glucose catabolism. Therefore,
the pathways leading to these metabolites are shorter than
the ones for prephenate synthesis. Also, the production of
amino acids is predicted to be very similar with the two
models (Fig. 4, panel B). The good agreement is especially
found for amino acids involving shorter pathways than for
amino acids produced by long pathways. It is interesting
though that the stoichiometric efficiency is higher for
S. coelicolor, which is due to a more efficient energy
metabolism of this organism. The models were also

compared in terms of antibiotic yield. For this study, the
objective function was the production of actinorhodin or
calcium-dependent antibiotic in S. coelicolor and balhimycin
in A. balhimycina using the same glucose uptake rate
(Supplementary File 5). A. balhimycina has almost the same
theoretically maximum yield of balhimycin as S. coelicolor
when producing calcium-dependent antibiotic, but
S. coelicolor has a higher yield of actinorhodin.

Optimizing Balhimycin Production

To optimize balhimycin production, the maximum balhi-
mycin productivity was simulated with the metabolic
model. The antibiotic production was calculated for
different specific growth rates as illustrated in Figure 5,
and it is found that the maximum balhimycin production
is obtained for a specific growth rate of 0.05 h�1 at
a ‘‘productivity’’ of 0.00133mmol balhimycin/gDW/h2.
Reaction deletion analysis was carried out using OptGene
(Patil et al., 2005) within a population of 100 mutants
subjected to up to 10 deletions generated over 500
generations to identify possible gene deletions that resulted
in improved balhimycin synthesis. When FBA was used for
flux calculations, the simulations resulted in no balhimycin
production. This result is more likely because the concept
of FBA generally searches for an optimal solution that
maximizes the primary objective function, in this case
biomass growth. Synthesis of balhimycin requires consump-
tion of ATP and NADPH and maximization of growth
therefore leads to no production of balhimycin. Balhimycin
production would only be advantageous for cell growth if
there can be established redox coupling between catabolism
and the biosynthetic route during synthesis of the
intermediary metabolites with less energy requirement.
Alternatively, if the biomass production is coupled with
the antibiotic synthesis, for example, if a given byproduct
can be displaced through the antibiotic synthesis. To our
knowledge, there is no modeling method that allows finding
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the minimal set of gene knockout that changes the flux
coupling landscape towards the coupling of biomass
production with balhimycin production.

In contrast, when MOMA was used for flux calculations,
the solution space is searched for a solution that minimizes
the flux changes between the knockout strain and the
wild type. Since MOMA does not optimize for biomass
production, contrary to FBA, it allows the identification of
solutions producing secondary metabolites which are a
possible way to displace intermediary metabolites from
blocked routes. When MOMA was used for calculations,
OptGene could find gene deletion targets correspond to
11 reactions resulting in improved balhimycin production.
As seen in Table III, a set of 11 reactions was selected
for further calculation of the best reaction deletion
combination. An object-oriented quadratic programming
package was used to delete combinations of these 11
reactions starting from single reaction deletions until the all
11 reactions had been deleted. The highest productivity of
each deletion is plotted against the number of reactions
deleted as shown in Figure 6. These results show that
deleting more than five reactions does not lead to further
improvement in the productivity. We notice that the
deletion of five reactions shows the highest productivity (see
Fig. 6) and two combinations are identified.

These combinations differ in only one reaction. Thus,
in the first combination, the reactions deleted are
glucose-6-phosphate dehydrogenase with EC: 1.1.1.49
(Contig2081.orf19), malate synthase with EC: 2.3.3.9
(Contig1813.orf5), succinate-CoA ligase (ADP-forming)
with EC: 6.2.1.5 (Contig1478.orf1), thioredoxin-disulfide
reductase with EC: 1.8.1.9 (Contig1336.orf1) and histidine
transport (T_0042). In the second combination, the reaction
with EC: 4.1.3.1 (Contig1813.orf4) is deleted instead of
reaction of EC: 2.3.3.9 (Contig1813.orf5). From a biochemical
view point, these two combinations of gene deletion have the
same phenotype representations. Indeed, these two reactions,
catalyzed by isocitrate lyase (4.1.3.1) and malate synthase
(2.3.3.9), are both key reactions in the glyoxylate shunt and the
knockout of any of these enzymes lead to inactivation of this
metabolic pathway and prevent the consumption of acetyl-
CoA, which is one of the precursors of balhimycin.

The deletion of the reaction of EC: 1.1.1.49
(Contig2081.orf19) forces the model to produce NADPH
instead of NADH as the same reaction is present in the
model but with NADP as cofactor. The deletion of reactions
of EC: 4.1.3.1 (Contig1813.orf4) and EC: 2.3.3.9
(Contig1813.orf5) has the same impact in the model and
both stop the glyoxylate cycle. Regarding deleting reaction
with EC: 6.2.1.5 (Contig1478.orf1), this blocks the cyclic
function of the TCA cycle by preventing the transformation
of succinyl-CoA to succinate and CoA. However, the
production of succinate from 2-oxoglutarate can take place
through succinate semialdehyde combining the reactions
with EC: 2.6.1.19 (Contig1784.orf2) and EC: 1.2.1.16
(Contig1569.orf2 or Contig 1008.orf2). This path leads to
the production of NADH or NADPH, respectively, instead
of the ATP (EC: 6.2.1.5). In order to improve balhimycin
production, it can be concluded that the model has to
redirect the electrochemical energy present as NADPH
towards antibiotic production and reduce the growth rate by
decreasing the ATP production.

Conclusions

The genome sequencing and the annotation have
opened possibilities for comprehensive understanding of

Table III. Set of reactions taken from optimization with OptGene which improved balhimycin synthesis using MOMA for flux calculations.

ORF name/reaction name EC number Metabolic reaction

Contig1752.orf4 2.7.2.3 3-Phospho-D-glyceroyl phosphateþADP$ 3-Phospho-D-glycerateþATP

Contig2081.orf19 1.1.1.49 Alpha-D-Glucose 6-phosphateþNAD! D-Glucono-1,5-lactone 6-phosphateþNADH

Contig1813.orf5 2.3.3.9 Acetyl-CoAþGlyoxylate!CoAþMalate

Contig1813.orf4 4.1.3.1 Isocitrate!Glyoxylateþ Succinate

Contig1478.orf1 6.2.1.5 ADPþOrthophosphateþ Succinyl-CoA$ATPþ SuccinateþCoA

Contig1502.orf4 1.7.1.4 nitriteþ 3 NADH! 3 NADþNH3

Contig1336.orf1 1.8.1.9 Oxidized thioredoxinþNADPH!Reduced thioredoxinþNADP

G_0020 2.3.1.30 L-SerineþAcetyl-CoA$O-Acetyl-L-serineþCoA

Contig1939.orf4 1.3.99.3 3-Methylbutanoyl-CoAþmenaquinone! 3-methylcrotonyl-CoAþmenaquinol

Contig1562.orf2 1.2.1.9 D-Glyceraldehyde 3-phosphateþNADP!NADPHþ 3-Phospho-D-glycerate

T_0042 — L-Histidine! L-Histidine (external)þH (external)
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A. balhimycina at the systematic level. Here a genome-scale
metabolic model of A. balhimycina was reconstructed
consisting of 583 ORFs as protein encoding genes (7% of the
predicted 8,585 ORFs), 407 EC numbers, 647 metabolites
and 1,363 metabolic reactions. The A. balhimycina model
shows a good agreement between in silico data and
experimental data. The model was further used to identify
key reactions associated with increased balhimycin produc-
tion. The reaction deletion analysis carried out by OptGene
using MOMA as the framework for flux calculations in the
model revealed 11 reactions that could improve antibiotic
productivity when deleted. Two combinations of five
reactions deletions show improved antibiotic productivity.
Deletions of the candidate reactions force the model
to increase the NADPH production and reduce the
ATP production. The increase of NADPH can be used
for synthesis of antibiotic building blocks where an
increased flux through the pentose phosphate pathway in
A. balhimycina may also result in a higher activity of
the shikimate pathway, which has already proven to be
important in optimization of the balhimycin production
(Thykaer et al., 2010). Additionally, the decrease of ATP
production reduces the growth rate, and hereby allow for re-
directing building blocks towards antibiotic production. As
described above, A. balhimycina has interesting perspectives
as cell factory for production of novel glycopeptides.
This organism has already been shown to be genetically
assessable and it may therefore be used for production of
novel antibiotics. Thus, the genome-scale metabolic model
presented in this work represents a valuable resource on the
metabolism of an important glycopeptide producing
bacterium and this may allow for identification of novel
metabolic engineering strategies for improving the produc-
tion of this important class of antibiotics in the future.
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Wohlleben W, Stegmann E, Sübmuth RD. 2009. Molecular genetic

approaches to analyze glycopeptide biosynthesis. Methods Enzymol

458:459–486.

Zhao W, Zhong Y, Yuan H, Wang J, Zheng H, Wang Y, Cen X, Xu F, Bai J,

Han X, Lu G, Zhu Y, Shao Z, Yan H, Li C, Peng N, Zhang Z, Zhang Y,

Lin W, Fan Y, Qin Z, Hu Y, Zhu B, Wang S, Ding X, Zhao GP. 2010.

Complete genome sequence of the rifamycin SV-producing Amycola-

topsis mediterranei U32 revealed its genetic characteristics in phylogeny

and metabolism. Cell Res 20:1096–1108.

Vongsangnak et al.: Metabolic Model of Amycolatopsis balhimycina 1807

Biotechnology and Bioengineering


