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Abstract—Nowadays the ubiquity of telecommunication net-
works, which underpin and fulfill key aspects of modern day
living, is taken for granted. Significant large-scale failures have
occurred in the last years affecting telecommunication networks.
Traditionally, network robustness analysis has been focused on
topological characteristics. Recently approaches also consider the
services supported by such networks. In this paper we carry out
a robustness analysis of five real backbone telecommunication
networks under defined multiple failure scenarios, taking into
account the consequences of the loss of established connections.
Results show which networks are more robust in response to a
specific type of failure.

Index Terms—Complex networks, Large-scale failures, Robust-
ness metrics.

I. INTRODUCTION

Failures of great significance (natural or man-made disas-
ters) have occurred on large-scale networks affecting consid-
erable proportions of the world’s inhabitants. For example,
in 2010 a heavy snowfall in Spain caused a fault in a high
tension power cable that left 220 000 people in and around
the Catalonian city of Girona without electricity [1]. Further,
in February of 2012, four undersea data cables, which were
providing connectivity between Europe, the Middle East and
East Africa, were cut off by two different shipping accidents
and affected millions of Internet and phones users [2].

These large-scale networks consist, mainly, of nodes (petrol
or underground stations, transformers, etc.), links (roads, pipes,
cables, etc.) and dynamic processes that run over them (oil
or gas, trains, electricity, etc.). In this paper we focus on
telecommunication networks where nodes represent routers,
links the physical (or logical) interconnections between them,
and connections the dynamic processes.

With the purpose of studying the impact on the performance
of any given service provided by telecommunication networks,
lately, researchers have been focused on evaluating the robust-
ness of networks in the case of multiple failure scenarios.

The traditional definition of robustness, which relies on
graph theory, is mainly centered on graph connectivity. In
this paper we assume a more contemporary definition which
according to [3] is “the ability of a network to maintain its total
throughput under node and link removal”. The latter takes into
consideration the dynamic processes that run over a network

TABLE I
CLASSICAL AND CONTEMPORARY ROBUSTNESS METRICS

Approach Characteristic Reference

Classical

Average nodal degree (AND) [4]
Node connectivity [5]
Heterogeneity [6]
Symmetry ratio [7]
Diameter [8]
Average shortest-path length (ASPL) [9]
Assortativity coefficient [4]
Average neighbor connectivity [4]
Clustering coefficient [10] [4]
Betweenness centrality [11]
Largest eigenvalue [4] [12]
Second smallest Laplacian eigenvalue [13]
Average two-terminal reliability (A2TR) [14]

Contemporary
Elasticity [3]
Quantitative Robustness Metric (QNRM) [15]
R-value [16]

(which in this paper are connections) while the former does
not. Further, robustness metrics have been defined in the past
years with respect to both approaches.

The aim of this paper is to carry out a robustness analysis,
in the case of multiple failures, of five real telecommunication
networks when considering both type of metrics: those relying
on graph theory aspects and those considering the impact upon
connections.

The paper is structured as follows. In Section II several well-
known robustness metrics are presented. Section III defines
a brief taxonomy of different multiple failure scenarios. The
set of real networks is presented in Section IV. Then, the
simulation scenario is detailed in Section V and the analysis’
results are shown and discussed in Section VI. Finally, in
Section VII conclusions and further work are provided.

II. ROBUSTNESS METRICS

This section presents a brief background of several well-
known robustness metrics which are considered in the analysis
conducted in this paper. As previously mentioned, literature
offers a wide range of robustness metrics. Some of them are
mainly focused on graph theory concepts while others take
into consideration the services supported by networks.



Table I shows a list of robustness metrics separated in two
main groups: classical and contemporary. These two groups
are not centered on the chronological order of publication of
the metrics, but on what robustness definition rely on. The
thirteen classical metrics rely on basic graph theory concepts
while the four contemporary ones consider additionally the
dynamic services that run over a network. It is important
to note that, some of the metrics classified here as classical
could be considered contemporary (the largest eigenvalue or
the second smallest laplacian eigenvalue).

In this paper we carry out a robustness analysis from both
points of view. While we take into account all metrics from
the classical approach, we only consider the Quantitative
Robustness Metric (QNRM) from the contemporary one. The
QNRM analyses how a multiple failure affects the number of
connections established on a network. It provides an accurate
value of the blocked connections (a connection that should
have been established at time t but could not be established
as a consequence of a failure).

III. MULTIPLE FAILURE SCENARIOS

According to Shang et al [17], when an object that causes
an attack knows exact information related to the network topo-
logical structure, it is called an attack with white-information
(targeted). However, when the attacker knows no information
at all, it is considered a black-information attack (random).
The former would be more related with intentional failures
while the latter would be with component failures or natural
disasters. Consequently, multiple failure scenarios proposed
in the literature can be broadly classified as either random
or targeted scenarios and in this section we present a simple
taxonomy of them:

• Random: In a random multiple failure, nodal or link
failures occur selecting the elements at random. Natural
disasters are an example and may have catastrophic
consequences on the services supported by a network.

• Targeted: Elements in a targeted multiple failure are
chosen in order to maximize the impact of it there is
an element of discrimination. The choice of the targeted
element/s may be a function of network-defined features
such as nodal degree or clustering, as well as other “real-
world” features, such as the number of users potentially
affected and socio-political and economic considerations.

In addition, both types can be either static or dynamic.
Static multiple failures are essentially one-off failures that
affect one or more elements (nodes or links) at any given
point. Dynamic failures have a temporal dimension. Four main
types of multiple failures arise from this taxonomy: Random
Static (RS), Random Dynamic (RD), Targeted Static (TS) and
Targeted Dynamic (TD). In the analysis of this paper we focus
on RS and RD.

(a) cogentco

(b) deltacom

(c) ion

(d) kdl (e) uscarrier

Fig. 1. Networks’ layout

IV. NETWORKS

The five real topologies considered in analysis are cogentco,
deltacom, ion, kdl and uscarrier, and layout can be observed
in Fig 1. Some of them are backbone transport networks
(representing real physical links), others are logical networks
(representing the IP layer). They have been obtained from [18],
a repository of well known real telecommunication networks.

Table II shows the key characteristics of the topologies de-
scribed above. Additionally, some characteristics are presented
with their standard deviation. It can be observed that while
some of them have a number of nodes that range between 100



and 200, one (kdl) has a higher value of it. All networks have
a negative or near to zero value of assortativity coefficient
(r). This means that they have an excess of radial links, links
connecting nodes of dissimilar degrees. Such a property is
typical on technological networks [19]. The five networks
considered in this paper have a similar average nodal degree,
ranging from 2 to 3.

V. SIMULATION SCENARIO

In order to calculate the Quantitative Robustness Metric
(QNRM) the simulation scenario, which is related to the
results presented in VI-B, must be detailed. All simulations
last for 10 000 time steps with a traffic load of 80 000
connections in total. Source and destination of connection has
been selected randomly with the restriction that they cannot
be adjacent (connections are minimum of two hops). There
is no constraint link capacity, if there are no failures, all
connections are accepted. The generation of the connections
and their duration follow negative exponential distribution with
average inter-arrival and holding times of 0.12 and 100 time
steps respectively.

Simulations causing the following multiple failures are
carried out:

• RS: A random static multiple failure that affects 10%
of nodes of the network is activated at the start of the
simulation.

• RD: The Susceptible-Infected-Disabled (SID) epidemic
model [20] is used in this case study. A dynamic epidemic
failure that initially affects 3% of nodes is activated at the
start of the simulation, reaching a total of 10% of affected
nodes after a period of time (this period is different for
each topology and depends upon its specific topological
features). The randomness of this case relies on the initial
set of infected nodes, which is selected randomly.

The presented results are the average of 200 simulation runs
with different random seeds. They show how the set of real
network topologies performs in response to either RS or RD,
when both affect the same number of nodes. As mentioned in
Section II, the QNRM metric, which measures the number of
blocked connections, is calculated during the simulations.

VI. RESULTS

Two sets of analysis are presented here. First, classical
robustness metrics are analyzed and a ranking of the topologies
based on the metrics is listed. Second, a robustness analysis
in relation to the contemporary robustness metric is presented.

A. Classical robustness analysis

Fig. 2 shows the Average Two-Terminal Reliability (A2TR)
of the five networks. This metric is the probability that a
randomly chosen pair of nodes is connected (if the network is
fully connected the value of A2TR is 1). Therefore, the higher,
the better. Because not all of them have the same number of
nodes, the number of nodes removed has been uniformed for
each one of the networks, in order to plot them all in one
graphic. As it can be observed, it would be difficult to rank
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Fig. 2. Average Two-Terminal Reliability of the set of real network topologies

the set of networks according to their A2TR evolution, because
all of them have a similar average nodal degree. However, it
is clear that the deltacom network is the most robust one. The
rest of them have roughly similar curves, although the kdl
network is the first one that reaches values near 0.

Table III presents a classification based on the features of
the topologies of Section IV. In this classification 1 represents
the most robust with increasing rank representing reduced
robustness. The last row indicates the global ranking of the
topologies and is the simple unweighted average of the posi-
tions of the previous rankings of each topology. This average
could be calculated using different weights for each kind of
metric, depending on the specific necessity of the network
service provider. However, in the first instance, we consider
all the metrics to be equal and will consider the option of a
weighted average in future work.

As it can be seen in Table III, on the first row the ranking of
average nodal degree (AND) is provided. This is the coarsest
connectivity feature of any topology. Networks with higher
AND are “better-connected” on average, and, consequently, are
likely to be more robust. The most robust network is deltacom,
followed by cogencto, while the less robust one (which has the
lowest value of AND) is ion.

On the second row, the five networks are ranked by their
node connectivity and all of them have the same value of it
(1). Consequently, all of them are ranked equally. It was not
expected that real networks could be disconnected by removal
of just one node. Regarding the heterogeneity, ion is the most
robust topology, while deltacom and cogentco are the worst
ones. The grading of average shortest-path length (ASPL)
is shown on the following row and as it can be observed,
deltacom and ion are positioned as the most robust topologies.
Long-path connections have a higher probability of being
affected in the case of multiple failures. Consequently, the
lowest the ASPL of a network, the robust.

Thereafter, rankings of the largest eigenvalue and the second
smallest laplacian eigenvalue show interesting results. Most



TABLE II
CHARACTERISTICS OF THE SET OF REAL TELECOMMUNICATION NETWORK TOPOLOGIES

Characteristic cogentco deltacom ion kdl uscarrier
Number of nodes 197 113 125 754 158
Number of links 242 161 146 895 189
Average nodal degree (AND) 2.46 2.85 2.34 2.37 2.39
Stdev 1.04706 1.21171 0.082251 0.84254 0.8204
Minimum nodal degree 1 1 1 1 1
Node connectivity 1 1 1 1 1
Heterogeneity 0.42563 0.42516 0.03515 0.35550 0.34326
Symmetry ratio 6.79310 4.70833 4.80769 12.77966 4.36111
Diameter 28 23 25 58 35
Average shortest path length 10.52 7.16 10.14 22.73 12.09
Stdev 5.09079 3.79633 4.78563 10.64351 6.45623
Largest eigenvalue 3.77828 3.88918 2.95511 3.16819 2.98417
Second smallest Laplacian eigenvalue 0.00857 0.02235 0.01331 0.00194 0.0056
Clustering coefficient 0.12884 0.14197 0.0992 0.08404 0.10886
Assortativity coefficient 0.01956 0.03832 -0.2797 -0.10462 -0.09518
Average neighbor connectivity 0.0148 0.03 0.02115 0.00354 0.01701
Average node Betweenness centrality 0.04883 0.0555 0.07428 0.02889 0.7109
Stdev 0.06719 0.06983 0.07136 0.03873 0.10082
Average link Betweenness centrality 0.00361 0.00274 0.00638 0.00225 0.0056
Stdev 0.00425 0.00277 0.00516 0.00285 0.00728

TABLE III
RANKING OF ROBUSTNESS OF THE SET OF REAL TELECOMMUNICATION NETWORK TOPOLOGIES, BASED ON TOPOLOGICAL FEATURES

cogentco deltacom ion kdl uscarrier
Average nodal degree 2 1 5 4 3
Node connectivity 1 1 1 1 1
Heterogeneity 5 4 1 3 2
Average shortest path length 3 1 2 5 4
Largest eigenvalue 2 1 5 3 4
Second smallest Laplacian Eigenvalue 3 1 2 5 4
Average neighbor connectivity 4 1 2 5 3
Assortativity coefficient 2 1 5 4 3
Symmetry ratio 4 2 3 5 1
Clustering coefficient 2 1 4 5 3
Average node Betweenness centrality 2 3 4 1 5
Average link Betweenness centrality 3 2 5 1 4
Global Ranking (2.75) 2 (1.58) 1 (3.25) 4 (3.5) 5 (3.08) 3

networks with high values for the largest eigenvalue have
a small diameter and are more robust. The second smallest
laplacian eigenvalue measures how difficult it is to break the
network into islands or individual components (the larger, the
greater the robustness of a topology against both node and link
removal). Although both of them rank deltacom as the most
robust network, there is no match between the 2nd and the 3rd

most robust topologies (the largest eigenvalue ranks cogentco
as the second most robust while the second smallest laplacian
eigenvalue ranks ion).

The following two rows show the classification based on
the average neighbor connectivity and on the assortativity
coefficient. deltacom is the most robust because it has the
highest values of them, implying that this network is less vul-
nerable under any kind of static failures (random or targeted).
Regarding the symmetry ratio it can be observed that uscarrier
is the most robust network because it has the lowest value of
it. On high-symmetric networks, with low symmetry values,
the impact of losing a node does not depend on which node
is lost.

Next, the clustering coefficient grading shows that deltacom

is the most robust, its nodes are more interconnected with
their neighbors. Finally, from the two rankings of betweenness
centrality (BC) it can be observed that kdl is better than
deltacom because the latter has a higher value of it. This means
that deltacom has an excess of centrality of some elements that
increases the vulnerability of targeted failures.

To summarize the ranking provided in Table III, a global
ranking has been calculated and listed in the last row. This final
summary ranking gives an approximation to the robustness of
the networks considered in this paper, taking into account the
traditional robustness metrics, which omit considerations about
any connections on the network. Here, deltacom is the most
robust, followed by cogentco in second place. uscarrier, ion
and kdl are ranked in third, fourth and fifth place respectively.
It is interesting to note that, if the global ranking had not
been calculated with the same weights for all the metrics, this
ranking would have changed.

Some metrics differ in identifying the 1st, 2nd and 3rd

most robust topologies. This means that one should really use
a group of metrics to define the robustness rather than rely
on single graph robustness metric. Considering several graph



based robustness metrics is necessary, but such an approach
would not be sufficient for a network provider, because it
does not take into account the connections that run over
networks and does not give any information about the service
performance of a network under any kind of multiple failure.

B. New robustness metric analysis

The results of the simulations carried out in this paper,
which have been detailed previously in Section V, are pre-
sented. In Table IV results associated with the QNRM metric
can be observed. Table IV is divided as follows: rows 1 to 3
pertain to the behavior of the network in response to a RS
multiple failure while 4 to 6 pertain to the metric’s value
in response to an RD. The last two rows show the relation
between the RD and the RS in order to facilitate a comparison
between the robustness of the networks when either a RS or
a RD failure occurs.

Regarding RS multiple failure, the most robust topology
is deltacom, blocking 35% of the connections that should
be established, when a RS multiple failure affects 10% of
the nodes. Further, the 2nd most robust topology is cogentco,
blocking around 36% of the connections, while the 3rd most
robust is kdl, blocking almost 37% of them. Therefore, the
difference between these networks is not significant and the
three of them can be considered equally regarding a RS
multiple failure. ion, which is placed in 4th position, blocks
almost 50% of the connections, and uscarrier is the less robust
one blocking almost 68% of the connections that should be
established.

In response to a RD failure the ranking is completely differ-
ent. Here uscarrier is the most robust, blocking around 20% of
the connections and ion is the 2nd most robust blocking around
27%. It is interesting to note that, deltacom is the least robust
in response to a RD multiple failure, blocking almost 75%
of the connections. This was not expected because deltacom
has the highest value of largest eigenvalue (also known as
epidemic threshold), which correlates with the severity of an
epidemic failure (RD) on a network.

With the purpose of comparing results regarding both types
of multiple failures, the last row of Table IV shows a classi-
fication of the topologies sorted by the ratio. uscarrier is the
topology that shows the most improvement in its performance
when comparing a RS and a RD multiple failure; the number
of blocked connections reduces almost 30% when an epidemic
failure (RD) occurs. Second (ion) and third (cogentco) position
networks have a ratio under the unity, which means that they
perform better in response to a RD multiple failure than to
a RS one. deltacom is the topology that shows the least
improvement in its performance when comparing both RS and
RD.

C. Discussion

Metrics shown in Table III represent a relatively simplistic
approach to define the robustness of a network because the
metrics do not take into account the connections that are
running over the network. Comparing the results shown in

Table III with the ones shown in Table IV one may notice
that just few positions of the rankings match. For example,
in Table III deltacom appears to be the most robust network.
Moreover, while in Table IV it appears to be the most robust
in response to a RS multiple failure it is the least robust in
response to a RD. Therefore, classical robustness metrics prove
to be useful indicating general robustness while contemporary
robustness metrics provide more detailed information about it.

VII. CONCLUSIONS AND FUTURE WORK

In this paper a robustness analysis of five real telecommu-
nication networks has been carried. Well-known robustness
metrics have been considered. Further, we have defined a brief
taxonomy of multiple failure scenarios and from the types, we
have considered Random Static (RS) and Random Dynamic
(RD) in our simulation scenario. The utility of combining
classical robustness metrics (relying on graph theory concepts)
with those more contemporary, which consider the services
carried by networks, has been shown.

Results of have shown that according to the ranking pro-
vided by the graph robustness metrics, deltacom is the most
robust network, cogentco is the second most robust and kdl
(the network with a higher number of nodes) is the least
robust. However, if the information provided by this ranking
is complemented with the results given by the QNRM metric,
a network provider is able to know how the services will
be affected in response to a given type of multiple failure
scenario. For example, QNRM shows that deltacom is the
worst network (least robust) in response to a RD multiple
failure affecting 10% of nodes, because it blocks almost 75%
of the connections that should be established. Additionally,
QNRM shows that uscarrier is the worst network when RS
multiple failure affecting 10% of nodes is caused, because
it blocks almost 68% of the connections. Therefore, this
information would not be known if only graph robustness
metrics were taken into account. It demonstrates that both
approaches (classical and contemporary) should be considered
by network providers. Moreover, regarding to the set of real
telecommunication networks considered in this work, it can
be observed that some networks have been (casually or not)
designed to be more robust in response to a specific kind of
failure (for example, deltacom or uscarrier).

There are some aspects that could be considered as future
work. For instance, assuming that all the results provided in
this paper have been obtained considering an infinite capacity
of links and a unique traffic pattern, it could be interesting to
carry out the analysis within a simulation scenario of finite
capacity. Comparing both results (the ones obtained from
infinite capacity simulations and the ones from finite capacity)
it could be possible to know how many connections would
be lost due to capacity. Moreover, it could be interesting to
carry out analysis (with both finite and infinite capacity) using
different traffic patterns, in order to know what network is
more suitable (in terms of robustness) for a specific traffic
pattern.



TABLE IV
QUANTITATIVE ROBUSTNESS METRIC RESULTS OF THE SET OF REAL TELECOMMUNICATION NETWORK TOPOLOGIES

Impairment cogentco deltacom ion kdl uscarrier

Random Static (RS)
QNRM 0.3634 0.3477 0.4881 0.3678 0.6797
Standard Deviation 0.00052 0.0005 0.0005 0.00053 0.00072
Ranking 2 1 4 3 5

Random Dynamic (RD)
QNRM 0.2826 0.7478 0.2624 0.4257 0.2039
Standard Deviation 0.00196 0.010833 0.04608 0.00738 0.01498
Ranking 3 5 2 4 1

QNRMRD
QNRMRS

0.7776 2.1507 0.5375 1.1574 0.2999

Ratio Ranking 3 5 2 4 1
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