Technical University of Denmark

Advantages and Challenges of Superconducting Wind Turbine Generators

Jensen, Bogi Bech; Mijatovic, Nenad; Abrahamsen, Asger Bech

Publication date: 2012

Link back to DTU Orbit

Citation (APA):

Jensen, B. B., Mijatovic, N., & Abrahamsen, A. B. (2012). Advantages and Challenges of Superconducting Wind Turbine Generators [Sound/Visual production (digital)]. 2nd International Conference E/E Systems for Wind Turbines, Bremen, Germany, 21/05/2012

DTU Library Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Advantages and Challenges of Superconducting Wind Turbine Generators

Bogi B. Jensen¹, Nenad Mijatovic¹, Asger B. Abrahamsen²

¹ Department of Electrical Engineering, Technical University of Denmark, Denmark

² Department of Wind Energy, Technical University of Denmark, Denmark

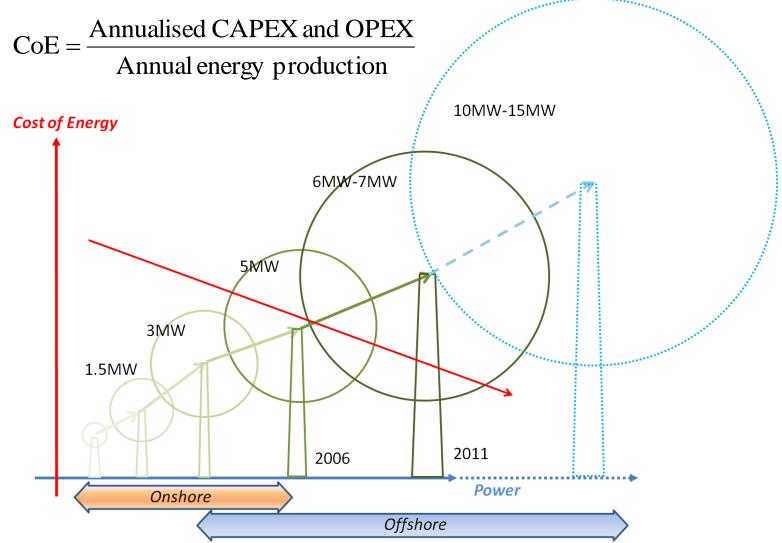
2nd International Conference E/E Systems for Wind Turbines 21st – 23rd May 2012, Bremen, Germany $f(x+\Delta x) = \sum_{i=0}^{\infty} \frac{(\Delta x)^{i}_{i}}{i!} f^{(i)}(x) a^{i} = \sum_{i$

Overview

- Background of superconductivity and its relevance for wind turbine generators
- Advantages of superconducting generators for wind turbines
- Challenges of superconducting generators for wind turbines
- Commercial activities

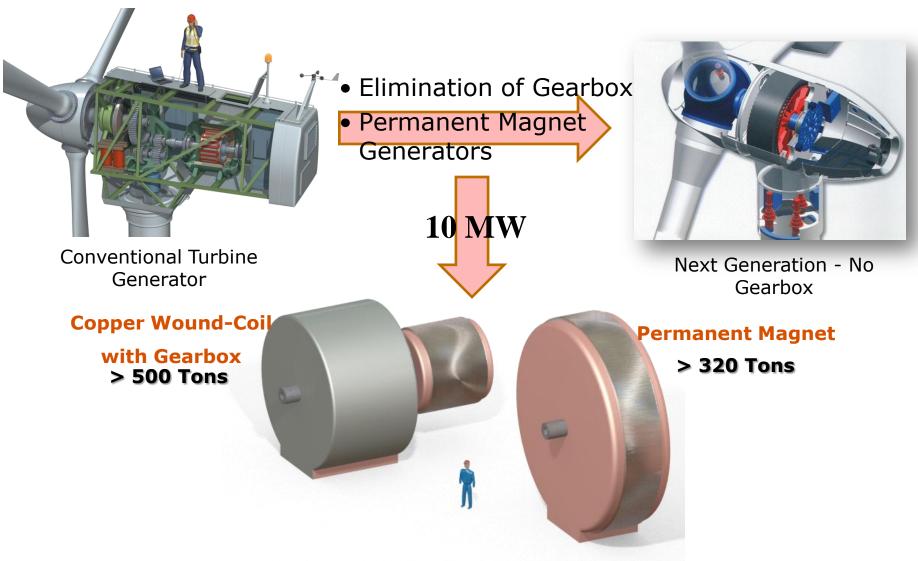
BACKGROUND

3 DTU Electrical Engineering, Technical University of Denmark


Technical University of Denmark (DTU)

- Based in Copenhagen, the Capital of Denmark
- 8200 students 530 faculty 1040 researchers
- Ranked 4th in Europe in the field of engineering by THE based on citations per journal paper from 2000-2010

(http://www.timeshighereducation.co.uk/story.asp?storyCode=414302§ioncode=26)



Development of wind turbines

5 DTU Electrical Engineering, Technical University of Denmark

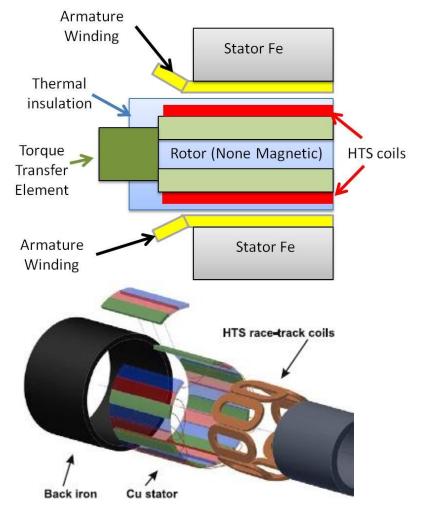
Current trend

DTU

5MW and beyond

Manufacturer	Transmission	Generator
Siemens Wind Power	Direct drive	PMSG 6.0MW
Vestas	Medium speed	PMSG 7.0MW
Enercon	Direct drive	EESG 7.5MW
Alstom	Direct drive	PMSG 6.0MW
REPower	High speed	DFIG 6.2MW
Areva	Low speed	PMSG 5.0MW

10MW and beyond – proposals/investigations

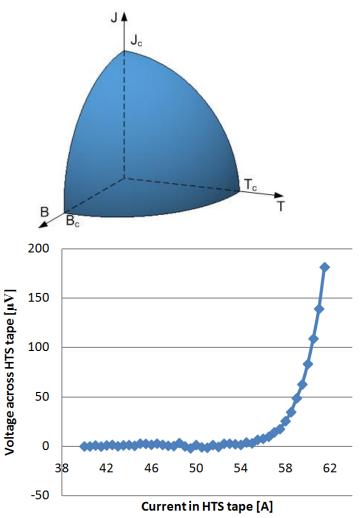

Manufacturer	Transmission	Generator
American Superconductor	Direct drive	HTS 10MW
General Electric	Direct drive	LTS 10-15MW
Advanced Magnet Lab	Direct drive	MgB ₂ 10MW

Schematic of a Superconducting Machine

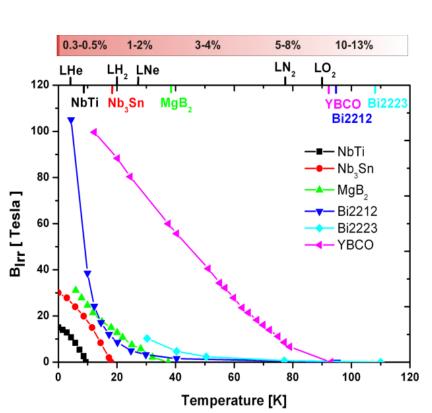
- The superconductor must be kept at cryogenic temperatures
- The armature winding is usually proposed to be copper at ambient temperature

 $P = \omega \times T$

- $T \propto A \times B \times V$
- *P*: power
- T: torque
- ω : rotational speed
- A: electric loading
- B: magnetic loading
- V:volume



High Temperature Superconductors


- The superconducting state is limited by
 - Critical flux density B_c
 - Critical current density J_c
 - Critical temperature T_c
- Superconducting materials can be characterised by IV curves

$$E[V/m] = E_0 \left(\frac{J}{J_c(B,T)}\right)^{n(B,T)}$$

• E_0 is the electric field at the critical current (1 μ V/cm)

DTU

Overview of superconductors

HTS	
Buffer	

Туре	Price €/m	J _e A/mm²	Flux density [T]	Temp. [K]
			,	
NbTi	0.4	10 ³	5	4.2
Nb ₃ Sn	3	1-4x10 ³	5	4.2
MgB ₂	4	10 ²	3	20
Bi-2223	20	390	3 ⊥tape	20
		10	3 ⊥tape	50
YBCO	30	98 (480)	3⊥tape	20
		49 (190)	3 ⊥tape	50

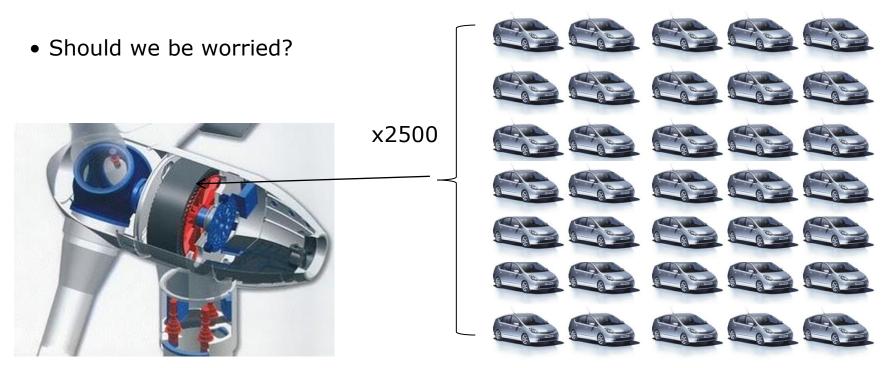
ADVANTAGES

Generator Power

$$P = \omega_m T = \omega_m \sqrt{2} A \hat{B}_g V \cos(p \psi)$$

 $A \approx 70,000$ A/m limited by stator cooling $\omega \approx 1.05$ rad/s limited by the power rating of the WT (around 10rpm at 10MW)

PM Generator $B_g = 0.9T$ HTS Generator $B_g = 2.5T$


$$P = 10 \text{MW} \Rightarrow V_{PM} = 115 \text{m}^3 P = 10 \text{MW} \Rightarrow V_{HTS} = 42 \text{m}^3$$

With an axial stack length of 2.0m, this would result in a airgap diameter of:

$$D_{g} = 8.6m$$
 $D_{g} = 5.2m$

PM in wind turbines

- A 6MW direct drive wind turbine is estimated to use 5 tons of permanent magnets
- This is the same as 2500 Toyota Prius

Summary

• Very high torque density

 $P = \omega \times T$, $T \propto A \times B \times V$

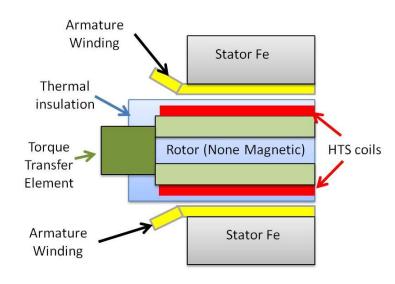
• Very limited dependence on rare earth materials

	PM	HTS
Hybrid	50kgR/MW	20gR/MW
Direct drive	250kgR/MW	100gR/MW

 $m_R = 0.27 m_{R-B-Fe}$

• Higher efficiency than an equivalent direct drive PM generator

$$P_{Cu} = I_{Cu}^{2} R_{Cu} = J_{Cu}^{2} A_{Cu}^{2} \frac{l_{Cu}}{A_{Cu} \sigma_{Cu}} = \frac{J_{Cu}^{2} V_{Cu}}{\sigma_{Cu}}$$

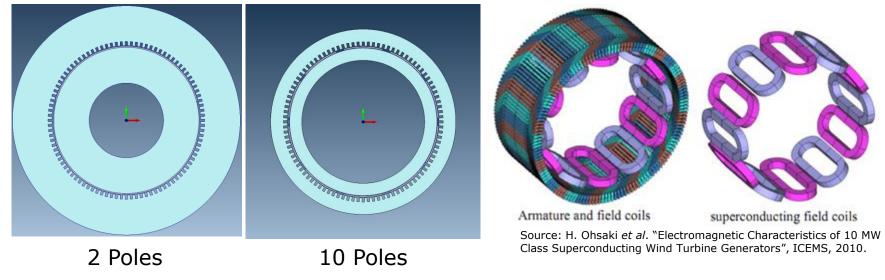


CHALLENGES

15 DTU Electrical Engineering, Technical University of Denmark

Cooling system

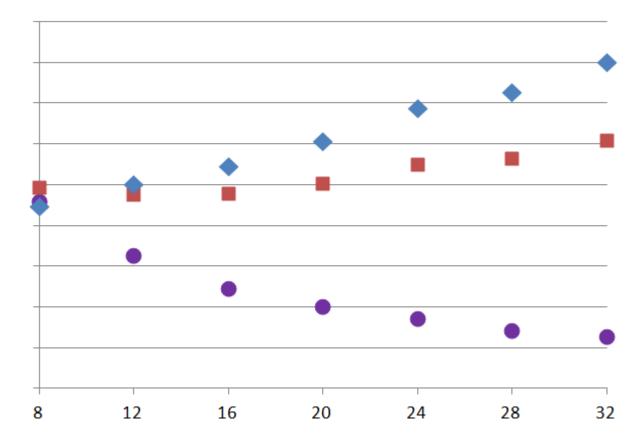
- The superconductors need to be cold: <5K for LTS
 <20K for MgB₂
 30-50K for HTS
- Insulation requires large effective airgap
 Large fault currents and torques
- Torque transfer
- Reliability has yet to be proven and requires years of operating experience
- Production capacity of HTS and ${\rm MgB}_2$ are currently not adequate for large-scale commercialisation this should change if the need is present



Size and weight

• Size and weight do not necessarily scale linearly

 $P = \omega \times T$, $T \propto A \times B \times V$


- Iron coreback is required to shield the magnetic field from ambient
- Not as cheap to increase the number of poles

Mass, HTS length and price as a function of pole number

● Total active mass [tons] ■ Cost of active material [10k€] ◆ HTS length [km]

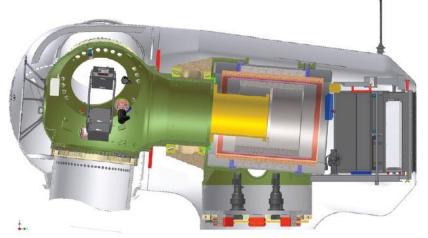
Cost of HTS and PM in a 10MW wind turbine

- If 400km of 4mm HTS tape is assumed for a 10MW wind turbine generator
- With a current carrying capacity of 80A and a price of €50/kAm, this gives €4/m
- The cost of the HTS tape for a 10MW would therefore be €1.6 million
- In addition the cryostat, cryocooler etc. will have to be added
- PM price today? €50/kg
- If 10 tons of PM is required for a 10MW wind turbine
- The cost of the PM for a 10MW would be k€500

Future cost of HTS must/will come down

- It is not unlikely that the price of HTS tape will come down to €15/kAm
- This would result in €480,000 for a 10MW wind turbine
- This would be competitive with PM technology
- But it is clear that the usage of HTS tape must be minimised!

COMMERCIAL ACTIVITIES

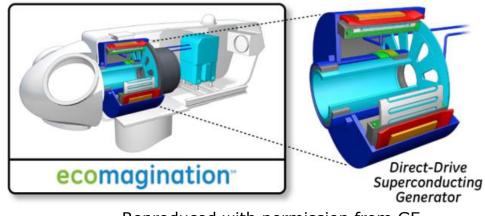


American Superconductor (AMSC) SeaTitan 10MW

- HTS Superconducting field winding
- Copper armature winding
- Generator diameter: 4.5–5 meters
- Weight: 150-180 tonnes (55-66Nm/kg)
- Efficiency at rated load: 96%
- Challenge
 - HTS price and availability
- Advantage
 - Relatively simple cooling system with off-the-shelf solutions
 - Cooling power

Highest torque HTS machine intended for ship propulsion:

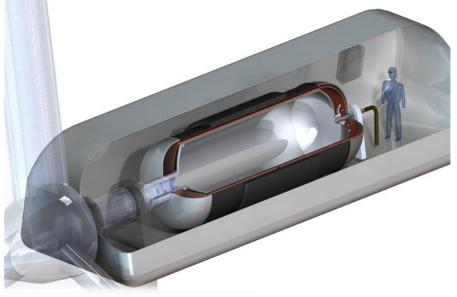
- 36.5MW @ 120rpm
- 2.9MNm @ 75 tons
- 39Nm/kg



Reproduced with permission from $\ensuremath{\mathsf{AMSC}}$

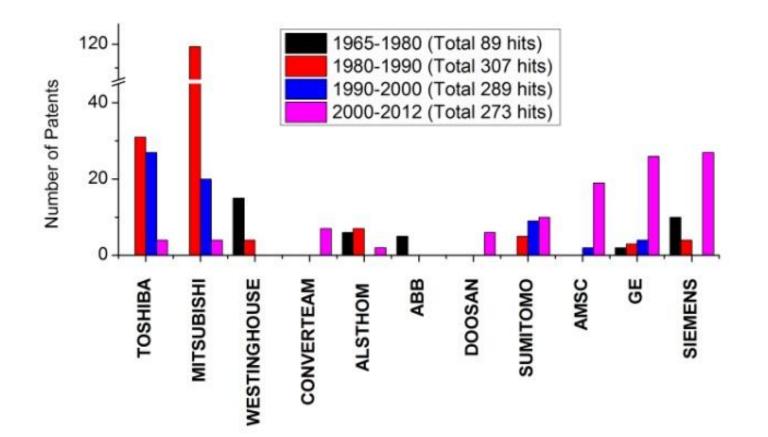
General Electric (GE) 10-15MW

- LTS Superconducting field winding
- Extensive experience from the MRI sector
- Rotating armature
- Challenge
 - Complicated cooling system and higher cooling power
- Advantage
 - Proven technology from MRI
 - Cheaper superconductor


Reproduced with permission from GE

Advanced Magnet Lab (AML) 10MW fully superconducting

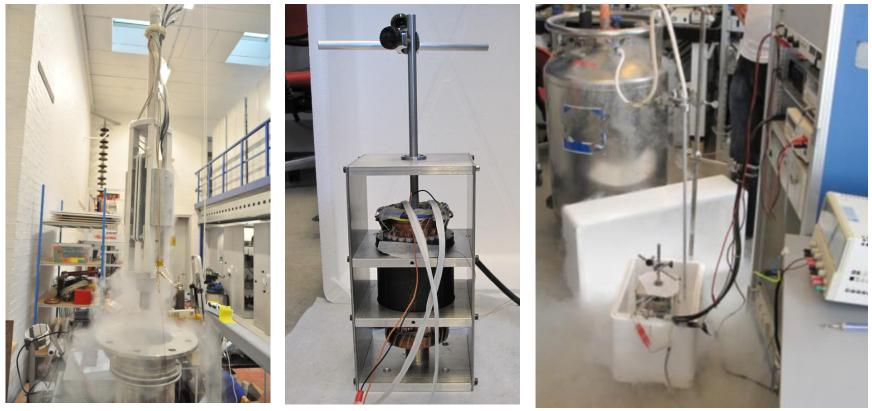
- MgB₂ Fully superconducting generator
- Superconducting field winding
- Superconducting armature winding
- Challenge
 - Complicated cooling system and higher cooling power
 - Improvement in MgB_2 wire is needed
 - AC losses
- Advantage
 - Cheap superconductor
 - Fully superconducting
 - More torque dense


 $P = \omega \times T$, $T \propto A \times B \times V$

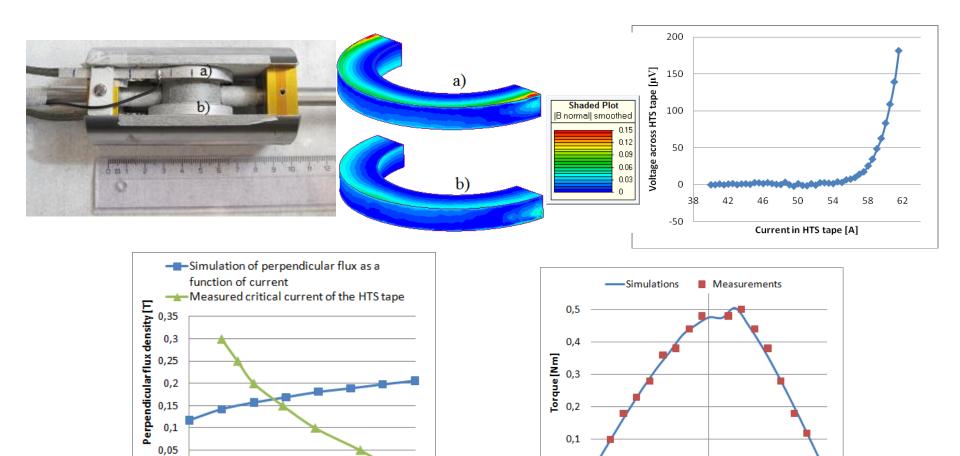
Reproduced with permission from AML

Patent Development

• Web of Knowledge search with keywords: "Supercond*" and "machin*"


Discussion and conclusion

- Superconducting generators might be the answer to large wind turbines
 - Smaller generator
 - Less RE demand by a three orders of magnitude
- A collaborative effort is needed including:
 - Wire manufacturers
 - Wind turbine manufacturers
 - Wind turbine operators
- Large-scale demonstrators are needed
 - To test the performance in a wind turbine
 - To test the reliability


Continue research at universities

- Building small scale prototypes
- Learning from these and extrapolating to large scale

Results for a simple prototype

Current in HTS winding [A]

Rotor angle [deg]

-30

-90

-60

THANK YOU! QUESTIONS?