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Abstract

This thesis considers two main issues concerning the application of a rotary type magne-
torheological (MR) damper for damping of flexible structures. The first is the modelling and
identification of the damper property, while the second is the formulation of effective control
strategies. The MR damper is identified by both the standard parametric Bouc-Wen model
and the non-parametric neural network model from an experimental data set generated by
dynamic tests of the MR damper mounted in a hydraulic testing machine. The forward
model represents the direct dynamics of the MR damper where velocity and current are
used as input and the force as output. The inverse model represents the inverse dynamics
of the MR damper where the absolute velocity and absolute force are used as input and the
damper current as output. For the inverse model the current output of the network must al-
ways be positive, and it is found that the modelling error of the inverse model is significantly
reduced when the corresponding input is given in terms of the absolute values of velocity
and damper force. This is a new contribution to the inverse modelling techniques for the
control of MR dampers. Another new contribution to the modelling of an MR damper is
the use of experimental measurement data of a rotary MR damper that requires appropri-
ate filtering. The semi-systematic optimisation procedure proposed in the thesis derives an
effective neural network structure, where only velocity and damper force are essential input
parameters for the MR damper modelling. Thus, for proper training, the quality of the
velocity data is very important. However, direct velocity measurement is not easy. From
the displacement data or the acceleration data, velocity can be determined by using simple
differentiation or integration, respectively, but these processes add undesirable noise to the
velocity. Instead the Kinematic Kalman Filter (KKF) is an effective means for estimation
of velocity. The KKF does not directly depend on the system or structural model, as it
is the case for the conventional Kalman filter. The KKF fuses the displacement and the
acceleration data to get an accurate and robust estimate of the velocity. The simplicity of
the network and the application of velocity in terms of KKF is a novel contribution of the
thesis to the generation of a training set for neural network modelling of MR dampers.

The development of the control strategies for the MR damper focuses on the introduction of
apparent negative stiffness, which basically leads to an increased local motion of the damper
and thereby to increased energy dissipation and damping. Optimal viscous damping (VD)
is chosen as the benchmark control strategy, used as reference case for assessment of the
proposed control methods with negative stiffness. Viscous damping with negative stiffness
(VDNS) initially illustrates the effectiveness of the negative stiffness component in struc-
tural damping. In a linear control setting negative stiffness requires active control forces,
which are not realizable by the purely dissipative MR damper. Thus, these active compo-
nents are simply clipped in the final control implementation. Since MR dampers behave
almost as a friction damper improved damping performance can be obtained by a suitable
combination of pure friction and negative damper stiffness. This is realized by amplitude
dependent friction damping with negative stiffness (FDNS), where the force level of the
friction component is adaptively changed to secure the optimal balance between friction en-
ergy dissipation and apparent negative stiffness. This type of control model for semi-active
dampers is rate-independent and conveniently described in terms of the desired shape of the
associated hysteresis loop or force-displacement trajectory. The final method considered for
control of the rotary MR damper is a model reference neural network controller (MRNNC).
This novel control approach is designed and trained based on a desired reference damper
model, which in this case is the amplitude dependent friction damping with negative stiffness
(FDNS). The idea is to train the neural network of the controller by data derived explicitly
from the desired shape of the force-displacement loop at pure harmonic motion. In this



idealized representation the optimal relations between friction force level, negative stiffness
and response amplitude can often be given explicitly by e.g. maximizing the damping ratio
of the targeted vibration mode. Consequently the idea behind this trained neural network
is that the optimal properties of the desired hysteresis loop formulation can be extrapolated
to more general and non-harmonic response patterns, e.g. narrow-band stochastic response
due to wind, wave, traffic or even earthquake excitation.

Numerical and experimental simulations have been conducted to examine the performance
of the proposed control strategies. Force tracking by using an inverse neural network of
the MR damper is improved by a low-pass filter to reduce the noise in the desired current
and a simple switch that truncates negative values of the desired current. The performance
of the collocated control schemes for the rotary type semi-active MR damper are initially
verified by closed loop dynamic experiments conducted on a 5-storey shear frame structure
exposed to harmonic base excitation. The MR damper is mounted on the structure so that
it operates on the relative motion between the ground base and the first floor of the shear
frame. The shear frame structural model is initially experimentally identified, where mass
and stiffness of the model is determined by an inverse modal analysis based on the natu-
ral frequencies obtained experimentally. The damping matrix is subsequently determined
from the estimated damping ratio obtained by free decay tests. The results in the thesis
demonstrate that introducing apparent negative stiffness to the control of the MR damper
significantly decreases both the top floor displacement and acceleration amplitudes of the
shear frame structure. The structural damping ratios obtained from the response curves
of the experiments correspond well to the expected values. This indicates that the mean
stiffness and mean energy dissipation of the control forces are predicted fairly accurate.

A final numerical investigation is based on a classic benchmark problem for earthquake
protection of a multi storey building. The seismic response of the base-isolated benchmark
building with an MR damper installed between the ground and the base is illustrated, and the
effectiveness of negative stiffness of the control strategies is verified numerically. Similarly,
the response of another wind excited benchmark building installed with MR dampers is
demonstrated and the performance shows satisfactory result.

The main contributions to this thesis are the novel modelling approach to the direct and the
inverse dynamics of a rotary MR damper from experimental data, the development of model
based semi-active control strategies for the MR damper, the effective introduction of negative
stiffness in the control of semi-active dampers and the demonstration of effectiveness and
closed loop implementation of the control techniques on both a shear frame structure and a
numerical benchmark problem.
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Chapter 1

Introduction

Most flexible structures, such as high-rise buildings or bridges, have very little structural
damping and are therefore often prone to dynamic excitation, e.g. from wind or seismic
loading. Different control mechanisms are used to reduce structural fault and thus prevent
failure.

Passive dampers are reliable in the sense that they rely purely on dissipation of incoming
energy without any power requirements. Some typical passive installations are tuned mass
dampers, see Rasouli et al. [1], or base-isolation systems, see Cho et al. [2] or references
herein.

Fully active control systems are able to apply both dissipate and non-dissipative forces to the
structure, and when properly designed they yield a significant increase in damping compared
to passive dampers. However, active control typically requires a large amount of power and
may also introduce instabilities due to time delays or model uncertainties. Examples of
active control systems are the active tuned mass dampers [1, 3] or tendon type control [4].
As an alternative to the passive tuned mass dampers, an active tuned mass damper, where
an actuator is inserted between the structure and the secondary mass, can be considered as
an effective damping device. The design of active tuned mass dampers is typically based on
linear quadratic regulator (LQR) theory. Preumont [4] developed and implemented velocity
feedback based active control strategies for civil structures. An active control strategy is
demonstrated in [5] for application to a flexible structure excited by simulated wind forces
for the purpose of minimising along-wind accelerations. A linear quadratic Gaussian (LQG)
control strategy based on acceleration feedback is used to reduce the structural response
effectively. De and Zheng [6] also applied active control to a tall structure excited by wind
where a new active vibration control method which fits non-linear buildings is demonstrated.
The control method is based on model identification and structural model linearisation and
exerts the control force on the built model according to the force action principle.

Semi-active dampers are often considered to be a desirable compromise between failsafe
passive damping and effective active control. They require little power for the operation
and are thus able to run for instance on battery power. Besides, they do not add energy
to the system, whereby the stability due to the damper is improved because control forces
are developed through proper adjustment of damping and stiffness components of controller.
The most common types of semi-active dampers for civil engineering applications are variable
stiffness dampers [7, 8] and magnetorheological (MR) dampers [9, 10]. A cylindrical type
MR damper designed and manufactured by Maurer Söhne GmbH is shown in Figure 1.1.

The characteristics of the MR damper are controlled in terms of the applied current, which
almost simultaneously changes the magnetic field and thus the shear viscosity of the damper.
A more detailed description of the characteristics and the modelling of MR dampers can
be found in for instance [11]. Semi-active MR dampers have been used for both damping
and earthquake protection of buildings, see e.g. [12, 13]. One of the most commonly used
control strategies for MR dampers is the clipped-optimal control proposed by Dyke et al. [14].
This algorithm consists of a bang-bang (on-off) type of controller that causes the damper
to generate a desirable control force, determined by an optimal control algorithm, such as

1



2 Introduction

Figure 1.1: A Cylindrical Type Magnetorheological Damper (Courtesy of Maurer
Söhne GmbH).

the H2/LQG method. The optimal force is determined by using a full-order observer. This
optimal force is clipped by using the Heaviside function to get the desired voltage for the MR
damper to implement the semi-active control strategy on the MR damper. Zhu et al. [15]
implemented a semi-active control strategy based on the linear quadratic Gaussian (LQG)
method in a wind excited structure using the MR damper. Iemura et al. [16] presented both
passive and semi-active control strategies for the MR damper for a stay cable bridge and
showed the effectiveness of semi-active control strategy over passive control strategy. Other
common types of control strategies for MR dampers are based on e.g. Lyapunov functions,
the bang-bang theory [10], variable friction damping strategy [17], modulated homogeneous
friction damping strategy [18] or sliding mode control [19, 20]. The Lyapunov stability
analysis is used for developing control laws where the goal is to choose control inputs for
each device that will result in making the derivative of the Lyapunov function as negative as
possible. The decentralised bang-bang theory is similar to the Lyapunov approach where the
Lyapunov function has been chosen to represent the total vibratory energy in the structure.
A modulated homogeneous friction damping approach is proposed because there is strong
similarities between the behaviour of a variable friction device and the MR damper [18]. In
this control strategy, at each occurrence of a local maximum in the deformation of the device,
the normal force applied to the frictional interface is updated to a new value. This method
is originally developed for friction dampers but it is modified for the MR damper based on
MR damper properties. A detailed comparison of the most common control strategies for
MR dampers can be found in [10].

Besides the above-mentioned classical control strategies, several intelligent control algo-
rithms based on soft computing techniques are used for controlling the MR damper. These
techniques rely on proper training in the desired behaviour instead of accurate mathemat-
ical models. Thus, they are suitable for solving and modelling of highly complex systems,
such as damping of a flexible structure by control of a non-linear semi-active damper. Ex-
amples of soft computing techniques for damping or control of structures are neural net-
works [21, 22, 23, 24], fuzzy logic [25, 26], genetic algorithms [27] and various hybrid systems
[27, 28].
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In this thesis an MR damper in a collocated control setting is used to reduce the vibrational
response of a flexible structure, which is verified experimentally on a shear frame structure
and numerically on benchmark problems. The effectiveness of negative stiffness in semi-
active control design is demonstrated with different control strategies.

In this thesis four main objectives are considered. They are as follows:

� Development of semi-active control strategies for the MR damper.

� Modelling of direct and inverse dynamics of an MR damper and force tracking in
closed-loop simulation.

� Closed loop implementation of the semi-active control strategies.

� Implementation of the semi-active control strategies on benchmark problems.

The first part of the thesis presents a framework for design of external dampers for damp-
ing of flexible structures. This is based on maximisation of the damping ratio of a critical
vibration form and it follows the two-component reduction technique presented by Main
and Krenk [29]. This analysis provides analytical expressions for the modal damping ratio,
which indicates that effective damping can be obtained by imposing negative stiffness on the
damper. Four types of collocated control strategies are considered: (a) pure viscous damping,
(b) viscous damping with negative stiffness, (c) amplitude dependent friction damping with
negative stiffness and (d) model reference neural controlling. In model reference neural con-
trolling the reference model is considered as an optimal force-displacement hysteresis model
of a friction damper with negative stiffness. The shape is primarily identified by Boston et
al. [30] by an evolutionary algorithm. The optimal force from the controller is then used
for determining the desired current for the MR damper from the inverse MR model, which
is another task of the thesis and is discussed in the second part of the thesis. To improve
the performance of the controller, the stiffness parts are considered as negative. It has been
demonstrated by Iemura et al. [31] that optimal LQR control produces active damper forces
for a structure with significant negative stiffness characteristics. In [32, 33] Iemura et al.
further developed the strategy with pseudo negative stiffness dampers for seismically iso-
lated structures and stay cables and demonstrated the effectiveness of negative stiffness by
numerical simulations. Moreover, for damping of stay cables Li et al. [34] demonstrated a
significant improvement due to the introduction of negative stiffness. Høgsberg [35] demon-
strated the important role of negative stiffness in controlling of MR dampers for damping of
flexible structures. Boston et al. [30] evaluated the optimal closed-form solution for friction
damping with negative stiffness applying an MR damper to cable vibration and identified the
optimal shape of the force-displacement hysteresis loop. Very recently, Weber et al. [36, 37]
demonstrated control strategies considering negative stiffness on cables with an MR damper.
However, the efficiency of these techniques is still to be investigated numerically and exper-
imentally by different optimal approaches on building structures because maximum work
done in earlier are mainly on benchmark building problem.

The second part of the thesis considers the realisation of the desired control force by an
MR damper. The key to accurate tracking of the control force is a representative inverse
model of the MR damper, where the applied current is determined via knowledge of the
desired force. This part of the thesis presents a non-parametric modelling technique for
neural network based system identification of the forward and inverse dynamics of the MR
damper. The real MR damper input-output data has been considered as training data for
identification of both the forward and the inverse model. The inverse feedforward neural
network model is then used for force tracking for closed loop simulation.

The third part of the thesis presents closed loop implementation of the control strategies
by use of a rotary MR damper on a five-floor shear frame structure with harmonic base
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excitation. The shear frame structural model has been identified experimentally from a free
decay test and by modal analysis.

Further in this thesis, two numerical studies based on benchmark problems are presented.
One of the numerical studies deals with the performance of the introduced semi-active
control schemes and is evaluated on the basis of the response of a base-isolated benchmark
structure, introduced by Narasimhan et al. [38, 39], exposed to real earthquake record. For
the second numerical study on benchmark problems, the evaluation is based on the response
of a 76-floor wind excited tall building introduced by Yang et al. [40]. This building has
been scaled and the scaled structure has been used in a wind tunnel test by Samali et al. [41]
to generate along-wind and across-wind loading data. The control strategies are primarily
based on modal analysis where an approximate solution is obtained as an interpolation
between the solutions of the two limiting eigenvalue problems: the undamped eigenvalue
problem and the constrained eigenvalue problem in which the MR damper is fully locked in
its position. Optimal forces are evaluated for pure viscous, viscous with negative stiffness
and friction damping with negative stiffness. All of these control strategies are applied to a
flexible structure by an MR damper.

The text is organised as follows. In Chapter 2, a systematic approach to the neural network
(NN) modelling of both the forward and the inverse behaviour of a rotary MR damper
is discussed. An optimisation procedure demonstrates that accurate training of the NN
architecture for the forward damper model is obtained with velocity and current as input
states. A similar architecture is then used to train the NN of the inverse MR damper
behaviour, but with the absolute values of velocity and force as input states to estimate the
current that is always a positive quantity. The forward and inverse models are validated by
several measurements at different displacement frequencies and with different constants and
half-sinusoidal current records. The validation shows satisfactory results for the forward as
well as the inverse model. The validated models are finally used to emulate pure viscous
damping. This simulation demonstrates that the main error of the inverse NN based model
is due to the modelling errors of the pre-yield behaviour of the MR damper.

Chapter 3 describes an experimental study to determine the system model parameters from
test data. The experimental tests were performed using a shaking table. A five-mass shear
frame structure has been used for model identification and it is excited by ground acceleration
by the shaker. It is assumed that all the mass of the floor is lumped at the center of each
floor. The stiffness of the model is determined from the mode shape which is constructed
from the frequency transfer function from test data. The damping matrix is determined from
the estimated damping ratio from a free decay test. This five-degree-of-freedom structure
possesses five natural frequencies corresponding to the number of degrees of freedom. When
the structure is subjected to the excitation, resonance is induced if the frequency of excitation
is close to each of one of the natural frequencies of the structure. From the frequency response
the resonance frequencies are determined. Validation of the model parameters is carried out
by independent data sets and shows satisfactory results.

Collocated control strategies for a base excited shear frame building, where a single magne-
torheological (MR) damper has been placed between ground and first floor are initially given
in Chapter 4. The calibration of the desired damper force is based on maximisation of the
damping ratio of the first vibration mode, and the associated damper current is determined
by an inverse MR damper. Four types of collocated control strategies are considered: (a)
pure viscous damping, (b) viscous damping with negative stiffness, (c) amplitude dependent
friction damping with negative stiffness and (d) model reference neural controlling, which
mimics the behaviour of friction damping with negative stiffness. For the last three models,
the desired stiffness is considered as negative, apparently softening the structure in the loca-
tion of the damper, so that the damping of the structure is increased while the transmission
of the base excitation to the structure is potentially reduced. The closed-loop simulation is
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discussed in detail.

In Chapter 5, closed loop implementation of control laws for vibration mitigation of the base
excited five-floor building using a rotary MR damper is discussed. The experimental tests
are performed using a shaking table and it is excited by harmonic base acceleration using
a shaker. The MR damper is located in between ground and first floor. The inverse MR
model is designed on the basis of the velocity of the damper and, moreover, some control laws
are dependent on the velocity. Therefore, correct velocity estimation from displacement or
acceleration data is very important. The Kinematic Kalman Filter (KKF) is used to estimate
the velocity of the damper by fusing displacement and acceleration. A detailed description
of the experimental setup and a comparison of the results are presented.

The numerical studies on the implementation of control strategies for vibration reduction for
two benchmark problems are discussed in Chapter 6. Both the numerical study deals with
the performance of the introduced semi-active control schemes. The first numerical study
is evaluated on the basis of the response of a base-isolated benchmark structure exposed
to real earthquake record and the second numerical study is evaluated on the basis of the
response of a wind excited 76 floor tall building.

In Chapter 7, the conclusions of the presented work are summarised.



Chapter 2

Modelling and Identification of a Rotary MR Damper

Magnetorheological (MR) dampers used for controlled damping of structural vibrations have
been given considerable attention during the last decades because they offer a possibility
of adapting their semi-active force in real-time to the structural vibrations [42]– [45]. MR
dampers are suitable for mitigation of vibrations in large civil engineering structures because
they combine large control force ranges, low-power requirements, fast response time and
failsafe performance [9]. MR dampers are either operated at zero or constant current,
which is called passive-off and passive-on strategies [46] or they are controlled in real-
time within a particular feedback loop [46, 47]. In the latter case the structural response
is typically measured in the damper position and the MR damper current is controlled
in real-time for minimum tracking error with respect to the desired control force. The
force tracking task is usually solved by a feedforward model in order to avoid costly force
sensors [46, 47, 48] in the real-time implementation. The inputs of the feedforward model
are the actual collocated displacement, velocity or acceleration, or any combination of these
states, and the actual desired control force. The output is the actual desired current. This
feedforward model is also called the inverse model of the MR damper. The desired current
is tracked by a current driver that compensates for the coil impedance of the MR damper.
Therefore, an MR damper model is required with damper force, displacement, velocity
or acceleration as possible input states and the damper current as model output. The
forward model of the damper represents the damper itself, while the inverse model is used
for e.g. tracking of a desired damper force in closed loop control. Many parametric and
non-parametric forward models have been presented in the literature for MR dampers of the
classical cylindrical type. Some of the prominent parametric approaches are the Bouc-Wen
model, which captures both the pre- and post-yield regions [49, 50], the Dahl model, which
basically represents current dependent friction [51, 52], the Bingham model, which describes
an elasto-plastic material behaviour with supplemental viscous effects [53] and the LuGre
approach, which models the MR fluid particle chains as brushes with sticking and sliding
effects against the damper housing [54, 55, 56]. These models have also been extended by
additional stiffness, viscous and mass elements to account for the accumulator behaviour, the
current dependent viscous force and the inertia of the damper piston and other accelerated
parts [57, 58]. The parameters for minimum model error are typically obtained from the
test data directly [59, 60] or by a numeric optimisation tool [61, 62, 63]. Once calibrated,
these parametric approaches can be used as observers to solve the force tracking problem
without feedback from a force sensor [48].

Non-parametric models are mainly based on fitted polynomials [47], genetic algorithms [64],
fuzzy logic [65], neural networks [66]– [72] or hybrid approaches [73]. As demonstrated
in [66] the neural network approach is able to model the forward MR damper behaviour
fairly accurately. Most of the neural networks are trained with simulated input-output
data, usually generated by the Bouc-Wen model, as e.g. in [68]. Few neural networks have
been trained with measured data [72], containing system noise and knocking effects due to
bearing tolerances. This makes the training of the network much more difficult. The neural
network architecture is usually found by a trial and error method, and the resulting neural
network architecture is therefore not necessarily optimal with respect to the minimisation

6



2.1 Experimental Setup 7

of the modelling error.

The present chapter provides a systematic approach to the design and calibration of neural
networks of the forward and inverse behaviour of a rotary type MR damper based on mea-
sured data. The MR damper behaviour is measured at constant and half-sinusoidal current.
The half-sinusoidal current tests are performed because they generate training data very
similar to the current records associated with emulated viscous damping. In the first part
of this chapter a parametric modified Bouc-Wen model of the rotary type MR damper is
developed from experimental data sets. The original Bouc-Wen model has been modified to
capture the important characteristics of the MR damper behaviour. But the parametric ap-
proach is only suitable to model the forward dynamics of the MR damper, while the inverse
dynamics are difficult to obtain and model because of the complicated and highly non-linear
properties of the MR damper model. The chapter further on describes a semi-systematic
approach to a suboptimal neural network architecture for finding the minimum modelling
error. The architecture of the neural networks for both the forward and the inverse MR
damper models is presented. The forward and inverse models are validated by measurement
data that is independent of the training data, and good accuracy is reported. Finally, the
validated inverse and forward models are used in numerical simulations, where pure viscous
damping is reproduced in real-time. The detailed methodologies about forward and inverse
MR damper modeling using neural network are also discussed in [P1, P5].

2.1 Experimental Setup

The MR damper considered is an MR damper of the rotary type manufactured by Maurer
Söhne GmbH with a maximum current limit of 4 A. The damper is shown in Figure 2.1
with the hydraulic test set up. The rotary type MR damper consists of a housing including
the MR fluid and the rotating part of the disc. The MR fluid is a suspension of oil with
magnetizable particles with average diameter of 5 μm and some additives. The particles
and the ferromagnetic parts of the housing and of the disc are magnetized by the magnetic
field that is produced by two coils which are installed within the housing at both sides of
the disc. The magnetized particles built chains and stick to the disc and to the housing
When the disc starts to rotate the particle chains are initially stretched before they start
to slide relative to the surfaces of the disc and/or the housing. The particle chains may
also break, whereby rupture between particles occurs. The phase where particle chains are
elastically stretched is commonly denoted as the pre-yield region of the MR fluid, while the
sliding phase is called the post-yield region. The particle chains start to slide when the dry
friction force between particles or between particle chains and disc or housing is balanced
by the elastic force due to elongation of the particle chains. Since this sticking depends
strongly on the magnetization of the MR fluid, and thereby on the MR damper current, the
post-yield force of the MR damper typically exhibits a strong current dependency. Because
the superposed viscous force is usually rather small and the MR fluid viscosity depends only
slightly on the coil current, the applied current primarily controls the friction force of the
MR damper, while the viscous force component is mainly governed by the rotating speed of
the disc and the inherent viscosity of the MR fluid. In order to be able to control the total
MR damper force relative to a desired control force, the coil current must be modulated so
that the control force tracking error is acceptable. Due to the non-linear beaviour of the
MR damper force, i.e. the non-linear relation between current and sticking force and the
non-linear current dependency of the MR fluid viscosity, feedback control only with a force
sensor may fail to track the desired force accurately. Figure 2.2(a) shows a close-up of the
damper of the rotary type at the Swiss Federal Laboratory of Material Science and Research
(EMPA) and the schematic diagram of the damper is shown in Figure 2.2(b). Further details
on the damper characteristics can be found in [48, 60] and also in [P1]. The damper force
is slightly velocity dependent and the force level is approximately 30 N at 0 A and 300 N
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Figure 2.1: Hydraulic test set-up with rotary MR damper.

at 4 A. The training and the validation data is obtained from forced displacement tests
using a hydraulic testing machine of the INSTRON type, see Figure 2.1. The desired piston
displacement is defined in Matlab/dSPACE that outputs the displacement command signal
to the INSTRON PC unit. A flow diagram of the experimental setup is shown in Figure 2.3.

The actual displacement is captured directly as output from the INSTRON machine and
acquired by the dSPACE system at a sampling frequency of 1000 Hz. The sampling frequency
for the force and acceleration measurements are 1000 Hz. The desired MR damper current
is also defined in Matlab/dSPACE. The output, i.e. desired current, is tracked using a

MR fluid

steel disc

metallic housing

coil

Figure 2.2: Rotary MR damper (a) and Schematic view of the damper (b)
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Figure 2.3: Schematic of test set-up.

current driver of the KEPCO type. The actual damper current is measured by the KEPCO
amplifier and acquired by the dSPACE system. The MR damper force is measured by a
500 N load cell manufactured by PCM, and the acceleration of the piston is also measured
in order to use it later, if required, as training data. Furthermore, the acceleration is
suitable for detection of the knocking effects due to the finite bearing tolerances of 0.01-0.02
mm of the joints of the damper rod. A summary of the tests conducted is provided in
Table 2.1. Each test is performed twice: The first set is used as training data, while the
second completely independent set is used to validate the neural network models. Tests 1-10
are performed at constant current, while tests 11-19 are conducted at half-sinusoidal current,
which is the mathematically absolute value of current. As seen in Table 2.1 the desired
displacement is pure sinusoidal, combining amplitudes of 5 mm and 10 mm, and frequencies
range from 0.5 Hz to 2.2 Hz [P1]. The training set and validation data set are separated
each other by combining different displacement and current with different amplitude and
different frequency. The table only showing some data example. This amplitude range
of displacement is based on practical information about the structure which is used for
implementing control strategies. The amplitude range contains the maximum amplitude
which the structure can sustain before collapse. Moreover, in the frequency range the first
resonance frequency of the structure is contained.

2.2 Parametric Model of the MR Damper: Simplified Bouc-Wen Model

The rotational MR damper is modelled using the simplified Bouc-Wen hysteresis model.
The parameters of the model have been calibrated from data sets generated by experiments,
where the damper has been driven harmonically in a testing machine at various frequency-
amplitude combinations of current and displacement. The modified Bouc-Wen model by
Spencer et al. [11] was formulated for the cylindrical type MR damper. In the present case
this model is slightly simplified, mainly because the cylindrical damper concept has no need
for an accumulator chamber, which for many dampers of the cylindrical type introduces
an additional stiffness component in the mathematical model. A schematic diagram of the
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Table 2.1: Measurement data for training of NN and model validation.

train-
ing
set

vali-
dation
set

desired displacement desired current

1a 1b sine, 5 mm, [0.5, 1.0, 1.27, 1.8, 2.2] Hz 0 A

2a 2b sine, 5 mm, [0.5, 1.0, 1.27, 1.8, 2.2] Hz 1 A

3a 3b sine, 5 mm, [0.5, 1.0, 1.27, 1.8, 2.2] Hz 2 A

4a 4b sine, 5 mm, [0.5, 1.0, 1.27, 1.8, 2.2] Hz 3 A

5a 5b sine, 5 mm, [0.5, 1.0, 1.27, 1.8, 2.2] Hz 4 A

6a 6b sine, 10 mm, [0.5, 1.0, 1.27, 1.8, 2.2] Hz 0 A

7a 7b sine, 10 mm, [0.5, 1.0, 1.27, 1.8, 2.2] Hz 1 A

8a 8b sine, 10 mm, [0.5, 1.0, 1.27, 1.8, 2.2] Hz 2 A

9a 9b sine, 10 mm, [0.5, 1.0, 1.27, 1.8, 2.2] Hz 3 A

10a 10b sine, 10 mm, [0.5, 1.0, 1.27, 1.8, 2.2] Hz 4 A

11a 11b sine, 5 mm, [0.5, 1.0, 1.27, 1.8, 2.2] Hz half-sin, 0 A, [0.5, 1.0, 1.27, 1.8, 2.2] Hz

12a 12b sine, 5 mm, [0.5, 1.0, 1.27, 1.8, 2.2] Hz half-sin, 1 A, [0.5, 1.0, 1.27, 1.8, 2.2] Hz

13a 13b sine, 5 mm, [0.5, 1.0, 1.27, 1.8, 2.2] Hz half-sin, 2 A, [0.5, 1.0, 1.27, 1.8, 2.2] Hz

14a 14b sine, 5 mm, [0.5, 1.0, 1.27, 1.8, 2.2] Hz half-sin, 3 A, [0.5, 1.0, 1.27, 1.8, 2.2] Hz

15a 15b sine, 5 mm, [0.5, 1.0, 1.27, 1.8, 2.2] Hz half-sin, 4 A, [0.5, 1.0, 1.27, 1.8, 2.2] Hz

16a 16b sine, 10 mm, [0.5, 1.0, 1.27, 1.8, 2.2] Hz half-sin, 1 A, [0.5, 1.0, 1.27, 1.8, 2.2] Hz

17a 17b sine, 10 mm, [0.5, 1.0, 1.27, 1.8, 2.2] Hz half-sin, 2 A, [0.5, 1.0, 1.27, 1.8, 2.2] Hz

18a 18b sine, 10 mm, [0.5, 1.0, 1.27, 1.8, 2.2] Hz half-sin, 3 A, [0.5, 1.0, 1.27, 1.8, 2.2] Hz

19a 19b sine, 10 mm, [0.5, 1.0, 1.27, 1.8, 2.2] Hz half-sin, 4 A, [0.5, 1.0, 1.27, 1.8, 2.2] Hz

Bouc-Wen

Co

x

F

Figure 2.4: Bouc-Wen model of MR damper

simplified Bouc-Wen model is shown in Figure 2.4.

The governing equations for the damper force f predicted by the present Bouc-Wen model
can be written as follows:

f = αz + c0ẋ (2.1)

where the hysteresis effect follows from the evolutionary variable z controlled by the Bouc-
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Table 2.2: MR damper parameters

αa 4.038 N/m η 100 s−1

αb 1.984 N/m γ 410 s−2

αc 7.901 N/m β 410 s−2

αd -0.704 N/m A 1000

c0a 10 Ns/m c0b 100 Ns/m

Wen equation
ż = −γ|ẋ|z|z|n−1 − βẋ|z|n +Aẋ (2.2)

The gain parameters on the hysteresis effect and the viscous effect are in the present case
described by cubic and linear functions of the applied current, respectively:

α = αa + αbu+ αcu
2 + αdu

3 , c0 = c0a + c0bu (2.3)

The dynamics involved in the MR fluid reaching equilibrium state is represented through
first order filter. The applied current u is described with a time delay relative to the desired
current I by the following first order filter:

u̇ = −η(u− I) (2.4)

A Nelder-Mead direct search simplex method based on multidimensional unconstrained non-
linear optimization is available by the standard MATLAB function fminsearch. It is used to
estimate the parameters of the modified Bouc-Wen model by minimizing a scalar quadratic
cost function of the system variables of the model. It is turns out this is a simple and effective
derivative free optimization method. The objective function used for minimization in the
direct search method is the RMS value of error between the measured and predicted force
values. The parameters of the rotary type MR dampers are derived from measurement data
from the real MR damper. Maximum number of iteration is 1000 and the minimum error
is 0.01. Convergence is an important issue for this algorithm. Sometimes this algorithm
converge on non-stationary point instead of stationary point.This can be solved by restart
the algorithm with the final point as the new initial guess. The flow chart for the parametric
identification method of rotary type MR damper from experimental data is shown in Fig-
ure 2.5. The estimated parameters of the simplified Bouc-Wen model for the rotational MR
damper are given in Table 2.2. The value of n is 2.

Typical force-displacement and force-velocity hysteresis loops for the rotational MR damper
at different constant current are shown in Figure 2.6. It is visible that the MR damper
behaves approximately as a friction damper where the friction force level can be altered by
changing the applied damper current. The opening of the force-velocity loops indicates some
pre-yield stiffness. The predicted force and the measured force value are compared in time
domain. The force-displacement hysteresis diagram for measurement data and predicted
data from the Bouc-Wen model are compared. In Figure 2.7(a,c), the comparisons of the
measured force data and the predicted force data from the model at constant current 0 A and
sinusoidal displacement of 5 mm at two different frequency 0.5 Hz and 1.0 Hz are illustrated.
The comparision between force-displacement trajectories for measured and predicted force
data at constant current 0 A and sinusoidal displacement of 5 mm at two different frequency
0.5 Hz and 1.0 Hz are also shown in Figure 2.7(b,d). The model validations in time domain
and force-displacement trajectories for constant current 2 A and sinusoidal displacement 5
mm, 1.0 Hz are shown in Figure 2.8(a,b)and for sinusoidal current 4 A, 2.0 Hz and sinusoidal
displacement 5 mm, 2.0 Hz are shown in Figure 2.8(c,d). The model validations in time
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Figure 2.5: Parametric identification flow chart.

domain and force-displacement trajectories for sinusoidal current 1 A, 1.0 Hz and sinusoidal
displacement 5 mm, 1.0 Hz are shown in Figure 2.9(a,b) and for sinusoidal current 3 A, 1.0
Hz and sinusoidal displacement 5 mm, 1.0 Hz are shown in Figure 2.9(c,d). The measured
and predicted forces from model are quite identical, but the Bouc-Wen model has significant
limitation in the post yield region because the real rotary damper has high nonlinearity in
post yield region which is not properly described by Bouc-Wen model. It is also visible in
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Figure 2.6: Force-Displacement (a) Force-Velocity hysteresis loop (b)
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Figure 2.7: Model validation at current 0 A, displacement 5 mm, 0.5 Hz (a,b),
Model validation at current 0 A, displacement 5 mm, 1.0 Hz (c,d)

the above mentioned figures that there is certain asymmetry in the hysteresis loops of the
MR damper obtained from the measurement data. This asymmetry is mainly due to the so-
called stribeck effect, which occurs between the pre- and post-yield regions. It is one of the
important issues concerning the accurate modelling of rotary type MR dampers. Figure 2.7
shows the damper response at zero current and fairly slow motion with frequencies of 0.5Hz
and 1.0Hz. In Figure 2.8 the current is increased to 2A and 4A, while the frequency is also
increased slightly. Furthermore, the 4A case is for sinusoidal current with frequency 2.0Hz.
Thus, this figure shows the effect of non-constant damper current, and the difference to the
passive case is clearly observed. In Figure 2.9 the current is also sinusoidal at low amps and
slow motion. In that case the deviation from typical passive behaviour is not as significant.
Pinching effect is visible in MR damper hysteresis diagram and this is mainly due to MR
fluid flow constriction between disc and the metallic housing in rotational MR damper. The
preliminary results for the Bouc-Wen model in Figures 2.7-2.9 show that the rotary MR
damper can be represented by the parametric Bouc-Wen model, but due to some limitations
it has difficulties representing some of the highly non-linear effects. For this reason the
non-parametric approach based on neural network modelling is adopted for a proper and
accurate modelling of both the forward and inverse MR damper dynamics.

2.3 Non-Parametric Neural Network Model of MR Damper

This section describes the post processing of the measurement data and the training of the
neural network. Section 2.3.1 describes the filtering of the measurement data and how the
single test series are combined to get a full training data time history. In Section 2.3.2 the
neural network architecture is optimised, while Subsection 2.3.3 presents the identified neural
network models used to model both the forward and the inverse MR damper characteristics.
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Figure 2.8: Model validation at current 2 A, displacement 5 mm, 1.0 Hz (a,b),
Model validation at current sin 4 A, 2.0 Hz displacement 5 mm, 2.0 Hz (c,d)
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Figure 2.9: Model validation at current sin 1 A, 1.0 Hz displacement 5 mm, 1.0 Hz
(a,b), Model validation at current sin 3 A, 1.0 Hz displacement 5 mm, 1.0 Hz (c,d)
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Figure 2.10: Filtering of measurement data.

2.3.1 Post Processing of Measurement Data

The measurement data from the rotary MR damper from the test setup contains noise and
has also some offset. The measurement data is initially passed through a low-pass filter in
order to avoid that the neural network is trained by high-frequency signal components, e.g.
due to noise and knocking effects [P1]. These types of external effects typically result in an
increasing modelling error in the neural network models. The applied low-pass filter has the
following properties:

� Digital Butterworth low-pass filter: It is very efficient for removing high-frequency
noise from measurement data.

� Filter order 2: The filter order is kept low so that the main shape and the peak values
of the measurement data are not altered.

� Cutoff frequency 100 Hz: The cutoff value is kept higher to remove the high-frequency
noise from the measurement data without losing its proper shape.

Any offset in the displacement, acceleration and force signals is removed by simply balanc-
ing of positive and negative maxima under steady state conditions. Another possibility of
removing offset is a high-pass filter. But in the present case the simple adjustment via the
sequence of minima and maxima effectively removes the offset. The effect of the filtering of
displacement, acceleration, damper current and the damper force is shown in Figure 2.10.
For the displacement and the damper current the high-frequency dithers are carefully re-
moved by the low-pass filter, and the main task is basically to avoid a too significant change
in the phase and a reduction in the peak values. This is shown in Figure 2.10(a), where
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the displacement amplitude is 10mm and the frequency is 1.0Hz, and in Figure 2.10(c),
where the damper current is half-sinusoidal with an amplitude of 3A. The acceleration
measurements are very sensitive to the various sources of noise, and the influence of the
filter therefore becomes evident in Figure 2.10(b). Figure 2.10(d) shows the damper force,
where the main modification is the removal of the offset level. Note that the constant force
level at zero crossing is due to the previously mentioned knocking because of finite bearing
tolerances. The effect is mainly visible in the acceleration signal, which is also shown in
Figure 2.10(d). This effect has a significant influence on the neural network modelling, and
a proper filtering is therefore important [P1].
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Figure 2.11: Estimated velocity (a) and training data time history (b).

The training of the NN also requires the damper velocity ẋ, which is not directly measured.
It is instead estimated at each time instant k by numerical differentiation of the displacement
x as

ẋ(k) =

(
x(k) − x(k − 1)

t(k)− t(k − 1)

)
(2.5)

with initial condition
ẋ(1) = 0 (2.6)

The inherent noise resulting from the numerical differentiation is subsequently removed by
the following low-pass filter:

� Digital Butterworth low-pass filter.

� Filter order 2.

� Cutoff frequency at 20 Hz: Strong filtering is needed and a fairly low cutoff frequency
is selected.

The so-called Kinematic Kalman filter is another approach to deriving the velocity when
displacement and acceleration are available. This will be discussed in Chapter 5. However,
for this case numerical differentiation gives sufficient and good training data after some
filtering.

Figure 2.11(a) shows the velocity record obtained by differentiation of the sinusoidal dis-
placement at an amplitude of 5 mm and a frequency of 1 Hz. The amplitude of the velocity
is 31 mm/s, which agrees well with the analytical value of 31.4 mm/s obtained from a dis-
placement signal at an amplitude of 5 mm and a frequency of 1.0 Hz. The figure also shows
the corresponding displacement, and it is observed that the phase shift between displace-
ment and velocity is one quarter of a period. The displacement amplitude in Figure 2.11(a)
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is multiplied by 2π. Figure 2.11(a) therefore demonstrates that the method in (2.5,2.6)
leads to a velocity signal with the correct amplitude and phase compared to the measured
displacement.

After the signal post processing, 10 steady state cycles of the data sets 1-19 in Table 2.1
are isolated and then connected one after each other to get a single continuous time history
for displacement, velocity, acceleration, current and force, respectively. The measured dis-
placement data is selected as a sinusoidal signal at two different amplitudes of 5mm and
10mm. These amplitude values are selected because the maximum amplitude of the damper
displacement is expected to be located in the this range when operating on the shear frame
structural model. Each amplitude is combined with five different frequencies in the range
from 0.5Hz to 2.2Hz, which contains the resonance frequency of the first vibration mode of
the shear frame structure. In this way, 10 displacement data sets are produced. And since
velocity is obtained by numerical differentiation also 10 velocity data sets are available. The
damper current is produced in two ways. A constant current at different constant values
from 0A to 4A are taken as the initial current input, while half-sinusoidal current records
are also applied at five different amplitudes from 0A to 4A. Each amplitude is characterized
by five different frequencies from 0.5 Hz to 2.2 Hz. The amplitude range is selected between 0
and 4A because these values are the limiting values of the MR damper. Figure 2.11(b) shows
the combination logic for the generation of the resulting time histories used for the neural
network training and validation. It should be noted that the sets are always connected at
zero crossings of the displacement. To have a reasonable amount of data for the training
of the neural network, the time histories are finally downsampled from 1000 Hz to 200 Hz.
The downsampling is very essential for proper training of neural network architecture.

2.3.2 Feedforward Backpropagation Neural Network Architecture

Two basic types of networks can be differentiated: networks with feedback and networks
without feedback. For some networks it is characteristic that for every input vector laid on
the network, an output vector is calculated, which can be read from the output neurons.
In this case there is no feedback. Hence, only a forward flow of information is present.
Networks with this structure are called feedforward networks. Backpropagation is one of
the effective tools in feedforward networks. Backpropagation is a systematic approach to
the training of multilayer neural networks, and it has a strong mathematical basis. It is a
multilayer forward network using the extended gradient-descent based delta learning rule,
commonly known as teh backpropagation of errors rule [74, 75]. A generalised multi-layer
feedforward backpropagation neural network with one layer of z hidden units is shown in
Figures 2.12. The y output unit has woj bias and the z hidden unit has vok as bias. The
algorithm used to train the neural network architecture is given in Table 2.3.

Backpropagation provides a computationally efficient method for changing the weights in
a feedforward network, with differentiable activation function units, to learn a training set
of input-output examples. The aim of this network is to train the net to achieve a balance
between the ability to respond correctly to the input patterns used for training and the
ability to provide food responses to the input that are similar.

Modelling of a given system using the neural network tool requires basically three steps: (a)
measurement of the input and output states of the system being considered, (b) choosing
the architecture of the particular neural network and (c) training the chosen architecture
with the measurement data [P1]. The neural architecture is characterised by:

� The kind of states used as inputs.

� The number of used previous values of input states.
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Figure 2.12: Feedforward Backpropagation Neural Network

� The number of hidden layers and neurons per layer.

Because of the large variety of modelling parameters, the trial and error method is often
applied to find a neural network architecture with acceptable modelling errors. Using the
trial and error approach the training yields the best parameters for the chosen neural net-
work architecture, but not necessarily the best neural network architecture with the best
parameters. The training algorithm of backpropagation involves four stages, viz.

� Initialization of weight

� Feed forward

� back propagation of errors

� updating of the weights and biases (if there are any)

At the first stage, which is initialization of weights, some small and random values are
assigned. At the feedforward stage, each input receives an input signal and transmits this
signal to each of the hidden units. Each hidden unit then calculates the activation function
and sends its signal to each output unit. The output unit calculates the activation function
to form the response of the net for the given input pattern. During the backpropagation of
errors, each output unit compares its computed activation with its target value to determine
the error associated with this unit for the pattern concerned. Based on the error, the factor
is computed and used to distribute the error at the output unit back to all units in the
previous layer. Similarly, the factor is computed for each hidden unit. At the final stage,
the weight and biases are updated using the factor and the activation.

In the present work, a semi-systematic approach is used to find a neural network architecture
close to the optimum. The procedure is illustrated schematically in Figure 2.13. A number
of neural networks are trained to model the forward MR damper behaviour with the current
records and one, or several, of the time histories for displacement, velocity and acceleration,
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respectively, as input states. The number of previous states and the number of hidden
layers and neurons are also varied. For all hidden layers the tangent sigmoid function is
chosen as transfer function, while a linear transfer function is chosen for the output layer.
All trained neural network approaches are based on the Levenberg-Marquardt optimisation
method [74, 75], using the error(k) between the target force f(k) and the estimated force

f̂(k) by backpropagation. When the training is finished, the neural network architecture is
stored and a new neural network architecture is trained for different input properties. After
all possible combinations of input data have been used for training of the neural networks
architecture, the particular neural network architecture with the smallest modelling error is
stored as the best neural networks architecture. This neural networks architecture is then
denoted as the suboptimal neural network, because the transfer functions have not been
varied. This systematic optimisation strategy shows the following trends:
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Figure 2.13: Procedure to find suboptimal neural networks architecture

� Velocity is a mandatory input besides current. This is also confirmed by the large
number of parametric MR damper models that are based on velocity and current as
input states.

� Using acceleration as additional input besides velocity and current increases the noise
in the estimated force but not the model accuracy.

� Using displacement as additional input besides velocity and current does not decrease
the modelling error. This can be explained by the fact that the velocity is deter-
mined from displacement (2.5). Another reason is that the rotary MR damper has no
accumulator which is known to introduce stiffness and displacement dependence.

� Using displacement and acceleration besides velocity and current as additional inputs
does not decrease the modelling error.

� It seems that three previous values, two hidden layers and six neurons per hidden layer
provide a suitable compromise between modelling error and computational effort.

2.3.3 Neural Network Model Structure for MR Damper

For efficient operation of the backpropagation network, appropriate selection of the param-
eters used for the training is necessary.

The initial weights will influence whether the net reaches a global (or only a local) minimum
of error and if so how rapidly it converges. If the initial weight is too large the initial input
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Figure 2.14: neural network architectures of forward MR damper model

signals to each hidden or output unit will fall in the saturation region where the derivative
of the sigmoid has a very small value. If the initial weights are too small, the net input to
a hidden or output unit will approach zero, which then causes extremely slow learning. To
get the best result the initial weights are set to random numbers between -0.5 and 0.5 or
between -1 to 1.

Selection of learning rate is also very important to efficient neural modelling. A high learning
rate leads to rapid learning, but the weights may oscillate, while a lower learning rate leads
to slower learning. In order to adopt an optimal learning rate, the learning rate is increased
to improve the performance and decrease the error value.

The motivation for applying the backpropagation net is to achieve a balance between mem-
orization and generalization. It is not necessary to continue the training until the error
reaches a minimum value. The weight adjustment is based on training patterns. As long
as the error for the validation decreases, the training continues. When the error begins to
increase, the net is starting to memorise the training patterns, and at this point the training
is terminated [P1, P5].

The forward NN architecture that is found to minimize the error of the forward MR damper
model is based on velocity and damper current as input states, with three previous values
each, and it contains two hidden layers of six neurons each. The architecture of the forward
NN and the inverse NN are shown in Figure 2.14 and Figure 2.15, respectively. The transfer
function g(j) of the neurone of the two hidden layers are selected as a tangent sigmoid
function, while the transfer function of the single output layer, i.e. layer 3, is selected as
a linear function. If N (j) is the number of neurons in the jth layer then N (3) = 1, since

the output layer has only a single signal output. Let O
(0)
l be the R × 1 column vector

comprising the signal inputs to the 1st hidden layer. In this case R is 8 because of the two
input variables: velocity and current, both with a current and three previous values. Let

O
(j)
l be the N (j) × 1 vector comprising the signal outputs of the jth layer. For the two

hidden layers the output are computed in terms of the sigmoid transfer function as

O
(j)
l = g(j)(W

(j)
l O

(j−1)
l + b

(j)
l ) , j = 1, 2, 3 (2.7)

The matrix W
(j)
l contains the weights of the neural connections, while b

(j)
l is the bias vector

of the jth layer, which is zero in the present application. The final output is O
(3)
l .



2.4 Model Validation 21

The architecture of the forward NN is shown in Figure 2.16 (a). Thus, the estimated force
becomes

f̂(k) = NN

[
ẋ(k) ẋ(k − 1) ẋ(k − 2) ẋ(k − 3)
i(k) i(k − 1) i(k − 2) i(k − 3)

]
(2.8)

whereNN [..] represents the neural network function and i is the damper current. Figure 2.16
(b) shows the corresponding neural network for the inverse damper model, which is also
based only on velocity besides the damper force as input states. In order to estimate the
MR damper current î(k) the neural network for the inverse model uses the actual and three
previous values of the two input states,

î(k) = NN

[
|ẋ(k)| |ẋ(k − 1)| |ẋ(k − 2)| |ẋ(k − 3)|
|f(k)| |f(k − 1)| |f(k − 2)| |f(k − 3)|

]
(2.9)

Irrespective of the sign of velocity and/or force, the damper current is always a positive
quantity. Therefore, the neural network architecture is trained using the absolute values of
the two input states. This approach helps to avoid the estimated current exhibiting negative
spikes when, e.g. tracking a desired viscous damping force. Thus, the modelling error is
minimized.

2.4 Model Validation

The model validation is carried out for independent and experimentally determined time
records. Sections 2.4.1 and 2.4.2 consider the neural network of the forward and inverse
damper model, respectively, while Section 2.4.3 demonstrates that the presented neural
model is able to emulate pure viscous damping.

2.4.1 Forward MR Damper Model

The forward MR damper model is validated using the validation data sets 1b-19b listed in
Table 2.1. Due to the large amount of validation data, the measured and simulated force
displacement trajectories are compared for some selected tests. The selection is made such
that the comparison is depicted for all displacement amplitudes, frequencies and currents.
Figure 2.17 and 2.18 show the results for constant current, and Figure 2.19 and 2.20 those
for half-sinusoidal current. As seen from the figures, the forward MR damper model is able
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Figure 2.16: neural network architectures of forward (a) and inverse (b) MR damper
models and their training.

to predict the main characteristics of the MR damper being considered with fairly good
accuracy: The strong current dependent yield force is captured well, the slope of the pre-
yield region is estimated very accurately in all cases [59, 60] and the force response due to
the aggregation and radial migration of particles [56], which is visible by the rather slow
force increase after the damper rod turns it direction, is also predicted satisfactorily. It is
evident that all of the major damper characteristics are predicted significantly better for the
half-sinusoidal current in Figures 2.19 and 2.19 than for the constant current case shown
in Figures 2.17, 2.18. The harmonic signal for the current is most effective for the neural
network training because the MR damper runs smoothly with harmonic current input at
different amplitudes and frequencies.

2.4.2 Inverse MR Damper Model

The inverse MR damper model is also validated using the validation data sets 1b-19b in
Table 2.1. The results for constant current, two different displacement amplitudes and
four different displacement frequencies are shown in Figures 2.21(a) and (b). The estimated
current shows significant spikes that might occur because the neural network architecture
has been trained not only with a constant current data but also with half-sinusoidal current
data. This is partly verified by the fact that the spikes show the same frequency character-
istics as the applied displacement. Similar results have also been reported in [68] and [72].
This property might indicate that the neural network has difficulties estimating a constant
target state accurately if the input states change periodically over time. In contrast to the
prediction of the constant current, the prediction of the half-sinusoidal current is fairly ac-
curate for different displacement amplitudes, frequencies and current amplitudes, as shown
in Figure 2.21(c,d) and in Figures 2.22 and 2.23. Despite the apparent modelling error due
to the spikes of the estimated current, these spikes are rather small compared to e.g. the
validation results presented in [68].

2.4.3 Emulation of Viscous Damping Using the Validated Model

In this section the forward and inverse models are used to determine how accurately pure
viscous damping can be emulated by the rotary MR damper of the present study. Fig-
ure 2.24(a) illustrates the flow chart of this simulation study. The velocity of the MR
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Figure 2.17: Validation of forward MR damper model for constant current of 0A
(a), 1A (b,c) and 2A (d) and different displacement amplitude and frequencies.

damper is assumed to be pure sinusoidal. This is a reasonable assumption for damping of
lightly damped structures, where the structural response is typically dominated by reso-
nance at the frequency of the critical vibration mode and with a slowly varying amplitude
envelope. The desired control force is the product of velocity and the viscous coefficient
c. The damper velocity and the desired control force are used as the input states for the
inverse MR damper model, which then estimates the corresponding damper current that
is applied to the MR damper in order to generate a pure viscous force. This force is es-
timated using the forward MR damper model. If the NN for the inverse and the forward
MR damper model are sufficiently accurate the simulated damper force should be compa-
rable to the corresponding pure viscous damper force. The simulation results are shown in
Figures 2.24(b-d). The simulated current in Figure 2.24(b) exhibits two significant spikes
on top of the approximately half-sinusoidal time history. The first spike should not occur
because the desired force decreases to zero. Hence, zero current would be the best choice
to track the desired viscous force as precisely as possible. The second current spike occurs
when the MR fluid is operated within the pre-yield region. This spike is therefore needed
because the actual MR damper force at 0 A within the pre-yield region is smaller than
the desired viscous force that increases rapidly at extreme displacement due to the elliptic
force displacement trajectory of viscous damping [48]. When the MR fluid is operated in
the post-yield region, the current shows approximately a half-sinusoidal behaviour because
of the sinusoidal behaviour of the desired force, see Figure 2.22(c). The non-linear relation
between yield force and current and the force response due to the migration and aggregation
of the particles in the MR fluid [56, 60] are the reasons why the current does not show a pure
half-sinusoidal shape. Despite the mediocre estimate of the current at zero velocity and the
slightly overestimated current in the pre-yield region, the time history of the damper force
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Figure 2.18: Validation of forward MR damper model for constant current of 2A
(a), 3A (b) and 4A (c, d) and different displacement amplitude and frequencies.

in Figure 2.24 (c) and the force velocity trajectory in Figure 2.24 (d) demonstrate that pure
viscous damping is in fact tracked fairly accurately at velocities larger than 0.05 m/s.

2.5 Summary

This chapter has initially demonstrated a modified bouc-wen modelling approach towards
rotary type MR damper and later described neural network based modelling of the forward
and inverse behaviour of a rotary MR damper using measured data for training and valida-
tion. The measured data has been low-pass filtered in order to remove high-frequency signal
parts that should not be considered by the neural network during training, and offset values
were removed as well. The measured data resulting from two displacement amplitudes, five
frequencies and both constant and half-sinusoidal current was combined sequentially to get
one time history and downsampled from 1000 Hz to 200 Hz, so that the training data could
be handled by the Matlab code for the given neural network architecture. It should be noted
that too much training data may create problems in neural network design. An optimisation
procedure has been presented for identifying a neural network architecture that minimises
the error of the forward model. The procedure was tested with signals of measured displace-
ment, measured velocity and measured acceleration or any combination of these three input
states besides the measured current as input for the training. Furthermore, the number
of previous values of the input states and the number of hidden layers and neurons have
been altered to obtain the best numerical fit. To limit the computational time of this nu-
merical optimisation, the transfer functions for the hidden and output layers were fixed to
the tangent sigmoid function and the linear function, respectively. The present procedure
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Figure 2.19: Validation of forward MR damper model for half-sinusoidal current of
1A and different displacement amplitude and frequencies.

demonstrated that the modelling error is not decreased significantly:

� if displacement and acceleration are taken as inputs in addition to velocity, and

� if substantially more than three past values of the inputs are taken into account, and

� if substantially more than two hidden layers with more than six neurons are considered.

The same neural network architecture, but with force instead of current, has also been used
to model the inverse MR damper behaviour. In this case, the absolute values of velocity
and force are used for the training of the neural network that estimates current because
current is always a positive quantity. This new approach helps to avoid the output current
becoming negative when e.g. tracking a desired viscous force.

The trained forward and inverse MR damper models have been validated with measurement
data that is independent of the training data. The validation data comprised also tests at
two displacement amplitudes, five frequencies as well as both constant and half-sinusoidal
current. The validation shows that the forward model is able to predict the MR damper
force with high accuracy. Especially, the force response due to the migration and aggregation
of the MR fluid particles is captured well, and the slope of the force displacement trajectory
in the pre-yield region is predicted accurately. The validation of the inverse MR damper
model shows two particular characteristics. When the measurement data has been obtained
from constant current, the predicted current shows significant spikes at the same frequency
as the damper displacement, and only the mean value of the predicted current is really
accurate. In contrast, the prediction based on the half-sinusoidal current turns out to give
very accurate results for all amplitudes and frequencies used in the tests.
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Figure 2.20: Validation of forward MR damper model for half-sinusoidal current of
2A and different displacement amplitude and frequencies.

The validated forward and inverse MR damper models are finally used to simulate the
emulation of viscous damping. The simulation shows that the inverse model overestimates
the current in the vicinity of zero velocity, i.e. in the pre-yield region, while the output
current is quite accurate within the post-yield region. As a result, the force tracking error
is fairly large at small damper velocities but considerably small at velocities where the MR
damper is not operated in the pre-yield region.

This investigation shows that the neural network technique can be used to model the inverse
MR damper behaviour and thus solve the force tracking task directly with a sufficiently small
force tracking error.
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Figure 2.21: Validation of inverse MR damper model for constant current (a, b) and
half-sinusoidal current at 3A(c, d).
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Figure 2.22: Validation of inverse MR damper model for half-sinusoidal current at
3A (a-c) and 4A(d).
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Table 2.3: Feed Forward Back Propagation Neural Network Algorithm

Parameters:
x: Input training vector
x = (x1, ..., xi, ..., xn)
t: Output target vector
t = (t1, ..., ti, ..., tn)
δk = error at output unit yk
δj = error at output unit zj
α = learning rate
voj = bias on hidden unit j
zj = hidden unit j
wok = bias on output unit k
yk = output unit k

Step 1: Initialise weights.

Step 2: Input signal xi transmits to all units in the next hidden layers.

Step 3: For each hidden unit (zj, j = 1, ..., p), its weighted input signal
zinj = voj +

∑n
i=1 xivij

and activation function
Zj = f(zinj)
this signal transmits to all units in the output layer units.

Step 4: For each output unit (yk, k = 1, ...,m), its weighted input signal
yink = wok +

∑p
j=1 zjwjk

and activation function
Yk = f(yink)

Step 5: For each output unit (yk, k = 1, ...,m) which receives a target pattern
corresponding to an input pattern, the error information term is calcu-
lated as
δk = (tk − yk)f(yink)

Step 6: For each hidden unit (zj, j = 1, ..., n) which sums its delta inputs from
units in the layer above
δinj =

∑m
k=1 δjwjk

The error information term is calculated as
δj = δinjf(zinj)

Step 7: updating bias and weights (j = 0, ..., p) for each output unit
(yk, k = 1, ...,m)
weight correction term is ΔWjk = αδkzj
and bias correction term is ΔWok = αδk.
Therefore, Wjk(new) = Wjk(old) + ΔWjk

Wok(new) = Wok(old) + ΔWok

Updating bias and weights (i = 0, ..., n) for each hidden unit
(zj , j = 1, ..., p),
weight correction term ΔVij = αδjxi

bias correction term ΔVoj = αδj
Therefore, Vij(new) = Vij(old) + ΔVij

Voj(new) = Vok(old) + ΔVoj .

Step 8: Test the stopping condition, either minimisation of error or number of
epoch is met or not.
If not do step 2-7 again.
Else if stop.
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Figure 2.23: Validation of inverse MR damper model for half-sinusoidal current at
4A (a-d).
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Chapter 3

Modelling of a Flexible Structure

The present model identification technique uses a parametric approach to determining the
parameters of the system model. Parameters may be represented as some kind of physical
quantities such as mass matrix, damping matrix and stiffness matrix. This chapter describes
an experimental study to determine the system model parameters from test data. The
experimental tests are performed using a shaking table. A five-mass shear frame structure
has been chosen for model identification and it is excited by ground acceleration by a shaker.
It is assumed that all the mass of the floor is lumped at the centre of the mass of the floor.
Hence, the sum of the mass of the individual plate and the mass of the four columns are taken
as the lumped mass of the individual floor. The stiffness of the model is determined from
the mode shape, which is constructed on the basis of the frequency transfer function from
the test data. The damping matrix is determined from the estimated damping ratio from
a free decay test. These five-degree-of-freedom structures possess five natural frequencies
corresponding to the number of degrees of freedom. When the structure is subjected to the
excitation, the resonance is induced if the frequency of excitation is close to each of one of the
natural frequencies of the structure. From the frequency response the resonance frequencies
are determined. Three data sets have been taken from the experimental setup. The first
set comprises data from the free decay test, where the five-mass system is initially excited
by sinusoidal base acceleration at the resonance frequencies. The excitation is then stopped
and the free decay response is used for determining the damping ratio of the vibration mode.
The second set comprises data where the system is excited by sine sweep acceleration by
the shaker, and it is used for constructing the mode shape as well as for determining the
stiffness matrix. The last data set is then used for validation of model parameters.

3.1 Overview of Experimental Setup

This chapter focuses on the parametric identification of the five-mass system subjected to
dynamic loading. A three-dimensional, five-floor building frame is used in the experiments.
The structure is built in a shear frame configuration in which the building is rigidly at-
tached to the shaking table platform. The parameter of the structure is explored through
system identification tests with free and forced vibrations. The ground acceleration is ap-
plied by a shaker to the structure. The shaking table is driven horizontally by a hydraulic
actuator. The measured ground acceleration is directly found from data acquisition hard-
ware manufactured by OROS. The structure is kept vertically on the shaking table so that
the base of the system is fixed to the shaking table. The accelerometers are fixed on each
floor to measure the individual floor acceleration. The acceleration signal is taken from
the accelerometer and amplified by an amplifier and sent to OROS for processing. The
displacements are also measured by laser sensors and used in the OROS data acquisition
hardware. All measurements are in volts and conversion into an appropriate unit is done
by multiplying measurement data by the corresponding conversion factor of the particular
device. The experimental setup of the shaking table is shown in Figure 3.1, and a corre-
sponding schematic diagram of the experimental setup is given in Figure 3.2. Furthermore,
the properties of the plates and columns of the shear frame structure are given in Table 3.1.

30
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Figure 3.1: Experimental Setup without MR Damper.
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Figure 3.2: Schematic diagram of Experimental Setup
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Table 3.1: Structural parameters.

Plate Length 315 mm E(steel) 21× 1010N/m2

(Steel) Width 215 mm ρ(steel) 7.9× 103Kg/m3

Thickness 20 mm σ(steel) 0.3

Column Length 370 mm Distance between two column

(Steel) Width 10 mm Longitudinal 300 mm

Thickness 4 mm Lateral 175 mm

3.1.1 Measurement Sensors

Accelerometers are used to measure the acceleration of the shaking table as well as for
measuring the response of each individual acceleration of the five-floor structure. The ac-
celerometers are of the PCB 3701G3FA3G type and produce an output of 3 volts with a
range of 3g. The supply voltage of the accelerometer is 27 V. Laser sensors optoNCDT 2200
are used to measure directly the displacement of the plates. Three laser sensors are available
in the lab. They are mounted on a stand which is fixed on the ground. Two sensors are fixed
in first and second plate positions. The third is positioned to measure the displacement of
the third, fourth or fifth plate, depending on the goal of the test. The laser distance sensor
employs triangulation measurement principles so that it projects a beam of visible laser light
that creates a spot on a target surface. Reflected light from the surface is viewed from an
angle by a digital CMOS line scan camera inside the laser sensor. The displacement of the
target is computed from the image pixel data. The supply voltage of the laser sensor is 24 V.
This laser can measure an output of 20 mm. The conversion factors for the laser sensors are
found by calibration tests and are given in Table 3.2. A photo of one of the accelerometers
and the laser sensor is shown in Figure 3.3.

3.1.2 Hydraulic Actuators and Control Unit

The hydraulic control unit is shown in Figure 3.4. The hardware setup is manufactured by
Instron. The hydraulic cylinder used in the shaking table is a Schenk hydraulic model. The
maximum displacement of hydraulic cylinder is 180 mm. The static force is 40 kN and the
dynamic force is 80 times that of the static force.

Table 3.2: Conversion factors for sensor data.

Sensors Acceleration Displacement Force Ground

(PCB
3701G3FA3G)

(opto NCDT2200) displacement
from OROS

conversion
factor

g(≈ 9.81) m/s2/V 0.0109 m/V 50 N/V 0.018 m/V
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Figure 3.3: Laser Sensor and Accelerometer

Figure 3.4: Hydraulic Control Unit

3.1.3 Filtering

The sensor data from the laser sensor and the accelerometer always has some noise. Thus,
before applying the sensor data to modelling, filtering of the signal is necessary. The low-
pass reduces the amplitude of the signal parts above the cut-off frequency, while a high-pass
filter conversely reduces the signal part below the cut-off frequency. Thus, the low-pass filter
is effectively applied to reduce signal and measuring noise, while the high-pass filter can be
used to remove any off-set in the data. The two filter types can be combined in a band-
pass filter, where frequencies (well) within the band are passed through the filter. For the
free vibration decay test the band pass filter is applied and the frequency band is selected
at approximately the resonance frequency of the corresponding mode because in the free
vibration decay test, only the excited mode is considered. However, for the sine sweep test
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the band is selected in between a frequency lower than the first resonance frequency and a
frequency higher than the fifth resonance frequency, so that the DC part of the signals and
the noise are located at higher frequencies.

For the free decay test for first mode peak detection, the structure is excited using sinusoidal
ground displacement with a frequency equal to the first mode resonance frequency. The
signal is filtered through a band pass filter where the cutoff frequencies are chosen around
the first resonance frequency.

For effective filter design the following points are considered.

� Type of filter: Digital Butterworth band pass filter.

� Selection of filter order.

� Selection of suitable high-pass and low-pass cutoff frequency for band pass filter.

The applied band pass filter properties for acceleration and displacement measurements for
the sine sweep test and the free decay test are discussed in the following sections.

3.2 Model Parameter Identification

The method for parameter identification is presented in the following subsections. The
structural model has three main parameters: Mass matrix, stiffness matrix and damping
matrix. The structural model is considered as a shear frame structure. The mass matrix is
formulated on the basis of measuring the lumped mass of each floor, the damping matrix is
derived from a free vibration test and the stiffness matrix is calculated from a modal analysis.
The damping matrix in a modal coordinate system is constructed by a diagonal matrix where
the diagonal elements are the damping coefficients for each mode. The damping coefficient
is finally derived from the damping ratios of the individual vibration modes.

The damping ratio is evaluated mainly by the following three methods. First of all, the
peaks of the measurement signal are identified and used for constructing the decay profile.
The first method is based on linear fitting and the second on a logarithmic fitting algorithm
and the third on the average value of the damping ratio of two consecutive peaks. Peaks of
the signals are calculated for the entire range of the measurement signal. However, the only
range considered is that where the measurement signal decays. The first and the second
methods fit the peak values of the signal with linear and logarithmic curves in the region
where the measurement signal decays.

The damping ratio may be estimated from the ratio of adjacent local maxima during a free
vibration response u(t) at time t and after a period at time t+ Td. For logarithmic fitting,
the damping ratio is written as

ζ =
δ√

(4π2 + δ2)
(3.1)

where δ is the logarithmic decrement which is as follows

δ = ln

(
x(t)

x(t+ Td)

)
(3.2)

The damping ratio is evaluated from the free decay test and thus the damping matrix is
formulated. The sine sweep test is conducted next to evaluate the resonance frequencies
of all the modes to identify the mode shape from the frequency transfer function of the
measurement signal.
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Table 3.3: Resonance Frequencies.

Mode Number 1 2 3 4 5

Resonance Frequency (Hz) 1.23 3.83 6.13 8.05 9.34

Resonance Frequency (rad/s) 8.0 24.2 38.4 49.9 58.3

3.2.1 Sine Sweep Test

For evaluating the dynamic properties of a structure, a forced vibration test is performed
using sinusoidal (harmonic) loading over a range of frequencies that include all modal res-
onance frequencies. The idea is to excite the structure with harmonic loading over a range
of frequencies so that at some frequency the structure experiences resonance. Resonance
occurs when the frequency of the excitation is equal to the natural frequency of the struc-
ture. At the resonance frequency, the structure experiences its largest response, compared
to any other excitation frequency. The measured acceleration data from the sine sweep test
using Fast Fourier Transform (FFT) analysis and the five resonance frequencies correspond-
ing to the main five degrees of freedom have been identified approximately. The resonance
frequencies for the corresponding five modes are identified from Figure 3.5, which shows the
first floor acceleration data in the frequency domain. The resonance frequencies are given
in Table 3.3.

For the sine sweep test the band is determined by frequencies lower than the first resonance
frequency and higher than the fifth resonance frequency. Hereby, the DC part of the signals
and the noise are located at even higher frequencies. For the sinus-sweep test the high-pass
and low-pass cutoff frequencies are considered as 0.2 Hz and 14 Hz, respectively, which
includes all the modes. The order of the band pass filter is kept low so that the main
properties of the measurement signal are unaltered. For the sine sweep test data, the order

0 5 10 15 20 25 30 35 40

10
−8

10
−6

10
−4

10
−2

10
0

P
S

D
(a

1)
 [m

2 /s
3 ]

unfiltered
low pass filtered
high pass filtered
band pass filtered

frequency [Hz]

Figure 3.5: Filtered and unfiltered acceleration in the frequency domain
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is chosen as 3. The five resonance frequencies for the corresponding five modes are also
found from first five modal resonance frequency from Figure 3.5. It also shows some other
higher frequencies which are mainly arrives due to flexible support. The sine sweep test
is conducted to evaluate the mode shape for five different modes and construct a modal
matrix and to evaluate the stiffness matrix from the modal matrix. The procedure for
stiffness matrix identification is discussed below:

� Estimation of the mass: The mass, mi, of each floor of the structure is determined.
The plate and four columns are lumped together to determine the corresponding mass
of the floor. The mass matrix is expressed as

M =

⎡
⎢⎢⎢⎢⎣

m1

m2

m3

m4

m5

⎤
⎥⎥⎥⎥⎦ (3.3)

� Identification of the resonance frequency: The resonance frequency is evaluated from
the location of the peak in the frequency response diagram. The resonance frequencies
for the corresponding five modes are found from the frequency response diagram shown
in Figure 3.5.

� Construction of the frequency transfer function: The transfer functions in the fre-
quency domain between the output signals (measured floor acceleration) and the in-
put (ground acceleration) are determined. The relationship between the input ground
acceleration (ag) and output floor acceleration (ai) is modelled by the linear, time-
invariant transfer function Tgi. The transfer function is the quotient of the cross power
spectral density, Pgi(ω) of ag and ai, and the power spectral density, Pgg(ω) of ag with
itself. The frequency transfer function is then expressed as

Tgi(ω) =
Pgi(ω)

Pgg(ω)
(3.4)
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Figure 3.7: Mode Shape

� Evaluation of the magnitude and phase from the frequency response of the transfer
function: The magnitude and phase are determined from the frequency transfer func-
tion for each of the five modes. The magnitude and phase for all floors for the first
mode are shown in Figure 3.6. In this diagram, the magnitude and phase are deter-
mined from the transfer function constructed between the first floor acceleration and
the ground acceleration. Similarly, all other transfer functions have been derived.

� Determination of the maximum magnitude and corresponding phase for all five modes:
The magnitude and phase of each of the five floors for all five modes are evaluated.
The peak magnitude and the corresponding phase angle for the first mode are shown
in Figure 3.6. The frequency at which maximum magnitude is determined is actually
represented as the resonance frequency of the corresponding mode. From this diagram
the actual resonance frequency for the corresponding mode is also evaluated.

� Construction of the mode shapes for all five modes using the magnitude and phase
values: The maximum magnitudes of the five floors for the corresponding modes are
considered for construction of the mode shape. The phase at the corresponding fre-
quency where the maximum peak occurs is used to determine the sign of the magnitude
for mode shape. Figure 3.7 shows the mode shape diagram for all the five modes.

� Construction of the non-dimensional mode shape: The magnitude of each floor is
normalized by dividing the maximum amplitude by the corresponding mode and by
dividing the maximum magnitude of the floor at the corresponding floor, so that the
dimensionless mode shape is formed and the magnitudes are in between 0 to 1. The
non-dimensional mode shape is shown in Figure 3.8. This non-dimensional mode shape
is compared with the theoretical mode shape of a shear frame which has one free end.
The theoretical mode shape is assumes to be sinusoidal. The comparison is also shown
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in Figure 3.8 and the non-dimensional mode shape shows good agreement with the
theoretical mode shape.

� Formation of modal matrix: From the mode shape, the modal matrix is formed in
modal coordinates

U =

⎡
⎢⎢⎢⎢⎣

0.349 0.861 1.000 0.868 0.453
0.604 1.000 0.117 −0.979 −0.838
0.773 0.449 0.941 0.119 1.000
0.920 −0.356 −0.464 1.000 −0.827
1.000 −0.952 0.789 −0.596 0.319

⎤
⎥⎥⎥⎥⎦ (3.5)

where each column represents the normalised magnitude of each of five nodes at the
corresponding mode. The column number represents the mode number.

� Formulation of the stiffness matrix in modal coordinates: The stiffness matrix in modal
coordinates Km is a diagonal matrix where the the diagonal elements of the matrix are
constructed from the mass element and the corresponding modal resonance frequency.
The modal stiffness is determined from the following expression

ki = ω2
i mi (3.6)

where mi is the modal mass associated with the mode shape matrix U and ωi are the
resonance frequencies determined from the peaks in the acceleration spectrum. The
stiffness matrix in modal coordinate is calculated as

Km =

⎡
⎢⎢⎢⎢⎣

k1
k2

k3
k4

k5

⎤
⎥⎥⎥⎥⎦ (3.7)
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� The diagonal element of the modal matrix Km is taken and the stiffness matrix in
Cartesian coordinates, K is found by

K = (UT)−1KmU−1 (3.8)

3.2.2 Free Vibration Test

In this section, free vibrations are obtained by initially imposing a harmonic force by a
shaker, and when the structure is vibrating at the desired frequency the shaker excitation
is then stopped and free vibrations at the desired frequency occur. This free vibration can
be analysed based on the concept of the logarithmic decrement. However, for higher modes
the free vibration response is not a suitable method due to the inherent ambient noise.

For the free vibration decay test the Butterworth band pass filter is applied and the frequency
band is selected around the resonance frequency of the corresponding mode because in the
free vibration decay test only the excited mode is considered.

For the free decay test for first mode peak detection, the structure is excited using sinusoidal
ground displacement with a frequency equal to the first mode resonance frequency. The
signal is filtered through a band pass filter where the cutoff frequencies are chosen around
the first resonance frequency. The following properties of the band pass filter are considered.

� A band pass Butterworth filter is used.

� The high-pass cut-off frequency is selected as ωi − ωcut where ωi is the resonance
frequency for the corresponding mode and the margin to the filter limit is ωcut =
π rad/s.

� The low-pass part of the filter the cut-off frequency is selected at ωi + ωcut.

� The order of the filter is in this case chosen as 5.

The effect of applying the band pass filter to noise reduction is demonstrated in time and
in the frequency domain for the 1st floor for free vibration data and is shown in Figure 3.9.
The procedure for the damping ratio identification based on free vibration test data is as
follows:

� Measurement of peak value in decay zone: The peak of each cycle is identified from
the free vibration response when the signal is in decay. Figure 3.10 (a) shows all the
peaks detected in the decay envelope.

� Estimation of curve fitting: From the peaks of the data in the decay zone, a curve fitting
is estimated using exponential or linear fitting. The curve fitting using exponential
and linear fit are shown in Figure 3.10. The exponential fit is working better when
compared to linear fit on an average level, while the linear fit is fairly good at the
initial part of the free decay.

� Finding the damping ratio : The damping ratio, ζi is evaluated from the decay rate
of the curve. This done by evaluating the decay rate of the logarithmic and the linear
curve fitting. The logarithmic decay is calculated from (3.1). An alternative method
for determining the damping ratio is finding the damping ratio between two consecutive
peaks, and the computing the final values as the mean value from the individual peak-
to-peak values in the decay. Figure 3.10(b) shows the relationship between amplitude
and damping ratio from the logarithmic fitting and the point to point estimation. It is
found that the average of the point to point damping ratio is almost the same as the
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Figure 3.9: Filtered and unfiltered acceleration in the time domain

logarithmic estimate. From the decay tests the damping ratios have been estimated
for the five vibration forms as

ζ1 = 0.0030 , ζ2 = 0.0024 , ζ3 = 0.0020 , ζ4 = 0.0015 , ζ5 = 0.0010

When the structure is in free vibrations the applied loading is zero. In this case the
equation of motion is

Mẍ+Cẋ+Kx = 0 (3.9)

In modal coordinates the damping matrix C is transformed into a diagonal matrix
Cm, when assuming orthogonal damping. The elements in the diagonal are then the
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viscous damping parameters ci in modal coordinates.

C = (UT)−1CmU−1 (3.10)

The diagonal element of the damping matrix in modal coordinate can then be written
in terms of the estimated damping ratio ζi as

ci = 2ζi
√
miki (3.11)

where mi and ki are the modal mass and stiffness components for the corresponding
modes, which have already been determined via the sine sweep test.

3.3 Equations of Motion

The equation of motion for a shear frame structure with external excitation can be written
as

Mẍ+Cẋ+Kx = fe (3.12)

The degrees of freedom of the model are contained in the vector x, while M, C and K are
the associated mass, damping and stiffness matrix, respectively. The vector fe represents
the external loading.

3.3.1 Mass Matrix

For individual plate mass calculation the mass of the plate and the four columns have been
taken as a lumped mass and the representative mass of the individual floor is then found as
5.95 kg. The mass matrix in Cartesian coordinates is then determined as

M(i, i) = mmass + 4mcolumn , M(i, j) = 0 , if i �= j (3.13)

Thus, the matrix matrix is assumed diagonal with identical diagonal elements.

3.3.2 Stiffness Matrix

First, the mode shape vector ui and the radial eigenfrequency ωi of mode i are estimated
from the measured transfer functions. The measured mode shapes are normalised to unity
at a height of 5.5 floors, where it corresponds to the mode shapes of a sinusoidal function.
The comparison is shown in Fig. 3.8. The measured mode shape matrix U yields the mass
matrix in modal coordinates

Mm = UTMU (3.14)

which is found to have predominant diagonal elements. Therefore, the stiffness matrix in
modal coordinates Km is approximated as follows

Km(i, i) = ωi
2Mm(i, i) , Km(i, j) = 0 , if i �= j (3.15)

The back transformation leads to the desired stiffness matrix in Cartesian coordinates,

K = (UT )
−1

Km(U)
−1

(3.16)

which is fully occupied. However, the elements outside the tri-diagonal band are small
compared to the main tri-band, which verifies that the present structure can be modelled
as a shear frame structure.



42 Modelling of a Flexible Structure

3.3.3 Damping Matrix

The damping matrix is determined from free vibration test. The diagonal element of the
damping matrix is determined from the corresponding diagonal element of mass and stiffness
matrix. The damping ratio ζi is found for each corresponding mode. The diagonal element
in the damping matrix Cm in modal coordinates is found from

Cm(i, i) = 2ζi
√
Km(i, i)Mm(i, i) (3.17)

The other elements of the damping matrix are considered as zero. The damping matrix
in modal coordinates Cm is estimated as a diagonal matrix where the diagonal elements
are determined from (3.17). The damping matrix in Cartesian coordinates C is determined
from back transformation and expressed as

C = (UT )
−1

Cm(U)
−1

(3.18)

This matrix is also fully occupied, and is not dominant as much by the tri-diagonal band.
This demonstrates the difficulties in the estimation of structural damping.

3.3.4 Model Verification

The equation of motion in (3.12) is formulated in the state space representation and solved in
Matlab/Simulink using the measured ground acceleration as excitation and without external
damper. The model validation is depicted in Figure 3.11 for two selected accelerations in the
time domain and in Figure 3.12 for two other selected accelerations in the frequency domain.
The results show a small modelling error in both the time and the frequency domains. The
natural frequencies and damping ratios are determined by solving the state-space eigenvalue
problem associated with the equation of motion in (3.9). The frequencies are determined
as:

ω1 = 8.0 , ω2 = 24.2 , ω3 = 38.4 , ω4 = 49.9 , ω5 = 58.3

which agree very well with the experimental frequencies given in Table 3.3. The modal
damping ratios are determined as

ζ1 = 0.0035 , ζ2 = 0.0024 , ζ3 = 0.0074 , ζ4 = 0.0059 , ζ5 = 0.0012

and they match well with the experimental values provided previously. Thus, the main
reason for some deviations in the comparison of experimental and numerical response records
is most likely the error in measuring decay in free vibration test.

3.4 Summary

This chapter considers the system modelling of a flexible structure using an experimental
procedure and presents validation results from the numerical model. A five-mass shear
frame structure has been chosen for the model identification. The stiffness of the model is
determined from the mode shapes, which are constructed from a frequency transfer function
based on vibration test data. The damping matrix is determined from the estimated damping
ratios from a free decay tests. From the frequency response the resonance frequencies are
determined, and the validation of the model shows good agreement with the measurement
data.
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Figure 3.11: Validation of shear frame model in time domain.
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Chapter 4

Control Strategies and Simulation

In civil engineering, the mitigation of structural vibration induced by dynamic loads, such as
earthquake or wind loads using appropriate control strategy is one the most challenging task
for structural engineers. Several control strategies based on passive, active or semi-active
control methods are investigated for finding effective solution to mitigate the structural vi-
bration. In recent year semi active control device like MR damper got considerable attention
due to its reliability, adaptability, cost effectiveness and fail safe mechanism.

Passive damping devices are purely dissipative and are not controlled during motion of the
damper. They do not have external power requirement and are very stable since they do
not add energy but only dissipate it, thus yielding a very robust device [2]. Active dampers
can unlike passive dampers be adapted to the dynamic loading. An active damper system
consists of of actuators and sensors coupled by active controller, which gives a feedback
loop which can be position, velocity, acceleration or force. The active dampers are driven
by an external power supply which is a major drawback of using active damper during an
earthquake. Active dampers are very stable and robust [5].

Semi-active dampers like MR damper have similarity with active dampers, but they have
lower power requirements and also stable as passive control device. In fact, maximum MR
dampers can operate on battery power, which is a big advantage during an earthquake. So
semi-active control can combine the advantages of active and passive control [9]. The stay
cable damping potential due to controlled MR dampers has been investigated by simulation,
laboratory and field tests in many research projects [42, 43, 46, 76]. Weber et al. [36, 47, 77]
demonstrated different passive and semi-active control strategies on cable bridges. Moreover,
the vibration reduction of civil engineering structures such as buildings, bridges and models
of these structures with controlled MR dampers has been simulated and tested [79] - [83]
and in tuned masses [37] in order to make these passive devices adaptive. Many different
clipped active, semi-active and passive control laws for MR dampers have been tested.
Clipped optimal control schemes as presented in e.g. [14, 76], clipped viscous damping with
negative stiffness as described in e.g. [36], semi-active algorithms [30, 48] and passive control
laws such as emulated viscous damping [46], controlled friction damping [30, 32, 42, 84],
controlled energy dissipation [47] and passive control [77]. In semi-active control the tracking
of a desired force is a main issue and the problem has been solved in various ways. The
Heaviside step function approach that requires measuring the actual MR damper force is
presented by Dyke et al. [14]. The Bingham model was used to derive the current for
given measured damper velocity and desired force [36, 46]. Dahl model is also presented by
Aguirre et al. [85] which can also be used as MR damper model. The LuGre friction approach
was used to model the MR damper behaviour and the validated model was then used as
observer [56, 54, 55]. A mapping approach based on tests of the MR damper connected
to the cable is presented in [47], neural network based force tracking approaches have been
developed and also fuzzy logic and other methods have been adopted to capture the inverse
MR damper dynamics [86] - [95].

In recent years, the structural damping due to the emulation of a negative stiffness force
besides the damping force in the MR damper was investigated in several research projects [31,

44
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32, 34]. It is shown in [36] that larger structural damping is achieved because the negative
stiffness force increases the motion in the damper, which makes it possible to dissipate
two times more energy per cycle in the damper than the optimal viscous damper [96]. It
was shown in [97] that clipped optimal control of a cable with semi-active damper results
in approximately the same control force as clipped viscous damping with negative stiffness.
Consequently, the approach of clipped viscous damping with negative stiffness for semi-active
cable damping is a powerful control approach since its realisation requires only measuring
the damper displacement, it generates twice as much structural damping as optimal viscous
damping and avoids the complex state estimation which is essential for optimal control
approach.

This chapter therefore investigates the semi-active damping of a five-degree-of-freedom (5
DOF) shear frame structure with an MR damper. The tested control laws are optimal
viscous damping as benchmark, viscous damping with negative stiffness [P4], optimal semi-
active damping, i.e. friction damping with negative stiffness [P2] and neural network based
reference control strategy [P5]. All four control laws are designed based on a validated shear
frame model described in Chapter 3. The force tracking task is solved with a neural network
model [P1] that describes the inverse dynamics of the MR damper. Details are discussed
in Chapter 2. It is described how the neural network is implemented in simulation using
Matlab/Simulink. The structural damping resulting from the above-mentioned control laws
is calculated and compared each other for the first excited mode. The comparison shows
the effectiveness of negative stiffness. In the closed loop simulation the control approaches
has acceptably small force tracking error. This tracking error is mainly due to the MR
damper current, which is generated by the neural network, is fairly noisy. It is shown that
the neural network approach can be used to track the desired force. A thorough description
of the novel neural network approach is given in Chapter 2. The descriptions of the various
control strategies and simulation results are discussed in the following sections.

4.1 Damping of Flexible Structures

In dynamic analysis of flexible structures the structural model is typically modelled by finite
elements or determined by experimental modal analysis and free vibration test, so that the
equation of motion can be written in the form

Mẍ+Cẋ+Kx = −wf + fe (4.1)

where the vector x contains the generalised displacements and a dot denotes time differenti-
ation, and K, C and M are the structural stiffness, damping and mass matrix, respectively.
The external load is represented by the vector process fe. Finally, a single damper is acting
on the structure, where f represents the damper force and w is the connectivity vector de-
scribing the location of the damper and represented as w = [1, 0, ...]T for the present shear
frame problem. The base excitation is represented as fe = MI(−ẍg) where ẍg is the ground
acceleration and I = [1, 1, ...]T is unity vector. The schematic illustration of the shear frame
structure with rotational MR damper is shown in Figure 4.1.

For linear damper models the characteristics of the damper are conveniently formulated in
the frequency domain as

f(ω) = H(ω)x (4.2)

where H(ω) is a frequency dependent damper function. In the frequency domain x is simply
the response amplitude of the damper motion. In the next section a system reduction proce-
dure for flexible structures with local dampers is presented. This procedure leads to explicit
expressions for the complex-valued natural frequency, which can be used to determine the
optimal damper tuning leading to maximum modal damping [P2, P4].
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Figure 4.1: Schematic diagram of shear frame structure with MR damper.

4.2 Two-Component System Reduction and Modal Damping

The effective damping of the structure is evaluated in terms of its modal damping, where the
presence of the external damper generates non-proportional damping with complex-valued
natural frequencies and mode shapes. System reduction techniques based on undamped
mode shapes require a large number of terms to give satisfactory results. The analysis of
the damper modal vibrations is described by the two-component system reduction technique
introduced by Main and Krenk [29]. Høgsberg and Krenk [96] have implemented this tech-
nique for finding the optimal viscous parameter for cable damping. In this formulation the
response of the structure is represented by a linear combination of the two limiting mode
shapes for the structure without damper u0 and for the structure with the damper fully
locked u∞, respectively. The linear combination can then be written as

x = u0r0 + u∞r∞ = Sr (4.3)

The first term represents the classical undamped case, while the second term introduces
the local effect of the damper described in terms of its ability to lock the structure in its
location. The detailed process is also discussed in [P2, P4]. The relative weighting between
the two limiting cases is governed by the coordinates of the reduced subspace: r = [r0, r∞]T .
Similarly, the limiting mode shapes are assembled in the modal matrix: S = [u0,u∞]. The
undamped mode shape is governed by the classical generalised eigenvalue problem:

(K− ω2
0M)u0 = 0 (4.4)

A smaller eigenvalue problem exists for the case where the damper link is fully locked,
defining ω∞ and u∞. The locked mode shape u∞ is by construction orthogonal to the
connectivity vector which yields the identity wTu∞ = 0. Both limiting mode shapes are
real-valued and conveniently normalised to unit modal mass,

uT
0 Mu0 = 1 , uT

∞Mu∞ = 1 (4.5)

Consequently, the limiting natural frequencies are given in terms of the modal stiffness,

uT
0 Ku0 = ω2

0 , uT
∞Ku∞ = ω2

∞ (4.6)
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The limiting mode shapes and natural frequencies are all real-valued and may be derived
directly from the associated generalised eigenvalue problems.

The equations of motion can be described in the reduced two-dimensional subspace by
substitution of (4.3) into (4.1) followed by pre-multiplication by the limiting mode-shapes.
In the frequency domain the reduced system of equations can be written in the following
homogeneous form when free vibrations are considered

[
ω2
0 − ω2 + u2

0H κ(ω2
0 − ω2)

κ(ω2
0 − ω2) (ω2

∞ − ω2)

] [
r0
r∞

]
=

[
0
0

]
(4.7)

The amplitude of the mode shape in the damper location is u0 = wTu0 and κ = uT
∞Mu0

represents the coupling between the two limiting mode shapes. Free vibrations require a
singular matrix which yields a characteristic equation in ω in e.g. Main and Krenk [29]. This
characteristic equation can be rewritten in an explicit, given solution by assuming that the
coupling parameter κ � 1. This solution is conveniently expressed in the following compact
form

ω − ω0

ω∞ − ω0
�

μH

1 + μH
(4.8)

In this expression the modal flexibility parameter is given as

μ =
u2
0

ω2
∞ − ω2

0

�
u2
0

2ω0(ω∞ − ω0)
(4.9)

The modal damping ratio is determined as the relative imaginary part of the complex valued
natural frequency, which can be approximated by ζ =� Im[ω − ω0]/|ω|. In the case of
response dominated by resonance the magnitude of the structural is approximately inverse
proportional to the damping ratio of the dominant mode. Thus, a suitable optimal tuning is
based on the maximization of the modal damping ratio with respect to the gain parameter
of the particular control strategy. If the approximation |ω| � ω0 is introduced the damping
ratio can be written as

ζ =
ω∞ − ω0

ω0

μIm[H(ω0)]

(1 + μRe[H(ω0)])2 + μ2Im[H(ω0)]2
(4.10)

Optimal calibration of the damper model is based on the maximization of the damping ratio
which is related to the stationarity condition δζ = 0. This relation is in the following section
used to calibrate the control strategies.

4.3 Control Strategies

The Different control strategies are discussed below. First optimal viscous damping strategy
(VD) is demonstrated and later positive (VDPS) and negative stiffness (VDNS) is intro-
duced. It is seen from the expression in (4.10) that the stiffness of the damper Re[H(ω0)]
appears in the denominator. It is therefore observed that a potential increase in the damping
ratio is associated with a corresponding reduction of damper stiffness and for that reason,
the application of negative stiffness improves the damping efficiency for resonant response
conditions. Friction damping with negative stiffness (FDNS) is demonstrated and com-
pared with other methods. Finally a neural network based optimal model reference control
strategy is discussed and demonstrated by numerical example. Desired force-displacement
trajectories for viscous damping, viscous damping with positive and negative stiffness and
friction damping with negative stiffness are shown in Figure 4.2.

The schematic diagram closed loop system is shown in Figure 4.3.
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Figure 4.2: Desired force displacement trajectories: (a) VD, (b) VDNS, (c) FDNS.

4.3.1 Optimal Viscous Damping

The prototype damper model is the pure viscous model. For this model the damper force is
directly proportional to the collocated velocity of the damper motion [P2, P4]. The negative
sign in front of f in (4.1) generates viscous damping on the shear frame for c > 0.

f = cẋ (4.11)

where c is the viscous parameter. When compared with the linear frequency representation
of the damper force in (4.2), the damper function for the viscous damper is

H(ω) = iωc � iω0c (4.12)

The real of this function is zero and the imaginary part is substituted into the expression
for the damping ratio (4.10). The optimal viscous parameter is then determined by the
condition dζ/dc = 0, which gives

copt ≈
2(ω∞ − ω0)

u2
0

(4.13)

where the approximation ω∞+ω0 ≈ 2ω0 has been introduced. The optimal viscous damper
is without stiffness and is therefore a suitable benchmark example for damper models with
negative stiffness.

4.3.2 Viscous Damping with Negative Stiffness

Viscous damping with negative stiffness model has both frequency dependent stiffness and
viscous components [P2, P4]. However, in the present formulation it is assumed that the
governing parameters are constant, so that the damper force can be written as

f = cẋ+ kx (4.14)

Structure

external force

MR Damper displacement

Inverse MR 

velocity

Control Law

force

force

desired

actual

current

Figure 4.3: Closed loop control system.
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and the transfer function becomes
H = iωc+ k (4.15)

The real and imaginary part of this expression are again substituted into the expression for
the damping ratio in (4.10). The damper stiffness k is considered as a system parameter,
while the viscous parameter is the control gain. Thus, the optimal viscous parameter is
again determined by the condition dζ/dc = 0, which gives

copt ≈
2(ω∞ − ω0)

u2
0

+
k

ω0
(4.16)

where the second term introduces the correction due to damper stiffness. The stiffness term
is taken for negative value. The desired force is clipped because unclipped viscous damping
with negative stiffness produces active forces, which is highlighted in Figure 4.2 (b) by the
dashed trajectory parts. The viscous coefficient in (4.16) must be tuned according to the
choice of k. The negative sign in front of f in (4.1) generates positive stiffness on the shear
frame if k > 0 and negative stiffness on the shear frame if k < 0. After clipping, the optimal
force for viscous damping with stiffness is expressed as

fclipp =

{
cẋ+ kx : (cẋ+ kx)ẋ ≥ 0
0 : cẋ+ kx)ẋ < 0

(4.17)

4.3.3 Amplitude Proportional Friction Damping with Negative Stiffness

The optimal semi-active damping force without clipping that maximises structural damping
is the superposition of a friction force controlled in proportion to the damper displacement
amplitude and a negative stiffness force balancing the friction at displacement extreme [P2].
The force-displacement trajectory is shown in Figure 4.2 (c). Details of the optimal shape
calculation are demonstrated in [30]. Hence, the desired force becomes

f = sign(ẋ)αX + kx (4.18)

where X is the amplitude of the relative damper displacement, α is the proportional gain of
the friction force component and k < 0. The desired force in (4.18) is a purely dissipative
force if

α ≥ |k| (4.19)

Thus, in the case of negative damper stiffness the optimal semi-active balance between the
friction force level and the stiffness component is obtained for for

k = −α , α > 0 (4.20)

This case is illustrated in Figure 4.2(c), where it is seen that the force level exactly reaches
zero at reversal. Assuming sinusoidal damper motion, the friction force component of (4.18)
i.e. sign(ẋ)αX , can be transformed into the viscous coefficient of an energy equivalent
viscous damper. The equivalent viscous damper is expressed as

cequiv =
4α

πω
(4.21)

The force of the energy equivalent viscous damper with negative stiffness then becomes

fequiv =
4α

πω
ẋ− αx (4.22)

In the frequency domain this can be written as

fequiv(ω) = α
(
i
4

π
− 1

)
x (4.23)
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where X is equal to the frequency amplitude x. The equivalent damper function is given as

Hequiv = α
(
i
4

π
− 1

)
(4.24)

The damping ratio is found by substitution into (4.10) and the optimal value of the common
gain factor α is determined by dζ/dα = 0. This leads to the expression

αopt =
1√

16/π2 + 1

(ω2
∞ − ω2

0)

u2
0

(4.25)

4.3.4 Neural Network Based Model Reference Control

This control strategy is developed based on a neural network model identification technique,
where the neural network model is trained by a reference damper model [P3]. As demon-
strated by Boston et al. [30], the optimal semi-active force is the superposition of a friction
force that is controlled in proportion to the damper displacement amplitude and a negative
stiffness force. The optimal shape of the force-displacement trajectory identified in [30] is
taken as reference model for the neural network model. The hysteresis loop is formed based
on the assumption of harmonic displacement, which is used as the input to the proposed
neural model, while the damper force based on the desired hysteresis loop is used as the
output of the neural controller. The optimal shape of the force-displacement trajectory is
shown in Figure 4.4, which corresponds to the friction model with negative stiffness consid-
ered previously and shown in Figure 4.2(c). The hysteresis model is inherently non-linear,
whereas the calibration formulation in (4.10) requires a linear damper model. Thus, as for
the friction damping with negative stiffness an equivalent linear model is assumed to contain
a viscous and a stiffness component [P3],

fequiv = cẋ+ kx (4.26)

If x is a sinusoidal signal, the parameters of the linear equivalent model in (4.26) can be
determined by equivalence over a full vibration period, see [35]. This yields the following
equivalent linear model for the hysteresis loop shown in Figure 4.4.

f =
2fm
πωX

ẋ−
fm
2X

x (4.27)

where X again is the amplitude of the damper displacement, k is negative stiffness and fm
is the corresponding force of the hysteresis loop at maximum amplitude. In the frequency
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2

1 -maxf
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x
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Figure 4.4: Force displacement hysteresis plot for FDNS.



4.4 Closed-Loop Simulation 51

domain the model is expressed as

f =
fm
X

(
−
1

2
+ i

2

π

)
x (4.28)

Comparison with the frequency representation in (4.2) gives the following expression for the
transfer function of the linear equivalent hysteretic damper model:

H(ω) =
fm
X

(
−
1

2
+ i

2

π

)
(4.29)

The force level to amplitude ratio fm/X represent a proportional gain parameter of this
model, similar to α for the friction force with negative stiffness in the previous section.
The damping ratio is again found by substitution into (4.10) and the optimal value of the
common gain factor is determined stationarity with respect to fm,

fopt
m = 1.24

(ω2
∞ − ω2

0)

u2
0

X (4.30)

which shows that the force level must be scaled with the estimated amplitude X . Note that
this results corresponds to (4.25) for fm = 2αX .

A four-layer feedforward neural network is adopted which consists of one input, two hidden
layers and a single output layer. The displacement and velocity in current state and five
preceding values are taken as input and force in current state is output in the proposed
neural network. The neural network controller is trained with training data generated at
different amplitudes and at different frequencies of both the displacement response and the
corresponding force data from the optimal friction model. The trained model is verified
with independent data sets and subsequently used in a closed-loop implementation. The
training algorithm used in the feedforward backpropagation neural network is the Levenberg-
Marquardt (LM) algorithm based on a least-square curve fitting. The design procedure
for the feedforward neural network model has been described previously in Table 2.3 in
Chapter 2.

4.4 Closed-Loop Simulation

In this section a closed-loop control system is presented. It is used to operate the semi-
active MR damper for tracking of the desired force given by different control strategies and
then forwarded through an inverse MR damper. The efficiency of the proposed control
strategies depends on the proper tuning of control parameters as described in Section 4.3
and subsequently on the ability of the inverse MR damper model to track the desired optimal
control force.

4.4.1 Example: Pure Viscous Damping

The viscous damping strategy using MR damper in a closed loop is simulated for a five-
floor shear frame structure with harmonic base excitation. The force-velocity and force-
displacement hysteresis plots of the damper force and desired force from control laws are
compared for the optimal viscous damping strategy and the result is quite satisfactory. The
force tracking task by the MR damper is quite well performed. From the force-displacement
as well as the force-velocity trajectory for the viscous damper in Figure 4.6, it is visible
that the MR damper has a force limit at zero current. Therefore, it is not possible for the
MR damper to follow the desired force below the force limit at zero current. Here for this
damper, the force limit is 24 N. When viscous damping (VD) is emulated, the force tracking
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error is mainly given by the residual force at 0 A and the noise in the current due to the
neural network based force tracking as seen from Figures 4.5(a,b). The structural damping
of the first excited mode is determined from the top floor displacement. The time history of
the top floor displacement and damper displacement is shown in Figures 4.5 and 4.6. The
other control concepts are then tested in a simulation at the same excitation amplitude as
in Figure 4.5(c,d). The viscous damping strategy is also applied directly to the structure
without MR damper and the change in performance is compared.
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Figure 4.5: Current (a), Force comparison (b), Damper displacement (c), Top floor
displacement (d) (VD)

4.4.2 Example: Viscous Damping with Negative Stiffness

A negative stiffness component is added to the viscous part and then the optimal viscous pa-
rameter is determined. As seen from Figure 4.8, the measured force-displacement trajectory
of viscous damping with negative stiffness (VDNS) is spiky. The spikes are triggered by the
initial very large increase of the desired force when the MR damper displacement turns its
direction. The currents and the force tracking are shown in Figure 4.7. Force displacement
and force velocity trajectories for actual and desired forces are shown in Figure 4.8. The
time history for top floor and damper displacement is shown in Figure 4.7 , where it is clearly
visible that introducing negative stiffness significantly reduces the top floor displacement.

4.4.3 Example: Frictional Damping with Negative Stiffness

Friction damping with negative stiffness is emulated. The actual force-displacement tra-
jectories in the experiment and the simulation are not that noisy as viscous damping with
negative stiffness, which shows better structural damping and reduced top floor displace-
ment. The currents and the force tracking are shown in Figure 4.9. The force-displacement
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Figure 4.6: Force-displacement and force-velocity trajectories (VD)

C
u
rr
en
t,
A

Time, S
5 6 7 8 9
0

0.5

1

1.5

2
force1
force2

F
o
rc
e,

N

Time, S
54 6 73

0

50

100

-50

-100

x 10
−3

D
a
m
p
er

D
is
p
la
ce
m
en
t,

m

Time, S
85

4

4

6

6 7

0

2

-2

-4

-6

T
o
p
F
lo
o
r
D
is
p
la
ce
m
en
t,

m

Time, S
854 6 7

0

0.05

-0.05

Figure 4.7: Current (a), Force comparison (b), Damper displacement (c), Top floor
displacement (d) (VDNS)



54 Control Strategies and Simulation

x 10
−3

A
ct
u
a
l
F
o
rc
e,

N

Damper Displacement, m

50

100

-50

-100
4 6

0

0 2-2-4-6
x 10

−3

D
es
ir
ed

F
o
rc
e,

N

Damper Displacement, m

50

100

-50

-100
4 6

0

0 2-2-4-6

A
ct
u
a
l
F
o
rc
e,

N

Damper velocity, m/s

50

100

-50

-100

0

0 0.05 0.1-0.05-0.1

D
es
ir
ed

F
o
rc
e,

N

Damper velocity, m/s

50

100

-50

-100

0

0 0.05 0.1-0.05-0.1

Figure 4.8: Force-displacement and force-velocity trajectories (VDNS)

and force-velocity trajectories for actual and desired forces are shown in Figure 4.10. The
time history for top floor and damper displacement is shown in Figure 4.9, where it is seen
that friction damping with negative stiffness significantly reduces the top floor displacement
in comparison with the two other damping strategies discussed earlier.

4.4.4 Example: Neural Network based Model Reference Control

The neural network control (NNC) strategy is applied to structural vibration reduction
based on harmonic base excitation using an MR damper in a closed-loop simulation. The
time history of damper displacement and top floor displacement is shown in Figure 4.11.
The currents and the force tracking are also shown in Figure 4.11. The force-displacement
and force-velocity trajectories for actual and desired forces are shown in Figure 4.12. From
the time history for top floor and damper displacement, it is seen that the neural network
controller can significantly reduce the top floor displacement similarly to friction damping
with negative stiffness [P3].

Table 4.1: Performance Indices

VD VDNS FDNS NNC

RMS (xmax
damp) 0.0066 m 0.0038 m 0.0091 m 0.0044 m

RMS (xmax
top ) 0.030 m 0.026 m 0.023 m 0.024 m

RMS (ẍmax
damp) 0.81 m/s2 0.91 m/s2 0.80 m/s2 0.84 m/s2

RMS (ẍmax
top ) 1.81 m/s2 1.76 m/s2 1.76 m/s2 1.79 m/s2
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Figure 4.9: Current (a), Force comparison (b), Damper displacement (c), Top floor
displacement (d) (FDNS)
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Figure 4.11: Current (a), Force comparison (b), Damper displacement (c), Top floor
displacement (d) (NNC)
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4.5 Summary

The damping of a shear frame with five masses with controlled MR damper between ground
plate and the first mass was investigated in a simulation. The tested control laws were
viscous damping, viscous damping with negative stiffness and optimal semi-active friction
damping with negative stiffness and neural network based model reference control. The
control laws were designed using a validated model of the shear frame. In the closed-loop
simulation, a neural network MR model is used for force tracking. Rms values of the peak
displacement and peak acceleration of each cycle for top floor and damper location are taken
as performance parameters. From the performance parameters chart in Table 4.1, it is clearly
visible that introducing negative stiffness can make significant reduction in damper displace-
ment and also in top floor displacement. The response of the top floor using semi-active
neural controller and friction damping with negative stiffness gives quite satisfactory results
compared with pure viscous damping and pure viscous damping with negative stiffness. A
significant improvement in acceleration is also observed but the acceleration contains some
noise.



Chapter 5

Experimental Implementation of Control Strategies

Survival of civil structures from excessive random vibration due to uncontrollable external
events - due to natural hazards and otherwise - is very important where vibration control
of large flexible structures, such as shear frame buildings, is a great task in closed loop
situation. Some success of practical implementation of control laws to attain this goal has
been reported in the use of semi-active control devices as for instance magnetorheological
dampers [99].

The following sections describe experimental implementation of semi-active control strategies
for a shear frame with a controlled magnetorheological (MR) damper mounted between
ground and first floor in order to mitigate the fundamental bending mode. Some linear
control strategies, for example, optimal viscous damping, clipped viscous damping with
negative and positive stiffness and also nonlinear control strategies, for example, optimal
friction damping with negative stiffness are implemented. MR damper is a semi-active
device and control law can not give direct command to MR damper to produce desired
force. For semi active control strategy requires a feed forward mechanism which will produce
appropriate current from the desired force value from controller output and feed the current
into the MR damper to generate proper force value. This mechanism is also called as force
tracking mechanism. The force tracking is solved with a novel neural network model of the
MR damper that takes the absolute values of damper velocity and desired force as inputs
because the outputted desired current is a positive quantity [P1]. The force tracking is
improved by a low-pass filter to reduce the noise in the desired current and a switch that
truncates the desired current to zero, if the desired force is smaller than the residual force
at 0 A [P2]. The measured and simulated control forces still show a spiky behaviour due
to the fairly large sensitivity of the neural network to slightly noisy inputs. However, the
measured and simulated structural damping ratios correspond well to the expected values.
This indicates that the mean stiffness and mean energy dissipation of the control force mainly
determine the structural damping [P2]. Negative stiffness is introduced into the design of
control laws. To demonstrate the significance of the negative stiffness, positive stiffness is
also introduced with viscous damping. The closed loop implementation of the control laws
on real structure also demonstrate the significant improvement in structural damping due
to inclusion of negative stiffness [P2].

5.1 Experimental Setup

The experimental setup consists of a hydraulic cylinder driving a shaking table on which a
5 DOF system is mounted. The experimental setup at the EMPA structural laboratory is
shown in Figure 5.1. The housing of the MR damper is fixed to the shaking table and the
MR damper rod applies the semi-active control force to the first mass of the 5 DOF system.
This situation is equivalent to a 5 DOF system with controllable damper that mitigates
the relative motion between ground and first floor. The MR damper under consideration
is a rotational type with approximately 22 N residual force at 0 A and 300 N at maximum
current of 4 A [56].

58
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Figure 5.1: Filtering of measurement data.
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Figure 5.2: Schematic of test setup.

The accelerations of all masses and the ground are recorded. The damper rod velocity is
estimated by a Kinematic Kalman Filter (KKF) from the relative displacement between base
and first mass and from the absolute acceleration of the first mass. The relative displacement
derived from the laser sensor at the top mass and the laser sensor at ground represents the
tip response of the shear frame. The force sensor between damper rod and first plate is
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installed in order to measure the force tracking error but it is not used as force feedback.
The schematic of the test setup is shown in Figure 5.2.

The controller is programmed in Matlab/dSPACE which is also used for the data acquisition.
The control algorithm outputs the desired control force at a sampling frequency of 500 Hz.
A neural network based inverse MR damper model is used to determine the desired current
in real-time. The desired current is converted into a command voltage that is outputted by
the IO board and is fed to the current driver of type KEPCO that guarantees negligibly
small tracking error of the MR damper current. The Matlab/Simulink file of the controller
is also used to output the command voltage of the INSTRON control unit that controls the
hydraulic cylinder displacement.

5.2 Velocity Estimation Using Kinematic Kalman Filter

The inverse neural network model for the MR damper depends partly on proper velocity
measurement to track the desired force. The velocity cannot be measured directly. The only
way to measure velocity is taking a differentiation of measured displacement data or taking
measured acceleration data into consideration. However, including a differentiator to the
system adds noise, while accelerations are inherently noisy and an integrator furthermore
introduces a phase delay to the resulting signal. Therefore, a simple but effective method
is needed for fusing displacement and acceleration data to derive velocity. The Kinematic
Kalman Filter (KKF) is a very effective tool for simple and robust estimation of veloc-
ity [98]. KKF does not depend on plant parameters as in model based Kalman filters. If
the displacement and acceleration are both measured, the system equation and the KKF
estimation model are designed to fuse displacement and acceleration to estimate velocity.
The system model for Kinematic Kalman Filter is given as

[
ẋ1

ẋ2

]
=

[
0 1
0 0

] [
x1

x2

]
+

[
0
1

] [
am + wa

]

y = xm + wx

(5.1)

The output equation can then be represented as

y =
[
1 0

] [x1

x2

]
+ wx (5.2)

The two-state variables are the displacement x1 = x and the velocity x2 = ẋ of the sys-
tem. wa and wx are accelerometer measurement noise and displacement measurement noise,
respectively. The KKF is obtained as

[
˙̂x1

˙̂x2

]
=

[
0 1
0 0

] [
x̂1

x̂2

]
+

[
k
l

] [
y − x̂1

]
(5.3)

where k and l are filter gains. From the KKF the predicted displacement is x̂1 and the
predicted velocity is x̂2. The advantage of KKF is that it is model parameter independent.

5.3 Closed-Loop Model Design in Matlab/Simulink

As seen from Figure 5.3, the model is extended by a switch and analogue low-pass But-
terworth filter. The switch outputs Ides(k) = 0A if the absolute value of the desired force
|fdes(k)| is smaller than the residual force at 0 A of the MR damper under consideration.
The application of this practical knowledge reduces the control force tracking error due
to modelling errors at small forces. The Butterworth filter with cutoff frequency 60 Hz is
included to reduce the noise in the desired current. The noise has mainly two sources:
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Figure 5.3: Matlab/Simulink model of closed loop system.

� One is the high frequencies in the damper velocity that are generated when fdes cannot
be tracked because fdes is larger than the residual force at 0 A. This leads to clamping
effects of the shear frame in the damper position. When the force is larger than the
residual force value at 0 A, the desired force fdes can be tracked and the MR damper
starts to work again. The sudden change between locked and smoothly operating MR
damper induces the high-frequency signal parts in the damper velocity. This noise
source exists in both the simulations and the experiments.

� Another source is the measurement noise, which only exists in the experimental data.
The input of the feed forward part are the measured damper velocity ẋ and the desired
damper force fdes, which both include measurement noise and thereby evoke a noisy
desired damper current Ides.

In order to compare the simulated and measured force tracking and damping of the 5 DOF
system, the simulations and the measurements of the closed loop are performed with an
identical controller. The controller includes the subsystems control law, clipping, validated
neural network of inverse MR damper behaviour, switch and low-pass filter with cut-off
Frequency 60Hz as depicted in Figure 5.3 which is programmed in Matlab/ dSPACE. The
controller runs at a sampling frequency of 200 Hz, which is the same as used to train the
neural network [P1, P2]. The simulation of the closed loop assumes zero current tracking
error, i.e. the desired and the actual currents are equal (Ides = Iact). At the test setup,
the current driver (KEPCO) is used to guarantee a negligibly small current tracking error,
i.e. Ides ≈ Iact. The MR damper is simulated with a validated Bouc-Wen model of the MR
damper under consideration. The simulated shear frame model is given in Chapter 3. In the
simulations, the shear frame structure is excited by the actual measured base acceleration
record ẍg = ẍmeas

g .
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Figure 5.4: Measured (a,b) and simulated (c,d) force tracking with NN based MR
damper model.

5.4 Force Tracking

The force tracking error is depicted in Figure 5.4 for viscous damping (VD) and the maximum
viscous force of approximately 60 N which is a typical value for the first mode of the shear
frame under consideration. The force tracking error in the experiment is slightly larger than
in the simulation since the measurement noise in the collocated velocity produces a fairly
noisy desired force which generates a noisy current as shown in Figure 5.4(b). The actual
force is not so noisy as the applied current because the MR damper behaves similarly to a
low-pass filter that mitigates these spikes to some extent. It is seen from Figures 5.4(a,c)
that the resulting force tracking error in experiment and simulation is acceptably small.
Both time histories show the regions of the residual force that constrains the force tracking.
Here, zero applied current is the best choice in order to minimise the force tracking error.

5.5 Experimental and Numerical Simulation

Section 5.4 shows the measured and simulated force tracking error due to the inverse neu-
ral network approach that is used as model-based feedforward. This section presents the
measured and simulated force displacement trajectories, the force-velocity trajectories and
the free decay responses of the 5 DOF system resulting from different control concepts: Vis-
cous damping (VD), viscous damping with positive stiffness (VDPS), viscous damping with
negative stiffness (VDNS) and friction damping with negative stiffness (FDNS). In order to
demonstrate the negative impact of positive stiffness on the damping of the 5 DOF, also
clipped viscous damping with positive stiffness is tested. The desired force-displacement
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trajectories are shown in Figures 5.5.
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Figure 5.5: Desired force displacement trajectories: VD (a), VDPS (b)VDNS (c),
FDNS (d).

5.5.1 Pure Viscous Damping

When viscous damping (VD) is emulated, the force tracking error is mainly given by the
residual force at 0 A and the noise in the current due to the neural network based force
tracking shown in Figure 5.6. The structural damping of the first excited mode is determined
from the top floor displacement x5. Due to the fairly large damper position of 1/11 of
the wave length of the first mode, the resulting structural damping is large. Therefore,
the number of local peaks with non-zero MR damper current is small which explains the
variation of the point-to-point damping ratio shown in Figure 5.7. Thus, the point-to-point
damping ratio values are averaged by the exponential fit from which the mean damping ratio
ζ̄ is obtained. The values are shown in Table. 5.1. Only the local peaks with non-zero current
during their corresponding half period time are taken into consideration for the assessment
because these peaks represent the decay response due to controlled damping. The damping
of the subsequent peaks is determined by the residual force of the MR damper that cannot
be controlled as such. The time history of the displacement during this subsequent part
shows an almost triangular shape which indicates predominant friction damping due to the
damper ceilings and bearings. As Table. 5.1 shows, the structural damping that is achieved
on the real structure is a little bit smaller than the one obtained in the simulation which
might be the effect of increased force tracking error on the real structure with the real MR
damper.

In addition to the mean damping ratio, the damping performance of the tested control
concepts is also assessed by the root mean square (rms) of the steady state response of
the tip displacement for constant excitation amplitude (Table 5.1). In order to be able to
compare the rms values of the tests and the simulations, the excitation amplitude of base
acceleration ẍg in the simulation is adjusted such that the rms(x5) is equal for simulations
and experiments associated with viscous damping (VD). The other control concepts are then
tested in a simulation at the same excitation amplitude. The rms is determined for:

� The displacement of the top floor, which illustrates the damping performance.

� The displacement of the first floor, which indicates the potential softening due to
negative stiffness.

� The acceleration of the top floor, which also identifies the overall damping.

� The acceleration of the first floor, which gives a direct measure for the high-frequency
content and thereby the spill-over effect.

The rms values resulting from VD are the benchmark and the rms values due to the other
tested control concepts can then be compared to this benchmark. Measured and simulated
mean damping ratios and steady state responses are determined for constant excitation
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Table 5.1: Comparison between Measured and Simulated Performance

control law VD Clipped VDPS Clipped VDNS FDNS

tuning c = 650 Nm/s c = 400 Nm/s c = 250 Nm/s α=3000
N/m

k = +2500 N/m k = -4000 N/m

measured

ζ̄ [%] 11.8 9.0 approx. 22 approx. 26

rms(x5) [mm] 24.3 23.03 15.5 11.2

rms(x1) [mm] 6.6 6.7 4.9 3.5

rms(ẍ5) [mm] 1.81 1.84 1.25 1.02

rms(ẍ1) [mm] 0.87 1.27 1.02 0.94

simulated

ζ̄ [%] 13.4 9.6 approx. 30 approx. 30

rms(x5) [mm] 24.3 35.4 13.8 13.6

rms(x1) [mm] 6.1 8.8 6.3 5.5

rms(ẍ5) [mm] 1.60 2.28 0.98 1.16

rms(ẍ1) [mm] 0.64 0.93 1.40 1.36

amplitude and actual resonance frequency of the excited first mode where the amplitude of
ẍg is such that the measured rms(x5) is equal to the simulated rms(x5).

5.5.2 Viscous Damping with Positive Stiffness

Both the measurements and the simulations of clipped viscous damping with positive stiff-
ness (VDPS) show the typical kink in the force-displacement trajectory due to the clipping,
see Figure 5.8(a,c). The measured force follows approximately the desired force except where
the tracking is constrained by the residual force at 0 A. As expected from the theory, the
positive stiffness evokes smaller damping in the structure than pure VD, see Table 5.1. The
decreased damping leads to larger rms values in the simulations. The experiments approxi-
mately show the same rms values as for VD. This result can be explained by the increased
force tracking error due to the increased residual force when clipped VDPS is emulated.
Figure 5.8(a) shows a residual force of approximately 30 N, whereas Fig. 5.7(b) points out a
value of approximately 22 N when VD is emulated. In the case of clipped VDPS, the desired
force reaches its maximum at displacement extreme. Then, the MR damper current is large
which generates large remanent magnetisation in the MR fluid and also in all ferromagnetic
damper parts. When the desired force crosses the x-axis in Figure 5.8(a), the desired force
is zero and increases with increasing damper displacement step by step. The high remanent
magnetisation from the force peak before makes it impossible to track a very small force.
It even leads to an increased residual force at 0 A compared to e.g. VD, where the current
is lowered step by step when the damper displacement reaches its extreme and the effect of
the remanent magnetisation on the residual force at 0 A is thus smaller. The higher residual
force in case of clipped VDPS changes the shape of the actual force-displacement trajectory



5.5 Experimental and Numerical Simulation 65

−15 −10 −5 0 5 10 15

−100

−50

0

50

100

displacement [mm]

fo
rc

e
 [
N

]

 

 

desired force
actual force

measured, almost steady state, VD
 

−0.15 −0.1 −0.05 0 0.05 0.1 0.15

−100

−50

0

50

100

 

velocity [m/s]

desired force
actual force

fo
rc

e
 [
N

]

−10 −5 0 5 10
−80

−60

−40

−20

0

20

40

60

80

 

 

displacement [mm]

fo
rc

e
 [
N

]

desired force
actual force

−0.1 −0.05 0 0.05 0.1
−80

−60

−40

−20

0

20

40

60

80

velocity [m/s]

 

 

desired force
actual force

fo
rc

e
 [
N

]

simulated, steady state, VDsimulated, steady state, VD

(a) (b)

(c) (d)

measured, almost steady state, VD

force at 0 A

force at 0 A

force at 0 A (18 N)

force at 0 A

force at 0 A (22 N)

force at 0 A

force at 0 A

force at 0 A

Figure 5.6: Measured and simulated control forces due to viscous damping.
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Figure 5.7: Measured and simulated free decay tests due to viscous damping.

to almost pure friction damping with negligibly small positive stiffness. The almost non-
existent positive stiffness explains why the rms values due to VD and clipped VDPS are so
close in the experiments.

5.5.3 Viscous Damping with Negative Stiffness

As is seen from Figure 5.9 (a), the measured force-displacement trajectory of clipped VDNS
is very spiky. The spikes are triggered by the initial very large increase of the desired force
when the MR damper displacement turns its direction. Then, the model-based feed forward
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Figure 5.8: Measured and simulated clipped viscous damping with positive stiffness.

applies a very high current in order to track the desired force. As a direct result, the MR
damper clamps the structure whereby the damper velocity becomes zero. Then, the model-
based feedforward outputs zero current which triggers some movement in the MR damper
rod. However, since the desired force is still very high, the control again applies a very
large current. The large variations of the damper current, when the desired force is high,
explain the spiky damper force shown in Figure 5.9(a). The same effect, i.e. the sudden
change of the damper force between zero and its large desired value, is also observed in the
simulations in Figure 5.9(c), which to some extend verifies the accuracy of the simulations.
Figures 5.9(b,d) demonstrate that clipped VDNS leads to extremely large damping. The
vibrations decay within one time period to such small values that the desired force is smaller
than the residual force at 0 A. At this stage the current is zero and the structural vibrations
are determined by the friction of the MR damper ceilings and bearings. The measured
and simulated values of displacement in Table 1 are significantly smaller for clipped VDNS
compared to VD. This is expected from the increase of the damping comparing VD and
clipped VDNS. In contrast, the rms of ẍ1 is larger for clipped VDNS than for VD, which is
mainly because of the clipping.

5.5.4 Frictional Damping with Negative Stiffness

When FDNS is emulated with α ≥ |kdes|, clipping is not needed in ideal state-state con-
ditions, since the control force remains purely dissipative. As a direct result, the actual
force-displacement trajectories in the experiments and simulations are not as noisy as for
the clipped VDNS, see e.g. Fig. 5.10(a,c). The lower noise reduces the force tracking error
compared to the clipped VDNS, which explains the increased measured structural damping
in case of FDNS, see Table. 5.1. As a direct result, all rms values are smaller than for
clipped VDNS. This clearly indicates that effective semi-active damping is obtained by con-
trol schemes that introduce negative stiffness with limited need for clipping of active damper
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Figure 5.9: Measured and simulated clipped viscous damping with negative stiffness.
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Figure 5.10: Measured and simulated friction damping with negative stiffness.
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5.6 Summary

The damping of a shear frame with five masses with controlled MR damper between ground
plate and first mass was investigated in simulation and experiments. The tested control
laws were viscous damping, clipped viscous damping with negative and positive stiffness
and optimal semi-active friction damping with negative stiffness. The control laws were
designed using a validated model of the shear frame. A novel approach of a validated neural
network model of the inverse MR damper behaviour was used to track the desired control
force. Since the neural network output, i.e. the desired MR damper current, is very sensitive
to measurement noise in the measured damper velocity input, the neural network output
was fed through a low-pass filter. In addition, a switch was added to set the outputted
desired current to zero if the desired force was smaller than the residual force of the MR
damper under consideration. The entire controller included real-time processing of the
measured damper displacement and acceleration, real-time calculation of the four tested
control laws and real-time calculation of the neural network output and its extensions. The
entire controller was implemented in Matlab/dSPACE at a sampling frequency of 500 Hz.
Despite the two extensions of the neural network, i.e. the low-pass filter and the switch,
the actual MR damper force was still spiky. Nevertheless, the measured structural damping
agreed well with the simulated values. This is explained by the fact that the mean stiffness
and energy dissipation of the control force which were tracked fairly accurately, except when
the desired force was smaller than the residual force at 0 A, mainly determined the resulting
structural damping. Thus, the neural network method represents a tool with which the
inverse MR damper behaviour can be modelled directly in order to track the desired force
in real-time with sufficiently large accuracy without feedback from a force sensor.



Chapter 6

Applications to Benchmark Problems

In recent years, several control strategies have been developed and studied on different
buildings for different dynamic loads. Some of the control strategies have been designed
and implemented for real structures like cables or building structures or bridges. However,
due to experimental limitations, it is hardly possible to implement the control laws on the
same building with the same load. Thus, the concept of benchmark problems has come into
the picture to compare the various control laws on the same building structure and for the
same dynamic load [38, 104]. Based on realistic full-scale buildings, two structural control
benchmark problems have been identified for earthquake [38, 39] and wind excitations [40].

For the last decades, several design solutions have been developed and implemented for
earthquake mitigation of high-rise buildings. In particular, base-isolation is an effective and
robust method for reducing structural response due to earthquake excitation. The base-
isolation technique consists of the installation of mechanisms that decouple the structure
and its content from the earthquake induced ground motion, especially in the frequency
range where the building is most affected. Base-isolation is designed to avoid potential
damage in a cost-effective manner to both the structure and its content by reducing inter-
floor drifts as well as floor accelerations. Successful base-isolation of a particular structure
strongly depends on the choice of isolator devices. The most commonly used types are
elastomeric bearings, lead-rubber-bearings and friction pendulum bearings. Details about
base-isolation can be found in [100]. Adding supplemental damping to a structure via the
base can help reduce the response of the building and especially reduce the base displace-
ment. However, the addition of damping to minimise base displacements may increase
both internal deformation and absolute accelerations of the superstructure. The additional
damping is provided by installing either passive control devices, active control devices or
semi-active control devices on the base-isolated building. The magnetorheological damper
is commonly used device for robust semi-active control in connection with base isolation
and earthquake excitation. Several semi-active control methods have been investigated for
base-isolated structures [101] - [107] and for wind excited structures [108] - [110].

This chapter first describes the implementation of different control strategies for a seismically
excited base-isolated building mounted on rubber bearings using MR dampers. Benchmark
problems are slightly modified for studying semi-active control strategies for buildings excited
to earthquake loadings. The benchmark problem for a base-isolated building is similar to an
existing eight-floor building in the earthquake prone Los Angeles region. It is is proposed
in [38] and is formulated in association with the ASCE structural control committee. In its
basic version it is capable of incorporating three different kinds of base-isolation systems.
Moreover, a sample controller design for the benchmark problem is evaluated in [39]. The
details of applied control strategies for this benchmark problem have already been discussed
in Chapter 4 and also in [P2, P4]. The three types of control strategies are: the pure
viscous damping (VD), the viscous damping with negative stiffness (VDNS) and the friction
damping with negative stiffness (FDNS). Two MR dampers are acting on the structure at
the mass center of the base slab, working in the two planar direction at the base. The
parameter calibration of the control strategies are determined by the method following the
two-component reduction technique of Main and Krenk [29]. The performance of the control
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Table 6.1: Bingham Model Parametrs

fa 100 kN fb 75.0 kN/A

ca 81.0 kN s/m cb 90.0 kN s/m/V

methods is assessed in terms of nine performance indices, which are defined in benchmark
problems.

The second part of this chapter describes the implementation of the developed control strate-
gies for a wind excited building. The wind-excited benchmark building is a 76-floor, 306 m
tall, concrete office tower, proposed for the city of Melbourne, Australia. The building is
tall and slender with a height-to-width ratio of 7.3. Hence, it is wind sensitive, and wind
tunnel tests have been conducted for a building model at the University of Sydney. The
results of the across-wind data are provided for the analysis of the benchmark problem, and
a number of performance criteria are evaluated based on this benchmark problem.

6.1 Magnetorheological Damper: Forward and Inverse Model

For the benchmark problem, two large scale MR damper of 1000 kN are considered. The
objective of the benchmark problem is to show effectiveness of negative stiffness on several
semi-active control approaches. For that reason a simple MR damper model based on
bingham plasticity theory is considered in the benchmark study [13, 35].

The governing equation for the damper force f predicted by the Bingham model is expressed
as

f = [fa + fbI]sign[ẋ] + [ca + cbI]ẋ (6.1)

The parameters of the Bingham model are given in Table 6.1. The Bingham model is also
used in [P4] for inverse MR damper design. But in this case, neural network based inverse
Mr damper is developed based on the methods discussed in [P1]. The Bingham model has
two inputs i.e., current and velocity and one output force. The generated force at different
constant current level (2 A,4 A, 6 A) is shown in Figure 6.1(a). The training set for NN
model here is modified so that it can work with transient behaviour. The training set consists
of sinusoidal, triangular, constant step and gaussian white noise (GWN) displacement inputs
and also current input. The validation of inverse neural model of the Bingham model for
sinusoidal displacement (0.1 m and 3.0 Hz) and sinusoidal current input (5 A and 3.0 Hz)
is shown in Figure 6.1(b). The inverse neural network modeling and its training procedure
are already discussed in Chapter 2. From Figure 6.1(b), it is visible that the inverse neural
network can predict the current accurately though it generates some spiky current due to
small modelling error. But this can be removed by proper filtering [P1]. So the validated
model is used as feed forward component for force tracking in the control design in both the
benchmark problems.

6.2 Seismically Excited Base-Isolated Benchmark Building

The performance of the control strategies are initially evaluated for the base-isolation struc-
ture exposed to the El Centro earthquake problem. First the model is introduced and then
the performance indices are used to compare the control strategies and evaluated based on
the damper performance. The results are also compared to the active LQG sample controller
of the benchmark problem.
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6.2.1 Structural Model and Evaluation Criteria

The benchmark structure has been developed for the base-isolated benchmark problem de-
fined in [38]. The detailed modelling of the benchmark structure is given in Appendix. A.
The base-isolated building has eight floors with an average floor height of 4.04m, a width
of 54.3m and a length of 82.4 m. The floor plan is L-shaped for the first six floors and
rectangularly shaped for the two top floors. The schematic view of the floor plan and the
building is presented in Figures 6.2(a,b).

The benchmark building has steel-braced frames with the superstructure bracing located at
the building perimeter. The superstructure is supported on a reinforced concrete base slab,
and metal decking and a grid of steel beams support all concrete floor slabs. The elevation
view with the base isolation system and the control device is shown in Figure 6.2(c). A total
number of 92 isolation bearings are used in the present problem, and they are designed as
simple linear elastic rubber bearings, whereby a fully linear isolation system can be assumed
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Figure 6.1: Force diagram for MR damper (a) and Inverse model validation (b)

Figure 6.2: Schematic diagram of the benchmark building [38].
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Figure 6.3: earthquake acceleration

in the analysis. The superstructure is modelled as a three-dimensional linear elastic system
with lateral torsional behaviour, and the floor slabs as well as the base are assumed to be
rigid. Each floor plan and the isolation system is modelled using three degrees of freedom
located at the center of mass of each floor. They are the two horizontal displacements
and the torsional rotation of each slap/floor. Thus, the superstructure itself has a total of
24 DOFs, which yields 24 vibration modes in a fixed-base situation. When including the
motion of the base slab, which is supported by the base-isolation system, the total number
of DOFs increase to 27. Details of the mathematical modelling of the benchmark structure
are discussed in [38]. In the following, when the structure is denoted as uncontrolled it
means that no supplemental control devices are attached. This configuration is used as a
reference case when evaluating the performance of the control strategies operating on the
base-isolation system.

In the performance evaluation criteria the structural response quantities are normalised by
their corresponding uncontrolled values. If the uncontrolled values do not exist, e.g. the
control force, the values are not normalized. The performance of the controllers is shown
in Table 6.3 by the performance indices J1 to J9 which are defined in Appendix B. The
structural model is discussed in details in Appendix A, and the detailed definition and
description of the various performance indices for the evaluation of the proposed control
strategies are summarized in Appendix B.

6.2.2 Numerical Simulation

The time domain dynamic analysis has been conducted for the computational structural
model developed in MATLAB of a base-isolated benchmark building to investigate the
comparative performance of the collocated control laws on the structural response of the
benchmark building under El-Centro earthquake ground motion. The two horizontal com-
ponents of all the earthquakes are designated as fault-normal (F-N) and fault parallel (F-P),
as shown in Figure 6.3. The earthquake time history of the El-Centro earthquake record
has been considered with a time step of 0.001 s for the first 30 s in the simulation. The
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sampling time is very important to be at 1000 Hz because NN based inverse model is de-
veloped based on that frequency. The earthquake ground motion is applied bidirectionally
to the building in the horizontal plane, in which the fault normal component is applied in
the x-direction and the fault parallel component is applied in the y-direction. The vertical
component of the excitation has not been considered in the present dynamic analysis of
the base-isolated benchmark building. The original benchmark problem has been modelled
as in the Matlab/Simulink diagram in Figure 6.4. The original benchmark block diagram
has been modified to implement the proposed collocated semi-active control methods. The
modified block diagram is shown in Figure 6.5. The location and direction of the two MR
dampers is shown in Figure 6.6, where it is seen that they are operating at the center of the
mass (COM) of the L-shaped base of the benchmark building.

Table 6.2: Evaluation Criteria for Controllers

Earthquake Criteria VD VDNS FDNS LQG
(active)

El-Centro J1 1.31 1.13 1.09 0.93

J2 1.19 1.04 0.99 0.92

J3 1.13 1.09 1.02 0.82

J4 0.95 0.91 0.86 0.82

J5 1.17 1.12 1.02 0.85

J6 0.67 0.48 0.33 0.12

J7 1.21 1.02 0.92 0.78

J8 1.15 1.10 1.03 0.72

J9 0.91 0.77 0.65 1.89

From the comparison of the J-values it is seen that the friction damper with negative stiffness
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(FDNS) and the viscous damper with negative stiffness (VDNS) are comparatively better in
terms of performance evaluation than the pure viscous damper. For calculating the J value,
the response which contains some noise due to spiky current output from inverse neural
model, remain unfiltered because the main objective of this benchmark problem is to show
effectiveness of the negative stiffness. For the peak base shear (J1) the performance index is
significantly decreasing for viscous damping with negative stiffness and even further reduced
for the friction damping with negative stiffness. The peak value of the first floor shear (J2)
is also decreasing for both cases with negative stiffness. The peak base displacement (J3) is
also decreasing for the control strategies with negative stiffness. This is somewhat surprising,
because the introduction of apparent negative stiffness should soften the structure locally
and thereby allow larger local displacements. The peak inter-storey drift (J4) is related to

54.3 m

4
6

.2
 m

19.5 m

Actuator Location

Center of Mass of Base

8
2

.4
  m

Figure 6.6: MR damper distribution at the base
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stresses in the structure and the general condition of the structure. It is seen to decrease for
VDNS and FDNS, which again proves the efficiency of the controllers with negative stiffness.
The peak absolute floor acceleration (J5) and peak controller force (J6) also decrease, which
is very important for the selection of an efficient controller. Also the rms values of the base
displacement (J7) and the floor drift (J8) decrease for the VDNS and FDNS. Finally, the
energy absorbed by the damper (J9) verifies the general trend of the simulations, namely
that the introduction of negative stiffness has a beneficial effect on the response reduction
and damping of the structure. It is finally observed that the performance of the fully
active LQG controller is not reached. LQG controller which is acted as sample controller
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in benchmark problems are also discussed in Appendix E. However, the friction damping
with negative stiffness (FDNS) gives quite better performance over the other methods. The
top floor displacement and the top floor accelerations are shown in the Figure 6.7. From
these curves it is clearly visible that negative stiffness has a significant influence on the
vibration reduction of the structure. The Top-floor displacement in x- and y-direction are
shown in Figure 6.8. Also from these results it is found that the friction damping with
negative stiffness and the viscous damping with negative stiffness are somewhat better when
compared with the pure viscous case.

6.3 Wind-Excited Benchmark Building

While the earthquake benchmark problem in the previous section aims at reducing the
transmission of a transient type excitation to the structure, the present wind excitation
problem concerns the reduction of a more steady-state response from a distributed stochastic
type loading.

6.3.1 Benchmark Structure

The wind-excited benchmark building is considered as a 76-storey, 306 m tall, office tower
proposed for the city of Melbourne, Australia. The plan and the elevation sketch of the
building structure are shown in Figure 6.9. The building is a typical reinforced concrete
building consisting of a concrete core and concrete frames. The mass density of the building
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is 300kg/m3. The building is quite slender with a height-to-width ratio of 306.1/42 = 7.3.
This means that the structure is quite sensitive to wind excitation. The perimeter dimensions
for the central reinforced concrete core is 21×21m2. There are 24 columns on the periphery
of the building where six columns are distributed on each of the four sides of the building,
which are connected to a 900mm deep and 400mm wide spandrel beam on each floor.
The lightweight floor is constructed by steel beams with a metal deck and a 120mm slab.
The compressive strength of concrete is 60MPa and the modulus of elasticity is 40GPa.
The sized of the column, the core wall thickness and the floor mass are varying along the
height. The building is modelled as a vertical cantilever beam of the simple Bernoulli-Euler
type. The finite element model (FEM) model is constructed, where the part of the building
between adjacent floors is modelled as classical beam elements of uniform thickness. This
results in 76 translational and 76 rotational degrees of freedom. The 76 rotational degrees
of freedom have been removed by static condensation, whereby the final model contains
76 degrees of freedom, representing the displacement of each floor in the lateral direction.
The mass matrix M and the stiffness matrix K are constructed for the FEM model of the
building and provided for the analysis by the benchmark problem data. The first five natural
frequencies of the model are 0.16Hz, 0.77Hz, 1.99Hz, 3.79Hz and 6.40Hz. The damping
ratio ζ = 0.001 is assumed for the first five modes to construct the damping matrix C by
Rayleigh’s approach. The detailed benchmark model is demonstrated in [40].

6.3.2 Numerical Simulation

The time domain dynamic analysis has been conducted for the numerical structural model
developed in MATLAB of the above mentioned benchmark building to investigate the com-
parative performance of the collocated control laws on the structural response of the bench-
mark building under wind excitation. Details on the wind loading properties are given
in [40]. The wind load time histories have been modified with a time step of 0.001 s for a
900 s wind record for the simulations. The original benchmark problem contains a tuned
mass damper (TMD) on the top floor. But in the modified benchmark problem the TMD is
removed and the MR damper is installed between ground and first floor. So the benchmark
block diagram has been modified to implement the proposed collocated semi-active control
methods. The modified block diagram is shown in Figure 6.10.

The performance of the control strategies is based on various performance indices, which
are defined in [40] and summarized in Appendix D. By comparison of the performance, it is
seen that the friction damper with negative stiffness and the viscous damper with negative
stiffness are generally more efficient than the pure viscous damper.

The performance indices for the wind-exited benchmark problem are shown in Table 6.3. J1
is calculated based on maximum value of Rms of some selective floor accelerations and it is
clearly visible that maximum floor Rms acceleration are reduced for viscous with negative
stiffness (VDNS) compared to pure viscous damping (VD) but somehow in friction damp-
ing with negative stiffness (FDNS) control strategy, there is no significant change in Rms
acceleration value. But in both the cases, the performance index is lower than the pure
viscous controller. J2 is formulated based on average of selective floor acceleration. There
is significant change in performance index when the negative stiffness is added with VD
and it is further reduced in FDNS control strategy. J3 is evaluated based on the top floor
displacement and from performance comparision. It is visible that top floor displacement
is significantly decreased in VDNS model and also the performance index is more reduced
in FDNS case. J4 is formulated based on the average of RMS values of displacements of
some selective floors. From the comparision chart, it is visible that negative stiffness can
significantly decrease the index value and FDNS control law performs better than other two
semi-active controller. J5 and J6 are based on constraints in actuator capacity and average
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Table 6.3: Evaluation Criteria for Controllers

Load Criteria VD VDNS FDNS LQG

wind J1 0.63 0.54 0.54 0.38

J2 0.76 0.66 0.64 0.43

J3 0.96 0.93 0.88 0.71

J4 0.90 0.85 0.81 0.67

J5 0.55 0.41 0.41 0.14

J6 kN 32.55 31.21 27.4 59.9

J7 0.69 0.61 0.53 0.31

J8 0.82 0.77 0.75 0.44

J9 0.94 0.93 0.82 0.75

J10 0.85 0.82 0.81 0.65

J11 0.25 0.19 0.21 0.03

J12 kN m/s 332.75 324.54 298.11 601.1

power respectively which are also very important for damper or actuator selection. The per-
formance indices are significantly decreasing for the case of VDNS and even more in FDNS
controller. J7 is constructed based on maximum peak response of the acceleration values of
some selective floors and J8 is formulated based on average peak values of acceleration in
some selective floors. FDNS control strategy is also showing better performance in compar-
ision chart for both the cases. J9 and J10 are formulated based on peak value of the top
floor and average peak value of some selective floor respectively. VDNS is performing better
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than the pure viscous control strategy. FDNS control strategy also reduce the performance
indices even more than VDNS. J11 and J12 are constructed based on actuator capacity and
power and this two performance indices are also important for suitable damper selection.
For both the performance indices, negative stiffness plays significant role. Friction damping
with negative stiffness (FDNS) and viscous damping with negative stiffness (VDNS) are
performing better than the pure viscous damping (VD). All the controller performances are
compared with active LQG controller performance which is used in the benchmark problem
as sample controller. Somehow the semi-active controllers are not able to reach the per-
formance obtained from active LQG control. The top floor displacement and the top floor
acceleration in time domain are shown in Figure 6.11.

From the time domain analysis of both the displacement and the acceleration, it is visible
that the the viscous damping with negative stiffness and friction damping with negative
stiffness perform better than the pure viscous damping strategy. This benchmark study also
demonstrated the influence of negative stiffness in control strategy for vibration reduction
problem.

6.4 Summary

The benchmark problem for a base-isolated building structure and wind-exited tall build-
ing are demonstrated and some semi-active control strategies are implemented on both the
benchmark structure. The force evaluated from the controller is used to emulate the desired
current to get the actual force for a large-scale MR damper from inverse MR model. The neg-
ative stiffness has significant contribution in terms of vibration reduction. The performance
of the semi-active control strategies are also quite satisfactory in benchmark problems.



Chapter 7

Conclusions

This thesis presents the modelling of a rotary type MR damper from the measurement
data and compares several semi-active control strategies by simulations and experiments.
In the first part, neural network based models of the forward and the inverse behaviour
of a rotary MR damper using measurement data have been evaluated. Three signification
actions have been taken to prepare the data sets for neural network architecture: filtering
with low-pass filter in order to remove high-frequency signal parts, removing offset values
and finally downsampling from higher frequency to lower frequency for easy handling of
bulk amount data. A sub-optimal neural network architecture is developed to model the
forward and inverse dynamics of the MR damper. Both models are verified with independent
measurement data. It is demonstrated that a proper combination of number of previous
values of the input states and the number of hidden layers and neurons gives the best
numerical fit. It is also shown that if velocity estimation is possible from displacement or
acceleration, then velocity is only enough to use as model input, while adding displacement
and acceleration as model input will not improve the modelling error significantly. This
sub-optimal procedure is faster and simpler and also effective in closed loop simulations.
Another significant contribution to the inverse modelling of MR dampers is the proposal
of the absolute values of damper velocity and damper force as input to the neural network
with damper current as output. It seems that this simple modification improves the force
tracking, as it limits the generation of negative values of the damper current predicted by
the neural network. In the validation results, the forward neural network model is able
to estimate the force with high accuracy at different constant current input and also quite
accurately for sinusoidal current input. It is also illustrated that the neural network model
is comparatively better than the often used Bouc-Wen model to capture in particular the
non-linearities in the forward dynamics of the damper. The inverse model is also showing
minimum modeling error in the current prediction. But at sinusoidal current level, the
inverse model has better accuracy than at constant level.

In the second part of the thesis a five-mass shear frame structure has been modelled using
an experimental analysis. The stiffness of the model has been determined from the mode
shapes, which are constructed from the frequency transfer functions obtained by the test
data. The damping matrix has been determined from the estimated damping ratio through
free decay tests, and from the corresponding frequency response the resonance frequencies
are determined. The validation of the model shows quite satisfactory accuracy, and this
model can be sued for the calibration of the control strategies.

In the third part of the thesis, several semi-active control strategies are developed and applied
to the shear frame structure by a rotary type MR damper. The applied control laws are pure
viscous damping, viscous damping with negative stiffness, semi-active friction damping with
negative stiffness and a neural network based model reference control. The inverse neural
model is used to track the desired control force. Since the neural network output, i.e. the
desired MR damper current, is very sensitive to measurement noise in the measured damper
velocity input, the neural network output is fed through a low-pass filter. Also the so-called
Kinematic Kalman Filter (KKF) is used to estimate the velocity by combining measured
displacement and acceleration data in an effective way. The actual MR damper force is spiky
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due to small modeling errors in the inverse model, but the control forces are still tracked
fairly accurately, except when the desired force is smaller than the residual force at 0 A of
the MR damper. The advantage of using the neural network model is the ability to model
the inverse MR damper behaviour directly in order to track the desired force with sufficient
accuracy without feedback from a force sensor. The performances of the structural building
with harmonic base excitation are compared for different types of control strategies and it
is shown that friction damping with negative stiffness gives better performance compared to
the other methods. In general it is clearly observed that the inclusion of negative stiffness
significantly decreases the structural response and thus improves the damping efficiency.

In the last part of the thesis, some of the above-mentioned control strategies are applied to
two benchmark problems. The benchmark problem for a seismically excited base-isolated
structure is used for implementing control strategies with negative stiffness, and it is demon-
strated that the inclusion of negative stiffness is significantly reducing the overall damping
of the structure. The second benchmark problem concerns the wind excitation of a tall
building, and it is in the present thesis used to investigate the performance of the various
control strategies for more stationary type loading conditions. The results are also signifi-
cantly improving when negative stiffness is included in the control law. Based on the results
for the benchmark problems it is observed that the application of negative stiffness improves
the general damping efficiency for both the transient earthquake loading and the stationary
random wind excitation.
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Appendix A

Base-Isolated Benchmark Model

Base-isolated buildings are designed such that the superstructure remains elastic. The su-
perstructure is modelled by a linear elastic system. The base-isolation consists of 92 linear
isolation bearings. All bearings are designed as linear elastic rubber bearings so that a fully
linear isolation system is constructed. The details of linear and non-linear base-isolated
benchmark building models are discussed in [39, 111]. Here linear base-isolation is consid-
ered.

The dynamics of an uncontrolled benchmark building with linear rubber bearings will be
described. A structural model of the base-isolated building is presented together with a
detailed elaboration of the mass, damping and stiffness matrix and the force vector. The
equation of motion of the uncontrolled linear base-isolated building is formulated combining
the superstructure model consisting of an eight-floor structure above the base (24 DOF) and
the base with linear isolation bearing (3 DOF).

The superstructure is linear and the slabs are all assumed to be rigid. The response of each
floor is characterised by three main degrees of freedom located at the centre of mass (COM):
two horizontal in the longitudinal and transverse axis directions and one rotational about
the vertical axis. This gives a (24 DOF finite element model. The superstructure equation
of motion can be written as

Msẍs +Csẋs +Ksxs = −MsR1ẍb (A.1)

where R1 =

⎡
⎢⎢⎣
I3×3

·
·

I3×3

⎤
⎥⎥⎦
24×3

Ms, Cs andKs are the 24×24 respectively. xs is the displacement of the superstructure with
respect to the base, ẋs is the velocity, ẍs is the acceleration and ẋb is the absolute acceleration
of the base. The dots denote differentiation with respect to time. R1 is a transformation
matrix used to distribute the earthquake acceleration effect to all floors. Absolute values
and values with respect to the ground and the base, are depicted in Figure A.1. The index
g refers to the ground and b refers to the base.

The displacement of the superstructure with respect to the base is described by the 24× 24
vector xs = [x8, y8, θ8, ..., x1, y1, θ1]

T where xi, yi, θi are the displacement in the horizontal
x and y direction and the rotational respectively. The absolute displacement of the base, xb

can be expressed as the sum of the displacement of the base with respect to the ground and
the absolute acceleration of the ground.

xb = xg
b +R3xg , R3 =

⎡
⎣1 0
0 1
0 0

⎤
⎦ (A.2)

R3 is denoted the transformation coefficient matrix and the displacement of the base with
respect to the ground is given by the 3 × 1 vector xg

b = [xg
b , y

g
b , θ

g
b ]

T. By using the same

89



90 Base-Isolated Benchmark Model

m

m

8

2

m1
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xs

x g xb

Fixed Reference

Figure A.1: The displacement coordinates used to formulate the equations of mo-
tion.

principle as(A.2) on the acceleration and inserting this in(A.2), the equation of motion is
modified as

Msẍs +Csẋs +Ksxs = −MsR1 (ẍ
g
b +R3ẍg) (A.3)

where Ms, Cs and Ks are the mass, damping and stiffness matrices of the superstructure
respectively. Ms is given as a diagonal matrix containing the mass in the two horizontal
directions and the rotational mass for each of the eight floors.

Ms =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

mx
8

my
8

mθ
8

.
.

.
mθ

1

mθ
1

mθ
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
24×24

(A.4)

The resonance frequency is determined from an eigenvalue problem

(Ks − ω2
0sMs)u0s = 0 (A.5)

The equation of motion for the base is given by

Mbẍb +Cbẋb +Kbxb +Qs = −MbR3ẍg (A.6)

where xb = [xb, yb, θb]
T describes the displacement of the base with respect to the ground.

Mb, Cb and Kb are the (3×3) mass, damping and stiffness matrices of the base respectively.
Qs is the superstructure shear force given by

Qs = RT

1Ms(ẍs +R1ẍb) (A.7)
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By substituting (A.7), together with the expression for the absolute base acceleration, into
(A.6), it gives

Mbẍb +Cbẋb +Kbxb +RT

1Ms (ẍs +R1(ẍ
g
b +R3ẍg)) = −MbR3ẍg (A.8)

Mb is given as a diagonal matrix containing the mass in the two horizontal direction and
the rotational mass of the base

Mb =

⎡
⎣m

x
b

my
b

mθ
b

⎤
⎦ (A.9)

The masses are given in [39] for constructing model.

The damping matrix for the base is constructed based on the rubber damping parameter
crub given in benchmark problem [39]. The damping for one bearing can be formulated as

Cbear
i =

⎡
⎣c

x
rub

cyrub
.

⎤
⎦ (A.10)

where i is the number of isolation bearing. The rubber has the same damping in both x
and y direction so cxrub = cyrub = crub. This yields a total diagonal damping matrix for the
base-isolation system

Cbear =

⎡
⎢⎢⎣
Cbear

1

.
.

Cbear
n

⎤
⎥⎥⎦ (A.11)

where n = 92 is the number of isolation bearings.

The damping matrix for the isolation system is transformed with respect to the center of
mass. The final damping matrix for the base becomes

Cb = Rbear
2 Cbear(Rbear

2 )T (A.12)

where the transformation matrix Rbear
2 is given by

Rbear
2 =

[
rbear1 . . . rbearn

]
, rbeari =

⎡
⎣ 1 0 0

0 1 0
−ybeari xbear

i 1

⎤
⎦ (A.13)

The stiffness matrix for the base is based on the rubber stiffness krubb given in [39]. The final
stiffness matrix will be constructed in a similar way to the damping matrix. The stiffness
for one bearing can be formulated as

Kbear
i =

⎡
⎣k

x
rub

kyrub
.

⎤
⎦ (A.14)

The rubber has the same stiffness in both x and y direction so kxrub = kyrub = krub. This
yields a total diagonal stiffness matrix for the base-isolation system

Kbear =

⎡
⎢⎢⎣
Kbear

1

.
.

Kbear
n

⎤
⎥⎥⎦ (A.15)
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The stiffness matrix is transformed with respect to the center of the mass. The final stiffness
matrix for the base becomes

Kb = Rbear
2 Kbear(Rbear

2 )T (A.16)

The motion of the entire building is expresses as a combination os super structure and base.
Combining the (A.1) and (A.6) the total structural model is constructed and expressed as
below

Mẍ+Cẋ+Kx = Sẍg (A.17)

where the displacement x is described by a (27 × 1) vector. The displacements of the
superstructure is represented with respect to the base and the displacements of the base is
represented with respect to the ground.

x =

[
xs

xb

]
(A.18)

The mass, damping, stiffness and load matrices are constructed as

M =

[
Ms MsR1

RT

iMs Mb +RT

1MsR1

]
C =

[
Cs 0
0 Cb

]

K =

[
Ks 0
0 Kb

]
S =

[
−MsR1R3

−(Mb +RT

1MsR1)R3

] (A.19)



Appendix B

Evaluation Criteria For Base-Isolated Benchmark Building

To evaluate the performance of the base-isolated benchmark building and to compare the
results with different kinds of control strategies, 9 evaluation criteria, J-values, are presented
in [38]. A detailed description of the evaluation criteria is given below. The symbol u
describes results obtained from the uncontrolled structure. Considering the indices, j=device
number, f=floor number: 1,...,8 and b represents the base. Regarding the variables and t
= time: 0 ≤ t ≤ T (T = 30s). Q equals to the shear force and F equals to the controller
force. J3, J4, J5 are representing deviation in base displacements, inter-floor drifts and
superstructure floor accelerations. xb is the displacement of the base with respect to the
ground. Δx is the inter-storey drift and ẍ is the absolute acceleration of the superstructure.
The root-mean-square (RMS) response quantities indicate if the peak value obtained for
the given response is representative, or if the general response lies a lot lower than this.
The objective is to minimize these RMS values. σ indicates that it is an RMS value and
the subscript indicates whether it is displacement or acceleration. Another performance
index J9 measures the energy dissipated by the control devices as a percentage of the input
excitation energy. An increase in J9 means that energy is dissipated by use of the controller,
i.e. damping is induced. ẋj is the velocity of the jth device with respect to the ground and
ẋg is the velocity of the ground. ‖ . ‖ is vector magnitude incorporating NS and EW
components. 〈.〉 is inner product.

The evaluation criteria are denoted by performance indices which are constructed by the
controlled quantity divided by the uncontrolled quantity and are given below

� Peak base shear (isolation-level) in the controlled structure normalised by the corre-
sponding shear in the uncontrolled structure

J1 = maxt‖Qb(t)‖
maxt‖Qu

b
(t)‖

� Peak structure shear (at first storey level) in the controlled structure normalised by
the corresponding shear in the uncontrolled structure

J2 = maxt‖Q1(t)‖
maxt‖Qu

1
(t)‖

� Peak base displacement or isolator deformation in the controlled structure normalised
by the corresponding displacement in the uncontrolled structure

J3 =
maxt,i‖xb(t)‖
maxt,i‖xu

b
(t)‖

� Peak inter-storey drift in the controlled structure normalised by the corresponding
inter-storey drift in the uncontrolled structure

J4 =
maxt,f‖Δxf (t)‖
maxt,f‖Δx

u
f
(t)‖

� Peak absolute floor acceleration in the controlled structure normalised by the corre-
sponding acceleration in the uncontrolled structure

J5 =
maxt,f‖ẍf (t)‖
maxt,f‖ẍu

f
(t)‖
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� Peak force generated by all control devices normalised by the peak base shear in the
controlled structure

J6 =
maxt‖

∑
j
Fj(t)‖

maxt‖Qb(t)‖

� RMS base displacement in the controlled structure normalised by the corresponding
RMS base displacement in the uncontrolled structure

J7 =
maxi‖σxb

(t)‖

maxi‖σxu
b
(t)‖

� RMS absolute floor acceleration in the controlled structure normalised by the corre-
sponding RMS acceleration in the uncontrolled structure

J8 =
maxf‖σẍ(t)‖
maxf‖σẍu (t)‖

� Total energy absorbed by all control devices normalised by energy input into the
controlled structure

J9 =
∑

j
[
∫

T

0
Fj(t)ẋj(t)dt]

∫
T

0
〈Qb(t)ẋg(t)〉dt



Appendix C

Wind-Excited Benchmark Model

The building considered for wind-excited benchmark problem is a 76-floor tall building. The
detailed structural model is given in [40]. The equation of motion for the controlled building
structure model subjected to wind excitation can be expressed as

Mẍ+Cẋ+Kx+Hu = GW (C.1)

where x = [x1, x2, ...., x76]
T is displacement vector. xi represents the displacement of the

ith floor. M, C and K are (76 × 76) mass, damping and stiffness matrices, u is control
force, W is wind excitation vector with dimension 76, H is control influence vector, and G
is excitation influence matrix.

The state order reduction model is implemented to derive the low order model model from
(C.1). In the reduced order model, eigenvalues and eigenvectors of selected modes of the
full-order system are preserved. The 76 DOF model is reduced to a 23 DOF system by
retaining first 46 complex modes of the full order system. The reduced order state equation
is expressed by

ẋ = Ax+Bu+EW (C.2)

in which x = [x̄, ˙̄x]T is 46-dimensional deduced order state vector and x̄ = [x3, x6, x10, x13, x16,
x20, x23, x26, x30, x33, x36, x40, x43, x46, x50, x53, x56, x60, x63, x66, x70, x73, x76]. A is (46×46)
system matrix, B is (46× 1)location vector and E is (46× 76) matrix.

The controlled output vector z and the measured output vector y in the output equation of
the state model in (C.2) are expressed as

z = Czx+Dzu+ FzW (C.3)

y = Cyx+Dyu+ FyW+ v (C.4)

in which z = [x1, x30, x50, x55, x60, x65, x70, x75, x76, ẋ1, ẋ30, ẋ50, ẋ55, ẋ60, ẋ65, ẋ70, ẋ75, ẋ76,
ẍ1, ẍ30, ẍ50, ẍ55, ẍ60, ẍ65, ẍ70, ẍ75, ẍ76]

T which is a (27× 1) vector of regulated response and
y = [ẋ1, ẋ30, ẋ50, ẋ55, ẋ60, ẋ65, ẋ70, ẋ75, ẋ76, ẍ1, ẍ30, ẍ50, ẍ55, ẍ60, ẍ65, ẍ70, ẍ75, ẍ76]

T which is
a (18× 1) vector of measured response from the sensors. v is noise vector. Cz, Dz , Fz, Cy,
Dy, Fy have appropriate dimension based on model order.
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Appendix D

Evaluation Criteria For Wind-Excited Benchmark Building

To evaluate the performance of the wind-excited benchmark building and compare the results
with several control strategies, 12 evaluation criteria, J-values, are presented by Yang et
al. [40]. A detailed description of the evaluation criteria is discussed below. The symbol
σ describes the rms value of the corresponding measurement. Considering the indices, i
represents floor number: 1,..., 76, p represents peak value, u represents uncontrolled case
and d represents the actuator. Here xi, ẋi and ẍi represent the displacement, velocity and
the acceleration of ith floor respectively. From the time history of the structural response,
the peak response values and the rms values are evaluated.

The evaluation criteria is denoted by the performance indices which are constructed by the
controlled quantity divided by the uncontrolled quantity and is given below

� The first evaluation criterion of the controller is evaluated based on its ability to
reduce the maximum floor rms acceleration with compared to rms value of the 75th
floor acceleration.

J1 = max(σẍ1,σẍ30,σẍ50,σẍ55,σẍ60,σẍ65,σẍ70,σẍ75)
σẍ75u

where σẍi is the RMS acceleration of the ith floor and σẍ75u is the RMS acceleration
of the 75th floor without controller. For evaluating this criterion only up to 75th floor
acceleration values are considered. 76th floor is top floor and unoccupied and thats
why only displacement of that floor is important but acceleration is not considered.

� The second criterion is evaluated based on the average performance of acceleration for
some selected floors above the 49th floor.

J2 = 1
6

∑
i(

σẍi

σẍiu
)

for i = 50, 55, 60, 65, 70, 75 and σẍiu is RMS acceleration of the ith floor without
control.

� The third criteria is evaluated based on the ability of the controller to reduce the top
floor displacements. After normalization, the criteria is expressed as

J3 = σx76

σx76u

� The fourth evaluation criteria is also reduction of some selective floor displacement
above 49th floor, i.e.,

J4 = 1
7

∑
i

σxi

σxiu

for i = 50, 55, 60, 65, 70, 75, 76

� The fifth criteria is based on actuator capacity constraints which is given in [40]. If
σxm is RMS actuator displacement then the non dimensionalized actuator stroke can
be represented as

J5 = σxm

σx76u
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� The sixth criteria is based on the average power from actuator and represented as

J6 = { 1
T

∫ T

0
[ẋm(t)u(t)]2dt}1/2

in which ẋm is actuator velocity and T is the total time of integration.

� The seventh criteria is based on peak response quantity. The non-dimensional perfor-
mance criteria is given as

J7 =
max(ẍp1,ẍp30,ẍp50,ẍp55,ẍp60,ẍp65,ẍp70,ẍp75)

ẍp75

� The eighth criterion is the average peak value of acceleration for selected floors above
49th floor, i.e.,

J8 = 1
6

∑
i(

ẍpi

ẍpiu
)

for i = 50, 55, 60, 65, 70 and 75.

where ẍpi and ẍpiu are the peak accelerations of the ith floor with and without con-
troller.

� The ninth criteria is evaluated based on the ability of the controller to reduce the peak
value of the top floor displacement. After normalization, the criteria is expressed as

J9 =
xp76

xp76u

� The tenth criterion is the average peak value of displacement for selected floors above
49th floor, i.e.,

J10 = 1
7

∑
i(

xpi

xpiu
)

for i = 50, 55, 60, 65, 70, 75 and 76.

where xpi and xpiu are the peak displacement of the ith floor with and without con-
troller.

� The eleventh and twelfth criterions are based on constrains of the actuator capacity
in terms of actuator strokes and actuator power respectively

J11 =
xpm

xp76u
;

J12 = Pmax = max|ẋm(t)u(t)|

where xpm is peak stroke of actuator and Pmax is the peak control power.



Appendix E

LQG Control Design: Sample Controller In Benchmark Problems

Linear Quadratic Gaussian(LQG) Control is one of the most useful optimal control tech-
niques. LQG is used in base-isolated as well as wind-excited benchmark problems as a
sample controller [39, 40]. The detailed description about formation of LQG controller is
depicted by Yang et al. [40] and also given as below. The LQG controller is used as a sam-
ple controller for comparing with the proposed control design methodologies in benchmark
problems. A brief discussion on LQG control design based on articles [14, 40, 111] is given
below

The system model for LQG controller can be full-order or reduced-order based on benchmark
problem. The reduced-order system model is derived from the full-order system model. The
standard LQG controller used in benchmark problem is shown in Figure E.1.

Structure

xW

z

+

+

vyKalman

Filter
-K

xu

u

Figure E.1: LQG Controller.

The system model is written as

ẋ = Ax+Bu+EW (E.1)

The controlled output equation and the output measurement equation are expressed as

z = Czx+Dzu+ FzW (E.2)

y = Cyx+Dyu+ FyW+ v (E.3)

where x is a n-dimensional state vector consists of displacements and velocities at different
floor location, z is controlled output vector, y is the measured output vector. A,B,E are
systemmatrices. Cz ,Dz,Fz,Cy,Dy,Fy are output matrices having appropriate dimensions.
W is the external excitation and v is the measurement noise which are constructed by
uncorrelated Gaussian white noise vectors.

A LQG controller is constructed by minimising a cost function that weights the regulated
outputs and the control forces is given as

J = lim
τ→∞

1

τ
E

[∫ τ

0

(zTaQza + uTRu)dt

]
(E.4)
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where za = z − FzW = Czx + Dzu, Q is a diagonal matrix that weights the regulated
outputs andR is an identity matrix that weights the control forces. For the linear system,the
separation principle for LQG method allows the control and estimation problems to be
considered separately. The control law for the LQG is obtained as

u = −Kx̂ (E.5)

K is obtained from
K = −R̄

−1
(BTP+ ST ) (E.6)

in which P is the solution of the Riccati equation

PĀ+ Ā
T
P−PBR̄

−1
BTP+ Q̄− S̄R̄

−1
S̄
T
= 0 (E.7)

where Q̄ = CT
z QCz, R̄ = DT

zQDz +R, S̄ = CT
z QDz and Ā = A−BR̄

−1
ST . Calculation

of K is performed using MATLAB control toolbox functions lqry .

The LQG controller in (E.5) is based on the state feedback x, which can be estimated from
Kalman-Bucy Filter which acts as an observer. The estimated state is denoted by x̂. The
Kalman filter is expressed as

˙̂x = Ax̂+Bu+ L(y−Cyx̂−Dyu) (E.8)

in which the Kalman gain matrix L is calculated from

L = (PkCy
T + Sk)Rk

−1 (E.9)

where Pk is obtained from the solution of the Riccati equation

PkÂ+ Â
T
Pk −PkCy

TR−1
k CyPk +Qk − SkR

−1
k Sk = 0 (E.10)

where
Â = AT −CT

y R
−1
k ST

k (E.11)

Qk and Rk are autopower spectral density function of two vectors EW and FyW + v,
respectively. Sk is the cross-power spectral density function of two vectorsEW andFyW+v.

Qk = ESwE
T ; Sk = ESwF

T
y ; Rk = Sv + FySwF

T
y (E.12)

where Sw and Sv are power spectral density matrices of the white noiseW and v respectively.
The Kalman estimator gain L is calculated using MATLAB control toolbox function lqew.
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Abstract. This paper presents a systematic design and training procedure for the feed-forward back-

propagation neural network (NN) modelling of both forward and inverse behaviour of a rotary 

magnetorheological (MR) damper based on experimental data. For the forward damper model, with damper 

force as output, an optimization procedure demonstrates accurate training of the NN architecture with only 

current and velocity as input states. For the inverse damper model, with current as output, the absolute value 

of velocity and force are used as input states to avoid negative current spikes when tracking a desired damper 

force. The forward and inverse damper models are trained and validated experimentally, combining a limited 

number of harmonic displacement records, and constant and half-sinusoidal current records. In general the 

validation shows accurate results for both forward and inverse damper models, where the observed 

modelling errors for the inverse model can be related to knocking effects in the measured force due to the 

bearing plays between hydraulic piston and MR damper rod. Finally, the validated models are used to 

emulate pure viscous damping. Comparison of numerical and experimental results demonstrates good 

agreement in the post-yield region of the MR damper, while the main error of the inverse NN occurs in the 

pre-yield region where the inverse NN overestimates the current to track the desired viscous force. 
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1. Introduction 

Magnetorheological (MR) dampers used for controlled damping of structural vibrations have received 

considerable attention during the last decades because they offer the possibility to adapt their semi-active 

force in real-time to the structural vibrations (Christenson et al 2006, Li et al 2007, Neelakantan and 

Washington 2008, Wu and Cai 2010). MR dampers are suitable for mitigation of vibrations in large civil 

engineering structures because they combine large control force ranges, low power requirements, fast 

response time and fail safe performance (Spencer and Nagarajaiah 2003). 

Basically, rotary type magnetorheological (MR) dampers consist of a housing including the MR fluid and 

the rotating part of the disc. The MR fluid is a suspension of oil with magnetizable particles with average 

diameter of 5 �m and some additives. The particles and the ferromagnetic parts of the housing and disc are 

magnetized by the magnetic field that is produced by two coils which are installed within the housing on 

both sides of the disc. The magnetized particles built chains and thereby stick to the disc and housing (Weber 

and Boston 2011a). When the disc starts to rotate the particle chains are initially stretched before they start to 

slide relative to the surfaces of the disc and/or the housing. The particle chains may also brake, whereby 

rupture between particles occurs. The phase where particle chains are elastically stretched is commonly 

denoted as the pre-yield region of the MR fluid, while the sliding phase is called the post-yield region. The 

particle chains start to slide when the dry friction force between particles or between particle chains and disc 

or between particle chains and housing is balanced by the elastic force due to elongation of the particle 

chains (Weber and Boston 2011a). Since this sticking depends strongly on the magnetization of the MR 

fluid, and thereby on the MR damper current, the post-yield force of the MR damper typically exhibits a 

strong current dependency. Because the superposed viscous force is usually rather small and the MR fluid 

viscosity depends only slightly on the coil current, the applied current primarily controls the friction force of 

the MR damper, while the viscous force component is mainly governed by the rotating speed of the disc and 

the inherent viscosity of the MR fluid (Weber et al 2011). In order to be able to control the total MR damper 

force relative to a desired control force, the coil current must be modulated so that the control force tracking 

error is acceptable. Due to the non-linear behavior of the MR damper force, i.e. the non-linear relation 

between current and sticking force and the non-linear dependency of the MR fluid viscosity on current, force 



tracking with force feedback only may fail to track the desired force accurately. Therefore, model-based feed 

forward control schemes are needed to solve the force tracking task with sufficient accuracy (Weber et al 

2011, Weber and Boston 2011b). Such approaches can then later be extended by a force feedback in order to 

further decrease the remaining force tracking error. 

MR dampers are either operated at zero or constant current, which are called passive-off or passive-on 

strategies (Weber et al 2005), or they are controlled in real-time within a particular feedback loop (Maslanka 

et al 2007, Weber et al 2009). In the latter case the structural response is typically measured at damper 

position and the MR damper current is controlled in real-time to obtain minimum tracking error with respect 

to a desired control force. The force tracking task is usually solved by a model-based feed forward control 

scheme, simply to avoid costly force sensors (Maslanka et al 2007, Weber et al 2009). The input states of the 

feed forward controller may be the damper displacement, velocity, acceleration, or any combination of these 

states, and the desired control force, while the output state is the desired MR damper current. In practice the 

desired current is realized by a current driver, which compensates for the coil impedance dynamics of the 

MR damper. Therefore, an inverse MR damper model is required that estimates the desired damper current 

based on a limited number of the above mentioned input states. This model is usually referred to as an 

inverse MR damper model (Tse and Chang 2004, Yang et al 2004, Dominguez et al 2006, Weber et al 2011, 

Weber and Boston 2011a, Weber and Boston 2011b) because it predicts the controllable damper current, 

while the classic forward models predict the damper force. 

Many parametric and non-parametric forward models for classic cylindrical type MR dampers have been 

presented in the literature. Some of the prominent parametric approaches are the Bouc-Wen model, which 

captures both the pre- and post-yield regions (Yang et al 2004, Dominguez et al 2006), the Bingham model 

which basically represents current dependent friction (Ikhouane and Dyke 2007), the Dahl model which 

describes an elasto-plastic material behaviour with supplemental viscous effects (Shulman et al 2006) and 

the LuGre approach that models the MR fluid particle chains as brushes with sticking and sliding against the 

damper housing (Jiménez and Alvarez-Icaza 2005, Yang et al 2009, Boston et al 2010). These models have 

also been extended by additional stiffness, viscous and mass elements to account for the accumulator 

behaviour, the current dependent viscous force and the inertia of the damper piston and other accelerated 



parts (Sahin et al 2010). The parameters for minimum model error are typically obtained from the test data 

directly (Sims et al 2004, Weber et al 2008) or by a numerical optimization tool (Ye and Wang 2007). Once 

calibrated, these parametric approaches can be used as observers to solve the force tracking problem without 

feedback from a force sensor (Maslanka et al 2007, Weber et al 2011, Weber and Boston 2011). 

Non-parametric models are mainly based on fitted polynomials (Weber et al 2009), genetic algorithms 

(Xiaomin et al 2009), fuzzy logic (Tsoukalas and Uhrig 1997, Won and Sunwoo 2003), neural networks 

(NN) (Chang and Roschke 1998, Xia 2003, Chang and Zhou 2002, Wang and Liao 2005, Lee et al 2008, 

Metered et al 2009) or hybrid approaches (Soeiro et al 2008). As demonstrated in Chang and Roschke (1998) 

the NN approach is able to model the forward MR damper behaviour fairly accurate. Most of the NNs are 

trained with simulated input-output data, usually generated by the Bouc-Wen model, as e.g. in Wang and 

Liao (2005). Only few NN have been trained with experimental data (Metered et al 2009), containing system 

noise and knocking effects due to bearing tolerances. This makes the training of the network much more 

difficult, and appropriate filtering of the training data during post processing can be very crucial for the NN 

performance. The NN architecture is usually found by a trial and error method, and the resulting NN 

architecture is therefore not necessarily optimal with respect to the minimization of the modelling error. 

The present investigation provides a systematic approach to the design and calibration of NNs for both 

the forward and inverse behaviour of a rotary type MR damper based on experimentally measured training 

data. It is shown that only force, velocity and current, with necessary previous states, are sufficient for the 

construction of effective NN architectures. For the NN based inverse modelling of the MR damper the 

absolute value of velocity and damper force are used as input training data. This modification by the absolute 

value in the training data input has a major influence on the proper estimation of the current because the 

current is always positive, irrespective of the sign of the training inputs. Moreover, the MR damper 

behaviour is measured at constant and half-sinusoidal current, where the half-sinusoidal current tests are 

performed because they generate training data very similar to the current records associated with damping of 

structures excited at resonance. The experimental data is filtered so that potential noise is minimised and any 

offset values are removed. The paper describes a semi-systematic approach for the calibration of the NN 

architecture based on the minimization of the associated modelling error. The architecture of the NNs for 



both the forward and the inverse MR damper models are presented and validated with measurement data 

independent of the training data. Good accuracy is generally reported, and the validated inverse and forward 

models are subsequently used in numerical simulations, where pure viscous damping is reproduced real-time. 

 

Figure 1. Experimental set-up with rotary MR damper in hydraulic test machine. 

 

Figure 2. Schematic of test set-up. 



2. Experimental data 

Section 2.1 introduces the experimental test set-up used to obtain the MR damper response data used for 

training of the NN, while the necessary post-processing of the measured time histories is described in 

section 2.2. 

2.1. Experimental set-up 

The MR damper under consideration is a rotary type MR damper with a maximum current of 4 A. The 

damper is shown in Fig. 1 and further details on the damper characteristics can be found in Weber et al 

(2008) and Boston et al (2010). At constant current the damper behaves almost as a friction damper, with 

only a small velocity dependency. The apparent friction force level is approximately 30 N at 0 A and 300 N 

at 4 A. Details concerning the behaviour of the rotary type MR damper have been explained in the previous 

section. The training and the validation data are obtained from forced displacement tests using a hydraulic 

testing machine of type INSTRON, see Fig. 1. The desired piston displacement is defined in Matlab®, 

processed real time by a dSPACE® DS1104 R&D controller board and finally send as a command signal 

directly to the INSTRON PC unit. A flow diagram of the experimental setup is shown in Fig. 2. The actual 

displacement is captured directly as output from the INSTRON machine and acquired by the dSPACE® 

system at 1000 Hz sampling frequency. The desired MR damper current is also defined in 

Matlab/dSPACE®, and tracked real time by a KEPCO current driver. The actual damper current is measured 

by the KEPCO amplifier and acquired by the dSPACE® system. The MR damper force is measured by a 

500 N load cell, and the acceleration of the piston is also measured for verification and potential later use in 

connection with training or validation. Furthermore, acceleration is suitable for detection of the knocking 

effects due to the finite bearing tolerances of 0.01-0.02 mm of the joints of the damper rod. A summary of 

the tests conducted is provided in Table 1. Each test is performed twice: The first set is used as training data, 

while the second completely independent set is used to validate the NN models. Tests 1-10 are performed at 

constant current, while tests 11-19 are conducted with half-sinusoidal current. As seen in Table 1 the desired 

displacement is pure sinusoidal, combining amplitudes of 5 mm and 10 mm, and frequencies from 0.5 Hz to 

2.2 Hz. 

 



Table 1. Measurement data for training of NN and model validation. 

set for 
trai-
ning 

set for 
vali-
dation 

desired displacement desired current 

1a 1b sin, 5 mm, [0.5, 1.0, 1.27, 1.8, 2.2] Hz 0 A 

2a 2b sin, 5 mm, [0.5, 1.0, 1.27, 1.8, 2.2] Hz 1 A 

3a 3b sin, 5 mm, [0.5, 1.0, 1.27, 1.8, 2.2] Hz 2 A 

4a 4b sin, 5 mm, [0.5, 1.0, 1.27, 1.8, 2.2] Hz 3 A 

5a 5b sin, 5 mm, [0.5, 1.0, 1.27, 1.8, 2.2] Hz 4 A 

6a 6b sin, 10 mm, [0.5, 1.0, 1.27, 1.8, 2.2] Hz 0 A 

7a 7b sin, 10 mm, [0.5, 1.0, 1.27, 1.8, 2.2] Hz 1 A 

8a 8b sin, 10 mm, [0.5, 1.0, 1.27, 1.8, 2.2] Hz 2 A 

9a 9b sin, 10 mm, [0.5, 1.0, 1.27, 1.8, 2.2] Hz 3 A 

10ae 10b sin, 10 mm, [0.5, 1.0, 1.27, 1.8, 2.2] Hz 4 A 

11a 11b sin, 5 mm, [0.5, 1.0, 1.27, 1.8, 2.2] Hz half-sin, 0 A, [0.5, 1.0, 1.27, 1.8, 2.2] Hz 

12a 12b sin, 5 mm, [0.5, 1.0, 1.27, 1.8, 2.2] Hz half-sin, 1 A, [0.5, 1.0, 1.27, 1.8, 2.2] Hz 

13a 13b sin, 5 mm, [0.5, 1.0, 1.27, 1.8, 2.2] Hz half-sin, 2 A, [0.5, 1.0, 1.27, 1.8, 2.2] Hz 

14a 14b sin, 5 mm, [0.5, 1.0, 1.27, 1.8, 2.2] Hz half-sin, 3 A, [0.5, 1.0, 1.27, 1.8, 2.2] Hz 

15a 15b sin, 5 mm, [0.5, 1.0, 1.27, 1.8, 2.2] Hz half-sin, 4 A, [0.5, 1.0, 1.27, 1.8, 2.2] Hz 

16a 16b sin, 10 mm, [0.5, 1.0, 1.27, 1.8, 2.2] Hz half-sin, 1 A, [0.5, 1.0, 1.27, 1.8, 2.2] Hz 

17a 17b sin, 10 mm, [0.5, 1.0, 1.27, 1.8, 2.2] Hz half-sin, 2 A, [0.5, 1.0, 1.27, 1.8, 2.2] Hz 

18a 18b sin, 10 mm, [0.5, 1.0, 1.27, 1.8, 2.2] Hz half-sin, 3 A, [0.5, 1.0, 1.27, 1.8, 2.2] Hz 

19a 19b sin, 10 mm, [0.5, 1.0, 1.27, 1.8, 2.2] Hz half-sin, 4 A, [0.5, 1.0, 1.27, 1.8, 2.2] Hz 

 

2.2. Post processing of experimental data 

Initially, the measurement data is post-processed by a low pass filter in order to avoid that the NN is trained 

by high frequency signal components, e.g. noise and knocking effects, which are typically of no interest. The 

applied low pass filter has the following properties: 

• Digital Butterworth low pass filter. 

• Filter order 2. 

• Cut-off frequency 100 Hz. 

Any offset in the displacement, acceleration and force signals are removed by simply balancing positive and 

negative maxima during steady state conditions. The effect of the filtering of displacement, acceleration, 



damper current and damper force is shown in Fig. 3. As seen in Figs. 3(a,c) the high-frequency dithers in the 

displacement and damper current are effectively removed by the filter, and the main task is basically to avoid 

a too significant change in the phase and reduction in the peak values. The acceleration is very sensitive to 

the various sources of noise, and the influence of the filter therefore becomes very evident in Fig. 3(b). 

Fig. 3(d) shows the damper force, where the main modification is the removal of the offset level. Note that 

the constant force level at zero crossing is due to the previously mentioned bearing tolerance. The effect is 

mainly visible in the acceleration signal, which is also shown in Fig. 3(d). 
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Figure 3. Filtering of measurement data. 
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Figure 4. Estimated velocity (a) and training data time history (b). 



The training of the NN also requires the damper velocity x� , which is not directly measured. It is instead 

estimated at each time instant k  by numerical differentiation of the displacement x  as 

 ��
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kxkx
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The inherent noise resulting from the numerical differentiation is subsequently removed by the following 

low pass filter: 

• Digital Butterworth low pass filter. 

• Filter order 2. 

• Cut-off frequency 20 Hz. 

Fig. 4(a) shows the velocity record obtained by differentiation of the sinusoidal displacement with 

amplitude 5 mm and frequency 1 Hz. The amplitude of the velocity is 31 mm/s, which agrees well with the 

analytical value of mm/s4.31)mm5()Hz1(2 =π . The figure also shows the corresponding displacement, 

and it is observed that the phase shift between displacement and velocity is the expected one quarter of a 

period. Fig. 4(a) therefore indicates that the method in Eq. (1) leads to a velocity signal with correct 

amplitude and phase compared to the associated displacement. After the signal post processing, 10 steady 

state cycles of the data sets 1-19 in Table 1 are isolated and then connected after each other to get individual 

continuous time histories for displacement, velocity, acceleration, current and force, respectively. Fig. 4(b) 

shows the combination system for the generation of the resulting time histories used for training of the NN. It 

should be noted that the sets are always connected at zero crossings of the displacement. To have a 

reasonably limited amount of data for the training of the NN the time histories are finally down sampled 

from 1000 Hz to 200 Hz. 

3. Modelling 

This section concerns the modelling of the NN, with section 3.1 describing the optimization of the NN 

architecture and sections 3.2 and 3.3 presenting the NN models used to model both the forward and the 

inverse MR damper characteristics. 
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Figure 5. Procedure to find suboptimal NN architecture. 

3.1. NN architecture 

The modelling of a given system using the NN tool requires basically three steps: (a) measurement of the 

input and output states of the system under consideration, (b) choosing the architecture of the particular NN 

and (c) training the chosen architecture with the measurement data. The NN architecture is characterized by: 

• What states are used as input. 

• How many previous values of the input states are used. 

• The number of hidden layers and neurons per layer. 

• The transfer function of each layer. 

Because of the large variety of modelling parameters, the trial and error method is often applied to find an 

NN architecture with acceptable modelling errors. Using the trial and error approach the training yields the 

best parameters for the chosen NN architecture, but not necessarily the best NN architecture with the best 

parameters. In the present work, a semi-systematic approach is used to obtain a near optimal NN 

architecture. The procedure is illustrated schematically in Fig. 5. A number of NN are trained to model the 

forward MR damper behaviour with the current records and one, or several, of the time histories for 

displacement, velocity and acceleration as input states. The number of previous states, the number of hidden 

layers and neurons are also varied. For all hidden layers the tangent sigmoid function is chosen as transfer 

function, while the linear transfer function is chosen for the output layer. All trained NN candidates are 

determined by the Levenberg-Marquardt optimization method, using the )(kerror  between the target force 



)(kf  and the estimated force )(ˆ kf  by back propagation. When the training is finished, the individual NN 

architecture is stored and a new NN architecture is trained for different input properties. After all possible 

combinations of input data have been used for training of the NN architecture, the particular NN architecture 

with the smallest modelling error is identified as the best NN architecture, and stored for subsequent 

analyses. This systematic optimization strategy shows the following trends: 

1. Velocity and damper current are mandatory input states. This is also confirmed by the large number of 

parametric MR damper models that are based on velocity and current as input states (Dominguez et al 

2004, Maslanka et al 2007, Aguirre et al 2010, Weber et al 2011, Weber and Boston 2011b). 

2. Using acceleration as additional input seems to increase the noise in the estimated force without 

improving the model accuracy. 

3. Using displacement as additional input does not decrease the modelling error. This can be explained 

by the fact that the velocity is determined from displacement by Eq. (1) and because the rotary MR 

damper has no accumulator and therefore no significant stiffness component. 

4. Using both displacement and acceleration as additional input has no influence on the modelling error. 

5. It seems that including three previous values, two hidden layers and six neurons per hidden layer 

provides a suitable compromise between modelling error and computational effort. 
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Figure 6. NN architecture of forward MR damper model and its training. 
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Figure 7. NN architecture of inverse MR damper model and its training. 

3.2. Forward damper model 

The NN architecture that is found to minimize the error of the forward MR damper model is based on 

velocity and damper current as input states, three previous values and two hidden layers of six neurons each. 

The architecture of the forward NN is shown in Fig. 6. The transfer function g( j ) of the neurons of the two 

hidden layers are selected as a tangent sigmoid function, while the transfer function of the single output 

layer, i.e. layer 3, is selected as a linear function. If N ( j ) is the number of neurons in the jth layer then 

N (3)
=1, since the output layer has only a single signal output. Let Ol

(0)

 be the R ×1 column vector 

comprising the signal inputs to the 1st hidden layer. In the present case 8=R  because of the two input 

variables: velocity and current, both with a current state value and three previous values. The subscript l 

denotes the individual neurons of the particular layer. Let Ol
( j )

 be the N ( j )
×1 vector comprising the signal 

outputs of the jth layer, which means that the output layer is represented by Ol
(3). For the two hidden layers 

and the single output layer the output is computed as  

 3,2,1),( )()1()()()(
=+=

− jbOwgO j
l

j
l

j
l

jj
l  , (2) 

where g( j ) is the tangent sigmoid function for the hidden connections with 2,1=j , while it is the linear 

function for the output connection with 3=j . The vector )( j
lw  contains the weights of the neural 

connections, while bl
( j )  is the bias vector of the jth layer, which is zero in the present application. Each of the 

transfer functions operates on the respective element of the vector argument. Thus, the estimation of the 

damper force by the NN can be expressed as 
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where NN[...] represents the computation by the neural network. For feed forward neural network based 

forward dynamics modeling, the network output is ˆ f (k) = Ol
(3)  whereby ˆ f (k) is the predicted force from 

the forward MR model at current time state k. The target of the forward neural network model is 

 Tl = f (k)  (4) 

where ( )f k  is the desired force, or in this case the measured force data, at current time state k. The network 

training was performed using the MATLAB® function trainlm. The network has been trained with the input-

output data sets obtained from the experiments summarized in Table 1. For training of small-to-medium size 

networks, the Levenberg-Marquardt algorithm (LM) is fairly efficient. The performance index used for the 

training of the feed forward neural network is the sum of squares of the difference el  between the desired 

target Tl  and the actual network output )3(
lO , 
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where Z  is a vector containing all network weights and bias values to be optimized, while q  is the length of 

the data set. The LM algorithm updates the parameters based on minimization of the performance index V . 

3.3. Inverse damper model 

Fig. 7 shows the corresponding NN for the inverse damper model with velocity and damper force as input 

states, and desired damper current as the single output. In order to estimate the MR damper current )(ˆ ki , the 

NN for the inverse model uses the actual and three previous values of the two input states, 
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For the feed forward neural network based inverse dynamics modeling of the MR damper, the network 

output is )3()(ˆ lOki =  where ˆ( )i k  is the predicted current from the inverse MR model. The target of the 

inverse neural model, 

 ( )lT i k=  (7) 



is the desired damper current ( )i k , which in this case is the experimentally measured data. The structure of 

the NN architecture is similar to that of the forward model. However, the output current can only take on 

positive values, irrespective of the sign of velocity and/or force. Therefore, the NN architecture for the 

inverse damper model is trained using the absolute values of the two input states. This approach helps to 

avoid negative spikes in the estimated current when tracking a desired damper force. 

4. Model validation 

The model validation is carried out for independent and experimentally determined time records. 

Sections 4.1 and 4.2 consider the NNs of the forward and inverse damper model, respectively, while 

section 4.3 demonstrates that the presented NNs are able to emulate pure viscous damping. 

4.1. Forward model 

The forward MR damper model is validated using the validation data sets 1b-19b listed in Table 1. Due to 

the large amount of validation data, the measured and simulated force displacement trajectories are compared 

for some selected tests. The selection is made such that the comparison considers all displacement 

amplitudes, frequencies and damper currents. Figs. 8 and 9 show the result for combinations of constant 

current values at different displacement amplitudes and driving frequencies. As seen from the figures the NN 

model is fairly accurate in predicting the forward dynamics of the MR damper. Figs. 10 and 11 show the 

results for half-sinusoidal current at different amplitudes and frequencies. As can be observed from these 

figures, the forward MR damper model is able to predict the main characteristics of the MR damper under 

consideration with fairly good accuracy. The strong current dependent yield force is captured well, the slope 

of the pre-yield region is estimated very accurately in all cases and the force response due to the aggregation 

and radial migration of particles (Boston et al 2010, Weber and Boston 2011b), which is visible by the rather 

slow force increase after the damper rod turns its direction, is also predicted satisfactorily. It is evident that 

all of the major damper characteristics are predicted significantly better for the half-sinusoidal current in 

Figs. 10 and 11 than for the constant current case in Figs. 8 and 9. 
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Figure 8. Validation of forward MR damper model for constant current of 0 A (a), 1 A (b, c) and 2 A (d) and 

different displacement amplitudes and frequencies. 
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Figure 9. Validation of forward MR damper model for constant current of 2 A (a), 3 A (b) and 4 A (c, d) and 

different displacement amplitudes and frequencies. 
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Figure 10. Validation of forward MR damper model for half- sinusoidal current at 1 A and different 

displacement amplitudes and frequencies. 
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Figure 11. Validation of forward MR damper model for half-sinusoidal current at 2 A and different 

displacement amplitudes and frequencies. 



4.2. Inverse model 

The inverse MR damper model is also validated using the validation data sets 1b-19b in Table 1. The results 

for constant current, two different displacement amplitudes and four different displacement frequencies are 

shown in Figs. 12(a,b). The estimated current shows significant local spikes that might arise because the NN 

architecture has also been trained with half-sinusoidal current data or from the bearing plays of the damper 

rod joints at zero-crossing of the velocity. Although the bearing plays are on the order of 0.02 mm or less, 

force knocking effects cannot be avoided when the piston of the hydraulic machine turns its direction and 

thereby the damper force and velocity undergo zero-crossings. This hypothesis is partly verified by the fact 

that the spikes show the same frequency characteristics as the applied displacement. Similar results have also 

been reported in Wang and Liao (2005) and Metered et al (2009). This fact might indicate that the NN is 

fairly sensitive to high frequency signal inputs and has only little low pass behaviour. In contrast to the 

prediction of constant current, the prediction of the half-sinusoidal current is fairly accurate for different 

displacement amplitudes, frequencies and current amplitudes as shown in Figs. 12(c,d), 13 and 14. However, 

also this model validation test shows current spikes and therefore local modelling errors at each half period. 

Since these spikes occur later than the current maximum, which means after the hydraulic piston has turned 

its direction, the current spikes cannot result from the force knocking effects at zero velocity crossing, but 

may instead result from the Stribeck effect, which occurs at the transition between the pre- and post-yield 

regions. Despite the apparent modelling error due to the spikes of the estimated current, these spikes are 

rather small compared to e.g. the validation results presented in Wang and Liao (2005). 
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Figure 12. Validation of inverse MR damper model for constant current (a, b) and half-sinusoidal current at 

3 A (c, d). 
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Figure 13. Validation of inverse MR damper model for half- sinusoidal current at 3 A (a-c) and 4 A (d). 
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Figure 14. Validation of inverse MR damper model for half- sinusoidal current at 4 A (a-d). 

4.3. Emulation of viscous damping using validated models 

In this section the forward and inverse models are used to demonstrate how accurate pure viscous damping 

can be emulated by the rotary MR damper of the present study. Fig. 15(a) shows the flow chart of this 

simulation. The velocity of the MR damper is assumed to be pure sinusoidal. This is a reasonable assumption 

for damping of lightly damped structures, where the structural response is typically dominated by resonance 

at the frequency of the critical vibration mode and with a slowly varying amplitude envelope. The desired 

control force is the product of velocity and the viscous coefficient c . The damper velocity and the desired 

control force are used as the input states for the inverse MR damper model, which then estimates the 

corresponding damper current that is applied to the MR damper in order to generate a pure viscous force. 

This force is estimated using the forward MR damper model. If the NN for the inverse and the forward MR 

damper model are sufficiently accurate the simulated damper force should be comparable to the 

corresponding pure viscous damper force. The simulation results are shown in Figs. 15(b-d). The simulated 

current in Figs. 15(b) exhibits two significant spikes on top of the approximately half-sinusoidal time history. 

The first spike should not occur because the desired force decreases to zero. Hence, zero current  
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Figure 15. Simulated emulation of viscous damping: Flow chart (a), simulated MR damper current (b) and 

simulated MR damper force (c, d). 

 

would be the best choice to track the desired viscous force as precise as possible. The second current spike 

occurs when the MR fluid is operated within the pre-yield region. This spike is therefore needed because the 

actual MR damper force at 0 A within the pre-yield region is smaller than the desired viscous force that 

increases rapidly at displacement extremes due to the elliptic force displacement trajectory of viscous 

damping (Maslanka et al 2007). When the MR fluid is operated in the post-yield region, the current shows 

approximately a half-sinusoidal behaviour because of the pure sinusoidal behaviour of the desired force, see 

Fig. 15(c). The main discrepancies are mainly due to the non-linear relation between yield force and current 

and the force response, arising because of the inherent migration and aggregation of the particles in the MR 

fluid (Weber et al 2008, Boston et al 2010). Despite the mediocre estimate of the current at zero velocity and 

the slightly overestimated current during the pre-yield region, the time history of the damper force in 

Fig. 15(c) and the force velocity trajectory in Fig. 15(d) demonstrate that pure viscous damping is in fact 

tracked fairly accurate at velocities larger than 0.05 m/s. The obtained results indicate that the NNs have 



difficulties to accurately estimating the behaviour of the MR damper in the pre-yield region, which produces 

current spikes and thereby significant force tracking errors at small velocities. However, effective structural 

damping is mainly governed by the energy dissipation at large velocities, why these low-velocity current 

spikes are only of minor importance for most practical applications. 

5. Summary and Conclusions 

This paper describes the feed forward back propagation neural network based modelling of the forward and 

the inverse behaviour of a rotary MR damper using experimentally measured data for both training and 

validation. The measured data has been low pass filtered in order to remove high frequency signal parts that 

might have significant influence on the performance of the NN. The measured data comprising two 

displacement amplitudes, five frequencies and both constant and half-sinusoidal current has been combined 

to get a single sequential time history and afterwards down-sampled from 1000 Hz to 200 Hz to optimize the 

training of the NN architecture. An optimization procedure has been presented to identify the NN 

architecture that minimizes the error of the forward model. For training the procedure has been tested with 

combinations of measured displacement, velocity, acceleration and damper current as input states. 

Furthermore, the number of previous values of the input states and the number of hidden layers and neurons 

have been altered to obtain the best numerical fit. To limit the computational time of this numerical 

optimization, the transfer functions for the hidden and output layers were fixed to the tangent sigmoid 

function and the linear function, respectively. The present procedure demonstrates that the modelling error is 

not decreased significantly: 

• if displacement and acceleration are taken as inputs in addition to velocity, and 

• if substantially more than three past values of the inputs are taken into account, and 

• if substantially more than two hidden layers of more than six neurons are considered. 

The same NN architecture has also been used to model the inverse MR damper behaviour. In this case the 

damper current is the output, while the absolute values of damper force and velocity are used as input states.  

The introduction of the absolute values as the input to the NN minimizes the possibility of negative spikes in 

the estimated damper current when e.g. tracking a desired viscous force. 



The trained forward and inverse MR damper models have been validated with measurement data that is 

independent of the training data at different displacement amplitudes and frequencies. The validation data 

comprises test records at two displacement amplitudes, five frequencies and both constant and half-

sinusoidal damper current signals. The validation shows that the forward model is able to predict the MR 

damper force with high accuracy. Especially the force response due to the migration and aggregation of the 

MR fluid particles is captured well, and the slope of the force displacement trajectory in the pre-yield region 

is predicted accurately. The validation of the inverse MR damper model shows two particular characteristics. 

When the measurement data has been obtained from constant current, the predicted current records contain 

significant spikes with the same frequency as the damper displacement. This might therefore result from 

force knocking effects at displacement extremes due to the inherent bearing plays between the damper rod 

and the hydraulic machine, which are of the order of 0.02 mm. For these tests, only the mean value of the 

predicted current is accurate. In contrast, the prediction based on the half-sinusoidal current turns out to give 

more accurate results for all amplitudes and frequencies used in the tests. Nevertheless, also this validation 

shows current spikes which do not occur at the time of displacement extremes, but later. This indicates that 

these spikes are forced by the Stribeck effect, which occurs between the pre- and post-yield regions. 

The validated forward and inverse MR damper models are finally used to simulate the emulation of 

viscous damping. The simulation shows that the inverse model overestimates the current in the vicinity of 

zero velocity, i.e. in the pre-yield region, while the output current is quite accurate within the post-yield 

region. As a result, the force tracking error is fairly large at small damper velocities, but considerably smaller 

at velocities where the MR damper is not operated in the pre-yield region. 

This investigation shows that the NN technique can be used to model the inverse MR damper behaviour 

and thereby effectively solve the force tracking task with sufficiently small force tracking error. 
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Abstract

For external damping of flexible structures the introduction of negative damper stiffness in the damper force 

locally increases the deformation of the structure at damper position and thereby the energy dissipation in the 

external damper. For a suitable design of the negative stiffness and the damping forces this concept may 

improve the damping of the structure. The present paper considers both a linear control model, with a 

viscous term and a negative stiffness term, and a non-linear model composed of friction and negative 

stiffness. Expressions are derived for the calibration of these control models. However, the introduction of 

negative stiffness may produce active parts in the desired damper force, and in semi-active control these 

parts are typically clipped. The linear control model requires the clipping independent of the viscous and 

negative stiffness terms which may lead to a reduction in the attainable damping and an increase in high 

frequency noise in the structure. In contrast, the non-linear model does not need to be clipped if the friction 

force level is controlled in proportion to the damper displacement amplitude and balances the maximum 

negative stiffness force. The performances of both control strategies are verified by experiments, where a 

magnetorheological damper acts on a five storey shear frame structure. The tests show that negative damper 

stiffness can enhance the structural damping significantly compared to pure viscous damping. Due to the 

clipping, the linear model leads to smaller structural damping than theoretically expected and to additional 

high frequency components in the structure. In contrast, the non-linear model, which does not need to be 

clipped for proper choice of friction and stiffness, almost generates the theoretically expected structural 

damping and the high frequency components introduced by the non-linear friction force by the controlled 

magnetorheological damper are limited. 

 

1. Introduction 

Magneto-rheological (MR) dampers are commonly used for controlled vibration mitigation of civil 

engineering structures because they are fail safe and reliable due to their dissipative nature and residual force 

level at 0 A, and because proper semi-active control combines the advantages of active and passive damping, 

see e.g. [1]. For damping of stay cables the potential associated with controlled MR dampers has been 

investigated by simulation, laboratory and field tests in several research projects. A general overview can be 

found in the references [2-10]. Similarly, the vibration reduction of civil engineering structures -- such as 

buildings, bridges and models of these structures – by controlled MR dampers has been simulated and/or 

tested experimentally in [11-26]. Also, controlled MR dampers have been installed in tuned mass dampers 

[27-29] or in tuned masses [30, 31] in order to make these otherwise passive devices adaptive. Many 

different clipped active, semi-active and passive control laws have been tested and verified for MR dampers. 

Among these the so-called clipped optimal control schemes are presented in e.g. [2-4, 7], the clipped viscous 



model with negative stiffness is investigated in e.g. [9], various semi-active algorithms have been proposed 

in [32, 33] and simple passive approaches such as controlled viscous damping, controlled friction damping 

and controlled energy dissipation have been proposed and analysed in [5], [2, 16, 34] and [8], respectively. 

For model-based control of semi-active dampers the real-time tracking of the desired damper force can be 

solved in different ways. The Heaviside step function – or on/off – approach requires the measuring of the 

actual MR damper force, as described in e.g. [35]. The force tracking can also be based on the inversion of 

sufficiently simple mathematical models, as for example the Bingham plasticity model [5, 9, 11]. 

Alternatively, more detailed and validated models can be used as observers, which has been demonstrated in 

[36-38] for the LuGre friction model. A mapping approach based on tests of the MR damper connected to a 

cable is presented in [8], neural network based force tracking approaches have been developed in [39-43] and 

also fuzzy logic [44] and other methods [45] have been adopted to capture the inverse dynamics of an MR 

damper. 

In recent years, the structural damping due to the emulation of a negative stiffness force besides the 

damping force in the MR damper has been investigated in several research projects [4, 9, 32, 33, 46-49]. As 

described in [9], larger structural damping is achieved because the negative stiffness force increases the 

motion in the damper, which leads to an increase in energy dissipation per cycle in the damper when 

compared to for instance a pure viscous damper [51]. It has also been shown in [4, 9, 49] that clipped optimal 

control of a cable with a semi-active damper results in approximately the same control force behaviour as for 

simple clipped viscous damping with negative stiffness. 

The aim of the present paper is to demonstrate and experimentally verify the influence of negative 

stiffness in the semi-active control of an MR damper. The tracking of the desired damper force by the MR 

damper is provided by a validated neural network with absolute values of damper velocity and desired 

damper force as network input, and the desired MR damper current as the output. Details on the training and 

validation of the neural network can be found in [39]. The benchmark damper model is the pure viscous 

damper, while the control laws of interest in the present study are the linear model with a viscous term and a 

negative stiffness term and the non-linear model with a friction term and a negative stiffness term. The non-

linear approach has been introduced in [32, 33]. Based on a free approximate vibration analysis theoretical 

estimates are derived for the damper calibration associated with maximum modal damping ratio of the 

targeted vibration form. It is found by the theoretical results that a substantial increase in damping 

performance can be expected for the ideal linear control model. However, in a linear model negative stiffness 

produces active control forces, which must be clipped or truncated in a semi-active control environment. It is 

illustrated by simulations and experiments that this clipped linear model with negative stiffness improves the 

damping performance compared to the pure viscous damper. However, it is also indicated that the clipping 

yields a significant reduction in the performance compared to the theoretical predictions. On the other hand 

the friction force level and the negative stiffness component of the non-linear model are balanced so that in 

steady-state harmonic conditions clipping is avoided. Furthermore, the friction force level of the non-linear 

control model is adaptively changed according to the collocated response amplitude. This secures effective 

damping of the structure. Simulations and in particular experiments show that this non-linear model is not 

affected as much by clipping as the linear model, and it more or less provides the performance predicted by 

the theory. This shows that, although clipping of linear active control methods lead to improved semi-active 

damping compared to passive methods, the formulation of non-linear control strategies, which take the 

inherent properties of the MR damper into account, result in robust and effective damping of the flexible 

structure. 

The outline of the paper is as follows. In Section 2 the general results for free vibrations of the structure 

with a local damper are reviewed. The details on this approach are presented in e.g. [50, 51]. These results 

are applied in Section 3 to derive the calibration of the various control strategies based on maximization of 

the modal damping ratio for the targeted vibration mode. These results show that the non-linear control 

results in an attainable damping ratio that is twice the value of pure viscous damping, while the linear control 

method with negative stiffness potentially leads to a very significant increase in modal damping. The 

performance of the control strategies is investigated in Section 4 by simulations and experiments, where a 

rotational MR damper is operating on a shear frame model structure. The experiments show that due to 

heavy clipping of the present linear model with negative stiffness the predicted efficiency is significantly 

reduced, while the performance of the adaptively controlled non-linear model is more or less maintained. 



Section 4 also gives an overview of practical aspects related to the experiments, while the construction and 

validation of the numerical model for the shear frame structure is presented in Appendix A. 

2. Damping of Structures 

The discretized equations of motion for a flexible structure can be written in the classic matrix form 

 extf� � � � �Mx Cx Kx v f�� �  (1) 

where x  contains the degrees of freedom, M is the mass matrix, C is the structural damping matrix and 

K is the stiffness matrix. The external damping is provided by the single damper force f , where the 

connectivity vector v represent the point of action of the damper force on the structure. The external loading 

is governed by the vector function extf . The minus on the damper force implies that f  in the theoretical 

derivations is considered as an internal force. 

The calibration of the various semi-active control strategies presented in Section 3 is based on the 

maximization of the damping ratio of the targeted vibration mode. An explicit estimate of the modal 

damping ratio can be determined following the system reduction technique in [50, 51]. The characteristics of 

the system are governed by the free vibrations without structural damping. In the frequency domain the 

equation of motion (1) can be written as 

 � �2 f�� � � �M K x v  (2) 

where x and f are the frequency amplitudes of the response vector and damper force, respectively. In the 

frequency domain formulation it is convenient to formulate the damper forces as 

 ( )f H x��  (3) 

introducing the frequency dependent damper function ( )H � . The damper format is collocated, which 

means that the damper force is proportional to the energetically conjugate damper displacement, given in 

terms of the connectivity vector by 
Tx � v x . The frequency function in (3) is in general complex valued, 

 	 
 	 
( ) Re ( ) Im ( )H H i H� � �� �  (4) 

where i  is the imaginary unit. The real value represents the stiffness component in phase with displacement, 

while the imaginary part represents the damping component out-of-phase with displacement and thereby in 

phase with velocity. 

As demonstrated in [50] the modal response of the structure with the damper acting on the structure can 

be effectively represented by the two-component representation, 

 0 0r r� �� �x u u  (5) 

where 0u  is the vibration form of the target mode without the damper, while �u  is the corresponding 

vibration form with the damper link fully locked. The frequency amplitudes 0r  and r�  represent the degrees 

of freedom of the two-dimensional subspace. The limiting vibration forms are illustrated in Fig. 1 for a five 

storey shear frame structure with the damper acting on the relative motion between the first floor and ground, 

see Fig. 1a. For this damper configuration the connectivity vector is 
T]0,0,0,0,1[�v . 

 



 
Figure 1. (a) Structure with external damper, (b) vibration form without damper, and (c) vibration form with 

damper link fully locked. 

 

The two limiting vibration forms are governed by the eigenvalue problems derived from (2) when 

0H �  and H � � , respectively. They are conveniently formulated as 

 � � � �2 2

0 0 ,� �� � �� � � �K M u 0 K M u 0  (6) 

where the locked stiffness matrix is given as � �0lim T

g g� ��� �K K vv . In the following the vibration 

forms are normalized to unit modal mass, whereby the corresponding natural frequencies are determined 

directly from the corresponding modal stiffness as 
2

0 0 0

T� � u Ku  and 
2 T�� � � �� u K u . 

As demonstrated in e.g. [51] an approximate solution for the complex valued natural frequency �  can be 

obtained by projection of the equation of motion (2) on to the reduced subspace governed by the two-

component representation in (5). The damping ratio 	 
Im / � ��  represents the relative imaginary part 

of the complex natural frequency, and an explicit expression for the damping ratio of the target mode can be 

written as 
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where the magnitude of the natural frequency has been approximated by the mean value � �0 / 2� � ���� . 

In (7) the damper function H  is normalized by the parameter 
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The magnitude of the damper function H  is in the following calibrated to provide maximum modal damping 

to the targeted mode. It follows from (7) that the attainable damping ratio depends on the particular relation 

between real and imaginary part of the damper function H . However, it is observed from (7) that a 

reduction in the damper stiffness (real part) implies a potential increase in the damping ratio. For linear 

control strategies the application of negative stiffness requires active control forces, while for semi-active 

control these active parts are simply clipped. In Section 4 it is demonstrated that with an adaptive control 

scheme, formulated specifically for an MR type damper, the clipping can be avoided and apparent negative 

stiffness will effectively improve the damping performance. The calibration with respect to maximum 

damping ratio is presented for the various control strategies in Section 3. 

 



3. Calibration of control strategies 

The present paper investigates and verifies several strategies for the control of the semi-active MR damper 

presented in Section 4.1 and [36]. For each of the following control strategies the calibration of the 

corresponding gain parameter is obtained by maximization of the damping ratio in (7) for the targeted 

vibration mode. Initially, the classic linear control format is considered, where a viscous and a stiffness term 

are simply added. Since this is a linear model the expression in (7) is directly applicable. Afterwards, the 

combination of pure friction and negative stiffness is considered. This is a non-linear model and an 

equivalent transfer function eqH  is derived and substituted into (7). 

 
Figure 2. (a) Pure viscous damping, (b) viscous damping with negative stiffness, and (c) friction damping 

with negative stiffness. 

3.1. Linear control model 
A simple linear control strategy is composed of a viscous term with viscous parameter c and a stiffness term 

with stiffness k . This case is illustrated in terms of steady-state hysteresis loops in Fig. 2a,b, where the 

influence of negative stiffness results in a negative inclination of the ellipse, as indicated in Fig. 2c. In the 

time domain the damper force is given as 

 f k x c x� � �  (9) 

while in the frequency domain it can be written as 

 � �f i c k x�� �  . (10) 

Hereby the real and imaginary parts of the damper function are 

 	 
 	 
Re , ImH k H c�� �  (11) 

and substitution of the real and imaginary part into (7) gives 
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The damper stiffness k  is considered as a system parameter, while the viscous parameter c  is the control 

gain. Thus, the viscous parameter which corresponds to maximum modal damping follows from 

/ 0d dc � , which gives 

 

� �

2 2

0
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0

1

T

k k
c

� �

�� � �
� �
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v u

 . (13) 

The subscript max simply indicates that the above result for the viscous parameter is derived based on 

maximum of the modal damping ratio. The solution for pure viscous damping is given by the first term in 

(13), which is recovered for 0k � . Thus, the influence of the apparent damper stiffness on the calibration of 

the viscous parameter appears in the form of an additive term. The attainable damping can be estimated by 

substitution of (13) into (12), 

 0
max

0

1

1 k

� �


� � �
�

�

�

� �
�  . (14) 



It is seen from this expression that a decrease in damper stiffness increases the estimated attainable modal 

damping. In linear damping or control the pure viscous model represents the most effective passive format, 

while in active control negative stiffness components might increase the effective damping of the targeted 

vibration mode. In semi-active control of an MR damper the active parts of the desired damper force 

associated with 0k �  must be clipped, whereby the derivations above are compromised. This is illustrated 

in Fig. 2b, where clipping leads to deviations from the inclined elliptical shape. The larger the magnitude of 

the negative stiffness, the larger then amount of clipping. However, as demonstrated by both simulations and 

experiments in Section 4 a reduction in stiffness actually results in a reduction of the structural response. 

3.2. Non-linear control model 
The non-linear model considered in the present paper is illustrated in Fig.2d, and corresponds to the 

superposition of a friction component and a negative stiffness component. As demonstrated by means of an 

evolutionary algorithm in [32] this model is optimal with respect to maximum modal damping for a taut 

cable. Similar findings are reported in [47] based on results obtained by LQR control. In the following an 

explicit expression is presented for the calibration of this model. In steady-state conditions with constant 

amplitude X  it is convenient to formulate the damper force as 

 � �f sign x X k x�� ��  (15) 

where 0� �  determines the friction force level at reversal ( 0x �� ), while the stiffness 0k �  represents the 

inclination of the force-displacement trajectory between reversals. As indicated in the previous section 

efficiency increases with reduced stiffness, while a pure dissipative model in (15) requires that k� � . 

Thus, a suitable level of the friction force is obtained by the limit k �� � . With this definition the force 

level at reversal is 2 X�� , and the balance between friction and negative stiffness implies that clipping of 

active forces is avoided in steady-state conditions. The calibration based on maximization of the damping 

ratio requires a linear model, or in this case an equivalent linear model. This can be written as 

 eq eqf k x c x� � �  (16) 

where the equivalent stiffness eqk  and the equivalent viscous parameter eqc  are determined by averaging 

over a full vibration period when assuming pure sinusoidal motion, see e.g. [46]. The averaging procedure 

leads to  

 
4

,eq eqc k
�

�
� �

� � �  (17) 

whereby the equivalent viscous parameter secures the correct energy dissipation while the equivalent 

stiffness recovers the mean inclination of the hysteresis loop in Fig. 2d. In terms of the damper function the 

equivalent real and imaginary parts are 

 	 
 	 

4

Re ( ) , Im ( ) eqeq eq
H H c� � � � �

�
� � � �  (18) 

and substitution into the expression for the damping ratio in (7) gives 
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The calibration of �  is obtained by the condition / 0d d � � which yields 
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Note that this result corresponds to the condition 1H� � , which has been derived in [51] for linear control 

strategies with a single proportional gain parameter. Substitution into the expression for the damping ratio in 

(19) gives 
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This approximate result indicates that the attainable damping obtained the present non-linear control strategy 

is about twice the damping level from the pure viscous model given in (14) for 0k � .  

4. Experimental verification 

The performance of the various control strategies presented in the previous section are in this section applied 

on a simple five storey shear frame structure by a rotary type MR damper. The properties of the experimental 

setup are initially described. The real-time tracking of the desired damper force is provided by a neural 

network and the aspects related to the implementation are briefly discussed. The results based on both 

simulations and experiments are finally presented. 

4.1. Shear frame with MR damper 
The experimental setup is shown in the photo in Fig. 3 and the schematic drawing in Fig. 4. A five storey 

shear frame structure is mounted on a shaking table, which is driven by a Schenk hydraulic cylinder. An MR 

damper is fixed to the shaking table and the MR damper rod applies the semi-active control force to the first 

mass of the 5 DOF system. Thus, the MR damper operates on the relative motion of the first floor, which 

corresponds to the damper configuration shown in Fig. 1 with connectivity vector 
T]0,0,0,0,1[�v . The 

MR damper under consideration is of the rotational type, with approximately 22 N residual force at 0 A and 

300 N at the maximum current of 4 A. Details about the properties of the MR damper can be found in [36]. 

 

 
Figure 3. Shear frame structure on shaking table with MR damper acting on first floor. 

 



 
Figure 4. Schematic of test setup. 

 

The accelerations of all five structure masses and the ground acceleration are recorded by accelerometers 

from PCB. Furthermore, the absolute displacement of the shaking table, the first floor and the fifth floor are 

recorded by laser distance sensors from Micro-Epsilon. Hereby, the acceleration and displacement of the MR 

damper motion can be obtained in real-time as the difference between the first floor acceleration and 

displacement and the acceleration and displacement of the shaking table, respectively. The control strategies 

require real-time estimation of the damper velocity. This is obtained via the measured relative displacement 

and acceleration through a Kinematic Kalman Filter (KKF), which is explained in detail in [52]. Finally, a 

force sensor is installed between the MR damper rod and the first floor plate in order to measure the damper 

force real-time. This force signal is used to determine the tracking error of the implemented control 

strategies. 

The control of the MR damper is programmed and implemented in Matlab/dSPACE®, which is also used 

for the data acquisition. The real-time loop implemented for both the experimental and the numerical 

analysis is shown in Fig. 7, where the bottom part shows the control implementation. The output of this 

control algorithm is the desired damper force at a sampling frequency of 500 Hz. The desired current is 

converted into a command voltage, which is passed through the IO board to the KEPCO current driver, 

which provides a negligible tracking error of the desired MR damper current. The Matlab/Simulink® file of 

the controller is simultaneously used to compute the command voltage for the INSTRON control unit, which 

controls the motion of the hydraulic cylinder. In the simulations the response of the shear frame structure is 

determined by integration of the equation of motion in (1), where the MR damper force is governed by a 

Bouc-Wen type model. In Fig. 7 these elements are contained in the upper right part of the diagram. 



 
 

Figure 5. Real-time implementation of semi-active control in Matlab/dSPACE®. 

4.2. Implementation of semi-active control 
The semi-active control of the MR damper is contained in the bottom part of the diagram in Fig. 7. The input 

to the control part is the displacement and the velocity of the damper. In the experiments the displacement is 

directly measured, while the velocity is determined by the KKF. The box “Control Law” computes the 

desired damper force by (9) for the linear models and (15) for the non-linear model. In (15) the amplitude X  

is simply the magnitude of the most recent minimum or maximum in the damper displacement response. 

Thus, (15) is implemented as an adaptive scheme, which has been used in e.g. [34,46,53] for control of 

friction and MR type dampers. 

The desired control is then passed on to the “Clipping” box, where any non-dissipative force components 

are simply removed. The logic is 
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f f x
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f x
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 (22) 

whereby any non-dissipative forces are set to zero. 

The absolute values of the desired damper force and the damper velocity are passed on to the force 

tracking box, which is denoted “Validated Neural Network of Inverse MR Damper Behaviour” in Fig. 7. The 

model-based force tracking without feedback from a force sensor is in this case based on an inverse neural 

network model of the MR damper. The input to the neural network is the absolute value of the damper 

velocity x�  and the absolute value of the desired damper force desf . The output of the neural network is the 

associated desired MR damper current desI . The input-output relation of the neural network ( NN ) is 

modelled by the following architecture, where details can be found in [39], 

 
( ) ( 1) ( 2) ( 3)

( )
( ) ( 1) ( 2) ( 3)

des

des des des des

x j x j x j x j
I j NN

f j f j f j f j

� �� � �
� � �

� � �� �

� � � �
 . (23) 



It is seen that the present values at time step j  and values at only three previous time steps are needed for 

sufficiently accurate tracking of the desired damper current. The neural network approach in (23) uses the 

absolute values of the relative velocity and the desired force to estimate the MR damper current because the 

output current must always be a positive quantity. And as demonstrated in [39] the use of the absolute values 

of the input signals reduces the possibility of negative output current and thereby undesirable spikes in the 

actual damper force. A systematic derivation of the neural network architecture (23), the associated training 

with real measurement data of the present MR damper and the model validation are described in greater 

detail in [39]. 

As seen in Fig. 7 the output current desI  from the inverse neural network model is passed through a 

switch, where the desired damper current is truncated, so that  

 
:

0 :

des des res

des

des res

I f f
I

f f

� ��
� �

���
 (24) 

where a conservative choice of residual force is 18Nresf � . This truncation reduces the control force 

tracking error from to the modelling errors in the neural network in (23) at small force levels. The truncated 

desired damper current in (24) is low-pass filtered before it leaves the control part in Fig. 7 and is passed on 

to the current driver. The low pass filter is a Butterworth filter with cut-off frequency at 60 Hz, which 

effectively reduces the noise level in the desired current signal. The controller runs at 200 Hz sampling 

frequency, which corresponds to the sampling rate used for training of the neural network. It should be noted 

that in the simulation zero current tracking error is assumed. This means that the Bouc-Wen model is 

controlled directly by desI . In the experiments the KEPCO current driver is used to track the desired current, 

which is sufficiently accurate to at least guarantee negligible tracking errors so that act desI I� . 

The shaking table is driven by the hydraulic cylinder and the acceleration record of the shaking table 
meas

gg xx ���� �  is measured by an accelerometer. In the simulations this measured acceleration signal is then 

used as excitation in the equation of motion (1), whereby the load vector can be written as 

 	 
, 1,1, ,1
T

ext gx� � �f M1 1�� �  (25) 

As in all experiments noise is an inherent problem which should be eliminated as much as possible. In the 

present experiments two main sources for noise are observed: 

a) One source is the high frequency noise in the damper velocity, which is generated when the desired 

damper force moves from the region des resf f� , where it cannot be tracked, to the region 

des resf f� , where it can suddenly be tracked by the neural network. This transition involves a 

sudden release of the damper, which introduces high frequency parts in the velocity signal. Note that 

this source exists in both simulations and experiments. 

b) Another source is the measurement noise, which only exists in the experimental data. The input to 

the neural network in (23) is the measured damper velocity x�  and the desired force desf , which both 

include measurement noise and thereby evoke a noisy current desI . 

4.3. Calibration of control strategies 
In the present paper three control strategies are investigated for the semi-active MR damper: 

a) Pure Viscous Damping (VD) with 0k � . 

b) Viscous damping with negative stiffness (VDNS) with 0k � . 

c) Friction damping with negative stiffness (FDNS). 



The first two linear models are given in (9), while the friction model with negative stiffness is determined by 

the expression in (15). It should of course be noted that all strategies are clipped and truncated according to 

the diagram in Fig. 7. Since negative stiffness in the linear model VDNS results in active force components, 

it is expected that this model is clipped extensively. The non-linear FDNS also contains a negative stiffness 

component. However, the friction term is adaptively scaled with respect to the response amplitude X , and 

the stiffness term is balanced by k� � � . This means that clipping is effectively reduced by the non-linear 

control model. The model calibration of the shear frame structure is described in Appendix A, and based on 

the estimated mass and stiffness matrix the two limiting frequencies and the modal scaling parameter 

associated with the first vibration mode are determined as 
4

0 8.0 rad/s , 10.4 rad/s , 1.5410� � � �

�� � �   

For the pure VD model the damper parameter (13) and the estimated damping ratio (14) are obtained as 

max max650 Nm/s , 0.13c � �  

For the VDNS model with 4.5kN/mk � �  the values are 

max max590 Nm/s , 0.43c � �  

It should be noted that the apparent stiffness of the bottom storey is approximately 9.5 kN/m, and the 

magnitude of the negative stiffness component corresponds to about half of this inter-storey stiffness. The 

negative stiffness results in a slight reduction of the viscous parameter, while the estimate of the damping 

ratio indicates a significant increase in damping. For the non-linear FDNS model in (15), which is composed 

of friction and negative stiffness, the damper parameter is determined by (20) and the corresponding estimate 

of the damping ratio is given in (21), 

max4kN/m , 0.27� � �  

It is observed that the value of � is of the same order of magnitude as the negative stiffness component used 

for VDNS. The estimated damping ratio by the non-linear control model is a factor two larger than for pure 

viscous damping, but not nearly as high as for the VDNS. However, as indicated by the experimental and 

numerical results presented in the following the clipping of the active parts of the linear VDNS leads to a 

significant deterioration of the expected performance and thus a change in the calibration. Because the non-

linear FDNS is adaptively controlled proportional to the response amplitude the clipping is significantly 

reduced and the expected performance is almost recovered in the experiments, as demonstrated in the 

following sections. 

4.4. Force tracking 
The force tracking error is in this case illustrated for the pure VD in Fig. 6. The results are for a maximum 

force level of approximately 60 N, which is a typical value for the first mode of the present shear frame 

structure. Figures 6a,b show the force tracking and the corresponding current signal for the experiment, 

while Figs. 6c,d show the similar results for the simulations. It is seen that the force tracking error in the 

experiment is slightly larger than in the simulation, which is mainly due to measurement noise in the 

collocated velocity which generates a noisy current. Note that because the MR damper behaves as a low-pass 

filter the actual damper force is not as noisy as the damper current. By comparison with the simulations in 

Fig. 6c it is found that the noise level in the experimental record in Fig. 6a is acceptable. Both time histories 

show the regions of the residual force that constrains the force tracking. Within these regions zero current is 

applied in order to minimize the force tracking error. 

 



 

Figure 6. Measured (a,b) and simulated (c,d) force tracking of viscous damper force. 

 

 
Figure 7. Measured (a,b) and simulated (c,d) force-displacement and force-velocity trajectories for pure VD. 

4.5. Steady-state response 
The performance of the control strategies for the rotational MR damper is assessed at steady-state and 

harmonic conditions and by free vibration decay. For the pure VD the force-displacement and force-velocity 

trajectories are shown in Fig. 7. It is seen that the force tracking is fairly accurate, where the main tracking 



error is due to the residual force level at 0 A, where the MR damper basically operates as a friction damper. 

Thus, inside this region deviations from the ideal viscous ellipse are expected and observed. Furthermore, the 

level of experimental noise can be evaluated by comparison with Fig. 7c,d, which show the corresponding 

simulation results. 

  
Figure 8. Steady-state response and free decay for pure VD. 

 

Figure 8 shows the response of the top floor, where Fig. 8a is the experimental response and Fig. 8b is 

obtained by simulations. The amplitude and root-mean-square ( rms ) values are determined during steady-

state conditions. As indicated in Fig. 8 the harmonic excitation by the shaking table is suddenly stopped and 

the free vibration decay provides an estimate of the damping ratio. Due to the fairly large damping the 

number of local peaks with non-zero MR damper current is quite limited. This means that the estimation of 

the damping ratio is quite difficult. The point-to-point estimate of the damping ratio by logarithmic 

decrement is shown by the crosses in Fig. 8, and an average value is used to generate the exponential fit also 

shown in the figure. The average damping ratio is given in Table 1, and for the VD it is 0.12, which is quite 

similar to the expected value of 0.13 determined in Section 4.3. Details on the estimation of the damping 

ratio can be found in [34]. The damper parameters presented in Table 1 are determined by trial-and-error, 

and represent the damper parameters that lead to the largest average damping ratio in the free vibration decay 

experiments. For the pure viscous damper the experimentally determined damper parameter agrees very well 

with the theoretical estimated determined in Section 4.3. 

 

Table 1. Measured and simulated mean damping ratios and steady state responses. 

 Control law VD Clipped VDNS FDNS 

 calibration c =650 Nm/s c =250 Nm/s 

k =-4500 N/m 

� =3000 N/m 

m
ea

su
re

d
 

  [%] 11.8 approx. 22 approx. 26 

)( 5xrms  [mm] 24.3 15.5 11.2 

)( 1xrms  [mm] 6.6 4.9 3.5 

)( 5xrms ��  [m/s2] 1.81 1.25 1.02 

)( 1xrms ��  [m/s2] 0.87 1.02 0.94 

si
m

u
la

te
d

 

  [%] 13.4 approx. 30 approx. 30 

)( 5xrms  [mm] 24.3 (*) 13.8 13.6 

)( 1xrms  [mm] 6.1 6.3 5.5 

)( 5xrms ��  [m/s2] 1.60 0.98 1.16 

)( 1xrms ��  [m/s2] 0.64 1.40 1.36 



In addition to the mean damping ratio, the damping performance of the tested control concepts is also 

assessed by the root mean square of the steady state response at constant excitation amplitude and the 

resonance frequency of the first vibration mode. The rms is determined for the displacement of the first floor 

and the top floor. Furthermore, the rms values are computed for the associated acceleration records, where in 

particular the acceleration of the first floor relates to the high-frequency content in the damper force. Note 

that the undamped case is not reported, since the resonant response without the MR damper will lead to 

collapse of the shear frame structure. Thus, the pure VD represents the benchmark case for the two control 

models with negative stiffness. 

Figure 9 shows the steady-state response and free vibration decay for VDNS. The results for the average 

damping ratio and rms are given in Table 1. By the trial and error procedure it has been found that due to the 

heavy clipping of the active parts of the damper force associated with the negative stiffness component the 

best viscous parameter is reduced from the theoretical value of max 590 Nm/sc �  to 250Nm/s . For this 

value the damping ratio is around 0.2 � , which is significantly smaller than the estimated value of more 

than 0.4 . It is seen from the rms values that the introduction of negative stiffness improves the response 

reduction at both top and first floor. However, the increase in first floor acceleration indicates that the high-

frequency content in the damper force also increased. This is furthermore verified by the curves in Fig. 9a, 

which show that the strong clipping at the points of reversal in the damper motion results in a very spiky 

damper response. 

 

 
Figure 9. Steady-state response and free decay for clipped VDNS. 

 



 
Figure 10. Steady-state response and free decay for FDNS. 

 

Figure 10 shows the steady-state response and free vibration decay for the non-linear FDNS. It is seen 

that the tracking of the force-displacement trajectory in Fig. 10a is fairly good compared to the case of 

VDNS in Fig. 9a. As seen in Table 1 the actual damper value is 3000 N/m� � , which is somewhat smaller 

than the estimated value of 4000 N/m . The reason for that is that the attainable force level at 4 A of the MR 

damper is not large enough to realize the full potential of the FDNS for the present shear frame structure. 

And because the excitation level of the structure has been chosen so that the pure viscous damper is 

operating in the full force range, the damper parameter for the FDNS has simply been reduced to 

3000 N/m� � . However, the average damping ratio is approximately 0.26 � , which agrees well with 

the theoretical prediction of 0.27 . This indicates that effective damping by semi-active devices, in this case 

an MR damper, requires control strategies that take the inherent characteristics of the particular damping 

device into account. In the present case the negative stiffness in (15) is balanced so that the damper force is 

zero at reversal, which is verified by the results shown in Figs. 10a,c. The rms values for the FDNS also 

show a significant reduction in the structural response, and the increase in the rms value of the first floor 

acceleration is significantly smaller compared to clipped VDNS and it is only slightly larger than the value 

for pure VD. 

5. Conclusions 

The present paper investigates the performance of semi-active control schemes with negative stiffness in 

connection with damping of flexible structures by an MR damper. The results and main conclusions are 

based on experimental results where a rotational type MR damper is operating on the first floor of a simple 

five storey shear frame model structure. 

As discussed in the introduction the application of negative stiffness leads to an increase of the local 

motion over the damper, and combined with a proper calibration of the associated dissipative damper 

component this may result in improved energy dissipation and thereby structural damping. The increased 

motion at damper location might lead to an increase in local strains and stresses in the structure. However, as 

illustrated by the experiments performed in the paper the increase in damping, due to the introduction of 

negative damper stiffness, results in an overall reduction of the MR damper motion, which at least indicates 



that for semi-active control the introduction of proper negative stiffness is beneficial for damping of flexible 

structures. 

Two simple control models are considered for the MR damper: a linear model with a viscous term and a 

negative stiffness term, and a non-linear model with a friction term and a negative stiffness term. For the 

non-linear term the negative stiffness is balanced so that in harmonic steady-state conditions the damper 

force is entirely dissipative. In practice the force level of the friction force is scaled with the value of the 

most recent minimum or maximum in the damper displacement record. This adaptive procedure is fairly 

simple and also quite accurate in the case of resonant response, where the response amplitude is slowly 

varying. Both models are compared to the performance of the pure viscous damper model with vanishing 

damper stiffness. 

The desired calibration and predicted damping ratio is based on the free vibration analysis of the structure 

in Section 2. The derived expression for the modal damping ratio indicates that the introduction of negative 

stiffness might lead to an increase in the damping ratio. This is verified by the experiments reported in 

Section 4. For the linear damper model a very large damping ratio is predicted by the theory when 

1k� � � . However, for negative stiffness the linear model produces non-dissipative, and thereby active, 

control forces. In semi-active control these parts are typically clipped, which results in a deterioration of the 

theoretical findings. For small values of k�  the influence of the negative stiffness is limited and the results 

for the pure viscous model are basically recovered, while for k�  close to -1 the active parts dominate the 

damper force and clipping limits the performance of the damper. The best calibration is most certainly 

somewhere between these limits, and the present experiments apply 0.7k� � � , which is a fairly large value. 

As observed during the experiments this value leads to a significant amount of clipping, and the best viscous 

parameter, found by simple trial-and-error, is less than half the value predicted by the theory. Furthermore, 

the damping performance determined by the free vibration decay tests is also significantly less than the 

theoretical estimate. This indicates that in connection with semi-active control care must be taken with 

respect to clipping of active parts when introducing negative stiffness in a linear damper model. 

Since the friction part and the negative stiffness of the non-linear model have been properly balanced by 

k� � � , the need for clipping in steady-state conditions is significantly reduced, and the calibration and 

corresponding damping performance of this model agree fairly well with the analytical results. In fact, the 

mayor discrepancy in the non-linear model seems to be due to the limited force level of the MR damper at 4 

A, which implies that the desired damper force cannot be fully realized by the damper. In the experiments 

the actual value of �  is therefore slightly reduced compared to the analytical estimate in Section 4.3. A 

modified version of the present non-linear model could be formulated to take this saturation into account, 

whereby the analytical calibration should agree better with the experimental results, obtained by trial and 

error. The formulation of such a modified damper model is definitely part of future work on the control of 

semi-active dampers. 

The experiments and the experimental results are presented in Section 4, where it is explained how the 

control loop is implemented in Matlab/dSPACE®. A main issue in the control implementation is the real-

time tracking of the desired control force. This is performed by a simple neural network, where the desired 

output current from the neural network is subsequently clipped to avoid non-dissipative forces, truncated to 

take care of the 0 A residual force and low-pass filtered to reduce the noise level. Despite these subsequent 

modifications of the neural network output the actual MR damper force is still rather spiky. Nevertheless, the 

measured structural damping agrees quite well with the simulated values. Thus, the neural network method 

represents an effective tool for the modelling of the inverse MR damper dynamics for real-time tracking of a 

desired damper force without feedback from a force sensor. 

 

ACKNOWLEDGEMENTS 

The work is supported by Empa, Swiss Federal Laboratories for Materials Science and Technology, 

Switzerland, by the research grant of the Danish Council of Research and Innovation, Denmark, and by the 

industrial partner Maurer Söhne GmbH & Co. KG, Germany. 



6. Appendix A 

The shear frame structure is shown in Fig1. 1 and 2, and in this appendix the procedure for the modelling of 

the structure is briefly described. The horizontal floor displacements represent the five degrees of freedom in 

	 
1 2 3 4 5, , , ,
T

x x x x x�x . The equation of motion is given (1), introducing the mass matrix M , the damping 

matrix C  and the stiffness matrix K . These system matrices are determined by the following engineering 

type approach: 

a) The mass matrix is assumed diagonal, where each component represents the weights of a single floor  

mass and four columns. 

b) The shear frame is base excited (without MR damper) by a sine sweep, which determines the five 

natural frequencies and the corresponding mode shapes. 

c) The free decay response of the five vibration modes estimates the modal damping ratios. 

The diagonal elements of the mass matrix M  are the sum of floor mass and column mass, which gives 

 ( , ) 4 5.95kgmass columnj j m m� � �M  

The natural frequencies and mode shapes are estimated from the base sine sweep of the structure. The 

response is recorded by the accelerometers on each floor and base, and Fig. A1a,c shows acceleration record 

for floors 1 and 4. 

 

 
Figure A1. Acceleration record from base sine sweep: (a,c) experiments, (b,d) simulations. 

 

From the sine sweep record and by the peaks in the associated power spectrum, Fig.A2, the experimental 

angular natural frequencies are determined as 

1 2 3 4 58.0 , 24.2 , 38.4 , 49.9 , 58.3� � � � �� � � � �  

all in rad/s. 

 

 

 



 
Figure A2. Power spectrum: (a,c) experiments, (b,d) simulations. 

 

The associated vibration forms iu are estimated from the measured transfer functions and by inspection of 

the correlation of the minima and maxima in the floor records. The estimated vibration forms are shown in 

Fig.A3a, and it is seen that they agree well with the analytical solution for the mode of an ideal shear frame 

structure   

 ,

2 1
sin

2 1
i j

j
u i

n
�

�! "
� # $

�% &
 (A1) 

where i is the mode number, j  is the floor number and n  is the number of degrees of freedom. It is seen 

from Fig. A3a that the agreement between the estimated vibration forms and the analytical expressions is 

quite good. The measured mode shape vectors are collected in the matrix 	 
1 n�U u u� , whereby the modal 

mass matrix is determined as 

 
T

m �M U MU  (A2) 

The associated diagonal modal stiffness matrix is determined by multiplication of the diagonal elements of 

the modal mass matrix with the square of the natural frequencies, 

 
2( , ) ( , )m i mj j j j��K M  (A3) 

The back transformation from modal to Cartesian coordinates gives the estimate of the stiffness matrix, 

 � � � �
1 1T

m

� �
�K U K U  . (A4) 

The stiffness matrix is symmetric but not necessary tri-diagonal, as for an ideal shear frame structure. 

However, it is found that the off tri-diagonal elements are small compared to the elements in the tri-diagonal 

band. 

 



 
Figure A3. (a) Mode shapes and (b) free vibration decay of shear frame structure. 

 

The modal damping is estimated by free vibration decay tests. Figure A3b shows the top floor displacement 

response when the structure is base excited at the natural frequency of the first mode. When the base 

excitation is stopped the structure performs free vibration decay in the particular vibration form. By point-to-

point logarithmic decrement [34] the modal damping ratios are determined as 

1 2 3 4 50.0030 , 0.0024 , 0.0020 , 0.0015 , 0.0010    � � � � �  

When using the estimated modal mass and modal stiffness matrices the diagonal elements of the modal 

damping matrix becomes 

 ( , ) 2 ( , ) ( , )m j m mj j j j j j�C K M  (A5) 

where the off-diagonal elements are assumed to vanish. The damping matrix in Cartesian coordinates is 

determined as for the stiffness matrix in (A4). The natural frequencies and the damping ratios of the 

estimated model are determined by solving the damped eigenvalue problem associated with the 

homogeneous version of the equation of motion in (1). The natural frequencies are 

1 2 3 4 58.0 , 24.2 , 38.4 , 49.9 , 58.3� � � � �� � � � �  

while the modal damping ratios are 

1 2 3 4 50.0010 , 0.0040 , 0.0071 , 0.0055 , 0.0016    � � � � �  

It is seen that good agreement is observed for the natural frequencies, while fairly large errors are observed 

for the modal damping. The sine sweep response is simulated based on the estimated system matrices, see 

Fig. A1b,d. Comparison with the experimental records indicates a deviation in the response magnitude, 

which follows from the errors in the damping. This is also observed for the power spectra in Fig. A2. 
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Abstract. This paper presents a neural network based semi-active control method for a rota-

ry type magnetorheological (MR) damper. The characteristics of the MR damper are de-

scribed by the classic Bouc-Wen model, and the performance of the proposed control method 

is evaluated in terms of a base exited shear frame structure. As demonstrated in the literature 

effective damping of flexible structures is obtained by a suitable combination of pure friction 

and negative damper stiffness. This damper model is rate-independent and fully described by 

the desired shape of the hysteresis loops or force-displacement trajectories. The proposed 

neural network controller is therefore trained based on data derived from these desired force-

displacement curves, where the optimal relation between friction force level and response 

amplitude is determined explicitly by simply maximizing the damping ratio of the targeted vi-

bration mode of the structure. The neural network control is then developed to reproduce the 

desired force based on damper displacement and velocity as network input, and it is therefore 

referred to as an amplitude dependent model reference control method. An inverse model of 

the MR damper is needed to determine the damper current based on the derived optimal 

damper force. For that reason an inverse MR damper model is also designed based on the 

neural network identification of the particular rotary MR damper. The performance of the 

proposed controller is compared to that of an optimal pure viscous damper. The top floor dis-

placement and acceleration of the base excited shear frame structure are selected as the per-

formance parameters of this comparison. It is found by the simulations that the proposed 

control design yields a reduction in the structural response compared to the viscous case.
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1 INTRODUCTION 

As large scale structures become increasingly slender and flexible the magnitude of dy-

namic response due to loading from wind, traffic and even earthquakes may increase beyond 

the acceptable level. Thus, the need for additional external damping is pronounced, where in 

particular the concept of semi-active control has received a great amount of attraction during 

the most recent decades. The Magnetorheological (MR) damper is one of the most popular 

types of semi-active devices. It is inherently dissipative and thereby stable, and it behaves 

roughly as a friction damper, where the friction force level can be altered real-time by simply 

changing the applied damper current. Thus, the MR damper is a cost effective device that 

combines some of the adaptability of active control with the low power requirements and re-

liability of pure passive dampers.  

The main challenges arising in connection with the use of most semi active damping de-

vices lies in the development of effective control laws, and in the subsequent digital and real-

time implementation. Most control strategies for semi-active structural control fall into two 

main categories. The first one consists of control strategies that require accurate mathematical 

formulation for the plant model. Examples in this category are the H2/LQG, H� and the slid-

ing mode control, where any active parts are simple clipped. Conversely, the second category 

contains control strategies that do not require an accurate mathematical model of the plant. 

Neural network and fuzzy control fall into this category. Several neural network based control 

strategies [1-3], neuro-fuzzy network based strategies [4,5] or neuro-predictive control me-

thods [6] have been developed for different control aspects of MR dampers. The advantage of 

neural network based methods is that they mainly excel in the handling of uncertainties in 

nonlinear applications, which makes them suitable for both modeling and control of the inhe-

rently nonlinear MR damper. 

It has been demonstrated in [7,8] that for semi-active control of flexible structures the 

combination of pure friction and a negative stiffness component yields very effective damping 

of structural vibrations. Therefore, this paper considers the development of a model reference 

neural network, which will track the desired hysteresis behavior of an ideal friction damper 

with negative stiffness. The proposed controller performance is compared with performance 

of an optimal viscous damper, and for the response of a simple shear frame structure sub-

jected to harmonic base excitation the good performance of the proposed method is verified. 

2 STRUCTURAL MODEL AND MR DAMPER PROPERTIES 

The performance of the semi-active control strategies for the MR damper is in this paper 

assessed by the harmonic response of a base excited five-storey shear frame structure. The 

MR damper is collocated at the first floor of the shear frame, where the measuring data is col-

lected. To apply the semi-active control strategy on the MR damper, an inverse model of the 

damper is needed to predict the damper current associated with the desired MR damper force. 

The equation of motion of the shear frame structure with MR damper and inverse MR damper 

model are discussed in the following sub-sections. 

2.1 Equation of motion  

In dynamic analysis of flexible structures the structural model is typically modeled by fi-

nite elements or determined by experimental modal analysis, whereby the equation of motion 

can be written in the form 

                                � �c c c c gf x� � � � � �M x C x K x � M I�� � ��                                        (1) 
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where cM , cC  and cK  are the mass, damping and stiffness matrices in Cartesian coordinates, 

x  is the displacement vector containing the displacements of the five concentrated masses, 

the dot represents the time derivative, f  is the force of the external MR damper, 

[1,0,0,0,0]T��  is the connectivity vector that applies the semi-active force f  to the first 

mass, T]1,1,1,1,1[�I  is the unity vector and gx��  is the ground acceleration. The schematic illu-

stration of the shear frame structure with rotational MR damper is shown in Fig. 1. 

+   +

Mass 1

Mass 5

Base

x5

x1

xg
....

MR Damper

 

Figure 1: Shear Frame Structure with MR damper  

2.2 MR damper model 

The rotational MR damper is modeled using the classical Bouc-Wen hysteresis model. The 

parameters of the model have been calibrated by experiments, where the damper has been dri-

ven harmonically in a testing machine at various frequency-amplitude combinations. The 

modified Bouc-Wen model by Spencer et al. [9] was formulated for the cylindrical type MR 

damper. In the present case this model is slightly simplified, mainly because the cylindrical 

damper concept has no need for an accumulator chamber, which for the many cylindrical type 

dampers introduce an additional stiffness component. Figure 2 shows the close up of the rota-

ry type damper at the Swiss Federal Laboratory of Material Science and Research (EMPA) 

and the schematic diagram of the classical Bouc-Wen model. For more information on the 

characteristics and modeling of the rotary MR damper please see Boston et al. [10].  
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Figure 2: Rotational MR Damper and Bouc-Wen damper model 

 

The governing equations for the damper force f predicted by the classical Bouc-Wen model 

can be written as follows:                               

                                                       � �0f z c x�� � �                                                                   (2) 

where the hysteresis effect follows from the evolutionary variable z controlled by the Bouc-

Wen equation 

                                                   
1

( ) ( )
n n

z x z z x z A x' (
�

� � � �� � ��
                                           (3)

 

The gain parameters on the hysteresis effect and the viscous effect are in the present case de-

scribed by cubic and linear functions of the applied current, respectively:  

 2 3

0 0 0,a b c d a bu u u c c c u� � � � �� � � � � �    (4) 

The applied current u is described with a time delay relative to the desired current I by the fol-

lowing first order filter:                                                 

 ( )u u i)� � ��   (5) 

The estimated parameters of the simplified Bouc-Wen model for the rotational MR damper 

are given in Table. 1. 

 

MR Damper Parameters 

a�  4.038 )  100 

b�  1.984 '   410 

c�  7.901 (  410 

d�  -0.704 A 1000 

0ac  10 0bc 100 

Table 1: Parameters for Bouc-Wen Model 
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Typical force-displacement and force-velocity hysteresis loops for the rotational MR damper 

are shown in Fig. 3. It is seen that the MR damper behaves approximately as a friction damper, 

where the friction force level can be altered by changing the applied damper current. The 

opening of the force-velocity loops indicates some pre-yield stiffness. 
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Figure 3: Force Displacement /Velocity hysteresis loops. 

2.3 Inverse MR damper  

The inverse model modeling for rotary MR damper is a quite complicated task due to high 

nonlinearity in MR damper dynamics. This work can be done by using parametric [10] such 

as Evolutionary Algorithm and also non-parametric system identification methods such as 

neural network identification approach [11, 12]. The inverse MR damper behavior is modeled 

to solve the force tracking task by MR damper in closed loop cycle. The training and valida-

tion data are generated by dynamic tests of the MR damper mounted on a hydraulic testing 

machine. The inverse modeling training data are absolute velocity and absolute force and the 

current is the target. This approach has been chosen because current is always positive and 

thereby leads to a small modeling error independently of the sign of velocity. The inverse 

model of the MR damper is verified with totally independent set of input-output data. The 

model validation is thoroughly described in Bhowmik et al [14]. 

The inverse MR damper behaviour, i.e. the input states at time instant k  are the damper 

velocity 1( )x k�  and desired control force )(kfdes  and the output state is current )(kI , is mod-

elled by a neural network with the following architecture 

                       
1 1 1 1( ) ( 1) ( 2) ( 3)

( )
( ) ( 1) ( 2) ( 3)des des des des

x k x k x k x k
I k NN

f k f k f k f k

� �� � �
� � �

� � �� �

� � � �
                               (6) 

The neural network based inverse MR damper model is used to solve the force tracking 

task.

3 CONTROL STRATEGIES 

The present paper describes a neural network based model reference control strategy for 

the prediction of the desired force to control structural vibrations. To evaluate the perfor-

mance of the proposed model reference controller, the optimal pure viscous damper force is 

also applied to the structure.  
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For linear damper models the characteristics of the damper are conveniently formulated in 

the frequency domain as                                            

                                                       ( ) ( )f gH x� ��                                                             (7) 

where g is the control gain and ( )H � is the associated frequency dependent transfer function. 

The effective damping of the structure is evaluated in terms of its modal damping ratio, 

where the presence of the external damper generates a non-proportional damping with corres-

ponding complex valued natural frequencies and mode shapes. The analysis of the damper 

modal vibrations is described by the two-component system reduction technique introduced 

by Main and Krenk [13]. In that formulation the response of the structure is represented by a 

linear combination of the two limiting mode shapes for the structure without damper 0u and 

for the structure with the damper fully locked �u , respectively. The linear combination can 

then be written as: 

 0 0   r r � �� �x u u   (8) 

The first term represents the classical undamped case, while the second term introduces the 

local effect of the damper described in terms of its ability to lock the structure at its location. 

The undamped mode shape is governed by the classical generalized eigenvalue problem                                  

 � �2

0 0� � �K M u 0  (9) 

A similar eigenvalue problem exists for the case where the damper link is fully locked, de-

fining �� and u�. The locked mode shape �u is by construction orthogonal to the connectivity 

vector which yields the identity T

�� u =0.  

The two-component representation reduces the full dimensional problem to a two-

dimensional problem, where the associated characteristic equation can be solved explicitly, 

providing expressions for the complex valued natural frequency and the corresponding modal 

damping ratio. Optimal calibration of the damper model is based on the maximization of the 

damping ratio. For the general damper format in (7) it is demonstrated in [14] that the optimal 

gain can be determined by the expression: 

                                                              
� �2 2

0

2

0

1
optg

H u

� �� �
�

                                                  (10) 

where u0 is the amplitude of the undamped mode shape at damper location. This expression is 

in the following used to calibrate the control strategies.  

 

3.1 Viscous damping strategy  

The prototype damper model is the pure viscous model. For this model the damper force is 

directly proportional to the collocated velocity of the damper motion,                                                                

                                                           f cx� �                                                                            (11) 

where c is the viscous parameter. When compared with the linear frequency representation of 

the damper force in Eq. 7, the damper transfer function for the viscous damper is 

                                                        
 0( )H i i� � �� �

                                                             (12) 

while the gain value is  
                                                           g c�                                                                              

(13) 
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Substitution of (12) and (13) into (10) gives the following expression for the optimal viscous 

parameter: 

                                                         
� �0

2

0

2
optc

u

� �� �
�

           

            (14) 

where  0 02� � �� � �    

The optimal viscous damper is without stiffness and is therefore a suitable benchmark ex-

ample for damper models with negative stiffness. 

3.2 Proposed Neural network based  model reference control strategy 

The proposed controller is developed based on a neural network model identification tech-

nique, where the neural network model is trained by a reference damper model. In this paper, 

the characteristics of the damper model are described by the desired shape of the hysteresis 

loop, which combines an amplitude dependent friction damper with a negative stiffness com-

ponent. The optimal shape of this hysteresis loop has originally been identified and verified 

by Boston et al. [7]. The hysteresis loop is based on the assumption of pure harmonic dis-

placement and velocity, which is used as the input to the proposed neural model, while the 

damper force based on the desired hysteresis loop is used as the output of the neural controller.  

The optimal shape of the force-displacement trajectory is shown in fig. 4.  

x

-f

f m1
2

(1 -       )mf
x

A
-

1
2

(1 +       )mf
x

A

 

Figure 4: Force-Displacement Hysteresis model for Friction Damper with negative stiffness 

The hysteresis model is inherently nonlinear, whereas the calibration formulation in (10) re-

quires a linear damper model. Thus, an equivalent linear model is assumed to contain a visc-

ous and a stiffness component,  

                                                     f cx kx� ��                                                                      (15) 

If x is a sinusoidal signal, the parameters of the linear equivalent model in (15) can be deter-

mined by equivalence over a full vibration period, see [14]. The yields the following equiva-

lent linear model for the hysteresis loop in Fig. 4:  

                                                     m m2
-

2

f f
f x x

A A��
� �                                                           (16) 

where A is the amplitude of the damper displacement, k is negative stiffness and fm is maxi-

mum force of the hysteresis loop. In frequency domain the model is expressed as 

                                                        m 1 2

2

f
f i x

A �

! "
� � �# $

% &
                                                       (17) 
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Comparison with the frequency representation in Eq. 7 gives the following expression for the 

transfer function of the linear equivalent hysteretic damper model:
                                                   

                                                         
1 2

( )
2

H i�
�

! "
� � �# $

% &                                                         (18) 

and the corresponding gain value:  

                                                           g =
mf

A                                                                           (19)
 

 

From Eq.10 the optimal value of g is determined as 

                                                          

� �2 2

0

2

0

1.24optg
u

� �� �
�

                                                     (20) 

The optimal value fm is determined as  

                                                         
m optf g A�

                                                                       (21) 

where A is the amplitude of the displacement. 

In this paper, a four-layer feed forward neural network is adopted which consists of one in-

put, two hidden layers and a single output layer. The displacement and velocity with current 

state and five preceding values are taken as input and force at current state is output in the 

proposed neural network. The neural network controller is trained with training data generated 

at different amplitudes and at different frequencies of both the displacement response and the 

corresponding force data from the optimal friction model. The trained model is verified with 

independent data set and subsequently used in a closed loop implementation. The training al-

gorithm used in the feed forward back propagation neural network is the Levenberg-

Marquardt (LM) algorithm based on a least-square curve fitting. 

4 NUMERICAL EXAMPLES 

To evaluate the effectiveness of the proposed control strategy for the structural vibration 

mitigation with rotary MR damper, two numerical examples are considered. The first one is 

based on pure viscous damping strategy and the second one is our proposed neural network 

based model reference control (NN-MRC). Both the examples are discussed below 

4.1 Viscous Damper 

The viscous damping strategy using MR damper in closed loop is simulated for five storied 

shear frame structure with harmonic base excitation. The force-velocity and force-

displacement hysteresis plots of the damper force and desired force from control law are 

compared for optimal viscous damping strategy and the result is quite satisfactory. The force 

tracking task by MR damper is quite well. From fig. 3, it is visible that MR damper has a 

force limit at zero current. For that reason it is not possible for MR damper to follow the de-

sired force below the force limit at zero current. Here for this damper, force limit is 24 N.  
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Figure 5: Force-Displacement and Force Velocity hysteresis diagram for viscous damper 

The top floor displacement and damper displacement are shown in fig. 6. 
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Figure 6: Time history of damper and top floor displacement for viscous damper 

The viscous damping strategy is also applied directly on structure without MR damper and 

compared the change in performance. 
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4.2 Model Reference Neural Controller 

The proposed neural control strategy is applied for structural vibration reduction based on 

harmonic base excitation using MR damper in closed loop simulation. The Time history of 

damper displacement and top floor displacement are shown below. 
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Figure 7: Force-Displacement and Force Velocity hysteresis diagram for neural controller 

The hysteresis plots for force-displacement and force-velocity trajectories are shown in 

fig.8.  
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Figure 8: Time history of damper and top floor displacement for neural controller 
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The schematic diagram for the closed loop simulation is shown below 
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Figure 9: Schematic diagram for closed loop simulation 

 Force from an optimal friction damper with negative stiffness are calculated by analytical 

method and compared with the desired force prediction from neural network. Desired force 

from neural controller and the analytical force have some deviation because the slope of the 

desired force is not linear due to change in the motion of the damper. The damper displace-

ment is slightly changed from pure sinusoidal due to some spiky effect in current output from 

inverse MR damper model. The current from inverse MR damper model is shown in fig. 10 
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Figure 10: Time history of current from inverse MR model 

The force-displacement and force-velocity diagram are shown in Fig. 8.  The diagrams are 

quite satisfactory with compared with identical one. There is some deviation in the force pre-

diction due to non-sinusoidal behaviour of the structural response. This is mainly due to some 

spiky current prediction by inverse MR model but overall the force tracking is quite satisfac-

tory. 

 

  
Passive  

Viscous  

Viscous with 

MR damper  

NN-MRC 

RMS(x1
max

)   0.0091  m 0.0066 mm 0.0044 mm 

RMS(x5
max

)  0.036 m 0.030 m 0.024 m 

RMS(a1
max

)  0.64 m/s
2
 0.81 m/s

2
 0.80 m/s

2

RMS(a5
max

)  2.02 m/s
2
 1.81 m/s

2
 1.76m/s

2
 

Table 1: Performance Parameters 
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5 CONCLUSIONS 

In the closed loop simulation, two neural network models are used. One is for force track-

ing which is an inverse MR damper model and another is used for tracking reference damper 

model which is following hysteresis force-displacement behaviour for optimal friction damper 

with negative stiffness. RMS of the peak displacement and peak acceleration of each cycle for 

top floor and damper location are taken as performance parameters. From the performance 

parameters chart, it is clearly visible that proposed control method can reduce around 35% in 

damper displacement and 30% in top floor displacement. The damper displacement for visc-

ous damping strategy with and without MR damper has deviation due to limitation MR dam-

per force realization at zero current when MR damper is attached.  The response of the top 

floor using semi active neural controller gives is quite satisfactory with compared to pure 

viscous damping. There is also significant improvement in acceleration term and but the acce-

leration contains some noise. The major advantage of the proposed controller is it is inherri-

tently modeled with amplitude dependency and the inherent time-delay problem which is an 

important drawback of model based control can be solved in neural based control. In general, 

a neural network is trained under certain condition which can be used in a slightly modified 

but similar nature of the training state. The important feature of neural network is that it can 

handle nonlinearity so well that it can apply to nonlinear structural control also based on li-

nearly trained neural model. This is the reason why neural network is used in this paper for 

structural control. The numerical study revealed that proposed neural based model reference 

controller can track the desired hysteresis behaviour of optimal friction damper with negative 

stiffness satisfactorily and the performance is better than optimal viscous damper.  
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1 INTRODUCTION 

 

Survival of structures from excessive vibration due to uncontrollable events—environmental 

and otherwise—is of great importance, where vibration control of large flexible structures, such 

as building or bridges, is installed primarily to reduce transverse deflections and/or accelera-

tions. Some success toward this goal has been reported in the use of actively controlled devices 

like for instance active mass dampers. However, relatively large power requirement is a primary 

drawback for this type of structural control. On the other hand, variable or semi-active damping 

devices exhibit relatively low power demands and show performance abilities similar to those of 

active control schemes (Dyke 1996). In the category of semi-active control, simple variable 

damping devices such as magneto-rheological (MR) damper, have received great attention in the 

civil engineering community. The MR damper is typically produced in cylindrical form filled 

with an MR fluid and surrounded by one or more electromagnetic coils. The fluid contains very 

small magnetically polarizable particles that allow the properties of the fluid to change almost 

instantaneously according to the strength of the applied magnetic field. A detailed description of 

MR dampers can be found in Spencer (1997) or Yang et al. (2001). The application of MR dam-
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ABSTRACT: Effective damping of large and flexible structures by semi-active dampers relies 

greatly on the control strategy applied, which should combine the robustness of passive devices 

and the increased damping performance often available from active control. For structural con-

trol the Magneto-rheological (MR) damper is among the most popular and promising devices 

due to its low power requirement, high dynamic range, high force capacity and robustness. The 

objective of this paper is to formulate semi -active feedback control methods based on simple 

linear damper models, which lead to increased damping performance by introduction of appar-

ent negative damper stiffness. The design of the control strategy aims at maximizing the damp-

ing ratio of the critical mode of the structure. Explicit solutions for the complex valued natural 

frequency of the damped structure and the associated damping ratio are obtained by the two-

component system reduction technique, which shows that a potential increase in damping is as-

sociated with a similar reduction of stiffness, or even with the introduction of negative stiffness. 

For linear control strategies negative stiffness can only be realized by active control, which is 

limited by stability. In the present paper it is realized by having the MR damper force track the  

simple pure viscous damper model with vanishing stiffness and the Kelvin model with negative 

stiffness. The applied voltage of the MR damper should be controlled in such a way that the de-

sired control force is followed sufficiently accurate. This is done by letting the desired force be 

the input to an inverse Bingham model, which provides the corresponding desired voltage level 

of the MR damper. Numerical simulations are conducted to demonstrate the performance of the 

proposed semi-active control strategy with apparent negative stiffness. 

 



pers to the control of vibration has been applied for mitigation of wind and seismic effects on 

tall buildings by e.g. Zhang and Roschke (1999) or Jansen and Dyke (1999). An important bene-

fit of an MR damper is its capacity to operate from a remote power source, like a battery or a so-

lar panel, thus increasing its viability during destructive environmental events. 

Because of the increasing research in and development of new semi-active devices, the asso-

ciated formulation of suitable control algorithms is of great importance. Two decades ago Yang 

et al. (1986) proposed new optimal control algorithms for structural control using standard qua-

dratic performance and Ricccati equation to generate appropriate force. Within the framework 

related to linear quadratic Gaussian, H2 or H� control a number of promising approaches have 

been presented and have lead to the development and implementation of e.g. sliding mode con-

trol algorithms. Lately, soft computing techniques, for instance based on fuzzy logic theory, 

have received some attention. However, the efficiency of these techniques is still to be demon-

strated. 

In the present paper two main objectives are considered. Initially a framework for design of ex-

ternal dampers is presented. This is based on the maximization of the damping ratio of a critical 

vibration form and it follows the two-component reduction technique presented by Main and 

Krenk (2005). This analysis provides expressions for the modal damping ratio, which indicates 

that effective damping can be obtained by imposing apparent negative stiffness. Expressions for 

optimal tuning of the simple pure viscous damper model and the Kelvin model with negative 

stiffness are presented. The second step of the paper considers the realization of the desired con-

trol force, where the applied voltage is obtained in terms of the desired control force by a simple 

inverse Bingham plasticity model. A numerical study is presented where the performance of the 

introduced semi-active control schemes are evaluated based on the response of a 10 story shear 

frame structure exposed to the El Centro earthquake. 

2 MODELING OF MAGNETO-RHEOLOGICAL DAMPER 

 

The response of MR fluids results from the polarization induced in suspended particles by appli-

cation of an external magnetic field. The interaction between the resulting induced dipoles 

causes the particles to form columnar structure, parallel to the applied field. These chain-like 

structures restrict the motion of the fluid, thereby increasing the viscous characteristic suspen-

sion. Spencer et al (1997) presented a phenomenological model to analyze the behavior of a 

small scale version of a Magneto- rheological (MR) damper. The model is an augmented version 

of the classic Bouc-Wen hysteresis model, and it appears to be representative over a large fre-

quency and amplitude range. A schematic diagram of the modified Bouc-wen model is pre-

sented in Fig. 1.  

 
 

Fig.1. Modified Bouc-wen Model 

 

The equation governing the force f  predicted by the modified Bouc-Wen model is as follows:                               

                                                        1 1 0( )f c y k x x� � ��
                                                   (1) 

where the energy dissipation is introduced via the filter             
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and the hysteresis effect follows from the evolutionary variable z governed by the Bouc-Wen 

equation
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The following model parameters are typically represented as linear functions of the applied vol-

tage:  

 1 1 1 0 0 0, ,a b a b a bu c c c u c c c u� � �� � � � � �  (4) 

where the applied voltage u is described with a time delay relative to the desired voltage v                                            

 
( )u u v)� � ��

 (5) 

Representing the dynamics involved in reaching rheological equilibrium and in driving the elec-

tromagnet in the MR damper, a total of fourteen model parameters are to characterize the MR 

damper using experimental data and e.g. a constrained nonlinear optimization algorithm. Taking 

displacement, velocity and voltage as input, the model can determine the damper force quite ac-

curately. But due to the nonlinearities of the model its inverse is non-trivial. Therefore, the sim-

ple Bingham plasticity model 

 	 
 	 
 	 
a b a bf f f v sign x c c v x� � � �� �
 (6) 

is used to obtain the voltage based on a desired control force, which is derived in the following. 

Governing parameters for a 1000 kN MR damper for both the Bingham and the modified Bouc-

Wen model are given in [2]. These parameters are presented in table 1. It should be noted that 

the saturation voltage level is around 10 V and that the maximum damper stroke is 0.08 m. 

3 DAMPING OF FLEXIBLE STRUCTURES 
 
In dynamic analysis of flexible structures the structural model is typically modeled by finite 

elements, whereby the equation of motion can be written in the well known form  

  ( )e f t� � � �Mq Cq Kq f w�� �
 (7) 

where the vector q contains the generalized displacements and a dot denotes time differentia-

tion, and K, C and M are the structural stiffness, damping and mass matrix respectively. The ex-

ternal load is represented by the vector process ef . Finally, a single damper is acting on the 

structure, where  f  represents the damper force and w is the connectivity vector describing the 

location of the damper. In a collocated setting the displacement of the damper is 
Tx � w q . The 

characteristics of the damper are conveniently formulated in the frequency domain as   

 ( ) ( )f H x� ��  (8) 

Where  H is the frequency dependent transfer function which also contains any damper gain. 
 

The effective damping of the structure is evaluated in terms of its modal damping, where the 

presence of the external damper generates non-proportional damping with complex valued natu-

ral frequencies and mode shape. The two-component system reduction technique by Main and 

Krenk [3] describes the response as a linear combination of two limiting mode shapes for the 

structure without damper 0u and for the structure with the damper fully locked �u , respectively.

 0 0   r r � �� �q u u
  (9) 

 
 
 
 
 

 



 

Bingham Model 

 

fa      100.0  kN               fb    75.0 kN/V                     ca    81.0 kN s/m            cb    90.0 kN s/m/V 

Modified Bouc-Wen
 

�a     46.2 kN/m              �b    41.2  kN/m/V               c0a   110.0 kNs/m          c0b   114.3 kNs/m/V 

c1a   8359.2kNs/m          c1b    7482.9  kNs/m/V         k0    0.002 kN/m            k1    0.0097 kN/m 

x0    0.18 m                     �     100 
1s�
                         �     164.0 

2m�
              � 164.0 

2m�
         

A     1107.2                     n     2 
Table1: MR damper parameters 

  

The first term represents the classical undamped case, while the second term introduces the local 

effect of the damper described in terms of its ability to lock the structure at its location. The un-

damped mode shape is governed by the classical eigenvalue problem                                                   

 � �2

0 0� � �K M u 0  (10) 

A smaller eigenvalue problem exists for the case where the damper link is fully locked, defining 

�� and u�. The locked mode shape �u is by construction orthogonal to the connectivity vector 

which yields the identity T

�w u =0. Both limiting mode shapes are real-valued and conveniently 

normalized to unit modal mass,
                                             

                                                    
T T

0 0 1 , 1� �� �u Mu u Mu  (11) 

Consequently, the limiting natural frequencies are given in terms of the modal stiffness,
                                          

 
T 2 T 2

0 0 0 , � � �� � � �u Ku u Ku  (12) 

The limiting mode shapes and natural frequencies are all real-valued and may be derived direct-

ly from the associated generalized eigenvalue problems. 
 

The equations of motion can be described in the reduced two-dimensional subspace by substitu-

tion of (9) into (7) followed by pre-multiplication by the limiting mode-shapes, see e.g. 

Høgsberg and Krenk (2006, 2007). In the frequency domain the reduced system of equations 

can be written in the following homogeneous form when free vibrations are considered
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The amplitude of the mode shape at damper location is 0 0

Tu � w u and 0

T* �� u Mu represents 

the coupling between the two limiting mode shapes. Free vibrations require a singular matrix 

which yields a characteristic equation in �  in e.g. Main and Krenk (2005). This characteristic 

equation can be re-written in an explicit, given solution when assuming that the coupling para-

meter 1* � . This solution is conveniently expressed in terms of the change in natural frequency 

0� � �+ � �  and 0� � �� �+ � �  relative to the undamped case, whereby it appears in the fol-

lowing compact form

                                         
 1

H

H�

+

+ �
�� ,

� ,  (14) 

In this expression the modal flexibility parameter is given as 
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The modal damping ratio is determined as the relative imaginary part of the complex valued 

natural frequency: 	 
Im � ��� + . In the case of response dominated by resonance the 

magnitude of the structural is approximately inverse proportional to the damping ratio of the 



dominant mode. Thus, a rational and load independent basis for optimal tuning is the maximiza-

tion of the modal damping ratio  with respect to the damper gain. If the approximation 

0� ��  is introduced the damping ratio can be written as
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It is seen from this expression that the stiffness of the damper � �0Re[ ]H �  appears in the de-

nominator of (16). It is therefore observed that a potential increase in the damping ratio is asso-

ciated with a corresponding reduction of damper stiffness. And as demonstrated in Krenk and 

Høgsberg (2006) the application of negative stiffness improves the damping efficiency for reso-

nant response conditions. In the present paper simple damper models are considered in the fol-

lowing, with emphasis on the design of models with negative stiffness and the application in a 

semi-active control setting. The optimal tuning of the damper is based on maximization of the 

damping ratio, which follows from having the variation 0- � . 

4 SAMPLE DAMPER MODELS 

4.1 Pure Viscous Damper 

The prototype damper model is the pure viscous model. For this model the damper force is di-

rectly proportional to the collocated velocity of the damper motion,                                                                 

 
Tf c� w q�

 (17) 
where c is the viscous parameter. 
This means that the damper transfer function is given as

                                                                

 0( )H ic ic� � �� �
 (18) 

where the frequency in the transfer function is approximated by the undamped frequency. Subs-

titution into (16) followed maximization of the damping ratio gives the following expression for 

the optimal viscous parameter                               

  2

0

2
optc

u

��+
�  (19) 

The optimal viscous damper has vanishing stiffness and is therefore a suitable case of reference 

for damper models with negative stiffness. 

4.2 Kelvin Model 

The general format of a Kelvin type model has both frequency dependent stiffness and viscous 

components. However, in the present formulation it is assumed that the governing parameters 

are constant, whereby the damper force can be written as                                                         

 	 
T

df k c� �w q q�  (20) 

It is assumed that the stiffness is given and that c is the gain value of the model. The transfer 

function can be written as 

 � � dH k ic� �� �  (21) 

Substitution into (16) gives the damping ratio and maximization of the damping ratio with re-

spect to c leads to the following expression for the optimal viscous parameter of the Kelvin 

model.                                                 
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where the second term introduces the correction due to damper stiffness. 



5 CONTROL STRATEGIES 
 
In the present section a control strategy is presented which operates the semi-active MR damper 

similar to the optimally tuned simple viscous damper and the viscous damper with constant 

stiffness contribution (Kelvin model). The efficiency of the proposed control strategies depends 

in the first place on the proper tuning of the simple damper models, which is given in (19) and 

(22) and subsequently on the ability of the MR damper to track the desired optimal control 

force. 

 

The following steps outline the design procedure used for the design of the proposed control 

scheme: 

 

1. Formulate a MR damper model, which should be as detailed and accurate as possible since 

it represents the actual damper attached to the structure. Therefore, the modified Bouc-Wen 

model is applied in the present setting.  

2. Design of an inverse model of the MR damper, which is used to predict the desired voltage 

based on the known optimal damper force. This model should be simple so that it can be in-

verted and therefore the Bingham plasticity model is used. 

3. The optimal control force, which is input to the inverse MR model, is computed by (17) for 

the viscous damper and (20) for the Kelvin model. The corresponding optimal damper gains 

are given in (19) and (22), respectively. 

4. The voltage is determined by the inverse MR damper model. If negative voltage is desired 

zero volts are chosen instead. Also a maximum voltage level of 10 volts is enforced. 
 
A schematic block diagram of the overall system is shown in Fig. 2. 

 
Fig. 2.  Block diagram of the semi-active control strategy  

6 SIMULATIONS 

The efficiency of the semi-active control strategy is assessed for a 10 storied building. The MR 

damper acts between ground and first floor of the shear frame structure. The governing equation 

of motion is given in (1), where the mass and stiffness matrix and the connectivity vector are 

given as  
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where the concentrated floor mass m and the intersory stiffness k  are chosen so that the lowest 



natural frequency is 01 2 6.28� �� � . In the present case m = 5000 and k = 1.5.107. The applied 

loading is the El Centro earthquake and simulations are conducted using the Simulink toolbox in 

Matlab.  

 
Fig.3. Voltage, force, top floor displacement and damper displacement diagrams for pure viscous 

Initially the optimal viscous model is used to generate the desired control force, which is passed 

on to the inverse MR damper model. Figure 3 shows the applied voltage, the MR damper force, 

the displacement of the top floor and displacement of the damper. A detailed plot of the re-

sponse is shown in Fig. 4. It is seen that the force-velocity curve in Fig. 4a is practically 

 
Fig.4. Response diagrams for Pure Viscous  
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straight line and that the force-displacement curve in Fig. 4b is an ellipse, indicating that the 

present control is able to capture the characteristics of the pure viscous damper. In Fig. 4c the 

applied voltage is shown, which over a half period is almost constant if the response is suffi-

ciently sinusoidal.  

Similar simulations are conducted for the Kelvin model with negative stiffness. For the shear 

frame structure the limit of negative stiffness is dk = - k, which corresponds to the case where 

the negative stiffness of the damper has cancelled the structural stiffness between ground and 

first floor. In the present case two situations are investigated: dk = - 0.3 k and dk = - 0.7 k. The 

results of the simulations are plotted in Fig. 5 and 6.  

When comparing the first two figures in Fig. 4, 5 and 6 it is seen that introduction of negative 

stiffness yields an opening of the force-velocity curves and an inclination of the hysteresis loops 

in the force-displacement diagram. Thus, the semi-active control scheme is able to capture the 

desired effect of the viscous component and, in particular, the negative stiffness component. 

Whereas the voltage in Fig. 4c for the pure viscous damper is almost constant over a half vibra-

tion period it is seen in Figs. 4c and 5c that the negative stiffness component in the Kelvin mod-

el is realized by the semi-active control through a decreasing voltage over a half period. The re-

sponse magnitude is assessed in terms of performance indices J1, J2, J3 and J4:         
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Fig. 5.  Response diagrams for Kelvin Model ( 0.3dk k� � ) 
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Fig.6.  Response diagrams for Kelvin Model ( 0.7dk k� � ) 

 
where superscript uc indicates the undamped case. The values of the J1-J4 are given in Table 2 

for the three damper models. It is found that all three damper models introduce a significant re-

sponse reduction compared to the undamped case. The influence of negative stiffness is mod-

erate compared to the viscous case and the increase in negative stiffness from dk = - 0.3 k to dk

= - 0.7 k is without significant impact. It was found that the voltage generated from inverse 

damper in some case was quite noisy. Therefore  a simple first order filter has been implemented 

to improve the signal quality of the voltage (Yang 2001)  

 fil filu u u. .� ��
 (24) 

where desu  is the desired force and u is the actual force generated from inverse MR damper 

model. Here � is chosen as 31.4 inspired by Yang (2001). 

 
System Model J1 J2 J3 J4 

Pure Viscous 0.6995 0.9526 0.7154 0.6789 

Kelvin with negative stiffness ( 0.3dk k� � ) 0.6745 0.9332 0.6909 0.6645 

Kelvin with negative stiffness( 0.7dk k� � ) 0.6574 0.9310 0.6799 0.6615 

Table2: Performance Analysis 

7 CONCLUSION 

The semi-active control strategies for MR damper for getting optimal performance for pure 

viscous and Kelvin models are investigated above. The optimal force is found for both the cases 

from Modal analysis. Then this optimal force is used to get desired voltage for MR damper from 

inverse MR damper. The voltage, force, displacement diagrams are compared for both the case 

with increasing negative stiffness. From the results it is clearly shown that negative stiffness has 
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significant influence on reduction of displacements and as well as on acceleration. The voltage 

requirement is reduced with the increase of negative stiffness. Force-displacement diagram is el-

liptical and changing its inclination angle with the increase of negative stiffness. 

For this case earthquake excitation data are used but wind load excitation remains for future 

work. 
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Summary. This paper describes the modeling of a rotary MR damper applying the feed-
forward back propagation neural network method. The forward and inverse MR damper 
behavior are modeled to estimate the force and to solve the force tracking task in real-time. 
The training and validation data are generated by dynamic tests of the MR damper mounted 
on a hydraulic testing machine. The training data for the forward model are velocity and 
current whereby the force is the target. The inverse modeling training data are absolute 
velocity and absolute force and the current is the target. This new approach is chosen because 
current is always positive and thereby leads to a small modeling error independently of the 
sign of velocity. The validation demonstrates that the proposed neural network approach can 
reliably represent both the forward and inverse dynamic characteristics of the rotary type MR 
damper. 

 
1 INTRODUCTION 

Magneto-rheological (MR) dampers have received considerable attention within the last 
decades mainly because of their design simplicity, low power requirements, large force range 
and robustness. Typically, a rotary type MR damper consists of a rotating disk which is 
enclosed in a rectangular metallic housing filled with the MR fluid. The MR fluid housed 
within the rotary type MR damper is operated in shear mode. The dissipative torque produced 
is transformed into a translational force through the crank shaft mechanism.  
The most common models to describe the dynamic behavior of MR dampers are the Bouc–
Wen model [1], the LuGre friction model [2] and the Dahl model [3]. These modeling 
approaches are fairly complicated due to the high degree of nonlinearities in the system under 
consideration. From a computational point of view the nonparametric neural network 
technique is very versatile in connection with most types of nonlinear problems [4]. 
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Therefore, this paper applies this method to model the dynamic behavior of the rotary MR 
damper. 

2 EXPERIMENTAL SET-UP 

The experimental test set up and its schematic diagram are shown in Fig. 1. The dSPACE 
is used to output the desired displacement going to the INSTRON controller, to output the 
desired current going to the current driver KEPCO and to acquire the measured states such as 
MR damper force, acceleration of the crank-shaft, actual displacement and current. Sinusoidal 
and triangular displacements with different frequencies from 0.5 Hz to 2.2 Hz are applied. 
Triangular displacements are used in order to perform tests at constant damper velocity. 
Constant and half-sinusoidal currents with different frequencies from 0.5 Hz to 2.2 Hz are 
also applied. The current of the MR damper under consideration is limited to 4 A and the 
maximum displacement amplitude is constraint to 10 mm due to the crank-shaft mechanism. 
The measured data is filtered to remove measurement noise and offsets in order to get the 
training data for the neural networks. 

KEPCO Current Driver

Hydraulic Actuator  

MR Damper

Load Cell 

Instron PC Unit

dSPACE
Controller Unit

Accelerometer
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Actuator
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Figure 1. Experimental set-up and its schematic view 

3 NEURAL NETWORK MODELING 

Feed forward neural network (FFNN) is capable of modeling any nonlinear behaviour with 
acceptable accuracy. One data set is use as training data and another as validation set. 

3.1 Forward MR damper modeling using FFNN 

The identification methodology for the modeling of the forward dynamics of MR damper 
using the FFNN approach is illustrated in Fig. 2. The input states are current and velocity and 
their associated delay values. The velocity is required due to its significant influence on the 
hysteretic behavior of the MR damper. It is derived by numerical differentiation of the 
measured displacement. The noise resulting from the differentiation is removed by additional 
low pass filtering. The difference between modeled and measured MR damper force, i.e. the 
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error(k), is used to adjust the weights and the biases of the neural network model until a 
defined modeling error is reached. The feed forward neural network includes 2 hidden layers 
with 12 neurons in the first layer and 6 neurons in the second. The output layer includes one 
neuron and is chosen for input-output comparison. The numbers of layers and neurons have 
been found by trial and error. The transfer functions of the neurons of the two hidden layers 
are selected as tangent sigmoid function and the transfer function of the output layer is 
selected as linear function. The training algorithm is based on the Levenberg-Marquardt 
algorithm. The detailed mathematics of the neural network method is described well in [5]. 
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Figure 2. Forward and inverse neural network modeling of MR damper 

3.2 Inverse MR damper modeling using FFNN 

The architecture of the inverse model using the FFNN method is also shown in Fig. 2. The 
number of hidden layers and their transfer functions are chosen as before but the number of 
neurons in both hidden layers is 6. The significant change compared to the forward modeling 
is that the absolute values of velocity and force are used to train the neural network to get the 
estimated current because current is always positive. This new approach leads to small 
modeling error and the modeling error does not depend on the sign of velocity and direction 
of damper displacement, respectively. 

4 MODEL VALIDATION AND DISCUSSION 

The validations of both the forward and inverse MR damper models are shown in Fig. 3. 
The error of the forward model is depicted by comparing the measured and estimated forces 
resulting from 2 A and sinusoidal displacement (0.5 Hz, 4 mm). The modeling error of the 
inverse neural network approach is shown for the case of half-sinusoidal current input 
(0.5 Hz) and sinusoidal displacement (0.5 Hz, 6 mm). The inverse neural network is tested by 
a half-sinusoidal current because this is quite close to the current time history that is expected 
when emulating linear viscous damping except that the current spike during the pre-yield 
region is missing. The validation of the forward model shows an acceptably small error. The 
current estimated by the inverse MR damper model shows spikes that result from spikes in the 
measured displacement and force due to bearing plays between crank-shaft and INSTRON 
piston. Although these spikes have been partially removed by the filters to derive the training 
data, the estimated current is still spiky. The simple approach of filtering the estimated current 
cancels the spikes but leads to a still acceptably small time delay of approximately 0.05 s. 
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5 CONCLUSIONS 

This investigation employed the back propagation feed forward neural network method to 
model the forward and inverse dynamics of an MR damper. The training data was taken on a 
prototype rotary MR damper that was connected to a hydraulic machine imposing sinusoidal 
and triangular displacements and constant and half sinusoidal current time histories. The goal 
of the forward MR damper model was to capture accurately the behavior of the MR damper 
behavior whereas the inverse MR damper model will later be used for the control force 
tracking when the MR damper will be connected to a shear frame. The novelty in the 
proposed neural network when modeling the inverse MR damper behavior is that the absolute 
values of velocity and force are used to estimate the damper current since current is always 
positive. The validations of both the forward and inverse MR damper models show that the 
applied neural network approaches capture the main MR damper dynamics with acceptable 
accuracy. However, the preliminary results demonstrate that the modeling accuracies can still 
be improved by further optimization of the filters that are used to process the measurement 
data to derive the training data for the neural network training. 
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Figure 3. Validation of forward and inverse neural network models 
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