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Multi-material topology optimization of laminated composite beam cross sections

Jo$ Pedro Blasqués, Mathias Stolp#

aDTU Wind Energy, Technical University of Denmark, Frederiksborgvej 399, P.O. Box 49, Building 114, 4000 Roskilde, Denmark

Abstract

This paper presents a novel framework for simultaneous optimization of topology and laminate properties in structural design of
laminated composite beam cross sections. The structural response of the beam is evaluated using a beam finite element model
comprising a cross section analysis tool which is suitable for the analysis of anisotropic and inhomogeneous sections of arbitrary
geometry. The optimization framework is based on a multi-material topology optimization model in which the design variables
represent the amount of the given materials in the cross section. Existing material interpolation, penalization, and filtering schemes
have been extended to accommodate any number of anisotropic materials. The methodology is applied to the optimal design of
several laminated composite beams witliedent cross sections. Solutions are presented for a minimum compliance (maximum
stiffness) problem with constraints on the weight, and the shear and mass center positions. The practical applicability of the method
is illustrated by performing optimal design of an idealized wind turbine blade subjected to static loading of aerodynamic nature.
The numerical results suggest that the proposed framework is suitable for simultaneous optimization of cross section topology and
identification of optimal laminate properties in structural design of laminated composite beams.

Keywords: Beams, Cross section analysis, Laminated composites, Multi-material topology optimization

1. Introduction Certain problems in topology optimizationfger from un-
) i ) desirable features such as mesh-dependency and checkerboard

_Th'fs paper describes a methodology for S|multz_ineous OPtyatterns in the design, see e.g. Sigmund and Petersson [6].
mization of the topology and the laminate properties of beéanyose issues can be resolved by regularization of the problem,
cross sections. The objective in the considered optimal desigfy oyample by filtering of the design variables as described in
prob'ler.ns Is to minimize the cqmphance of t'he beam, i.e., Bourdin [7]. The filtering technique of Bruns and Tortorelli
maximize stitness, with constraints on the weightand the sheafg; g here extended to multi-material problems and utilized to
and mass ce_nter positions. The de_5|gn variables rt_epresentt Coid mesh-dependency and the appearance of checkerboard
volume fractions of each of a predefined set of candidate matey,yorns. Analytical expressions for the gradients of the cross
rials in the cross section. The structural response of the bea%ction stitness parameters and shear and mass center posi-
is computed using a beam finite element model which incorpogo are derived. The optimal design problems can therefore

rates an fiicient and accurate cross section analysis tool able t8e solved using any modern and robust numerical optimization
account for the #ects of material anisotropy and inhomogene- . 04 for continuous constrained optimization

ity in sections of arbitrary geometry.

The work presented here is based on the developments in the | € Proposed methodology is applied to the design of lami-
field of multi-material topology optimization, see e.g., Bendsraé‘ated composite beams. Several numerical results are presented

and Sigmund [1] and Sigmund and Torquato [2]. The workWhiCh illustrate the ability of the method in solving the problem

is also inspired by the ideas for optimal design of composité! Identifying the optimal cross section topology and the mater-
structures suggested by Lund and Stegmann [3] and Stegmaf‘m properties. The appllcablhty of the methodllslattefsted by the
and Lund [4]. We follow a common approach in topology op- .resul'ts presented fpr the maximumfistess op_tlmlzgtlon of an
timization-and replace the discrete design variables by contind€lized wind turbine rotor blade cross section with prescribed
ous variables and attempt to force the variables to their bound¥€ight and, shear and mass center placement constraints.
by an appropriate material model. The model is based on an ex- Several approaches have been presented in the literature for
tension of the SIMP material interpolation scheme to problemgptimal design of beams combiningidirent structural models
with multiple (anisotropic) materials. The reader is referred toand optimization problems. A methodology combining a beam
Bendsge and Sigmund?]] for an overview of material inter- finite element model and a cross section analysis tool was pre-
polation schemes. sented by Blasques and Stolpe [9] for maximunffrséiss and
minimum weight design of laminated composite beams. The
Email addressesjpbLer isoe. dtu. dk (Jo& Pedro Blasques), three dimensignal va}riatiop of laminate thickne;s, stacking se-
matst@dtu.dk (Mathias Stolpe) quence, and fiber orientation of several composite beams with
Corresponding author. Phone45 21 79 88 54 different cross section shapes were optimized. Based on the
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same cross section analysis tool, Li et al. [10] optimized theopen source software BECAS — BEam Cross section Analysis
cross sectional gfness and inertia properties of a helicopter Software (Blasques [26]). BECAS has been validated against
rotor blade. Similarly, the work by Ganguli and Chopra [11] VABS and exactly the same magnitude of the cross sectifih sti
and Murugan and Ganguli [12] addressed optimal design ofiess parameters have been obtained for a series of cases in-
laminated composite beams withfBtiess and aeroelastic con- cluding, anisotropic, inhomogeneous, closed, open, and multi-
straints. The design variables were the fiber orientations of theelled, cross sections (Blasques [26]jteEts like tapering, pre-
laminate on the walls of the internal blade spar. twist, and curvature are not yet accounted for.
The references in the preceding paragraph all assumed that
the topology qf the beam was to_ a Igrge extent_fixed and th% Structural model
problem consisted mostly of optimizing the laminate proper-
ties. That is, the optimal design of the cross section topol- A formulation for a linear elastic beam finite element of ar-
ogy or structural lay-out was not fully addressed. The workbitrary section geometry accounting for thieets of material
by Kim and Kim [13, 14] is perhaps the first using topology anisotropy and inhomogeneity is presented here. The analysis
optimization in optimal design of the structural lay-out of beamof the cross section properties is described first. Finally, the
cross sections. Their work addresses the design of beam crdssam finite element equations for static equilibrium are pre-
sections to simultaneously increase torsiondtrstss and re- sented next. The devised model is based on the assumptions
duce cross section distortion. Donoso and Sigmund [15] havthat the loads are static, displacements are small, and that the
used a similar approach to optimize the cross section topologmaterial is linear elastic.
and maximize the cross section distortion to produce "warping
mechanisms”. 2.1. Cross section analysis
The references in the previous paragraph consider only The theory presented.in this section assumes that the beam
isotropic materials and do not address optimization of materstructure is relatively long and slender and does not present
ial or laminate properties. The methodology described in thisabrupt variations in cross section geometry, load distribution
paper allows for the simultaneous optimization of the cross secand material properties along its length. Consequently, the re-
tion topology and distribution of given (anisotropic) materials sulting displacement and strain gradients along the beam axis
or laminate properties. are assumed to be relatively small. The assumptions mentioned
Beam finite elements are built on specific assumptions angefore are not imposed along the cross section coordinates in
suitable only for the analysis of relatively long and slenderfthe cross section plane. For clarity, the notation throughout this
structures. These assumptions allow for a significant redugsection has been kept close to that adopted by Giavotto et al. in
tion in the size of the resulting global finite element matrices[23]. The implementation of the theory into the cross section
This type of analysis model is therefore attractive in applica-analysis tool BECAS is detailed in Blasques [26].
tions requiring a large number of evaluations of the equilibrium
equations such as wind turbine aeroelastic analysis codes (s&e1.1. General properties
e.g., Hansen et al. [16]). When combined with advanced cross Let us consider a slicelz of a beam. The strain and
section analysis techniques, it is possible to obtain accurate estresses acting at a point in the slice representing the cross
timates of both the global response of the beam and, to a certailyction of the beam are =
extent, the three dimensional stressfield. T
Reviews on the dierent cross section analysis tools de- [‘T xx Ty Oxy Txz Oyz O ZZ] which are related by the stress-strain
scribed in the literature are presented by Jung et al. [17] antglation or Hooke's law ag = Qe. In this caseQ is the mate-
Volovoi et al. [18]. Probably the most comprehensive work'ial constitutive matrix. T .
in this field is that by Hodges [19] and co-workers (Yu and The internal forced = [TT I\/IT] acting at a beam section
Hodges [20]). The beam formulation builds on the Variational@re described in Figure 1(a). The components of the force vec-
Asymptotic Method (VAM) which was first used in this con- tor T = |Tyx Ty Tz] consist of the transverse forcég and Ty
text by Berdichevsky [21]. The theory has served as the bas@cting in the plane of the section, and the tension fagcélhe
for the development of the Variational Asymptotic Beam Sec-moment vectoM = [Mx M, MZ]T is defined by the bending
tion analysis tool (VABS) described and validated in Yu andmoment componentst, and M,, and the torsion momen,.

Hodges [20] and Volovoi et al. [22]. o . These forces and moments are statically equivalent to the stress
The cross section analysis tool used in this paper is based

T )
on the theory introduced by Giavotto et al. [23], and furthercomponent$ - [‘TTXZ o0z acting on t_he sectlor;face.and
detailed by Ghiringelli and Mantegazza [24], and Ghiringelli defined a® = [, Z"p dA where the matriZ = ['g n'l, Isis
[25]. The formulation is based on the Saint-Venant's principle@n identity matrix of size & 3, Ais the cross section area, and

T
[EXX €yy 26xy 26xz 26y, EZZ] , 0 =

where only solutions away from the ends of the beam are con- 0 -z vy
sidered. The cross section warping displacements are approxi- n=l z 0 Zx (1)
mated using a finite element discretization of the cross section v x 0

geometry. The formulation is able to account for thteets
of material anisotropy and inhomogeneity in cross sections ofhe coordinateg andy in the section plane are given with re-
arbitrary geometry. The theory has been implemented in thepect to the cross section reference pairftf. Figure 1).
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The cross section deformations associated with the load ved-he strain-displacement matricBsandS are defined as
tor § are described by the cross section strain-curvature vector

v = [TT KT]T (as described in Figure 1(b)). The shear compo- 0 a3y aox O 0 o

a/ox 0 9/dy O o o]
0 0 0 4/dx 8/dy O

T, )
nentr = [Tx Ty rz] is composed of the shear strainsandry,
and the tension strairy. The components of the vector of cur-

vaturesc — [KX " KZ]T are the bending curvaturesands,, and andS = [0 I3], whereO3; andl ; are the 3x 3 zero and identity

the twist rates,. The section forces and momentssirand the matrices, respectively. The d_erivati\@,éaz along the length of
strains and curvatures if are related through the constitutive the beam have been conveniently separated and left unsolved.

relationy = F¢0 whereFs is the 6x 6 cross section compliance The vector of strains and curvaturgs= [TT KT]T (cf. Figure
matrix. For most practical applications is symmetric posi- 1(b)) is defined in function of the rigid body motions,as
tive definite. HenceKs = F3', whereK is the cross section 0 -1 0
stiffness matrix, and consequently the following relation holds _ ( 1 0 @6
0=Kgy. 0 0 0 ’

A methodology is presented in the next sections for the esti-
mation of the parameters Fs. This formulation accounts for The resulting strain and curvature components in (6) are recog-
effects stemming from material anisotropy and inhomogeneityiizable from typical beam theory and givenras= dyx/dz—gy,
and is valid for cross sections of arbitrary geometry. Ty = Oxy/0Z+ @x, T, = Oxx/IZ, Kkx = Ox/0Z, ky = dpy/0z, and

Kz = 0pz/0Z

a _ 03 tr <
T, + 0—z)r, whereT, = [ 0s 0s ] t, =

2.1.2. Beam kinematics and finite element formulation — . ]
2.1.3. Principle ofvirtual displacements

According to.the principle of virtual displacements, at equi-
librium, the total external virtual work per unit length has to be
equal to the total internal virtual work per unit length for any
compatible, small virtual displacements. The total external vir-
T tual-work per unit length is stemming from the work done by
where the displacement componewts [vX Vy vz] are associ- the section stressgsgoing through the virtual displacements
ated with the rigid body translations and rotations of the crosgs. The total internal virtual work per unit length or the elastic

. T L
The total displacemerst= [sx Sy sz] of a point in the cross
section is

S=V+g (2

section. Assuming small displacements and rotations, strain energy of the cross section is defined as the work done
by the stresses along the virtual strainge (associated with
v =12r (3)  the virtual displacements). After manipulation (see Blasques

[26]), the following set of equations describing the response of
wherer = [XT SOT]T_ The componenty = [XXXVXZ]T repre- the cross section are obtained

sent the trans%lations of the cross section reference point, while M ZZTLZ, + (C _ CT) a_LZJ + L(Z_./; _Eu-Ry =0
@ = [¢X @y (pz] are the cross section rotations. LT +RTu+Ay =0 (7)
. T . . . oz a0 _ TT0
Finally, g = |« gy @] is the displacement vector associ- 7= Tr

ated with the in- and out-of-plane cross section distortion or, . . ,
. 4 " .__Each of the system matrices presented above is defined as
warping. Assume that the cross section geometry is dISCI’etIZE%

. . . > . - Ne Ne

using, e.g., two dlmeQS|ona! |soparam_etr|c _f|n|te elements. In A = ZIZZSlQeSeZe dA. R = ZleBlQeSeZe dA
this case, the three dimensional warping displacemgmisn 6x6) = Ja (gx6) &= Ja

be approximated as

(ngxng)

Ne Ne
E = NIBlQeBeNedA, C = fNTBT oSeNe dA (8
(ngxng) ;\f/; eBeQ ; A C e Qe ®
g(xy) ~ N(x, y)u 4)

Ne Ne
L :ZfzgngeseNedA, M :ZngngeseNedA
. . - . (6xna) £ Ja (naxng) = Ja
whereN is the matrix of finite element shape functions and e e=

the nodal warping displacements. Inserting (3) and (4) in in (2whereeis the element number amdis the number of finite ele-
yields ments in the cross section mesh. The total number of degrees of
freedom associated with the cross section finite element mesh

s=Zr +Nu (5) isng = n,x3 where the number of nodeg multiplies the num-
ber of degrees of freedom at each node — the three dimensional

Assuming small displacements, the strain-displacement relazodal displacements,, uy, andu,. The sums in (8) refer to
tion ise,s = 1/2(9s,/9B + 5sﬁ/aa2; (a,8 = XY, 2). Hence, the  the typical assembly procedure used in finite element analysis.

three dimensional strain fieldat the cross section level is The finite element matrices can be successfully built using, e.g.,
four node isoparametric finite elements.
€ = SZy + BNu + SNC?_U The second order linear féérential equation in (7) renders
0z two types of solutions — an homogeneous and a particular (or



extremitiesand central solutions, respectively, as originally whereW; = [UT T AI ]T, W, = [aUT/aza\pT/azA;]T,
coined by Giavotto et al. [23]) — corresponding to twéeient T T T T _

physical phenomena. For a relatively long and slender beanj! = [O ls (S)U]a’uagd Fa = Loa Traoh] . The relsultmg solu-
the homogeneous solution is associated with the deformatio {on matricesd, /02, ¥ ando¥/oz have six columns corre-

at the ends or extremities of the beam. The particular solutiorrc,’pondmg to each of the right-hand sides. The solutions vectors

on the other hand, will yield the displacement field at the cen ' andw can be retrieved for ang throughw, = W16 and

tral part of the beam where enffects become negligible. The w2 = W26, respectively. i
latter will be used next to derive thef$tiess properties of beam The b_alance betwgen the compllmerjtary form of the cross
sections and consequently construct finite elements suitable fECtON internal elastic energy and the internal virtual work or
the analysis of the global behavior of relatively long and slendeH1€ €lastic strain energy yields
structures. G G
Before proceeding with the derivation note that the displace- 66" Fs9 = 66T WT [ G%l G12
ment definition in (5) is six times redundant. The warping dis- 12 22
placementsy, are able to replicate the six rigid body motions
already included iy (cf. (6)). The following set of constraint

}WO =60"WTGW4 (12)

where

equations is therefore included (cf. Blasques [26]) E R O cC L O M 0 O
=|R" A 0 |,Gp=|L"0 0/|,Gp={ 0 0 O
0O 0 O 0O 0 O 0O 0 O

T T

E R
oz " The expression for the cross section compliance matrix is read-
wherels is the 3x 3 identity matrix, anch, is obtained from ily obtained from (12) as
(1) using the nodal coordinates of node These constraints
ensure that the warping displacements do not contribute to the Fs=W'GW (13)
rigid-body displacements of the cross section.
After some manipulation, the resulting equilibrium equationsThis concludes the derivation of the cross sectioffiress ma-

for a section in the central part of the beam are defined in matriffix. In practice the procedure for the evaluatiorfefconsists

form as of first assembling the matrices in (8) using standard finite ele-
ment techniques. The next step consists of assembling the ma-
Kw = f & [ Kin Ki2 H W1 } _ [ f1 ] 9) tricesK 11 andK 12 in (10), and finding the solutions to (11).
0 Ku || w2 f2 Finally, having assembled matri®, the cross section compli-
ance matrix5 is computed by replacing the solutions obtained
where )
into (13).
E R D (CT-C) -L0
Kiu=| RT A 0 | Kp=| L 0 04(10)  2.1.5. Shear center position
T 00 0 0 0

The shear and elastic center positions are determined based
oo T T T T on the entries of the cross section compliance matrix (cf.

and,wi = [uTy" A} |, w, = [ouTjazayT /o2 ], 1 = Hodges [19]). The shear centet, = (xs,Ys), of a given cross

[OT 6" o' ]T, andf, = |0" (TT6)T oTIlT_ The vectors of La- section is defined such that a transverse load applied at this

grange mu|tip|ier9{l, andA, refer to the first and second set of point will not induce a torsional moment. It is given as a func-

constraint equations, respectively. The set of equations abo\#n of the cross section entries and defined as

will yield the warping displacements and straimsandy re-

spectively, for given internal section forces Xs = — Fsez + Faoall - Z), s = Fso1+ Fses(L —2)

(14)

Fses Fse6

2.1.4. Cross seption Fhess properties o whereFyg;; is the entry , j) of the compliance matriks, andL
A procedure is presented next for the derivation of the Crosg; the peam length.

section compliance matriks based on the cross section equi-
librium equations derived in the previous section (cf. Giavotto -

: 2.2. Beam finite element model
etal. in [23]).

Consider the case where the set of equations (9) is solved The last step in the construction of the structural model en-
for six different right-hand sides each corresponding to settingails the generation of the beam finite element matrices. The
one of the entries of to unity and the remaining to zero. This finite element form of the beam equilibrium equations is given
procedure can be realized by replacing the cross section loasy (see, e.g., Bathe [27])
vectoré by the 6x6 identity matrixl ¢ and solving the following
set of equations K =f, (15)

= Ki Ko || Wy || Fy wherel = 1,...,n, indicates the load case number from the
KW=Fe| "J¢ ¢ W F (11)
1 2 2 load cases considered. The displacement veg(ary, 2) holds



the beam translational and rotational nodal degrees of freedonthe list of candidate materials is defined a priori and may in-
The global beam finite elementftiess matriXK is defined as  clude any type of anisotropic material as well as the same ma-
. ] terial aligned in diferent directions. The determination of the
— By B filtered volume fractiongem(p) is discussed in Section 3.2. The
K= Kp = Z f By, KBy dz (16) parametep > 1 is a penalty term whose role will be discussed
in further detail in the next section.

whereK, is the beam finite element Stiess matrix for ele-  1N€ element densitye is given by

mentb, n, is the number of beam elements in the finite ele- ne

ment assembly, anby is the length of elemert. The beam oe(p) = Zﬁem(ﬂ)ﬁm Ve=1,..,ne
strain-displacement matrix for elememis defined from (6) as =1

By = (T, + 0/02) Np(2) whereNy(2) is the matrix of shape func-

tions. The global load vectdrfor load casé, is defined as wheregr, is the density of candidate material
Finally, the following linear equality constraints

- Np LbAT
ﬁ:Zf N 5, dz e
o " D Pem=1 . Ve=L.une
m=1

where loads}, is the load components at elemént In the ) ) .

expressions above the sum refers to the typical finite eleme/@'€ included in the problem formulation to ensure that the sum
assembly procedure. The solution to the set of linear equatiord the volume fractions of the candidate materials at each ele-
in (15) yields the nodal displacements and rotatigngor a ~ Ment or patch add to unity.

given beam finite element assembly subject to the i6ads The design variablesenter the structural model through the
material constitutive matrice®, = Q.(p) as part of the defi-

nition of the finite element matrices in (8). Hende,= A(p),
3. Formulation of the optimal design problem M = M(p), C = C(p), E = E(p), R = R(p), andL = L(p).
Consequently-s = Fs(p) at the cross section level and finally,
The formulation of the minimum compliance problem with K =K(p) at the beam finite element level.
constraints on weight and positions of shear and mass center isThe parameterization presented before (assumirgl) is
presented next. The aim is to identify the optimal distributionprone to generate optimal designs where the solution is not
of a predefined number of candidate materials within a giverdiscrete, i.e., where several candidate materials are combined
cross section. The devised methodology should yield a solun the same element. The SIMP penalization approach has
tion where only one of the candidate materials has been chdseen extensively used in topology optimization problems (see
sen at each point of the design domain. In order to avoid th&endsge and Sigmund [1]) and is realized by controlling the
complications associated with the solution of discrete problempenalty termp > 1 in (17). Increasing the value gf corre-
a relaxation has been suggested where the continuous desigponds to increasing the contrast between tlfierdint candi-
variables are allowed to vary between zero and one. Intermed#éates and consequently in the penalization of intermediate den-
ate values are penalized by a materialinterpolation scheme thsdies.
forcing the design variables to converge to a discrete valued so- The penalized problem is in general non-convex and may

lution. have a large number of local minima. Continuation methods
have been suggested in this context as a way to increase the pos-
3.1. Parameterization and penalization sibility of obtaining a good design (see Sigmund and Petersson

) L ) [6], Borrvall and Petersson [30], and Hvejsel et al. [31]). In
_A SIMP-I|ke materialinterpolation sc_heme (see Benqlsz«e anBractice the problem is initially solved fqr= 1 corresponding
Kikuchi [28], Rozvany and Zhou [29]) is employed which can {; the case where no penalization is imposed. Subsequently, the
accommodate any number of anisotropic candidate materialgenajty is increased and the found design of the former optimal
The 6<6 material constitutive matri®. at elemeneis assumed  jesign problem is used as the starting point of the new problem.
to be constant within each element and is defined as As pis increased the variables are forced to their bounds. This
ne process is repeated until an increaseiresults in a negligible
Qelp) = Z,Z)Jé’m(p)ﬁm , Ye=1.,ng (17)  variation of the design variable values.
m=1

wheren. is the number of candidate materials andhe num- 3.2. Filtering scheme

ber of elements in the cross section finite element mesh. The Typical issues in density based topology optimization in-
design variablep = {pem€ R |e€{l,....,ns}, me {1,...,n:}} clude, among other, the appearance of checkerboards and mesh-
represent the volume fractions of each of the candidate materilependency (Sigmund and Petersson [6]). Several regulariza-
alsm represented by the constitutive matfdy,, at elemene.  tion techniques have been proposed which introduce, in some
The design variables are assumed to vary continuously betweevay or another, a length scale on the optimal solution which
given bounds, i.e., & pem < 1,Ve=1,..,n, YM=1,..,Nc. eliminates thesefkects (see Sigmund and Petersson [6], Bruns



and Tortorelli [8], Bourdin [7], and Sigmund [32]). An exten- 4. Sensitivity analysis
sion of the filtering scheme described in Bruns and Tortorelli [8]

for multi-material topology optimization problems is suggested The gradients (or sensitivities) of the beam compliance and
here. cross section dfiness matrix are presented here. The sensitivi-

ties of the shear center position are obtained throufjarénti-

The set of elements surrounding elememtwithin a .
ation of (14).

given radius f; is defined by the seB. such that,Se =
{8e{l,..,ne} | |IXa — Xell» < fr} wherexs andxe are the coordi-

nates of the centroid of elemeatinde, respectively. The vol- 4.1. Compliance

ume fraction of materiah at elemeneis pem = pem(oem), Y& € The gradient of the compliance is derived in two.steps. The
Se. The filtered density for materiah at elemeneis hence first step consists of determining the partial derivative of the
beam stifness matrixK(p). The second step consists of the
Z W(Xz)Vapem determining an expression for the partial derivative of the cross
&= section stitness matrixK s(p).
Pem= ———— Since the loads are assumed to be design independent, the
ZS: W(Xe)Ve partial derivative of>(p) with respect to design variablpsy is
eeSe
n n v -1
The weighting functiorw(xe) is given by the functiomw(xg) = 6;(’)) = Z Q) 8ac|(p) = Zaﬁ‘f%ﬁl(p) =A|T6I;(p) fi
f, — |Ixs — Xell» as suggested by Bruns and Tortorelli [8] and Pem 1= OPem {H Pem Pem
Bourdin [7]. In this case the following holds (see, e.g., Bendsge and Sig-
mund [1])
3.3. Problem formulation —
ac — oK (p)~
0 g X)) (18)
Opem Opem

The structural compliance of load cakeci(p) = ’fTG (p),
is @ measure of the itness of the beam defined as the worktg hartial derivative of the global beamfBiess matrixK is
performed by the external loads. It is assumed herein th

PEHY Nt =R - o Bbtained from the dierentiation of (16) and is defined as
K(p) is positive definite for alp within the specified bounds

0 < pem < 1,Ve = 1,..,n,, YMm = 1,..,n.. Hence, it 6R(p) M ~le_ g K s(p) =

is possible to define the functidi(p) = K (o)fx such that Oem b—1f0 By Ipem By dz (19)

a(p) =?T—’Kvl(p)’f\|. The weighted average of the compliances -

C(p), for a given set of load cases is defined as Computing the gradient of the beam compliance reduced to the
evaluation of the partial derivatives of the cross sectidingss

n n . matrix K ¢(p).
Clo) = > aalp) = Y aifi K (0
I=1 I=1 4.1.1. Cross section giess matrix
The derivative of the cross sectionfBiess matrixK s with
respect to the design varialign is

Ks(p) OF (p) OFs(p)
I = = -Ks(p)——Ks(p 20
rT}JIGrI]R!"eX!'Cze C(p) a,Dem a,Dem ° ) 8pem * ) ( )

whereq; > 0 is the given weight attributed to load cdséhe
formulation of the optimal design problem (P1) is then

subjectto w(p) <W whereF;! = K. From (13), the cross section compliance ma-

s(p) <3 (P1)  trixis defined a¥s = W' (0)G(p)W (p) where the solution vec-
me(p) <M tors inW(p) are computed ad/(p) = K~1(p)F from (11). Em-
Ne ploying the chain rule yields
Y Perlp) =1, Ye=1,...n ;
m=1 9Fs(p) =— WT(p)aK_(p)V(p) + WT@)MW@)
0<pem=<1 Ve=1,..,n,VYm=1,..,nc Ipem 6Kﬁ(;)e)m Pem
. . o - VT (p)——=W(p) (21)
wherew(p) is the total beam weight. The parametetss and Pem

m are the ggnstralnt valu'es for the weight and, shear and ma%%erev(p) is obtained from the solution to
center positions, respectively.

Finally, removing the shear and mass center position con- KT(p)V(p) = G(p)W(p)
straints from problem formulation (P1) will yield the formula-
tion for the minimum compliance with weight constraints prob- The system of linear equations above is solved only once re-
lem (P2). gardless of the number of design variables. The gradient of the



cross section dtiness matrix is obtained by inserting the resultmatrix Q,, asﬁj = RiQmR{ whereR; is the three dimensional
from (21) into (20). Finally, replacing (20) in (19) and the cor- transformation matrix for a rotation about a given axis. This
responding result in (18) yields the gradient of the beam comis a convenient approach in the design of laminated compos-
pliance for load cask The reader is referred to Blasques [26] ite structures. A laminate consists offdrent layers of fibers

for further details on the derivation of the cross sectioffiregss  aligned in diferent directions. The layers will be stacked in
matrix. different directions defined by thefidirent fiber plane orienta-
tions. In this case, a flerent matrixQ; will be associated with
each diferent combination of fiber and fiber plane orientation
generated from the same matx,. The procedure is illus-

In this section we present a set of numerical experimentsrated in Figure 3. First, the fiber plane orientation is defined by
which illustrate the behavior of the devised methodology wherthe rotatiorr,. Then the fibers are rotated in their own stacking
applied to the optimal design of laminated composite beamglane bya; and the final fiber orientation is obtained.

The setup of the experiments, namely the beam geometries, In total eight orthotropic candidate materials have been con-
material properties, and load cases is presented first. Detaid$dered during the numerical experiments. These materials cor-
regarding the organization and visualization of the results areespond to four dferent in-plane fiber orientations°(04%5,
discussed next. Finally, all numerical results are presented and45°, and 90) stacked in two dierent fiber plane orientations

5. Numerical experiments

discussed. (0° and 90 or horizontal and vertical, respectively). The list of
) ) ) candidate materials is described in Figure 5 where the result-
5.1. Beam geometries and material properties ing spatial orientation of the fibers for each of the orthotropic

Three diferent cross section geometries have been considtandidates are listed:
ered — a square, an L-shape, and a wing profile from a section
of a wind turbine blade. The dimensions and finite element dis-
cretizations of the cross sections are presented in Figure 2. Tie2. Load cases
cross section finite element discretization is based on two di-

mensional four node isoparametric finite elements (see Bathe All 0ads are applied as distributed pressure loads along the
[27)). beam length. The direction of the loads is according to the cross

For all cases, the length of the cantilever beams is 20 mesection coordinate system shown in Figure 1. The load cases for
ter and the beam finite element model is composed of 32 thrd@e square and the L-shape cross sections are presented in Table
node quadratic beam finite elements. The beam finite elemert
discretization consists of three node quadratic beam finite ele- The beam with the wing profile cross section is subjected to
ments. In Figure 2 the position of the beam node with respectd static load cases. The load cases are defined based on the
to the cross section geometry is represented by a square markagrodynamic loading generated by an airfoil of the same shape

The material properties are specified at each element of texposed to a constant incoming wind speedAef = 20mys
cross section finite element discretization. The candidate matét 15 diferent angles of attack. For each angle of attack the
rials may be isotropic, anisotropic, or even the same anisotropi@erodynamic loads are computedlas = 30aW:cCi, Da =
material oriented in dierent directions. In the numerical ex- 30aW2cCp, Ma = 50aW2c?°Cy WhereL,, D, andMs, are the
periments, two material types have been considered — one orerodynamic lift, drag, and moment, respectively. The aero-
thotropic laminate and one isotropic material. The orthotropicdynamic lift, drag and moment cfigients,C,, Cp, andCy,
laminate corresponds to a type of E-Glass reinforced Epoxyespectively, are obtained from the experimental data in Ram-
(cf. Peters [33]) whose properties dfg; = 480 Gpa,E,, =  say et al. [35]. The experimental data is presented in Figure
Ea3 =120 GpaGio = Gi3 =60 GPaGys =50,v1» = v13 =0.19,  4(a) for several values of angle of attagk. The air density is
vo3 =0.26, andg =1780 kgm2. The isotropic material cor- assumed to be, = 1.2041kgm?3. The magnitude of lift and
responds to a type of polyvinyl chloride (PVC) core materialdrag is defined with respect to the wind direction as described
(cf. DIAB H100 [34]) typically used in sandwich structures of in Figure 4(b). Its components with respect to the cross section
wind turbine blades. The properties of the isotropic material argoordinate system are computed to define the corresponding re-

E =0.130 Gpa =0.035 GPay =0.35, ands =100 kgm?®. sultant load vectoR,. The magnitude and orientation of the
aerodynamic lift and drag loads, and corresponding resultant
5.1.1. Generating candidates vector, for each of the 15 load cases are also presented in Fig-

A candidate material constitutive manﬁj is generated in  ure 4(b). Note that the aerodynamic moment is not depicted in
the following manner. The material constitutive matrio®s,  these figures.
for each materiam are based on the material properties spec- The idealized wind turbine blade is represented by a can-
ified in Section 5.1. This will initially yield two candidates — tilever beam of constant cross section along the length. The
the orthotropic material and the isotropic material, respectivelystatic pressure loads are also assumed to be constant along the
The remaining candidates are generated by orienting the matkength of the beam. The beam node or the point of application
rial constitutive matrixQ,,, of the orthotropic material in éfier-  of the loads is coincident with the aerodynamic center posi-
ent directions. Hence, the material constitutive matrix of canditioned at a distance equal to a quarter of the chord from the
datej is obtained from the rotation of the material constitutive leading edge (see Figure 2).
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5.3. Optimization strategy 5.5.1. Minimum compliance with weight constraints

The optimization strategy consists of first solving the unpe- The optimal design presented in Figure 6(a,d), correspond
nalized problem, i.e., assumimg = 1 in the material interpola- to the case where the beam is subjected to a distributed verti-
tion scheme in (17). The penalty parameter is then gradually incal load (case S1). The normal stresses induced by the bend-
creased such that at stepl the penalty value ipj;1 = pi+Ap, ing moment dominate in the top and bottom regions away from
whereAp > 0. Each problem is solved until some optimality the neutral axis. In the central part of the beam, close to the
criteria is satisfied or the maximum number iterations is met. Imeutral axis, the normal stresses approach zero and the shear
sNopT, the major optimality tolerance and maximum number ofstresses dominate. The resulting topology is a variation of the
major iterations (number of solved quadratic sub-problems) atypical I-beam or box-beam with the flanges resisting the nor-
each step of the continuation method is set#01D° and 500, mal stresses and the webs resisting the shear stresses. Regard-
respectively. The remaining parametersiorr are set to the ing the fiber orientations, the laminates at the flanges orient at
default values. In the numerical experiments using the squai® @90 aligned along the length of the beam to resist the nor-
and L-shape cross section\@ = 0.1 has been used. In the mal stresses. The laminate structure in the webs is composed
case of the wing profile a smaller step lengtigf = 0.075is  of 45@90 and-45@9C. These patterns in terms of fiber
used. For all cases the final penalty value is suchghaB (see  and fiber plane orientations are common to most of the solu-
Table 3). Finally, the starting point for all cases is such that theions where a transverse load dominates the load case. Note

same volume fraction is given to all materials. that the same pattern emerges in cases L1 and L3 in Figures
7(a,d) and 7(b,e), respectively. The regions away from the neu-
5.4. Presentation of the results tral axis are composed of @0 and 0 @90 laminates. The

The optimal distribution of candidate materials is presentediPer Plane orientation changes as the fibers go around a corner

using two figures. The two figures show the fiber and fiber plané’f the cross section. In these cases the areas domlnated by shear
orientations at each element, respectively. In both cases the oft\SC Present the same type of laminate structure with two sepa-
entation is marked with a line on the element. The orientatiof&€ regions of 45@90" and-45° @90 for vertical webs, and
of these lines define the spatial orientation of the fibers of thd> @0 and—45@0 for horizontal ones.
laminated orthotropic material at each element as described in Note that for case S1 (see Figure 6(a,d)) the relative position
Figure 5. The thickness and darkness of the line is weighte@f the shear center coincides with the beam node, or the point of
by the value of the filtered design variable at the correspondapplication of the loads. Thus, an applied transverse force, irre-
ing element. It is consequently possible to visualize tfiect  Spective of the direction, will not induce a torsional moment. In
of the density filter in the areas of transition betweeffiedent - case L1 (see Figure 7(a,d)) the shear center position is aligned
materials. Finally, the element is white in case the material igvith the beam node along the direction of the applied transverse
isotropic. load (load case LCZ, + f,). Hence, the specific load combina-
Note that for all cases, the presented designs correspond ti@n in LC2 will not induce a torsional moment, but the coupling
the unpenalized filtered volume fractions. The use of the filwill occur for a transverse load in any other direction.
tered values is motivated by the fact that these represent the The results obtained for the L-shape cross section subject to
actual material volume fractions multiplying each of the candi-a torsional moment (case L2) is presented in Figures 7(b,e). As

dates. expected, the resulting optimal design is a closed cross section.
This is due to the fact that for a closed cross section subjected
5.5. Results to torsion the shear flow is constant through the thickness. In

All numerical experiments are listed in Table 2 as a combina®Pen cross sections the shear flow varies linearly through the
tion between the dierent cross sections, load cases, and probthickness. Hence, the torsionalfBtess is a function of the
lem formulations. Details regarding the problem size, numbeprea for closed cross sections and of the thickness for open
of design variables, step length and maximum penalty size iff0SS sections. Thus, closed cross sections dfersti torsion.
the continuation method; and the chosen constraint values af! assumption of the Saint-Venant theory underlying the struc-
presented in Table 3. The same table also presents the resultiftal model used here is that the warping deformation is uncon-
number of objective function evaluations, and objective func-Strained. As such, for a beam subjected to a torsional moment,
tion and constraint values for all the optimal design problemsthe normal stresses are nil and the cross section walls are sub-
Note that in thevarLas® interface tosxopr each evaluation Ject to shear stresses only. The resulting optimal solution con-
of the objective function and constraints entails necessarily afists therefore only of laminates oriented at@&, -45° @0,
evaluation of its gradients. 45° @90, and-45°@90. In this way the fibers align in the di-

The results obtained for the minimum compliance problenf€ction of the principal stresses. Moreover, a layered structure
with weight constraints (P2) are presented first. The results fd Visible which is in agreement with the common engineering
the minimum compliance problem with constraints on weightintuition. Since both 45and-45 directions are equally sfi
and shear and mass center positions (P1), are presented néktacking of interchanging layers of“4&nd -45" increases
Finally, the devised methodology is applied in the optimal de-stiftness and avoids any elastic anisotropic material couplings.
sign of the structural lay-out of a wind turbine blade cross sec- Contrarily to the result obtained for case S1, in the resulting
tion. designs for cases S2 and S3 (Figures 6(b,e) and 6(c,f), respec-



tively) the shear center does not coincide with the point of applicenter positions are included (problem formulation (P1)). Both
cation of the loads. The position of the shear cegtés a func-  the shear and mass center positions are functions of the relative
tion of the magnitude of the entries of the cross section complidifference between the Stiess and density of the candidate
ance matrixs, Fse1 andFgg for the shear-torsion couplings, materials. In order to obtain realistic values a second isotropic
and,Fses andF g5 for the bending-torsion couplings (cf. (14) material is included which scales the first isotropic materials
in Section 2.1). The magnitude of these entries depends on bostiffness and density by a factor ofx110°3. The aim is to
the cross section topology and the elastic couplings stemminigclude a "material” which mimics void as commonly done in
from material anisotropy. In the S2 case (see Figure 6(b,e)) topology optimization. Thus, in both the W1 and W2 cases
is visible that the optimal solution has exploited boffeets. ten candidate materials have been considered (eight orthotropic
The topology of the cross section is such that there is an asynand two isotropic materials) instead of the nine considered in
metry with respect to the vertical axis. Moreover, existence othe previous cases.
a layer of-45°@0C in both top and bottom will result in non- Note that the aim here is to design the load carrying structure
zero shear- and bend-torsion coupling ftie@&nts. Both these of the wind turbine blade. It is therefore assumed that the aero-
features contribute to the horizontal shift in the position of thedynamic shell is non-structural and exists around the perimeter
shear center. The same mechanisms play an identical role in tloé the cross section shape outside the design domain.
optimal solution of case S3 (see Figure 6(c,f)). In summary, the The results are presented in Figures 10 and 11 for cases W1
beams of case S2 and S3 will present couplings between bodnd W2, respectively. In both cases only the void material (or
shear and torsion and, bending and torsion. In these cases, asetond and weaker isotropic material) exists in both final opti-
based on the position of the shear center, these couplings amal designs. Furthermore, bothresults suggest thatibet ef
such that the applied transverse forc§in S2 and,f, + f in the aerodynamic momemd, is small and that the distributed
S3 — will induce a torsional rotation of the cross section whichtransverse forceRy are the dominating loads. Hence, the re-
opposes the applied torsional momamt sulting optimal designs present patterns similar to the obtained
for the square cross section under a transverse load (case S1,
5.5.2. Minimum compliance problem with constraints on massigure 6(a,d), respectively). The laminates in top and bottom
and positions of shear and mass centers. form the flanges of the box beam resisting the normal stresses.
The S3 and L1 cases (see Figures 6(c,f) and 7(a,d) respethe fibers in these regions are oriented along the length of the
tively) are revisited here but now the positions of the shear anBllade and stacked in an horizontal plane, i.e., tH@@ lam-
mass center are constrained. The resulting optimal designs aireate. The webs or side faces of the box beam resist the shear
presented in Figures 8 and 9, for case S4 and L4, respectivelstresses. The laminates here are mostly composed of fibers
The resulting values of the constraints are presented in Tablariented at 45 and—-45° and stacked in a vertical plane, i.e.,
3. In the S4 case the shear and mass center positions are cdaminates 45@90, and—45°@9C. The resulting optimal de-
strained such that its position is coincident with the’beam nodesigns are similar to existing wind turbine blade designs where
i.e.,xs = 0,¥s = 0, x. = 0, andy, = 0. The resulting design the load carrying structure consists of a box beam or spar, see,
satisfies all constraints. Compared to the S3 case (see Figueay., [36].
6(c,f), the orientation of the fibers is similar in thefdrent re- Usually, one of the most important design drivers for the
gions. The thickness of the faces however has changed to satructural design of laminated composite wind turbine blades
isfy the constraints in the mass center position. The resultingnade of E-glass is tower clearance, i.e., the blade may not hit
compliance for the S4 case is, as-a consequence, slightly highttte tower. Hence, in order to increase the cross section mo-
than that of case S3 (cf. the results'in Table 3). ment of inertia and maximize the bladefBiess it is obvious
In the L4 case (see Figure 9) the shear and mass center @emake the laminate in the flanges thicker in the regions where
constrained such that xs <1, 0<ys < 1,0< X < 1,and the airfoil is thicker. However, following this procedure will
0 < y; < 1. The resulting optimal design satisfies all the con-typically result in a design where the mass center is positioned
straints. The resulting crass section topology fiber orientationsoo far aft, away from the aerodynamic center. This will often
are similar to the unconstrained case L1 (see Figure 7(a,d)). THead to undesirable issues related with blade flutter (see, e.g.,
material however has been redistributed to satisfy the constraitansen [16]). Hence, the optimal blade structural layout should
on the mass center position which is now placed lower than ipresent, among other, the best compromise betwefnests
the L1 case. and relative position of aerodynamic and mass center.
These considerations have been incorporated in the W2 case
5.5.3. Application to the structural design of the cross sectiorsee Figure 11) where the shear and mass centers positions have
of a wind turbine blade been constrained. Hence, the distance from the mass center to
The same methodology is now applied in the design of thehe aerodynamic center is reduced to about half the distance ob-
cross section of an idealized wind turbine blade. The blade itined in W1, i.e.x. < 0.1. In order to avoid strong couplings
subject to 15 static load cases as described in Section 5.2.  between the transverse (or flap wise) and torsional deformation,
For the minimum compliance problem with weight con- the shear center is constrained so that it remains within a given
straints (problem formulation (P2)) the ratio between th#-sti distance of the aerodynamic center, ixe,> —0.2. The aim
ness and density of the materials does né¢c the results. is to design the cross section structural lay-out and simultane-
This is not the case when the constraints on shear and maessly account for the static and dynamic properties of the wind
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turbine blade. The resulting optimal design satisfies both con- 2.
straints. The dference in the results from the W1 and W2 case
can be interpreted as a shift towards the leading edge in the po-
sition of the box beam. However, note that the resulting optimal
design W2 is more compliant than the optimal design from case
W1. 4.

. 5.
6. Conclusions and future research

6.
We have presented a beam finite element formulation for the
analysis of anisotropic and inhomogeneous beams with arbi- ;.
trary cross section geometries. The formulation builds on a fi-
nite element discretization of the cross section geometry mak- 8-
ing it possible to use standard density-based topology optimiza-
tion techniques. We have also formulated a minimum compli- o
ance multi-material topology optimization problem with con-
straints on the weight and shear and mass center positions. The
design variables represent the volume fractions of each of the

members in a predefined list of candidate materials. An exten-j.

sion of the SIMP material interpolation scheme and density fil-

tering has been presented which can accommodate any numbé¢-

of (anisotropic) materials.

Numerical experiments have been presented to illustrate thas.

numerical behavior of the proposed framework. The cross sec-

tion topology and material properties have been optimized forl4

two different basic structures — a square and L-shape beam sec-

tions — subjected to derent load cases. The applicability of the 15.

framework has also been demonstrated in the optimal design of
the cross section of an idealized wind turbine blade. The re-
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beams with varying cross section properties along the Iength,lg'
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Table 1: Load cases and direction and magnitude of the loads, for two of the
beam geometries. The distributed transverse fofgesd fy, and the torsional
momentm, have been considered.

Load cases Direction Magnitude
Square L-shape
LC1 %y 0.3 -
LC2 f+ Fy 0.240.3  0.2:0.35
LC3 My 15 1
LC4 fy + M, 0.3+1.5 -
LC5 fe+r fy+M,  0.2+0.3+1.5 -
LC6 T Ty 0.2,0.3 0.2,0.35

Table 2: Catalog of problems combiningffdrent cross sections (square, L-
shape, and wing profile as described in Figure 2), load cases (cf. Table 1), and
problem formulations. The minimum compliance problem with constraints on
weight and positions of shear and mass center is denoted (P1), and the minimum
compliance problem with weight constraints is denoted (P2).

Cross Load Problem
Ref. ; .
section case formulation
S1 Square LC1 (P2)
S2 Square LC4 (P2)
S3 Square LC5 (P2)
S4 Square LC6 (P1)
L1 L-shape LC2 (P2)
L2 L-shape LC3 (P2)
L3 L-shape LC6 (P2)
L4  L-shape LC2 (P1)
w1 Profile  Aerodynamic (P2)
w2 Profile  Aerodynamic (P1)
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Table 3: Details of numerical experiments and summary of results for all cases in Table 2. The first column indicates the number of degrees of freedom (cross
sectiortbeam) while the second column indicates the total number of design variables. The next two columns indicate the step size and maximuyp penalty (
and pmax respectively) associated with the continuation method. The next three columns indicate the values of the constraints on weight (defined by the ratio of
orthotropic material), shear center and mass center positarg (= (Xs,Ys), andme = (X, Y,), respectively). The remaining columns refer to the number of
objective function evaluations, the resulting compliance (C), weightghear center positiors{= (Xs,Y¥s)), and mass center positiom§ = (X, Yc)), respectively.

The compliance and shear center position values are obtained with the penalized densifies,prgax.

Number of

Number of

Penalization

Constraints

Obj. Func.

Ref. d.o.f’s D.V's Ap Pmax W =N Mc eval’'s ¢ w S Me
S1 6624390 19044 0.1 3 /2 — - 1204 15.24 /2 - -
S2 6624390 19044 0.1 3 /2 - - 1536 1999 /2 - -
S3 6624390 19044 0.1 3 /2 - - 1134 43.81 2 - —
Xs =0, X =0, Xs =0, X =0,
S4 6624390 19044 0.1 3 s i 1193 44,34 N
» P Ys = Y.=0 p ys=0 Ye=0
L1 6480390 18216 0.1 3 /2 — — 1252 8.28 )% -
L2 6480390 18216 0.1 3 /2 - - 1316 8.06 P - —
L3 6480390 18216 0.1 3 /2 — - 1067 7.06 Y% - -
0<Xs<1, 0<X%X<1, Xs = 0.009, Xc = 0.60,
L4 6480390 18216 0.1 3 /2 O<y.<1 0<y, <1 1291 8.33 Y ys=0 Ve=1
W1 6768390 18900 0.075 8.5 /3 - - 3158 13.98 /B - -
- - Xs = —0.119, X. = 0.1,
W2 6768390 18900 0.075 8.5 /3 Xs > —0.2 X <0.1 2784 1462 B ys = 0.016 ye = 0013
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CANDIDATE MATERIALS
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Figure 1: Section coordinate system, forces and moments (a) and correspondin Y
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strains and curvatures (b).
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Figure 2: Cross section dimensions and finite element discretization. (a) Square O Position of beamnode <> Shearcenter A Mass center

cross section with 2116 elements, (b) L-shape cross section with 2023 elements,

and (c) wing profile with 2100 elements. The square marker indicates the posi=igure 5: Legend for the figures depicting the optimized cross section designs.

tion of the beam node or point of application of the loads. (Top) Visualization of the spatial orientation of the fibers at each element based
on the resulting fiber and fiber plane orientations, for each of the candidate
orthotropic materials. (Bottom) The symbols used to indicate the beam node,
shear center and mass center positions can be seen on the right.

“pﬁ . - /,/,' —_—
\ . Fibers

2D finite © 4
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Figure 3: Three-dimensional rotation of fiber plane and fiber orientation in the
cross section mesh. The fiber plane orientation is defined by the apglbile
the orientation of the fibers in the fiber plane are defined by the angle

(a) S1- Fiber (b) S2 - Fiber (c) S3 - Fiber
_cC
L
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a, [
Figure 6: Optimal material distribution and laminate properties for square cross
@ section. Solution to the minimum compliance problem with a weight constraint

(P2). Fiber (a,b, and c) and fiber plane (d,e, and f) orientations according to fig-
Figure 4: (a) Aerodynamic lift, drag, and moment fia@ents —C, , Cp, and ure legend described in Figure 5. (a) and (d) beam subject to vertical transverse

Cw, respectively — as function of the angle of attagk Experimental val-  force , (case S1, cf. Table 2) withy = 0.15, respectively. (b) and (e) beam
ues for the S809 wind turbine airfoil (Ramsay et al. [35]). (b) Description, g ,pject to combined vertical transverse fofgand torsional momerit, (case
magnitude, and orientation of aerodynamic lift and drag forégsand D, S2, cf. Table 2) withf, = 0.1, respectively. (c) and (f) beam subject to com-

and corresponding resultant forB, generated by a profile exposed _to a.Wmd bined horizontal transverse fordg, vertical transverse forcg,, and torsional
speedWs at an angle of attack, for each of the 15 load cases applied in the moment, (case S3, cf. Table 2) with = 0.1, respectively
optimization procedure. T - '
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(a) L1 - Fiber (b) L2 - Fiber (c) L3 - Fiber

(d) L1 - Fiber plane (e) L2 - Fiber plane (f) L3 - Fiber plane

Figure 7: Optimal material distribution and laminate properties for L-shape
cross section. Solution to the minimum compliance problem with a weight
constraint (P2). Fiber (a,b, and c) and fiber plane (d,e, and f) orientations ac-
cording to figure legend described in Figure 5. (a) and (d) beam subject to
combined horizontal transverse foréeand vertical transverse fordg (case
L1, cf. Table 2) withf, = 0.125, respectively. (b) and (e) beam subject to a
torsional momentn;, (case L2, cf. Table 2) with; = 0.125, respectively. (c)
and (f) beam subject to horizontal transverse fofgand vertical transverse
force @ separately (case L3, cf. Table 2), with= 0.125, respectively.

(a) L4 - Fiber (b) L4 - Fiber plane

Figure 9: Optimal material distribution and laminate properties for L-shape
cross section subject to combined horizontal transverse ﬁrwd vertical
transverse forcd, (case L4, cf. Table 2) wittf, = 0.125. Solution to the
minimum compliance problem with constraints on weight and, shear and mass
center positions (P1). Fiber (a) and fiber plane (b) orientations according to
figure legend described in Figure 5.
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(b) W1 - Fiber plane
Figure 10: Optimal material distribution and laminate properties for the load
) ) carrying structure of a wing profile cross section subject to 15 static aerody-
(@) S4 - Fiber (b) S4 - Fiber plane namic load cases (case W1, cf. Table 2) with= 0.035. Solution to the

minimum compliance problem with a weight constraint (P2). Fiber (a) and
Figure 8: Optimal material distribution and laminate properties for square croséiber plane (b) orientations according to figure legend described in Figure 5. It
section subject to combined horizontal transverse fdgc@ertical transverse IS assumed that the outer aerodynamic shell is non-structural and exists around

force E and torsional momeim, (case S4, cf. Table 2) with = 0.1. Solution
to the minimum compliance problem with constraints on weight and, shear and
mass center positions (P1). Fiber (a) and fiber plane (b) orientations according
to figure legend described in Figure 5.
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the perimeter of the cross section shape outside the design domain.
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(b) W2 - Fiber plane

Figure 11: Optimal material distribution and laminate properties for the load
carrying structure of a wing profile cross section subject to 15 static aerody-

namic load cases (case W2, cf. Table 2) with= 0.035: Solution to the

minimum compliance problem with constraints on weight and, shear and mass
center positions (P1). Fiber (a) and fiber plane (b) orientations according to
figure legend described in Figure 5. It is assumed that the outer aerodynamic

shellis non-structural and exists around the perimeter of the cross section shape

outside the design domain.
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