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Preface

Enormous amounts of seaweed resource still remain unexploited. Examining new applications of

this unexploited seaweed by developing state of the art solutions; and innovation of seaweed

products are the primary interest and motivation of this PhD study.

The PhD work was initiated at the Department of System Biology, Technical University of Denmark

(DTU) and was completed at Center for Bioprocess Engineering (BioEng), Department of Chemical

and Biochemical Engineering System Biology, Technical University of Denmark (DTU), Lyngby

Denmark. The main research and experimental activities were performed in BioEng laboratory

facilities located at Bldg. 227 DTU Søltoft Plads, Kgs. Lyngby. In fulfillment of the PhD programme

various courses, seminars, conference participations and research activities were taken both

locally and internationally. External research activity was also accomplished at School of Allied

Health Sciences, Kitasato University, Sagamihara, Kanagawa, Japan.

In this PhD thesis, published works are cited and the chapters are based on published research and

scientific papers completed by the author during the PhD study:

Chapter 1 is an introduction to the state of the art FCSP methods. It also outlines the problems,

hypotheses, and core objectives of this PhD study. This chapter provides an overall outline of

different scientific investigations and research activities in the form of project phases.

Chapter 2 is based on Paper 1, which highlights FCSP structure function relationships and

extraction methods. It also includes an overview of seaweed potentials based on recent

development and reports from published journals.

Chapter 3 is about optimized single step extraction of FCSPs based on Paper 2. This chapter

provides an in depth investigation of the influence of different extraction parameters on the

chemical nature and structural features of FCSPs.

Chapter 4 shows the FCSP bioactivity. The anti proliferative and immune response activity of

fucoidan extracted from Sargassum sp. using minimal processes based on Papers 3 and 4 is also

presented.
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Chapter 5 is based on Paper 5. Successful exploitation of seaweed for commercial applications is

accomplished provided that growth parameters are optimized; hence, growth and nutrient

assimilation monitoring of seaweed has also been the subject of this study using U. lactuca

seaweed as a model.

Chapter 6 contains the final remarks about the present work. It also gives some future

perspectives and prospective research areas.

This whole PhD study was undertaken with superior guidance and supervision of Prof. Anne S.

Meyer, head of Center for Bioprocess Engineering and tireless encouragement of Prof. Jørn

Dalgaard Mikkelsen, Center for Bioprocess Engineering as co supervisor. Moreover, the diligent

assistance and supervision of Dr. Hiroko Maruyama and Dr. Hidezaku Tamauchi during my research

work in Kitasato University, Kanagawa Japan was so beneficial for the advancement of this PhD

study.

The PhD project was fully financed by the Technical University of Denmark (DTU) for a period from

March 2008 to October 2011.

This thesis is submitted for the fulfillment of the PhD degree requirements at Technical University

of Denmark.

Marcel Tutor Ale
Technical University of Denmark (DTU)
February 2012
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Abstract

Marine seaweed that is washed up on the coastline is a nuisance as its degradation produces a foul

a smell and generates waste problems. Exploitation of coastline polluting seaweeds such as

Sargassum sp., Ulva sp., and other beach cast seaweed species for various commercial

applications will generate new valuable products that may help lessen coastal pollution by

seaweeds and create new seaweed based resources. Thus, utilization of these natural resources is

of great importance. The objectives of this PhD study were to develop a technology to extract

bioactive compounds from nuisance brown seaweeds, and investigate their bioactivity. To this

effect, designed optimized extraction of fucose containing sulfated polysaccharides (FCSPs) and/or

crude fucoidan from brown seaweed were performed, and the bioactivity of the isolated FCSPs

was investigated. Moreover, to assess the potential of seaweed to assimilate nitrogen based

nutrients, a technology for accurate monitoring of differential seaweed growth responses to

nutrient assimilation was also developed.

Fucoidan is a term used to describe a class of sulfated polysaccharides extracted from brown

seaweed, which contains substantial amounts of fucose; varying amounts of galactose, xylose, and

glucuronic acid; and differing glycosidic linkages, and are variously substituted with sulfate and

acetyl groups and side branches containing fucose or other glycosyl units. These FCSPs principally

consist of a backbone of (1 3) and/or (1 4) linked L fucopyranose residues that may be

substituted with sulfate (SO3 ) on C 2, C 3, or C 4 and acetyl groups at C 4 on the main chain or

may have short fucoside side chains that are usually linked from the O 4 of one or several of the

fucopyranose backbone residues. FCSPs are known to exhibit crucial biological activities including

anti tumor activity. Although differently extracted, purified, fucose rich, modified fucoidans have

been reported to exert bioactive properties such as anti coagulant and enhance immune response

activity, few studies have investigated the bioactivity of unfractionated FCSPs, notably FCSPs

extracted using milder and fewer processing steps. Crude fucoidan from Sargassum sp. and Fucus

vesiculosus were examined for their bioactivity against lung and skin cancer cell lines in both in

vitro and in vivo studies. This study showed that unfractionated FCSPs hinder the in vitro

proliferation of Lewis lung carcinoma and melanoma B16 cell lines by induction of apoptosis.

Moreover, the anti tumor activity of crude fucoidan seems to be associated with an enhanced

immune response as depicted by an increase in natural killer cell activity in mice.
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The classical extraction of FCSPs involving long, repetitive, multi step acid and alkaline treatments

is detrimental to its structural properties, yield, and compositional attributes. In this study,

statistically designed, optimized extraction of a single step extraction of FCSPs from Sargassum sp.

was carried out. The effects of the different extraction parameters on the natural chemical

composition of the isolated sulfated polysaccharides were also investigated. The data showed that

classical multi step extraction using 0.2 M HCl at elevated temperature and extended time had a

detrimental effect on the FCSPs yield, as this treatment apparently disrupted the structural

integrity of the polymer and evidently degraded carbohydrate chains of fucose residues during

extraction. The results also revealed a maximal FCSPs yield of approximately 7% dry weight with

Sargassum sp. using 0.03 M HCl at 90°C and 4 h extraction conditions.

Accurate monitoring of the differential growth response of seaweed to different nutrient

assimilation is crucial to explore various applications of seaweed resources, such as biomass for

bioenergy production and source of functional healthy components and bioactive compounds. A

major prerequisite for the successful exploitation of cultivated seaweed like Ulva lactuca for

commercial purposes is that the growth rate and yields should be optimized. In this study, the

growth response of U. lactuca to ammonium and nitrate assimilation was investigated using a

photoscanning technique to monitor the growth kinetics in U. lactuca. Photoscanning images

revealed differential increases in the surface area of U. lactuca discs over time in response to

different nitrogen based nutrient sources. The results also showed a favorable growth response to

ammonium as a nitrogen source, and the presence of ammonium discriminated the nitrate uptake

by U. lactuca upon exposure to ammonium nitrate. This study exhibits the applicability of a

photoscanning approach for acquiring precise quantitative growth data for U. lactuca.

In conclusion, we demonstrated that nuisance seaweed can be a potential source of biomass and

bioactive compound notably FCSPs. This study proved the hypotheses that different extraction

conditions have crucial influenced to the chemical nature of FCSPs. The study also demonstrated

that unfractionated FCSPs are able to exert bioactive actions such as anti tumor and immune

modulating properties in both in vitro and in vivo studies. This study illustrates the importance of a

precise monitoring technique of the growth of U. lactuca in order to successfully exploit it for

commercial application.
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Dansk Sammenfatning

Tang på stranden er en plage, først og fremmest på grund af de lugtgener, som kommer når

tangen går i forrådnelse. En udnyttelse af dette tang, såsom Sargassum sp., Ulva sp., og andre

lignende kyst nære typer af tang, kan frembringe helt nye værdifulde produkter og måske samtidig

mindske de uønskede lugtgener fra tang som skyller op på stranden. Udnyttelse af tang som

resource er udgangspunktet for dette PhD studium. PhD studiets formål har været dels at udvikle

en ekstraktionsmetode til at isolere bioaktive produkter fra brunt tang, dels at undersøge disse

produkters bioaktivitet. For at opfylde dette formål blev der i PhD arbejdet udviklet en statistisk

designet, optimeret ekstraktionsmetode til ekstraktion af såkaldte fukose indeholdende

sulfaterede polysakkarider (eng. fucose containing sulfated polysaccharides), forkortet FCSPs,

henholdsvis grov fucoidan fra brun tang, primært Sargassum sp., og bioaktiviteten af

ekstraktionsproduktet blev undersøgt. For ydermere at vurdere tangs evne til at assimilere, og

dermed vokse på nitrogen holdige salte, blev der udviklet en teknologi til at monitorere

differential vækst af Ulva lactuca, på forskellige næringsstoffer i vandet.

Fucoidan er en betegnelse, som dækker over en gruppe af sulfaterede, fukose holdige,

polysakkarider fra tang. Udover fukose indeholder fucoidan forkellige mængder galaktose, xylose,

glukuronsyre, som er forbundet via forskellige typer glykosidbindinger, og som derudover er

substitueret i forskellig grad med sulfat og acetyl grupper og som kan have sidekæder

indeholdende fukose eller andre glykosyl substituenter. Disse FCSPs består principielt af en

rygrad, eller en hovedkæde, af (1 3) og/eller (1 4) linkede L fucopyranose enheder, som kan

være substitueret med sulfate (SO3 ) på C 2, C 3, eller C 4 foruden acetyl grupper på C 4 på fucose

enhenderne i hovedkæden, og/eller som har korte fukose kæder, der normalt er bundet via O 4

fra en eller flere fukose enheder i hovedkæden. Det er kendt, at FCSPs isoleret fra tang har

forskellige gavnlige, bioaktive effekter, herunder anti tumor aktivitet. Selvom det har været

rapporteret, at oprensede, fucose rige, modificerede fucoidan prøver har bioaktive effekter,

såsom anti koagulerende, og immun respons forøgende egenskaber, er bioaktiviteten af mere

grove, ufraktionerede FCSPs – ekstraheret med mildere og færre ekstraktionstrin ikke undersøgt.

Groft oprensede fucoidan prøver fra Sargassum sp. og Fucus vesiculosus blev i dette PhD arbejde

undersøgt for deres bioaktivitet mod lunge og hudcancer cellelinjer vækst både in vitro og in vivo.
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Arbejdet viste, at ufraktionerede FCSPs ekstrakter hindrer proliferation in vitro af Lewis lung

carcinoma og melanoma B16 celle linjer via induktion af apoptosis. Desuden blev det vist, at

denne anti tumor aktivitet af grov fucoidan, tilsyneladende er associeret med et øget

immunrespons, målt som et forøget niveau af naturlige ”killer” cellers aktivitet i mus.

Klassisk ekstraktion af FCSPs fra tang involverer adskillige langsommelige, behandlinger med syre

og base, hvilket er ødelæggende for deres specifikke struktur og sammensætning. I dete PhD

arbejde blev der udviklet en statistisk designet, optimeret enkelt trins ekstraktionsmetode til at

udtrække FCSPs fra Sargassum sp.. Effekten af de forskellige ekstraktionsparametre på

sammensætningen af de ekstraherede polysaccharider belv også vurderet. Resultaterne viste, at

klassisk, multi trins ekstraktion ved brug af 0.2 M HCl ved høj temperature havde en

ødelæggende effect på udbyttet af FCSPs og viste desuden at en sådan behandling tilsyneladende

ødelagde polysaccharidstrukturen og at fukose kæderne blev nedbrudt under behandlingen.

Resultaterne viste også, at et maximal FCSPS udbytte, på ca. 7% af tørvægten for Sargassum sp.

kunne opnås ved et trins ekstraktion med 0.03 M HCl ved 90°C i 4 timer.

Nøjagtig monitorering af vækstrespons af tang på forskellige næringsstoffer er afgørende for at

undersøge forskellige anvendelser af tang, primært biomassevækst til bioenergi produktion og til

udnyttelse af tang som kilde til produktion af f.eks. funktionelle fødevarekomponenter eller

bioaktive stoffer. En vigtig forudsætning for kommerciel udnyttelse af kultiveret tang såsom Ulva

lactuca er, at vækstraten og udbyttet optimeres. I dette studie blev vækstrespons af U. lactuca I

forhold til ammonium og nitrat assimilation undersøgt ved hjælp af en foto scannings teknik. Foto

scannede billeder afslørede forskellige vækst inkrementer udfra måling af det fotograferede areal

af udstukne skiver af U. lactuca over tid som respons på forskellige nitrogen baserede

næringskilder. Resultaterne viste også en favorabel vækstøgning på ammonium som

nitrogenkilde, og desuden at tilstedeværelsen af ammonium diskriminerede U. lactucas nitrat

optag i forhold til optaget af ammonium nitrat. Studiet viste anvendeligheden af phot scanning til

præcis kvantitativ vækst monitorering af U. lactuca.

Den samelde konklusien er således at vi demonstrerede, at tang kan være en potential kilde til

biomasse og bioaktive komponenter, især FCSPs. PhD studiet viste desuden at hypotesen, at

forskellgie ekstraktionsbetingelser har afgørende indflydelse på den kemiske natur af FCSPs er

sand. Studiet demonstrerede også, at ufraktionerede FCSPs har bioaktive egenskaber såsom anti

tumor og immun modulerende effecter, vist i både in vitro og in vivo. Studiet ilustrerer desuden

vigtigheden af en præcis monitoreringsmetode til måling af U. lactuca vækst.
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1 Introduction

In the vast coastal areas worldwide, seaweed has played a major role in maintaining the ecological

balance of the environment and marine bio ecosystem. Seaweeds, including various brown

seaweeds such as Undaria and Laminaria spp., are part of the food culture in many Asian

countries, notably Japan, the Philippines, and Korea, and seaweed extracts have also been used as

remedies in traditional medicine. In recent years, harvesting and monoculture farming of certain

seaweed species have become an important livelihood for fishermen in Southeast Asia owing to

the progressively increasing demand for raw seaweed worldwide. Many seaweed species, notably

beach cast seaweeds, still need to be examined for their characteristics and properties, which will

determine their commercial applications, before they can be recognized as important

commodities.

Seaweed that washes up on the coastline often generates waste problems for populations residing

seaside owing to microbial accumulation and unpleasant odors. Utilization of beach cast seaweeds

such as Ulva sp., Sargassum sp., and other nuisance seaweed species for advantageous

applications may alleviate these problems and create valuable seaweed based products. It is

widely known that seaweed may contain unique components that have potential commercial

applications; however, few seaweed species are commercially utilized and others remain

unexploited. Some seaweed species could be potential sources of functional dietary fiber and

polysaccharides with bioactive properties (Lahaye 1991; Takahashi 1983). Recent developments in

seaweed utilization include applications involving naturally derived seaweed extracts and bioactive

compounds such as fucose containing sulfated polysaccharides (FCSPs) and/or fucoidan in some

cosmetic products and food supplements.

Fucoidan is a term used to described a class of sulfated polysaccharide extracted from the

seaweed class Phaeophyceae, which consist almost entirely of fucose and ester sulfate (Percival

and McDowell 1967). This FCSP principally consists of a backbone of (1 3) and/or (1 4) linked

L fucopyranose residues that may be organized in stretches of (1 3) fucan or with alternating

(1 3) and (1 4) bonded L fucopyranose residues. The L fucopyranose residues may be

substituted with sulfate (SO3 ) on C 2 or C 4 (rarely on C 3) single L fucosyl residues and/or short

fucoside (fuco oligosaccharide) side chains. If present, the fucoside side chains are usually O 4,

linked to the L fucopyranose backbone residues. Apart from variations in the sulfate content and
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substitutions, the monosaccharide composition of FCSPs varies among different species of brown

seaweeds. Hence, in addition to fucose, different types of FCSPs may also contain galactose,

mannose, xylose, glucose, and/or glucuronic acid, usually in minor amounts (Percival and

McDowell, 1967; Bilan and Usov, 2008). It appears that FCSPs cover a broader range of complex

polysaccharides than those having only fucan backbones. Fucoidan—or more correctly, FCSPs

extracted from brown seaweeds like Sargassum sp. and Fucus vesiculosus—were documented to

have a wide range of biological activities including anticoagulant (Nardella et al., 1996); anti

inflammatory (Blondin et al., 1994); antiviral (Adhikari et al., 2006; Trinchero et al., 2009); and,

notably, anti tumoral effects (Zhuang et al., 1995; Ale et al., 2011).

Typical extraction of FCSPs from brown seaweed involves a harsh processing condition and several

purification steps. Purification of FCSPs by column chromatography was effective for isolating

polysaccharide fractions as they had higher fucose contents than those FCSPs obtained using

minimal processing steps (Li et al., 2006; Ale et al., 2011). The conditions for obtaining FCSPs from

brown seaweed generally consist of multiple, long, repetitive steps using acid (e.g., HCl) and other

solvents at elevated temperatures (Chizhov et al., 1999; Bilan et al., 2002). The influence of the

extraction methods on the chemical nature of sulfated polysaccharide has already been

demonstrated by Black et al. (1952). On the other hand, the FCSP yield of F. evanescens extracted

4 times using 2% CaCl2 solution at 85°C for 5 h was 12.9% dry weight (DW) (Bilan et al., 2002),

while extraction at 25°C using 0.4% HCl for 5 h yielded 12.0% DW (Zvyagintseva et al., 1999).

Despite the existence of early seminal studies about FCSP or fucoidan extraction, there is only

limited evidence about the influences and apparently complex interactions of extraction

parameters, such as acid solvents, temperature, and time, on FCSP yield and composition. FCSP

extraction procedures with fewer steps are milder on the brown seaweeds than are other though

they may yield a heterogeneous sulfated polysaccharide product. Nevertheless, fewer steps

extraction approach minimizes the structural alteration of algal sulfated polysaccharides and,

thereby, maintains the natural bioactive characteristics of FCSPs.

Although differently extracted and purified FCSPs have been reported to exert bioactivity

(Holtkamp et al., 2009), unfractionated FCSPs has also been found to reduce cell proliferation of

lung carcinoma and melanoma cells, exert immunopotentiating effects in tumor bearing animals,

and to activate natural killer (NK) cells in mice, leading to anti tumor activity efficacy (Takahashi,

1983; Ale et al., 2011; Foley et al., 2011). Kim et al. (2010) applied a crude polysaccharide

composed predominantly of sulfated fucose from F. vesiculosus to human colon cancer cells in
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vitro and concluded that this polysaccharide from brown seaweed induces apoptosis. Moreover,

commercially available crude fucoidan (Sigma Inc.) was tested on human lymphoma HS Sultan cell

lines and was found to inhibit proliferation and induce apoptosis by activating caspase 3 (Aisa et

al., 2005). It was reported recently that FCSPs from Sargassum sp. and crude fucoidan (Sigma Inc.)

from F. vesiculosus induced apoptosis in melanoma cells (Ale et al., 2011).

Besides the bioactive compounds, seaweeds also possess other valuable components, such as

soluble dietary fibers and carbohydrates for hydrocolloid applications. The green seaweed (Ulva

species) are particularly rich in rare cell wall polysaccharides and have been proposed as being

important sources of dietary fiber, mainly soluble fiber (Lahaye 1991; Lahaye and Axelos 1993).

Furthermore, U. lactuca is also a good source of vitamins A, B2, B12, and C and is rich in

tocopherol (Abd El Baky et al., 2008; Ortiz et al., 2006). It has been shown that seaweed, notably

U. lactuca, was suitable for propagation under controlled conditions (Vermaat and Sand Jensen,

1987; Lee, 2000; Sato et al., 2006). For this reason, U. lactuca cultivation in tanks for either crude

biomass production for bioenergy or for the production of biologically active compounds is

currently receiving increased attention (Hiraoka and Oka, 2008). However, a major prerequisite for

the successful exploitation of cultivated U. lactuca for commercial applications is optimization of

growth rates and yields. This in turn requires both an understanding of the influence of different

nutrients on the growth response and a precise methodology to measure the growth. Nuisance

green seaweeds like U. lactuca showed bioremediation ability in nitrogen and phosphate rich

waste water (Copertino et al., 2008). Nevertheless, limited information is known about the growth

response and nutrient uptake assimilation of U. lactuca when expose to combine concentrations of

ammonium and nitrate.

This PhD thesis delivers the most recent study involving FCSPs extraction technology and evaluates

FCSPs biological activity. A single step extraction method for the removal of FCSPs from Sargassum

sp. was developed in the course of this study. FCSPs bioactivity studies have been conducted in

lung and skin cancer cell models in vitro and immune response activity in vivo. In addition to

extraction and bioactivity studies, evaluation of the growth response of U. lactuca to nutrients

such as NH4 and NO3 was also performed.

1.1 Problems statement
Purified fractions from FCSPs are commonly used for structural and bioactivity analysis. These

samples contain high fucose sulfate levels and are free from other contaminant saccharide

2

15

3
PhD Thesis 2011

1

vitro and concluded that this polysaccharide from brown seaweed induces apoptosis. Moreover,

commercially available crude fucoidan (Sigma Inc.) was tested on human lymphoma HS Sultan cell

lines and was found to inhibit proliferation and induce apoptosis by activating caspase 3 (Aisa et

al., 2005). It was reported recently that FCSPs from Sargassum sp. and crude fucoidan (Sigma Inc.)

from F. vesiculosus induced apoptosis in melanoma cells (Ale et al., 2011).

Besides the bioactive compounds, seaweeds also possess other valuable components, such as

soluble dietary fibers and carbohydrates for hydrocolloid applications. The green seaweed (Ulva

species) are particularly rich in rare cell wall polysaccharides and have been proposed as being

important sources of dietary fiber, mainly soluble fiber (Lahaye 1991; Lahaye and Axelos 1993).

Furthermore, U. lactuca is also a good source of vitamins A, B2, B12, and C and is rich in

tocopherol (Abd El Baky et al., 2008; Ortiz et al., 2006). It has been shown that seaweed, notably

U. lactuca, was suitable for propagation under controlled conditions (Vermaat and Sand Jensen,

1987; Lee, 2000; Sato et al., 2006). For this reason, U. lactuca cultivation in tanks for either crude

biomass production for bioenergy or for the production of biologically active compounds is

currently receiving increased attention (Hiraoka and Oka, 2008). However, a major prerequisite for

the successful exploitation of cultivated U. lactuca for commercial applications is optimization of

growth rates and yields. This in turn requires both an understanding of the influence of different

nutrients on the growth response and a precise methodology to measure the growth. Nuisance

green seaweeds like U. lactuca showed bioremediation ability in nitrogen and phosphate rich

waste water (Copertino et al., 2008). Nevertheless, limited information is known about the growth

response and nutrient uptake assimilation of U. lactuca when expose to combine concentrations of

ammonium and nitrate.

This PhD thesis delivers the most recent study involving FCSPs extraction technology and evaluates

FCSPs biological activity. A single step extraction method for the removal of FCSPs from Sargassum

sp. was developed in the course of this study. FCSPs bioactivity studies have been conducted in

lung and skin cancer cell models in vitro and immune response activity in vivo. In addition to

extraction and bioactivity studies, evaluation of the growth response of U. lactuca to nutrients

such as NH4 and NO3 was also performed.

1.1 Problems statement
Purified fractions from FCSPs are commonly used for structural and bioactivity analysis. These

samples contain high fucose sulfate levels and are free from other contaminant saccharide

2

15



4
PhD Thesis 2011

residues. Hence, many seminal studies have shown that purified fucoidan has high bioactivity as a

result of multi step extraction and further purification and fractionation.

Can an unpurified FCSPs product extracted using minimal steps exert bioactivity?

What is the effect of unpurified FCSPs against certain cancer cell lines and what is its

influence on immune response activity?

The present extraction technology using aqueous alkali solution or dilute acid at ambient or

slightly elevated temperature has always been the most convenient method to produced FCSPs.

Would different extraction parameters, i.e., acid, temperature, and time, influence the

structural features and chemical nature of FCSPs?

What are the effects of the interactions of different extraction treatments?

Exploitation of seaweed resources has recently received special attention for its potential for both

the production of bioactive compounds and as a biomass source for bioenergy production. To

successfully exploit seaweed for commercial applications, the growth rate and yields must be

optimized. Hence, a precise monitoring technology to evaluate the seaweed growth response is

required.

What are the different monitoring techniques that are used to evaluate the U. lactuca

growth response to nutrient assimilation? How does it affect the measurements’

precision?

How is the growth of U. lactuca influenced by the assimilation of different nutrients (NH4

and NO3)?

1.2 Hypotheses
Nuisance marine seaweed that has washed up on the coastlines is a potential starting material for

producing bioactive compounds like fucoidan or FCSPs. The precise assessment of seaweed growth

is crucial in our understanding of seaweed nutrient assimilation mechanisms. In this thesis, some
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FCSP products from a single step extraction process (i.e., crude fucoidan) from brown

seaweed can exert bioactivity against certain types of cancer cell lines (e.g., by inducing

apoptosis) and can promote immune responses

Classical extraction of FCSPs involving long, repetitive, multi step acid and alkaline

treatments can be detrimental to its structural makeup, yield, and compositional

attributes and, thus, may influence its bioactive properties

To exploit marine seaweed for commercial applications, growth monitoring is crucial to

the accurate evaluation of differential growth responses and nutrient (NH4 or NaNO3)

assimilations

1.3 Core objectives and project phases
Seaweed resources generally cover wide potential applications for different industries including

food and nutrition, pharmaceuticals, cosmetics, and bioenergy. Therefore, their study requires

extensive in depth research involving an interdisciplinary approach and a considerable amount of

time to accomplish certain achievable objectives. This PhD study narrows the subjects into more

focused areas with very realistic aims or specific objectives to produce novel technology while

attaining basic scientific understanding.

To test the hypotheses, various specific objectives were applied in this study. The core objectives

were primarily concentrated on the investigation of different FCSPs extraction methods and

developing innovative FCSPs extraction technology; the potential of seaweeds as a source of

bioactive compounds, notably FCSPs; and to assess the bioactivity and mechanism of FCPS

products against certain types of cancer. Furthermore, we evaluate seaweeds’ differential growth

responses to nutrient assimilation. Along with the core objectives, the specific aims of the study

were as follows:

Development of a new process for producing bioactive compound like fucose containing

sulfated polysaccharides from brown seaweed by optimized designed extraction

parameters using of state of the art analytical methods and quantification analyses

Investigation of the bioactivity of single step extracted unpurified FCSPs products (i.e.,

crude fucoidan) in cancer cell lines using in vitro and in vivo experiments

Evaluation of the seaweed growth response to nutrient assimilation (i.e., NH4 and NO3)
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To ensure that the work was conducted in the right direction, workloads were organized and

narrowed down to specific scopes in a number of project phases:

Phase 1: Survey of seaweed bioactive compound structure and bioactivity

A literature research and gathering of review articles was conducted with the aim of gaining an

overall perspective of the subject. Special focus was placed on the available technical and scientific

information regarding bioactive compounds’ structural makeup and composition, the influence of

the extraction process, and factors affecting bioactivity.

Phase 2: Optimized extraction and hydrolysis of seaweed polysaccharides (i.e., FCSPs)

Fucoidan can be obtained by extraction from brown seaweeds like Sargassum sp. The typical

extraction of FCSPs involves multi step extraction using different temperatures and acid and

alkaline concentrations in an extended period. In this study, it was hypothesized that harsh

extraction treatment is detrimental to the integrity of the chemical nature of these

polysaccharides; thus, preservation of its structure during extraction can only be done using a mild

extraction technique. The main objective of this project was to design an optimized extraction of

FCSPs using a minimal step method compared to existing classical extraction methods with special

attention placed on the influence on chemical composition.

Phase 3: Assessment of FCSP bioactivity

FSCPs are known to possess bioactive properties such as anti tumor activity, apoptosis induction in

cancer cells, and immune potentiation. The efficacy of FCSPs derived from brown seaweed remains

a matter of debate; nevertheless, several reports attribute its efficacy to its structural makeup,

substitutions, and content of sulfate. It was hypothesized that mild extracted FCSPs must possess

high bioactive properties because their structural makeup remains intact. The objective of this

study was to examine the different contributing factors influencing FCSP bioactivity on some

cancer cell lines. The bioactivities of FCSPs extracted from nuisance seaweed were evaluated using

cancer cell lines in vitro and in vivo experiments.

Phase 4: Seaweed growth response to nutrient assimilation

The proliferation of seaweed is mostly influenced by photosynthesis and available nutrients that

can be utilized and assimilated. Seaweed growth is tantamount to increased biomass production.

Seaweed can potentially be utilized for the production of bioactive compounds and healthy
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1

components. Monitoring the seaweed growth and nutrient uptake is a crucial step for evaluating

the seaweed growth rate, nutrient uptake rate, and biomass yield. Thus, developing a method to

properly monitor seaweed growth will contribute to our understanding of the seaweed growth

response to nutrient and assimilation patterns. The objective of this study is to examine the U.

lactuca growth response to nutrients, i.e., NH4 or NaNO3, with the special aim of developing a

growth monitoring technique to accurately evaluate the differential growth response and nutrient

assimilation and to analyze different biomass accumulation related parameters.
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2 Seaweed potentials: a general overview

Marine seaweeds are classified according to their morphology and taxonomic characteristic into 3

groups: the green (Chlorophyta), red (Rhodophyta), and brown algae (Phaeophyta). The green

algae are distributed worldwide (Lahaye & Robic, 2007), and the most common green seaweed

species in the temperate zones is Ulva lactuca (Fig. 2.1). It is harvested naturally or cultivated in

tanks for food consumption or biomass production for bioenergy (Lahaye & Robic, 2007). Natural

habitats of red seaweed are found at intertidal and subtidal depths. In recent years, fishermen in

the Southeast Asian countries engaged in the farming of the red seaweeds Kappaphycus and

Eucheuma (Fig. 2.1) for the production of carrageenan. Carrageenan is a gel forming, viscosifying

polysaccharide that is commercially exploited for food products and cosmetic products (De Reiter

and Rudolph, 1997). The brown seaweeds are usually found in tidal splash zones or rock pools, and

certain species such as Sargassum are found floating on the shorelines (Fig. 2.1). Brown algae are

typically used for the production of alginate, which is commercially used as an ingredient for

different industrial, biotechnology, and food applications. FCSPs from brown seaweed, notably

fucoidan, have been known to exert bioactive properties.

Fig. 2.1 Photographs of different seaweed species that are utilized for different commercial
applications. a. Ulva lactuca as bulking agent for feeds. b. Kappaphycus sp. for carrageenan
production. c. Sargassum sp. as a potential source of bioactive fucose containing sulfated
polysaccharides, particularly fucoidan compound. (Source: www.algaebase.org)

Several studies have indicated that FCSPs from brown seaweeds are highly potent anti cancer

agents, tumor cell growth inhibitors, and immune system strengtheners (Jiao et al., 2011; Pereira

2 Seaweed otentials
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et al., 1999). It has been suggested that the lower breast cancer and obesity rates in Japan may be

related to regular intake of brown seaweed (Teas 1983). Brown seaweeds are very abundant and

constitute unexploited resources worldwide, thus making them viable sources of polysaccharides,

especially those with bioactive properties such as fucoidan or other FCSPs. Nevertheless, the red

and green seaweeds are also good sources of functional food ingredients, including phycocolloids

and dietary fibers.

2.1 Bioactive seaweed compounds: sulfated polysaccharides

Sulfated polysaccharides are a family of compounds containing ester sulfate groups in their sugar

residues. These polysaccharides are commonly found in the marine algal groups Phaeophyta,

Rhodophyta, and Chlorophyta. Fucans is the general term for sulfated polysaccharides that are

present in the class Phaeophyta, which includes FCSPs. The sulfated polysaccharides in the class

Rhodophyta are galactans consisting entirely of galactose or modified galactose units such as agar

and carrageenans. The major polysaccharides in the class Chlorophyta are polydisperse

heteropolysaccharides known as ulvans.

Ulva, the green seaweed species of the class Chlorophyta, are particularly rich in rare cell wall

polysaccharides and have been proposed as being an important source of dietary fiber, mainly

soluble fiber, which could be a potential prebiotic substrate (Lahaye 1991; Lahaye and Axelos

1993). Brown seaweed is a source of a unique compounds, notably FCSPs, which have shown high

potency against certain cancers in some in vitro studies and exhibited immune response activity in

vivo (Cumashi et al., 2007; Maruyama et al., 2003). Red seaweed, on the other hand, is known for

its hydrocolloid characteristics; however, published reports have shown that sulfated

polysaccharides from red seaweed also possessed some bioactive properties (Pereira et al., 2005;

Talarico et al., 2007).

2.1.1 FCSPs structure
Fucoidan, an FCSP that is extracted from brown algae, may contain differing glycosidic linkages and

is variously substituted with acetate and side branches containing fucose or other glycosyl units.

Brown seaweed in the order of Fucales such as F. evanescens and F. serratus possess a large

proportion of both (1 3) and (1 4) linked L fucopyranose residues may be substituted with

sulfate (SO3 ) on C 2 and C 4 (Fig. 2.2; Bilan et al., 2002, 2006; Cumashi et al., 2007). The alga

Ascophyllum nodosum (Fucales) has a predominant repeating structure (1 3) L fucopyranose

residues with sulfate at C 2 position linked (1 4) L fucopyranose residues with disulfate at C 2
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position linked (1 3), the same structural elements that are also in FCSPs from F. vesiculosus

(Fig. 2.2; Chevolot et al., 1999).
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Fig. 2.2 Structural motifs of fucose containing sulfated polysaccharides obtained from different
brown seaweed species of the order Laminariales, Chordariales, and Fucales (Chizhov et al., 1999;
Usov et al., 1998; Nagaoka et al., 1999; Chevolot et al., 2001; Bilan et al., 2002; 2006).

Several structures of fucoidans of the order of Laminariales were reported to contained

monosulfate components that mainly consist of (1 3) linked L fucopyranose residues with

sulfates at the C 2 position (Berteau and Mulloy, 2003; Anastyuk et al., 2009). Fucoidan isolated

from Chorda filum (Laminariales) has a structure of poly (1 3) linked L fucopyranose backbone

and residues are sulfated mainly at C 4 and sometimes C 2 position, whereas some (1 3) linked

fucose residues (Fig. 2.2) to be 2 O acetylated (Chizhov et al., 1999). Similar structure of L.
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saccharina (Laminariales) composed of (1 3) linked L fucopyranose with sulfate at C 4 (Fig. 2.2)

was previously reported by Usov et al., (1998). A structural study of fucoidan from Cladosiphon

okamuranus (Chordariales) showed a linear backbone of (1 3) linked L fucopyranose with a

portion of fucose residues that was O acetylated and sulfate substitution at the C 4 position (Fig.

2.2). It also contained glucuronic acid at 2 positions of fucose that were not substituted by a

sulfate group (Nagaoka et al., 1999).

Fig. 2.3 Probable structure of fucoidan fraction from Hizikia fusiforme (Fucales) suggested by Li et al.
(2006); structural composition was typical for Sargassum species (Duarte et al., 2001).
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Complex fucoidan structures such as sulfated galactofucans and heterofucans brown algae have

been reported (Bilan and Usov, 2008). A complex mixture of polysaccharides extracted from

Sargassum stenophyllum was mainly built of (1 6) D galactose and/or (1 2) D mannose units

with branching points formed by (1 3) and/or (1 4) L fucose, (1 4) D glucuronic acid,

terminal D xylose, and sometimes (1 4) D glucose. Sulfate groups on the fucans are located at

C 4 of a (1 3) linked unit or C 2 of a (1 4) linked residue (Fig. 2.3; Duarte et al., 2001). Galactose

is found in trace amounts in the fucans from Himanthalia lorea and Macrocystis pyrifera (Mian and

Percival, 1973) and has been reported as a major constituent, but the polysaccharides also had

substantial quantities of fucose, xylose, and glucuronic acid (Percival and Young, 1974). A sulfated

D galactan isolated from L. angustata in trace amounts was considered a fucoidan with D

galactose as the major sugar and L fucose and D glucuronic acid as trace components (Nishino et

al., 1994).

2.1.2 Anti tumor bioactivity of FCSPs
FCSPs in brown seaweed have been subject to many scientific studies due to their diverse biological

functions including anti tumor and immunomodulatory activities (Alekseyenko et al., 2007;

Maruyama et al., 2006). There are very few published reports on the relationship between chemical

properties and anti tumor activity of FCSPs. (Li et al., 2008; Alekseyenko et al., 2007; Koyanagi et al.,

2003). However, it was suggested that the bioactive properties of FCSPs are mainly determined by the

fucose sulfated chains (Nishino et al., 1994; Mourão et al., 1996); nevertheless, the anti cancer

activity of FCSPs was recently revealed to not be a function of a single but a combination of many

factors such as the amount of sulfate groups, monosaccharide residues ratio, and the linkage type of

the sugar residues (Ermakova et al., 2011; Ale et al., 2011). The available findings indicate that the

anti tumor activity of FCSPs may be associated with a significant enhancement of the cytolytic activity

of NK cells augmented by increased production of macrophage mediated immune response signaling

molecules (Maruyama et al., 2003; Takahashi et al., 1983; Teruya et al., 2009), namely interleukin (IL)

2, interferon (IFN) , and IL 12 (Ale et al., 2011; Maruyama et al., 2003), and induction of apoptosis

(Ale et al., 2011).

Macrophage activation by polysaccharides is mediated through specific membrane receptors. The

major receptors reported for polysaccharide recognition in macrophages are glycoproteins including

Toll like receptor 4 (TLR 4), cluster of differentiation 14 (CD14), competent receptor 3 (CR 3), and

scavenging receptor (SR) (Teruya et al., 2009). Activation of these receptors is mediated by

intracellular signaling pathways, and the family of mitogen activated protein kinases (MAPKs) plays a
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critical role, notably in the production of nitric oxide (NO), which can lyse tumors (Teruya et al., 2009).

MAPK family members such as p38 MAPK, extracellularly regulated kinase (EKR1/2), and stress

activated protein kinase/c Jun N terminal kinase play an important role in the activation of

macrophages by polysaccharides such as FCSPs (Teruya et al., 2009; Aisa et al., 2005)(Fig. 2.4).

Activated MAPKs lead to activation of transcription factors resulting in induction of various genes

(Teruya et al., 2009). Activation of macrophages induces the production of cytokines such as

interleukin 12 (IL 12) which in turn stimulate the development of T cells (Fig. 2.4). T cells produce

interleukin 2 (IL 2) that in turn activates NK cells proliferation. The NK cells themselves produce

immunologically important cytokines, notably IFN , which can further provoke the participation of

macrophages in the stimulation of T cell via induction of IL 12 (Maruyama et al., 2006; Teruya et al.,

2009) (Fig. 2.4).

Fig 2.4. Proposed mechanism responsible for fucoidan bioactivity: (a) Macrophage activation by
fucose containing sulfated polysaccharides (FCSPs) mediated through specific membrane receptor
activation, namely Toll like receptor (TLR) 4, cluster of differentiation 14 (CD14), competent receptor
3 (CR 3), and scavenging receptor (SR), which in turn induce intracellular signaling via mitogen
activated protein kinases (MAPKs); (b) activation of macrophages lead to production of cytokines such
as interleukin (IL) 12, IL 2, and interferon (IFN) , which enhances NK cell activation that may further
stimulate T cell activation via IFN .
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The anti tumor mechanism of FCSPs appears to be associated with the significant enhancement of the

cytolytic activity of NK cells augmented by increased production of the macrophage mediated

immune response, namely IL 2, type II IFN , and IL 12 (Maruyama et al., 2003; Maruyama et al.,

2006). NK cells are large granular lymphocytes that are found throughout the body that contain

cytotoxic substances which are important for the protection against some tumors. The slated NK cell

killing occurs via release of granules containing perforin, which effectively opens up pores in target

cell membranes through which the granzymes can enter and induce apoptosis (Kindt et al., 2007;

Lydyard et al., 2000). FCSPs was reported to induce apoptosis in HT 29 colon cancer cells (Kim et al.,

2010), MCF 7 human breast cancer cells (Yamasaki Miyamoto et al., 2009), and HS Sultan human

lymphoma cells (Aisa et al., 2005). The importance of apoptosis as a killing mechanism used by the

immune system is that targeted cells can be rapidly removed by phagocytes without induction of an

inflammatory response.

IL 2, which is made by T cells, is a critical autocrine growth factor that is required for proliferation of T

cells and NK cells (Lydyard et al., 2000). NK cell secretion of type II IFN activates macrophages,

inducing IL 12 secretion, activating NK cells, and creating a system of positive feedback that increases

the activation of both cell types within an infected cell or tissue (Parham 2009; Kindt et al., 2007).

Hence, it was suggested that stimulation with IL 2 and IL 12 promotes IFN secretion by NK cells,

probably due to enhancing NK cell activity by FCSPs (Maruyama et al., 2006). IL 12 stimulation alone

was reported to produce only moderate augmentation of NK cell cytotoxicity. However, it increases

the catalytic activity of lymphocytes against autologous targets in synergy with IL 2 (Nastala et al.,

1994).

2.2 FCSPs extraction and chemical composition: past and present

Several extraction and purification procedures have been used for many years to isolate fucoidan

from brown seaweed. Extraction using dilute acetic acid and subsequent purification was first

performed by Kylin in 1913 to isolate the substance from various species of Laminaria and Fucus

(Kylin, 1913). Kylin reported that fucoidan extracted in this way mainly contained fucose and also

observed that the fucose occurred together with mannitol, alginic acid, and laminarin (Kylin, 1913)

(Table 1); we now know that this interpretation was a result of co extraction of these latter

contaminants with fucoidan. Two years later, Kylin reported that fucoidan isolated from L. digitata

contained methylpentose, interpreted as L fucose, as well as some other pentoses (Kylin, 1915). A
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parallel report was published that year by Hoagland and Lieb (1915), who isolated another water

soluble polysaccharide that was closely related to, if not identical with, fucoidan from Macrocystis

pyrifera and was shown to contain L fucose and a high proportion of calcium and sulfate (Table 1).

Hoagland and Lieb (1915) did not compare their extraction using Na2CO3 soaking to one without, but

their report is nevertheless the first example of how the extraction procedure may influence purity

and, in turn, the analyzed composition of the extracted FCSPs (Table 1). Bird and Haas (1931) used

fresh L. digitata fronds to obtain fucoidan by soaking them in water and precipitating crude sulfate

from the extract using ethanol. Uronic acid was also present in this preparation (Table 1).

Table 1. Historic view of very early work, 1913–1950s, of fucoidan or fucose containing sulfated
polysaccharide extraction and their composition from different brown seaweed species.

Year Brown Seaweed sp. Reported FCSPs Composition Extraction Method References 

1913 Laminaria and Fucus Fucoidan contaminated with 
mannitol, alginate, and laminarin Dilute acetic acid extraction  Kylin, 1913  

1915 Laminaria digitata 
Fucoidan contained 
methylpentose, L-fucose, and 
some pentoses 

Dilute acetic acid extraction  Kylin, 1915  

1915 Macrocystis pyrifera Dominantly alginic acid with 
fucose-sulfate 

Seaweed was soaked in 2% 
Na2CO3 for 24 h, filtered, 
combined with HCl, and the 
resulting precipitate was filtered 
and then finally resolved in 2% 
Na2CO3

Hoagland and 
Lieb, 1915  

1931 L. digitata Substantial amounts of calcium 
sulfate and uronic acid 

Soaking of seaweed in water, 
precipitation of crude sulfate by 
ethanol

Bird and Haas, 
1931

1931 Macrocystis pyrifera 
Methylpentose monosulphate 
monosulfate polymer with mainly 
fucose and alginate contaminants 

Repeated extraction with 2% HCl 
at room temperature for 48 h, 
precipitated with 90% EtOH 

Nelson and 
Cretcher, 1931 

1937 L. digitata 
Sulfate residue must be 
substituted by fucose or another 
sugar residue 

Prepared by precipitating the 
droplets exuded from seaweed in 
boiling ethanol 

Lunde et al., 
1937

1950 

Fucus vesiculosus,
Fucus spirales,
Himanthalia lorea,
Laminaria clustoni 

Substantial amount of fucose and 
sulfate; and small amounts of 
uronic acid, galactose and xylose; 
ash was mainly calcium sulfate 

Acid pH 2–2.5, 70°C, 1 h, 3 times; 
or aqueous, 100°C, for 24 h, lead 
acetate treatment, barium 
hydroxide added 

Percival & Ross, 
1950

1952 F. vesiculosus Fucose, ash, sulfate pH 2–2.5, 70°C, 1 h, 3 times Black et. al., 
1952
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The early FCSPs extraction procedures involved dilute acid treatment either with acetic or

hydrochloric acid as the first extraction step with the purpose of hydrolyzing the non FCSP

polysaccharides (Table 1). However, the extraction and purification methods employed in different

studies to isolate fucoidan/FCSPs from brown seaweed biomass have been modified to different

extents since the first reports in 1913 and 1915. For example, Nelson and Cretcher (1931) extracted

fucoidan from Macrocystis pyrifera by repeated extended (48 h) extraction with dilute HCl followed

by FCSP isolation by ethanol precipitation and revealed the presence of sulfate in the form of ester

groupings in the precipitated product. They also confirmed that fucose was the only sugar identified

in the unhydrolyzed residue after acid hydrolysis, even though their product contained uronic acid,

which was considered to be due to alginate contamination (Table 1).

2.2.1 FCSPs composition studies, 1930–1950
The studies by Nelson and Cretcher (1931) revealed the presence of sulfate in the form of ester

groupings and confirmed that fucose was the only sugar identified after hydrolysis, although their

product contained uronic acid, which was considered to be due to alginic acid contamination

(Table 1). Please note the terminology used is quite confusing; nevertheless, with recent advances

in chemical analyses, we now know that alginic acid and alginate comprise guluronic and

mannuronic acids. Our understanding today that alginic acid, or alginate, is a linear hydrocolloid

polymer that consist of blocks of (1 4) linked D mannuronate and its L guluronate residues,

that these 2 monomers are C 5 epimers, and that the detailed structure of alginate may have

mannuronate and guluronate in homopolymeric blocks of consecutive mannuronate residues (M

blocks), consecutive guluronate residues (G blocks), or in structural units of alternating

mannuronate and guluronate residues (MG blocks). Uronic acids were determined to cover several

different structures. This work addressed the significance of the differences and introduced

consistent terminology by grouping these as uronic acids, especially since they do not belong to

the FCSPs. Later, Lunde et al. (1937) prepared fucoidan by directly precipitating the droplets

exuded from freshly gathered L. digitata fronds in ethanol (Table 1). After purification via product

precipitation using boiling ethanol, they obtained a FCSP specimen that contained 33–37%

methylpentose (interpreted correctly as fucose) and 26–30% ash in which the sulfate content was

17–19%, which made up approximately half of the total estimated sulfate in the polysaccharide

(35–38%). They proposed a structural unit formula, (R R’ O SO2 OM)n, for fucoidan and suggested

that R was fucose or another pentose sugar residue, R’ was unknown, and M was Na+, K+, (½)Ca2+,

or (½)Mg2+ (Lunde et al., 1937) (Table 1).
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Specimens from F. vesiculosus, F. spirales, H. lorea, and L. clustoni were prepared by Percival and

Ross (1950) for FCSPs extraction using boiling water for 24 h, and the alginates and protein were

removed with lead acetate and the addition of barium hydroxide. The resulting lead hydroxide

fucoidan complex was then decomposed using dilute sulfuric acid and the fucoidan was isolated

after prolonged hydrolysis and filtration. The purest specimen was from H. lorea, which contained

the following: a substantial amount of fucose and sulfate; small quantities of uronic acid,

galactose, and xylose; metals; and ash, which was mainly calcium sulfate. These workers believed

that the principal constituent of fucoidan is a polyfucose monosulfate and that other constituents

arise from impurities (Table 1). A parallel work was done by Conchie and Percival (1950) in which

fucoidan from Fucus vesiculosus was methylated. It was believed that the main residue in fucoidan

was 1 2 linked of L fucopyranose units carrying a sulfate group in C 4 (Conchie and Percival

1950). However, we now know that this is not the case because advanced analyses have verified

that the backbone of fucoidan from F. vesiculosus consists of alterna ng (1 3) and (1 4)

linkages of L fucopyranose residues (Fig. 2.2).

2.2.2 Lab scale extraction of fucoidan, 1950s
In the pursuit of obtaining extensive quantities, a laboratory scale extraction of fucoidan was

performed by Black et al. (1952). Interestingly, they referred to the extracted product as a

“polyfucose ethereal sulfate occurring in the Phaeophyceae.” Their optimal fucoidan extraction

procedure was as follows: one part by weight of dried ground seaweed and 10 parts by volume of

0.1 M hydrochloric acid at pH 2.0–2.5 contacted at 70°C with constant stirring for 1 h. A single acid

hydrolysis extraction treatment using this method recovered about 50% by weight (w/w) of the

theoretical maximum of fucoidan (recovered yield measured as % fucose obtained as % of total

fucose in the seaweed DW), whereas 3 rounds of acid extraction recovered >80% of the fucose

present; the triple acid hydrolysis treatment (0.1 M HCl, pH 2.0–2.5, 70°C, 1 h x 3) was therefore

selected as the optimal extraction method (Table 1). After the acid hydrolysis treatment the crude

fucoidan was isolated by fractional precipitation with alcohol and further purified by precipitation

after the addition of formaldehyde (Black et al., 1952). Using this procedure, crude fucoidan

samples containing 30–36% fucose were obtained; for example, the fucoidan recovered from F.

vesiculosus using the optimal extraction protocol was analyzed to contain (by weight) 44% fucose,

26% total sulfate, and 31% ash (Black et al., 1952). In terms of yields of percentage of total fucose,

the results obtained for the 4 different algal species were: Pelvetia canaliculata, 76%; F.

vesiculosus, 62%; Ascophyllum nodosum, 54%; and L. cloustoni, 20% (Black et al., 1952). The

authors suggested that a more efficient extraction methodology, i.e., extracting higher fucose
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yields, could be achieved by increasing the water/seaweed ratio, extraction time, or extraction

number.

2.2.3 FCSPs extraction, 1970s–present
Carbohydrates of the brown seaweeds were successively extracted from H. lorea, Bifurcaria

bifurcata, and Padina pavonia using dilute acid followed by alkaline or using a water, acid, and

alkali sequence. Prior to extraction, the seaweed frond was pretreated with formaldehyde to

polymerize phenolic constituents that could otherwise be contaminant to various extracts (Mian

and Percival, 1973). This technique produced complex mixture of glucan, FCPSs, and alginic acid,

which could be separated by fractional precipitation with ethanol, calcium salts, or

cetyltrimethylammonium hydroxide, or by fractionation on resin columns. Fucoidan extracted in

this fashion consisted of heteropolysaccharide comprising different proportions of fucose,

glucuronic acid, xylose, and half ester sulfate together with a trace of galactose. The result of this

extraction method also showed that sulfate and uronic acid contents in the fucoidan separated

from aqueous calcium chloride and acid extracts varied significantly by species.

A study was conducted on the purification of a sulfated heteropolysaccharide from S. linifolium to

elucidate its structural components. The extraction was done using hydrochloric acid pH 1.0 for 3 h

at 80°C; the extract was neutralized using aqueous sodium carbonate and precipitated with

ethanol. The resulting sulfated polysaccharide material was acid hydrolyzed and it was proposed

that the backbone was composed of glucuronic acid, mannose, and galactose residues with

partially sulfated side chains of galactose, xylose, and fucose residues (Abdel Fattah et al., 1974).

Extraction using an aqueous alkali solution or dilute acid at ambient or slightly elevated

temperatures has been the convenient method to produce fucoidan for many years. In recent

years, pretreatment of seaweed biomass has been found advantageous to eliminate low molecular

components (e.g., phenols) using a mixture of methanol, chloroform, and water (Bilan et al., 2006);

removal of protein can be facilitated using proteolytic enzymes (Rocha et al., 2005). A useful

procedure to transform alginate in the residual biomass into insoluble calcium salts uses aqueous

calcium chloride (Bilan et al., 2002).

2.3 Seaweed products and biomass potential
The growth of seaweed production and developments of advanced technological farming indicates

that the seaweed industry is progressively evolving and thus paves the way to new application

opportunities (Buck and Buchholz, 2004). For many years, seaweed has been utilized as a source of
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dietary nourishment among Asian constituents. In recent years, more applications have used

seaweed resources because of their unique characteristics and properties. Seaweed has been

proposed as a source of important compound that can be incorporated in the production of

functional food ingredients, pharmaceuticals, and cosmetics (Bodin Dubigeon et al., 1997; Bixler,

1996; De Roeck Holtzhauer, 1991). Gel forming polysaccharides such as carrageenan and alginate are

mostly known and commercially important seaweed products. Production of alternative fuels from

non starch biomass has recently directed the attention to utilization of marine macroalgae as sources

of biomass for biofuel production (Knauf and Moniruzzaman, 2004). Moreover, healthy and bioactive

components, notably the FCSPs found in brown seaweed biomass, have also become subject of much

research and product development.

2.3.1 Phycocolloids
The global market for phycocolloids such as agar, carrageenans, and alginates is estimated to be

worth annually $585 million US (McHugh, 2003). To date, the red seaweed has been harvested for

food consumption in some regions of Asia, but many of these areas have engaged in farming red

seaweed that is intended for the production of agar and carrageenan, while brown seaweed is most

harvested naturally for alginate production (Crawford, 2002).

Carrageenan is composed of a linear galactose backbone with varying degrees of sulfation (15–40%)

and are mainly composed of disaccharide repeating units of an (1 4) linked D galactopyranose or

3,6 anhydro D galactopyranose residue and a (1 3) linked D galactopyranose. The sulfated groups

are covalently attached to individual galactose residues via ester linkages to the carbon atoms C 2, C

4, or C 6 (De Ruiter and Rudolph, 1997). Carrageenan is applied as a stabilizing agent to many food

products and other industrial and pharmaceutical applications (van de Velde and De Ruiter, 2002).

Among the leading species of red algae responsible for most of today’s commercial carrageenan

production are K. alvarezii and E. denticulatum.

In addition, alginate another gel forming sulfated polysaccharide extracted from brown seaweed has

been utilized for various applications including foods and feeds, pharma/medical, and industrial

preparations. Alginate is composed of mannuronic (M) and guluronic (G) acids with (1, 4) linkages,

and its structure varies according to the monomer position on the chain, forming either

homopolymeric (MM or GG) or heteropolymeric (MG or GM) segments (Percival and McDowell,

1967). The molecular weight of alginate is generally 500–1000kDa. Its solubility is influenced by

factors such as pH, concentration, ions in solution, and the presence of divalent ions such as calcium

(Morris and Norton, 1983).
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2.3.2 Seaweed biomass for bioenergy production
Only few seaweed species have been exploited for commercial production (i.e., red and brown

seaweed); hence, this study opens the way for other species to provide a basis for additional potential

applications of seaweed biomass, namely bioenergy production. The cultivation of seaweed poses

advantages to terrestrial crops since they have high growth rates and can be continuously harvested

(Rasmussen et al., 2009). The estimated annual production of U. lactuca per hectare was 45 tons DW,

which is 3× greater the yield of conventional food or energy crops (Bruhn et al., 2011). However, the

production is believed to be significantly higher once growth conditions (exploiting flue gas as a

source of carbon) and nutrients (fishery effluents as a source of nitrogen) are optimized. A study on

the anaerobic digestion of sea lettuce (Ulva sp.) suggested that the methane gas yield from washed

and grinded sea lettuce biomass is about 180 mL g 1 VS (volatile solid based), while that from non

pretreated biomass is about 70% (Otsuka and Yoshino, 2004). Biogas production from fresh and

macerated U. lactuca yielded up to 271 mL CH4 g 1 VS, which is in the range of the methane

production from cattle manure and land based energy crops such as grass clover. Drying of the

biomass resulted in a 5–9 fold increase in weight specific methane production compared to wet

biomass (Bruhn et al., 2011).

2.4 Seaweed production

Seaweed has been traditionally cultured for centuries in several Asian countries including China,

Japan, and Korea (Crawford, 2002). Most seaweed production came from the harvest of wild stocks in

these countries, although limited culture had been established in countries such as the Philippines

and Indonesia (Trono, 1990). The species cultivated include Kappaphycus and Eucheuma. The leading

seaweed exporter, the Philippines, increased production from 675 tons in 1967 to 65,617 tons in 2009

and 80,000 tons in 2010, but the country is still importing raw seaweed materials from Indonesia

(www.siap.com.ph, 2011). The world demand for seaweed in 2003 was 220,000 tons for K. alvarezii

and E. denticulatum with an expected 10% annual increase in demand (Sievanen et al., 2005).

Indonesia, on the other hand, raised its production from 1,000 million tons (MT) in 1966 to

approximately 27,874 tons in 2001 and estimated 10 MT in 2015 (Sievanen et al., 2005). The

production levels of algae in 2002 reached 18.6 MT (FAO, 2004). Europe had only a 6.3% share of the

global world production of brown algae (362,000 tons FW) and about 0.3% of red algae (9,400 tons

FW) with <200 tons of macroalgae produced in aquaculture in 2002 (FAO, 2004).

Several sea based cultivation design methods have been developed and tested. The most commonly

used was a fixed off bottom long line, hanging long line, and combination of the 2 (Hurtado et al.,
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2001). System off shore designs for Laminaria culture tested within the area of Helgoland farm,

Germany (Buck and Buchholz, 2004) used longline, ladder (tandem longline), and ring shaped designs

for attachment of algae seeded culture lines. The off shore cultivation ring developed by Buch and

Buchholz (2004) proved resistant to rough weather conditions (6 m wave heights) and current

velocities (2 m s 1) and also permitted easy handling. About 75% of the cultivation ring culture lines

were fully covered by L. saccharina, with a total fresh weight of 304 kg after a 6 month grow out

phase in the sea. Harvesting of the ring construction is performed by towing it to the shore and lifting

it by cranes, or harvest at sea can be performed using boat based cranes. However, the cost of a fully

mounted ring is quite high (€ 1000) as suggested by Buch and Buchholz (2004).

On the other hand, the nuisance seaweed U. lactuca has been shown to be suitable for propagation

under controlled conditions (Lee, 2000). For this reason, cultivation of U. lactuca in tanks for either

crude biomass production for bioenergy or production of biologically active compounds is receiving

increased attention. The green algae Ulva sp. is cultivated in tanks in Denmark for bioenergy

production (Rasmussen et al., 2009). The production of Ulva in Denmark is estimated to be an

average of 45 tons DW/ha per annum (200 days of sufficient light conditions). Critical consideration

when cultivating Ulva spp. in tanks is the frequently occurring sporulation events result in the loss of

algal tissue (Werner et al., 2003).
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Abstract: Seaweeds—or marine macroalgae—notably brown seaweeds in the class 
Phaeophyceae, contain fucoidan. Fucoidan designates a group of certain fucose-containing 
sulfated polysaccharides (FCSPs) that have a backbone built of (1 3)-linked  

-L-fucopyranosyl or of alternating (1 3)- and (1 4)-linked -L-fucopyranosyl residues, 
but also include sulfated galactofucans with backbones built of (1 6)- -D-galacto- and/or 
(1 2)- -D-mannopyranosyl units with fucose or fuco-oligosaccharide branching, and/or 
glucuronic acid, xylose or glucose substitutions. These FCSPs offer several potentially 
beneficial bioactive functions for humans. The bioactive properties may vary depending on 
the source of seaweed, the compositional and structural traits, the content (charge density), 
distribution, and bonding of the sulfate substitutions, and the purity of the FCSP product. 
The preservation of the structural integrity of the FCSP molecules essentially depends on 
the extraction methodology which has a crucial, but partly overlooked, significance for 
obtaining the relevant structural features required for specific biological activities and for 
elucidating structure-function relations. The aim of this review is to provide information on 
the most recent developments in the chemistry of fucoidan/FCSPs emphasizing the 
significance of different extraction techniques for the structural composition and biological 
activity with particular focus on sulfate groups.  
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1. Introduction 

Fucoidan is a term used for a class of sulfated, fucose rich, polysaccharides found in the fibrillar 
cell walls and intercellular spaces of brown seaweeds of the class Phaeophyceae. These  
fucose-containing sulfated polysaccharides (FCSPs) principally consist of a backbone of (1 3)- and 
(1 4)-linked -L-fucopyranose residues, that may be organized in stretches of (1 3)- -fucan or of 
alternating (1 3)- and (1 4)-bonded L-fucopyranose residues. The L-fucopyranose residues may 
be substituted with sulfate (SO3 ) on the C-2 or C-4 (rarely on C-3), with single L-fucosyl residues 
and/or with short fucoside (fuco-oligosaccharide) side chains. If present, the fucoside side chains are 
usually O-4 linked to the -L-fucopyranose backbone residues. However, as FCSPs structures of more 
brown seaweeds are being elucidated, as discussed further in the present review, it appears that FCSPs 
cover a broader range of complex polysaccharides than only those having fucan backbones. Apart from 
variations in the sulfate content and substitutions, also the monosaccharide composition of FCSPs 
varies among different species of brown seaweeds. Hence, in addition to fucose, different types of 
FCSPs may also contain galactose, mannose, xylose, glucose and/or glucuronic acid—usually in minor 
amounts [1].  

According to the ISI Web of Knowledge (Thomson Reuters) the number of published articles with 
the topic assigned as “fucoidan” has increased significantly since fucoidan, or “fucoidin” as it was first 
called, was first isolated from brown algae in 1913 [2]; in particular, a profound increase in the number 
of papers has taken place during the last 5–10 years. By now, the published papers related to fucoidan 
hit approximately 1800 (August 2011, Figure 1). The recent interest has mainly focused on the 
potentially beneficial biological activities of fucoidan and FCSPs in humans including antitumor, 
immunomodulatory, anti-inflammatory, antiviral, antithrombotic, anticoagulant, and antioxidant 
effects as well as specific activities against kidney, liver and urinary system disorders. 

While the development of research efforts involving FCSPs and their potential applications are 
advancing, the understanding of the mechanisms and the particular structural features of the FCSPs 
being responsible for the various biological activities is still incomplete. Seaweeds, including various 
brown seaweeds such as Undaria and Laminaria spp., are part of the food culture in Asia, notably in 
Japan, the Philippines, and Korea, and seaweed extracts have also been used as a remedy in traditional 
medicine. However, no standardized FCSPs extraction or purification protocols exist, and no specific 
pharmaceutical, dermatological, or nutraceutical applications have as yet been officially approved for 
these polysaccharides or their lower molar mass oligosaccharide derivatives.  

It is our proposition that more focus should be directed to the extraction and purification processes 
in order to obtain consistent protocols that account for the biodiversity of FCSPs from different 
seaweeds and to retain the structural features of significance for the specific bioactivity properties of 
FCSPs. The development and use of such consistent extraction procedures would also help in 
achieving a better understanding of structure-function relationships of FCSPs. The aim of this review 
is to bring attention to the detailed structural features of FCSPs in relation to their marine algal sources 
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and the extraction methodology, and to highlight recent knowledge concerning the structural 
determinants for FCSPs bioactivity.  

Figure 1. The trend during three decades of research on fucoidan as depicted by the 
number of published articles (Thomson Reuters, ISI Web of Knowledge). The number of 
articles was obtained according to topics being assigned in the ISI Web of Knowledge 
search engine with the following topic search terms: Fucoidan; Fucoidan*Algae; 
Fucoidan*Algae*Activity. 

 

2. Historic Overview: FCSPs Extraction Procedures and Chemical Analyses 

Extraction using dilute acetic acid followed by purification was used by Kylin already in 1913 to 
isolate “fucoidin”, subsequently referred to as fucoidan, from various species of Laminaria and  
Fucus [2]. Already in this first seminal report, Kylin reported that fucoidan extracted in this way 
mainly contained fucose, but also observed that the fucose occurred together with mannitol, alginic 
acid and laminarin [2] (Table 1); we now know that this interpretation was a result of co-extraction of 
these latter contaminants with the fucoidan. Two years later, Kylin reported that fucoidan isolated from 
Laminaria digitata contained methylpentose, interpreted as L-fucose, as well as some other  
pentoses [3]. A parallel report was published that same year by Hoagland and Lieb (1915) [4] who 
isolated a water-soluble polysaccharide from Macrocystis pyrifera that was closely related to if not 
identical with “fucoidan”, and shown to contain L-fucose as well as relatively high levels of calcium 
and sulfate. They employed a Na2CO3 soaking step and addition of hydrochloric acid which is why 
they also—if not mainly—isolated alginic acid (or alginate) during the extraction (Table 1). The 
rationale behind the extraction of alginate from the seaweed with Na2CO3 soaking is to convert all the 
alginate salts, typically calcium and magnesium alginate, to the sodium salt. Please note that the 
terminology used is confusing; alginic acid or alginate does not designate one particular 
monosaccharide or one type of homo-polysaccharide. With the advances in chemical analyses it is now 
known that alginic acid or alginate is comprised of guluronic and mannuronic acids; which are C-5 
epimers. Structurally, alginic acid, or alginate, is a linear hydrocolloid polymer that consists of blocks 
of (1 4) linked -D-mannuronate and -L-guluronate residues. The detailed structure of alginate may 
have mannuronate and guluronate in homopolymeric blocks of consecutive mannuronate residues  
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(M-blocks), in consecutive guluronate residues (G-blocks), or in structural units of alternating 
mannuronate and -L-guluronate residues (MG-blocks). Both mannuronic acid and -L-guluronic acids 
are uronic acids, and they have in the past been analytically determined as uronic acids. However, 
uronic acids also include several other structures, e.g., glucuronic and galacturonic acids. In this 
review, we will address the significance of the compositional and structural differences, but also 
attempt to introduce a consistent terminology by grouping these compounds as uronic acids, especially 
as homopolymers do not belong to the group of FCSPs. Hoagland and Lieb (1915) [4] did not compare 
their extraction with Na2CO3 soaking to one without, but their report is nevertheless the first example 
of how the extraction procedure may influence the purity and, in turn, the analyzed composition of the 
extracted FCSPs (see Table 1). 

Table 1. Historic view of very early work, from 1913–1950, of fucoidan or FCSPs extraction 
and their reported composition from different brown seaweed species. 

The early FCSPs extraction procedures were based on using a dilute acid treatment, with either acetic 
or hydrochloric acid used as a first “extraction” step with the purpose of hydrolyzing the non-FCSP 
polysaccharides (Table 1). However, the extraction and purification methodologies employed in 

Year Brown seaweed sp. Reported FCSPs composition Extraction method References 

1913 Laminaria and Fucus 
Fucoidan contains fucose, that 
occurs together with mannitol, 
alginate and laminaran 

Dilute acetic acid extraction Kylin, 1913 [2] 

1915 Laminaria digitata 
Fucoidan contains L-fucose and 
other pentoses 

Dilute acetic acid extraction Kylin, 1915 [3] 

1915 Macrocystis pyrifera 
Mainly alginic acid, with some 
fucose-sulfate 

Soaking in 2% Na2CO3 for 24 h, 
filtration, HCl addition, recovery 
of precipitate by filtration, 
redissolution in 2% Na2CO3 

Hoagland and 
Lieb, 1915 [4] 

1931 Laminaria digitata 
Substantial amounts of calcium 
sulfate and uronic acid 

Soaking of the seaweed in water, 
precipitation of crude, sulfated 
polysaccharides by ethanol 

Bird and Haas, 
1931 [5] 

1931 Macrocystis pyrifera 
Methylpentose monosulphate 
polymer with fucose and 
alginate contaminants 

Repeated extraction with 2% HCl 
at room temperature for 48 h, 
precipitated with 90% ethanol 

Nelson and 
Cretcher,  
1931 [6] 

1937 Laminaria digitata 
Proposed (R-R -O-SO2-OM)n 
with R = fucose, R  as unknown, 
M being Na, K, Ca0.5, or Mg0.5 

Precipitation of droplets exuded 
from seaweed in boiling ethanol 

Lunde et al., 
1937 [7] 

1950 

Fucus vesiculosus, 
Fucus spirales, 

Himanthalia lorea, 
Laminaria clustoni 

Substantial amounts of fucose 
and sulfate; small amounts of 
uronic acid, galactose and 
xylose; metals and ash were also 
detected, ash was mainly 
calcium sulfate 

Aqueous extraction at ∼100 °C for 
24 h, extract treated with lead 
acetate (to precipitate alginate and 
proteins), filtrate solution treated 
with Ba(OH)2 to precipitate a 
“hydroxide-fucoidin complex” 

Percival and 
Ross, 1950 [8] 

1952 Fucus vesiculosus Fucose, ash, sulfate 
0.1 M HCl at pH 2–2.5 and 70 °C 
for 1 h, 3-times, fractional 
precipitation with ethanol 

Black et. al., 
1952 [9] 
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different studies to isolate fucoidan/FCSPs from brown seaweed biomass have been modified to 
different extents since the first reports from 1913 and 1915. Bird and Haas (1931) [5], for example, 
used soaking of the brown alga biomass in water and precipitation of crude sulfate from the extract 
with ethanol to obtain fucoidan from L. digitata (Table 1). The product of this extraction was also 
found to contain relatively high levels of ash. The high ash levels were presumably chiefly a result of 
the presence of calcium sulfate in the algal polysaccharides. For the compositional analysis, acid 
hydrolysis using H2SO4 was typically used. This acid hydrolysis step might by itself have contributed a 
substantial amount of sulfate. As a consequence, the use of H2SO4 clearly biased the interpretation of 
the compositional analysis. Hence, the fucoidan isolated by Bird and Haas (1931) [5] was designated 
as carbohydrate sulfate (i.e., containing esterified sulfate) since the total sulfate content was approximately 
the double of that found in the ash. Uronic acid was also present in the FCSPs preparation extracted 
from L. digitata [5] (Table 1).  

Nelson and Cretcher (1931) [6] extracted fucoidan from Macrocystis pyrifera by repeated, extended 
(48 h) extraction with dilute HCl followed by isolation of the FCSPs by ethanol precipitation, and 
revealed the presence of sulfate in the form of ester groups in the precipitated product. They also 
confirmed that fucose was the only sugar identified in the unhydrolyzed residue after acid hydrolysis, 
even though their product contained uronic acid, considered to be due to alginate contamination 
(Table 1). Later, Lunde et al. [7] prepared fucoidan by directly precipitating the droplets exuded from 
freshly gathered L. digitata fronds in ethanol (Table 1). After purification via precipitation of the 
product from boiling ethanol they obtained a FCSPs specimen that contained 33–37% methylpentose 
(interpreted correctly as fucose), and 26–30% ash in which the sulfate content was 17–19%, which 
made up approximately half of the total sulfate estimated in the polysaccharide (35–38%). They 
proposed a structural unit formula, (R-R -O-SO2-OM)n, for fucoidan and suggested that R was fucose 
or another pentose sugar residue, R  was unknown, and M was Na+, K+, (½)Ca2+ or (½)Mg2+ [7] 
(Table 1). 

“In an attempt to reconcile some of the conflicting views on the nature of fucoidin” crude fucoidan 
extracts from F. vesiculosus, F. spirales, Himanthalia lorea and Laminaria clustoni were prepared by 
Percival and Ross (1950) [8]. Their methodology involved boiling of the seaweed biomass in neat 
boiling water for 24 h (hydrolysis treatment) followed by removal of alginates and protein by addition 
of lead acetate, then, after addition of barium hydroxide (presumably to precipitate alginate) the 
fucoidan was isolated as a crude lead hydroxide complex (Table 1). In order to isolate lead free 
fucoidan, the lead hydroxide complex was treated with dilute H2SO4 and fucoidan was then isolated 
after prolonged dialysis and filtration. The purest fucoidan specimen obtained was from H. lorea. This 
fucoidan isolated from H. lorea contained substantial amounts of fucose and sulfate; as well as small 
quantities of uronic acid, galactose and xylose. Metals and ash were also detected, and the ash was 
mainly made up of calcium sulfate [8]. Based on the data obtained the authors believed that the 
principal constituent of fucoidan was a polyfucose with one sulfate substitution on each fucose residue 
and that other constituents arose from adventitious impurities. A parallel paper was published in which 
it was proposed that the core structure of fucoidan from F. vesiculosus was built of 1 2 linked  
L-fucopyranose units, each carrying a sulfate group on C-4 [10]. As discussed later, the interpretation 
that the fucosyl units in the fucoidan were 1 2 linked turned out to be incorrect, as more advanced 
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analyses have now verified that the backbone of fucoidan from F. vesiculosus consists of alternating 
(1 3) and (1 4) linkages [11]. 

In the pursuit to obtain extensive quantities, a laboratory-scale extraction of fucoidan was reported 
by Black et al. [9]. Interestingly, the extracted product was referred to as a “polyfucose ethereal 
sulphate occurring in the Phaeophyceae”. Their optimal fucoidan extraction procedure was as follows: 
One part by weight of dried ground seaweed and 10 parts by volume of 0.1 M hydrochloric acid at 
pH 2.0–2.5 contacted at 70 °C with constant stirring for 1 h. A single acid hydrolysis extraction 
treatment using this method recovered about 50% by weight (w/w) of the theoretical maximum of 
fucoidan (recovered yield measured as % fucose obtained as % of total fucose in the seaweed dry 
weight), whereas three rounds of the acid extraction recovered more than 80% of the fucose present; 
the triple acid hydrolysis treatment (0.1 M HCl, pH 2.0–2.5, 70 °C, 1 h × 3) was therefore selected as 
the optimal extraction method (Table 1). After the acid hydrolysis treatment the crude fucoidan was 
isolated by fractional precipitation with alcohol and further purified by precipitation after addition of 
formaldehyde [9]. By this procedure samples of crude fucoidan containing 30–36% fucose were 
obtained; for example, the fucoidan recovered from F. vesiculosus using the optimal extraction 
protocol was analyzed to contain (by weight) 44% fucose; 26% total sulfate, and 31% ash [9].  
In terms of yields, calculated as fucose as % of total fucose, the results obtained for the four different 
algal species were: Pelvetia canaliculata 76%; F. vesiculosus 62%; Ascophyllum nodusum 54%, and  
L. cloustoni 20% [9]. The authors suggested that a more efficient extraction methodology,  
i.e., extracting higher fucose yields, could be achieved by increasing the water/seaweed ratio, 
extraction time or number of extractions. 

In a study about 20 years later, FCSPs from the brown seaweeds Himanthalia lorea, Bifurcaria 
bifurcata and Padina pavonia were extracted successively using dilute acid, followed by alkaline or 
neat water extraction, acid, and alkali in sequence [12] (Table 2). Prior to extraction, the seaweed 
fronds were treated with formaldehyde to polymerize phenolic constituents which might otherwise 
contaminate the extracted saccharides [12]. This extraction protocol produced a complex mixture of 
glucans, fucose-containing polysaccharides, and alginic acid which could be separated by fractional 
precipitation with ethanol, calcium salts (CaCl2) or by fractionation on resin columns. The FCSPs 
extracted in this fashion were reported to be heteropolysaccharides containing different levels of 
fucose, glucuronic acid, xylose, and esterified sulfate, together with traces of galactose [12]. The 
results also showed that the sulfate and uronic acid contents in the FCSPs separated from the aqueous 
calcium chloride and acid extracts varied significantly according to the seaweed species [12]. 

Another study was conducted on the purification of a sulfated heteropolysaccharide substance from 
Sargassum linifolium to elucidate its structural components [13]. The extraction was done using 
hydrochloric acid at pH 1.0 for 3 h at 80 °C (Table 2); the extract was then neutralized with aqueous 
sodium carbonate and precipitated with ethanol [13]. The resulting sulfated polysaccharide material, 
termed “sargassan”, was proposed to be built of glucuronic acid, mannose, and galactose residues with 
partially sulfated side-chains composed of galactose, xylose and fucose residues [13]. As discussed 
later, we now know that Sargassum spp. do indeed contain highly complex FCSPs structures built 
from this array of monosaccharides.  
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Sargassum linifolium to elucidate its structural components [13]. The extraction was done using 
hydrochloric acid at pH 1.0 for 3 h at 80 °C (Table 2); the extract was then neutralized with aqueous 
sodium carbonate and precipitated with ethanol [13]. The resulting sulfated polysaccharide material, 
termed “sargassan”, was proposed to be built of glucuronic acid, mannose, and galactose residues with 
partially sulfated side-chains composed of galactose, xylose and fucose residues [13]. As discussed 
later, we now know that Sargassum spp. do indeed contain highly complex FCSPs structures built 
from this array of monosaccharides.  
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Table 2. Extraction methods and reported chemical composition of different brown seaweed 
species and their corresponding order.  

Species Order Extraction method Composition Reference 

Cladosiphon 
okamuranus 

Chordariales 

Seaweed-H2O suspension was treated 
with 30% HCl (pH 3) at 100 °C for  
15 min. Supernatant was neutralized 
with NaOH, precipitated with CaCl2 and 
EtOH for 20 h at 4 °C, precipitate was 
dissolved with H2O then dried 

fucose, glucose, uronic 
acid and sulfate 

Nagaoka et al., 
1999 [14] 

Adenocystis 
utricularis 

Ectocapales 

80% EtOH, 24 h, 70 °C pretreatment 
then extracted with water (or 2% CaCl2; 
or HCl) for 7 h at rt, followed by 
exhaustive extraction at 70 °C 

fucose, rhamnose, 
glucose, galactose, 

xylose, mannose, uronic 
acid and sulfate 

Ponce et al.,  
2003 [15] 

Himanthalia  
lorea 

Fucales 
Acid + alkali + water-acid-alkali 
sequence in 70 °C, 4 h. 

fucose, xylose, uronic 
acid, sulfate 

Mian and 
Percival,  
1973 [12] 

Ascophyllum 
nodosum 

Fucales 
Extracted at rt and then 70 °C with 
0.01 NaCl containing 1% CaCl 

fucose, xylose, 
galactose, glucose, 

sulfate 

Marais and 
Joseleau,  
2001 [16] 

Fucales 

Extracted with hot water and dilute 
alkali, formaldehyde treatment, then 
extracted with ammonium oxalate-oxalic 
acid for 6 h at 80 °C 

fucose, xylose, uronic 
acid sulfate 

Percival,  
1968 [17] 

Sargassum 
stenophyllum 

Fucales 

Extracted with water 7% w/v mL,  
12 h, 3×. Precipitated with EtOH and 
CaCl2 and cetylpyridinium chloride. 
Soluble fraction (SF) was then 
fractionated (F1–F6) 

fucose, xylose, 
mannose, galactose, 
glucose, sulfate and 

uronic acid 

Duarte et al., 
2001 [18] 

Sargassum sp. Fucales 
Extracted with 0.03 M HCl at 90 °C for 
4 h, single-step 

Fucose, rhamnose, 
galactose, glucose, 

mannose, xylose, uronic 
acid, sulfate 

Ale et al.,  
2011 [19] 

Sargassum  
linifolium 

Fucales 
Extracted with water at pH 1 (HCl), for 
3 h at 80 °C 

mannose, galactose, 
xylose, uronic acid and 

fucose residues 

Abel-fattah et al., 
1974 [13] 

Fucus evanescens; 
Fucus distichus 

Fucales 

Pretreatment: MeOH–CHCl3–H2O 
(4:2:1), then extracted 2% CaCl2 for  
5 h at 85 °C, precipitated and the 
precipitate was washed with water, 
stirred with 20% ethanolic solution and 
dissolved with water [20] 

fucose, xylose, 
galactose, uronic acid 

and sulfate 

Cumashi et al., 
2007 [21] 

Fucus serratus Fucales 

Pretreatment: MeOH–CHCl3–H2O 
(4:2:1), then extracted 2% CaCl2 for 5 h 
at 85 °C, the extracts were collected by 
centrifugation, combined, dialyzed and 
lyophilized [22] 

fucose, xylose, 
mannose, glucose, 

galactose, uronic acid 
and sulfate 

Cumashi et al., 
2007 [21] 
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Table 2. Cont. 

Hizikia fusiforme Fucales 

Powdered seaweed was extracted 
with H2O (1:10), 3×, 2 h at 70 °C, 
precipitated with EtOH and CaCl2 
then dried 

fucose, mannose, 
galactose, xylose, 

glucose, rhamnose, 
arabinose, uronic 
acid and sulfate 

Li et al.,  
2006 [23] 

Laminaria saccharina; 
Laminaria digitata; 

F. vesiculosus; 
F. spiralis  

Ascophyllum nodosum 

Laminariales 
and Fucales 

Extracted with 2% CaCl2 for 5 h at 
85 °C, precipitated with Cetavlon, 
transformation of Cetavlonic salts 
into calcium salts, and an alkaline 
treatment to remove acetyl groups 
and to transform fucoidan into 
sodium salts [24] 

fucose, xylose, 
mannose, glucose, 
galactose, uronic 
acid and sulfate 

Cumashi et al., 
2007 [21] 

Chorda filum Laminariales 

Extracted with CHCl3–MeOH–H2O 
(2:4:1) followed by 80% EtOH, 
then extracted successively with 
2% CaCl2 at 20 and 70 °C, then 
with HCl (pH 2) and 3% Na2CO3, 
precipitated with calcium salt 

fucose, xylose, 
mannose, glucose, 
galactose, uronic 
acid and sulfate 

Chizhov et al., 
1999 [25] 

Undaria pinnatifida Laminariales 

Ground seaweed extracted twice at 
rt for 6 h with 1% H2SO4, 
neutralized with 10% NaOH and 
lyophilized 

fucose, mannose, 
xylose, rhamnose, 
galactose, glucose 

and sulfate 

Hemmingson et al., 
2006 [26] 

Laminaria religiosa Laminariales 

Water extraction at boiling temp. 
for 4 h, fucoidan fraction was 
obtained by using 0.09 HCl at 4 °C 
for 2 h, then precipitated with 85% 
EtOH and dried 

fucose, xylose, 
mannose, glucose, 
rhamnose, uronic 
acid and sulfate 

Maruyama and 
Yamamoto  
1984 [27] 

These early reports show that, with a few exceptions, treatment with dilute acid at ambient or 
slightly elevated temperature has been a preferred first step in extraction protocols for isolating 
fucoidan or FCSPs from different types of brown seaweeds (Tables 1 and 2). The use of different 
acids—or no acid at all—as well as the differences in extraction time and temperature during the 
extraction and further purification treatments have generated diverse compositional results and 
structural suggestions for fucoidan or FCSPs (Tables 1 and 2). The early reports almost unequivocally 
found that fucoidan mainly contained fucose and sulfate; nevertheless, the chemical composition of the 
most highly purified, but still crude fucoidan specimen from Himanthalea lorea indicated that the 
fucoidan of this seaweed species contained fucose, galactose, xylose, uronic acids as well as  
sulfate [8,14]. In the more recent reports, a pretreatment of the seaweed biomass prior to the real 
extraction treatment has been found to be advantageous to eliminate low molecular components  
(e.g., phenols); as already mentioned above, an early study used formaldehyde pretreatment [12]. 
However, more recent reports show that the pretreatment typically involves the use of a mixture of 
methanol, chloroform and water [22]. Removal of protein has also been considered. This can be 
facilitated via the use of proteolytic enzymes [28] (or by lead acetate treatment, as used by Percival 
and Roos in 1950 [8]). Another useful purification procedure has involved transformation of alginate 
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in the residual biomass into insoluble calcium salts by treatment of the FCSPs specimen with aqueous 
calcium chloride [19,20]. 

In conclusion, the use of an array of different extraction and purification techniques appear to have 
contributed to the confusion that has prevailed about the nature and composition of fucoidan and 
FCSPs ever since fucoidan was first described by Kylin early in the 20th century [2]. As detailed in the 
following, we now know that the initial suggestions [29,30] that fucoidan was built of (1 2) linked 
L-fucopyranosyl residues were wrong. Fucoidan is built of 1 3-linked -L-fucopyranosyls or of 
alternating 1 3- and 1 4-linked -L-fucopyranosyl residues that may be sulfate substituted.  
We also know,that “fucoidans” isolated from certain brown algae have completely different structures 
being composed of sulfated galactofucans with backbones of (1 6)-linked -D-galacto- and/or 
(1 2)- -D-manno-pyranosyl units with (1 3) and/or (1 4)- -L-fucooligosaccharide branching. The 
available data thus show that the term “fucoidan” has been used for several different chemical 
structures and vice versa that fucoidan is a term that covers a diverse family of fucose-containing 
sulfated polysaccharides (Table 1). It is therefore more correct to use the term fucose-containing 
sulfated polysaccharides (FCSPs) rather than fucoidan as a collective term for these polysaccharides. 

3. Taxonomic Comparison of Fucoidan or FCSPs Structure 

3.1. Fucales 

In 1993 a revised structure of the polysaccharide backbone of the main FCSP product from  
F. vesiculosus was presented as (1 3) linked instead of as (1 2) linked [31]; it was also reported 
that fucose was attached to the backbone fucan polymer to form branching points, typically one for 
every 2–3 fucose residues within the chain, still with sulfate groups at position C-4 on the fucose  
units [31]. However, detailed analysis of the methyl derivatives obtained from partially desulfated  
F. vesiculosus polysaccharides revealed the presence of 2,4-di-O-methylfucose as well as  
2,3-di-O-methylfucose which indicated the presence of both (1 3) and (1 4) linked fucose 
residues [32] (Figure 2). A similar structure was also determined for a FCSPs-derived oligosaccharide 
of about 8–14 monosaccharide units extracted from Ascophyllum nodosum (Fucales) [11] (Figure 2).  

More recently, several studies—using highly advanced analytical methods—have documented that 
fucoidan from brown seaweed in the order of Fucales such as F. evanescens and F. serratus do indeed 
contain large proportions of both (1 3) and (1 4) glycosidic bonds [20–22] (Figure 2). Structural 
analysis of a depolymerized low molecular weight fraction of fucoidan from F. evanescens by 
MALDI-TOF and tandem ESI mass spectrometry has moreover shown that this fraction contains 
oligosaccharides with and without sulfate substitutions and that it mainly consists of (1 3)-linked 
fucose residues being esterified with sulfate at C-2 [33]. This more detailed analysis has also revealed 
the presence of minor components of mixed monosulfated fucooligosaccharides containing both  
2-O- and 4-O-sulfated (1 4) bonded xylose and galactose residues: Xyl-(1 4)-Fuc, Gal-(1 4)-Fuc, 
Gal-(1 4)-Gal-(1 4)-Fuc, Gal-(1 4)-Gal [24]. Glucuronic acid (GlcA) was also detected as being a 
part of the non-sulfated fucooligosaccharides: Fuc-(1 3)-GlcA, Fuc-(1 4)-Fuc-(1 3)-GlcA,  
Fuc-(1 3)-Fuc-(1 3)-GlcA respectively [33]. 
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Figure 2. Typical structure of fucoidan (FCSPs) obtained from some brown seaweed 
species in the order of Fucales. The L-fucopyranose backbone of the fucoidan (FCSPs) 
extracted from A. nodosum and F. vesiculosus is connected by alternating (1 3) and 

(1 4) linkages [11]; The FCSPs from F. evanescens have a similar backbone built up 
with sulfate substituted at the 2- and 4-position of the fucose residues [20] (only sulfate 
substitutions on C-2 of fucose are shown in the Figure). Acetate substitutions may also be 
found at the C-4-position of 3-linked fucose and at C3 of 4-linked fucose units [22] 
(acetate substitutions not shown in the figure). For F. serratus L. a possible fucoside side 
chain at C-4 is also shown. 

 

Brown seaweed species in the order of Fucales have also been reported to contain very complex 
FCSPs structures having fucose and galactose in comparable amounts; these structures are generally 
referred to as sulfated galactofucans and are predominantly found among Sargassum species [18,34,35]. 
These sulfated galactofucans are mainly built of (1 6)- -D-galactose and/or (1 2)- -D-mannose 
units with branching points formed by (1 3) and/or (1 4)- -L-fucose, (1 4)- -D-glucuronic acid, 
terminal -D-xylose and sometimes (1 4)- -D-glucose [18]. Early studies also reported the existence 
of fucoglucuronans having a backbone of glucuronic acid, mannose and galactose residues with side 
chains of neutral and partially sulfated residues of galactose, xylose and fucose; notably present in 
Sargassum linifolium [13]. More recently, the FCSPs of this type extracted from the brown seaweed 
Sargassum stenophyllum (Fucales) were grouped into two different types: type I was found to contain 
a relatively high percentage of -D-glucuronic acid and relatively few sulfate groups, while type II 
contained relatively small amounts of -D-glucuronic acid and a high percentage of sulfate [18]. The 
type I polysaccharides were composed of a linear backbone formed mainly by (1 6)- -D-galactose 
and/or (1 2)- -D-mannose with branching chains formed by (1 3) and/or (1 4)- -L-fucose,  
(1 4)- -D-glucuronic acid, while in the type II polysaccharides the backbone was mainly built of 
short galactan chains [18]. 

Corresponding structures were observed in FCSPs fractions from Hizikia fusiforme a.k.a. 
Sargassum fusiforme (Fucales). These structures were separated by ion exchange chromatography after 
the FCSPs had been obtained via hot aqueous extraction, followed by ethanol and CaCl2 precipitation 
(Table 2). These chromatographically purified fractions predominantly contained fucose, mannose, 
galactose, uronic acid and sulfate [23] (Figure 3). In accordance with the findings of Duarte et al. [18] 
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the structural analysis of one of the main fractions purified by ion exchange chromatography indicated 
that the sulfate groups might be found in any position on the galactose/mannose backbone or on the 
fucose units (Figure 3). The sulfate groups in the FCSPs in this fraction, which had been isolated after 
3 rounds of extraction in hot water (70 °C), then ethanol and CaCl2 precipitation prior to chromatography 
(Table 2), were mainly found at C-6 of [ 2,3)-Man-(1 ], at C-4 and C6 of [ 2)-Man-(1 ] and at 
C-3 of [ 6)-Gal-(1 ] [23]. On the fucose, the sulfate groups were substituted at C-2, C-3 or C-4, 
while some fucose residues had two sulfate groups [23]. The core of these S. fusiforme FCSPs was 
mainly composed of alternating units of [ 2)- -D-Man-(1 ] and [ 4)- -D-GlcA-(1 ], with a minor 
portion of [ 4)- -D-Gal-(1 ] units, and the branching points were at C-3 of [ 2)-Man-(1 ],  
C-2 of [ 4)-Gal-(1 ] and C-2 of [ 6)-Gal-(1 ], respectively [23] (Figure 3). 

Figure 3. Suggested structures of the FCSPs (fucoidan) from H. fusiforme [23] also known 
as Sargassum fusiforme (Fucales); sulfate substitutions not shown. The structures also 
represent typical FCSPs structures from other Sargassum spp. [18].  

 

3.2. Laminariales and Other Brown Seaweed 

Various structures of FCSPs from brown seaweeds of the order of Laminariales have also been 
reported [36]. The available data indicate that the FCSPs derived from this seaweed order contain 
small amounts of other monosaccharides besides fucose. Interestingly, polysaccharides containing 
significant amounts of fucose and galactose and which seem to be compositionally and structurally 
similar to the fucoidan from Fucales brown seaweeds appear to be prevalent [26,35]. Structural 
analysis was conducted on the FCSPs from the sporophyll Undaria pinnatifida (Laminariales) and it 
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was found that the FCSPs had a high fucose/galactose ratio, high uronic acid, and low sulfate content. 
The most abundant fucopyranosyl units were substituted at the 3-; 2,3-; or 2,3,4-positions whereas 
fucose residues with substitutions at the 3,4- or 4-positions were less abundant [26]. The 
galactopyranosyl units were predominantly substituted at the 3- or at both the 3,4-positions [26]. 

FCSPs isolated from Chorda filum (Laminariales) have been shown to consist of a  
poly- (1 3)-fucopyranose backbone with a high degree of branching mainly as (1 2)-linked single 

-L-fucopyranosyl residues (Figure 4) [24,25]; the fucopyranosyl residues were found to be sulfated 
mainly at C-4 and sometimes at the C-2 position, whereas some of the (1 3)-linked fucose residues 
were shown by NMR to be C-2 acetylated [25]. A similar structure has been reported by  
Usov et al. [24] for the FCSPs isolated from L. saccharina (Laminariales) which are mainly built of 
(1 3)-linked -L-fucopyranose with sulfation at C-4 and sometimes at the C-2 position or with 
possible -L-fucopyranosyl at C-2 (Figure 4). This FCSPs structure has also been found to be present 
in the body wall layer of the sea cucumber Ludwigothurea grisea (a marine invertebrate). The FCSPs 
of the sea cucumber body wall are essentially built of an -(1 3)-fucopyranose backbone [37]. NMR 
analysis has indicated that 2,4-di-sulfo-L-fucopyranose and unsubstituted fucopyranose are present in 
equal proportions, and that 2-mono-sulfo-L-fucopyranose is present in twice that proportion [33]. The 
FCSPs from Lessonia vadosa (Laminariales) have also been studied by NMR spectroscopy and the 
data indicate that the polysaccharides are mainly composed of (1 3)-bonded fucopyranose residues 
sulfated mainly at position C-4 and partially at position C-2 [38]. 

Figure 4. Structural motifs of FCSPs (fucoidan) from some brown seaweed species of the 
order Laminariales and Chordariales. FCSPs of Chorda filum and Laminaria saccharina 
consist of a poly- -(1 3)-fucopyranoside backbone with sulfate mainly at C-4 and sometimes 
at the C-2 position; some of the backbone fucose residues may be acetylated at C-2  
(not shown) [24,25]. Cladosiphon okamuranus derived FCSPs also consist of a backbone 
of (1 3)-linked-L-fucopyranose residues with sulfate substitutions at C-4 and/or with 

(1 2)-linked single -L-fucopyranosyl substitutions and vicinal glucuronic acid substitutions. 
Some of the side chain fucose residues may be O-acetylated (not shown) [14].  

 

Other algal fucoidans whose structures contain the same (1 3)-backbone of fucose residues have 
been found in Analipus japonicas (Ectocarpales), Adenocystis utricularis (Ectocarpales) and 
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Cladosiphon okamuranus (Chordariales) [14,15,39], but the FCSPs from these brown algae also 
appear to contain other monosaccharides than fucose (Table 2). The detailed structural elucidation of 
the FCSPs from C. okamuranus (Chordariales) confirmed that this product was made up of a linear 
backbone of (1 3)-fucopyranose units with a portion of the fucose residues carrying sulfate 
substitutions at C-4 but some of the fucose residues have also been found to be O-acetylated (Figure 4). 
The C. okamuranus FCSPs may also contain -glucuronic acid substitutions at the C-2-positions of 
those backbone fucose residues that are not substituted by a sulfate group [14] (Figure 4).  

Methylation analysis, desulfation and NMR spectroscopy of the FCSPs fractions from Adenocystis 
utricularis (Ectocarpales) showed that these FCSPs contained the same -(1 3)-fucopyranose 
backbone as that found in Chorda filum and Laminaria saccharina FCSPs, and that the fucopyranosyl 
units were mostly sulfated at C-4, and branched at C-2 with non-sulfated fucopyranosyl units; the 
galactan moiety, which was also present, was predominantly found to be a backbone structure of 
(1 3) and (1 6) D-galactopyranose units with sulfation mostly on C-4 [15]. Later, a similar structure 
was found in FCSPs extracted from Analipus japonicas (Ectocarpales) [39].  

The relatively large variations in the reported compositional and structural properties of the FCPSs 
extracted from different brown seaweed species thus clearly confirm the natural biodiversity of FCSPs 
notably as exemplified by the structures found in Fucales, e.g., in the Fucus sp. and Sargassum sp. 
(Figures 2 and 3). The (1 3)-linked -L-fucopyranosyl backbone structure, with various extents of 
sulfate substitutions, is prevalent as the core backbone structure in the majority of the currently 
analyzed FCSPs. Nevertheless, the reported structural data for FCSPs from different brown seaweed 
species clearly indicate that there is no consistent basic structure of “fucoidan”. It also seems clear that 
FCSPs extracted from seaweeds under the same order have different composition, and in turn that the 
structural traits of FCSPs cannot be categorized or predicted according to algal order (Tables 1 and 2).  

When assessing the available compositional data the large variation in the composition of the FCSPs 
products obtained from different extraction methods is evident (Table 2). Recently, we optimized the 
extraction yields of FCSPs from Sargassum sp. by developing a single-step extraction procedure. 
While doing so, we also systematically examined the effects of different extraction parameters  
(i.e., acid concentration, time, and temperature) on the yields and composition of the FCSPs products 
obtained [19] (Table 2). All extraction factors affected the FCSPs yield. Lower total FCSPs yields, but 
higher fucose contents in the products were obtained with shorter extraction time [19]. The work also 
revealed that classical extraction treatment with HCl at elevated temperature and during extended time, 
i.e., a procedure similar to the one used by Black et al. [9], had a detrimental effect on the FCSPs yield 
as this treatment apparently disrupted the structural integrity of the fucose-containing polymer and 
caused degradation of the chains built of fucose residues [19]. Hence, some of the classic methods, 
employing relatively harsh acid treatments, may in fact have affected the composition and structure of 
the target FCSP products to different extents, and may have contributed to the prevailing “conflicting 
views on the nature of fucoidin” recognized already in 1950 by Percival and Ross [8]. A consensus to 
employ defined extraction protocols for extraction of FCSPs, or at least an agreement among scientists 
in the field to include a benchmark extraction procedure in their studies, would help to advance the 
understanding of these intriguing FCSPs substances.  
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4. Bioactivity of Fucoidan or FCSPs 

In recent years, fucoidan or FCSPs from seaweed biomass have been the subject of many  
scientific studies aiming at assessing their potential biological activities including antitumor and 
immunomodulatory [40–42], antivirus [43], antithrombotic and anticoagulant [44], anti-inflammatory [45], 
and antioxidant effects [46], as well as their effects against various renal [47], hepatic [48] and uropathic 
disorders [49].  

Recently, low molecular weight FCSPs have been shown to have therapeutic potential in preventing 
intimal hyperplasia in both in vivo and in vitro studies: Contact with low molecular weight FCSPs 
(“fucoidan”) thus increased the migration of human vascular endothelial cells and induced decreased 
migration of vascular smooth muscle cells in vitro [50]. In an in vivo rat experiment FCSPs reduced 
the intimal hyperplasia in the rat aortic wall after balloon injury [50]. Furthermore, an in vivo efficacy 
study of fucoidan films conducted using a rat model showed that during cecal-sidewall surgery a 
fucoidan film wound healing treatment reduced the adhesion scores by approximately 90% and 
resulted in 50% to 100% of animals being adhesion free [51].  

In this review, the most significant bioactivities of FCSPs, including antitumor and 
immunomodulatory, anticoagulant and antithrombotic effects will be presented with special focus on 
the relationship between the FCSP structural features and biological activity.  

4.1. Antitumor and Immune-Response Activities 

Several different therapeutic strategies such as chemotherapy, radiation therapy, surgery or 
combinations hereof have been used to treat different types of cancer. Unfortunately, several of these 
treatments provide only minimal benefits; moreover, there are undesirable complications and long term 
side effects of the treatments [52,53]. Consequently the quest for potential preventive or therapeutic 
measures against cancer has been going on for years and recently the focus has been directed towards 
bioactive compounds of natural origin, including FCSPs from brown seaweeds [1]. Many reports have 
been published which indicate the antitumor and immune-response modulating activity of FCSPs in 
both in vivo and in vitro studies [40–42,54,55]. 

Sulfated polysaccharide fractions from Sargassum fulvellum, S. kjellmanianum, L. angustata,  
L. angustata var. longissima, L. japonica, Ecklonia cava, and Eisenia bicyclis have been evaluated for 
their bioactivities, and they have been found to exert remarkable growth inhibitory activities on 
Sarcoma-180 cells implanted into mice and to possess antitumor activity against L-1210 leukemia  
in mice [56–58]. Recently, we reported the potent in vitro bioactivity of FCSPs extracted from 
Sargassum sp. and F. vesiculosus against lung and skin cancer cell growth [42]. The antitumor 
mechanism of FCSPs from sporophylls of Undaria pinnatifida has been described by  
Maruyama et al. [41,59]. The available findings indicate that antitumor activity of FCSPs may be 
associated with a significant enhancement of the cytolytic activity of natural killer (NK) cells augmented 
by increased production of macrophage-mediated immune response signaling molecules [59–61], 
namely interleukins (IL)-2, IFN-  and IL-12 [42,59], and induction of apoptosis [42]. 

Macrophage activation by polysaccharides is mediated through specific membrane receptors. The 
major receptors reported for polysaccharides recognition in macrophages are glycoproteins including 
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Toll-like receptor-4 (TLR-4), cluster of differentiation 14 (CD14), competent receptor-3 (CR-3) and 
scavenging receptor (SR) [61]. Activation of these receptors is mediated by intracellular signaling 
pathways and the family of mitogen-activated protein kinases (MAPKs) plays a critical role notably in 
the production of nitric oxide (NO) which can lyse tumors [61]. MAPK family members such as p38 
MAPK, extracellular regulated kinase (EKR1/2) and stress-activated protein kinase/c-Jun-N-terminal 
kinase play an important role in the activation of macrophages by polysaccharides such as FCSPs [61,62] 
(Figure 5A). Activated MAPKs lead to activation of transcription factors resulting in induction of 
various genes [61]. Activation of macrophages induces the production of cytokines such as  
interleukin-12 (IL-12) which in turn stimulate the development of T-cells (Figure 5B). T-cells produce 
interleukin-2 (IL-2) that in turn activates NK cells proliferation. The NK cells themselves produce 
immunologically important cytokines, notably IFN- , which can further provoke the participation of 
macrophages in the stimulation of T-cell via induction of IL-12 [41,59] (Figure 5B).  

NK cells appear to represent a first line of defense against the metastatic spread of blood-borne 
tumor cells, and normal NK activity may be important in immune surveillance against tumors [63]. 
NK-mediated killing of target cells by apoptosis is facilitated by activation of caspase cascades  
(Figure 5B). In tumor bearing mice, FCSPs appear to act as an immunopotentiator leading to increased 
antitumor effectiveness as exhibited by increased immune response against A20 leukemia cells and a 
lowering of the tumor size in transgenic (DO-11-10-Tg) mice [41]. Moreover, recent investigations of 
the immunomodulatory activity of FCSPs in rats with aspirin-induced gastric mucosal damage suggest 
that the gastro-protective effect of fucoidan against aspirin-induced ulceration may take place through 
the prevention of elevation of pro-inflammatory cytokines, IL-6 and IL-12 [64]. 

Figure 5. Proposed mechanism responsible for fucoidan bioactivity: (A) Macrophage 
activation by FCSPs as mediated through specific membrane receptor activation  
namely TLR-4, CD14, CR-3 and SR which in turn induce intracellular signaling via  
mitogen-activated protein kinases (MAPKs); (B) Activation of macrophages lead to 
production of cytokines such as IL-12, IL-2 and IFN-  which enhance NK cell activation 
that may stimulate T-cell activation further via IFN- . 
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Apoptosis is one of the most prevalent pathways through which FCSPs can inhibit the overall 
growth of cancer. Previous studies have shown that different types of FCSPs can induce apoptosis in 
melanoma cells [42], HT-29 colon cancer cells [65], MCF-7 human breast cancer cells [66], and  
HS-Sultan human lymphoma cells [62]. In human HS-Sultan cells, the apoptosis may occur via activation 
of caspase-3 [62]; and in MCF-7 cells via caspase-8 dependent pathways [66]. Alternatively, FCSPs 
induced apoptosis may take place through activation of caspases via both death receptor-mediated and 
mitochondria-mediated apoptotic pathways [65].  

4.2. Anticoagulant and Antithrombotic Activities 

The earliest published report describing the anticoagulant activity of fucoidan was published in 
1957 [67]. In that report it was shown that a certain fraction of fucoidan from F. vesiculosus possessed 
powerful anticoagulant activity that qualified fucoidan to belong to the group of heparinoids [67]. 
Heparin is a biomolecule containing highly sulfated glucosaminoglycan that is widely used as an 
injectable anticoagulant. It has been reported that the anticoagulant mechanisms of fucoidan are related 
to both antithrombin and heparin cofactor II-mediated activity [68,69], but the mechanisms by which 
fucoidan exerts anticoagulant activity remain controversial [32]. Hence, any possible relations between 
the physical and chemical properties, the structure, and the anticoagulant activity of fucoidan remain to 
be firmly established. The uncertainties are mainly due to the structural variation of fucoidan between 
algal species, but most likely also a result of the different extraction methodologies employed to isolate 
FCSPs that appear to have produced FCSPs of different composition, structure, and size, which have 
given rise to conflicting results in the detailed studies of mechanisms of anticoagulant activity [32,70].  

Results obtained using the so called activated partial thromboplastin time assay (APTT) have 
strongly indicated that FCSPs from F. vesiculosus have specific anticoagulant activity. Comparable 
results have been obtained in two independent studies using FCSPs dosages equivalent to 9–13 U/mg 
versus 167 U/mg for heparin; and 16 U/mg versus 193 U/mg heparin, respectively [71,72]. When 
FCSPs samples isolated from nine brown seaweed species were tested for anticoagulant activities, the 
APTT results were significant at 12–38 U/mg as compared to at 167 U/mg for heparin [73].  
A remarkable finding for anticoagulant action was also reported by Kitamura et al. [74], who showed 
that a FCSPs fraction from L. angustata var. longissima (Laminariales) had antithrombin activity at 
200 U/mg, equivalent to a dose of 140 U/mg heparin. The particular FCSPs fraction having 
anticoagulant activity had a molecular weight of ~21–23 kDa and contained fucose-galactose-sulfate at 
a ratio of 9:1:9 with the sulfate substitutions at C-4 of the fucose residues [74].  

It has been postulated that it is not a specific structural trait that determines fucoidan’s ability to 
elicit anticoagulant activity, but rather that the anticoagulant effect is due to a multitude of structural 
features including monosaccharide composition, molecular weight, sulfation level, and position of 
sulfate groups on the main chain of the polysaccharide [69,75–77]. The comprehensive study of the 
anticoagulant activity of fucoidan by Cumashi et al. [21] also noted that neither the content of fucose 
and sulfate nor other structural features affected the anticoagulant efficacy. FCSPs from C. okamuranus 
(Chordariales) have been reported to exert virtually no anticoagulant effect, and this could be due to 
the low amount of sulfate in its polymer backbone and/or the presence of vicinal branching points 
formed by 2-O- -D-glucuronyl substituents (Figure 4) [21,14]. On the other hand, the concentrations 
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of C-2 sulfate and C-2,3-disulfated sugar residues (Figure 2) have been reported to be a common 
structural feature for fucoidan anticoagulant activity [11]. The anticoagulant activity of high molecular 
weight FCSPs from Ecklonia kurome were thus reported to be dependent on both molecular weight 
and sulfate content [76]: Higher molecular weight FCSPs (i.e., 27 and 58 kDa) showed higher 
anticoagulant activity than lower molecular weight FCSPs (i.e., 10 kDa); and FCSPs samples having 
a high molar ratio of sulfate to total sugar residues were found to exhibit inhibitory effects on 
fibrinogen clotting by thrombin reaction [76]. These results were supported by data reported by 
Haroun-Bouhedja et al. [78] who reported a relationship between the extent of sulfate group 
substitutions and the biological activities of fucoidan. The anticoagulant activity of low molecular 
weight (LMW) fucoidan, i.e., MW < 18 kDa was thus found to decrease with decreasing degree of 
sulfation, and very low-sulfate (<20%) or desulfated LMW fucoidan lost its anticoagulant activity, but 
retained some antiproliferative activity on CCL39 fibroblast cells [78]. In contrast, LMW fucoidan 
with sulfate content higher than 20% was found to exert profound anticoagulant activity as well as 
antiproliferative effects on fibroblast cell line CCL39 cells in a dose-dependent fashion [78].  

Some studies suggest that also the sugar composition (e.g., fucose, galactose, mannose, etc.) or the 
type of oligo- or polysaccharides of the FCSPs may play an important role for anticoagulant  
activity [75,79]. However, the series of investigations conducted by Pereira et al. [32,80,81] indicated 
that a 2-sulfated, 3-linked -L-galactan, but not -L-fucan, was the potent thrombin inhibitor mediated 
by anti-thrombin of heparin cofactor II. These findings have however also pointed out that it is not 
necessarily the sugar composition but rather the sulfate substitutions on the sugars that determine the 
anticoagulant activity of fucoidan—or both [82].  

Most of the reported studies were carried out with crude, diverse and complex FCSPs obtained via 
extraction from brown seaweeds as opposed to being chemically well defined structures. For this 
reason it is not easy to identify a structure versus activity relationship because of the presence of highly 
branched portions and the complex distributions of sulfate and acetyl groups in algal FCSPs. This 
aspect was attempted resolved by use of invertebrate polysaccharides [83]. The data obtained indicated 
that regular, linear sulfated -L-fucans and sulfated -L-galactans express anticoagulant activity, which 
is not simply a function of charge density, but critically dependent on the pattern of sulfation as well as 
monosaccharide composition. Sulfated -L-fucans and fucosylated chondroitin sulfate were also shown 
to elicit antithrombotic activity when tested on in vivo models of venous and arterial thrombosis in 
experimental animals [83]. 

4.3. Bioactivities and Oversulfation of FCSPs  

In 1984 crude FCSPs fractions from Sargassum kjellmanianum were prepared in order to 
investigate the influence of the sulfation levels on the survival of L-1210 leukemia bearing mice; and 
on the growth of Sarcoma-180 cells [58]. The study showed that the fraction with the highest sulfation 
was the most effective against L-1210 leukemia bearing mice and it produced an increase in life span 
of 26%. On the other hand, this particular FCSPs fraction was also less effective in inhibiting growth 
of Sarcoma-180 cells subcutaneously implanted into mice [58].  

Since then, several investigations have focused on the effect of oversulfation of FCSPs on biological 
activity [54,78,84–89]. Oversulfated FCSPs may be obtained by further sulfation of native FCSP 
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molecules using dimethylformamide as solvent and a sulfur trioxide-trimethylamine complex as the 
sulfating agent [86]. The inhibitory effects of such oversulfated FCSPs were investigated on the 
invasion of Murine Lewis Lung Carcinoma cells through a reconstituted membrane basement 
fragment, socalled laminin [86]. Oversulfated FCSPs were found to be the most potent inhibitor of 
tumor cell invasion and were also, in particular, found to inhibit tumor cell adhesion to laminin better 
than native and desulfated FCSPs. The most potent oversulfated FCSP structures had sulfate groups on 
both the C-3 and C-4 positions of the fucose units; hence, the particular spatial orientation of the 
negative charges in the FCSPs molecules may also be an important determinant of bioactivity [86]. 
The study did not allow firm conclusions to be drawn with respect to mechanisms of action, but it was 
suggested that the increased negative charge resulting from oversulfation might promote the formation 
of FCSPs-protein complexes involved in cell proliferation, in turn suppressing cell growth [86].  

When the importance of the spatial orientation of the negative charges on the FCSPs was investigated 
in more depth it was confirmed that this feature plays a major role in determining the binding potency 
of FCSPs to vascular endothelial growth factor 165 (VEGF165) [88]. Both native and oversulfated 
FCSPs have been tested for their anti-angiogenic actions in vivo and for their in vitro anti-proliferative 
effects against B16 melanoma cells, Sarcoma-180 and Lewis lung carcinoma cells: The interaction of 
oversulfated FCSPs with VEGF165 occurred with high affinity and resulted in the formation of highly 
stable complexes, thereby interfering with the binding of VEGF165 to vascular endothelial growth 
factor receptor-2 (VEGFR-2). The results showed that both native and oversulfated FCSPs were able 
to suppress neovascularization in mice implanted Sarcoma-180 cells; and that both FCSPs types 
inhibited tumor growth through the prevention of tumor-induced angiogenesis, but the data indicated 
that sulfation tended to give more potent effects [88]. 

Native and oversulfated FCSPs derived from Cladosiphon okamuranus (Chordariales) were 
analyzed using 1H NMR spectroscopy and it was suggested that whereas natural sulfation  
produced 4-mono-O-sulfo-L-fucopyranose the oversulfated FCSPs contained 2,4-di-, 2-mono-, and  
4-mono-O-sulfo-L-fucopyranose [89]. It was also suggested that sulfate content and the positioning of 
sulfate groups, e.g., 2,4-di- vs. 4-mono, might be important for the anti-proliferative activity of 
fucoidan in a human leukemia cell line (U937), an effect which is presumed to take place via induction 
of apoptosis associated with activation of caspase-3 and -7 [89].  

The effects of oversulfation of low and high molecular weight FCSPs derivatives from F. vesiculosus 
and heparin on lipopolysaccharide (LPS)-induced release of plasminogen activator inhibitor-1 (PAI-1) 
from cultured human umbilical vein endothelial cells (HUVEC) were examined by Soeda et al. [87]. 
Their study demonstrated that all oversulfated FCSPs derivatives including high molecular weight 
derivatives of 100–130 kDa were effective in suppressing the LPS-induced PAI-1 antigen, and 
supported an important role of the degree of sulfation for bioactivity [87].  

The correlation of oversulfation and conformation of molecular sizes of FCSPs for anticancer 
activity using human stomach cancer cell lines AGS was evaluated recently for FCSPs isolated from 
dried Undaria pinnatifada FCSPs [54]. The data showed that the oversulfated, low molecular weight 
FCSP derivatives increased the inhibition of cell growth, while the growth inhibition was less for 
native, high molecular weight FCSPs and for oversulfated high molecular weight FCSPs [54]. The 
differences were suggested to be a result of the smaller molecular weight fractions having a less 

2

52

40

 
 

 

 
  

Mar. Drugs 2011, 9  
 

 

2123

molecules using dimethylformamide as solvent and a sulfur trioxide-trimethylamine complex as the 
sulfating agent [86]. The inhibitory effects of such oversulfated FCSPs were investigated on the 
invasion of Murine Lewis Lung Carcinoma cells through a reconstituted membrane basement 
fragment, socalled laminin [86]. Oversulfated FCSPs were found to be the most potent inhibitor of 
tumor cell invasion and were also, in particular, found to inhibit tumor cell adhesion to laminin better 
than native and desulfated FCSPs. The most potent oversulfated FCSP structures had sulfate groups on 
both the C-3 and C-4 positions of the fucose units; hence, the particular spatial orientation of the 
negative charges in the FCSPs molecules may also be an important determinant of bioactivity [86]. 
The study did not allow firm conclusions to be drawn with respect to mechanisms of action, but it was 
suggested that the increased negative charge resulting from oversulfation might promote the formation 
of FCSPs-protein complexes involved in cell proliferation, in turn suppressing cell growth [86].  

When the importance of the spatial orientation of the negative charges on the FCSPs was investigated 
in more depth it was confirmed that this feature plays a major role in determining the binding potency 
of FCSPs to vascular endothelial growth factor 165 (VEGF165) [88]. Both native and oversulfated 
FCSPs have been tested for their anti-angiogenic actions in vivo and for their in vitro anti-proliferative 
effects against B16 melanoma cells, Sarcoma-180 and Lewis lung carcinoma cells: The interaction of 
oversulfated FCSPs with VEGF165 occurred with high affinity and resulted in the formation of highly 
stable complexes, thereby interfering with the binding of VEGF165 to vascular endothelial growth 
factor receptor-2 (VEGFR-2). The results showed that both native and oversulfated FCSPs were able 
to suppress neovascularization in mice implanted Sarcoma-180 cells; and that both FCSPs types 
inhibited tumor growth through the prevention of tumor-induced angiogenesis, but the data indicated 
that sulfation tended to give more potent effects [88]. 

Native and oversulfated FCSPs derived from Cladosiphon okamuranus (Chordariales) were 
analyzed using 1H NMR spectroscopy and it was suggested that whereas natural sulfation  
produced 4-mono-O-sulfo-L-fucopyranose the oversulfated FCSPs contained 2,4-di-, 2-mono-, and  
4-mono-O-sulfo-L-fucopyranose [89]. It was also suggested that sulfate content and the positioning of 
sulfate groups, e.g., 2,4-di- vs. 4-mono, might be important for the anti-proliferative activity of 
fucoidan in a human leukemia cell line (U937), an effect which is presumed to take place via induction 
of apoptosis associated with activation of caspase-3 and -7 [89].  

The effects of oversulfation of low and high molecular weight FCSPs derivatives from F. vesiculosus 
and heparin on lipopolysaccharide (LPS)-induced release of plasminogen activator inhibitor-1 (PAI-1) 
from cultured human umbilical vein endothelial cells (HUVEC) were examined by Soeda et al. [87]. 
Their study demonstrated that all oversulfated FCSPs derivatives including high molecular weight 
derivatives of 100–130 kDa were effective in suppressing the LPS-induced PAI-1 antigen, and 
supported an important role of the degree of sulfation for bioactivity [87].  

The correlation of oversulfation and conformation of molecular sizes of FCSPs for anticancer 
activity using human stomach cancer cell lines AGS was evaluated recently for FCSPs isolated from 
dried Undaria pinnatifada FCSPs [54]. The data showed that the oversulfated, low molecular weight 
FCSP derivatives increased the inhibition of cell growth, while the growth inhibition was less for 
native, high molecular weight FCSPs and for oversulfated high molecular weight FCSPs [54]. The 
differences were suggested to be a result of the smaller molecular weight fractions having a less 

2

52



41
PhD Thesis 2011

41
PhD Thesis 2011

 
 

 

 
Mar. Drugs 2011, 9  

 

 

2124

compact conformation than the higher, which may have allowed a higher extent of sulfate substitution 
to occur during oversulfation.  

5. Conclusions 

Fucoidan—or FCSPs—are an important group of polysaccharides that show remarkable biological 
actions notably anticoagulant, antitumor and immune-response activities. Despite intensive research, 
the exact correlation between the bioactivity and the structural molecular features of FCSPs—which 
vary depending on seaweed species and extraction methodology—has yet to be clarified.  

The preservation of the structural integrity of the FCSPs molecules nevertheless appears crucial for 
maintaining the biological properties and it has been clearly shown that the extraction treatment 
employed affects the composition and thus the structural features of the FCSPs substances.  

The diverse structures and varied chemical composition of FCSPs may have hindered the development 
of an in-depth understanding of the precise properties of significance for specific bioactivity effects.  

Important structural issues for bioactivity appear to include the degree of sulfation and the size of 
the FCSP molecules. Oversulfated FCSPs have thus been found to be potent inhibitors of tumor cell 
invasion compared to desulfated native FCSPs. Low molecular weight FCSPs have been shown to be 
effective in inhibiting human stomach cancer cell growth and to exert anticoagulant activity provided 
that the extent of the degree of sulfation was relatively high. Loss of anticoagulant activity has been 
observed with decreasing degree of sulfation, although anti-proliferative effects on fibroblast cell lines 
were retained.  

Undoubtedly, the presence of impurities influences the biological properties of FCSPs and therefore 
may currently hinder our full understanding of the biological activity of fucoidan or FCSPs. Hence the 
development of standard extraction procedures for FCSPs including hydrolysis treatment, purification 
and fractionation methodology, preferably with specific steps adapted to the particular botanical order 
of the seaweed, will generate a better, common basis for analysis and understanding of bioactivities 
and the mechanisms determining the bioactivities of FCSPs. On this basis it may even be possible to 
target specific structural features and in turn tune the extraction procedure to obtain specific 
bioactivities via the use of targeted extraction methodologies.  

Despite the availability of early, seminal studies of the extraction of FCSPs from brown seaweeds 
the understanding of the complex structures of FCSPs, is far from complete. 
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3 Extraction of FCSPs

Brown seaweeds in the class of Phaeophyceae are excellent sources of sulfated polysaccharides

notably FCSPs (Shanmugam and Mody, 2000; Abdel fattah et al., 1974). FCSPs comprise families of

polydisperse heterogeneous molecules based on L fucose, D xylose, D glucuronic acid, D mannose,

and D galactose. Fucoidan is part of a group of FCSPs that consists almost entirely of fucose and

ester sulfate (Percival and McDowell, 1967), have a backbone of (1 3) linked L fucopyranosyl or

of alternating (1 3) and (1 4) linked L fucopyranosyl residues. Nevertheless, we now know

that sulfated galactofucans with backbones of (1 6) D galacto or (1 2) D mannopyranosyl

units with fucose or fuco oligosaccharide branching and/or glucuronic acid, xylose, or glucose

substitutions that could be considered fucoidans (Nishino et al., 1994). It has long been known that

cell wall polymers of brown seaweed are complex; hence, extraction poses a challenge because

the yield and chemical nature of the polysaccharides recovered from such seaweeds are markedly

influenced by the conditions used to extract them.

Early reports show that treatment with dilute acid at ambient or slightly elevated temperature has

been a preferred first step in extraction protocols for isolating fucoidan or FCSPs from different

types of brown seaweed. The use of different acids or no acid at all as well as the differences in

extraction time and temperature during extraction and further purification treatments have

generated varying compositional results and structural suggestions for fucoidan and FCSPs. The

early reports almost unequivocally found that fucoidan mainly contained fucose and sulfate;

nevertheless, the chemical composition of the most highly purified but still crude fucoidan

specimen from H. lorea indicated that the fucoidan of this seaweed species contained fucose,

galactose, xylose, uronic acid, and sulfate (Percival and Ross, 1950; Percival, 1968).

3.1 Extraction methods
Extraction of brown seaweed fucans generally involves multiple extended aqueous extractions,

usually with hot acid, and may include calcium addition to promote alginate precipitation (Chizhov

et al., 1999; Marais et al., 2001). It has long been known that extraction time, temperature, and

acid concentration/pH may influence both the yield and the composition of the resulting fucans (Li

et al., 2008; Black et al., 1952). Hence, Black et al. (1952) reported how the use of different

extraction methods influenced the fucose quantity with a disparity of 20–80% of the total fucose

of F. vesiculosus. The influence of extraction method on fucan yield is further exemplified by
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fucoidan yield data from Laminaria japonica: the yield was only 1.5% of the DW of the seaweed

when extracted using alkaline solution at 95°C for 2 h (Sakai et al., 2002) but was 2.3% DW when

the extraction was done using water in an autoclave at 120°C for 3 h (Wang et al., 2008). However,

the maximal yield of brown seaweed fucans is typically in the range of 5–7% DW. Fucoidan yields

from F. vesiculosus have thus been reported to be 7.0% DW, while the yields obtained from

Sargassum horneri and Undaria pinnatifida were found to be 5.2% and 6.8% DW, respectively

(Kuda et al., 2002).

3.2 Single step extraction of FCSPs
This section is an extended elucidation of Paper 1 and concerns designed optimization of a single

step extraction of FCSPs from Sargassum sp.

3.2.1 Relevance
Brown seaweed fucans have been reported to possess bioactive properties (Chevolot et al., 1999).

Acquiring this valuable compound from non commercially important seaweed material is of the

outmost interest. Sargassum sp. is an unexploited brown seaweed, belonging to class

Phaeophyceae, which grows wildly almost worldwide in abundance; hence, it is considered a

nuisance seaweed. To initially assess the possible use of Sargassum sp. as an FCSP source, we

wanted to systematically evaluate the influence of the extraction parameters (i.e., acid

concentration, time, temperature) and maximize the yield while attempting a relatively mild

treatment.

3.2.2 Hypotheses and objectives
The effect of different extraction treatment conditions on FCSP yield and composition was evident,

especially in early seminal studies about fucoidan extraction (Black et al., 1952), which

recommended the use of a 3 step hot acid extraction procedure. Furthermore, 4× CaCl2 treatment

for 5 h at 85°C for the extraction of fucoidan was found to be remarkably useful (Bilan et al., 2002).

Nevertheless, repetitive extractions of FCSPs for several hours are probably not necessary since it

could generate variations on the chemical nature of polysaccharides, thus influencing its yield and

structural integrity.

On the other hand, single step extraction of FCSPs using optimized parameters (i.e., acid

concentration, time, temperature) is sufficient to obtain considerable yield while conserving

polysaccharide integrity. Nonetheless, there is limited systematic information about the influences

and apparently complex interactions of extraction parameters on fucose containing sulfated
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polysaccharide yield. It is our proposition that more focus should be directed to the extraction and

purification processes to obtain consistent protocols that account for the biodiversity of FCSPs

from different seaweeds and retain the structurally significant features of the specific bioactivity

properties of FCSPs. The development and use of such consistent extraction procedures would also

help achieve a better understanding of the structure function relationships of FCSPs.

Therefore, the objectives of this study were to optimize the extraction of FCSPs while

systematically examining the effects of treatments using different acids, reaction times, and

temperature on its yield from a Sargassum sp. seaweed. We compared the composition of the

extracted polysaccharides obtained using the final yield optimized one step extraction procedure

as well as an analogous two step extraction procedure to those obtained with the classical state

of the art multi step fucoidan extraction methods of Black et al. (1952) and Bilan et al. (2002).

3.2.3 Result highlights
FCSP extraction parameters significantly affect yield: acid concentration has negative effects, while

both time and temperature exert positive effects. The optimized single step extraction was

achieved by the statistically designed optimal extraction procedure of 0.03 M HCl, 90°C, and 4 h

with a maximal fucoidan yield of approximately 7% DW. The influenced of extended extraction

time was evident on polysaccharide composition: the fucose and sulfate content of fucoidan

decreased as extraction time increased, while glucuronic acid content increased. The results

indicated that obtaining a high yield FCSP with relatively high fucose content in a single step

extraction was a compromise, and the data confirmed that a shorter extraction time was required

to obtain a high fucose yield, while 3 h extraction time was the best compromise to achieve high

polysaccharides yield and high fucose levels of FCSP from Sargassum sp. seaweed.

The data from this study demonstrated the vulnerability of FCSPs to harsh extraction conditions

and confirmed that the extraction methods significantly influence both the yields and the chemical

nature of polysaccharides recovered from extraction.

3.2.4 Consideration and justification
Several brown seaweed species could be used as source materials for the production of FCSPs.

Nevertheless, Sargassum sp. was chosen in this study for the following reasons: it is a highly

invasive seaweed species that is abundant worldwide; no commercial application is yet firmly

established, thus its commercial value is very low; and the use of Sargassum sp. for the production

of bioactive compounds such as fucoidan will add value to it.
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The main message of the work was that the yields and chemical nature of the polysaccharides

were clearly affected by extraction treatment. Apart from highlighting the effects of the extraction

parameters and their interactions, this work provides a novel approach to defining milder

extraction conditions and reveals that the current state of the art extraction methods that involve

multiple steps and harsh acid and temperature conditions partly degrade the FCSPs.

A sulfated fucan (a fucoidan) may occur in Sargassum sp., but no evidence in this present study to

prove that L fucose comprised the backbone of a significant component of the preparation; as

such, the term fucoidan may not reasonably be applied to the isolated product. One could

interpret the evidence as indicating that the product isolated contained a sulfated fucose

containing heteroglycan and possibly had a glucuronan primary structure with extensive fucosyl

side branches that are cleaved and lost as extraction time increases. In the absence of more direct

indication for a fucan structure, it is preferable to refer to the extracted product as fucose

containing sulfated polysaccharides (FCSPs).

Based on the simple and practical method for recovering a suite of complex sulfated

polysaccharides from Sargassum sp. established in this work, we can, therefore, conclude that

product yield and chemical composition are strongly affected by extraction method. An optimized

one step extraction treatment to obtain high yields of FCSP from Sargassum sp. was developed,

and the effect of different treatment parameters on polysaccharide integrity was established. The

evidence presented in this study (Paper 2) shows that the extracted polysaccharide product is

heterogeneous at any time it is analyzed, although the composition varies with extraction

duration. The monomeric composition shows that fucose and sulfate were important components

of the polysaccharide mixture as isolated (Paper 2). The results confirmed that Sargassum sp. may

be a good source of FCSPs. The data also demonstrated the vulnerability of FCSPs to harsh

extraction conditions and confirmed that extraction method significantly influences FCSP

composition and yield. We strongly emphasize this point as it has a major bearing on any study in

which such products are being evaluated for biological activity. It is our belief that the model

obtained may be applied to other fucoidan containing brown seaweeds.

3.3 Paper 2: Designed optimization of single step extraction of FCSPs from
Sargassum sp.

Journal of Applied Phycology, 2011, in Press
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Abstract Fucose-containing sulfated polysaccharides can
be extracted from the brown seaweed, Sargassum sp. It has
been reported that fucose-rich sulfated polysaccharides
from brown seaweeds exert different beneficial biological
activities including anti-inflammatory, anticoagulant, and
anti-viral effects. Classical extraction of fucose-containing
sulfated polysaccharides from brown seaweed species typi-
cally involves extended, multiple-step, hot acid, or CaCl2
treatments, each step lasting several hours. In this work, we
systematically examined the influence of acid concentration
(HCl), time, and temperature on the yield of fucose-
containing sulfated polysaccharides (FCSPs) in statistically
designed two-step and single-step multifactorial extraction
experiments. All extraction factors had significant effects on
the fucose-containing sulfated polysaccharides yield, with
the temperature and time exerting positive effects, and the
acid concentration having a negative effect. The model
defined an optimized single-step FCSPs extraction procedure
for Sargassum sp. (a brown seaweed). A maximal fucose-
containing sulfated polysaccharides yield of ∼7% of the
Sargassum sp. dry matter was achieved by the optimal
extraction procedure of: 0.03 M HCl, 90°C, 4 h. HPAEC-
PAD analysis confirmed that fucose, galactose, and glucur-
onic acid were the major constituents of the polysaccharides
obtained by the optimized method. Lower polysaccharide
yield, but relatively higher fucose content was obtained with
shorter extraction time. The data also revealed that classical
multi-step extraction with acid ≥0.2 M HCl at elevated

temperature and extended time had a detrimental effect on
the FCSPs yield as this treatment apparently disrupted the
structural integrity of the polymer and evidently caused
degradation of the carbohydrate chains built up of fucose
residues.

Keywords Fucoidan . Sargassum . Brown seaweed .

Fucose . Bioactive compound . Extraction method

Introduction

Fucose-containing sulfated polysaccharides, or “fucoidan”,
from brown algae may contain differing glycosidic linkages
and are variously substituted with acetate and side branches
containing fucose or other glycosyl units. These fucose-
containing sulfated polysaccharides (FCSPs) can be extracted
from brown seaweed species such as Fucus, Laminaria, and
Sargassum (Li et al. 2008; Mori and Nisizawa 1982). A range
of biological activities have been attributed to FCSPs including
anti-tumoral (Zhuang et al. 1995), anti-viral (Adhikari et al.
2006; Trinchero et al. 2009), anti-inflammatory (Blondin et al.
1994); and notably anticoagulant effects (Nardella et al. 1996).
The potential pharmaceutical and medical applications of
FCSPs have recently directed special interest into utilization
of brown seaweeds as a source of FCSPs (Li et al. 2008;
Cumashi et al. 2007).

Some brown seaweed FCSPs have a backbone of 3-
linked α-L-fucopyranose, while others have a backbone of
alternating 3- and 4-linked α-L-fucopyranose residues and
sulfated galactofucans (Bilan and Usov 2008). The sulfated
galactofucans are prominently found in various Sargassum
species (Duarte et al. 2001; Zhu et al. 2003). These sulfated
galactofucans are mainly built of (1→6)-β-D-galactose
and/or (1→2)-β-D-mannose units with branching points
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formed by (1→3) and/or (1→4)-α-L-fucose, (1→4)-α-D-
glucuronic acid, terminal β-D-xylose and sometimes (1→
4)-α-D-glucose (Duarte et al. 2001). Early studies also
reported the existence of fucoglucuronans having a back-
bone of glucuronic acid, mannose, and galactose residues
with side chains of neutral and partially sulfated residues
of galactose, xylose, and fucose; these supposed fuco-
glucuronans have been reported to be present in
Sargassum linifolium (Abdel-Fattah et al. 1974).

Extraction of fucose-containing sulfated polysaccharides
from brown seaweeds generally involves multiple, extend-
ed aqueous extractions, usually with hot acid (hydrochloric
acid), and may include calcium addition to promote alginate
precipitation (Chizhov et al. 1999; Marais and Joseleau
2001). It has long been known that extraction time,
temperature, and acid concentration/pH may influence both
yields and composition of the resulting fucoidan or FCSPs
(Li et al. 2008; Black et al. 1952). Already in 1952, Black
et al. (1952) reported how the use of different extraction
methods influenced the quantity of fucose with a disparity
of 20% to 80% of total fucose of Fucus vesiculosus
fucoidan and 20% to 55% of total fucose of Pelvetia
canaliculata fucoidan (Black et al. 1952). The influence of
extraction method on fucose-containing sulfated poly-
saccharides yield is further exemplified by data for the
yield from Laminaria japonica: the yield was only 1.5%
of the dry weight (DW) of the seaweed when extracted
with alkaline solution at 95°C for 2 h (Sakai et al. 2002),
but 2.3% DW when the extraction was done with water in
an autoclave at 120°C for 3 h (Wang et al. 2008). On the
other hand, the FCSPs notably fucoidan yield of a
combined extract of F. evanescens was 12.9% DW when
extracted four times with 2% CaCl2 solution at 85°C for
5 h (Bilan et al. 2002), while cold extraction with 0.4%
HCl at 25°C for 5 h yielded 12.0% DW (Zvyagintseva et
al. 1999). Typically, the maximum FCSPs yields from
(dried) brown seaweeds range from 5–7% DW. Fucoidan
yields extracted from F. vesiculosus have thus been
reported to be 7.0% DW; while the fucoidan yields
obtained from Sargassum horneri and Undaria pinnatifida
were found to be 5.2% DW and 6.8% DW, respectively
(Kuda et al. 2002). Despite the existence of early seminal
studies about FCSPs extraction, notably Black et al.
(1952), that recommended the use of a three-step hot acid
extraction procedure, there is only limited systematic
information about the influences and apparently complex
interactions of extraction parameters acid, temperature and
time on fucose-containing sulfated polysaccharides yield.

Sargassum is an unexploited brown seaweed genus in
the Phaeophyceae which grows wildly in enormous
quantities almost all over the world, but it is particularly
abundant along the coastal regions in south East Asia,
where members of this genus are considered as nuisance

seaweeds. In order to initially assess the possible use of
Sargassum sp. as a source of FCSPs, we wanted to evaluate
systematically the influence of the extraction parameters,
i.e., acid concentration, time, temperature, and maximize
the FCSPs yields, while at the same time attempt a
relatively mild extraction procedure. In this present work,
we therefore systematically examined the effects of
different combinations of acid, reaction time and temperature
on the fucose-containing sulfated polysaccharides yields from
a Sargassum sp. obtained from Vietnam. We also compared
the composition of the extracted polysaccharides obtained by
the final yield-optimized one-step extraction procedure as
well as an analogous two-step extraction procedure to
those obtained with the classical, state-of-the art multi-
step fucoidan extraction methods of Black et al. (1952)
and Bilan et al. (2002).

Materials and methods

Chemicals Hydrochloric acid 37%, D-glucose and
D-xylose were purchased from Merck. Ethanol 99.8%,
trifluoracetic acid 99% (TFA), trichloroacetic acid 99%,
diethyl ether, CaCl2, Na2SO4, BaCl2, L-arabinose,
L-rhamnose, D-galactose, L-fucose, D-mannose and
D-glucuronic acid were from Sigma-Aldrich (Germany).
Agarose D-2 was obtained from Hispanagar (Spain). All
chemicals used were analytical grade. Dried Sargassum
sp. was obtained from the company Viet Delta Co. Ltd.
(Ho Chi Minh City, Vietnam).

Design of experiment Two-step and one-step extraction
experiments were evaluated according to an experimental
design objective of response surface modeling (RSM). A
central composite face centered design was used with
process modeling and optimization using multiple linear
regression modeling. The number of different parameter
combinations in each design was 14 with 3 replications of
the center point. The varying factors were as follows: acid
concentrations, 0, 0.1, and 0.2 M of HCl; extraction
temperatures, 30, 60, and 90°C; and reaction times were
1, 3 and 5 h. All extraction experiments were performed in
duplicate.

General extraction process Sargassum sp. was ground by
milling using an OBH Nordica Coffee Mill 100 watts (OBH
Nordica Denmark A/S, Denmark) to pass through a 500-μm
sieve and pretreated with a MeOH-CHCl3-H2O (4:2:1) mixture
at room temperature to remove colored matter and phenol
compounds prior to extraction. All extractions (Fig. 1a and b)
were done in a water bath (Julabo SW22—Germany) with
shaking at 200 rpm. 20 mL (HCl) of different concentration
(according to the experimental design) were added to a
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centrifuge flask that contained 1 g of ground dried, pretreated
Sargassum sp. In the single-step extraction (Fig. 1a), the
seaweed was extracted according to the factorial design
described in the design of experiment. After extraction, the
suspended seaweed was centrifuged at 10,600×g for 5 min, the
supernatant was removed. Then the residue was washed with
5 mL MilliQ water and centrifuged again at 10,600×g for
10 min, thereafter the first supernatant and the supernatant
from the washing were combined (Extract A). A liquid fraction
(16 mL) from Extract A was precipitated with 60% (v/v)
aqueous ethanol to obtain crude FCSPs. The precipitate was
washed once with water and was coagulated immediately with
either 0.5 M NaCl or 1 M CaCl2 to release and precipitate
alginate. The sticky precipitate was discarded and the
supernatant was centrifuged again at 10,600×g for 10 min.
The pellet was collected and transferred to an Eppendorf tube.
Each Eppendorf tube was weighed prior to pellet transfer, and
then centrifuged at 10,600×g for 5 min; the pellet was washed
with alcohol and diethyl ether and then finally dried overnight
at 50°C. The amount of dried crude FCSPs yield was
translated to dry weight (in mg) of the total extract volume
(in mL) from the original dry seaweed solution (in grams dry
weight per milliliter) and the FCSPs yield (in mg g-1 dry
weight) was thus based on the original seaweed dry weight.
For the two-step extraction (Fig. 1b), the seaweed residue of
the single-step extraction (Residue A, Fig. 1b) was extracted
once more by addition of 10 mL HCl (of a concentration
according to the experimental design) and the suspended
seaweed was treated the same way as described above to

obtain Extract B. Extract A and B were then combined, and
crude FCSPs was isolated by the same procedure as described
above (Fig. 1b).

Benchmark experiment A comparative study between the
optimized conditions of the two-step extraction and the
one-step extraction respectively, obtained from the multi-
variate models, and two other extraction conditions from
known methods (Black et al. 1952; Bilan et al. 2002) was
carried out: The Sargassum sp. was pretreated as mentioned
above prior to extraction. The RSM optimized two-step
extraction condition, 0.07 M HCl at 90°C for 3 h (twice),
was designated as Method 1. The RSM optimized one-step
extraction condition, 0.03 M HCl at 90°C for 4 h (once), or
1 h (once), was designated as Method 1a. Method 2 was the
benchmark extraction of Bilan et al. (2002) which, in short,
involved extraction of the ground, dried, pretreated Sargas-
sum sp. four times with a 2% CaCl2 solution at 85°C for 5 h
(Bilan et al. 2002). Method 3 was the benchmark
extraction of Black et al. (1952): for this extraction, the
ground, dried, pretreated Sargassum sp. was extracted
three times with 0.17 M HCl at 70°C for 1 h with washing,
centrifugation and pH reduction from pH 2.5 to 1.9 after
each extraction step (Black et al. 1952). After extraction,
all extracts were precipitated with ethanol, washed with
H2O and treated with 1 M CaCl2 to precipitate alginate. In
each case, the supernatant was then centrifuged, precipi-
tated with ethanol, centrifuged again, and the pellet was
dried overnight at 50°C.
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Reaction time: 1 h, 3 h, 5 h
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centrifuge flask that contained 1 g of ground dried, pretreated
Sargassum sp. In the single-step extraction (Fig. 1a), the
seaweed was extracted according to the factorial design
described in the design of experiment. After extraction, the
suspended seaweed was centrifuged at 10,600×g for 5 min, the
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5 mL MilliQ water and centrifuged again at 10,600×g for
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from the washing were combined (Extract A). A liquid fraction
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with alcohol and diethyl ether and then finally dried overnight
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Acid hydrolysis Dried Sargassum sp. powder and extracted
polysaccharide samples (50 mg) were subjected to acid
hydrolysis using 2 M TFA at 121°C for 2 h (Arnous and
Meyer 2008). After hydrolysis, the mixture was freeze
dried, and the dried powder was resolubilized and centri-
fuged at 10,000×g for 10 min to collect the supernatant
then filtered using a 0.2 μm syringe tip filter (Sun Sr. USA)
prior to HPAEC-PAD analysis (see below). The monosac-
charide recoveries were determined for arabinose, rham-
nose, fucose, galactose, glucose, xylose, and glucuronic
acid and used as correction factors for the quantitative
monosaccharide assessment principally as described
previously (Arnous and Meyer 2008).

Compositional analysis The separation and quantification
of monosaccharides of the acid hydrolyzed polysacchar-
ides were done by HPAEC-PAD using a BioLC system
consisting of GS50 gradients pumps/ED50 electrochem-
ical detector/AS50 chromatography compartment coupled
to an AS50 autosampler (Dionex Corp., USA). Separa-
tions were performed using a CarboPacTM PA20
(3 mm×150 mm) analytical column (Dionex Corp.)
according to Thomassen and Meyer (2010). The quanti-
fication was carried out using the external monosaccharide
standards: L-arabinose, L-rhamnose, L-fucose, D-galactose,
D-glucose, D-mannose, D-xylose and D-glucuronic acid.
Data were collected and analyzed with Chromeleon 6.80
SP4 Build 2361 software (Dionex Corp.). The sulfate
analysis was performed by a turbidometric method using
agarose-barium reagent as described by Jackson and
McCandless (1978).

Statistical and data analysis The analyses of variances
were performed using Minitab 15 (Minitab, Inc., UK) with
a significance value of P≤0.05. The program Modde
version 7.0.0.1 (Umetrics AB, Sweden) was used as an
aid for the design of experimental templates and for the
evaluation of the effects and the interactions by multiple
linear regression analysis.

Results

Polysaccharide compositional profile

The HPAEC analysis of the TFA hydrolysate of Sargassum
sp. showed that the polysaccharide profile was dominated
by fucose (29±3.7), galactose (14±2.1), and glucuronic
acid (39±3.5)mg·g−1 seaweed dry weight, with a sulfate
content of (155±5)mg·g−1 seaweed dry weight, while other
minor components such as mannose, rhamnose, glucose,
arabinose, and xylose were also detected (data not shown).

This composition is in accordance with early studies of
sulfated polysaccharides from S. linifolium (Abdel-Fattah et
al. 1974) and typical for the Sargassaceae.

Evaluation of extraction—two steps

Optimizing two-step extraction To determine the optimal
extraction of fucose-containing sulfated polysaccharides,
the seaweed was extracted twice and the effects of different
treatment factors were tested systematically, i.e., acid, 0 to
0.2 M HCl; temperature, 30 to 90°C; and time, 1 to 5 h
(Fig. 1b). According to the model, the predicted maximum
yield of 7.1% DW, was achieved using 0.07 M HCl/90°C/3 h
extracted twice. The predicted extraction yield obtained when
the two-step extraction was done without acid, at 30°C for 1 h
produced 2.9±0.8% DW only, while the harshest extraction
treatment of 0.2 M/90°C/5 h resulted in a yield of 3.1±0.6%
DW from the combined Extract A and B, respectively.

Benchmarking Assessment of the optimal parameters
obtained from the model was carried out by performing
another extraction experiment using the optimum of the
response surface model. Subsequently, a comparative
extraction study was also done to verify the feasibility of
the model. Two extraction methods were compared to the
predicted optimal extraction condition: Method 1 was the
predicted maximum optimal condition (i.e., 0.07 M HCl,
90°C, and 3 h-two-step extraction); Method 2 was as
described by Bilan et al. (2002); and Method 3 was as
described by Black et al. (1952). The data showed that the
total yields obtained by Method 1 were higher than
predicted by the model, namely ∼8.5% DW, and that the
total polysaccharide yields with the two-step extractions
Method 1 and 2 were similar, but much higher than what
was obtained with Method 3 (∼5% DW; Fig. 2). The data
also showed that the major part of the yield was obtained
during the first extraction. The results of these experiments

Fig. 2 Polysaccharide yield (% DW) of Sargassum sp. extracted
using different methods. Method 1 was extracted using 0.07 M HCl/
90°C/3 h (two-step); Method 2 as described by Bilan et al. (2002) and
Method 3 as described by Black et al. (1952)
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thus showed that the yield of the first extraction (Extract A)
of Method 1 (7.6±0.31% DW) was higher, p<0.05, than
the corresponding yields of the benchmark methods
Method 2 (6.2±0.08% DW) and Method 3 (4.2±0.09%
DW), respectively (Fig. 2). Based on this result, it was
decided to evaluate whether a higher polysaccharide yield
could be obtained using only a single-step extraction of
Method 1 type. A second statistical experiment was
therefore performed to define the optimum acid concentra-
tion, temperature and incubation time for this single-step
extraction (Fig. 1a, Extract A only).

Optimization of polysaccharide yield—single-step
extraction

Multiple linear regression analysis of the data obtained in the
statistically designed single-step extraction study showed that
an increase in extraction time and temperature significantly
increased the polysaccharide yield, whereas a decrease of acid
concentration also significantly increased the yield (Table 1).
Moreover, acid and acid interaction, acid and time interac-
tion and acid and temperature interaction each had a
significant effect on the polysaccharide yield (Table 1).
According to the model, the maximum polysaccharide yield
of ∼8% DW from Sargassum sp. would be obtained at
0.03 M HCl/90°C/4 h, whereas the lowest polysaccharide
yield was at 30°C or 60°C with 0.2 M HCl (Fig. 3).

The quality of the model was confirmed by the average
value of the center points (5.76±1.01%DW) being close to
the coefficient of the constant (6.28±0.29%DW). The
regression model was given as y=6.28−1.17 x1+0.23 x2+
0.63 x3−1.46 x1 x1−0.35 x2 x2+0.31 x3 x3−0.36 x1 x2−
0.51 x1 x3−0.06 x2 x3 (x1 is acid concentration; x2 is time;

x3 is temperature; Table 1). The summary of the fit and the
predictability of the model for FCSPs yield were satisfac-
tory with R2=0.928; Q2=0.853, model validity=0.891;
and model reproducibility=0.889 (Fig. 3).

Plots of the polysaccharide yields and fucose contents
obtained in response to extraction time and temperature
further illustrated the effects of the different treatment
factors during single-step extraction (Fig. 4). With no acid
treatment, the yield of polysaccharide rose when extraction
time and temperature increased, while high acid treatment
(0.2 M HCl) gave low yield with no significant differences
with elevated time and temperature (Fig 4a). After each of
the different extraction treatments of the Sargassum sp.
seaweed, the recovered polysaccharide was sequestered and
subjected to TFA hydrolysis and thereafter HPAEC to
analyze the monomer content. The results showed that
the fucose content was higher in the polysaccharide
extracted with 0.2 M HCl than without acid when the
treatment time was 1 or 3 h, but at 90°C/5 h, the fucose
level was higher with no acid than with 0.2 M HCl
(Fig. 4b). The influence of acid treatment (0.2 M HCl)
during extraction was thus observed to have a negative
effect on the fucose content when time and temperature
were elevated (Fig. 4b).

Comparative extraction analysis

The optimal condition of the single-step extraction pre-
dicted by the model (i.e., 0.03 M HCl/90°C/4 h) was used
in an actual extraction experiment designated as Method 1a
for comparative analysis of the monosaccharide composi-
tion with the benchmark extraction methods of Bilan et al.
(2002): Method 2 and Black et al. (1952): Method 3. The
monosaccharide composition of the polysaccharide showed
that fucose, galactose, and glucuronic acid were the
dominant monomers (Table 2). Clearly, the fucose content
of the statistically optimized one-step extraction method
was significantly higher than the fucose levels in the
fucoidan (or FCSPs) obtained by both Method 2 and 3
(Table 2). Method 2 had the lowest glucuronic acid content
among the three methods (Table 2); this was probably due
to the interaction of CaCl2 after each round of extraction.
The sulfate content of the fucoidan polysaccharide was
however lower with the optimized one-step 4-h extraction
than that obtained in Method 2 and 3.

Investigation of extended extraction time

Based on the predicted optimized extraction model (Fig. 3)
and the raw data (Fig. 4), it was decided to evaluate the
influence of extended extraction time on the extracted
polysaccharide composition. Extended extraction was car-
ried out for up to 46 h using the predicted one-step optimal

Table 1 Multiple linear regression results of the parameters and
interactions on the polysaccharide yield using the single-step
extraction

Parameters and interactions % DW

Coefficient P values

Acid (x1) −1.17 3.46×10−10

Time (x2) 0.23 0.045

Temperature (x3) 0.63 7.11×10−6

Acid×acid −1.46 1.96×10−7

Time×time −0.35 No effect

Temperature×temperature 0.31 No effect

Acid×time −0.36 0.006

Acid×temperature −0.51 0.0004

Time×temperature −0.06 No effect

Constant 6.28 2.56×10−22
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treatment, i.e., 0.03 M HCl/90°C. The duration of
extraction time influenced the polysaccharide yield
(Fig. 5a). Hence, the total polysaccharide yield increased
until 8 h of extraction (using 0.03 M HCl/90°C) and the
yield then reached a plateau of approximately 9% DW
(Fig. 5a). The amount of fucose dropped steadily as the
duration of the extraction time increased whereas glucur-
onic acid increased (Fig. 5a). Apparently, the duration of
extraction time also resulted in an almost linear increase in
the mannose and galactose content of the extracted
polysaccharide, but did not affect the xylose, glucose,
and rhamnose contents (Fig. 5b). In addition, the extended
extraction time significantly decreased the sulfate content
until 8 h of extraction (Fig. 5b). These results indicated
that obtaining a high yield of a fucose-rich fucans from
Sargassum sp. having a limited glucuronic acid (and
galactose and mannose) content was a compromise, and
the data confirmed that an extraction time of 3 h was the
best compromise to achieve high yields and a high fucose
level (Fig. 5a). It is tempting to speculate that some “true”
fucoidan is released in the early minutes of the extraction,
that the acid catalyzed loss of α-fucosyl linkages relative
to the other glycosidic bonds during extended treatment
may confound the picture. One could interpret the
evidence as indicating that the product isolated contained
a sulfated fucose-containing heteroglycan, possibly having
a glucuronan primary structure with extensive fucosyl side
branches which are cleaved and lost as extraction time is
extended. A sulfated fucan (a fucoidan) may occur in
Sargassum sp., but further elucidation of fucose-
containing sulfated polysaccharides from Sargassum sp.
is required. With a lower total polysaccharide yield

requirement, a relatively higher fucose content could be
obtained with a shorter extraction of 1 h as compared to a
4 h extraction (Table 2 and Fig. 5).

Discussion

Statistically designed optimization of FCSPs extraction was
conducted to produce a model that provided an understand-
ing of the complex influences and interactions of the
extraction factors temperature, time, and acid concentration,
and in turn allowed prediction of the optimal extraction
treatment to obtain high FCSPs yield. The model predicted
that 0.07 M HCl/90°C/3 h produced high FCSPs yield
using two-step extractions. However, careful assessment of
the data obtained after the first and second steps at these
optimal extraction conditions showed that an additional
extraction step to produce Extract B (Fig. 1b) could be
omitted since its yield was very low compared to Extract A
(Fig. 2). Hence, a new optimized extraction design was
performed for a single-step extraction using the same
factors settings, i.e., acid, 0 to 0.2 M HCl; temperature,
30 to 90°C; and time, 1 to 5 h. The maximum yield
produced by this new optimal condition (0.03 M HCl/90°C/
4 h) was ∼7.0% DW. Previously reported multi-step
extraction results of fucose-containing polysaccharides
from S. horneri and U. pinnatifida were 5.17% DW and
6.77–15.10% DW (Kuda et al. 2002); from S. ring-
goldianum it was 200 mg from fresh 150 g algal fronds,
approximately equivalent to 0.67% DW (Mori and Nisizawa
1982). Hence, the result of multiple linear regressions of the
parameters and interaction on the fucose-containing poly-

Fig. 3 The 3D response surface plots at three different temperatures
each at the optimal extraction condition and maximum fucose-
containing polysaccharide yield (% DW) of the single-step extraction

procedure as a function of time (h) and HCl concentration (M). R2=
0.928; Q2=0.853; model validity=0.891; model reproducibility=
0.889 respectively
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4 h extraction (Table 2 and Fig. 5).

Discussion

Statistically designed optimization of FCSPs extraction was
conducted to produce a model that provided an understand-
ing of the complex influences and interactions of the
extraction factors temperature, time, and acid concentration,
and in turn allowed prediction of the optimal extraction
treatment to obtain high FCSPs yield. The model predicted
that 0.07 M HCl/90°C/3 h produced high FCSPs yield
using two-step extractions. However, careful assessment of
the data obtained after the first and second steps at these
optimal extraction conditions showed that an additional
extraction step to produce Extract B (Fig. 1b) could be
omitted since its yield was very low compared to Extract A
(Fig. 2). Hence, a new optimized extraction design was
performed for a single-step extraction using the same
factors settings, i.e., acid, 0 to 0.2 M HCl; temperature,
30 to 90°C; and time, 1 to 5 h. The maximum yield
produced by this new optimal condition (0.03 M HCl/90°C/
4 h) was ∼7.0% DW. Previously reported multi-step
extraction results of fucose-containing polysaccharides
from S. horneri and U. pinnatifida were 5.17% DW and
6.77–15.10% DW (Kuda et al. 2002); from S. ring-
goldianum it was 200 mg from fresh 150 g algal fronds,
approximately equivalent to 0.67% DW (Mori and Nisizawa
1982). Hence, the result of multiple linear regressions of the
parameters and interaction on the fucose-containing poly-

Fig. 3 The 3D response surface plots at three different temperatures
each at the optimal extraction condition and maximum fucose-
containing polysaccharide yield (% DW) of the single-step extraction

procedure as a function of time (h) and HCl concentration (M). R2=
0.928; Q2=0.853; model validity=0.891; model reproducibility=
0.889 respectively
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saccharide yield for the one-step extraction was in agreement
with the available data.

The composition obtained from HPAEC-PAD analysis of
the TFA hydrolysate of Sargassum sp. agrees with the
prevalent polysaccharide structure among Sargassum
species; hence, in the case of S. patens and S. stenophyl-
lum (Duarte et al. 2001; Zhu et al. 2003) the structure has
been found to be a linear backbone of (1→6)-β-D-
galactose and/or (1→2)-β-D-mannose units with branched
chains formed by (1→3) and/or (1→4)-α-L-fucose, (1→4)-
α-D-glucuronic acid, terminal β-D-xylose and sometimes
(1→4)-α-D-glucose. However, as pointed out by Percival
and McDowell (1967): "Fucoidin, first isolated and named
by Kylin (1913) was more systematically named fucoidan".
The algal source in this case was F. vesiculosus, and the
Kylin product has been established as a fucan sulfate
(currently termed fucoidan as it was isolated from brown

seaweed). Percival and McDowell understood and empha-
sized that fucoidan referred to polysaccharides consisting
almost entirely of fucose and ester sulfate. Fucose-containing
heteropolysaccharides (e.g., glucuronoxylofucans) were trea-
ted as quite different entities from fucoidan. Painter (1983)
provided the following definition: "Natural polysaccharides
built up essentially of sulfated α-L-fucose residues are
known as fucoidans". This working definition of fucoidan
has been retained by polysaccharide chemists to the present
(Mabeau et al. 1990; Chevolot et al. 1999; Berteau and
Mulloy 2003).

The optimization of the one-step method illustrated that
a single-step extraction with the combination of low acid
concentration, 0.03 M HCl or below, and temperature near
90°C was sufficient to produce a satisfactory FCSPs
(fucoidan) yield. The integrity of the polysaccharide was
best conserved at low acid treatment (Fig. 4b), since the use
of 0.2 M HCl apparently broke the integrity of the
polysaccharide molecules resulting in a decline of fucose
at elevated time and temperature (Fig. 4b). This indicated
that the higher acid levels might have caused a loosening of
the cell wall matrix allowing local penetration of the acid
into the fucoidan in the intercellular spaces resulting in
partial degradation of FCSPs or notably fucoidan (Kloareg
1984; Mabeau et al. 1990). The effect of acid might have
been enhanced as dried seaweed material was used in the
experiment, where it can absorb and expand abruptly
during hydration (Phillips et al. 2002). The degradation of
carbohydrate chains built up of fucose was recognized
when the duration of extraction time increased (Fig. 5). Our
result is in agreement with Ponce et al. (2003) who reported
that longer extraction time led to poorer fucose content. In

Table 2 Analysis of monosaccharide after 2 M TFA hydrolysis of the
sulfated polysaccharide fractions of Sargassum sp. isolated by
different extraction methods

Monomers
(mg/g DW)

Method 1a
(1 step—1 h)

Method 1a
(1 step—4 h)

Method 2 Method 3

Fucose 113±0.9 97±2 49.2±1.7 54.8±1.7

Rhamnose 6.2±0.6 2.9±0.3 6.29±0.07 nd

Galactose 39±6 39 ±1.9 25.8±0.30 36±1.34

Glucose 11.1±0.2 3.7±0.4 10.9±0.13 13.7±1.25

Mannose 11.3±1.6 11.1±1.7 2.41±0.03 5.76±0.21

Xylose 15.7±1.1 11.4±1.4 5.12±2.36 6.8±1.7

Gluc Acid 85±11.7 97±2.7 10.0±0.12 45±5.8

Sulfate 362±16.5 308±11 341±5.2 327±8.5

Data given as average values±standard deviation, n=3. Method 1a
extraction by using the optimized model of the one-step extraction
(0.03 M HCl/90°C) with an extraction time of either 1 h or 4 h as
indicated. Method 2 as described by Bilan et al. (2002), and Method 3
as described by Black et al. (1952). General linear model significantly
different (P<0.05)
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saccharide yield for the one-step extraction was in agreement
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The algal source in this case was F. vesiculosus, and the
Kylin product has been established as a fucan sulfate
(currently termed fucoidan as it was isolated from brown
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almost entirely of fucose and ester sulfate. Fucose-containing
heteropolysaccharides (e.g., glucuronoxylofucans) were trea-
ted as quite different entities from fucoidan. Painter (1983)
provided the following definition: "Natural polysaccharides
built up essentially of sulfated α-L-fucose residues are
known as fucoidans". This working definition of fucoidan
has been retained by polysaccharide chemists to the present
(Mabeau et al. 1990; Chevolot et al. 1999; Berteau and
Mulloy 2003).

The optimization of the one-step method illustrated that
a single-step extraction with the combination of low acid
concentration, 0.03 M HCl or below, and temperature near
90°C was sufficient to produce a satisfactory FCSPs
(fucoidan) yield. The integrity of the polysaccharide was
best conserved at low acid treatment (Fig. 4b), since the use
of 0.2 M HCl apparently broke the integrity of the
polysaccharide molecules resulting in a decline of fucose
at elevated time and temperature (Fig. 4b). This indicated
that the higher acid levels might have caused a loosening of
the cell wall matrix allowing local penetration of the acid
into the fucoidan in the intercellular spaces resulting in
partial degradation of FCSPs or notably fucoidan (Kloareg
1984; Mabeau et al. 1990). The effect of acid might have
been enhanced as dried seaweed material was used in the
experiment, where it can absorb and expand abruptly
during hydration (Phillips et al. 2002). The degradation of
carbohydrate chains built up of fucose was recognized
when the duration of extraction time increased (Fig. 5). Our
result is in agreement with Ponce et al. (2003) who reported
that longer extraction time led to poorer fucose content. In

Table 2 Analysis of monosaccharide after 2 M TFA hydrolysis of the
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different extraction methods
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Rhamnose 6.2±0.6 2.9±0.3 6.29±0.07 nd

Galactose 39±6 39 ±1.9 25.8±0.30 36±1.34
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Mannose 11.3±1.6 11.1±1.7 2.41±0.03 5.76±0.21

Xylose 15.7±1.1 11.4±1.4 5.12±2.36 6.8±1.7

Gluc Acid 85±11.7 97±2.7 10.0±0.12 45±5.8

Sulfate 362±16.5 308±11 341±5.2 327±8.5

Data given as average values±standard deviation, n=3. Method 1a
extraction by using the optimized model of the one-step extraction
(0.03 M HCl/90°C) with an extraction time of either 1 h or 4 h as
indicated. Method 2 as described by Bilan et al. (2002), and Method 3
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addition, longer extraction time at higher temperatures led
to higher polysaccharide yield with lower amount of sulfate
and higher proportion of glucuronic acid (Ponce et al. 2003;
Duarte et al. 2001). The same trend was also noticed in our
present work. The glucuronic acid increased while sulfate
decreased with time, i.e., the sulfate content was highest
when glucuronic acid was lowest (Fig. 5a, b). This was also
observed for fucoidan extraction from S. ringgoldianum
(Mori and Nisizawa 1982).

In conclusion, a simple and practical method for
recovering a suite of complex fucose-containing sulfated
polysaccharides from Sargassum sp., has been established.
Clearly, yield and chemical composition of the product are
strongly affected by the method of extraction as was to be
expected. The yield data are gravimetric only and so pertain
to a crude mixture of biopolymers extracted. The evidence
presented shows that the extracted polysaccharide product
is heterogeneous at any time it is analyzed, although the
composition varies with the duration of extraction. The
monomeric composition shows that fucose and sulfate were
important components of the polysaccharide mixture as

isolated. An optimized one-step extraction treatment to
obtain high yields of a fucose-containing sulfated polysac-
charide from Sargassum sp. was developed, and the effect
of different treatment parameters on the integrity of the
polysaccharide was established. The results confirmed that
Sargassum sp. may be a good source of fucose-containing
sulfated polysaccharides. The data also demonstrated the
vulnerability of fucose-containing sulfated polysaccharides
to harsh extraction conditions and confirmed that the
extraction method significantly influences the yields and
not least the polysaccharide composition of the extracted
polysaccharide. Furthermore, the main conclusions confirm
the long known facts that cell wall polymers of brown algae
are complex, and that the yields and chemical nature of
polysaccharides recovered from such seaweeds are mark-
edly influenced by the conditions used to extract them. It is
important to emphasize this point as it has a major bearing
on any study in which such products are being evaluated
for biological activity. It is our belief that the model
obtained may be applied to other FCSPs or fucoidan-
containing types of brown seaweed.
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and higher proportion of glucuronic acid (Ponce et al. 2003;
Duarte et al. 2001). The same trend was also noticed in our
present work. The glucuronic acid increased while sulfate
decreased with time, i.e., the sulfate content was highest
when glucuronic acid was lowest (Fig. 5a, b). This was also
observed for fucoidan extraction from S. ringgoldianum
(Mori and Nisizawa 1982).

In conclusion, a simple and practical method for
recovering a suite of complex fucose-containing sulfated
polysaccharides from Sargassum sp., has been established.
Clearly, yield and chemical composition of the product are
strongly affected by the method of extraction as was to be
expected. The yield data are gravimetric only and so pertain
to a crude mixture of biopolymers extracted. The evidence
presented shows that the extracted polysaccharide product
is heterogeneous at any time it is analyzed, although the
composition varies with the duration of extraction. The
monomeric composition shows that fucose and sulfate were
important components of the polysaccharide mixture as

isolated. An optimized one-step extraction treatment to
obtain high yields of a fucose-containing sulfated polysac-
charide from Sargassum sp. was developed, and the effect
of different treatment parameters on the integrity of the
polysaccharide was established. The results confirmed that
Sargassum sp. may be a good source of fucose-containing
sulfated polysaccharides. The data also demonstrated the
vulnerability of fucose-containing sulfated polysaccharides
to harsh extraction conditions and confirmed that the
extraction method significantly influences the yields and
not least the polysaccharide composition of the extracted
polysaccharide. Furthermore, the main conclusions confirm
the long known facts that cell wall polymers of brown algae
are complex, and that the yields and chemical nature of
polysaccharides recovered from such seaweeds are mark-
edly influenced by the conditions used to extract them. It is
important to emphasize this point as it has a major bearing
on any study in which such products are being evaluated
for biological activity. It is our belief that the model
obtained may be applied to other FCSPs or fucoidan-
containing types of brown seaweed.
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4 Bioactivity of FCSPs

Fucoidan was first isolated in 1913; since then, it has gained much attention in both the academic and

industrial sectors (Jiao et al., 2011, Kylin, 1913). Fucoidan has been the subject of many research

studies due to its diverse biological functions, including anti tumor and immunomodulatory activities

(Alekseyenko et al., 2007; Maruyama et al., 2006). According to the ISI Web of Knowledge (Thomson

Reuters), the number of published articles has increased significantly since fucoidan, or “fucoidin” as

it was first called, was first isolated from brown algae in 1913 (Kylin, 1913); in particular, a profound

increase in the number of papers has occurred over the last 5–10 years. By now, the published papers

related to fucoidan hit approximately 1,800 (August 2011, Fig. 4.1). Recent interests have focused

mainly on the potentially beneficial biological activities of fucoidan and FCSPs in humans, including

anti tumor, immunomodulatory, anti inflammatory, antiviral, antithrombotic, anticoagulant, and

antioxidant effects as well as specific activities against kidney, liver, and urinary system disorders.

Interest in utilizing natural bioactive compounds for the suppression or prevention of cancer is

flourishing because of the current development of approaches has been recognized as a field with

enormous potential (Rahman et al., 2010).

Fig. 4.1. The trend over 3 decades of research on fucoidan as depicted by the number of
articles published annually (Thomson Reuters, ISI Web of Knowledge). The number of articles
was obtained according to topics being assigned in ISI Web of Knowledge search engine with
the following topic search terms: fucoidan; fucoidan*algae; fucoidan*algae*activity.
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While the development of research efforts involving FCSPs and their potential applications continue

to advance, understanding of the mechanisms and the particular structural features of the FCSPs

being responsible for the various biological activities remains incomplete. Seaweeds, including various

brown seaweeds such as Undaria and Laminaria spp., are part of the food culture in Asia, notably in

Japan, the Philippines, and Korea, and seaweed extracts have also been used as remedies in

traditional medicine. However, there currently exist no standardized FCSPs extraction or purification

protocols, and no specific pharmaceutical, dermatological, or nutraceutical applications have as yet

been officially approved for these polysaccharides or their lower molar mass oligosaccharide

derivatives. FCSPs that were isolated in multi step processes and then purified and fractionated

demonstrated essential bioactivities (Holtkamp et al., 2009), while unpurified fucoidan that is isolated

using milder and fewer processing step has been found to induce anti tumor activity and act as an

immunopotentiator in tumor bearing animals (Takahashi, 1983).

4.1 Anti tumor activity of FCSPs
FCSPs from different brown seaweed species have shown remarkable growth inhibition of

Sarcoma 180 cells implanted into mice and possess anti tumor activity against L 1210 leukemia in

mice (Yamamoto et al., 1974, 1981, 1984). The anti tumor mechanism of fucoidan from sporophyll

of Undaria pinnatifida was described by Maruyama et al. (2003), who indicated that the anti

tumor activity of fucoidan appears to be associated with significant enhancement of the cytolytic

activity of NK cells. The effectiveness of fucoidan as an immunopotentiator was exhibited by an

increased immune response against A20 leukemia cells and a significantly lowered tumor size in

transgenic (DO 11 10 Tg) mice (Maruyama et al., 2006). The enhancement of NK cell activity by

fucoidan was augmented through increase production of macrophage mediated immune

responses, namely IL 2, IFN , and IL 12 (Maruyama et al., 2003). Moreover, the most prevalent

pathway through which fucoidan can inhibit cancer growth is apoptosis. Fucoidan induces

apoptosis via the activation of caspase 3 in human HS Sultan cells (Aisa et al., 2005); in MCF 7 cells

via caspase 8–dependent pathways (Yamasaki Miyamoto et al., 2009); and through the activation

of caspases via both the death receptor mediated and the mitochondria mediated apoptotic

pathways (Kim et al., 2010).

4.2 Anti proliferative and immune response activities
This section is an extended elucidation of Paper 3: fucoidan from Sargassum sp. and F. vesiculosus

reduces cell viability of lung carcinoma and melanoma cells in vitro and activates NK cells in mice in
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vivo. In addition, highlights of Paper 4: FCSPs inhibit the proliferation of melanoma cells and induce

apoptosis by activating caspase 3 in vitro will also be presented in this section.

4.2.1 Relevance
Lung cancer is among the most prevalent types of cancer worldwide and is a prime contributor to

cancer related mortality. Melanoma incidence rates for both males and females are also increasing

in the United States (Jemal et al., 2010). To date, therapeutic strategies such as chemotherapy,

radiation therapy, surgery, or combinations thereof have been implemented for many cancer

patients; however, they still provide only minimal survival benefits due to factors such as toxicity,

complications, and long term side effects (Schneider et al., 2010; Grossi et al., 2010). As a

consequence, the need for chemopreventive agents from natural sources with minimal or no

harmful side effects is of ardent importance. Hence, FCSPs, notably fucoidan, from brown seaweed

may prove to be excellent contenders for the prevention or control of lung and skin

carcinogenesis.

4.2.2 Hypotheses and objectives
Isolating fucoidan from brown seaweed using minimal processing will preserve its structural

integrity and, thereby, help maintain its bioactive characteristics but results in crude fucoidan

products. The chemical nature of polysaccharides recovered from seaweed is influenced by the

technology used to extract them. Crude fucoidan obtained via single step extraction has been

subjected to fewer and milder process conditions. Therefore, the well defined structural features

of fucoidans are likely be conserved and, thus, retain their biological activity.

It has been reported that crude fucoidan fractions from edible brown seaweeds affect L 1210

leukemia cell development in vivo, while sulfation of crude fucoidan fractions from Sargassum

kjellmanianum enhances their anti tumor activity (Yamamoto et al., 1983). Moreover, in vivo

studies confirmed that the feeding of ground brown seaweed to animals, the oral administration

of hot water extraction of seaweed, and the intraperitoneal injection of crude fucoidan fractions

resulted in an inhibitory effect on mammary tumorigenesis and intestinal carcinogenesis

(Yamamoto et al., 1987; Yamamoto and Maruyama, 1985). Hence, other forms of cancer such as

lung and skin cancer may alternatively be prevented or controlled through the use of crude

fucoidan from brown seaweed.

Therefore, the objectives of the present works were to determine the potency of unfractionated

FCSPs to inhibit the growth of skin and lung cancer cells in vitro, evaluate the immune response

2

79

6
PhD Thesis 2011

vivo. In addition, highlights of Paper 4: FCSPs inhibit the proliferation of melanoma cells and induce

apoptosis by activating caspase 3 in vitro will also be presented in this section.

4.2.1 Relevance
Lung cancer is among the most prevalent types of cancer worldwide and is a prime contributor to

cancer related mortality. Melanoma incidence rates for both males and females are also increasing

in the United States (Jemal et al., 2010). To date, therapeutic strategies such as chemotherapy,

radiation therapy, surgery, or combinations thereof have been implemented for many cancer

patients; however, they still provide only minimal survival benefits due to factors such as toxicity,

complications, and long term side effects (Schneider et al., 2010; Grossi et al., 2010). As a

consequence, the need for chemopreventive agents from natural sources with minimal or no

harmful side effects is of ardent importance. Hence, FCSPs, notably fucoidan, from brown seaweed

may prove to be excellent contenders for the prevention or control of lung and skin

carcinogenesis.

4.2.2 Hypotheses and objectives
Isolating fucoidan from brown seaweed using minimal processing will preserve its structural

integrity and, thereby, help maintain its bioactive characteristics but results in crude fucoidan

products. The chemical nature of polysaccharides recovered from seaweed is influenced by the

technology used to extract them. Crude fucoidan obtained via single step extraction has been

subjected to fewer and milder process conditions. Therefore, the well defined structural features

of fucoidans are likely be conserved and, thus, retain their biological activity.

It has been reported that crude fucoidan fractions from edible brown seaweeds affect L 1210

leukemia cell development in vivo, while sulfation of crude fucoidan fractions from Sargassum

kjellmanianum enhances their anti tumor activity (Yamamoto et al., 1983). Moreover, in vivo

studies confirmed that the feeding of ground brown seaweed to animals, the oral administration

of hot water extraction of seaweed, and the intraperitoneal injection of crude fucoidan fractions

resulted in an inhibitory effect on mammary tumorigenesis and intestinal carcinogenesis

(Yamamoto et al., 1987; Yamamoto and Maruyama, 1985). Hence, other forms of cancer such as

lung and skin cancer may alternatively be prevented or controlled through the use of crude

fucoidan from brown seaweed.

Therefore, the objectives of the present works were to determine the potency of unfractionated

FCSPs to inhibit the growth of skin and lung cancer cells in vitro, evaluate the immune response

2

79



6
PhD Thesis 2011

activity of FCSPs in mice in vivo, and elucidate the contributing factors behind this effect (Paper 3).

Furthermore, we investigated the different structural features of unfractionated FCSPs from

Sargassum sp. and F. vesiculosus using Fourier transform infrared (FT IR) and proton nuclear

magnetic resonance (1H NMR) spectroscopy to determine whether its contribution is crucial to its

bioactive effectiveness. We also conducted an in vitro study to examine the influence of FCSP

products from Sargassum sp. and F. vesiculosus on melanoma B16 cell (MC) proliferation and

caspase 3 activity mediating the apoptosis of melanoma B16 cells (Paper 4).

4.2.3 Result highlights
The influence of 2 crude fucoidans extracted from Sargassum sp. (MTA) using a minimal number of

processing steps and obtained commercially from F. vesiculosus (SIG) on Lewis lung carcinoma cells

(LCC) and MC was examined. The compositions of the SIG and MTA fucoidans were significantly

different with respect to fucose, galactose, and glucuronic acid, unlike the sulfate content (Paper

3). The FT IR spectra indicated that the sulfate in the FCSPs from Sargassum sp. (FSAR) was located

in the equatorial C 2 and/or C 3 positions as depicted by the absorption bands at 817 cm 1,

whereas the IR spectra of FCSPs from F. vesiculosus (FVES) displayed an absorption band at 838

cm 1 with a small shoulder absorption band at 822 cm 1, indicating sulfate groups at the C 4 and C

2 positions (Paper 4). This finding corresponds to the 1H NMR spectra of the unfractionated FVES

sample from F. vesiculosus, indicating a typical structure of algal fucoidan consisting of 3 linked 2

mono O sulfated L fucopyranose residues and/or 3 linked 2,4 di O sulfated L fucopyranose

residues (Pereira et al., 1999; Patankar et al., 1993).

In vitro studies showed the anti proliferative effect of crude fucoidan on LCC and MC cells in a

dose dependent manner. Male C57BL/6JJCL mice were subjected to daily intraperitoneal injections

over 4 days with either SIG or MTA fucoidan (50 mg/kg body wt) to evaluate immune response

augmentation. The cytolytic activity of NK cells was enhanced by crude fucoidan as indicated by
51Cr labeled YAC 1 target cell release. Histochemical staining showed morphologic changes of MC

cells after exposure to crude fucoidan. Fragmentation and condensation of chromatin, illustrated

as an intense dark brown color within the cell nuclei, was indicative of crude fucoidan induced

apoptosis (Paper 3). In this work (Paper 4), we noted based on flow cytometric analysis that FSCP

samples from Sargassum sp. and F. vesiculosus induced apoptosis through activation of caspase 3

in a dose dependent manner (Paper 4).

The mechanism behind FCSP anti tumor activity and how it enhances the immune response has

yet to be determined. Nevertheless, this study provides substantial indications that FCSP exerts
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bioactive characteristics on lung and skin cancer model cells and that its anti tumor activity was

due to the enhancement of NK cell activity (Paper 3). The crucial bioactive effectiveness of these

unfractionated FCSPs from Sargassum sp. and F. vesiculosus may be attributed to their distinct

structural features, such as level of sulfation (charge density) and position and bonding of the

sulfate substitutions or sulfated fucans and sulfated galactan complexes. This present study

demonstrated the early and later apoptosis stages by FACScan, which could indicate that FCSPs

have a direct apoptotic effect on MC cells (Paper 4) and that the presence of 3 linked galactan in

the structure of FCSPs from Sargassum sp. may somehow contribute to its anti proliferative

effects.

4.2.4 Consideration and justification
The monosaccharide profiles of the acid hydrolyzed polysaccharides from Sargassum sp. and F.

vesiculosus suggest that both products are contaminated with components other than fucose and

sulfate (Paper 3). The commercially obtained sample from F. vesiculosus was a crude fucoidan, as

indicated in the product specification from the supplier (Sigma Aldrich Inc., Germany).

Alternatively, the product extracted from Sargassum sp. contained a low amount of fucose

compare to that of F. vesiculosus, but they have the same chemical composition profile. The low

amount of recovered fucose was probably attributed by the condition used to extract them or the

extent of the acid hydrolysis, which perhaps has a major influence in the disappearance of fucose.

In any case, the isolated product from Sargassum sp. showed the same monosaccharide profile as

the commercially obtained sample from F. vesiculosus (Sigma Aldrich Inc.); hence, it is safe to say

that the isolated FCSP product from Sargassum sp. was also a crude fucoidan.

Moreover, based on previous published papers, the term crude fucoidan was applied for FCSPs

from brown seaweeds in which impurities are present in the isolated products (Yamamoto et al.,

1983; Takahashi, 1983). Nevertheless, crude fucoidan from these samples have shown potent anti

tumor activity and cellular immunity associated with T cells (Takahashi, 1983). However, it should

be noted that evidence establishing that fucose comprised the backbone of a significant

component of the preparation was necessary to reasonably apply the term fucoidan. In the

absence of this evidence, it is preferable to term the isolated product from Sargassum sp. as crude

fucoidan or, to be more accurate, FCSP (Papers 3 and 4). The main active component may be a

FCSP (e.g., fucoidan) that is present in brown seaweed such as Sargassum sp., but further

structural elucidation is essential, as it has major bearing on any biological activity study.

Nevertheless, there are many indications in this present work that FCSP samples may contain
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fucoidan like structures (Paper 4). This study showed that both FCSP samples induced apoptosis by

activating caspases 3 and exerted anti tumor activity by inhibiting the growth of MC cells. It

appears that unfractionated FCSPs from Sargassum sp. and F. vesiculosus are potent skin cancer

preventive agents, a fact that was demonstrated by a direct in vitro study of melanoma B16 cells

(Paper 4).

4.3 Paper 3: Fucoidan from Sargassum sp. and Fucus vesiculosus reduces cell
viability of lung carcinoma and melanoma cells in vitro and activates natural
killer cells in mice in vivo
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a  b  s  t r a c  t

Fucoidan  is  known  to  exhibit crucial  biological  activities,  including  anti-tumor  activity. In  this study, we

examined  the influence  of crude  fucoidan  extracted  from Sargassum  sp. (MTA)  and  Fucus  vesiculosus  (SIG)

on  Lewis lung carcinoma  cells (LCC)  and  melanoma  B16 cells  (MC). In vitro  studies  were  performed  using

cell  viability analysis and  showed  that SIG  and MTA  fucoidans significantly  decreased  the  viable  number

of  LCC  and  MC  cells  in a  dose–response  fashion. Histochemical staining  showed  morphological changes of

melanoma  B16 cells  after exposure  to  fucoidan.  The observed  changes were  indicative  of  crude  fucoidan

induced  apoptosis. Male  C57BL/6JJCL  mice were  subjected  to daily  i.p.  injections  over  4 days  with  either

SIG  or  MTA fucoidan  (50  mg/kg  body  wt.). The cytolytic activity of natural killer  (NK)  cells  was  enhanced

by  crude fucoidan  in a  dose-dependent  manner  as indicated  by 51Cr  labeled  YAC-1 target  cell  release.

This  study  provides  substantial indications  that  crude fucoidan  exerts  bioactive  effects  on lung and  skin

cancer  model cells  in vitro  and  induces  enhanced  natural killer  cell  activity  in  mice in vivo.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Fucoidan is a term used for a  group of fucose-rich sulfated

polysaccharides containing varying amounts of  galactose, xylose

and glucuronic acid. Fucoidan can be extracted from brown sea-

weeds like Sargassum sp. and Fucus sp. Recently, the diverse

biological activities of  fucoidan have  been studied intensively;

the putative bioactivities of  fucoidan include antitumor and

immunomodulatory [1,2], antivirus [3], antithrombotic and antico-

agulant effects [4]. The utilization of natural bioactive compounds

for suppression or prevention of  cancer is  thriving and  has been

recognized as a  field of enormous potential [5]. Fucoidan extracted

from brown seaweeds has been reported to enhance the activity of

NK (natural killer) cells which is  an important factor in anti-cancer

activity [2]. Fucoidan has  also been shown to induce a  substantial

reduction in  viable cell  numbers and apoptosis of  human HS-Sultan

cells as well as HT-29 and HCT116 cells in a  dose-dependent manner

[6,7].

Fucoidans can be extracted and purified from seaweeds via

various multi-step processes involving chemical, physical and/or

∗ Corresponding author. Tel.: +45 4525 2800; fax:  +45 4593 2906.

E-mail address: am@kt.dtu.dk (A.S. Meyer).

enzymatic treatments and different purification and fractionation

steps [8].  Although differently extracted and modified fucoidans

have been reported to exert bioactivity, crude fucoidan has been

found to exert immunopotentiating effects in  tumor bearing ani-

mals, leading to anti-tumor effectiveness [9]. Crude fucoidan

(or fucose-containing sulfated polysaccharides) can be obtained

through dilute acid or aqueous extraction using milder and fewer

processing steps that induce minimal structural alterations thereby

maintaining the natural characteristics of fucoidan. To the best of

our knowledge, the effect of crude fucoidan on lung and skin can-

cer cells and immune-response activity has  yet  to be determined.

Therefore we examined the effects of  crude fucoidan extracted from

Sargassum sp. and  Fucus vesiculosus on the proliferation of Lewis

lung carcinoma and melanoma B16 cells and evaluated its influence

on immune response activity.

The  principal objectives of  the present work were thus to deter-

mine whether crude fucoidan can inhibit the growth of  skin and

lung cancer cells, and if so, to describe the contributing factors

behind this effect. In this study, we determined that crude fucoidan

hinders the in  vitro growth of  Lewis lung carcinoma and melanoma

B16 cells by  induction of  apoptosis. Moreover, the anti-tumor activ-

ity  of crude fucoidan seems to be  associated with an enhanced

immune-response, as depicted by  an increase in NK cell activity

in mice.

0141-8130/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.ijbiomac.2011.05.009
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examined  the  influence  of crude  fucoidan  extracted  from Sargassum  sp. (MTA)  and  Fucus  vesiculosus  (SIG)

on  Lewis lung carcinoma  cells (LCC)  and  melanoma  B16 cells  (MC). In vitro  studies  were  performed  using

cell  viability analysis and  showed  that SIG  and MTA  fucoidans significantly  decreased  the viable  number

of  LCC  and  MC  cells  in a  dose–response  fashion. Histochemical staining  showed  morphological changes of

melanoma  B16 cells  after exposure  to  fucoidan.  The observed  changes were  indicative  of  crude  fucoidan

induced  apoptosis. Male  C57BL/6JJCL  mice were  subjected  to daily  i.p.  injections  over  4 days  with  either

SIG  or  MTA fucoidan  (50  mg/kg  body  wt.). The cytolytic activity of natural killer  (NK)  cells  was  enhanced
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2.  Materials and  methods

2.1.  Chemicals

Two  crude fucoidan samples were used throughout this work.

Firstly, crude fucoidan from Sargassum sp.  (MTA)  was  extracted

in our laboratory (see Section 2.2) while crude fucoidan from

F. vesiculosus (SIG) was  obtained commercially (Sigma–Aldrich

Co., Steinheim, Germany). Dried Sargassum sp. was  obtained

from Viet Delta Ltd. (Ho  Chi Minh,  Vietnam). Minimal  essential

medium eagle (MEM-eagle) cell culture media was  purchased

from Sigma–Aldrich Co. (Steinheim, Germany); foetal bovine

serum (FBS) was  from Flow Laboratories (North Ryde, N.S.W.,

Australia); streptomycin–penicillin and Trypan Blue were from

Gibco (Canada). Hydrochloric acid (37%), d-glucose and d-xylose

were purchased from Merck (Darmstadt, Germany). Trifluo-

racetic acid (99%, TFA), trichloroacetic acid (99%, TCA), CaCl2,

Na2SO4, BaCl2, arabinose, rhamnose, d-galactose and l-fucose were

from Sigma–Aldrich Co. (Steinheim, Germany). Agarose D-2  was

obtained from Hispanagar (Burgos, Spain). All  chemicals used were

analytical grade.

2.2.  Extraction of  crude fucoidan (MTA)

Seaweed from Sargassum sp.  was  ground and sieved to pass

through a 500  �m sieve. Crude fucoidan extraction was  carried out

by  adding 100  g  of dried ground seaweed to  a 5 L  flask containing

2 L of 0.03 M HCl. The mixture was  then placed in a  90 ◦C water bath

(Julabo, Germany) with continuous mixing at 200 rpm  for 4 h. The

suspended seaweed was  filtered (Whatman filter  paper, no.  1) to

obtain a fucoidan extract. The  extract was  then precipitated using

60% ethanol (EtOH), and the  precipitate was  collected after cen-

trifugation (Sigma Laboratory Centrifuge 4K15, VWR,  Denmark) at

10,600 rpm  for 10 min, and the  resulting pellet was  freeze dried.

This pellet was  the crude fucoidan and is referred to  as  MTA  in

this study. The crude fucoidan (SIG) derived from F. vesiculosus

was commercially obtained from Sigma–Aldrich Co. (Steinheim,

Germany). According to the  product description the F. vesiculosus

fucoidan had been prepared via the  extraction method described

by Black [10].

2.3.  Acid hydrolysis

The  freeze dried crude fucoidan powder (MTA,  20 mg)  and

the commercially obtained crude fucoidan (SIG, 20 mg)  were

hydrolyzed separately using 2 M TFA (final concentration) at 121 ◦C

for  2 h  [11]. The hydrolyzed mixtures were then freeze dried at

−57 ◦C (Heto Lyolab 3000, England). The dried powders were res-

olubilized in doubly distilled water and  centrifuged at 10,000 rpm

for 10 min  to collect the  supernatants. Each supernatant was  fil-

tered through a 0.2 �m syringe tip filter (SUN-SRi, Rockwood, TN)

prior to  injection into the  HPAEC-PAD for monosaccharide analysis

(see  Section 2.4).

2.4.  Fucoidan composition analysis

The supernatant of each of the  acid hydrolyzed crude fucoidan

samples was  analyzed for monosaccharides and sulfate con-

tents. The separation and quantification of monosaccharides were

performed by HPAEC-PAD analysis using  an  ICS-3000 system

consisting of  gradient pumps  (model DP-1), an  electrochemical

detector/chromatography module (model DC-1) and  an autosam-

pler (Dionex Corp., Sunnyvale, CA). Separation was  achieved using

a CarboPacTM PA20 (3 mm  ×  150 mm)  analytical column following

the method described by Arnous and Meyer [11]. Data quan-

tification was  carried out using the Chromeleon 6.8 SP4 Build

2361  chromatography software (Dionex Corp., Sunnyvale, CA).

Recovery values of the monosaccharides were estimated from

parallel runs, i.e., TFA hydrolysis, freeze drying, and  HPAEC-PAD

analysis, of monosaccharide standards as  described previously [11].

Analysis  of sulfate content was  done according to the  method

described by Jackson and McCandless [12].

2.5. Cell  culture and anti-tumor activity assay

Lewis Lung Carcinoma (LLC) and melanoma B16  cells (MC) were

grown in MEM  eagle medium  supplemented with 10% (v/v) heat-

inactivated FBS, 1% streptomycin–penicillin and  1%  of 200  mM

l-glutamine. The cells were maintained at 37 ◦C under  5%  CO2. An

aliquot (10 �l) of the  cell-MEM-FBS medium mixture was  diluted

with 90 �l of 0.4% Trypan Blue for cell counting. Monolayer cul-

tivation was  carried out  by adding  100  �l of  the cell-MEM-FBS

mixture in 96-flat well plates at a density of 3 × 104 cells per

well. Plates were then incubated for 24 h in  5%  CO2 at 37 ◦C.

Afterwards the  medium was  removed and  replaced with 100 �l

of MEM  medium containing 2%  FBS  and varying concentrations

(0.1–1.0 mg/ml) of Sargassum sp.  crude fucoidan (MTA)  and com-

mercial crude fucoidan from F. vesiculosus (SIG) and then incubated

for 24 h. A 20 �l MTT  (5 mg/ml) solution was  added  to  the  cultures

and  they were then re-incubated for 4 h. Finally, 100 �l of stabiliza-

tion solution was  added to each well and  the plates were incubated

overnight at 37 ◦C under 5%  CO2. Absorbance was  measured using

an Elisa reader at 550–690 nm.

2.6. Natural killer (NK) cell activity based on 51Chromium (51Cr)

release  assay

Male C57BL/6J mice (Clea  Japan Inc., Tokyo, Japan) were

weighed prior to intraperitoneal injection (i.p.) of fucoidan sam-

ples (50 mg/kg body wt.) from Sargassum sp.  (MTA) and commercial

fucoidan from F. vesiculosus (SIG) in 0.1 ml  saline for 4 successive

days; neat saline was  used as control, and  Poly I:C as  positive con-

trol. 3 mice were used per treatment (n = 3). The  mouse spleen was

removed and suspended in  complete RPMI-1640 medium  supple-

mented with 100 U/ml  of penicillin, 100 �g/ml of streptomycin,

2 mM  of l-glutamine and  10% FBS. Spleen cells were seeded in

0.1 ml  of  this complete medium per  well in  96-well microtiter

plates (V-typed, Nalge Nunc, Tokyo, Japan) at densities of 1 × 107,

0.5 ×  106, and 0.25 × 106 cells/ml. 51Cr (with sodium chromate,

37  MBq/ml, Dupont, NEN Research Products, DE,  USA)  was  used

to label YAC-1 cells using  an exposure time of  1 h after which

the cells were washed, brought to a density of  1 × 104/ml  and

added in 0.1 ml aliquots to the wells. The plate was  centrifuged

for 3 min  at 800 rpm and room temperature, and then incubated

for 4 h  in  5% CO2 at 37 ◦C. Percent specific lysis was  calculated

using the  formula: % specific 51Cr  release = [(mean cpm experi-

mental release − mean cpm spontaneous release)/(mean cpm  total

releasable counts − mean cpm  spontaneous release)] ×  100, based

on results from radioactivity measurements of the supernatant

using a �-counter (Gamma  5500B, Beckman Instruments Inc., CA,

USA).  The experiments adhered to  the  National Institute of Health’s

guidelines for the  use of experimental animals and the experi-

mental protocol was  approved by The Animal Use  Committee of

the  Kitasato University School of  Allied Health Sciences before the

study was  initiated.

2.7.  Apoptosis detection assay

Both the  MTA and SIG crude fucoidan samples (0.8 mg/ml

dose concentration) and  a control (no fucoidan) were tested

on melanoma B16  cells for programmed cell death by the

terminal deoxynucleotidyl transferase-mediated deoxyuridine
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for 4 h  in  5% CO2 at 37 ◦C. Percent specific lysis was  calculated

using the  formula: % specific 51Cr  release = [(mean cpm experi-

mental release − mean cpm spontaneous release)/(mean cpm  total

releasable counts − mean cpm  spontaneous release)] × 100, based

on results from radioactivity measurements of the supernatant

using a �-counter (Gamma  5500B, Beckman Instruments Inc., CA,

USA).  The experiments adhered to  the  National Institute of Health’s

guidelines for the  use of experimental animals and the experi-
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the  Kitasato University School of  Allied Health Sciences before the
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2.7.  Apoptosis detection assay

Both the  MTA and  SIG crude fucoidan samples (0.8 mg/ml

dose concentration) and  a control (no fucoidan) were tested

on melanoma B16  cells for programmed cell death by the

terminal deoxynucleotidyl transferase-mediated deoxyuridine
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triphosphate (dUTP) nick end-labeling (TUNEL) method using an

in  situ apoptosis detection kit (Takara Bio Inc., Shiga, Japan). The

melanoma B16 cells were grown in a  2-well permanox slide (Lab-

Tek  Chamber Slides, Nalge Nunc, Tokyo, Japan) at 5 × 104 cells/ml

density per slide, treated with fucoidan for  48 h and then washed

twice with PBS solution followed by fixing of  the cells using

4% paraformaldehyde/PBS (pH 7.4). The cells on  the slides were

assayed according to the standard protocol provided in  the apo-

ptosis detection kit. Apoptotic cells  were viewed using a BX51 light

microscope (Olympus Corp., Tokyo, Japan).

2.8. Statistical analyses

Tabulation  of data and calculation of  mean and standard devi-

ations were done using Excel (Microsoft Office 2010). Analysis of

variance  was performed using Minitab 15 (Minitab Inc., State Col-

lege,  PA, USA) using a  significance value of P ≤ 0.05.

3. Results

3.1. Fucoidan extraction and compositional analysis

The crude MTA  fucoidan extracted from Sargassum sp. was

mainly made up  of  fucose, glucuronic acid, and sulfate (Table 1).

Minor  amounts of  other monosaccharide constituents such as

galactose, glucose, xylose, mannose, rhamnose and arabinose were

also  detected (Table 1). The SIG fucoidan had a similar monosac-

charide pattern, but the amounts of  fucose, galactose, and xylose,

were significantly higher in the SIG fucoidan, whereas glucuronic

acid was significantly lower than in  the MTA  fucoidan (Table 1). No

significant difference was found in the sulfate content of MTA  and

SIG  fucoidan (Table 1).

3.2.  Crude fucoidan inhibits skin and lung cancer cell growth

in  vitro

In vitro assessment of  the effects of different concentrations

(0–1.0  mg/ml) of  crude MTA  and SIG fucoidan on the growth of

Lewis Lung Carcinoma (LLC) and melanoma B16 (MC) cells was per-

formed  via measurement of  cell  viability using an MTT assay. The

growth  of LLC and MC  cells were affected in  a dose-dependent man-

ner  following the addition of  crude MTA  and SIG fucoidan, based

on  3  × 104 cells per well density after 24 h of  incubation (Fig. 1a

and b). MTA  and SIG fucoidan performed similarly and reduced the

number  of  viable LLC cells present in  a  dose-dependent fashion,

with cell viabilities reduced to 40 ± 7% and 36 ± 14% after addition

of  1.0 mg/ml  MTA  and SIG, respectively (Fig. 1a). A drastic reduction

in  cell numbers was also noted for the MC  cells, resulting in only

56  ±  5% and 50 ± 5% viable cells upon addition of  0.1 and 0.2 mg/ml

MTA  fucoidan, respectively. As such, the reduction in cell  viabil-

ity induced by  MTA  fucoidan was significantly more pronounced

(P ≤ 0.05) than the cell reduction induced by SIG fucoidan, espe-

cially at low fucoidan addition levels (Fig. 1b). At dosage levels

of 0.4–1.0 mg/ml, the cell viability of  the MC  cells was  reduced

to ∼10–55% (lowest cell viability at the higher fucoidan dosage),

but no  significant differences were observed in  the effects of  MTA

Fig. 1. In vitro analysis of  the  direct activity on carcinoma and melanoma cells of

crude fucoidan derived from Sargassum sp. (MTA) and commercial fucoidan (SIG)

derived from  F. vesiculosus. (a) Fucoidan activity on Lewis Lung Carcinoma cells, and

(b) fucoidan activity on melanoma B16 cells. Cell  density was 3  × 104 cells per well.

Data are shown as  average values ± s.d. Level of  significance was  P ≤  0.05, n = 4.

and SIG (Fig. 1b). It may  also be observed from Fig. 1  that fucoidan

appeared more effective in reducing the number of MC  viable cells

than  LLC cells in a  dose-dependent manner, with e.g., only 32 ± 2%

viable MC cells (Fig. 1b) and 57 ± 7% viable LCC cells (Fig. 1a) at a

SIG  fucoidan concentration of  0.6 mg/ml.

3.3.  Crude fucoidan induced apoptosis of melanoma B16 cells

To  be able to determine whether crude fucoidan-induced reduc-

tion  of  cell viability was attributed to the initiation of apoptosis, the

TUNEL method using melanoma B16 cells and 3,3′ Diaminobenzi-

dine (DAB) substrate with  counterstaining using 1% methylgreen

was employed. The evaluation of apoptosis by  the two types of

fucoidan was  only done on the melanoma B16 cells because these

cells appeared to be particularly sensitive to the MTA fucoidan

and exhibited a  differential growth response to the two  types of

crude  fucoidan (Fig. 1). The treatment of melanoma B16 cells with

Table 1
Monosaccharide constituents detected by HPAEC-PAD from the TFA hydrolyzed samples of Sargassum sp. fucoidan (MTA), and commercial fucoidan (SIG) from F. vesiculosus.

Samples Monosaccharide compositiona in  mg/g DW

Fuc* Rha Ara Gal* Glc Xyl* Man* GluA* Sul

MTA  31.4 ± 2.0 1.6 ± 0.1  0.2  ± 0.1 13.9 ± 0.8 4.2 ± 0.1 4.2 ± 0.3 5.7 ± 0.5  122.8 ± 7.0  384.4  ± 26.2

SIG 138.7 ± 5.5 2.0 ± 0.6  2.8 ± 0.2 27.9  ± 1.4 2.5 ± 1.8 12.8 ± 1.6 0.2  ± 0.4  18.5  ± 1.9 341.6  ± 45.4

a Monosaccharide composition: Fuc,  fucose; Rha, rhamnose; Ara, arabinose; Gal, galactose; Glc, glucose; Xyl, xylose; Man, mannose; GluA,  glucuronic acid; Sul,  Sulfate.
* Significantly different at P ≤ 0.05, number of  replicates = 4.
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in  vitro

In vitro assessment of  the effects of different concentrations

(0–1.0  mg/ml) of  crude MTA  and SIG fucoidan on the growth of

Lewis Lung Carcinoma (LLC) and melanoma B16 (MC) cells was per-

formed  via measurement of  cell  viability using an MTT assay. The

growth  of LLC and MC  cells were affected in  a dose-dependent man-

ner  following the addition of  crude MTA  and SIG fucoidan, based

on  3  × 104 cells per well density after 24 h of  incubation (Fig. 1a

and b). MTA  and SIG fucoidan performed similarly and reduced the

number  of  viable LLC cells present in  a  dose-dependent fashion,

with cell viabilities reduced to 40 ± 7% and 36 ± 14% after addition

of  1.0 mg/ml  MTA  and SIG, respectively (Fig. 1a). A drastic reduction

in  cell numbers was also noted for the MC  cells, resulting in only

56  ±  5% and 50 ± 5% viable cells upon addition of  0.1 and 0.2 mg/ml

MTA  fucoidan, respectively. As such, the reduction in cell  viabil-

ity induced by  MTA  fucoidan was significantly more pronounced

(P ≤ 0.05) than the cell reduction induced by SIG fucoidan, espe-

cially at low fucoidan addition levels (Fig. 1b). At dosage levels

of 0.4–1.0 mg/ml, the cell viability of  the MC  cells was  reduced

to ∼10–55% (lowest cell viability at the higher fucoidan dosage),

but no  significant differences were observed in  the effects of  MTA
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than  LLC cells in a  dose-dependent manner, with e.g., only 32 ± 2%

viable MC cells (Fig. 1b) and 57 ± 7% viable LCC cells (Fig. 1a) at a

SIG  fucoidan concentration of  0.6 mg/ml.
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To  be able to determine whether crude fucoidan-induced reduc-

tion  of  cell viability was attributed to the initiation of apoptosis, the

TUNEL method using melanoma B16 cells and 3,3′ Diaminobenzi-

dine (DAB) substrate with  counterstaining using 1% methylgreen

was employed. The evaluation of apoptosis by  the two types of

fucoidan was  only done on  the melanoma B16 cells because these

cells appeared to be particularly sensitive to the MTA fucoidan

and exhibited a  differential growth response to the two  types of

crude  fucoidan (Fig. 1). The treatment of melanoma B16 cells with
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Monosaccharide constituents detected by HPAEC-PAD from the TFA hydrolyzed samples of Sargassum sp. fucoidan (MTA), and commercial fucoidan (SIG) from F. vesiculosus.
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Fig.  2. Images of melanoma B16  cells  after exposure to fucoidan: melanoma  B16 cells were  plated onto cell cultured 2-well permanox slides at  a 5 × 104 cells/ml density,

and incubated for  48 h in the  absence (CONT)  and  presence of crude  fucoidan (MTA,  SIG) added  at  a dosage  of 0.8  mg/ml.  DAB  substrate was used to stain the  cells and  the

images were photographed using  an Olympus  BX51  microscope following two  independent  experiments.

0.8 mg/ml  MTA  and  SIG fucoidan resulted in fragmentation and

condensation of  chromatin, visualized as an intense pyknotic dark

brown color within the  cell nuclei, as  particularly evident for the

MTA fucoidan treated cells (Fig. 2).  (For interpretation of the  refer-

ences to color in this text, the reader is referred to the web version

of the article.)

3.4. Natural killer (NK) cell  activity induced by  crude fucoidans

The weights of  male C57BL/6J mice (Clea Japan Inc., Tokyo,

Japan) were recorded and  the  inherent alertness of  the  mice was

observed daily for 4  days. The records revealed that there were

no significant differences in the weights, and that all  mice were

physically active with no  indications of weaknesses during the

entire experimental period (data not  shown). MTA  and  SIG fucoidan

induced significantly increased levels of  splenic NK cell activity in

the C57BL/6J mice, assessed as specific lysis after daily i.p.  injec-

tions of  the fucoidan samples for four consecutive days (Fig. 3). NK

cell activity at  100:1 effector to target ratio increased remarkably in

mice treated with fucoidan to 14 ±  3.8% for MTA  and  11  ± 1.7% for

SIG compared to 5.1  ± 2.1%  in the non-treated mice control (Fig. 3).

The positive control Poly I:C  specific lysis at 100:1 was  26  ± 9%.

Statistically significant differences between the effects of MTA  and

SIG were detected at all  effector to target ratios with MTA  fucoidan

inducing greater NK activity than SIG  fucoidan, and  the  effects of

both fucoidans were significantly (P  ≤ 0.05)  better than the control

(Fig. 3).

Fig.  3. Natural killer (NK)  cell activity in spleen cells of  C57BL/6J  mice (n  = 3)

against 51Cr-labeled YAC-1  target cells injected i.p. for 4 days with either saline

or  fucoidan (50  mg/kg). Cytotoxicity was  determined by measuring 51Cr  release at

4 h expressed as percent specific lysis. Positive control Poly I:C specific lysis at 100:1

was 26.2 ±  8.9%. (E)/(T); effector/target. Data are shown  as average values ± s.d.

4. Discussion

The  leading cause of  cancer  deaths worldwide is lung cancer and

the incidence of  melanoma has risen  dramatically over the past few

decades [13]. Current therapeutic strategies to combat these can-

cers provide only minimal benefits and expose cancer patients to

significant risks of  undesirable side  effects and  complications. In

recent years  many studies have focused on  the  utilization of  bioac-

tive compounds derived from biomass of  natural origin based on

their potential as  cancer preventive agents. Fucoidan is  a complex

sulfated polysaccharide obtained from naturally occurring edible

brown seaweeds. For many years, these seaweeds have been a part

of Asian diets. A study conducted across the Japanese population

investigating the major impact of diet on  chronic disease showed

that the intake  of  seaweed was  associated with lower mortality

from all causes, including lung cancer for men and  women  [14].

Animal model  experiments have shown a  direct anti-cancer effect

following incorporation of brown  seaweeds of  the type Undaria and

Laminaria into animal diets  with no indications of either weight

gain/loss or  alterations in the weights of  body organs, signifying

no direct lethal effect. Although the active components present

in these seaweeds have not been  determined, it has generally

been acknowledged that the effects are most likely attributable to

fucoidan [15,16]. Thus, the potential of  fucoidan as an outstanding

agent for prevention or control of  lung and skin cancer is  considered

promising providing that it does indeed exert cancer-preventive

effects.

In this study, we employed crude fucoidan extracted from

ground Sargassum sp.  via a single step extraction using 0.03 M HCl

at 90 ◦C  for 4  h,  and commercially obtained crude fucoidan from  F.

vesiculosus. We noted that  the chemical composition of the seaweed

species were distinctively different. In  particular, fucose, galactose

and glucuronic acid contents differed widely while no differences

were noted in the sulfate content (Table 1).  Low dosage levels of

MTA fucoidan induced more significant reduction of the prolifera-

tion of melanoma B16 cells than the  SIG fucoidan, but in general the

cell proliferation assays revealed almost similar bioactivity effects

of MTA  and SIG fucoidan on Lewis lung carcinoma and  melanoma

B16 cells (Fig. 1).  These data indicate that  the crude fucoidan bioac-

tivity towards these cell lines was  probably related to the  sulfate

groups present in the fucoidan structure rather than the  presence of

significant amounts of fucose. The same observation was  reported

by Yamamoto et al.  [17] with respect to the  influence of  fucose

content of fucoidan on  the growth inhibition of  Sarcoma-180 cells;

Yamamoto et al. [17] thus found  that sulfation rather than fucose

content of  crude fucoidan elicited anti-tumor activity.

The sulfate contents of  MTA  and  SIG fucoidan were  38.4% and

34.2%, respectively (Table 1).  These results agreed with those of

Koyanagi et al. [18] who reported that purified fucoidan from F.

vesiculosus containing 32.6% sulfate was  a  potent anti-angiogenic

agent and that oversulfation of  fucoidan might have intensified

the anti-angiogenesis and anti-tumor activity of fucoidan. Addi-
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brown color within the  cell nuclei, as  particularly evident for the

MTA fucoidan treated cells (Fig. 2).  (For interpretation of the  refer-

ences to color in this text, the reader is referred to the web version

of the article.)
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Japan) were recorded and  the  inherent alertness of  the  mice was

observed daily for 4  days. The records revealed that there were

no significant differences in the weights, and that all  mice were

physically active with no  indications of weaknesses during the

entire experimental period (data not  shown). MTA  and  SIG fucoidan

induced significantly increased levels of  splenic NK cell activity in

the C57BL/6J mice, assessed as specific lysis after daily i.p.  injec-

tions of  the fucoidan samples for four consecutive days (Fig. 3). NK
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mice treated with fucoidan to 14 ±  3.8% for MTA  and  11  ± 1.7% for

SIG compared to 5.1  ± 2.1%  in the non-treated mice control (Fig. 3).

The positive control Poly I:C  specific lysis at 100:1 was  26  ± 9%.

Statistically significant differences between the effects of MTA  and

SIG were detected at all  effector to target ratios with MTA  fucoidan

inducing greater NK activity than SIG  fucoidan, and  the  effects of

both fucoidans were significantly (P  ≤ 0.05)  better than the control

(Fig. 3).
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against 51Cr-labeled YAC-1  target cells injected i.p. for 4 days with either saline
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brown seaweeds. For many years, these seaweeds have been a part
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that the intake  of  seaweed was  associated with lower mortality

from all causes, including lung cancer for men and  women  [14].

Animal model  experiments have shown a  direct anti-cancer effect

following incorporation of brown  seaweeds of  the type Undaria and

Laminaria into animal diets  with no indications of either weight

gain/loss or  alterations in the weights of  body organs, signifying

no direct lethal effect. Although the active components present

in these seaweeds have not been  determined, it has generally

been acknowledged that the effects are most likely attributable to

fucoidan [15,16]. Thus, the potential of  fucoidan as an outstanding

agent for prevention or control of  lung and skin cancer is  considered

promising providing that it does indeed exert cancer-preventive

effects.

In this study, we employed crude fucoidan extracted from
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species were distinctively different. In  particular, fucose, galactose

and glucuronic acid contents differed widely while no differences

were noted in  the sulfate content (Table 1).  Low dosage levels of

MTA fucoidan induced more significant reduction of the prolifera-

tion of melanoma B16 cells than the  SIG fucoidan, but in general the

cell proliferation assays revealed almost similar bioactivity effects

of MTA  and SIG fucoidan on Lewis lung carcinoma and  melanoma

B16 cells (Fig. 1).  These data  indicate that  the crude fucoidan bioac-

tivity towards these cell lines was  probably related to the  sulfate

groups present in the fucoidan structure rather than the  presence of

significant amounts of fucose. The same observation was  reported

by Yamamoto et al.  [17] with respect to the  influence of  fucose

content of fucoidan on  the growth inhibition of  Sarcoma-180 cells;

Yamamoto et al. [17] thus found  that sulfation rather than fucose

content of  crude fucoidan elicited anti-tumor activity.

The sulfate contents of  MTA  and  SIG fucoidan were  38.4% and

34.2%, respectively (Table 1).  These results agreed with those of

Koyanagi et al. [18] who reported that purified fucoidan from F.
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tionally, the anti-coagulant activity of sulfated polysaccharides has

been  reported to be related to the sulfation level [19]. In contrast,

Cumashi et  al. [20] studied nine different modified fucoidans and

found that neither the content of  fucose, sulfate nor other struc-

tural features of  the polysaccharide backbone significantly affected

the efficacy of the fucoidan bio-activity. These conflicting conclu-

sions about the bio-activity of fucoidan have paved the way  for

further exploration of this topic. While the present study is too

premature to elucidate the relationship between the composition

of crude fucoidan and  its  biological activities, it  has  shown that

crude fucoidan exerts significant anti-proliferative effects on both

lung and skin cancer cells.

In  the past, most anti-cancer studies of  fucoidan have used puri-

fied fractions, and  showed inhibitory effects relating to metastasis

[20], angiogenesis [18] and suppression of growth in a variety of

cancer cells [21,22]. Nonetheless, the ability of crude fucoidan to

inhibit cancer cells has also been documented previously based on

various in vivo and in vitro studies, including growth inhibition of

implanted Sarcoma-180 cells [17] and induced apoptosis of HCT-

15 colon carcinoma cells [23]. Still, our knowledge of the effect of

crude fucoidan on lung and skin carcinogenesis is limited; there-

fore, detailed investigations must be  carried out to elucidate the

underlying mechanisms behind the effects. In the present work, we

demonstrated that crude fucoidan effectively inhibits Lewis lung

carcinoma and  melanoma B16 cells at  concentrations between 0.1

and 1.0 mg/ml  (Fig. 1). We also examined whether the observed

tumor inhibition by crude fucoidan was due to anti-tumor activ-

ity or direct cytotoxicity. Overall, the in vitro cytotoxic activity of

fucoidan against Lewis lung carcinoma and melanoma B16 cells

increased in a dose-dependent fashion (Fig. 1). As such, it may be

concluded that crude fucoidan exhibits a weak, direct cytotoxic

effect against these carcinogenic cells. Furthermore, the absence

of weight loss and frailness in  the mice treated i.p.  with MTA  and

SIG fucoidan (data not shown) suggest that inhibition of LLC and

MC cell growth was attributed, at  least in part, to its  anti-tumor

activity.

Crude fucoidan and  some seaweed extracts have immunomod-

ulating activity, such as NK cell activity which enhances anti-tumor

activities [9,24]. NK cells appear to represent a first line of defense

against the metastatic spread of blood-borne tumor cells. Normal

NK cell activity may  also be important in immune surveillance

against tumors [25]. We  studied NK cell activity in the presence

and absence of crude MTA  and  SIG fucoidan in male C57BL/6J

mice. The cytolytic activation of NK cells against the YAC-1 tar-

get cells was significantly improved in  the splenocytes of mice

after 4  days of i.p.  treatments with crude fucoidan (Fig. 3). Crude

fucoidan thus exerted anti-tumor activity through an  enhancement

of the immune-response. It was previously shown that fucoidan

from Undaria pinnatifida enhances immune response and acts as an

immunopotentiator in tumor-bearing mice, leading to anti-tumor

effectiveness [16]. NK cells produce a  number of cytokines, such as

interferon-� (IFN-�) production by T cells which have been stim-

ulated by interleukin-12 (IL-12) [26]. It has been reported that

stimulation by IL-12 alone produces only  moderate augmentation

of NK cell cytotoxicity. However, IL-12 increases the catalytic activ-

ity  of lymphocytes against autologous targets when in synergy with

interleukin-2 (IL-2) [27]. Hence, stimulation with IL-2 and IL-12

promotes the secretion of IFN-�; the mechanism behind fucoidan

enhanced NK cell activation may be  similar (Fig. 3).

Previous studies have shown that fucoidan induces apoptosis

in HT-29 colon cancer cells [7], MCF-7 human breast cancer cells

[28], and  HS-Sultan human lymphoma cells [6]. In this study, crude

fucoidan exerted activity through inhibition of growth of Lewis lung

carcinoma and melanoma B16 cells. As such, we studied whether

crude fucoidan exerted the activity through inducing apoptosis.

Histochemical staining with the DAB substrate showed morpholog-

ical  changes of  the melanoma B16 cells, as indicated by an intense

dark brown color within the cell nuclei (Fig. 2).  A  distinct morpho-

logical change of cells by apoptosis includes modification of the

cytoskeleton which results in  membrane bleeding, condensation of

chromatin and degradation of the DNA into fragments [26]. In the

present work crude fucoidan was shown to induce apoptosis; previ-

ous reports have suggested that fucoidan induces apoptosis via the

activation of caspase-3 in human HS-Sultan cells [6], via caspase-8

dependent pathways in MCF-7 cells [28] and through the activation

of caspases via both death receptor-mediated and mitochondria-

mediated apoptotic pathways [7]. The detailed mechanisms of the

activation pathways clearly deserve further investigation.

5. Conclusions

We  have examined the bioactivity of crude fucoidan through

evaluation of its  efficacy in  controlling or inhibiting lung and skin

cancer cell proliferation in vitro. The bioactivity of crude fucoidan

towards these two types of cell lines was  probably generated

by the sulfate groups in the fucoidan structure. These findings

need to be  examined further to elucidate the underlying factors

of fucoidan bioactivity. The study showed that crude fucoidan

induces apoptosis of melanoma B16 cells and  exerts anti-tumor

activity through inhibition of the growth of Lewis lung carcinoma

and melanoma B16 cells. In the present work, NK cells of mice

treated with crude fucoidan acted as the principal effectors medi-

ating tumor cell death. Overall, anti-tumor activity promoted by

crude fucoidan was based on  the enhancement of NK cell activity.

Crude fucoidan from Sargassum sp. and  F. vesiculosus thus appears

to be  a potent lung and  skin cancer-preventive agent and its  mode

of action is associated with the immune response.
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mediated apoptotic pathways [7]. The detailed mechanisms of the
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Abstract: Fucose-containing sulfated polysaccharides (FCSPs) extracted from seaweeds, 
especially brown macro-algae, are known to possess essential bioactive properties, notably 
growth inhibitory effects on tumor cells. In this work, we conducted a series of in vitro 
studies to examine the influence of FCSPs products from Sargassum henslowianum  
C. Agardh (FSAR) and Fucus vesiculosus (FVES), respectively, on proliferation of 
melanoma B16 cells and to investigate the underlying apoptosis promoting mechanisms. 
Cell viability analysis showed that both FCSPs products, i.e., FSAR and FVES, decreased 
the proliferation of the melanoma cells in a dose-response fashion, with FSAR being more 
potent at lower dosages, and FVES being relatively more anti-proliferative than FSAR at 
higher dosages. Flow cytometric analysis by Annexin V staining of the melanoma cells 
exposed to the FCSPs products confirmed that both FSAR and FVES induced apoptosis. 
The FCSPs-induced apoptosis was evidenced by loss of plasma membrane asymmetry and 
translocation of the cell membrane phospholipids and was accompanied by the activation 
of caspase-3. The FCSPs bioactivity is proposed to be attributable to distinct structural 
features of the FCSPs, particularly the presence of sulfated galactofucans (notably in  
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exposed to the FCSPs products confirmed that both FSAR and FVES induced apoptosis. 
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S. henslowianum) and sulfated fucans (notably in F. vesiculosus). This study thus indicates 
that unfractionated FCSPs may exert bioactive effects on skin cancer cells via induction of 
apoptosis through cascades of reactions that involve activation of caspase-3.  

Keywords: fucoidan; anti-tumor; sulfated polysaccharides; bio-activity; apoptosis; fucose 
 

1. Introduction 

Fucose-containing sulfated polysaccharides (FCSPs) designate a group of diverse polysaccharides 
that can be extracted from brown seaweeds of the class Phaeophyceae. This seaweed class includes the 
order Fucales, in which seaweed species such as Fucus sp. and Sargassum sp. belong. The most studied 
FCSPs, originally called fucoidin, fucoidan or just fucans, have a backbone built of (1 3)-linked  

-L-fucopyranosyl residues or of alternating (1 3)- and (1 4)-linked -L-fucopyranosyl residues [1,2]. 
These fucopyranosyl residues may be substituted with short fucoside side chains or sulfate groups at 
C-2 or C-4, and may also carry other minor substitutions, e.g., acetate, xylose, mannose, glucuronic 
acid, galactose, or glucose [3–5]. Brown seaweed FCSPs also include sulfated galactofucans with 
backbones built of (1 6)- -D-galacto- and/or (1 2)- -D-mannopyranosyl units. In addition to sulfate 
these backbone residues may be substituted with fucosides, single fucose substitutions, and/or 
glucuronic acid, xylose or glucose substitutions [4]. Recently it has been understood that the 
compositional and structural features of FCSPs differ significantly among seaweed species and that 
these features are markedly influenced by the conditions used to extract them [3,6].  

FCSPs of different degrees of purity and composition, extracted from brown seaweeds such as 
Sargassum sp. and Fucus sp., have been documented to have a wide range of biological activities 
including anticoagulant [7,8], antithrombotic [8], anti-inflammatory [9], anti-viral [10,11]; and notably 
anti-tumoral effects [8,12,13]. Unfractionated FCSPs have thus specifically been found to reduce cell 
proliferation of lung carcinoma and melanoma cells in vitro; to exert immunopotentiating effects in 
tumor bearing animals; and to activate natural killer cells in mice leading to increased anti-tumor 
effectiveness [13–16]. Kim et al. [17] applied a crude polysaccharide composed predominantly of 
sulfated fucose from Fucus vesiculosus to human colon cancer cells in vitro, and concluded that this 
crude brown seaweed polysaccharide extract can induce apoptosis, and provided data that suggested 
that the apoptosis was induced via activation of caspases. Moreover, commercially available crude 
FCSPs (“fucoidan”) extracted from F. vesiculosus have been reported to inhibit proliferation and 
induce apoptosis on human lymphoma HS-Sultan cells lines by activation of caspase-3 [18]. Recently, 
we have reported that crude FCSPs extracted from a Sargassum sp. and from F. vesiculosus, 
respectively, induce growth inhibition and apoptosis of melanoma B16 cells in vitro [13]. When 
injected intraperitoneally into mice over four days, these same unfractionated FCSPs were found to 
induce enhanced natural killer cells (NK cells) activity to result in specific lysis of YAC-1 cells  
(a murine T-lymphoma cell line sensitive to NK cells) [13]. Previous reports with human HS-Sultan 
cells and MCF-7 cells, respectively, have suggested that the FCSPs induced apoptosis initiation may 
take place via activation of caspase-3 and caspase-8 dependent pathways, respectively [18,19], but no 
firm evidence has been established regarding the exact mechanism responsible for the apoptotic action 
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S. henslowianum) and sulfated fucans (notably in F. vesiculosus). This study thus indicates 
that unfractionated FCSPs may exert bioactive effects on skin cancer cells via induction of 
apoptosis through cascades of reactions that involve activation of caspase-3.  
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of the FCSPs. The objective of the present study was, therefore, to examine whether the  
anti-proliferative action and apoptosis of melanoma B16 cells induced by FCSPs derived from 
Sargassum henslowianum C. Agardh and Fucus vesiculosus, are accompanied by increased caspase-3 
activity. We also wanted to evaluate whether any structural features of the FCSPs might be crucial for 
bioactivity. In this study, we present the different structural features of the FCSPs derived from  
S. henslowianum and F. vesiculosus as assessed by IR and 1H NMR spectroscopy and show that these 
FCSPs exert bioactive effects that inhibit the proliferation of melanoma B16 cells by apoptosis. We also 
show that the antiproliferative effects and the apoptosis are accompanied by activation of caspase-3. 

2. Results 

2.1. FCSPs Chemical Composition  

The compositional analysis of the fucose-containing sulfated polysaccharide products from  
S. henslowianum C. Agardh (FSAR) and F. vesiculosus (FVES), respectively, showed that the FSAR 
product was mainly made up of uronic acid and fucose, with a significant level of sulfate, and minor 
amounts of other monosaccharides, mainly galactose and mannose (Table 1). The FVES product had a 
similar monosaccharide profile and a similar sulfation level, but the amounts of fucose, galactose and 
xylose were significantly higher than in FSAR; whereas the uronic acid and mannose levels were 
lower (Table 1).  

Table 1. Monosaccharide composition and sulfate content of the fucose-containing sulfated 
polysaccharides: Sargassum henslowianum C. Agardh (FSAR) derived from S. henslowianum 
C. Agardh and Fucus vesiculosus (FVES) derived from F. vesiculosus, respectively.  

Samples 
Monosaccharide Composition * in mg/g DW 

Fuc ** Rha Ara Gal ** Glc Xyl ** Man ** UA ** Sulfate 
FSAR 31 ± 2 1.6 ± 0.1 0.2 ± 0.1 14 ± 1 4.2 ± 0.1 4.2 ± 0.3 5.7 ± 0.5 123 ± 7 384 ± 26 
FVES 139 ± 5 2.0 ± 0.6 2.8 ± 0.2 28 ± 1 2.5 ± 1.8 13 ± 2 0.2 ± 0.4 19 ± 2 342 ± 45 

* Monosaccharide composition: Fuc = fucose, Rha = rhamnose, Ara = arabinose, Gal = galactose,  
Glc = glucose, Xyl = xylose, Man = mannose, UA = uronic acid; ** Significantly different levels among 
FSAR and FVES at P  0.05, number of replicates = 4.  

2.2. IR and 1H NMR Spectra of FCSPs  

The FCSPs were analyzed to determine if their infrared absorption properties were similar to the 
previously reported fucoidan IR absorption data [2,20]. The spectra of the FSAR and FVES samples 
scanned between wavenumbers 4000 and 400 cm 1 both exhibited major absorption bands at around 
3340 and 3420 cm 1 that were interpreted as being due to O–H stretching (data not shown). The IR 
spectra between 1800 and 500 cm 1 (Figure 1a,b) revealed small but distinct bands for both the 
samples at 1720 cm 1 which indicated the presence of O-acetyl groups [21], whereas the absorption 
bands at ~1610 to 1620 cm 1 (Figure 1a,b), most pronounced for the FSAR sample, indicated uronic 
acid [20]. The FSAR sample showed an intense IR band at around 1400–1470 cm 1 which could be 
attributable to scissoring vibration of CH2 (galactose, mannose) and asymmetric bending vibration of CH3 
(fucose, O-acetyls) as suggested previously for absorption at around 1455 cm 1 by Synytsya et al. [22]. The 
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absorption band at 1240 cm 1 observed for both samples, but being particularly prevalent for the FVES 
sample, was assigned as S=O stretching vibration, indicating the presence of esterified sulfate [20]. A 
similar absorption pattern around 820–840 cm 1 was observed for both FCSPs: The FSAR infrared 
spectrum showed an absorption band at 817 cm 1 (Figure 1a) whereas the FVES infrared spectrum 
displayed a broader absorption band at 838 cm 1 and a small shoulder of absorption at 822 cm 1 
(Figure 1b). Since IR adsorption at 840 cm 1 has been reported to be due to sulfate groups at the axial 
C-4 position whereas sulfate groups at the equatorial C-2 and/or C-3 positions have been reported to 
give a small absorption at 820 cm 1 [2], the observed absorption bands at 820–840 cm 1 were 
interpreted as being indicative of sulfate groups.  

Figure 1. Infrared analysis of fucose-containing sulfated polysaccharides (FCSPs) from  
(a) Sargassum henslowianum C. Agardh (FSAR) and (b) Fucus vesiculosus (FVES) 
scanned between 1800 and 550 cm 1. 

 

The proton NMR spectra (2H2O) of the FSAR and the FVES samples were complex with  
broad signals and with several signals in the chemical shift of the envelope of anomeric signals at  
5.0–5.5 ppm (Figure 2a,b). The presence of the signals at 5.0–5.5 ppm is consistent with the presence 
of -L-fucopyranosyl [23]. The 1H-NMR spectra also both contained peaks at 1.1–1.3 ppm, with the 
signals for the FVES sample being particularly strong (Figure 2a,b). Previously, such high-field region 
signals at 1.1–1.3 ppm have been assigned to a C6 methyl proton group of L-fucopyranose [22] 
whereas several intense and narrow signals at 2.14–2.21 ppm have been attributed to CH3 protons of 
O-acetyl groups [5]. The narrow and intense signals at 5.10 and 5.18 ppm in the chemical shift of the 
envelope of the anomeric proton of FSAR (Figure 2a) were reported earlier and assigned to 3-linked 
and 3,4-linked L-fucopyranose residues for fucoidan from Hizikia fusiformis a.k.a Sargassum 
fusiformis [24]. The high field region signals 1.24 and 1.20 ppm (Figure 2a) were assigned to  

3-linked 2-mono-O-sulfated and 3-linked unsulfated L-fucopyranose residues [21]. Moreover the 
intense signals at 4.37 and 3.99 ppm (Figure 2a) were assigned to the presence of 4-linked  
2-mono-O-sulfated L-fucopyranose residues [21]. The independent signal, 4.61 ppm (Figure 2a) was 
assigned to a 3-linked D-galactopyranosyl residue when compared with the data of Farias et al. [25]. The 
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FVES had an intense signal at 5.45 ppm (Figure 2b), which was assigned to 3-linked 2-mono-O-sulfated 
L-fucopyranose residues, whereas the signals at 5.40, 4.58 and 4.39 ppm (Figure 2b) were assigned to 
be due to di-sulfated residues, i.e., 3-linked 2,4-di-O-sulfated L-fucopyranose residues [26]. Hence in 
general, the 1H NMR confirmed the anticipated FCSPs structures of the two samples.  

Figure 2. One-dimensional 1H NMR spectra of crude FCSPs from (a) Sargassum 
henslowianum C. Agardh (FSAR) and (b) Fucus vesiculosus (FVES) in D2O obtained 
using an INOVA 600 NMR spectrometer (Agilent Technologies, Tokyo, Japan).  

 

2.3. Anti-Proliferative Effects of the FCSPs  

The viability of melanoma B16 cells treated with the FSAR and FVES products, respectively, was 
determined via measurement of cell proliferation using an MTT based colorimetric assay. Both FCSPs 
products (FSAR and FVES) decreased the viability of melanoma B16 cells in a dose-dependent 
fashion, after 24 h of incubation of 6 × 104 cells density per well (Figure 3). In particular, a pronounced 
cell viability reduction was noticed after the addition of low levels, 0.1 mg/mL, of FSAR, producing a 
cell viability of ~80% of the control, and cell proliferation was halted gradually as the FCSPs dosage 
level increased (Figure 3) indicating moderate cytotoxicity. The FVES treated cells showed the same 
trend, but the FVES product generally induced a lower anti-proliferative effect than the FSAR product 
at the lower FCSP addition levels (P  0.05), but a significantly higher effect than FSAR (P  0.05) at 
the higher addition level, producing a drastic reduction of the proliferation of melanoma B16 cells 
leaving only ~6% of the cells viable at an FCSPs addition level of 1 mg/mL (Figure 3). The viability 
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reduction pattern induced by the two FCSPs on the melanoma cells were in complete accord with 
previously published data [13].  

Figure 3. MTT based colorimetric assay of cell viability of melonama B16 cells after 
treatment for 24 h with different dosage levels of crude fucose-containing sulfated 
polysaccharides from Sargassum henslowianum C. Agardh (FSAR) and Fucus vesiculosus 
(FVES), respectively. Cell density was 6 × 104 cells per well. a,b indicate statistically 
significantly different (P  0.05) cell viability levels after treatment with the two FCSP 
products at the same dosage level (mg/mL) (n = 4). 

 

2.4. Apoptosis of Melanoma Cells by FCSPs 

Programmed cell death or apoptosis is characterized by certain morphological cell changes such as 
loss of plasma membrane integrity in addition to internucleosomal DNA cleavage. One of the earliest 
apparent changes in cells undergoing apoptosis is the translocation of the cell membrane phospholipid 
phosphatidylserine from the inner to the outer leaflet of the plasma membrane. This change in the cell 
membrane is now recognized as an early, essential feature of apoptosis. The translocation exposes the 
phosphatidylserine to the external cellular environment and this is a feature which can be measured by 
exposing the cells to fluorochrome-conjugated phospholipid-binding proteins such as phycoerythin 
(PE)-labelled Annexin V (PE-Annexin V). Such staining with Annexin V is typically used in 
conjunction with a vital dye such as 7-amino-acticomycin (7-AAD) to identify early stages of 
apoptotic cells (Annexin V+, 7-AAD ) which accompany the later apoptosis stages (both Annexin V 
and 7-AAD are positive). Viable cells with intact membranes exclude 7-AAD, whereas the membranes 
of dead and damaged cells undergoing apoptosis are permeable to 7-AAD. Figure 4 shows the number 
of melanoma cells undergoing apoptosis (% relative to a control not exposed to FCSPs) and the flow 
cytometric scan data of Annexin V staining induced by exposure of the melanoma cells to 0.2 mg/mL 
of the seaweed FCSPs samples from S. henslowianum (FSAR) and F. vesiculosus (FVES), 
respectively. Both FCSPs products induced significant apoptosis of the melanoma cells: The FSAR 
product appeared to induce a more potent apoptotic effect than the FVES product (Figure 4a) since the 
relative number of melanoma cells undergoing apoptosis (% relative to a control sample not exposed to 
FCSPs) induced by the FSAR sample was significantly higher (41 ± 3%) than the apoptotic effect of 

2

94

8
PhD Thesis 2011

Mar. Drugs 2011, 9                                        
 

 

2610

reduction pattern induced by the two FCSPs on the melanoma cells were in complete accord with 
previously published data [13].  

Figure 3. MTT based colorimetric assay of cell viability of melonama B16 cells after 
treatment for 24 h with different dosage levels of crude fucose-containing sulfated 
polysaccharides from Sargassum henslowianum C. Agardh (FSAR) and Fucus vesiculosus 
(FVES), respectively. Cell density was 6 × 104 cells per well. a,b indicate statistically 
significantly different (P  0.05) cell viability levels after treatment with the two FCSP 
products at the same dosage level (mg/mL) (n = 4). 

 

2.4. Apoptosis of Melanoma Cells by FCSPs 

Programmed cell death or apoptosis is characterized by certain morphological cell changes such as 
loss of plasma membrane integrity in addition to internucleosomal DNA cleavage. One of the earliest 
apparent changes in cells undergoing apoptosis is the translocation of the cell membrane phospholipid 
phosphatidylserine from the inner to the outer leaflet of the plasma membrane. This change in the cell 
membrane is now recognized as an early, essential feature of apoptosis. The translocation exposes the 
phosphatidylserine to the external cellular environment and this is a feature which can be measured by 
exposing the cells to fluorochrome-conjugated phospholipid-binding proteins such as phycoerythin 
(PE)-labelled Annexin V (PE-Annexin V). Such staining with Annexin V is typically used in 
conjunction with a vital dye such as 7-amino-acticomycin (7-AAD) to identify early stages of 
apoptotic cells (Annexin V+, 7-AAD ) which accompany the later apoptosis stages (both Annexin V 
and 7-AAD are positive). Viable cells with intact membranes exclude 7-AAD, whereas the membranes 
of dead and damaged cells undergoing apoptosis are permeable to 7-AAD. Figure 4 shows the number 
of melanoma cells undergoing apoptosis (% relative to a control not exposed to FCSPs) and the flow 
cytometric scan data of Annexin V staining induced by exposure of the melanoma cells to 0.2 mg/mL 
of the seaweed FCSPs samples from S. henslowianum (FSAR) and F. vesiculosus (FVES), 
respectively. Both FCSPs products induced significant apoptosis of the melanoma cells: The FSAR 
product appeared to induce a more potent apoptotic effect than the FVES product (Figure 4a) since the 
relative number of melanoma cells undergoing apoptosis (% relative to a control sample not exposed to 
FCSPs) induced by the FSAR sample was significantly higher (41 ± 3%) than the apoptotic effect of 
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the FVES exposure (30 ± 5%). The data corresponded to the fluorescence-activated cell sorting 
(FACS) scan showing the accumulation of intense dots-color in cells that underwent the latest 
apoptosis stage (Figure 4b,c: both Annexin V and 7-AAD positive). The FVES sample induced more 
early apoptosis (Figure 4c than the FSAR, as characterized by the build-up of disperse dots-color 
(Annexin V+ and 7-AAD ) indicating loss of plasma membrane asymmetry. The data were in 
accordance with the anti-proliferative effects of the FCSPs treatments (Figure 3). 

Figure 4. Flow cytometric analysis by Annexin V staining of Melanoma B16 cells treated 
for 24 h with 0.2 mg/mL crude fucose-containing sulfated polysaccharide (FCSP) products 
extracted from S. henslowianum C. Agardh (FSAR) and F. vesiculosus (FVES), 
respectively. (a) Apoptosis induced by FSAR (41 ± 3%, n = 2), FVES (30 ± 5%, n = 2); 
control 11.66 % (data not shown) (b) FSAR data and (c) FVES data for FACS scans of 
FCSP treated Melanoma 16 cells that were viable and not undergoing apoptosis (Annexin V  
and 7-AAD ); undergoing early apoptosis, with membrane integrity intact (Annexin V+ and 
7-AAD ); in the latest stage apoptosis and dead (Annexin V+ and 7-AAD+ ), respectively. 

 

2.5. FCSPs Activation of Caspase-3 

In general, activation of caspase-3 initiates apoptosis in mammalian cells. The caspase-3 colorimetric 
assay employed in the present study is based on spectrophotometric detection of the chromophore  
p-nitroaniline (pNA) after cleavage of the pNA-labeled substrate DEVD-pNA. The activity of caspase-3 
was augmented after treatment of the melanoma cells for 24 h with the FCSPs from S. henslowianum 
(FSAR) and F. vesiculosus (FVES) (Figure 5). The recorded caspase-3 activity increased significantly 
in a dose-dependent manner in response to the FCSPs treatment dosage (0–0.8 mg/mL), i.e., from 
100% of control at 0, to ~180% of the control response at 0.8 mg/mL (P  0.05) (Figure 5).  
No significant differences in the responses induced by the two types of FCSPs were recorded within 
the individual dosages of the FSAR and FVES treatments (Figure 5). The same trend of caspase-3 
activity was observed in a 48 h treatment of melanoma cells with the FSAR and FVES samples (data 
not shown). 
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the FVES exposure (30 ± 5%). The data corresponded to the fluorescence-activated cell sorting 
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extracted from S. henslowianum C. Agardh (FSAR) and F. vesiculosus (FVES), 
respectively. (a) Apoptosis induced by FSAR (41 ± 3%, n = 2), FVES (30 ± 5%, n = 2); 
control 11.66 % (data not shown) (b) FSAR data and (c) FVES data for FACS scans of 
FCSP treated Melanoma 16 cells that were viable and not undergoing apoptosis (Annexin V  
and 7-AAD ); undergoing early apoptosis, with membrane integrity intact (Annexin V+ and 
7-AAD ); in the latest stage apoptosis and dead (Annexin V+ and 7-AAD+ ), respectively. 

 

2.5. FCSPs Activation of Caspase-3 

In general, activation of caspase-3 initiates apoptosis in mammalian cells. The caspase-3 colorimetric 
assay employed in the present study is based on spectrophotometric detection of the chromophore  
p-nitroaniline (pNA) after cleavage of the pNA-labeled substrate DEVD-pNA. The activity of caspase-3 
was augmented after treatment of the melanoma cells for 24 h with the FCSPs from S. henslowianum 
(FSAR) and F. vesiculosus (FVES) (Figure 5). The recorded caspase-3 activity increased significantly 
in a dose-dependent manner in response to the FCSPs treatment dosage (0–0.8 mg/mL), i.e., from 
100% of control at 0, to ~180% of the control response at 0.8 mg/mL (P  0.05) (Figure 5).  
No significant differences in the responses induced by the two types of FCSPs were recorded within 
the individual dosages of the FSAR and FVES treatments (Figure 5). The same trend of caspase-3 
activity was observed in a 48 h treatment of melanoma cells with the FSAR and FVES samples (data 
not shown). 
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Figure 5. Activation of caspase-3 after treatment of melanoma B16 cells with different 
dosages of FCSPs from S. henslowianum (FSAR) and F. vesiculosus (FVES). For each 
dosage treatment the caspase-3 activity was assayed on a cytosolic extract of melanoma 
B16 cells with a DEVD-pNA substrate (contact at 37 °C for 1 h) and spectrophotometric 
detection by measuring the absorbance at 405 nm (n = 2). 

 

3. Discussion 

The incidence of melanoma skin cancer has risen dramatically over the past few decades [27]. 
Because of the significant risk and undesirable effects of known cancer therapeutic strategies, many 
studies have evaluated the possible protective effects of bioactive compounds of natural origin. 
Fucose-containing sulfated polysaccharides (FCSPs) derived from naturally grown brown seaweeds by 
aqueous extraction have been shown to exert potentially beneficial bioactivities, including  
immuno-modulatory, anti-inflammatory and anti-tumorigenic effects. In keeping its natural properties, 
FCSPs must be extracted from brown seaweeds by use of a mild processing treatment and a minimal 
number of extraction steps. 

Brown seaweeds constitute a part of the conventional diet in several Asian countries, especially in 
Japan, and in a Japanese cohort study the intake of seaweeds has been associated with lower mortality 
from all chronic diseases including cancer [28]. It has recently been demonstrated that FCSPs from 
brown seaweeds exert growth inhibitory activity on certain cancer cell lines in vitro [13,17,18]. 
Incorporation of brown seaweeds into animal diets has also revealed cancer inhibitory effects with no 
direct lethal consequences [29,30]. Natural FCSPs from brown seaweeds may therefore have significant 
potential as protective agents to control or prevent skin cancer provided that the FCSPs do indeed exert 
cancer-preventive effects.  

In this study, in accordance with previous data [13], we found that unfractionated FCSPs, i.e., 
FSAR and FVES, extracted from the brown seaweeds S. henslowianum and F. vesiculosus, respectively, 
were composed of fucose, galactose, xylose, mannose and glucuronic acid, and showed that the fucose, 
galactose and glucuronic acid contents differed significantly among the two FCSPs products, but that 
their sulfate contents were similar (Table 1). 

We also found both distinct differences and several similarities in the structural make-up of these 
FCPSs by use of FTIR and 1H NMR spectroscopy. The FT-IR analyses thus corroborated the presence 
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of sulfate groups in both the FSAR and the FVES sample (Figure 1). The IR spectra indicated that the 
sulfate substitutions of the FCSPs extracted from the Sargassum sp. (FSAR) were located in the 
equatorial C-2 and/or C-3 positions as depicted by absorption bands at 817 cm 1. This finding was in 
agreement with data reported for fucoidan fractions isolated from Sargassum stenophyllum [4]. 
However, Duarte et al. [4] also reported that two other saccharide fractions from S. stenophyllum had 
an absorption band at 837 cm 1 indicating sulfate groups at the C-4 positions of the structural 
monosaccharides [4]. The spectra of the FCSPs from F. vesiculosus (FVES) displayed an absorption 
band at 838 cm 1 with a small shoulder at ~822 cm 1 indicating sulfate groups at both the C-4 and the 
C-2 position (Figure 1). This finding corresponds to previously reported 1H NMR data of FCSPs from 
F. vesiculosus that have indicated a typical structure of algal fucoidan consisting of  

3-linked 2-mono-O-sulfated L-fucopyranose residues, and/or 3-linked 2,4-di-O-sulfated L-fucopyranose 
residues [2,26]. Small disparities in the IR spectra from different published reports can be due to 
factors such as sample handling and the FCSPs extraction procedure employed. 

The present study also aimed at establishing whether crude FCSPs extracted from Sargassum 
henslowianum C. Agardh (FSAR) contained fucoidan-like structures composed of -3-linked or/and  

-3,4-linked L-fucopyranose residues. Even though signals consistent with the presence of  
-L-fucopyranose entities were recorded (with 1H NMR signals at 5.10 and 5.18 ppm, Figure 2a), the 

probability that the FSAR may contain a cocktail of polysaccharides is likely. Hence, the 1H NMR 
spectra also showed that the FSAR sample contained 3-linked D-galactopyranose residues as indicated 
by an independent signal at 4.61 ppm (Figure 2a). -(1 )3-linked galactopyranose residues are known 
to be a typical structural feature of seaweed polysaccharides, from e.g., Laminaria angustata var. 
longissima, Botryocladia occidentalis [25,31]. However, another possibility might be that the FSAR 
sample was not composed of a mixture of different types of polysaccharides but rather, that the sample 
consisted of one type of a highly complex hetero-polysaccharide as suggested by Duarte et al. [4] for 
the fucoidans from Sargassum stenophyllum. It can safely be said that the 1H NMR spectra of the 
FCSPs samples were complex and overlapping. It is therefore difficult to draw any definite 
conclusions about the detailed structural features and differences among the two FCSPs; the detailed 
elucidations of the definite structural details were also beyond the scope of this present study, but 
clearly deserve further investigation. Nonetheless, the data confirmed that the diversity, i.e., the 
compositional and structural complexity of (potentially bioactive) algal fucose-containing sulfated 
polysaccharides, is much wider than originally believed. 

The biological activities of the FCSPS against skin cancer cells were investigated in vitro, and the 
results revealed that both FSAR and FVES can exert anti-proliferative effects on melanoma B16 cells 
in vitro. The FSAR sample induced more significant reductions of the cell viability of melanoma cells 
than the FVES sample at low dosage levels (Figure 3). At higher dosages, the FSAR treatment still 
induced gradually more loss of cell viability, but the FVES had more potent anti-proliferative effects at 
higher dosages than FSAR which could indicate direct cell toxicity. The bioactivities of these FCSPs 
may be attributable to their distinct structural features, notably the level of sulfation (charge density), 
the distribution (e.g., random versus clustered) and bonding of the sulfate substitutions, as well as other 
specific structural features of the sulfated fucans and the sulfated galactofucan complexes. The sulfate 
groups of FVES were substituted at the C-2 and C-4 position of the fucose substituents, typical for 
fucoidan from F. vesiculosus, and consistent with previously published data indicating that the sulfate 
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of sulfate groups in both the FSAR and the FVES sample (Figure 1). The IR spectra indicated that the 
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henslowianum C. Agardh (FSAR) contained fucoidan-like structures composed of -3-linked or/and  

-3,4-linked L-fucopyranose residues. Even though signals consistent with the presence of  
-L-fucopyranose entities were recorded (with 1H NMR signals at 5.10 and 5.18 ppm, Figure 2a), the 

probability that the FSAR may contain a cocktail of polysaccharides is likely. Hence, the 1H NMR 
spectra also showed that the FSAR sample contained 3-linked D-galactopyranose residues as indicated 
by an independent signal at 4.61 ppm (Figure 2a). -(1 )3-linked galactopyranose residues are known 
to be a typical structural feature of seaweed polysaccharides, from e.g., Laminaria angustata var. 
longissima, Botryocladia occidentalis [25,31]. However, another possibility might be that the FSAR 
sample was not composed of a mixture of different types of polysaccharides but rather, that the sample 
consisted of one type of a highly complex hetero-polysaccharide as suggested by Duarte et al. [4] for 
the fucoidans from Sargassum stenophyllum. It can safely be said that the 1H NMR spectra of the 
FCSPs samples were complex and overlapping. It is therefore difficult to draw any definite 
conclusions about the detailed structural features and differences among the two FCSPs; the detailed 
elucidations of the definite structural details were also beyond the scope of this present study, but 
clearly deserve further investigation. Nonetheless, the data confirmed that the diversity, i.e., the 
compositional and structural complexity of (potentially bioactive) algal fucose-containing sulfated 
polysaccharides, is much wider than originally believed. 

The biological activities of the FCSPS against skin cancer cells were investigated in vitro, and the 
results revealed that both FSAR and FVES can exert anti-proliferative effects on melanoma B16 cells 
in vitro. The FSAR sample induced more significant reductions of the cell viability of melanoma cells 
than the FVES sample at low dosage levels (Figure 3). At higher dosages, the FSAR treatment still 
induced gradually more loss of cell viability, but the FVES had more potent anti-proliferative effects at 
higher dosages than FSAR which could indicate direct cell toxicity. The bioactivities of these FCSPs 
may be attributable to their distinct structural features, notably the level of sulfation (charge density), 
the distribution (e.g., random versus clustered) and bonding of the sulfate substitutions, as well as other 
specific structural features of the sulfated fucans and the sulfated galactofucan complexes. The sulfate 
groups of FVES were substituted at the C-2 and C-4 position of the fucose substituents, typical for 
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groups were substituted at C-2 of 3-linked L-fucopyranose residues in fucoidan from e.g.,  
Fucus evanescens [21]. In contrast, the sulfate substitutions in the FSAR were interpreted to be mainly 
at the C-2 and/or C-3 positions of the monosaccharides according to the IR spectra (Figure 1); the 
observation of C-2 linked sulfate groups agreed with the data mentioned above for fucoidan from 
Fucus spp. [3,21], but is also in agreement with the proposition that the sulfate groups were substituted 
at C-2 on the 3-linked galactopyranose residues [25]. The possible presence of sulfated, 3-linked 
galactan in the structure of FSAR may contribute to the efficacy of FSAR to induce anti-proliferative 
effects as it has been reported that 2-O-sulfated 3-linked galactan is more bioactive than 2-O-sulfated 
3-linked fucans and 3-O-sulfated 4-linked galactan [32–34].  

The findings that the FCSPs induced apoptosis of the melanoma B16 cells in vitro were in 
agreement with recent reports [13,16,35], but the differential apoptotic efficacies, and the dose-response 
effects of differently structured FCSPs (Figure 4) have not been reported earlier. In particular, it is a 
novel finding that significantly different sulfated, polysaccharide structures from brown seaweeds—as 
evaluated in the present work—exert relatively similar apoptotic effects on melanoma cells. The 
results of this work thus indicate that not only the well-studied, classical type of FCSPs having a 
backbone made up of (1 3)-linked -L-fucopyranosyl or of alternating (1 3)- and (1 4)-linked  

-L-fucopyranosyl residues have potential tumor-preventing effecs, but also that the more complex 
sulfated fucose-rich galacto-mannans from Sargassum spp. exert promising cancer-preventive effects. 
The principal objective of this study was to assess whether any structural features of the FCSPs might 
be crucial for bioactivity, and the data suggest that the sulfate substitutions, and not necessarily only 
the fucose-backbone structure itself, confer this decisive bioactivity. It is however important to 
investigate whether other differently structured FCSPs may exert similar growth inhibitory and 
apoptosis inducing effects on cancer cells.  

In this work we noted that both FCSPs activate caspase-3 in a dosage-response fashion (Figure 5). 
These findings affirmed the results reported previously which have shown that FCSPs (“fucoidan”) 
from F. vesiculosus induce apoptosis in human lymphoma HS-Sultan cell lines and in HT-29 and 
HCT116 human colon cancer cells in vitro, and moreover that the exposure of these cells to the  
F. vesiculosus FCSPs appear to activate caspase-3 [17,18]. The F. vesiculosus FCSPs treatment was 
also shown to enhance mitochondrial membrane permeability of human colon cancer cells in vitro, and 
to induce cytochrome c and Smac/Diablo release from the mitochondria [17]. It has also been reported 
that pretreatment of HT-29 and HCT116 colon cancer cells with individual caspase-8 or caspase-9 
inhibitors (Z-IETD-FMK and Z-LEHD-FMK, respectively) prior to fucoidan exposure reduced the 
levels of caspases, including caspase-3 [17]. It has likewise been shown that pretreatment of human 
lymphoma HS Sultan cells with a pan-caspase inhibitor, z-VAD-FMK, reduced fucoidan-induced 
apoptosis [18]. Hence, the available data support the proposition that fucoidan-induced apoptosis 
occurs through caspase activation pathways. The cascade mechanism by which the caspase-activation 
is presumed to take place via the mitochondria-mediated apoptotic pathway is illustrated in Figure 6. 

Loss of plasma membrane is one of the earliest features of apoptosis and Annexin V staining can 
identify apoptosis at an early stage. However this assay does not distinguish between cells that have 
undergone apoptotic death versus those that have died as a result of a necrotic pathway, because in 
either case the dead cells will stain with both Annexin V and 7-AAD. Both early and later apoptosis 
stages were observed by the FACS scanning indicating that the FCSPs had a direct apoptotic effect on 
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investigate whether other differently structured FCSPs may exert similar growth inhibitory and 
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In this work we noted that both FCSPs activate caspase-3 in a dosage-response fashion (Figure 5). 
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apoptosis [18]. Hence, the available data support the proposition that fucoidan-induced apoptosis 
occurs through caspase activation pathways. The cascade mechanism by which the caspase-activation 
is presumed to take place via the mitochondria-mediated apoptotic pathway is illustrated in Figure 6. 

Loss of plasma membrane is one of the earliest features of apoptosis and Annexin V staining can 
identify apoptosis at an early stage. However this assay does not distinguish between cells that have 
undergone apoptotic death versus those that have died as a result of a necrotic pathway, because in 
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the melanoma B16 cells (in vitro) (Figure 4). The direct apoptotic action of the FCSPs was probably 
due to the interaction of the highly negative charge density of the FCSPs with the melanoma B16 cells 
(as a result of the sulfation). Recently, we reported that crude fucoidan from Sargassum sp. could 
trigger apoptosis indirectly by enhancing the activity of natural killer (NK) cells activity in vivo [13]. 
NK cells produce immunologically important cytokines, notably IFN-γ, which can promote the 
activation of T-cells to produce interleukin-2 and -12 that in turn further enhance the NK cell 
activation [14,36].  

Figure 6. Proposed mechanism for inhibition of the proliferation of melanoma cells by 
FCSPs: Activation of macrophages via membrane receptors, which leads to the production 
of cytokines that enhance NK cell activation. Activated NK cells release Granzyme B and 
perforin through granule exocytosis into the space between NK cells and melanoma cells to 
initiate caspase cascades in melanoma cells. Assimilation of Granzyme B by the tumor 
cells is facilitated by perforin. Granzyme B then initiates apoptosis by triggering the release 
of mitochondrial cytochrome c and apoptosome formation leading to caspase-3 activation, 
which in turn translocates the nucleus causing DNA fragmentation—the distinct 
morphological change of cells by apoptosis [36,37].  

 

The apoptosis induced by FCSPS via the activation of caspase-3 was reported previously to be 
mediated through a mitochondrial pathway [17–19,38]. However, it remains to be determined whether 
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differences in FCSPs structures will influence the apoptotic mechanism, including the mitochondrial 
pathway apoptosis cascade. The route of the mitochondrially dependent apoptotic pathway is the 
release of apoptosis-inducing factor (AIF) and cytochrome c from the inner mitochondrial membrane 
into the cytosol. Cytochrome c interacts with Apaf-1 (apoptotic protease activating factor 1) and 
procaspase-9 to form the active apoptosome. The apoptosome then initiates the cleavage of 
procaspase-3, producing active caspase-3, which initiates the execution phase of apoptosis by 
proteolysis of substances whose cleavage commits the cell to apoptosis [39] (Figure 6). The influence 
of the different FCSPs structures on the mitochondrial membrane permeability and electric potential 
requires further study. We hope in the future to investigate the bioactivity and mechanism of FCSPs on 
certain degenerative diseases in vivo and to further elucidate specific molecular targets of FSCPs for 
inhibition of cancer cells. 

4. Experimental Section  

4.1. Chemicals  

Dried S. henslowianum C. Agardh was obtained from Viet Delta Ltd. (Ho Chi Menh, Vietnam) and 
the Fucose-containing sulfated polysaccharides (FCSPs) from the S. henslowianum (FSAR) were 
extracted in our laboratory (see below). Crude fucoidan from F. vesiculosus (FVES) was obtained 
from Sigma-Aldrich (Steinheim, Germany); according to the product description the FVES had been 
prepared from F. vesiculosus via the extraction method described by Black and Dewar [40]. 
Hydrochloric acid (37%), D-glucose and D-xylose were purchased from Merck (Darmstadt, Germany). 
Trifluoracetic acid (99%, TFA), trichloroacetic acid (99%, TCA), CaCl2, Na2SO4, BaCl2, arabinose, 
rhamnose, D-galactose and L-fucose were from Sigma–Aldrich Co. (Steinheim, Germany). Agarose D-2 
was obtained from Hispanagar (Burgos, Spain). Caspase-3 colorimetric assay kit was obtained from 
Biovision, Inc. (Mountain View, CA. USA). Minimal essential medium eagle (MEM-eagle) cell 
culture media was purchased from Sigma–Aldrich Co. (Steinheim, Germany); foetal bovine serum 
(FBS) was from Flow Laboratories (North Ryde, N.S.W., Australia); streptomycin–penicillin and 
Trypan Blue were from Gibco (Canada). Cell Proliferation Kit 1 was obtained from Roche Applied 
Science, Germany. The PE Annexin V Apoptosis Detection Kit 1 was obtained from BD Biosciences 
(Franklin Lakes, NJ, USA). All chemicals used were analytical grade. 

4.2. Extraction of FCSPs from S. henslowianum C. Agardh  

The Sargassum FCSP product (FSAR) used was extracted from S. henslowianum C. Agardh by use 
of an optimized single-step extraction procedure described previously [6]. Briefly, the dried  
S. henslowianum seaweed was ground and sieved to pass through a 500 μm sieve and 100 g of dried 
ground seaweed was extracted in 2 L of 0.03 M HCl with continuous stirring at 200 rpm for 4 h at  
90 °C water bath (Julabo, Germany). The suspended seaweed was filtered, and the extract was 
precipitated using 60% ethanol, the precipitate collected after centrifugation at 10,600 rpm for 10 min 
(Sigma Laboratory Centrifuge 4K15, VWR, Denmark), and the resulting pellet was freeze dried. This 
freeze dried pellet constituted the fucose-containing sulfated polysaccharides (FSAR).  

2

100

8
PhD Thesis 2011

Mar. Drugs 2011, 9                                        
 

 

2616

differences in FCSPs structures will influence the apoptotic mechanism, including the mitochondrial 
pathway apoptosis cascade. The route of the mitochondrially dependent apoptotic pathway is the 
release of apoptosis-inducing factor (AIF) and cytochrome c from the inner mitochondrial membrane 
into the cytosol. Cytochrome c interacts with Apaf-1 (apoptotic protease activating factor 1) and 
procaspase-9 to form the active apoptosome. The apoptosome then initiates the cleavage of 
procaspase-3, producing active caspase-3, which initiates the execution phase of apoptosis by 
proteolysis of substances whose cleavage commits the cell to apoptosis [39] (Figure 6). The influence 
of the different FCSPs structures on the mitochondrial membrane permeability and electric potential 
requires further study. We hope in the future to investigate the bioactivity and mechanism of FCSPs on 
certain degenerative diseases in vivo and to further elucidate specific molecular targets of FSCPs for 
inhibition of cancer cells. 

4. Experimental Section  

4.1. Chemicals  

Dried S. henslowianum C. Agardh was obtained from Viet Delta Ltd. (Ho Chi Menh, Vietnam) and 
the Fucose-containing sulfated polysaccharides (FCSPs) from the S. henslowianum (FSAR) were 
extracted in our laboratory (see below). Crude fucoidan from F. vesiculosus (FVES) was obtained 
from Sigma-Aldrich (Steinheim, Germany); according to the product description the FVES had been 
prepared from F. vesiculosus via the extraction method described by Black and Dewar [40]. 
Hydrochloric acid (37%), D-glucose and D-xylose were purchased from Merck (Darmstadt, Germany). 
Trifluoracetic acid (99%, TFA), trichloroacetic acid (99%, TCA), CaCl2, Na2SO4, BaCl2, arabinose, 
rhamnose, D-galactose and L-fucose were from Sigma–Aldrich Co. (Steinheim, Germany). Agarose D-2 
was obtained from Hispanagar (Burgos, Spain). Caspase-3 colorimetric assay kit was obtained from 
Biovision, Inc. (Mountain View, CA. USA). Minimal essential medium eagle (MEM-eagle) cell 
culture media was purchased from Sigma–Aldrich Co. (Steinheim, Germany); foetal bovine serum 
(FBS) was from Flow Laboratories (North Ryde, N.S.W., Australia); streptomycin–penicillin and 
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4.3. Acid Hydrolysis and FCSPs Composition Analysis 

The freeze dried FSAR and FVES samples (20 mg) were hydrolyzed separately in 2 M TFA (final 
concentration) at 121 °C for 2 h, then the hydrolyzed mixture were freeze dried at 57 °C (Heto Lyolab 
3000, England). Each dried powder sample was resolubilized in doubly distilled water and centrifuged 
at 10,000 rpm for 10 min to collect the supernatant (Sigma Laboratory Centrifuge 4K15, VWR, 
Denmark). Each supernatant was filtered through a 0.2 μm syringe tip filter (SUN-Sri, Rockwood, TN) 
prior to injection into the HPAEC-PAD for monosaccharide analysis [41]. Analysis of sulfate content 
was done according to the method described by Jackson and McCandless [42].  

4.4. 1H NMR and FTIR Spectroscopy 

The 1H NMR spectra were obtained using an INOVA 600 NMR spectrometer (Agilent Technologies 
Japan, Ltd., Tokyo Japan) equipped with a 1H[15N-31P] pulse field gradient indirect-detecting probe. 
Standard pulse sequences were used in all operations. The 1H chemical shift ( H) was referenced to 
HOD ( H 4.76 ppm, 2H2O). The 1H NMR spectrum was assigned through the 1H–1H decoupling 
technique. An NMR spectrum of L-fucose was utilized as a reference for chemical shift assignment. 
The lyophilized FCSPs powders were dissolved in deuterium oxide (2H2O) and evaporated to exchange 
the unstable 1H with 2H. The evaporation and dissolution step was repeated five times, and the samples 
(10 mg) were finally dissolved in 0.75 mL 2H2O and then subjected to NMR spectroscopy. The IR 
spectra were obtained using a Spectrum One FT-IR spectrometer (Perkin Elmer, Waltham, MA, USA) 
equipped with universal attenuated total reflectance (UATR) accessories. Analysis of each of the 
FSAR and FVES powders, ~1 mg of each, was done using diffuse reflectance infrared transform 
spectroscopy (DRIFTS) and the spectrum was evaluated by Perkin Elmer Spectrum software version 5 
(Perkin Elmer, Waltham, MA, USA).  

4.5. Cell Culture and Anti-Proliferative Assay  

Melanoma B16 cells (MC) were grown in MEM eagle medium supplemented with 10% (v/v) heat 
inactivated FBS, 1% (w/v) streptomycin–penicillin and 1% (v/v) of 200 mM L-glutamine at 37 °C 
under 5% CO2. Monolayer cultivation was carried out by adding 100 μL of the cell-MEM-FBS mixture 
into separate wells in 96-flat well plates at a density of 6 × 104 cells per well followed by incubation 
for 24 h in 5% CO2 at 37 °C. For the anti-proliferation assay the medium was removed after the 24 h of 
monolayer cell cultivation and replaced with 100 μL of MEM medium containing 2% FBS and 
varying concentrations (0.1–1.0 mg/mL) of the crude FCSPs, i.e., FSAR and FVES, respectively, and 
the mixtures were then incubated for 24 h. Quantification of cell proliferation was carried out using a 
tetrazolium salt (MTT (3-(4,5-dimethyl-thiazolyl-2)-2,5-diphenyltetrazolium bromide)) based 
colorimetric assay following the protocol supplied with the Cell Proliferation Kit 1 (Roche Applied 
Science, Germany). Briefly, 20 μL MTT solution (5 mg/mL) was added to the cell cultures after the  
24 h of incubation with the FCSPs, and the cell cultures were then re-incubated for 4 h. Finally,  
100 μL of stabilization solution was added to each well and the plates were incubated overnight at  
37 °C under 5% CO2. Absorbance was measured using an Elisa reader at 550–690 nm. 
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4.6. Cell Culture and Caspase-3 Assay 

Melanoma B16 cells (MC) were grown in MEM eagle culture medium supplemented with  
10% (v/v) heat inactivated FBS, 1% (w/v) streptomycin–penicillin and 1% (v/v) of 200 mM  
L-glutamine maintained at 37 °C under 5% CO2. For the caspase-3 assay, monolayer cultivation was 
carried out in a petri dish (60 × 15 mm) by adding 5 mL culture medium containing melanoma cells at 
a density of 1 × 105 per mL and varying concentrations (0.2, 0.4 and 0.8 mg/mL) of the FSAR and 
FVES, respectively. The mixtures were then incubated for 24 and 48 h in 5% CO2 at 37 °C. The 
caspase-3 assay was performed according to the protocol supplied with the assay kit (Biovision Inc., 
Mountain View, CA, USA) used to assay the activity of caspases that recognize the amino acid 
sequence DEVD. The assay was based on spectrophotometric detection of the chromophore  
p-nitroaniline (pNA) after cleavage from the labeled substrate DEVD-pNA. Concisely, the melanoma 
B16 cells exposed to FSAR and FVES, respectively, were harvested and resuspended in 50 μL of cell 
lysis buffer and incubated on ice for 10 min. and the mixture centrifuged for 1 min (14,000 × g, 4 °C). 
Each supernatant was then transferred to a fresh tube, and reaction buffer (50 μL) and 4 mM DEVD-pNA 
substrate (5 μL) were added, and this reaction mixture was then incubated at 37 °C for 1 h. Absorbance 
of pNA light emission was quantified using a microtiter plate reader at 405 nm. 

4.7. Apoptosis Assay by Fluorescence-Activated Cell Sorting (FACS) 

After 24 h of monolayer cultivation of melanoma B16 cells with 0.2 mg/mL of FSAR or FVES, and 
no FCSPs addition as control, the culture medium was removed, and the cells harvested by addition of 
1 mL Trypsin-EDTA. The harvested cells were washed twice with 0.1 M PBS and then resuspended in 
binding buffer according to the protocol for the Annexin V Apoptosis Detection Kit I (BD Biosciences, 
Franklin Lakes, NJ, USA). 100 μL of this solution at 1 × 105 cells was transferred to a culture tube and 
5 μL of Annexin V and 5 μL of 7-amino-actinomycin (7-ADD) were added, and the mixture incubated 
at room temperature for 25 min. Then, 400 L of binding buffer was added and the extent of apoptosis 
and staining pattern of the cells were tracked by flow cytometric analysis on a FACScan instrument 
(Becton Dickinson). 

5. Conclusions  

The tumor inhibitory bioactivity of fucose-containing sulfated polysaccharides (FCSPs) from 
Sargassum henslowianum C. Agardh (FSAR) and F. vesiculosus (FVES) was demonstrated through 
evaluation of inhibition of melanoma cell proliferation, activation of caspase-3, and apoptosis of 
melanoma B-16 cells in vitro. The structural traits of the FCSPs products were shown to be complex 
and to differ among the two FCSPs making it delicate to draw definite conclusions about structural 
effects and mechanisms. However, since the sulfate levels were relatively high as well as relatively 
similar among the two FCSPs, we propose that the bioactivity effects of the FSAR and FVES might be 
attributable to the sulfation (charge density), positioning and bonding of the sulfate substitutions in the 
FCSPs. The work clearly indicates that unfractionated fucose-containing sulfated polysaccharides from 
both Sargassum henslowianum C. Agardh and Fucus vesiculosus may have therapeutic potential as 
skin-cancer preventive agents.  
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5 Seaweed nutrient assimilation and growth response

Industrial sewage, fish farm effluents, and agricultural runoff are the major causes of

eutrophication of aquatic systems. Eutrophication has adverse environmental effects including

hypoxia; on the other hand, some aquatic organisms may experience increased population,

promoted growth, and the production of algae, including fast growing seaweed. The use of large

scale seaweed populations is thought to provide new and cost effective technologies for

sequestering and preventing the distribution of waterborne pollutants. Seaweeds can remove

several pollutants through assimilation, bioaccumulation, and detoxification. Integration of

seaweed cultivation with fish aquaculture has been proposed to reduce the nutrient burden of fish

effluents (Chopin et al., 2001). Ulva sp. has been considered the integrated biofilter system and

has shown reasonably high efficiency in the removal of waste inorganic nutrients (Chung et al.,

2002). Seaweed accumulates a wide range of heavy metals regardless of radioactivity status. In

highly polluted seawaters, bioaccumulation can be as high as 1 g per dry gram of seaweed tissue,

while approximately 5–100 mg/g in normal seawaters (Burdin and Bird, 1994; Grüven et al., 1993).

Opportunistic green macroalgae such as U. lactuca can rapidly consume the available inorganic

nutrients at a rate that depend on the availability of ammonium and nitrate (Pedersen and Borum,

1996) and, hence, influence their differential growth responses. U. lactuca has a high growth

potential doubling time of approximately 2 days with a production potential of 45 T (total solids)

ha 1 yr 1 (Christensen and Sand Jensen, 1990; Bruhn et al., 2011). Nitrogen enrichment studies have

shown uptake rates and growth responses that were more in favor of ammonium than nitrate

since they require energy demanding nitrate reductions (Pedersen and Borum, 1996; Solomonson

and Barber, 1990). U. lactuca was known to have high affinity for dissolved inorganic carbon (DIC).

Rapid photosynthesis in dense floating mats leads to DIC depletion and increases pH and oxygen

levels; as a consequence, these changes may all inhibit carbon fixation and, thus, reduce growth.

Photosynthetic experiments have shown that the growth response of Ulva species was weakly

affected by oxygen levels, whereas pH approaching 10 was highly inhibitory (Christensen and

Sand Jensen, 1990).
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5.1 Evaluation of growth and assimilation
Quantitative determination and accurate measurement of productivity responses are essential

aspects for understanding the primary production and the response to different transient

nutrients. The common method and technique to determine seaweed growths in culture systems

are gravimetric, and direct contact to the algal tissue when removing of surface moisture (Msuya

et al., 2008). Measurement of the surface area of circular disks from algal thalli has been used in

some growth monitoring studies (Sand Jensen, 1988; Christensen and Sand Jensen, 1990). The

traditional method for determining uptake rates has been to measure changes in nitrogen

concentration in the incubation medium over time (Harlin and Wheeler, 1985). More recently,

incorporation of the nitrogen stable isotope 15N into algal tissue has been used to calculate uptake

rates (Naldi and Wheeler, 2002). Specific growth rates were mostly expressed in percentage day 1,

while uptake rates were expressed as μM N g Dw 1 day 1. The uptake rate was calculated using the

changes in ammonium and nitrate concentration during each sampling interval according to V= [(S0

× vol0) (Si voli)]/(t × B), where S0 is the ammonium concentration, vol0 is the water volume at the

beginning of a sampling interval, Si is the ammonium concentration, voli is the water volume at the

end of the sampling interval, t is the time elapsed between 2 successive samplings, and B is the

amount of biomass DW (Pedersen, 1994). A specific growth rate (μ) as a percent increase in disc

area expansion was calculated according to μ = 100 × Ln (Ai/A0)/t, where A0 is the initial disc area

and Ai is the disc area at time t (DeBoer et al., 1978).

5.2 Growth response of U. lactuca
This section is an extended elucidation of Paper 1: differential growth response of U. lactuca to

ammonium and nitrate assimilation.

5.2.1 Relevance
Increased fluctuating levels of nutrients in the estuarine ecosystem stimulate the abundance and

production of fast growing algae like the ephemeral macroalgae U. lactuca (Twilley et al., 1985).

The abundant growth of ephemeral macroalgae is so invasive that it could lead to oxygen

depletion and shading among other marine habitats. Enormous quantities of this seaweed create

environmental concerns (e.g., microbial waste and rancid odors) when cast away on the beach. U.

lactuca a common ephemeral macroalga from the tropical to polar climates that has been

harvested from natural populations or cultivated in land based systems and as part of integrated

multi trophic aquaculture systems. Nevertheless, most of today’s U. lactuca biomass is unused,
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dumped or left stranded to decompose in the shore creating waste problem (Morand et al., 2006).

Hence, utilization of U. lactuca is of ardent importance.

Production of alternative biofuels from non starch biomass has directed attention to the utilization

of U. lactuca as primary substrates for anaerobic digestion to biogas. Moreover, Ulva species are

rich in rare cell wall polysaccharides and vitamins A, B2, B12, and C, and they exert antioxidant,

antimicrobial, and antiviral activities (Ivanova et al., 1993; Abd El Baky et al., 2008; Ortiz et al.,

2006). For this reason, cultivation of U. lactuca for either crude biomass production or for the

production of biologically active compounds is currently receiving increased attention (Hiraoka and

Oka, 2008). Nonetheless, a major prerequisite for the successful exploitation of cultivated U.

lactuca for commercial applications is that both the growth rate and the yield are optimized. This

in turn requires both an understanding of the influence of different nutrients on the growth

response and a precise methodology to measure the growth.

5.2.2 Hypotheses and objectives
The utilization of ammonium and nitrate by seaweed varies among species, and the assimilation of

these nutrients influences the growth. It has been observed that the presence of ammonium

inhibits nitrate uptake (Thomas and Harrison, 1987). These interactions, however, were only

discussed in relation to nitrogen uptake rates and the understanding of the influence of these

interactions on seaweed growth responses, including those of U. lactuca, remains limited. The

common method to determine growth rate and biomass yield in seaweed culture systems involves

determination of the initial and final weight of seaweed samples. This requires removal of surface

moisture either by wiping with a filter cloth or by centrifugation. The extent of remaining surface

moisture induces varying degrees of measurement inaccuracy (Msuya and Neori, 2008;

Vandermeulen and Gordin, 1990). In continuous culture monitoring, the harvested seaweeds are

dehydrated prior to weighing, and then a stock strain is taken and used as the initial inoculum

material for further culture. However, seaweed needs to recuperate from the harsh dehydration

hydration treatment before it can resume growth. Therefore, the interruption of cellular growth is

almost unavoidable (Phillips et al., 2002).

Therefore, the objective of this work was to evaluate the growth response of U. lactuca cultured in

artificial seawater exposed to different sources and levels of nitrogen (NH4
+ and NO3 ) using a more

accurate growth monitoring technique. To achieve the precise evaluation, a photo scanning

technology was used to obtain digital images of the sizes of the frond discs, and in this way
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examined the growth kinetics by measuring the surface area expansion of the seaweed discs using

digital image processing software.

5.2.3 Result highlights
The growth response of U. lactuca exposed to different sources of nitrogen (NH4

+, NO3 , and the

combination NH4NO3) was examined using photo scanning technology. Differential increases of

the surface area of U. lactuca discs with time in response to different N nutrient enrichments were

expected. The NH4Cl and NaNO3 rich media (50 μM of N) accelerated U. lactuca growth to a

maximum specific growth rate of 16.4 ± 0.18% d 1 and 9.4 ± 0.72% d 1, respectively. The highest

obtained biomass production was 22.6 ± 0.24 mg DW m 2 d 1. The U. lactuca growth response

favored ammonium as the nitrogen source, and its presence apparently discriminated nitrate

uptake by U. lactuca when exposed to NH4NO3.

Apart from showing a significant differential growth response of U. lactuca to different nitrogen

sources, the work exhibits the applicability of a photo scanning approach for acquiring precise

quantitative growth data for U. lactuca as exemplified by assessment of the growth response to

two different N sources.

5.2.4 Consideration and justification
The exploitation of land based resources for bioenergy production created global concern for its

impact on the food production, availability, and price of commodities. Meanwhile, the utilization

of marine based resources, notably non commercially important seaweed, is gaining attention.

This leads macroalgae like U. lactuca to be considered for the production of bioenergy because it

exhibits production potential for either land based culture or off shore cultivation (Bruhn et al.,

2011). Furthermore, other potential applications of U. lactuca biomass (e.g., source of functional

and bioactive compounds) must be established to add more value to the seaweed biomass.

Nevertheless, the growth rate, yields, and culture condition must primarily be optimized to

successfully exploit U. lactuca for commercial applications. Therefore, understanding the effect of

different nutrients on the growth response is critical, and it requires precise methodology to

measure the growth with the purpose of effectively evaluating nutrient assimilation.

Over the growth experiment duration, an artificial seawater medium was used without renewal,

which may have influenced the growth kinetics of the algal frond. However, the results indicate

that U. lactuca can grow even without renewing the artificial seawater medium for a certain

period. The maximum growth rate was close to that of a published study (Neori et al., 1991),
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where they used fresh seawater medium and extensive medium renewal. However, the amount of

biomass accumulated during this experiment was relatively low compared to those of other earlier

works (Neori et al., 1991). This variation was probably attributed to different monitoring

techniques and culture conditions, such as water flow velocity, temperature, density, and

illumination intensity.
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Abstract Controlled cultivation of marine macroalgal
biomass such as Ulva species, notably Ulva lactuca, is
currently studied for production of biofuels or functional
food ingredients. In a eutrophic environment, this macro-
phyte is exposed to varying types of nutrient supply,
including different and fluctuating levels of nitrogen
sources. Our understanding of the influences of this varying
condition on the uptake and growth responses of U. lactuca
is limited. In this present work, we examined the growth
response of U. lactuca exposed to different sources of
nitrogen (NH4

+; NO3
−; and the combination NH4NO3) by

using photo-scanning technology for monitoring the growth
kinetics of U. lactuca. The images revealed differential
increases of the surface area of U. lactuca disks with time
in response to different N-nutrient enrichments. The results
showed a favorable growth response to ammonium as the
nitrogen source. The NH4Cl and NaNO3 rich media
(50 μM of N) accelerated U. lactuca growth to a maximum
specific growth rate of 16.4±0.18% day−1 and 9.4±0.72%
day−1, respectively. The highest biomass production rate
obtained was 22.5±0.24 mg DW m−2·day−1. The presence
of ammonium apparently discriminated the nitrate uptake
by U. lactuca when exposed to NH4NO3. Apart from
showing the significant differential growth response of U.
lactuca to different nitrogen sources, the work exhibits the
applicability of a photo-scanning approach for acquiring
precise quantitative growth data for U. lactuca as exempli-
fied by assessment of the growth response to two different
N-sources.

Keywords Ammonium . Nitrate . Growth monitoring .

Seaweed cultivation .Ulva . Nutrient uptake

Introduction

Ulva lactuca is an important macroalga in marine ecology.
Its fronds are soft, sheet-like structures that are two cells
thick, and this morphology is the reason for its common
name “sea lettuce”. Recently, production of alternative fuels
from non-starch biomass has also directed the attention to
utilization of marine algae, including seaweed or macroalgae,
as sources of biomass for biofuels production (Knauf and
Moniruzzaman 2004). The rapid growth of U. lactuca is
attributed to its high photosynthetic rates and high C and N-
nutrient uptake capacity (Magnusson et al. 1996; Naldi and
Wheeler 2002; Sand-Jensen 1988). Seaweed has also been
proposed as a biomass source for production of functional
food ingredients, pharmaceuticals, and cosmetics (Bodin-
Dubigeon et al. 1997; Cumashi et al. 2007; Bixler 1996; De
Roeck-Holtzhauer 1991). Ulva species are particularly rich
in rare cell-wall polysaccharides and have been proposed as
being an important source of dietary fiber, mainly soluble
fiber (Lahaye 1991; Lahaye and Axelos 1993). Ulva lactuca
is also a good source of Vitamin A, B2, B12, and C and is
rich in γ-tocopherol and U. lactuca extracts have been
shown to exert antioxidant, anti-microbial, and anti-viral
activities in various in vitro assays (Ivanova et al. 1994; Abd
El-Baky et al. 2008; Ortiz et al. 2006).

It has been shown previously, that U. lactuca is suitable
for propagation under controlled conditions (Vermaat and
Sand-Jensen 1987; Lee 2000; Sato et al. 2006a, b). For this
reason, cultivation of U. lactuca in tanks for either crude
biomass production or for production of biologically active
compounds is currently receiving increased attention
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(Hiraoka and Oka 2008). However, a major prerequisite for
successful exploitation of cultivated U. lactuca for com-
mercial applications is that the growth rate and yields are
optimized. This in turn requires both an understanding of
the influence of different nutrients on the growth response
and a precise methodology to measure the growth.

Ammonium and nitrate are the major nitrogen sources of
seaweeds in the natural habitat and are used as nourishment
for seaweed in integrated multi-trophic aquaculture systems
(Copertino et al. 2008). Several experiments have been
conducted for several seaweed species on the interaction of
ammonium and nitrate uptake. The utilization of ammoni-
um and nitrate by seaweed varies among species and
assimilation of these nutrients influences the growth. It has
been observed that the presence of ammonium inhibits the
nitrate uptake; thus ammonium uptake dominated nitrate
uptake when exposed to a combination of NH4

+ and NO3
−

(Thomas and Harrison 1987). However, these interactions
were discussed only in relation to nitrogen uptake rates and
the understanding of the influence of these interactions on
seaweed growth responses, including growth responses of
U. lactuca, is still limited. The common method to
determine growth rate and biomass yield in seaweed culture
systems involves determination of the initial and final
weight of seaweed samples. This requires removal of
surface moisture either by wiping with filter cloth or by
centrifugation. The extent of remaining surface moisture
induces varying degrees of inaccuracy to the measurement
(Msuya and Neori 2008; Vandermeulen and Gordin 1990).

In this present work, the objective is to evaluate the
growth response of U. lactuca exposed to different sources
of nitrogen (NH4

+ and NO3
−). We cultured U. lactuca frond

disks for 10 days in small containers with artificial seawater
(ASW) enriched with equimolar levels of nitrogen (50 μM)
of two different N-nutrients, NH4Cl and NaNO3, to assess
the growth responses. Another experiment was conducted
in the same set-up for 4 days to evaluate the ammonium
and nitrate uptake rates when U. lactuca was exposed to
50 μM NH4NO3. We used photo-scanning to obtain digital
images of the sizes of the frond disks, and in this way
examined the growth kinetics by measuring the surface area
expansion of the seaweed disks daily using commercially
available digital image processing software.

Materials and methods

The chemicals used for nitrogen source were NH4Cl (99.5%),
NH4NO3 (99.5%), and NaNO3 (99.0%), purchased from
Sigma-Aldrich, (Bornem, Belgium). Commercial marine sea
salt (Sera Marine Basic Salt—Heinsberg, Germany) was used
to prepare artificial seawater (ASW) principally as described
by Sato et al. (2006a, b). For nitrate determination, a low-

range lab nitrate test kit supplied with nitrate reductase was
used (The Nitrate Elimination Co., Inc., Michigan).

Aquarium culture: condition and set-up

Fresh Ulva lactuca fronds were obtained from the National
Environmental Research Institute of Denmark (DMI),
University of Aarhus (Silkeborg, Denmark). The original
seaweed material was cultured in ponds with natural
seawater. Upon arrival to our laboratory, the seaweed
fronds were transferred into a 2 L beaker containing 1.5 L
ASW with a 33 g L−1 concentration of marine sea salt to
habituate. The ASW medium had a pH of 8.35 and 21.5 ppt
salinity measured using a handheld conductivity meter
(Con 11, Eutech Instruments—Singapore). The fronds were
acclimatized in the beaker with aeration for 5 days prior to
transfer into a 112-L aquarium tank for long term
cultivation. The water at ambient temperature in the 112-L
aquarium was led directly to a 45-L reservoir tank and the
water was then pumped back to the aquarium at a rate of
approximately 1,700 L h−1. The reservoir was aerated and
the water (ASW) was renewed weekly.

Flask culture set-up

The growth monitoring of the U. lactuca disks during
differential cultivation was carried out using a perforated
flask (500 mL) positioned inside a rectangular canister that
served as a catchment basin. The culture flask was perforated
at a certain height to allow the medium to overflow after
reaching the 300 mL level into the catchment basin. The
medium was then re-circulated at a speed of 1.5 L h−1 using
a peristaltic pump. A small magnetic bar was placed at the
bottom of the flask to mix the water twice daily and to
ensure that the nutrients were properly distributed. To
prevent the contact of the magnetic bar and the U. lactuca
disks, a 5-mm mesh was fitted inside in the middle of the
flask. A schematic diagram is shown in Fig. 1. The media in
the individual flasks were enriched with 50 μM NH4Cl,
50 μM NaNO3 and ASW as control, respectively. A 5-mL
water sample was collected daily to assess the ammonium
and nitrate uptake of U. lactuca. From this set-up, two
separate cultivation experiments were conducted, a 10-day
cultivation period was used for growth monitoring while a 4-
day cultivation was used to evaluate the nitrogen uptake
response of U. lactuca to the interaction of equimolar
ammonium and nitrate supply (50 μM NH4NO3).

Nitrogen uptake measurement

Ammonium concentration was determined with the
endophenol-blue method (Koroleff 1970). Nitrate measure-
ment was conducted using low-range lab nitrate test kit
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supplied with nitrate reductase as described by Campbell et
al. (2004). The uptake rate was calculated from changes in
ammonium and nitrate concentration during each sampling
interval according to V ¼ S0 � vol0ð Þ � Si � volið Þ½ �=
t � Bð Þ where S0 is the ammonium concentration, vol0 is
the water volume at the beginning of a sampling interval; Si
is the ammonium concentration, voli is the water volume at
the end of the sampling interval, t is the time elapsed
between two successive samplings and B is the amount of
biomass dry weight (DW) (Pedersen 1994). Throughout the
experiment the U. lactuca disks were illuminated with a
parallel 2X18W Lumilux Cool White light (Osram—
Germany) from a fluorescent lamp which was placed
12 cm above the top of the culture flask, light and dark
ratio was 14:10 hours. Illumination at a continuous
irradiance of 56 μmol photons m−2 s−1 was measured using
a handheld Field Scout quantum light meter (Spectrum
Technologies, Inc., USA). The size expansion of each
seaweed disk was monitored daily using scanning and
image processing software as described below.

Scanning, imaging, and growth measurements

Fresh and healthy fronds were collected from the aquarium,
and then an approximately 9 mm diameter sharpened pipette
tube was punched randomly into differentUlva fronds to form
a disk. All disks were scanned and the area was measured
prior to inoculation. Three U. lactuca disks were inoculated
in the flask with ASW medium. Before scanning, all disks
were carefully transferred into a petri dish containing a small
volume of the medium to prevent the seaweed disk from
drying. Microscope glass slides were used to cover the
seaweed disk to ensure that the entire surface was plane, and

then the disks were scanned using a CanoScan 5600F
(Canon) at 300 dpi resolution equipped with MP Navigator
Ex software (Canon) for digital imaging. The images were
calibrated by cropping them at 200×200 pixels using
Photoscape v3.3 image editor (Mooii—Seoul, Korea) prior
to disk area measurement. Image-Pro Plus software (Media
Cybernetics, Inc., USA) was calibrated appropriately for
image analysis and measurement of the size/area of the
image in mm2. This was done by scanning a ruler at 300 dpi,
and then the image was cropped at 200×200 pixels. A length
of 1 mm was measured via a ruler image, saved, and then
used as the standard for disk image calibration.

Disk area growth, specific growth rates, and biomass yield

After measuring the initial area of all the disks, three disks
with known area were randomly collected, weighed and
subjected to drying in a 105°C oven for 4 h and then the
disk dry weight was obtained. The measured dry weight
(DW) was used to convert the disk area into dry weight,
resulting in a conversion factor of 0.027 mg DW mm−2.
The equivalent seaweed DW of the disk was used to
calculate the biomass produced as the sum of the DW of all
the disks (mg) on the culture flask per culture area of the
flask (0.065 m2) per unit time (day) expressed in units of
mg m−2 day−1. The disk area growth was calculated
according to this equation AG=[(Ai−A0)/(Ac× t)] where AG

is the disk area growth (mm2 m−2 day−1), Ai is the disk area
(mm2) at the end of sampling interval, A0 is the disk area
(mm2) at the beginning of the sampling interval, Ac is the
area of the culture flask (0.065 m2) and t is the time (day)
elapsed between two successive samplings. Specific growth
rate (μ) as percent increase in disk areal expansion was

Fig. 1 Schematic set-up of a
laboratory seaweed cultivation
system utilized for the growth
monitoring of U. lactuca
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calculated according to μ=100·Ln (Ai/A0)/t where A0 is the
initial disk area and Ai is the disk area at time t (DeBoer et
al. 1978). Statistical analysis was performed using Proc
GLM and Proc Mixed of SAS Statistical Software version
9.1 (SAS Institute, Inc., USA) and graphs were made using
Sigma Plot 10.0 (Systat Software Inc., USA).

Results

Cultivation, imaging, and growth measurement

Disks prepared from U. lactuca fronds grew steadily and
reproducibly. The differences in U. lactuca disk area
growth induced by the different N-enrichment (no N-
addition, 50 μM NH4Cl or 50 μM NaNO3) was monitored
daily throughout the cultivation period. Images of the disk
fronds presented in Fig. 2 exhibit the increase in the
surface area of U. lactuca disks over time with the different
nitrogen sources. The fronds that were enriched with
NH4Cl and NaNO3 produced an olive-green color, which
may be a result of the accumulation of chlorophyll in the
fronds. The color was slightly more yellow-green but also
denser in the case of ASW-grown fronds (Fig. 2). The
color differences may result from difference of nutrients.
The ammonium-enriched medium induced a significantly
higher increase (P<0.05) in surface area expansion
(148.8 mm m−2 day−1) than the nitrate-enriched medium
(98.6 mm m−2 day−1) , while the disks incubated in the
ASW without N-enrichment grew only slowly with no
significant area expansion during the 10 days of cultivation
(Fig. 2). Nitrate availability in the medium contributed
little to the growth but nevertheless the disk area expansion
after 10 days was significantly higher (P<0.05) with the
nitrate-enriched medium than that obtained with ASW
only.

Biomass yield and specific growth rate

Both ammonium- and nitrate enrichment elicited a normal,
hyperbolic growth response as depicted in the accumulation of
biomass (Fig. 3). On the NH4

+-enriched medium the biomass
yield showed a steep increase during days 2–5 whereas the
yield varied much less during the first days for the NO3

−

growth. The difference in the disk growth in response to the
type of N-source was noticed from the fifth day of cultivation
onward (Fig. 3). The growth increment (specific growth rate)
stalled after about 8 days of cultivation, presumably as a
result of nitrogen limitation in the media. The specific growth
rate increased with substantial amount of NH4 and stabilized
after the nutrient was depleted. The maximum specific
growth rate of U. lactuca cultured on NH4

+ was 16.4±
0.18% day−1 and 9.4±0.72% day−1 with NO3

− during 10 days
of cultivation. The growth kinetics on nitrate illustrated a
modest growth response as exemplified by the biomass yield
of U. lactuca on the nitrate nutrient source relative to that on
the NH4

+ (Fig. 3). Ammonium increased the biomass yield
significantly (P<0.05) relative to the NO3

− nutrient. The
maximum biomass yield was thus 22.5±0.24 mg m−2 day−1

by ammonium and only 13.0±0.40 mg m−2 day−1 by nitrate
enrichment.

Nitrogen uptake and interaction

Further analysis of the nutrient uptake response of U.
lactuca in relation to different nitrogen source showed that
ammonium was favorably assimilated corresponding to a
high uptake rate of ammonium (Fig. 4a, b). Both
ammonium and nitrate were assimilated as indicated by
the decrease of concentration in the medium (Fig. 4a).
Significant differences (P<0.05) were observed for both the
concentration and uptake rate of ammonium and nitrate
over time (Fig. 4a, b). The abrupt assimilation of
ammonium with high uptake rate from 0 to 1 day of
cultivation was probably due to starvation of the seaweed
frond. Nitrate in the medium was slowly assimilated by U.
lactuca until an increased uptake rate was observed
between 3 and 4 days of cultivation (Fig. 4b). The U.
lactuca disks were also exposed to 50 μM NH4NO3 in
order to evaluate the uptake response of Ulva to the
combination of the two nitrogen sources. This combination
of ammonium and nitrate in the medium demonstrated the
interactive response of U. lactuca to these nutrients
(Fig. 4c). This interaction showed that the simultaneous
presence of ammonium and nitrate resulted in an NH4

+

uptake rate which was similar to that of the NH4
+ uptake

rate, when exposed to ammonium alone, but a relatively
higher uptake rate of NO3

− as compared to when exposed
to NaNO3 alone (compare Fig. 4 b and c). However, the
ammonium uptake rate was still significantly higher than

Fig. 2 The growth difference of the surface area in the images a Day-
1 and, b Day-10 culture in artificial sea water (ASW) enriched with
different ammonium and nitrate nutrients. Images were generated after
photo-scanning using CanoScan 5600F scanner at 300 dpi resolution
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the nitrate uptake rate (Fig. 4c). The data indicate that the
nature of assimilation of nitrogen by U. lactuca is selective.

Discussion

Our understanding of the growth kinetics of U. lactuca is
highly dependent on the precise monitoring of its growth and
measurement of the uptake response to different nutrient
sources. This includes minimizing the inaccuracy during
growth measurement of seaweed fronds. The U. lactuca
fronds are only two cell layers thick making them vulnerable
to damage. By cautiously handling the disks during measure-
ment obtainment of information about growth kinetics could
be achieved. In this present work, each individual disk
sample was monitored and analyzed consistently. The images
of the U. lactuca disks shown in Fig. 2 are the actual pictures
obtained by the digital scanning. We used commercially
readily available image processing software to determine the
exact disk expansion. The software used was programmed to
automatically count and measure the size of an image
provided that the image had been calibrated. Once the
parameters, e.g., pixel size, resolution, units, etc. were
calibrated, the images were measured uniformly using the
same calibration. The experimental set-up was not designed
to assess the exact cell growth physiology, which is why no
firm conclusion can be drawn as to whether the disk growth
is caused by cell division or cell extension. Nevertheless,
because of the accuracy of the photo-scanning measurements,
the increase in biomass yield could easily be calculated from
the increase of seaweed disk area.

Ulva lactuca grew faster with ammonium than with
nitrate as the nitrogen source (Fig. 3). This corresponded well
with the finding that the uptake of ammonium was faster than
the nitrate uptake (Fig. 4b). This difference was probably due
to the ammonium being presented in a reduced state which
can easily be assimilated and directly utilized by algae for the
synthesis of amino acid and protein resulting in cell and tissue
growth (Doran 1995). Nitrate, however, must first be reduced
to nitrite and then to ammonium in order for the algae to
utilize this nitrogen source. The interaction study of the
combination of ammonium and nitrate (Fig. 4c) demonstrated
the discrimination of ammonium uptake and the uptake of
nitrate. According to Lara et al. (1987) the reduction of nitrate
to nitrite is catalyzed by the nitrate reductase enzyme that
usually uses two ferrodoxins as electrons donors while
reduction from nitrite to ammonium is catalyzed by the nitrite

Fig. 4 Four days cultivation of U. lactuca in ASW medium enriched
with two nitrogen source. a Ammonium and nitrate concentration in
μM, b uptake rate in μM N g Dw−1 day−1 of ammonium and nitrate
when exposed to 50μM NH4Cl or 50μM NaNO3, c uptake rate in μM
N g Dw−1 day−1 of ammonium and nitrate when exposed to 50μM
NH4NO3; square is ammonium uptake rate of and circle is nitrate
uptake rate

Fig. 3 Biomass yield (Y axis scale to the left) and specific growth rate
(SGR, Y axis scale to the righ) of U. lactuca during 10-days of
cultivation. The maximum specific growth rate was 16.4±
0.18%·day−1 assimilated from NH4 and 9.4±0.72%·day−1 from NO3.
Initial ammonium and nitrate concentrations were 50 μM NH4Cl and
50 μM NaNO3. Maximum biomass yield were 22.5±0.24 mg DW
m−2 day−1 (day 5) by ammonium and 13.0±0.40 mg DW m−2 day−1

(day 6) by nitrate enrichment
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reductase, a process that needs six ferrodoxins. This reduction
mechanism as a consequence requires energy for the
bioconversion process. Thus, U. lactuca growth responses
are different given the same concentration of nitrate nitrogen
as they would on ammonium nitrogen.

The use of ASW medium over the duration of this
experiment without renewal may have influenced the
growth kinetics. The common experimental practice in
indoor seaweed culture is water renewal (Naldi and
Wheeler 2002; Vermaat and Sand-Jensen 1987; Neori et
al. 1991; Christensen and Sand-Jensen 1990), however, the
effect of the water renewal is unclear. Nevertheless, our
results indicate that U. lactuca can grow even without
renewing the medium for a certain period. The maximum
growth rate (μmax) in this condition was 16.39±0.18%
day−1 that is close (μmax) reported in a previously published
study (Neori et al. 1991), where they used fresh seawater
medium and extensive renewal of medium.

The amount of biomass accumulated during this
experiment was relatively low as compared to other
earlier works where they harvested considerable amounts
of biomass (Neori et al. 1991; Msuya and Neori 2008).
The water flow velocity may be the cause of the relatively
lower biomass production. In this work, the water
circulation was controlled to be 1.5 L h−1, this circulation
was almost equivalent to the water flow in the shallow
benthic zone, which should be beneficial for U. lactuca
growth. This assumption is supported by the previous
works of Doty (1971) and Parker (1981) that showed the
application of simulated current consistently enhanced
growth rates of U. lactuca under laboratory conditions.
This was also the case in a study conducted by Msuya and
Neori (2008) in which they concluded that water velocity
affected biomass yields and biofiltration performance of
U. lactuca under low nutrient concentration in laboratory
experiments.
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of the National Environmental Research Institute (DMI), Univer-
sity of Aarhus—Silkeborg, Denmark for providing the U. lactuca
strain.
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6 Conclusions and perspectives

As already stated, seaweeds are the subject of a wide range of interesting research topics;

therefore, it entails crossing beyond another border of academic discipline to elucidate the

problems and accomplish specific objectives. The present study provided information about the

most recent developments in the chemistry of fucoidan/FCSPs, emphasizing the significance of

different extraction techniques for the structural composition and biological activity using an

interdisciplinary approach. The utilization of marine seaweeds that have washed up on the

coastline as a source of bioactive compounds like FCSPs and the growth response of U. lactuca to

nutrient assimilation were thoroughly investigated.

The use of different extraction and purification techniques appears to have contributed to the

confusion about the nature and composition of FCSPs ever since it was first described by Kylin

early in the 20th century. As detailed in the following, we now know that fucoidan is built of 1 3

linked L fucopyranosyl or of alternating 1 3 and 1 4 linked L fucopyranosyl residues that

may be sulfate substituted, and that some fucoidans isolated from certain brown algae have

completely different structures composed of sulfated galactofucans with backbones of (1 6)

linked D galacto and/or (1 2) D mannopyranosyl units with (1 3) and/or (1 4) L fuco

oligosaccharide branching. The available data thus show that the term fucoidan has been used for

several different chemical structures and vice versa, that fucoidan is a term that covers a diverse

family of FCSPs (Paper 1). It is, therefore, more correct to use the term FCSPs, rather than

fucoidan, as a collective term for these polysaccharides.

The varied chemical composition and diverse structures of FCSPs from brown seaweed may have

hindered the development of an in depth understanding of the precise properties of significance

for structure function correlations. Nevertheless, important structural bioactivity issues appear to

include the degree of sulfation of the FCSP molecules. Oversulfated FCSPs have thus been found to

be excellent potent inhibitors of tumor cell invasion compared to desulfated native FCSPs. Loss of

anticoagulant activity has been observed with decreasing degrees of sulfation, although anti

proliferative effects on fibroblast cell lines were retained (Paper 1).

A simple and practical method for recovering a suite of complex FCSPs from Sargassum sp. and the

effect of different treatment parameters on the integrity of the polysaccharide have been
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established (Paper 2). The preservation of the structural integrity of the FCSP molecules appears to

be crucial for maintaining its biological properties, and it has been clearly shown that the

extraction treatment employed affects the composition and thus the structural features of the

FCSP substances (Paper 2). Evidently, the chemical composition and yield of the isolated products

are strongly influenced by the method of extraction, as was expected. The data presented (Paper

2) showed that the polysaccharide obtained from a single step extraction method may be

heterogeneous, and that the composition varies with the length of the extraction process. Fucose,

sulfate, and glucuronic acid were the important components of the polysaccharide mixture and

this is typical for a fucoidan compound (Paper 2). The results (Paper 2) also demonstrated that

FCSPs were vulnerable to harsh extraction conditions. Hence, we confirmed that extraction

condition significantly influenced FCSP composition, and structural alteration may have occurred.

Undoubtedly, the presence of impurities could influence the biological properties of FCSPs and,

therefore, may currently hinder our complete understanding of the biological activity of fucoidan

or FCSPs. Hence, the development of standard extraction procedures for FCSPs including hydrolysis

treatment, purification, and fractionation methodology, preferably with specific steps adapted to

the particular botanical order of the seaweed, will generate a better common basis for the analysis

and understanding of bioactivities and the mechanisms determining FCSP bioactivities. On this

basis, it may even be possible to target specific structural features and, in turn, tune the extraction

procedure to obtain specific bioactivities via the use of targeted extraction methodologies.

The bioactivity of the isolated FCSP products from Sargassum sp. against LLC and MC was

investigated (Paper 3). The study showed that FCSPs induce apoptosis of MC cells (Papers 3 and 4)

and exert anti tumor activity through the inhibition of the growth of LLC and MC, which was

probably due to the enhancement of NK cell activity as the principal effector mediating tumor cell

death. We showed that both FCSPs samples from Sargassum sp. and F. vesiculosus induces

apoptosis by activating caspase 3 and exerts anti tumor activity by inhibiting the growth of cells

(Paper 4). FCSPs from Sargassum sp. and Fucus vesiculosus thus appear to be potent against lung

and skin cancer cell lines, and its mode of action is associated with the immune response (Paper 3).

Furthermore, the bioactivity of crude fucoidan toward these 2 types of cancer cell lines was

possibly augmented by the sulfate groups in the fucoidan structure. Nevertheless, further

examination about these findings is needed to elucidate the underlying factors of FCSP bioactivity.

The unfractionated FCSP structures from Sargassum sp. could probably be heterogeneous and

branched as expected; however, another possibility could be that these FCSPs were not mixtures
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of different types of polysaccharides but members of the same polysaccharide family. Our

structural investigation presented by 1H NMR spectra indicate that in both Sargassum sp. and F.

vesiculosus, FSCPs samples contained fucoidan like structures, but definite structural information

about whether the structure is heterogeneous or members of the same polysaccharide family

should further be investigated (Paper 4). The quantitative variation of its components and

distribution patterns as well as the differences in its structural details was probably not due to

sample heterogeneity but rather to extreme compositional and structural dispersion. At any rate,

the crucial bioactive effectiveness of these unfractionated FCSPs may be attributed to their distinct

structural features, such as level of sulfation (charge density) and the position and bonding of the

sulfate substitutions or sulfated fucans (i.e., C 2 and/or C 4 of 3 linked L fucopyranose residues)

and sulfated galactans (i.e., C 2 of 3 linked galactopyranose residues) complexes (Paper 4).

Nonetheless, we now understand that the type and variety of algal FCSPs is much wider than

originally believed.

In addition to the investigation of the potential of the brown seaweeds Sargassum sp. and F.

vesiculosus as natural sources of bioactive compounds, the washed up nuisance green seaweed U.

lactuca was also examined for its growth and nutrient assimilation potential. This study was

performed to illustrate the need for a precise monitoring method of the growth of U. lactuca in

order to successfully exploit it for commercial application. Our understanding of the growth

kinetics of U. lactuca is highly dependent on the precise monitoring of its growth and

measurement of the uptake response to different nutrient sources. This includes minimizing

inaccuracies during the growth measurement of seaweed fronds. This work exhibited the

applicability of the photo scanning approach for attaining accurate quantitative growth data of U.

lactuca as demonstrated by evaluation of the growth response to ammonium and nitrate (Paper

5). The experimental set up was not designed to assess the exact cell growth physiology, which is

why no firm conclusion can be drawn as to whether the U. lactuca disc growth was caused by cell

division or cell extension. Nevertheless, because of the accuracy of the photo scanning

measurements, the increase in biomass yield could easily be calculated from the increase of

seaweed disc area (Paper 5). This result showed that U. lactuca grew faster with ammonium than

with nitrate as the nitrogen source (Paper 5). This corresponded well with the finding that the

ammonium uptake was faster than the nitrate uptake. This difference was probably due to the

ammonium being presented in a reduced state that can be easily assimilated and directly utilized

by algae for the synthesis of amino acids and proteins resulting in cell and tissue growth. Nitrate,

however, must first be reduced to nitrite and then to ammonium for the algae to utilize this
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nitrogen source (Paper 5). The interaction study of the combination of ammonium and nitrate

demonstrated that the presence of ammonium discriminate the nitrate uptake when U. lactuca

was exposed to ammonium nitrate. This study provides new technique for evaluating the growth

of U. lactuca and outlines the possibility of U. lactuca as a good agent for bioremediation.

6.1 Future perspectives
Marine seaweed has gained a lot of attention in the scientific community and in industries; thus,

the potential biological effects of seaweeds have been exploited has been examined extensively in

recent years. Still, there are many avenues in seaweed research, that need to be considered,

studied, and understood to successfully exploit this abundant resource. This PhD study highlighted

a few of the crucially important factors in the utilization of seaweed products, notably the

extraction procedure and bioactivity analysis of FCSPs. Nevertheless, there are other research

areas concerning seaweed resources that need further investigation; they may include

bioprocesses and purification involving enzyme technology coupled with membrane technology

coupled with the concept of seaweed biorefinery.

A typical technology for isolating valuable products from seaweeds, notably bioactive compounds

like FCSPs, involves the use of chemicals. This technique has been employed since the first

extraction of fucoidan by Kylin in 1913. This present study demonstrated that chemical extraction

of fucans from brown seaweeds contained impurities. The apparent impurities (i.e., saccharides

other than sulfated fucose) may or may not contribute to the bioactivity efficacy of fucoidan. To

reach a definitive conclusion, this hypothesis must be examined strategically using enzymes that

cleave specific sites. Extraction using enzymes coupled with membrane technology could be a

future strategy for recovering bioactive seaweed compounds. Mono component activity enzymes

may be employed to eliminate and/or hydrolyze specific impurities, including certain

monosaccharides and structural polysaccharides. Chemically and/or enzymatically isolated FCSPs

compounds can be further purified by filtration using membranes to separate the molecular size of

interest. Purified components will be investigated to determine whether they possess any

biological active properties against certain diseases using in vitro, in vivo, animal models, and/or

possibly clinical testing.

Seaweed cultivation and processing is an important industry in Southeast Asia, but it is still new to

Scandinavia, especially Denmark. As described in this study, only selected components are

obtained from seaweeds (i.e., FCSPs, fucoidan, alginate, carrageenan, and agar), and the remaining

are considered waste. This present study proposed a new type of strategy to improve the
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utilization of seaweed by using the entire seaweed frond for the production of chemicals and/or

biochemicals and energy. Thus, a concept of seaweed biorefinery should be developed.

The first phase of this concept includes isolation of commercially important

chemicals/biochemicals such as hydrocolloids and the bioactive sulfated polysaccharide

compounds. In the second phase, the remaining residues are collected as bulk biomass and then

converted into chemicals and energy carriers (heat, liquid, gas, and electricity) by catalytic and

enzymatic conversions and/or by digestion and pyrolysis. The residue containing minerals are

targeted for use in fertilizer applications in the final phase of the biorefinery cycle.

Many potential applications exist for the products acquired from biorefineries. Seaweed

components derived thereof can be used as hydrocolloids for food and feed applications or can be

formulated into natural health supplements; in contrast, mineral containing seaweed residues are

incorporated into fertilizer products.

The detailed processes, procedures, and specific working conditions of this seaweed biorefinery

concept are yet to be determined.
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