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Amorphous-LaAlO3/SrTiO3 interfaces exhibit metallic conductivity similar to those found for the

extensively studied crystalline-LaAlO3/SrTiO3 interfaces. Here, we investigate the conductivity of

the amorphous-LaAlO3/SrTiO3 interfaces grown in different pressures of O2 and Ar background

gases. During the deposition, the LaAlO3 ablation plume is also studied, in situ, by fast photography

and space-resolved optical emission spectroscopy. An interesting correlation between interfacial

conductivity and kinetic energy of the Al atoms in the plume is observed: to assure conducting

interfaces of amorphous-LaAlO3/SrTiO3, the kinetic energy of Al should be higher than 1 eV. Our

findings add further insights on mechanisms leading to interfacial conductivity in SrTiO3-based oxide

heterostructures. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4727905]

Complex oxides heterostructures have been extensively

investigated during the last decade due to the variety of in-

triguing phenomena occurring at their interface.1–3 The high-

mobility electron gas formed at the interface between a polar

LaAlO3 (LAO) film and a non-polar TiO2-terminated SrTiO3

(STO) substrate triggered a number of investigations on

the transport properties of interfaces based on epitaxial polar

oxide thin films.4 More recently, it has been demonstrated that

metallic interfaces also can be realized by deposition of insu-

lating overlayers of amorphous thin films of LAO, STO,

yttria-stabilized zirconia (YSZ), and CaHfO3 on STO single

crystal substrates.5,6 Interestingly, all these amorphous films

were grown by pulsed laser deposition (PLD), and a strong de-

pendence of their conducting properties on the deposition pa-

rameters, especially the background oxygen pressure, was

observed.5 The presence of growth-induced oxygen vacancies

in the STO substrate was ascertained as the dominant cause

for the interfacial conductivity of these amorphous/crystalline

oxide heterostructures. In particular, Chen et al. suggested a

mechanism where oxygen vacancies in the STO substrate

originate from an outward diffusion of oxygen from the sub-

strate to the oxygen-deficient amorphous overlayer.5 This

mechanism is driven by surface redox-reactions involving

specific chemical species of the ablation plume with high oxy-

gen affinity. The observation of an insulating interface when

an amorphous La7/8Sr1/8MnO3 (LSMO) film is deposited on

STO supports a scenario in which the plume chemical compo-

sition directly affects the conducting properties of the amor-

phous STO-based heterostructures.5 Furthermore, conducting

interfaces were only observed when depositing at O2 pressures

below 10�2 mbar, which suggests that the kinetic energy of

the ablated species may also play a nontrivial role in the inter-

facial conductivity. For the film deposition in oxygen, the O2

background pressure determines the kinetic energy of the

ablated species,7,8 apart from their oxidation degree.8–10 The

individual role of kinetic energy and degree of oxidation is

thus a priori unclear. The two effects can, however, be sepa-

rated by deposition in an inert gas, where the kinetic energy of

the ablated species can be modified without resulting in signif-

icant oxidation of the plume species.

Here, we report the transport properties of heterostruc-

tures produced by deposition of an amorphous LAO (a-LAO)

film on a STO substrate at different background pressures of

O2 and Ar, while the LAO ablation plume dynamics and com-

position is determined in situ. Our experimental findings show

an interesting correlation between the interfacial conductivity

and the kinetic energy of the species impinging on the sub-

strate, thus adding further insights on mechanisms leading to

the interfacial conductivity.

The a-LAO/STO samples were grown at room temperature

(RT), both in Ar and O2 using a KrF excimer laser (k¼ 248 nm)

with a repetition rate of 1 Hz at a fluence of 2.0 J cm�2. The tar-

get-to-substrate distance was fixed at 4.5 cm. The interfacial

conductivity was characterized as described elsewhere.5 During

deposition, the LAO ablation plume dynamics and composition

were investigated both in Ar and O2 by exploiting fast intensi-

fied-charge-coupled device (ICCD) imaging and time- and

space-resolved optical emission spectroscopy (OES).7,8 While

these techniques only monitor optically active species, they pro-

vide a reliable description of the influence of various experimen-

tal parameters on plume dynamics and composition. This

description is also consistent with the results of other different

complementary techniques,11 e.g., ion probe and time-resolved

optical emission spectroscopy, which provide only local

information.

Fig. 1 reports the RT sheet conductance Gs of a-LAO/

STO samples as a function of the background gas pressure, p,

for both Ar and O2. Metallic interfaces are formed for

p� 10�3 mbar in both types of background gases, whereas at

p¼ 10�2 mbar the a-LAO/STO interfaces are insulating for

O2 but remains conducting for Ar. Insulating samples in Ar

are only observed for p� 10�1 mbar. Therefore, the transitiona)Electronic mail: nipr@dtu.dk.
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from a metallic to an insulating behavior is different for O2

and Ar background. This difference may result from the inher-

ent difference of the kinetic energy or the oxidation degree of

the ablated species between the two background gases. There-

fore, it can shed light on mechanisms contributing to the inter-

facial conductivity of a-LAO/STO.

In the following, an experimental analysis of the LAO

plume in Ar and O2 is carried out with the aim to get valuable

information on its expansion dynamics and composition.

Figs. 2(a) and 2(b) (left column) show typical two-

dimensional (2D) images of the LAO plume emission at a

delay of s¼ 3.3 ls after the laser pulse for deposition in O2

and Ar, respectively, at three different values of the pressure p
(10�3, 10�2, and 10�1 mbar). The corresponding spatially

resolved one-dimensional (1D) spectra of the plume emission,

in the range of �370-630 nm, are also shown in the right col-

umns of Fig. 2. The data at 10�3 mbar are representative of

the plume features registered at lower pressure. The 2D

images in Fig. 2 show that the LAO plume propagation dy-

namics is strongly affected by the background gas pressure.

By increasing the pressure from 10�3 to 10�1 mbar, the plume

becomes more confined, resulting in a progressive reduction

of its length and variation of its shape. Both for Ar and O2,

10�2 mbar represents the pressure corresponding to the cross-

over from a free (10�3 mbar) to a braked (10�1 mbar) plume

expansion. In both gases, the spectra show characteristic emis-

sion from La and Al neutrals, as well as LaO diatomic

oxides.12,13 As expected, the background gas affects the plume

composition in different ways.

Considering first the O2 reactive gas, oxidation of the

plume occurs as a consequence of gas-phase reactions

favored by the effective dissociation of oxygen molecules

when the plume follows a shock-wave-like expansion regime

at larger pressures.7,14 The specific reactivity of the involved

cations seems also to influence the LAO plume chemistry.

The reaction of La with oxygen is highly exothermic and

lanthanum-oxides are effectively produced in electronically

excited states, as indeed observed in the spectra of Fig. 2(a).

On the contrary, no significant emission from Al-oxides is

observed. This is in agreement with our previous reports

evidencing the prevalence of LaO formation during PLD of

La-containing complex oxides in oxygen ambient gas.7,8

The spectra of Fig. 2(a) clearly indicate that the forma-

tion of LaO molecules in the plume is progressively pro-

moted as the O2 pressure increases. At p¼ 10�3 mbar the

plume emission mainly comes from Al and La atomic spe-

cies. However, the emission intensity of LaO significantly

increases at p¼ 10�2 mbar, eventually becoming dominant at

10�1 mbar, while the emission from La reduces correspondingly.
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FIG. 1. a-LAO/STO interface sheet conductance, Gs, as a function of

the background gas pressure, p, for O2 (blue dots) and Ar (red diamonds).

The dash-dot lines are guide for the eye. The dotted line corresponds to the

detection limit of the instrument.

FIG. 2. 2D images (left column) and corresponding 1D spectra (right col-

umn) of the LAO plume emission in (a) oxygen and (b) argon background

gases, acquired at a delay s¼ 3.3 ls after the laser pulse, for three different

oxygen pressures: 10�3 mbar (lower panels), 10�2 mbar (central panels), and

10�1 mbar (upper panels). The plume propagation direction is along the

z-axis, and z¼ 0 marks the position of the target surface, while the x-axis is

parallel to the target surface. To facilitate the comparison among images and

spectra, the intensity is multiplied by an appropriate factor (shown in paren-

thesis in each panel). The labels in each upper right spectrum show the

assignment of the most intense emission features.
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Moreover, Al emission is always present. It has been shown

earlier that the emission intensity ratio between a metal mon-

oxide, XO*, and its metallic element, X*, provides a useful,

reliable method to follow the plume oxidation as a result of

the interaction with the O2 background gas.9,10 Variation of

the [LaO*]/[La*] emission intensity ratio close to the sub-

strate as a function of the pressure p is reported in Table I.

The data confirm the progressive enhancement of the oxi-

dized species in the plume as p increases. At 10�1 mbar the

plume propagation is strongly braked and eventually stopped

at a distance of �20 mm from the target. Therefore, the

plume species arrive at the substrate only through diffusion

in the background gas.15 In this last case, the [LaO*]/[La*]

emission intensity ratio close to the stopping regime was

evaluated and reported in Table I.

In the inert Ar gas, a distinctly different variation of the

plume spectra with pressure is observed (see Fig. 2(b) and

Table I). In this case, the pressure variation of the plume spe-

cies emission is mainly related to the confining effect of the

background gas. At p¼ 10�3 mbar of Ar, both the emission

spectrum and the [LaO*]/[La*] emission intensity ratio are

very similar to those observed in O2. This is a consequence of

the reduced interaction with the background gas. For larger

pressures, the plume emission in Ar is mainly due to atomic

species, meanwhile the LaO emission intensity remains com-

paratively rather weak. Therefore, the �3� larger values of

the [LaO*]/[La*] emission intensity observed in O2 is due to

the gas-phase oxidation processes occurring during interaction

between the plume and the background gas.

During PLD growth of the LAO overlayer in O2 ambient

gas, both gas-phase and surface reactions will be important

for sample oxidation. Our observations indicate that in O2

the LaO formation through gas-phase reactions represents a

progressively more important channel of oxygen incorpora-

tion in the a-LAO growing film as the pressure increases,

which is indeed not the case for the Ar background. This piv-

otal difference explains the transition to insulating interfaces

observed in O2 already at p¼ 10�2 mbar (see in Fig. 1).

According to Ref. 5, the interfacial conductivity of the a-

LAO/STO samples is attributed to the formation of oxygen

vacancies in the STO substrate during the deposition. The

deposition of a well-oxygenated a-LAO overlayer at such a

pressure limits the oxygen outward diffusion from the STO

substrate. In Ar, the a-LAO overlayer is always oxygen defi-

cient. Therefore, the sharp transition from conducting to

insulating interfaces, occurring at p� 10�1 mbar, cannot be

ascribed to the degree of oxidation. Instead, the transition

clearly indicates that the plume dynamics might play an im-

portant role in the formation of oxygen vacancies in the STO

substrate and hence for the interface conductivity. Moreover,

the observation of a conducting behavior of a-LAO/STO

interfaces and an insulating behavior of a-LSMO/STO, in

the same experimental conditions,5 suggests that the redox

reactions mainly involve Al, rather than La for the LAO/

STO system, as a consequence of its higher reactivity at the

substrate surface.5,16

By tracking the front edge of the plume species from a

sequence of images such as those in Fig. 2,7,8 the maximum

kinetic energy, KEmax, of the species at the substrate position

was estimated at each pressure. As discussed above, it is of

special concern to follow the pressure variation of KEmax

for the Al atoms reaching the substrate. This is shown in

Figs. 3(a) and 3(b), where the interfacial sheet conductance Gs

of the a-LAO/STO heterostuctures is also reported in each

panel to facilitate the analysis. The kinetic energy of La and

LaO follows a similar trend as a function of the pressure, but

it is generally about a factor of 5 higher.

In Ar [see Fig. 3(a)], the maximal kinetic energy is �15 eV

at p� 10�4 mbar and reduces slightly as the pressure increases

up to p �10�3 mbar. Then, a fast decay of KEmax is observed

as the pressure increases further. At p� 6� 10�2 mbar, the

plume attains a stopping regime over a length shorter than

the target-to-substrate distance, and the kinetic energy of the

ablated species reduces to the room temperature thermal energy

(1/40 eV). The sheet conductance, Gs, follows a rather similar

dependence. At p� 1.5� 10�2 mbar, it only reduces slightly

with respect to the value observed at lower pressures

(p� 10�3 mbar), but eventually it turns to insulating as p further

increases. In particular, passing from p� 1.5� 10�2 mbar to

p� 0.1 mbar, a transition from a metallic to an insulating

TABLE I. Variation of the [LaO*]/[La*] emission intensity ratio with pres-

sure, p, at a distance of �40 mm from the target surface. The data at

10�4 mbar in oxygen is taken as reference and its value is put equal to 1.0.

The intensity ratio at 10�1 mbar is evaluated at the plume stopping distance

of �20 mm from the target surface.

[LaO*]/[La*]

p (mbar) O2 Ar

10�4 1.0a 0.98

10�3 1.1 0.99

10�2 3.5 1.2

10�1 5.9b 1.8b

aThe emission intensity ratio in O2 at 10�4 mbar was considered as reference

and put equal to 1.0.
bAt 10�1 mbar the plume is stopped. The reported values refer to a distance

of 25 mm from the target surface.
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FIG. 3. Maximum kinetic energy of the Al atoms, KEmax, as a function of

the background gas pressure, p, for Ar (top panel, hexagons) and O2 (bottom

panel, triangles). In each panel, the dependence of sheet conductance, Gs, on

p for the a-LAO/STO heterostructures deposited in Ar (top panel, rhombi)

and O2 (bottom panel, dots) is also reported. Note that the lower limits for

the sheet conductance and the maximum kinetic energy are set to 10�9 X�1

(i.e., the detection limit for the transport measurements) and 1/40 eV (i.e.,

the thermal energy available at room temperature), respectively.
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behavior occurs in correspondence to a reduction of KEmax

below�1 eV. This, in turn, suggests that the mechanism of oxy-

gen outward diffusion, from the STO substrate to the oxygen-

deficient a-LAO overlayer,5 needs a minimum kinetic energy of

the impinging Al atoms to activate the redox reactions at the

interface.

In O2, a rather similar dependence of KEmax with the

pressure is observed, but the interface is already insulating at

p� 10�2 mbar, although O2 and Ar are almost equally effec-

tive in braking the plume.15 This is a consequence of the

concurrent effects of a progressive increase of plume oxida-

tion and a simultaneous decrease of KEmax. This leads to an

enhancement of the oxidation degree of the a-LAO overlayer

and, at the same time, to a greatly reduced effectiveness of

the surface redox reactions. This scenario explains the differ-

ent values of O2 and Ar pressure at which insulating interfa-

ces start to be observed.

The observations discussed above suggest that both the

oxygen content of the a-LAO overlayer and the kinetic

energy of the incoming Al atoms play an important role in

the formation of an electron gas at the a-LAO/STO interface.

Moreover, the different pressure dependence of the hetero-

structures realized in Ar and O2 indicates the existence of a

mechanism which enhances the kinetics of redox-processes

occurring at the STO surface. The effectiveness of such a

mechanism becomes hindered when the energy supplied by

the impinging Al atoms is reduced below a threshold value

of the order of �1 eV. This estimate is fairly consistent with

experimentally determined values of 0.6 eV and 0.8 eV,17,18

as well as with theoretical predictions based on density func-

tional theory (DFT) calculations,19,20 for the activation bar-

riers needed to move neutral oxygen in bulk STO. Therefore

our findings may support the following scenario (see Fig. 4):

during RT deposition, the reduction of the STO by interfacial

redox-reaction may be kinetically inhibited by the mass

transport of oxygen. Nevertheless, the impact of fast oxygen-

deficient species (�1 eV), inherent to an energetic deposition

process like PLD, can significantly alter the kinetics of the

redox-reactions with the STO substrate, thus favoring the

formation of the electron gas at the interface between the

amorphous overlayer and the STO substrate.

In conclusion, we studied the transport properties of a-
LAO/STO heterostuctures grown by PLD at RT as well as

the properties of the ablation plume dynamics and composi-

tion, in different background pressures of O2 and Ar. Our

results show a striking correlation between kinetic energy of

the Al species impinging on the substrate and interface con-

ductivity of LAO/STO. This adds further insights on mecha-

nisms leading to the interfacial conductivity observed in

complex oxide heterostructures based on amorphous over-

layers on STO.5 Our experimental findings support a mecha-

nism in which the formation of oxygen vacancies is favored

by redox-reactions at the interface triggered by the arrival of

energetic plume species with high oxygen-affinity.
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