
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 20, 2017

Advances in characterization of deformation structures by high resolution reciprocal
space mapping

Pantleon, Wolfgang; Wejdemann, Christian; Jakobsen, Bo; Lienert, U.; Poulsen, Henning Friis

Published in:
Risoe International Symposium on Materials Science. Proceedings

Publication date:
2010

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Pantleon, W., Wejdemann, C., Jakobsen, B., Lienert, U., & Poulsen, H. F. (2010). Advances in characterization
of deformation structures by high resolution reciprocal space mapping. Risoe International Symposium on
Materials Science. Proceedings, 31, 79-100.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Online Research Database In Technology

https://core.ac.uk/display/13795571?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/advances-in-characterization-of-deformation-structures-by-high-resolution-reciprocal-space-mapping(84704c06-5092-4cd0-87ce-97b04fa848a7).html


ADVANCES IN CHARACTERIZATION OF DEFORMATION
STRUCTURES BY HIGH RESOLUTION RECIPROCAL

SPACE MAPPING

W. Pantleon∗,
C. Wejdemann∗, B. Jakobsen∗,∗∗, U. Lienert∗∗∗, and H.F. Poulsen∗

∗ Center for Fundamental Research: Metal Structures in Four
Dimensions, Materials Research Division, Risø National

Laboratory for Sustainable Energy, Technical University of
Denmark, Frederiksborgvej 399, 4000 Roskilde, Denmark

∗∗ Center of Fundamental Research: Glass and Time, Department
of Science, Systems and Models, Roskilde University,

Universitetsvej 1, 4000 Roskilde, Denmark
∗∗∗ Advanced Photon Source, Argonne National Laboratory, 9700

South Cass Avenue, Argonne, IL 60439, USA

ABSTRACT

With high angular resolution three-dimensional X-ray diffraction quantitative information
is gained about dislocation structures in individual grains in the bulk of a macroscopic
specimen by acquiring reciprocal space maps. In high resolution three-dimensional recip-
rocal space maps of tensile deformed copper, individual, almost dislocation-free subgrains
are identified from high-intensity peaks and distinguished by their unique combination of
orientation and elastic strain; dislocation walls manifest themselves as a smooth cloud of
lower intensity. The elastic strains show only minor variations within each subgrain, but
larger variations between different subgrains. In average, subgrains experience back strains,
whereas dislocations walls are strained in forward direction. Based on these observations a
revision of the classical composite model is formulated. Additionally, subgrain dynamics is
followed in-situ during varying loading conditions by reciprocal space mapping: During un-
interrupted tensile deformation, formation of subgrains can be observed concurrently with
broadening of Bragg reflections shortly after onset of plastic deformation. The emergence
of dislocation-free regions proofs that ordered dislocation structures develop during tensile
deformation. With continued tensile deformation, the subgrain structure develops inter-
mittently. When the traction is terminated, stress relaxation occurs and no changes in the
number, size and orientation of the subgrains are observed. When changing the tensile direc-
tion after pre-deformation in tension, a systematic correlation between the degree of strain
path change and the volume fraction of the subgrains is established. In case of perpendicular
tensile axes, a reversal of the radial profile asymmetry is observed and explained.
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1. INTRODUCTION

During plastic deformation of metals, dislocations are stored in the material. In pure face
centered cubic metals, such as aluminium and copper, they organize into heterogeneous
dislocation structures characteristic of the material and the deformation conditions. As the
formed dislocation structure influences the mechanical properties of the metal, understand-
ing of the origin and evolution of ordered dislocation structures is relevant for predicting
their flow stresses and work-hardening rates (e.g. Gil Sevillano 1993).

The dislocation structures formed during deformation of copper have been studied exten-
sively (e.g. Essmann 1963; Steeds 1966; Göttler 1973; Knoesen and Kritzinger 1982; Huang
1998). Dislocations organize in ordered structures consisting of almost dislocation-free re-
gions (subgrains) separated by dislocations walls of high dislocation density; the scale of
the structure decreases inversely with increasing flow stress (Raj and Pharr 1986). The
specific morphology depends on the deformation conditions and the orientation of the crys-
talline lattice (Huang 1998). Changes in the deformation conditions require the dislocation
structure to reorganize and adapt to the new deformation conditions, after e.g. strain path
changes (Schmitt, Fernandes, Gracio, and Vieira 1991; Sakharova and Fernandes 2006).

The processes involved in dislocation structure formation, evolution and adaptation to the
applied loading conditions are still not well understood, partly because no experimental
techniques have been available to study the dynamics involved. The experiment described in
this paper aims to further the understanding of these phenomena by studying the evolution
of dislocation structures in-situ during a variety of loading conditions.

Traditionally dislocation structures are studied with either classical X-ray line profile anal-
ysis (Wilkens 1970a; Krivoglaz 1996; Breuer, Klimanek, and Pantleon 2000; Ungár 2001;
Kužel 2007) or transmission electron microscopy (Essmann 1963; Steeds 1966; Göttler 1973;
Knoesen and Kritzinger 1982; Huang 1998). TEM is able to produce high resolution im-
ages of the dislocation structures in direct space, but has the disadvantage that bulk grains
cannot be studied in-situ because macroscopic samples must be destroyed to produce the
thin foils necessary for electron transmission. Furthermore, investigating the evolution of
dislocation structures in-situ in thin foils is not representative for the behavior in the bulk
due to image forces from the free surfaces. Conventional X-ray line profile analysis has the
disadvantage of averaging over many grains as the measured diffraction signal originates
from different grains with even different orientations.

Over the last decade, two synchrotron radiation based techniques for three-dimensional
characterization have been established. The spatial resolution of the 3D X-Ray Diffraction
(3DXRD) microscope (Poulsen, Nielsen, Lauridsen, Schmidt, Suter, Lienert, Margulies,
Lorentzen, and Juul Jensen 2001) enables investigating individual grains in the bulk of a
specimen, but its limited spatial and angular resolution does not allow for direct observation
of deformation structures with their small orientation differences on a scale of about a
micrometer. The spatial scanning technique of the 3D X-ray crystal microscope (Larson,
Yang, Ice, Budai, and Tischler 2002) limits the possibility of investigating the dynamics of
structural changes and is more suitable for near-surface investigations.

By supplementing 3DXRD with high angular resolution (Jakobsen, Poulsen, Lienert, Almer,
Shastri, Sørensen, Gundlach, and Pantleon 2006) dislocation structures can be studied by
obtaining high resolution three-dimensional reciprocal space maps of Bragg reflections from
individual bulk grains in-situ during loading. The opportunities of the method are illustrated
for loading differently pre-conditioned copper samples in tension.

80



Deformation structures by high resolution reciprocal space mapping

2. EXPERIMENTAL TECHNIQUE

2.1 Setup. At beamline 1-ID-XOR at the Advanced Photon Source (APS, Argonne National
Laboratory) a special setup for obtaining three-dimensional reciprocal space maps of indi-
vidual bulk grains with high resolution is established (Jakobsen et al. 2006). An X-ray
energy of 52 keV gives a penetration depth of about 500 µm in copper, and makes it possi-
ble to obtain diffraction patterns from bulk grains. A narrow beam with a height of 25 µm
and a width of 30 µm ensures that only a small volume of the sample is illuminated, which
is necessary for studying selected individual grains in order to avoid overlap with reflections
from other grains. The narrow beam is conditioned by vertical focusing (giving a vertical
divergence of 17 µrad) and horizontal slits. Focusing increases the flux and thereby reduces
the acquisition time. High angular resolution is achieved by combining a narrow-bandwidth
monochromator (∆E/E = 7 · 10−5) and a large sample-detector distance (3.6 m). A two-
dimensional detector with a pixel size of 80 µm is mounted above the beam and centered at
a height of a 400 reflection (for copper) as shown in Figure 1. A two-dimensional image (as
illustrated in Figure 2) is acquired while rocking (rotating with constant angular velocity)
the sample through a small angle interval around the horizontal axis perpendicular to the
scattering plane (the ω-axis in Figure 1).

Fig. 1: Sketch of setup with far distant detector (from Jakobsen et al. 2007a).

By combining several images a three-dimensional reciprocal space map is obtained where
two dimensions are given by the horizontal and vertical directions on the detector and the
third dimension arises from subsequent rocking intervals. The resolution of the method

is 1 · 10−3 Å
−1

in the two detector directions (determined by detector pixel size, beam
divergence and beam energy spread) and similar in the third direction (determined by the

chosen rocking angle interval, 1 · 10−3 Å
−1

for 0.007◦ or 2 · 10−3 Å
−1

for 0.015◦). A detailed
description of the setup can be found in (Jakobsen, Poulsen, Lienert, and Pantleon 2007a).

2.2 Specimen. The sample material is 99.99% pure oxygen-free high conductivity (OFHC)
polycrystalline copper initially cold-rolled and fully recrystallized by annealing for 120 min
at 450 ◦C. Subsequent characterization by electron backscatter diffraction reveals that the
sheets are fully recrystallized with a mean chord length (ignoring twin boundaries) between
20 to 30 µm and that their texture is weak. Dog-bone shaped tensile samples with a gauge
length of 8 mm and a gauge width of 3 mm are prepared from the 300 µm thick sheets by
spark cutting. All investigations reported here are performed at room temperature.
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2.3 Experimental procedure. For in-situ deformation, tensile samples are mounted in a
custom-made load frame with a strain gauge glued onto the gauge area. For each sam-
ple a suitable grain is selected, and one particular 400 reflection is mapped at different
strain levels as the sample is deformed in tension. A large area two-dimensional detector
near the sample (and centered with respect to the primary beam) is used for finding suit-
able grains which fulfill four criteria (Wejdemann, Poulsen, Lienert and Pantleon 2009): 1)
The [400] direction must be nearly parallel to the tensile axis. 2) The chosen 400 reflection
must be well separated from reflections from other grains. 3) The grain must be completely
illuminated by the beam which requires that the grain size of the selected grain is smaller
than the beam size. The grain size is estimated by scanning the grain through the beam and
measuring the diffracted intensity as function of position. 4) The grain must be in the bulk
of the specimen and must not be near the surface. The position of the grain with respect
to the sample surface is determined by a simple geometric method (Wejdemann, Lienert,
Nielsen and Pantleon 2010b). Some grains are excluded because the scan through the beam
shows a profile with two distinct intensity maxima indicating the presence of a twin lamella
in the grain, others are excluded because their orientation spread is too large which would
make the time required for a full mapping too long.

After a suitable grain is selected, the near detector is moved out of the X-ray path. By
means of an Eulerian cradle, the sample is oriented so that the 400 reflection from the
grain is observed on the far detector. With this detector two-dimensional images of the
400 reflection are obtained while rocking the sample around the ω-axis perpendicular to
the main scattering plane. When the rocking interval is large enough to cover the entire
orientation spread of the grain, smooth intensity distributions are recorded. For smaller
rocking intervals, however, a more detailed structure of the Bragg reflection is revealed
and the detector images show characteristic features related to the dislocation structure in
the grain. As shown for a detector image obtained by rocking over an interval of 0.007◦

in Figure 2, the images contain localized areas with high-intensity peaks superimposed on
a slowly varying cloud of lower intensity (still enhanced compared to the background).
This characteristic feature is observed for all reflections from grains in tensile deformed
copper. As discussed later, the high-intensity peaks are produced by almost dislocation-free
regions of the crystal (subgrains) while the spread-out cloud is caused by regions with a
high dislocation density (dislocation walls) (Jakobsen et al. 2006, 2007a, 2008).

2.4 Data presentation. Three-dimensional reciprocal space maps are gathered by combining
a number of two-dimensional detector images (such as shown in Figure 2), each acquired
by exposing the sample while rocking it through a small interval around the ω-axis. The
information in such three-dimensional intensity distributions can be conveniently presented
in two complementary projections: (i) radial peak profiles and (ii) projections of the intensity
distribution onto the azimuthal plane.

Radial peak profiles are obtained by integrating over the directions perpendicular to the
diffraction vector (the azimuthal directions). They characterize the intensity distribution
along the scattering vector

qy =
4π

λ
sin(ϑ) . (1)

Shifts ∆qy in the radial component are related to shifts ∆ϑ = ϑ−ϑ0 in the diffraction angle
ϑ from the undisturbed Bragg angle ϑ0 and indicate the presence of elastic lattice strains

ε = −∆qy

qy

= −∆ϑ cotϑ0 . (2)
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Fig. 2: Detector image (left) of a 400 reflection close to the tensile axis after 2% tensile
strain obtained by rocking over an interval of 0.007◦ with radial direction vertically
and an azimuthal direction horizontally. From the intensity distribution sharp peaks
are clearly visible on top of a cloud of lower intensity. The right part shows two cuts
through the intensity distribution along the radial direction (along the lines of same
colour in the left panel). From the different radial position of the maxima of these
radial profiles, strain differences between cloud and peak are obvious.

An example for an integrated radial profile is presented by the black line in Figure 3. The
radial profile is broadened and asymmetric. The broadening is mainly caused by heteroge-
neous microstrains in the grain as any contribution from size broadening or twinning can be
neglected (due to the large grain size above a micrometer and the low twinning probability).
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Fig. 3: Radial profile (black) from a 400 reflection integrated over an entire grain
after 3.49% tensile strain. Radial profiles of three selected subgrains in red, blue and
magenta (from Jakobsen et al. 2006).

A representation of the orientation spread can be gained from projections of the intensi-
ty distribution onto the plane perpendicular to the diffraction vector, i.e. spanned by the
horizontal detector direction and the rocking direction. Such an azimuthal projection is ob-
tained by integrating the intensity distribution over the radial component of the diffraction
vector. It represents the 400 pole figure (the distribution of normal vectors of the crystal-
lographic (400) lattice planes) of the selected grain and visualizes the mosaic spread within
the grain. An example for an azimuthal projection of a 400 reflection after 2% tensile strain
is shown in Figure 4. With the colour scale used, the map comprises separate individual
high-intensity peaks, large islands and a rather smooth low-intensity cloud. As seen in the
insert, the island is also composed of high-intensity peaks, some of them so close to each
other that they partially overlap.
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Fig. 4: 400 reflection of a grain after 2% tensile strain: Projection of the three-
dimensional intensity distribution in reciprocal space on the azimuthal plane. Circles
indicate the azimuthal positions of 14 selected peaks (from Jakobsen et al. 2007a).

2.5 High-intensity peaks and subgrains. Comprehensive information on an independently
diffracting region can be gained from each distinct peak. A detailed analysis of 14 high-
intensity peaks (marked by circles in Figure 4) is performed after 2% tensile strain (Jakobsen
et al. 2007a): pseudo-Voigt functions are fitted to the intensity distribution of each individ-
ual peak along the three directions of reciprocal space. In this manner, the volume of the
individual diffracting regions is derived from the integrated intensity of the high-intensity
peaks, while their mean orientation and their mean elastic strain (along the scattering
vector) are determined by the center-of-mass position in azimuthal and radial directions,
respectively. From the peak shape, orientation and elastic strain differences as well as the
dislocation density within the individually diffracting regions are inferred.

The volumes of the different regions giving rise to the individual peaks are between 1 and
5 µm3. The widths of the individual sharp peaks in all three dimensions of reciprocal space

are similar, rather small (〈∆q〉 = 1.9 · 10−3 Å
−1

), and comparable to an undeformed grain
suggesting their interpretation as originating from dislocation-free subgrains.

The radial profile integrated over the entire orientation spread of the grain (shown in Figure

5(left)) is broadened with a full width at half of maximum intensity of 6.4 · 10−3 Å
−1

and asymmetric with a longer tail at smaller radial components qy. The radial profiles of

individual high-intensity peaks are much sharper (〈∆qy〉 = 2 · 10−3Å
−1

) indicating small
intrasubgrain strains (below 0.03%) and a rather low dislocation density (compare Figure 3
for a similar observation at 3.49% tensile strain).

For a quantitative assessment of the dislocation density, the measured width must be cor-
rected for instrumental broadening and possible size effects. An upper limit 〈∆qy,corr〉 =

1.7·10−3Å
−1

for the physical width results by using a lower limit for the instrumental resolu-
tion. Estimation of the dislocation densities by the theory of Wilkens (1970a; 1970b) shows
that the dislocation density cannot exceed 1.2 · 1013 m−2 in such a nearly dislocation-free
region (Jakobsen et al. 2007a). The dislocation density really present in the subgrain is,
however, expected to be much less, because the estimate for the physical width is derived
under the most optimistic assumptions and constitutes an upper limit.
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Fig. 5: (left) Radial profile for the entire grain after 2% tensile strain (dots) and LaB6

powder (open squares) for comparison. Vertical solid lines indicate the 10%, 25%,
50% 75% and 90% quantiles. The dashed lines are fits of a split pseudo-Voigt and a
pseudo-Voigt function to the measured profiles of Cu and LaB6, respectively.
(right) Radial peak position for 14 isolated peaks. The dashed horizontal line indicates
the position of the maximum of the radial profile of the integrated reflection from the
entire grain and the full lines the 25%, 50% and 75% quantiles of that profile. The

average radial position for the entire grain (6.9473 Å
−1

) is close to the median (50%
quantile) of the profile (from Jakobsen et al. 2007a).

In contrast to the small intrasubgrain stresses, significant intersubgrain stresses exist as
obvious from Figure 5(right). The radial peak positions of the subgrains are not gathered
around the median or average value of the radial profile, but concentrate around the position
of maximum intensity of the integrated profile. The difference between individual radial peak

positions is up to 3.5 · 10−3Å
−1

corresponding to a difference of 0.05% in elastic strain (or
a stress difference of 33 MPa). In average the subgrains experience an elastic back strain of
0.009% (corresponding to a back stress of 6 MPa) with respect to the average tensile elastic
strain of the entire grain.

2.6 Cloud contribution. Additional to integrated radial profiles (which can also be obtained
by conventional X-ray diffraction) radial profiles at each particular azimuthal position can
be determined from the three-dimensional reciprocal space maps. Two such radial profiles
are illustrated on the right of Figure 2. In case a high-intensity peak is hit, the profile
becomes rather sharp and has a high maximal intensity, whereas in the other case a smooth
broadened profile with low maximum intensity is detected. Notably, the radial positions of
both maxima are different. The maximum of the sharp profile occurs at higher qy indicative
for a negative elastic strain compared to the maximum of the broad profile.

This effect is analyzed in more detail for another grain after 2% deformation (Jakobsen,
Lienert, Almer, Poulsen, and Pantleon 2008) by comparing radial profiles along each avail-
able azimuthal position. For each of these radial profiles the maximum intensity Imax and
its radial position qy,max is determined and the average radial position is calculated for all
profiles with similar maximal intensity. The resulting Figure 6 shows a strong correlation
between the maximal intensity and the radial positions of the maxima (converted to elastic
strain with respect to the grain average by Eq. (2)). Low-intensity maxima are positioned
at more positive strains (lower qy) than maxima of higher intensity. Comparison with the
maximum and average position of the integrated peak profile reveals that the maxima of
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highest intensity fall close to the maximum of the integrated radial peak profile and that for
the maxima with very low intensity the averages are at radial positions below the average
of the integrated radial peak profile corresponding to forward elastic strains. Regions giving
rise to the cloud of low intensity have forward strains, whereas the regions giving rise to the
high-intensity peaks have negative elastic strain (backward strains).
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Fig. 6: Average strain at maximum intensity in dependence on the maximum intensity
along radial profiles. High-intensity regions have negative elastic strains (with respect
to the average elastic strain of the entire grain after 2% tension) and low-intensity
regions positive strains. The insert shows the asymmetric integrated radial profile for
the entire grain (see Jakobsen et al. 2008).

3. INTERPRETATION

3.1 Classical composite model. Heterogeneous dislocation structures lead to a heterogeneous
distribution of stresses as rationalized by the composite model of Mughrabi (1983). In an
ordered dislocation structure (as sketched in Figure 7) dense dislocation walls separate ad-
jacent dislocation-depleted regions. When applying an external load, initially all regions
deform elastically. With increasing load, the resolved shear stress on individual slip sys-
tems reaches the critical resolved shear stress and plastic deformation occurs by motion of
dislocations. As regions of high dislocation density exert a higher resistance against plastic
deformation than dislocation-depleted regions, the later will yield first. Activation of disloca-
tion glide in dislocation-depleted regions causes dislocations to move towards the dislocation
walls. As long as the walls do not yield plastically, these dislocations cannot move further
and become trapped at the interface between the walls and the dislocation-depleted regions.

Edge dislocations trapped at an interface between dislocation-depleted regions and dislo-
cation walls cause two different effects (illustrated in Figure 8): 1) their Burgers vector
component perpendicular to the boundary plane leads to an orientation difference between
both sides, i.e. between the dislocation-depleted region and the dislocation wall, and 2) the
component parallel to the wall generates elastic stresses along the direction of the applied
load. These elastic stresses increase the applied stress in the wall (forward stresses), but
reduce the elastic stresses in the dislocation-depleted regions (back stresses). The forward
stresses in the walls increase the resolved shear stresses there and lead eventually to the
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Fig. 7: Sketch of an ordered dislocation structure with dislocation walls (grey) sepa-
rating dislocation-depleted regions (white). When a tensile load is applied vertically,
two slip systems in each of the two dislocation-depleted regions are activated. The
Burgers vectors of the edge dislocations creating the plastic deformation are indicat-
ed. Dislocations become trapped at the interfaces (dashed or dashed-dotted).

onset of plastic deformation in the walls; then mobile dislocations can penetrate into (and
even through) the dislocation walls.

The internal stresses caused by the interface dislocations change the elastic strain state in
both regions. Along the tensile direction, the elastic strains are increased in the walls (for-
ward strains) and decreased in the dislocation-depleted regions (back strains) with respect
to the tensile elastic strains caused by the applied load. In the directions perpendicular to
the tensile direction, (relative) compressive strains in the walls and (relative) tensile strains
in the dislocation-depleted regions are developed due to elastic cross contraction.

x

z

Fig. 8: Sketch of two vertical planar arrangements of edge dislocations trailing along
the y-direction into the drawing plane: (left) edge dislocations with Burgers vectors
perpendicular to the boundary plane form a tilt boundary with an orientation differ-
ence on both sides and (right) edge dislocations with Burgers vectors in the boundary
plane form an interface with tensile and compressive elastic stresses.

3.2 Asymmetry of radial peak profiles. The presence of heterogeneous elastic strains causes
an asymmetry of radial peak profiles, such as in Figure 3 (Ungár et al. 1984; Mughrabi et
al. 1986). In terms of the classical composite model, the total radial profile is explained
as superposition of two subprofiles (as sketched in Figure 9(left)): one from the dislocation
walls broadened by the high dislocation content therein and another from the dislocation-
depleted regions being narrower due to their lower (but existing) dislocation content.
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For reflections with scattering vector close to the tensile axis, the elastic strain parallel to
the tensile axis is probed (axial case). According to Eq. (2) the forward (relative tensile)
elastic strains in the walls cause a shift of the wall subprofile towards smaller Bragg angles
and the backward (relative compressive) elastic strains in the dislocation-depleted regions
cause a shift of this subprofile towards larger Bragg angles. These mutual shifts of the two
subprofiles in their radial positions produce an asymmetric profile with a larger tail on the
low-angle side, called a positive asymmetry and shown in Fig. 9(left).

The opposite is true for radial diffraction profiles of Bragg reflections perpendicular to the
tensile axis (side case). The compressive elastic strains in the walls cause a shift of the wall
subprofile towards larger Bragg angles and the tensile elastic strains in the subgrains cause
a shift of the subgrain subprofile towards smaller Bragg angles. In this case an asymmetric
profile with a larger tail on the high-angle side is produced (i.e. a negative asymmetry).

The classical composite model — despite being successful in explaining asymmetries of radial
profiles and flow stresses — has been seriously criticized, by e.g. Argon and Haasen (1993),
for the rather large dislocation content postulated for the dislocation-depleted regions in
order to explain the observed broadening of their subprofile and the critical resolved shear
stress of the dislocation-depleted regions, because such high dislocation densities have never
been observed by TEM.

3.3 Revised composite model. The observation of sharp high-intensity peaks on a structure-
less cloud of lower intensity and the properties of the high-intensity peaks summarized in
section 2.5 endorse their interpretation as stemming from dislocation-free subgrains. This
is further substantiated by the absence of high-intensity peaks in Bragg reflections from de-
formed grains in a non-cellforming aluminium magnesium alloy (Jakobsen, Poulsen, Lienert,
Huang, and Pantleon 2007b). Analogously, the broad, structureless cloud is considered as
caused by dislocation walls. The high dislocation densities in the walls broaden the radial
profiles forming the low-intensity cloud in a reciprocal space map. Further details about dis-
location walls cannot be revealed from the structureless cloud, in particular no information
on individual dislocation walls can be retrieved.

The occurrence of back strains for the high-intensity peaks and forward strains for the cloud
component discussed in section 2.6 is in general agreement with the composite picture of
an ordered dislocation structure. The two other findings for the high-intensity peaks, their
sharpness and their distribution in radial position, nevertheless, are in conflict with the
classical composite model. The observed rather sharp peak profiles indicate their origin
from dislocation-free regions with dislocation densities less than 1.2 · 1013 m−2. Therefore,
the dislocation-depleted regions are not dislocation cell interiors containing a significant
dislocation content as suggested earlier (Ungár et al. 1984; Mughrabi et al. 1986), but
almost perfect subgrains with vanishing dislocation density (which also explains, why in the
dislocation-depleted regions hardly any dislocations have been found by TEM).

The slightly different radial positions of the high-intensity peaks indicate that each subgrain
experiences a slightly different elastic strain. To account for these differences in a composite
model, the view on the subprofile originating from the dislocation-depleted regions is revised.
Their contribution cannot be described by a shifted profile broadened by dislocations (as the
presumed dislocation content is not detected in the subgrains), instead each independently
diffracting subgrain contributes with its own particular radial profile. These individual
radial profiles are sharp, only affected by instrumental broadening and not broadened by
any defect content. They differ in their radial position as each of the dislocation-free regions
experiences a slightly different elastic stress (with a back stress in average).
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In the revised composite model, the superposition of sharp profiles from all individual sub-
grains as sketched in Fig. 9(right) replaces the subprofile from cell interiors of the classical
composite model. In the sketch, individual radial profiles of only six subgrains are illus-
trated which are not sufficient to form a smooth and broad contribution. Experimentally,
much more distinct subgrains can be identified and analyzed. In this manner, a smooth
superposition of the individual profile is achieved.
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Fig. 9: Decomposition of radial profiles: (left) according to the classical composite
model in broadened subprofiles from walls and dislocation-depleted regions (cell in-
teriors) and (right) according to the revised composite model in a broadened profile
from the walls and several sharp peaks from individual subgrains.

Presently, the original suggestion that dislocation walls contribute to the radial profile with
a subprofile broadened by the high dislocation density in the walls and shifted due to
forward stresses has been used unaltered, but, analogously to the individual subgrains, it
is reasonable that the subprofile from dislocation walls is a superposition of radial profiles
(from individual walls shifted with respect to each other by their individual forward elastic
strains) as well. As each profile from a dislocation wall is significantly broadened by the
presence of dislocations, the shape of the resulting subprofile from all dislocation walls
obtained by superposition is not expected to be much different from the individual profiles.
Unfortunately, no information can be gained on individual dislocation walls by reciprocal
space mapping with high resolution due to their broadened diffraction profiles and spatial
probing is required to differentiate between particular dislocation walls.

3.4 Elastic strains of subgrains. The occurrence of elastic strains in individual subgrains
and their differences can be explained on a statistical basis by fluctuations in the active
slip systems. A geometrical model taking into account all details of the slip geometry will
be presented elsewhere (Jakobsen, Prinz, and Pantleon 2011), here only the main ideas are
outlined in connection with Figure 7.

When applying a tensile load along the vertical direction, each of the two adjacent subgrains
deforms plastically on two symmetrical slip systems (1 and 2) whereas the connecting dislo-
cation wall deforms only elastically. At the interface, the dislocations get trapped and the
total Burgers vector stored at the interface (of height h and shown dashed in Figure 7) with
subgrain I evolves according to

Ḃx = bx(Φ1 − Φ2)h and Ḃz = bz(Φ1 + Φ2)h . (3)

The fluxes of dislocations Φi,I = pγ̇i/b in both slip systems i are given by the respective
strain rates γ̇i and an orientation factor p.
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The edge dislocations stored at the interface cause (through the x-component of their Burg-
ers vectors) an orientation difference between wall and subgrain with an rotation angle
θy = Bx/h around the y-axis following from the Read–Shockley equation for tilt boundaries
(cf. Figure 8(left)); their z-component leads analogously to a difference in the elastic strain
εzz = Bz/h between the wall and the subgrain.

On average, each of the two slip systems is activated equally, but small random fluctuations
δγ̇i of the strain rate γ̇i = ˙̄γ + δγ̇i around its average value ˙̄γ may occur. The elastic strain
of a particular subgrain evolves accordingly

ε̇zz = −p
bz

b
(γ̇1 + γ̇2) = −p

bz

b
(2 ˙̄γ + δγ̇1 + δγ̇2) (4)

where the negative sign reflects the formation of backward strains in the subgrain with
respect to the adjacent wall deforming only elastically. Consequently, the elastic strains in
the subgrains (with respect to the dislocation walls) have a non-vanishing average value

〈εzz〉 = −2p
bz

b
γ = −εpl (5)

exactly opposite to the plastic strain εpl = 2mγ in the subgrains (where m is the common
Schmid factor of both slip system) as required by compatibility. These considerations are of
course only valid as long as the walls stay impenetrable for dislocations and do not deform
plastically. When the walls yield plastically, dislocations enter the walls, even pass them or
annihilate with other dislocations coming from the wall and the dislocation accumulation
at the interface is largely reduced.

The variation of the elastic strains in different subgrains depends only on the nature of the
fluctuations. For the case, that fluctuations in the strain rate are caused by variations in
the number of mobile dislocations, Pantleon (1997) has shown that the resulting evolving
quantities are Gaussian distributed. Fluctuations in the activation of slip systems lead
directly to a Gaussian distribution of the elastic strains of the individual subgrains with a
standard deviation following from

〈δε2
zz〉 = 2p2 b2

z

b2

b

d
γ = p

bz

b

b

d
εpl . (6)

Accordingly, the standard deviation of the distribution of elastic strains in the subgrains
follows a square root dependence on the plastic strain in the subgrains. For the particular
geometry (p = 1/

√
3 and bz = 2b/

√
6) and the experimental conditions of section 2.5 (a

plastic strain of about 2% (neglecting the elastic deformation in the subgrains due to the
applied load) and an average subgrain size d of 1.4 µm) a standard deviation of 0.13% for
the elastic strains is predicted, slightly larger than the experimentally observed variation.

The predicted increase in the spread of elastic strains with the square root of the plastic
strain in the subgrains according to Eq. (6) cannot continue with increasing strain, because
the average elastic energy of subgrains with Gaussian distributed elastic strains is larger
than the elastic energy for identical elastic strains in all subgrains (see Jakobsen et al.
2011). Such an enhanced elastic energy and the corresponding elastic stresses will affect the
fluctuations in different slip systems in such a manner that the elastic energy and hence the
spread in elastic strains is not increasing unlimitedly.
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4. APPLICATION ON UNIDIRECTIONAL DEFORMATION

4.1 Subgrain dynamics during incremental tensile loading. The evolution of the subgrains
is monitored in a bulk grain of another polycystalline copper sample by deforming it from
3% to 4.2% tensile strain in small incremental steps of about 0.04% (Jakobsen et al. 2006).
After each strain increment a three-dimensional reciprocal space map of a subvolume of
the grain has been gathered while rocking over 0.32◦ in 80 intervals of 0.004◦. Analysis of
about 20 high-intensity peaks revealed a rather intermittent dynamics: subgrains appear
and disappear during straining, some even exist only for a short strain interval; for example,
the high-intensity peak in Figure 10 exists for a strain interval of about 0.2%. New distinct
diffraction peaks emerge from the cloud of lower intensity. Correspondingly, new dislocation-
free regions materialize in regions formerly occupied by dislocations.

A
∆ Strain: 0.00% ∆ Strain: 0.04% ∆ Strain: 0.18% ∆ Strain: 0.23% ∆ Strain: 0.27%· · ·

B
∆ Strain: 0.00% ∆ Strain: 0.05% ∆ Strain: 0.09% ∆ Strain: 0.12% ∆ Strain: 0.16%

0.005Å
−1

qz

(Å
−1

)

qx (Å
−1

)

Fig. 10: Example for subgrain dynamics during incremental tensile loading. The
subfigures are excerpts from larger projection onto the azimuthal plane and given as
function of external strain with strain increments relative to the first map. A high-
intensity peak appears, grows in intensity and disappears again. The arrow indicates
the peak at its maximum intensity (from Jakobsen et al. 2006).

4.2 Structure formation during continuous tensile loading. After the discovery of ordered
dislocation structures in thin foils by TEM, the relation between the observed structures
and the dislocation structures present in the specimen before preparation of a thin foil and
before unloading after deformation has been debated intensively (see Seeger 1988). Relax-
ation of the structure due to foil preparation can be avoided by neutron irradiation fixing the
formed dislocation structure (Essmann 1963). By irradiating a deformation structure under
load, the existence of ordered dislocation structures after terminating the deformation has
been proven and observed differences between the dislocation structures in the loaded and
unloaded state rationalized (Mughrabi 1971). The lack of in-situ investigations, however,
has left the question of the existence of ordered dislocation structures during the course
of deformation unanswered. This issue cannot be settled by incremental loading steps as
ordering may occur in the short relaxation intervals.

To establish the emergence of ordered dislocation structures during deformation a fully
dynamic experiment has been conceived where a copper specimen is loaded without in-
terruption for data taking while monitoring a 400 reflection of an individual bulk grain
(Pantleon, Wejdemann, Jakobsen, Lienert, and Poulsen 2009). A bulk grain smaller than
the beam size is centered in the beam and its corresponding 400 reflection close to the ten-
sile axis centered at the far distant detector. The sample is strained in tension continuously
from the undeformed state with a low strain rate of 6 · 10−7 s−1 while obtaining reciprocal
space maps by rocking. Each map consists of only 15 rocking intervals of 0.005◦ to enhance
time resolution. The center of the covered rocking range is adjusted manually during the
experiment to compensate for grain rotation.

91



Pantleon, Wejdemann, Jakobsen, Lienert and Poulsen

Strain: 0.092%, Stress: 26.15Mpa

 

 

1

2

3

4

5

6

7
x 10

4 Strain: 0.12%, Stress: 38.83Mpa

 

 

500

1000

1500

2000

2500

3000

3500

Strain: 0.127%, Stress: 41.21Mpa

 

 

500

1000

1500

2000

Strain: 0.133%, Stress: 43.4Mpa

 

 

400

600

800

1000

1200

Fig. 11: Projection onto the azimuthal plane of the reciprocal space maps obtained
during continuous deformation from undeformed state. The projections are given as

function of stress and tensile strain. The images span 25 · 10−3 Å
−1

horizontally and

9 ·10−3 Å
−1

vertically (rocking direction). Different colour scales are used for different
strain levels (from Pantleon et al. 2009).

Projections of the reciprocal space maps onto the azimuthal plane are shown in Figure 11 for
four successive strains. Between the first and the second map, re-centering of the grain was
required due to grain rotation and during this time no reciprocal space map was obtained.
The map of the reflection obtained at 0.09% tensile strain (as all maps at smaller tensile
strains) is similar to that of an undeformed grain, with only a slight broadening of the
reflection and no clear indication of any grain breakup into different orientations. For the
subsequent strain steps (0.120%, 0.127%, and 0.133%), a breakup of the reflection is clearly
seen. Several different sharp peaks can be identified in each azimuthal projection indicating
the formation of (at least three) different regions of significantly lower dislocation density
at this small strain.

The emergence of characteristic features (sharp high-intensity peaks on a cloud of lower
intensity) in the Bragg reflection must be attributed to the presence of several dislocation-
free regions in the grain during deformation. With this observation, formation and existence
of ordered dislocation structures during tensile deformation is proven beyond any doubt.

4.3 Stress relaxation. For assessing the stability of dislocation structures during interrupted
tensile tests, the effect of stress relaxation on the dislocation structure has been investigated
(Jakobsen, Poulsen, Lienert, Bernier, Gundlach, and Pantleon 2009): Another copper sam-
ple is preloaded in small steps to a tensile strain of 1.82%. By following the movement of
the grain during this incremental straining, a calibration curve is produced relating the dis-
placement of the tension motor to the macroscopic strain and the spatial grain movement.
The sample is then strained continuously with a strain rate of 1.1·10−6 s−1 to a tensile strain
of 2.315%. During this first slow loading 20 reciprocal space maps are gathered. After that,
the tension motor is stopped and the sample held at constant position of the tension motor
for 41 hours, during which the tensile strain increases to 2.365%. During the first hour
another 19 reciprocal space maps are gathered. After re-centering of the grain with respect
to the beam, the sample is strained continuously with the same strain rate of 1.1 · 10−6 s−1

to a tensile strain of 2.682%. During this period 14 reciprocal space maps are gathered.
The sample is then held at constant motor position for 2.2 hours, while gathering 10 maps
during the first 45 minutes. At the end of the hold, the strain has increased to 2.695%.

Based on the identification of individual peaks with individual subgrains, the time evolu-
tion of the intensity distribution can be rationalized in terms of rotation, straining and
growth or shrinkage of subgrains. As an example, Figure 12 provides a tableaux of az-
imuthal projections of the intensity distributions at the end of the second loading stage and
during the second hold. During loading stages significant changes in the subgrain structure
are observable in the reciprocal space maps. Temporary formation of new subgrains and
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disappearance of others can be recognized. During the entire tensile loading subgrains of
different orientations and elastic strains appear and disappear intermittently. From visual
comparison of the reciprocal space maps obtained during both holding stages, there is no
evidence of any microstructural change on the subgrain level within the first hour of data
taking after stopping the tension motor (see azimuthal projections of the second holding
stage in Figure 12). Extrapolation of the evolution during holding to times prior to the
moment of stopping and comparison with the last reciprocal space map during loading even
rules out any hypothetical structural changes at the subgrain level, which may occur at the
exact time of stopping and is completed before the first measurement during holding.

Time Strain

−20 minutes 2.572%

−16 minutes 2.593%

−13 minutes 2.614%

−9 minutes 2.633%

−6 minutes 2.653%

−2 minutes 2.672%

2 minutes 2.683%

9 minutes 2.685%

16 minutes 2.686%

23 minutes 2.687%

30 minutes 2.688%

Fig. 12: Azimuthal projection of the last six reciprocal space maps obtained during the
second slow loading and every second of the reciprocal space maps obtained during
the second holding. Time is with respect to the moment when the tension motor
is stopped, and for the center image of each data set. The projections each cover

[0Å
−1

, 0.12Å
−1

] horizontally and [0.027Å
−1

, 0.036Å
−1

] vertically. The colours are in
arbitrary units of integrated intensity (Pantleon et al. 2009).

Additional insight is gained from integrated radial peak profiles. Two quantities of interest
can be derived (e.g. Ungár 2001; Kučel 2007): the average elastic strain (along the diffraction
vector) with respect to the initial, unloaded state, and the width of the strain distribution.
Both are determined from fitting a pseudo-Voigt function to the radial peak profile as center
(identical to the average) and full width at half of the maximum intensity. Both quantities
are plotted in Figure 13 as function of time during the loading and holding sequence.

During the loading stages the mean position of the radial profile decreases and hence the
average elastic strain in the illuminated grain increases (cf. Eq. (2)) with increasing stress.
During the holding period the elastic strains decrease due to stress relaxation. Relaxation of
the elastic strain seemingly comprises two components (in particular after the first loading):
a fast initial transient, followed by a much slower response. Correspondingly, the width of
the internal strain distribution (as observed from the width of the radial profiles) increases
during tensile loading, and decreases almost linearly with time during the first hour after
stopping the tension motor.

The microstructure (as described in terms of the number of subgrains, their orientation and
extension in reciprocal space) develops markedly and in an intermittent manner during con-
tinuous loading, but becomes frozen at the instant of interrupting the traction. Within the
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observation time, individual dislocations migrate under the applied load further in forward
direction. Their motion causes additional plastic deformation of the gauge section of the
specimen and hence a specimen elongation. Consequently, the fixed displacement of the
motor position requires less elastic deformation and the average elastic strain decreases.
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Fig. 13: Average value q̄y (left) and full width at half of the maximum intensity ∆qy

(right) of the radial peak profiles as function of time. First slow loading (open square)
and holding (filled square), second slow loading (open diamond) and holding (filled
diamond). The time in each part is measured with respect to the start of deformation
(from Jakobsen et al. 2009).

5. APPLICATION ON STRAIN PATH CHANGES

5.1 General. The effect of strain path changes is investigated here for tension-tension se-
quences where pre-deformation in tension is followed by a second tensile deformation along
a different direction (Wejdemann et al. 2009; 2010a). Such simple strain path changes
involving only two different straining stages are characterized by the parameter

α =
ε̇1 : ε̇2

‖ε̇1‖‖ε̇2‖
(7)

where ε̇1 and ε̇2 are the strain rate tensors of the first and second stage (Schmitt, Shen, and
Raphanel 1994). The effect of strain path changes is largest for α = 0, called an orthogonal
strain path change. The extreme cases α = 1 and α = −1 correspond to monotonic
deformation and complete strain reversal, respectively. For tension-tension sequences α can
take values between −0.5 and 1.

To establish the initial deformation prior to any strain path change fully recrystallized copper
sheets are pre-deformed in tension to 5% plastic strain with a strain rate of 1.4 · 10−4 s−1,
before smaller dog-bone shaped samples are spark cut from the sheets for further tensile
deformation. The samples are cut under four different angles θ (0◦, 35◦, 55◦ and 90◦) between
the pre-deformation tensile axis and the new tensile axis. Assuming volume-conserving
plasticity their strain path change parameters are 1, 0.5, 0, and −0.5, respectively.

The four samples are mounted in the load frame one at a time. In order to stabilize the
samples, they are subjected to a small load corresponding to a plastic strain of 0.2%. For
each sample a suitable grain is selected, and a particular 400 reflection close to the tensile
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axis is mapped at different strain levels. The samples are deformed in tension (with a strain
rate of 1 · 10−4 s−1). At selected strain levels the traction is interrupted and for each sample
11 maps covering the entire orientation spread of the selected grain are obtained between
0.2% and 5%. A typical map covering 3◦ is comprised of 200 single images recorded while
rocking through an interval of 0.015◦.

5.2 Data analysis. Before the individual images are combined to three-dimensional reciprocal
space maps, they are subjected to three pre-processing steps (Wejdemann et al. 2009). First,
the background level around the 400 reflection is estimated for each image and subtracted
from the intensity. Second, the intensity in the image is normalized by the beam intensity,
which is measured at the beam stop behind the sample during acquisition. Third, cosmic
rays are identified in each image by comparing the intensity on a pixel-by-pixel basis with the
images taken just before and after. If found, cosmic rays are removed by linear interpolation
between those neighboring images.

0.2% 0.6% 1.2%

1.9% 3.1% 4.9%

Fig. 14: Azimuthal projection of three-dimensional reciprocal space maps after strain
path change by a tension-tension sequence with 90◦ between the first and second
tensile axis. The indicated strains represent the strain along the second tensile axis
only (Wejdemann et al. 2009).

Azimuthal projections from 6 different strains (along the second tensile axis) are shown in
Figure 14 for the sample with 90◦ between the tensile axes. The heterogeneous structure of
the intensity distribution with high-intensity peaks on a low-intensity spread-out cloud can
be seen. The sequence of projections illustrates the advantage of the experimental method
for studying the dynamics of deformation structures in an individual grain in reciprocal
space in-situ. The figure shows that for larger strains the general intensity level decreases as
the intensity distribution spreads out, and the peaks become less prominent. The apparent
disappearance of the peaks as the strain is increased is partly an effect of the general
decline of the intensity level, because the same colour scale is used for all projections. This
illustrates the general difficulty to visually assess how much of the intensity distribution has
to be classified as peaks because the appearance depends strongly on the colour scale.

5.3 Subgrain volume fraction. An automatic partitioning of the intensity distribution into
two components (peaks and cloud) is achieved by a newly developed fitting method (We-
jdemann et al. 2009; 2010b) which allows to separate the contribution of peaks caused by
diffraction from subgrains from the contribution of the cloud caused by diffraction from
dislocation walls and to analyze each part separately.
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After partitioning the intensity distributions the subgrain volume fraction is calculated for
all reciprocal space maps by dividing the intensity in the peak component with the total
intensity in the map. Figure 15(left) shows that the sample with 55◦ between the tensile
axes has the smallest subgrain volume fraction for all strains. The other three samples show
approximately the same subgrain volume fraction for strains up to 1.5% after which the
sample with 0◦ shows the largest subgrain volume fraction and the samples with 35◦ and
90◦ lie between the extremes. Figure 15(right) shows the results relative to the values at the
smallest strain. It shows that the rate of decrease of the subgrain volume fraction is largest
for the 55◦ sample and smallest for the 0◦ sample, with the other samples in between.

The observed variations in subgrain volume fraction can be rationalized with the help of the
strain rate change parameter: The results in Figure 15 show a systematic effect of the degree
of strain path change as measured by the strain path change parameter on the subgrain
volume fraction. A smaller absolute value of α corresponds to a larger rate of decrease
of the subgrain volume fraction. The findings are consistent with TEM observations on
copper, which indicate that tension-tension strain path changes lead to an increase in the
wall thickness (Schmitt et al. 1991). Such an increase in the wall thickness will lead to a
decrease in the subgrain volume fraction as observed here.

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Strain [%]

S
ub

gr
ai

n 
vo

lu
m

e 
fr

ac
tio

n

 

 
 θ = 0°,    α = 1
 θ = 35°,  α = 0.5
 θ = 55°,  α = 0
 θ = 90°,  α = −0.5

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Strain [%]

R
el

at
iv

e 
su

bg
ra

in
 v

ol
um

e 
fr

ac
tio

n

 

 
 θ = 0°,    α = 1
 θ = 35°,  α = 0.5
 θ = 55°,  α = 0
 θ = 90°,  α = −0.5

Fig. 15: Subgrain volume fraction during stain path changes as a function of strain
for the four different samples: absolute values (left) and relative values (right) (from
Wejdemann et al. 2009).

5.4 Asymmetry of radial profiles. In order to investigate the effect of a strain path change
on the radial profile asymmetry two additional copper samples are cut from a copper sheet
pre-deformed in tension (Wejdemann et al. 2010a). One (the 0◦ sample) is cut with the new
(in-situ) tensile axis parallel to the pre-deformation axis, and the other (the 90◦ sample) is
cut with the in-situ tensile axis perpendicular to the pre-deformation axis.

The samples are mounted in the load frame one at a time, and a small load corresponding
to a strain of ∼0.03% is applied for stabilization purposes. For the 0◦ sample, the scattering
vector, the in-situ tensile axis and pre-deformation tensile axis are parallel corresponding to
the axial case and a positive peak profile asymmetry is expected throughout the experiment.
In contrast to this, for the 90◦ sample the scattering vector and the in-situ tensile axis
(which are parallel) are perpendicular to the pre-deformation tensile axis. For each sample
four suitable grains are selected. For each of the selected grains a reciprocal space map of
one particular 400 reflection is obtained and the sample is deformed in unidirectional tension
with a strain rate of ∼10−4 s−1. At 7 different strain levels (up to a tensile strain of 1%)
the deformation is paused (allowing the load to relax slightly) while additional reciprocal
space maps of the same 400 reflections are obtained.
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Fig. 16: (left) Radial peak profiles from the same grain from the 90◦ sample. The strain ε
along the in-situ tensile axis and the asymmetry κ is indicated. The profiles are normalized
to have an area of one. (right) Peak profile asymmetry κ = 2ϑmax−2ϑmean (from Wejdemann
et al. 2010a).

Radial profiles are calculated from the reciprocal space maps in a 2ϑ-range centered on the
position of maximum intensity and with a width of 8 times the full width at half maximum
intensity. Two examples of peak profiles from the same grain from the 90◦ sample are
shown in Figure 16. The profiles shown are measured at the first and last strain value. As
the sample is deformed, the profiles shift to lower values of 2ϑ (due to the average elastic
strain caused by the imposed external load), widen (due to dislocation accumulation and
heterogeneous elastic strains) and change asymmetry (from having the slower-decaying tail
on the high-2ϑ side to having it on the low-2ϑ side of the intensity maximum).

The shift in asymmetry can be quantified by the parameter κ = 2ϑmax −2ϑmean, where ϑmax

and ϑmean are the Bragg angles of the maximum and the mean of the profile, respectively.
Assuming that ϑmax coincides with the maximum of the subgrain subprofile (see Hecker,
Thiele, and Holste (1998) for theoretical arguments and Jakobsen et al. (2007a) for exper-
imental confirmation), κ will be equal to twice ∆ϑ for the subgrains and from Eq. (2) it
follows that κ is proportional to the mean elastic strain in the subgrains. ϑmean can be easily
calculated from the profile, but to get a measure for ϑmax with sub-pixel accuracy a split
pseudo-Voigt function is fitted to each profile. In this way the peak profile asymmetry is
determined for the 8 different grains as a function of strain along the in-situ tensile axis and
shown in the right part of Figure 16. The figure shows that the curves generally fall in two
groups. The grains from the 0◦ sample show a more or less constant peak profile asymmetry
while the grains from the 90◦ sample start with a negative peak profile asymmetry which
becomes positive and reaches the level of the 0◦ sample grains with increasing deformation.

The results in Figure 16 can be understood in terms of the classical composite model. As
described above, in deformed metals with a dislocation structure consisting of walls and
subgrains, the composite model predicts that peak profiles may be asymmetric because the
intragrain stresses shift the wall and subgrain subprofiles with respect to each other. For the
0◦ sample (for which the in-situ and pre-deformation tensile axes are parallel) the intragrain
stresses that have developed during pre-deformation do not change significantly during the
following in-situ deformation and a positive asymmetry is observed for all strains. For
the 90◦ sample (for which the in-situ and pre-deformation tensile axes are perpendicular)
the intragrain stresses developed during pre-deformation give rise to a negative asymmetry
before the in-situ deformation. As the sample is deformed along the in-situ tensile axis, the
intragrain stresses gradually change leading to a positive asymmetry at the same level as for
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the 0◦ sample. The initial negative asymmetry for the 90◦ sample is caused by the Poisson
effect and the strains involved in this will be only a fraction (given by the Poisson ratio) of
the strains in the direction of the pre-deformation and have the opposite sign. The Poisson
ratio for polycrystalline copper, 0.34, fits well with the asymmetries measured before the
in-situ deformation: For the 90◦ sample the values of κ are roughly one third the size of the
asymmetries for the 0◦ sample, and have the opposite sign.

6. CONCLUSION

With high angular resolution three-dimensional X-ray diffraction quantitative information
is gained about dislocation structures in individual bulk grains in macroscopic specimens
under various deformation conditions:

1. In three-dimensional reciprocal space maps of tensile deformed copper, individual
almost dislocation-free subgrains are identified as high-intensity peaks whereas dislo-
cation walls manifest themselves as a smooth cloud of lower intensity.

2. The elastic strains show only small variations within each subgrains, but larger varia-
tions between different subgrains. In average, subgrains experience back strains (with
respect to the average elastic strain of the grain) and their radial positions are gath-
ered around the peak of the radial profile, whereas dislocations walls are under forward
strains.

3. Intermittent subgrain dynamics is discovered tracing individual subgrains during in-
cremental loading.

4. In uninterrupted tensile test, individual high-intensity peaks in the reciprocal space
maps are observed already at about 0.1% strain. The emergence of the characteris-
tic feature of dislocation-free regions proofs that ordered dislocation structures form
during tensile deformation and are not caused by any relaxation phenomenon.

5. When tensile loading is terminated, the deformation structure freezes, and a clean-up
process gives rise to stress relaxation.

6. After changes of the tensile direction, the volume fraction of the subgrains decreases
with strain showing a systematic correlation with the degree of the strain path change.

7. After an orthogonal change in tensile direction, a reversal of the symmetry of radial
profiles is observed which is rationalized in terms of the composite model.

In summary, high resolution reciprocal space mapping offers a versatile tool to trace changes
in dislocation structures in-situ during different loading conditions.
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Kužel, R. (2007). Kinematical diffraction by distorted crystals - dislocation X-ray line
broadening. Z. Kristall. 222, 136-142.

Larson, B.C., Yang, W., Ice, G.E., Budai, J.D., and Tischler, J.Z. (2002). Three-dimensional
X-ray structural microscopy with submicrometer resolution. Nature 415, 887-890.

Mughrabi, H. (1971). Elektronenmikroskopische Untersuchung der Versetzungsanordnung
verformter Kupfereinkristalle im belasteten Zustand. I. Die Versetzungsanordnung am
Ende von Bereich I. Philos. Mag. 23, 869-895.

Mughrabi, H. (1983). Dislocation wall and cell structures and long-range internal stresses
in deformed metal crystals. Acta mater. 31, 1367-1379.

99



Pantleon, Wejdemann, Jakobsen, Lienert and Poulsen

Mughrabi, H., Ungár, T., Kienle, W., and Wilkens, M. (1986). Long range internal stresses
and asymmetric X-ray line broadening in tensile deformed [100]-oriented copper single
crystals. Philos. Mag. A 53, 793-813.

Pantleon, W. (1997). On the statistical origin of disorientations in dislocation structures.
Acta mater. 46, 451-456.

Pantleon, W., Wejdemann, C., Jakobsen, B., Lienert, U., and Poulsen, H.F. (2009). Evolu-
tion of deformation structures under varying loading conditions followed in-situ by high
angular resolution 3DXRD. Mater. Sci. Eng. A 524, 55-63.

Poulsen, H.F., Nielsen, S.F., Lauridsen, E.M., Schmidt, S., Suter, R.M., Lienert, U., Mar-
gulies, L., Lorentzen, T., and Juul Jensen, D. (2001). Three-dimensional maps of grain
boundaries and the stress state of individual grains in polycrystals and powders. J. Appl.
Cryst. 24, 751-756.

Raj, S.V., and Pharr, G.M. (1986). A compilation and analysis of data for stress dependence
of the subgrain size. Mater. Sci. Eng. 81, 217-237.

Sakharova, N.A., and Fernandes, J.V. (2006). Dislocation Microstructure in Copper Mul-
ticrystals Deformed under the Sequences: Rolling - Tension and Tension - Rolling. Mater.
Sci. Forum 514-516, 589-593.

Seeger, A. (1988). Thermodynamics of Open Systems, Self-Organization and Crystal Plas-
ticity. In: Kettunen, P.O., et al. (Eds.). Proc. 8th Intern. Conf. on Strength of Metals
and Alloys, Tampere, Finland (Pergammon Press, Oxford, United Kingdom), p. 463-468.

Schmitt, J.H., Fernandes, J.V., Gracio, J.J., and Vieira, M.F. (1991). Plastic behaviour of
copper sheets during sequential tension tests. Mater. Sci. Eng. A 147, 143-154.

Schmitt, J.H., Shen, E.L., and Raphanel, J.L. (1994). A parameter for measuring the
magnitude of a change of strain path: Validation and comparison with experiments on
low carbon steel. Int. J. Plast. 10, 535-551.

Steeds, J.W. (1966). Dislocation arrangement in copper single crystals as a function of
strain. Proc. Roy. Soc. A 292, 343-373.

Ungár, T. (2001). Dislocation densities, arrangements and character from X-ray diffraction
experiments. Mater. Sci. Eng. A 309-310, 14-22.
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